
BiSon-e: A Lightweight and High-Performance Accelerator for
Narrow Integer Linear Algebra Computing on the Edge

Enrico Reggiani
Polytechnic University of Catalonia
Barcelona Supercomputing Center

Barcelona, Spain
enrico.reggiani@bsc.es

Cristóbal Ramírez Lazo
Polytechnic University of Catalonia
Barcelona Supercomputing Center

Barcelona, Spain
cristobal.ramirez@bsc.es

Roger Figueras Bagué
Barcelona Supercomputing Center

Barcelona, Spain
roger.figueras@bsc.es

Adrián Cristal
Polytechnic University of Catalonia
Barcelona Supercomputing Center

Barcelona, Spain
adrian.cristal@bsc.es

Mauro Olivieri
Sapienza University of Rome

Roma, Italy
Barcelona Supercomputing Center

Barcelona, Spain
mauro.olivieri@uniroma1.it

Osman Sabri Unsal
Barcelona Supercomputing Center

Barcelona, Spain
osman.unsal@bsc.es

ABSTRACT
Linear algebra computational kernels based on byte and sub-byte
integer data formats are at the base of many classes of applica-
tions, ranging from Deep Learning to Pattern Matching. Porting
the computation of these applications from cloud to edge andmobile
devices would enable significant improvements in terms of security,
safety, and energy efficiency. However, despite their low memory
and energy demands, their intrinsically high computational inten-
sity makes the execution of these workloads challenging on highly
resource-constrained devices. In this paper, we present BiSon-e,
a novel RISC-V based architecture that accelerates linear algebra
kernels based on narrow integer computations on edge processors
by performing Single Instruction Multiple Data (SIMD) operations
on off-the-shelf scalar Functional Units (FUs). Our novel architec-
ture is built upon the binary segmentation technique, which allows
to significantly reduce the memory footprint and the arithmetic
intensity of linear algebra kernels requiring narrow data sizes. We
integrate BiSon-e into a complete System-on-Chip (SoC) based on
RISC-V, synthesized and Place&Routed in 65nm and 22nm technolo-
gies, introducing a negligible 0.07% area overhead with respect to
the baseline architecture. Our experimental evaluation shows that,
when computing the Convolution and Fully-Connected layers of
the AlexNet and VGG-16 Convolutional Neural Networks (CNNs)
with 8-, 4-, and 2-bit, our solution gains up to 5.6×, 13.9× and 24×
in execution time compared to the scalar implementation of a single
RISC-V core, and improves the energy efficiency of string matching
tasks by 5× when compared to a RISC-V-based Vector Processing
Unit (VPU).

CCS CONCEPTS
•Computer systems organization→ Single instruction, mul-
tiple data; Embedded systems.

KEYWORDS
Binary Segmentation, Edge Computing, Convolutional Neural Net-
work, String Matching, RISC-V, Hardware Accelerator, Narrow In-
teger Arithmetic, Low-power design, Number Representation

1 INTRODUCTION
Contemporary Internet-of-Things (IoT), edge and mobile comput-
ing applications require high-performance. This demand is fueling
a large research effort in low-power, high-performance embedded
processors [25, 43]. Such devices, mainly constrained by power and
cost, have to fulfill the performance and memory requirements of
a vast collection of important application domains, such as deep
learning, robotics, graph processing, and cryptography. Most of
these application classes represent data as matrices and vectors,
and express their computation through a set of linear algebra ker-
nels. When targeting edge platforms, a popular approach to reduce
energy demands and memory footprint requirements is to com-
pact the data layout using a smaller data format while preserving
the application accuracy. On the one hand, expressing and com-
puting data exploiting low-precision floating-point formats [3] is
gaining traction in the High Performance Edge Computing (HPEC)
community, as they represent a good trade-off between data size
and accuracy. On the other hand, narrow fixed-point and integer
data representations (i.e., byte and sub-byte) offer a better alterna-
tive in terms of Performance per Watt ratio, although they feature
smaller number representations. One of the dominant applications
of edge computing that leverages these compressed data formats is
the Quantized Convolutional Neural Network (QCNN) inference,
which exploits quantization to represent data and weights with data
sizes typically ranging from eight to one bit with tolerable accuracy
penalties[30, 33]. Other kernels belonging to important application
classes for edge computing, such as graph computing and cryptog-
raphy, widely rely on boolean matrices and vectors computations
to traverse a graph or to encrypt/decrypt a message. These applica-
tions would greatly benefit from hardware and software solutions
that efficiently compute narrow integer linear algebra kernels.

