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Abstract. Orbital angular momentum (OAM) carried by vortex beams has seen an explosion of interest
across fields and this is particularly true in attosecond physics. Given that twisted electrons have been
shown to be sensitive to the chirality of molecules, exploring this sensitivity on the attosecond scale is a
particularly exciting prospect. The OAM of photoelectrons has been theoretically studied discussing ways to
measure and understand the ionization via an analytic formalism. This opens up the possibility of using the
photoelectron OAM as an imaging tool. However, in most of the earlier studies the effects of the initial state
on the photoelectron OAM have been neglected. In this project, using an analytic formalism to produce
chiral hydrogen states, we have investigated how the photoelectron OAM in strong field ionization can be
used to image molecular chirality.
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1. Introduction

The wave-particle duality of free electrons manifests itself naturally in some processes. Concretely, the
electron’s wave nature can be revealed in the phase acquired upon propagation. In problems without external
potentials, a typical solution of the wave (Schrödinger) equation is a structured wave, a superposition of
multiple plane waves which interference results in phase singularities. Such structured waves are called
vortices due to a swirl in the probability current density around the phase singularities, so they possess
angular-momentum properties. Therefore, a vortex beam is a freely propagating beam of particles having
well-defined orbital angular momentum (OAM) about its propagation axis [1]. The majority of studies
on vortex beams dealt with optical and classical fields, but the similarities between electron optics and
photonics suggested the application of the results also to electrons. Electron vortex beams have a wide
range of applications in various fields [2], such as high-energy physics, electron microscopy or fundamentals
of quantum mechanics.

Electron vortex beams have been proposed to characterize the optical response of chiral structures [3],
demonstrating the chiral exchange of OAM and a high degree of dichroism between a vortex electron beam
and a chiral sample.

Chiral objects, structures with broken mirror symmetry, are very abundant in nature, ranging from
fundamental particles to spiral galaxies. A chiral object and its mirror image, like a left hand and a right
hand, constitute a pair of enantiomers. At the molecular level, a specific chirality is crucial for encoding
genetic information. Most substances relevant to biology (amino acids, carbohydrates, nucleic acids...) have
a certain chirality and, although the homochirality of life is recognised [4], it is not yet understood despite
the every-day implications that has on living organisms at the molecular level. Furthermore, chirality has
a huge impact in pharmaceutical products [5], a market where half of the drugs are chiral. Therefore, the
investigation of techniques for probing molecular chirality and distinguishing enantiomers is an attractive
topic.
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Molecular chirality can be probed using light, by studying the interaction between chiral molecules
and an electromagnetic field. The photoelectrons ejected on absorption of circularly polarized light by a
sample of randomly oriented molecules have an angular distribution [6], which for chiral molecules displays
a forward-backward asymmetry referred to as photoelectron circular dichroism (PECD) [7]. PECD is one of
the most sensitive probes of molecular chirality, since the chiral effects still occur within the electric-dipole
approximation, in contrast to standard methods such as absorption circular dichroism or optical rotation. It
has been experimentally demonstrated that PECD exists in the strong-field regime [8].

With the advances in laser technology, few-cycle femtosecond laser pulses became routinely available,
permitting the study of the atomic-scale motion of electrons [9]. Although the interaction of a weak laser
field with an atom or a molecule can be completely understood by the conventional perturbation theory,
this is no longer applicable in the strong field case. An alternative perturbation theory, the strong field
approximation (SFA) [10, 11], includes the exact laser field and treats the field-free system potential as a
perturbation. The SFA is an analytical approximation method to solve the time-dependent Schrödinger
equation and, consequently, to understand and describe atomic or molecular dynamics in strong laser fields.
This theory, pioneered by Keldysh, Reiss and Faisal [12, 13, 14], opened up a rich set of physical phenomena
associated with attosecond science. A laser pulse can promote an electron into the continuum (see [15] for
a review of the theoretical description), and the quantum interference patterns present in the strong field
phenomena of one or two ionization processes are explored at [16]. The study of the OAM of photoelectrons
has been used to measure and understand the ionization via an analytical formalism [17]. Furthermore, the
conservation laws for the angular momenta of twisted electrons in strong field ionization have been derived
for different polarised fields [18]. Given that vortex electrons have been shown to be sensitive to the target
structure [19], the photoelectron OAM can be used as an imaging tool.

In this work, we want to investigate how molecular chirality is imprinted on the vortex beams in strong
field ionization. We utilize the strong field approximation to describe the ionization dynamics of chiral wave
functions resulting from superpositions of hydrogen states [20]. We have shown, theoretically, that an electron
ionized by a linearly polarized laser field from a wave function constituted by superpositions of hydrogen
states has the same OAM values as the magnetic quantum numbers of the hydrogen states. Furthermore,
we exploit this to demonstrate that the two opposite enantiomers have asymmetric OAM distributions, a
phenomenon we have called photoelectron vortex dichroism that can be experimentally implemented to probe
chiral molecules and distinguish enantiomers.

The present project is organized as follows. Sec. 2 introduces the theoretical framework: the scattering
matrix formalism and the strong field approximation, as well as the theory of electron vortex beams and the
ionization of chiral molecules. Sec. 3 presents the results, and the conclusions are analyzed in Sec. 4. The
work presented in Sec. 3 is new and my own.

2. Background

2.1. Scattering matrix and Strong Field Approximation

In this section we develop the scattering matrix formalism and SFA. Throughout the thesis we used atomic
units (a.u.) i.e. ~ = me = e = 1, where ~ is the reduced Planck’s constant, me is the mass of the electron
and e is the elementary charge. The charge of the electron in these units is −1.

The evolution of an electron under the influence of a binding potential and a strong laser field is described
by the time-dependent Schrödinger equation

Ĥ(t) |ψ(t)〉 = i
∂

∂t
|ψ(t)〉 , (1)

with Hamiltonian

Ĥ(c)(t) =
1

2
(p̂ + A(t))

2
+ V (r̂) (2)

in the velocity (Coulomb) gauge (gauge fixing condition ∇ ·A = 0). Here V (r̂) is the Coulomb potential,
p̂ the momentum operator and A(t) the classical vector potential, in which the dipole approximation,
A(r̂, t) ≈ A(t), is considered since the wavelength of the field is much larger than the size of the system.



Twisted electrons as an imaging tool for probing chiral molecules in strong field ionization 4

The Hamiltonian can be split into Ĥ(t) = Ĥa + ĤI(t), where Ĥa = p̂2/2 +V (r̂) is the field-free Hamiltonian
and ĤI(t) = p̂ ·A(t) + A2(t)/2 the electron-field interaction Hamiltonian.

In the length gauge, the Hamiltonian is

Ĥ(l)(t) =
1

2
p̂2 + r̂ ·E(t) + V (r̂), (3)

where E(t) is the electric field of the laser in the dipole approximation and the interaction of the electron with
that field is given by ĤI(t) = r̂ ·E(t). Although quantum mechanics is gauge invariant, due to approximation
this is not the case for the SFA [21].

The previous equation can not be solved analytically. Nevertheless, the dynamics of the system can be
probed by writing the problem as a scattering matrix transition amplitude. The transition amplitude of an
ionizing electron can be written as

Mf = lim
t→∞
t0→−∞

〈ψf (t)|U(t, t0) |ψ(t0)〉 , (4)

being |ψf (t)〉 the final unbound state and |ψ(t0)〉 the initial field-free bound state. The time evolution
operator U(t, t0) can be written using the Dyson equation:

U(t, t0) = Ua(t, t0)− i
∫ t

t0

U(t, t′)HI(t
′)Ua(t′, t0)dt′, (5)

where Ua(t, t0) is the time-evolution operator for the field-free Hamiltonian.
Substituting U(t, t0) into the S-matrix transition amplitude leads to the formally exact ionization

amplitude [22]

Mf = −i lim
t→∞

∫ t

−∞
dt′ 〈ψf (t)|U(t, t′)HI(t

′) |ψ0(t′)〉 , (6)

with |ψ0(t′)〉 = eiIpt
′ |ψ0〉, being Ip the ionization potential.

In the strong field approximation, the Coulomb potential is neglected for electrons in the continuum.
Therefore, the time evolution operator U(t, t′), upon neglection of continuum-continuum matrix elements
responsible for rescattering [23], reduces to the Volkov operator Uv(t, t

′), given by

Uv(t, t
′) =

∫
d3p e−

i
2

∫ t
t′ dτ(p+A(τ))2 |p̃(t)〉 〈p̃(t′)| , (7)

where p̃(t) = p in the velocity gauge and p̃(t) = p + A(t) in the length gauge.
Assuming that at t → ∞ the electric field is 0 i.e. A(t) = 0 , we get the following expression for the

transition amplitude:

Mf = −i lim
t→∞

∫ t

−∞
dt′
∫
d3p′e−iS(p′,t) 〈ψf |p′〉d(p′, t′)eiS(p′,t′), (8)

where the exponential terms from the continuum evolution and bound state evolution are collected together
into a quasi-classical action,

S(p, t) = Ipt+
1

2

∫ t

−∞
dτ(p + A(τ))2, (9)

which describes the propagation of an electron from the ionization time to the end of the pulse. Furthermore,
the information about the interaction and electronic bound state is considered in the prefactor

d(p, t′) = 〈p̃(t′)|V (r̂) |ψ0〉 , (10)

in which we have replaced ĤI by V (r̂) due to orthogonal relations of the inner product [24].
For a plane wave momentum state as the final continuum state, 〈ψf |p′〉 → 〈p|p′〉 = δ(p′ − p) and

therefore

Mf →M(p) = −i
∫ +∞

−∞
dt′d(p, t′)eiS(p,t′). (11)
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The previous plane-wave transition amplitude can be computed using the saddle point approximation
[25], a method for approximating integrals, as

M(p) ≈
∑
ts

√
2πi

S′′(p, ts)
d(p, ts)e

iS(p,ts), (12)

where ts are the times that cancel the first derivative of the action (S′(p, ts) = 0) given by

(p + A(ts))
2 = −2Ip. (13)

These times will be complex due to the non-classical nature of tunneling.

2.2. Vortex states

Electron vortex beams are freely propagating vortex states having well-defined OAM about their propagation
axis, with a wavefront with quantized topological structure arising from a singularity in phase eilφ, with φ
the azimuthal angle about the beam axis and l the topological charge with integer value known as the orbital
angular momentum. The general form of a Bessel beam electron-vortex state is

ψl(r, t) = 〈r|ψl(t)〉 = NlJl(p⊥r⊥)eilφeip‖r‖e−iωt, (14)

where Nl is a normalization factor and Jl(p⊥r⊥) is the Bessel function of the first kind, being (p‖, p⊥, φ) the
cylindrical coordinates of p. The Fourier transform, ignoring the time dependence and the normalization
factor, is

〈p′|ψl(t)〉 =
i−leilφ

′

2πp⊥
δ(p′‖ − p‖)δ(p

′
⊥ − p⊥). (15)

Therefore, if a Bessel beam vortex state is used as final continuum state, the transition amplitude reads

Ml(p‖, p⊥) =
il

2π

∫ π

−π
dφ e−iS(p,t)e−ilφM(p). (16)

2.3. Ionization of chiral molecules

The photoelectron momentum distribution formed by vortex electrons is expected to be sensitive to the
chirality (handedness) of the initial state. A molecule is said to be chiral if it cannot be superposed on its
mirror image by any combination of rotations and translations. A chiral molecule and its mirror image, which
have different handedness, are called enantiomers.

Nevertheless, calculations with molecules are more time-consuming. As a first step towards gaining
insight about the emergence of OAM in the strong field ionization of chiral molecules, chiral hydrogen states
can be used, thus getting simpler analytical results. These states capture the chirality of the ground state,
have been used to analyse PECD, and can be readily implemented in the current atomic code.

Among the different types of hydrogen chiral wave functions, an interesting one is the ρ-type state [20]

|χ±ρ 〉 =
1

2
(|4d±1〉+ i |4f±1〉 − |4d∓1〉+ i |4f∓1〉), (17)

where |n`m〉 denotes the hydrogenic state with n, ` and m principal, orbital and magnetic quantum number,
respectively. |χ+

ρ 〉 and |χ−ρ 〉 are the two enantiomers, related to each other through a reflection. The wave

function can be written as |χ±ρ 〉 = (|χ±c 〉 + |χ±c 〉
∗
)/
√

2, being |χ±c 〉 = (|4d±1〉 + i |4f±1〉)/
√

2 the c-type
hydrogen wave function. The enantiomers χρ(r) are shown in Fig. 1. The ρ-type wave function is particularly
meaningful because it has a chiral probability density and, therefore, it mimics the electronic ground state
of an actual chiral molecule.

The ionization with circularly polarized light of chiral molecules results in PECD, which manifests in
forward-backward asymmetry in the photoelectron angular distribution. This is a very sensitive probe of
photoionization dynamics and of molecular structure, because unlike optical activity and absorption, circular
dichroism occurs within the electric-dipole approximation. In this project, following the idea of PECD, we
will study the ionization of the ρ-type wave function with linearly polarized light.
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Figure 1: Positive (blue) and negative (red) isosurfaces χ+
ρ (r) = ±0.003 a.u. (left) and χ−ρ (r) = ±0.003 a.u.

(right).

2.4. The prefactor

The prefactor related to the ionization of the electron is

d(p, t′) = 〈p̃(t′)|V (r̂) |ψg〉 =
1

(2π)3/2

∫
d3rV (r)e−ip̃·rψg(r), (18)

where p̃(t′) = p in the velocity gauge and p̃(t′) = p + A(t′) in the length gauge. For a hydrogenic state,
ψg(r) = Rn`(r)Y

m
` (θ, φ), where Rn` is the radial part of the wave function and Y m` the spherical harmonic,

and V (r) = −1/r is the binding potential. Furthermore, the plane wave can be expanded into spherical
harmonics as

e−ip·r = 4π

∞∑
`=0

(−i)`j`(pr)
∑̀
m=−`

Ȳ m` (θr, φr)Y
m
` (θp, φp), (19)

being j` the spherical Bessel functions.
Writing Rn`(r) as a sum of associated Laguerre polynomials and doing some integrals (see [26]), finally

we get

d(p, t′) = (−i)`
√

(n− `− 1)!

2n (n+ `)!
Y m` (θp̃, φp̃)

n−`−1∑
k=0

(n+ `)!
(√

2Ip
)− 1

2−` (p̃2(t′)
)`/2

Γ
(

3
2 + `

)
(n− `− k − 1)!k!

× (−2)k 2F1

(
1

2
(2 + k + 2`) ,

1

2
(3 + k + 2`) ;

3

2
+ `;− p̃2(t′)

2Ip

)
, (20)

where 2F1(a, b; c; z) is the ordinary hypergeometric function.
Besides, if |ψg〉 =

∑
i |ψig〉, d(p, t′) =

∑
i di(p, t

′), where di(p, t
′) = 〈p̃(t′)|V (r̂) |ψig〉.

3. Results

In this section we will examine the electron’s momentum and OAM distributions for different initial states.
We will employ a laser field with 12-cycle laser pulses linearly polarized along the z axis. The field’s

vector potential can be written as

A(t) = A0 sin

(
ωt

2N

)2

cos (ωt+ δ) ez, (21)

being A0 = 2
√
Up the peak vector potential strength, Up the ponderomotive energy, ω the laser frequency, N

the total number of laser cycles and δ the carrier-envelope phase (CEP). We chose a δ = π/2 CEP in order
to avoid asymmetries in the angular distributions resulting from the asymmetry of the field. The laser field
with the real and imaginary parts of the times of ionization is plotted in Fig. 2. These times are obtained
by solving Eq. (13) considering an Ip = 0.579 a.u. ionization potential (corresponding to argon).
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Figure 2: The 12-cycle electric field [panel (a)], real part of ionization times [panel (b)] and imaginary part of
ionization times [panel (c)]. The electric field is related to the vector potential of Eq. (21) as E(t) = −Ȧ(t).
The real part of the ionization times for p‖ = 1 a.u. are marked on the electric field of panel (a). The real
and imaginary part of the ionization times are plotted vs the parallel momentum coordinate p‖ for φ = 0 and
θ = π/3. These times are obtained by solving Eq. (13) considering an Ip = 0.579 a.u. ionization potential.
Laser field parameters: Up = 0.22 a.u. (tunneling regime), ω = 0.057 a.u. (corresponding to a 800 nm
wavelength), N = 12 laser cycles and δ = π/2. The associated laser peak intensity is I = 1014 W/cm2.

The prefactor clearly affects the momentum and transition amplitude distributions. Since d(p, t′) can
be seen as the Fourier transform of a hydrogen state ψn`m(r) modified by the interaction V (r̂), its number
of nodes is the same as for a hydrogen wave function (n − ` − 1 radial nodes and ` − m angular nodes).
Therefore, the presence of the prefactor means the appearance of radial and angular nodes depending on
the initial state we are considering, as well as a shift in the peaks or a width change of the photoelectron
momentum distribution. Nevertheless, this is only true in the velocity gauge, since in the length gauge most
nodes vanish: all radial nodes vanish due to the absence of radial dependence, and the angular nodes are
heavily transformed. Furthermore, the complex valued ionization times move the spherical harmonic away
from a true node. The momentum distributions for different initial states are shown in Fig. 3. It can be
seen that, for an initial symmetric state with respect to z, such as the states |4d±1〉 or |χ±ρ 〉, the momentum
distribution is also symmetric, while for an initial asymmetric state with respect to z, like the states |χ±c 〉 or
|χ±c 〉

∗
, the momentum distribution is asymmetric.

Figure 3: Momentum distributions in the velocity gauge (first row) and in the length gauge (second row)
for different initial states. The units are arbitrary, normalized to its peak value, so the scale between gauges
is different to highlight the relevant features. In the figure, Eq. (11) is being plotted as a function of the
momentum coordinates px and pz for py = 0. The laser parameters are the same as those used in Fig. 2.
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In the length gauge, the hypergeometric function diverges and d(p, ts)→∞. Consequently, the prefactor
has to be rewritten in a way to avoid the singularity. We have expanded the 2F1 hypergeometric function
and made a variable transformation. A modified saddle-point approximation has been applied, where the
singularity has been transformed to an integral. Then, we have solved the different integrals and written the
sum as a sum of 3F3 hypergeometric functions, getting the expression for the prefactor without divergences
(see Appendix A for the derivation).

The OAM distributions are numerically computed, using the saddle point approximation to compute
the plane-wave transition amplitude of Eq. (11) and then performing the numerical computation of the φ
integral of Eq. (16).

Figure 4: OAM distributions in the velocity gauge (first row) and in the length gauge (second row) for
different initial states and OAM l values. As in Fig. 3, the units are arbitrary, normalized to its peak value.
The distributions fulfil M±1(χ±ρ ) = M±1(χ±c ) and M∓1(χ±ρ ) = M∓1(χ±∗c ). Besides, the OAM distributions
for the states |4d1〉 and |4f1〉 are symmetric with respect to p‖. In the figure, Eq. (16) is being plotted vs
the perpendicular p⊥ and parallel p‖ momentum coordinates. The laser parameters are the same as those
used in Fig. 2.

When considering different initial states in the transition amplitude, we see that only the OAM
distributions l = m are populated (see Fig. 4), due to the conservation law stated in [18]. Therefore,
for a hydrogen state |n`m〉 or the |χ±c 〉 state (constituted by a superposition of two hydrogen states with the
same m value), the photoelectron has an OAM value l = m. On the other hand, when considering a chiral
initial state, such as the enantiomers |χ±ρ 〉 (constituted by superpositions of m = −1 and m = +1 hydrogen
states), the electron ionizes with OAMs l = ±1. This can be seen analytically. For a field linearly polarized
along z, the action of Eq. (16) has no φ dependence and

Ml(p‖, p⊥) ∝
∫
dφ e−ilφM(p) ∝

∑
m

δm,l

∫
dt′Vm(p, t′)eiS(p,t′) =

∫
dt′Vl(p, t

′)eiS(p,t′), (22)

where V is related to the prefactor as d(p, t′) =
∑
m e

imφVm(p, t′). Therefore, the m = ±1 parts of the chiral
state are picked out separately, being each part an asymmetric side of the chiral state, while the OAM l = 0
is suppressed. In other words, M±1(χ±ρ ) = M±1(χ±c ) and M∓1(χ±ρ ) = M∓1(χ±∗c ), where Ml(ψ) denotes the
transition amplitude Ml(p‖, p⊥) for an initial state |ψ〉, where the momentum observables are dropped for
simplicity.

Furthermore, we see that M±1(χ+
ρ ) = M∓1(χ−ρ ), and we observe opposite asymmetries along p‖ for

opposite enantiomers |χ+
ρ 〉 and |χ−ρ 〉. We call this new phenomenon photoelectron vortex dichroism (PEVD),

an asymmetry in the OAM-resolved photoelectron angular distribution that allows us to distinguish between
opposite enantiomers and, unlike PECD, it occurs for linear polarized fields.

Although both gauges show the same behavior, PEVD is not easy to see in the length gauge.
Consequently, we have plotted the θ integral of the positive (p‖ > 0) and negative (p‖ < 0) hemispheres



Twisted electrons as an imaging tool for probing chiral molecules in strong field ionization 9

of the OAM distributions in the length gauge in Fig. 5. A single hydrogen state shows a perfectly symmetric
distribution, while the chiral states show the characteristic asymmetry between opposite enantiomers, as
expected.

Figure 5: OAM distributions in the length gauge integrated over the positive (blue dashed lines) and negative
hemispheres (orange solid lines) for different initial states and OAM l values. The integrals are plotted vs.
the photoelectron energy, and the laser parameters are the same as those used in Fig. 2.

4. Conclusions

In this work, using an analytic formalism to produce chiral hydrogen states, we have investigated the strong
field ionization of electrons by a linearly polarized laser field and how its OAM can be used to image molecular
chirality.

Firstly, we have derived the transition amplitude of a ionizing electron in the SFA and the expression of
the prefactor that takes into account the effects of the initial state on the photoelectron OAM, in the velocity
and length gauges. The momentum and OAM distributions have been numerically computed for achiral and
chiral hydrogen wave functions as initial states.

It has been seen that a photoelectron ionizing from a single hydrogen state has an OAM value equal to the
magnetic quantum number of the initial state. Nevertheless, for a chiral hydrogen state, the electron ionizes
with two OAM values due to the superposition of states with two different magnetic quantum numbers of
the chiral state. Furthermore, it has been observed that the OAM distributions between the two enantiomers
are asymmetric in the direction of the electric field. This phenomenon, which we have called photoelectron
vortex dichroism, can be used to probe molecular chirality and distinguish enantiomers experimentally.

Further research could include calculations and comparisons with other methods, calculations on real
molecules, orientation averaging, universality of the effect or the design of an experimental setup that would
allow such measurements.
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Appendix A. Derivation of the prefactor in the length gauge.

For simplicity, we write the prefactor as

d(p, t′) = αn`Y
m
` (θ, φ)

n−`−1∑
k=0

βn`kp̃
`
2F1(a, b; c; z), (A.1)



Twisted electrons as an imaging tool for probing chiral molecules in strong field ionization 10

where αn` = (−i)`
√

(n−`−1)!
2n(n+`)! , βn`k = (−2)k

(n+`)!(
√

2Ip)
− 1

2
−`

Γ( 3
2 +`)(n−`−k−1)!k!

, a = 1
2 (2 + k + 2`), b = 1

2 (3 + k + 2`),

c = 3
2 + ` and z = − p̃2

2Ip
.

The 2F1(a, b; c; z) hypergeometric function can be written as

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− b)

∞∑
ν=0

Γ(a+ ν)Γ(c− b+ ν)

Γ(c+ ν)ν!
(−1)ν(2Ip)

ν+a 1

[p̃2 + 2Ip]ν+a
, (A.2)

where we have expanded the function by its definition, 2F1(a, b; c; z) = Γ(c)
Γ(a)Γ(b)

∑∞
s=0

Γ(a+s)Γ(b+s)
Γ(c+s)s! zs and made

the variable transformation F (a, b; c; z) = (1− z)−aF (a, c− b; c; z
z−1 ).

By introducing the expression of the prefactor with the hypergeometric function of Eq. (A.2) into the
plane-wave transition amplitude of Eq. (11), we get

M(p) =

n−`−1∑
k=0

∞∑
ν=0

∫ +∞

−∞
dt′

1

[p̃2 + 2Ip]ν+a
eiS(p,t′)νn`mkν(p, t′)︸ ︷︷ ︸

Isp

, (A.3)

where

νn`mkν(p, t′) =
Γ(c)

Γ(a)Γ(c− b)
Γ(a+ ν)Γ(c− b+ ν)

Γ(c+ ν)ν!
(2Ip)

aαn`Y
m
` (θ, φ)βn`kp̃

`+2ν . (A.4)

However, when applying the saddle-point method to solve the integral Isp, we still have a singularity.
This can be solved by modifying the saddle-point answer [27]. In the vicinity of the saddle point ts, S

′(ts) = 0,
we have S′(t) ≈ S′′(ts)(t− ts). Therefore, since p̃2 + 2Ip = S′(t),

Isp =
νn`mkν(p, ts)

[S′′(p, ts)]ν+a

∫ +∞

−∞
dt′

1

(t′ − ts)ν+a
eiS(p,t′)︸ ︷︷ ︸

I2

. (A.5)

To solve I2, which has a singularity at t′ = ts, we can use the transformation

1

(x− x0)
η =

1

Γ(η)

∫ ∞
0

dξ ξη−1 exp [−ξ (x− x0)] , (A.6)

which leads to

I2 =
1

Γ(ν + a)

∫ ∞
0

dξ

∫ +∞

−∞
dt′ξν+a−1 exp [−ξ (t′ − ts) + iS(p, t′)] . (A.7)

Calculating the integral, we get

I2 = i
ν+a
2

Γ(ν+a
2 )

2Γ(ν + a)

√
2πi

S′′(p, ts)
[2S′′(p, ts)]

ν+a
2 eiS(p,ts), (A.8)

so, as Isp = νn`mkν(p, ts)[S
′′(p, ts)]

−(ν+a)I2, Eq. (A.3) becomes

M(p) =
1

2

√
2πi

S′′(p, ts)
eiS(p,ts)d̃(p, ts), (A.9)

with prefactor

d̃(p, ts) =

n−`−1∑
k=0

∞∑
ν=0

νn`mkν(p, ts)i
ν+a
2

Γ(ν+a
2 )

Γ(ν + a)
2
ν+a
2 [S′′(p, ts)]

− ν+a2 . (A.10)

The second derivative of the action can be easily computed, getting

S′′(p, ts) = −2p̃E(ts). (A.11)
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The prefactor can be separated in two sums by developing νn`mkν :

d̃(p, ts) =

n−`−1∑
k=0

wn`k(p̃,ts)︷ ︸︸ ︷
Γ(c)

Γ(a)Γ(c− b)
αn`Y

m
` (θ, φ)βn`k(2Ip)

ap̃`(2i)a/2[S′′(p, ts)]
−a/2

×
∞∑
ν=0

(2i)ν/2
Γ(ν+a

2 )Γ(c− b+ ν)

Γ(c+ ν)ν!
p̃2ν [S′′(p, ts)]

−ν/2

︸ ︷︷ ︸
S1

. (A.12)

The S1 can be solved by writting it as a combination of 3F3 hypergeometric functions. Replacing S1 and the
other values in Eq. (A.12), we get the expression of the prefactor in the length gauge without divergences:

d(p, ts) = (−i)`
√

(n− `− 1)!

2n (n+ `)!
Y m` (θp̃, φp̃)

n−`−1∑
k=0

(−1)k(n+ `)!2k(2Ip)
3
4 + `

2 + k
2 p̃`

(n− `− k − 1)! k! (ip̃E(ts))
2+k+2`

4

× 1

Γ
(

3
2 + `

)
Γ
(

2+k+2`
2

)
Γ

(
2 + k + 2`

4

)
F1 − k

√
4I2
p

ip̃E(ts)

Γ( 4+k+2`
4 )

3 + 2`
F2

 (A.13)

where F1 = 3F3

(
2+k+2`

4 , −k4 ,
2−k

4 ; 1
2 ,

5+2`
4 , 3+2`

4 ;
I2p

ip̃E(ts)

)
and F2 = 3F3

(
4+k+2`

4 , 2−k
4 , 4−k

4 ; 3
2 ,

5+2`
4 , 7+2`

4 ;
I2p

ip̃E(ts)

)
.
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