Accordingly, we present BiSon-e 1, a high-performance and light-
weight architecture aimed at increasing the efficiency of linear
algebra, narrow integer computations on edge processors. The pro-
posed solution relies on a mathematical technique called binary
segmentation [37], which reduces the memory footprint of matri-
ces and vectors consisting of narrow integers, and considerably

1Binary Segmentation on-edge

The final publication is available at ACM via http://dx.doi.org/10.1145/3503222.3507746

https://orcid.org/0000-0003-1385-7962
https://orcid.org/0000-0003-4945-7338
https://orcid.org/0000-0003-2407-1228
https://orcid.org/0000-0003-1277-9296
https://orcid.org/0000-0002-0214-9904
https://orcid.org/0000-0002-0544-9697

Enrico Reggiani, Cristóbal R. Lazo, Roger F. Bagué, Adrián Cristal, Mauro Olivieri, and Osman S. Unsal

decreases the arithmetic complexity of linear algebra computations.
To the best of our knowledge, this is the first work developing a
binary segmentation based architecture. BiSon-e is motivated by
the lack of sufficient support for efficient narrow computations in
current edge processors and Instruction Set Architectures (ISAs),
as most of them do not implement memory and arithmetic instruc-
tions for data formats smaller than 8-bit. For example, compressing
sub-byte data in memory needs a conversion to standard bitwidths
before and after each computation, leading to performance and
energy consumption inefficiencies. Moreover, processor Functional
Units (FUs) are overprovisioned for computations involving narrow
data sizes, and exhibit an Energy per Instruction (EPI) that does not
scale with the input data size. Our key contribution is to increase
the efficiency of narrow data formats in terms of data storage and
linear algebra kernel computations, scaling their performance with
the decrease of the data size. Instead of extending standard RISC-V
ISA for new sub-byte data sizes, and designing custom hardware
supporting them, we rely on data segmentation to fuse multiple
arithmetic operations in a single instruction, performing Single
Instruction Multiple Data (SIMD) computations on off-the-shelf
scalar FUs.

The main contributions of this paper are summarized as follows:
• We perform a Design Space Exploration (DSE) of binary seg-
mentation on 64-bit architectures. Guided by DSE, we design
the BiSon-e architecture which features a binary segmenta-
tion enhanced Central Processing Unit (CPU) pipeline. We
analyze a set of linear algebra computational kernels that can
leverage binary segmentation to increase the performance of
edge based narrow integer applications;

• We benchmark BiSon-e with three algorithms belonging to
two demanding edge computing application classes, namely
deep learning, and string matching, considering both per-
formance and energy efficiency. Our solution improves the
back-to-back runtime performance of the AlexNet and the
VGG-16 Convolutional Neural Networks (CNNs) by a factor
that ranges from 5.6× to 24× on 8-bit and 2-bit data sizes
with respect to the single-core scalar implementation, and
outperforms the string matching use-case vectorized imple-
mentation by a factor of 5× in terms of energy efficiency;

• We integrate, design, and fully implement the proposed archi-
tecture, including Place and Route (P&R), on a RISC-V based
System-on-Chip (SoC), on both 65nm and 22nm technolo-
gies. We show that BiSon-e can be integrated into modern
edge processors with a negligible 0.07% area overhead, and
without any performance loss;

The organization of the paper is as follows. Section 2 presents
the binary segmentation technique. Section 3 performs a DSE of
binary segmentation on 64-bit CPUs. Section 4 details the BiSon-e
architecture, discussing its design choices and features. Section 5
evaluates the experimental results obtained with the proposed so-
lution. Section 6 reviews the main related work. Finally, Section 7
summarizes BiSon-e.

2 BINARY SEGMENTATION
In the class of applications requiring narrow integer computations,
the data size needed by the algorithm is typically lower than the

one allowed by the underlying architecture. Modern processors
datapaths are often based on 32-bit or 64-bit, and thus byte and
sub-byte computations underutilize both their arithmetic capabil-
ities and data movements efficiency. Moreover, the current ISAs
and programming languages typically lack adequate support to
handle narrow data bitwidths. Consequently, the performance of
workloads featuring narrow integer computations does not scale
in concert with the data size. This work explores the binary seg-
mentation technique to reduce these limitations. This technique
interpolates data within the processor bitwidth [37] and improves
the memory footprint and the arithmetic complexity of several
fundamental linear algebra kernels.

An n-dimensional vector v = [v0, . . . , vn-1] populated with integers
in the [0, 2b) range, with b denoting the element bitwidth can be
represented by the single integer Vb:

𝑉𝑏 =

𝑛−1∑
𝑖=0

𝑣𝑖2𝑏𝑖 (1)

This interpolation allows creating a compact storage scheme for
matrices and vectors populated with bounded integers, as a single
computer word can be composed of several elements belonging
to v. Enhanced support for lower data sizes would dramatically
decrease the applications memory footprint. However, in modern
processors, the lower bound of data sizes that inherently support
Equation (1) is often in the byte range. As a result, the advantages
offered by the compact storage scheme described in Equation (1)
for sub-byte data sizes can be mitigated by the overhead needed
to pack and extract data from non-standard data sizes before and
after their computation. Moreover, adding the support for narrow
data sizes could be a demanding task, as it would imply changes at
hardware, ISA, compiler, and software level. In this paper, we pro-
pose a novel approach to efficiently represent sub-byte data sizes
via binary segmentation, and to compute linear algebra arithmetics
with minimal changes in hardware and ISA, without the need to
define new data formats at the software level. Indeed, the binary
segmentation technique has been successfully explored, from a theo-
retical perspective, to decrease the arithmetic complexity of several
arithmetic expressions: polynomial multiplication [16], multipli-
cation of two complex numbers [36], Discrete Fourier Transform
(DFT) [42], inner and outer product of two vectors [37], polynomial
division [10], and polynomial Greatest Common Divisor (GCD)
[12], and supports both signed and unsigned computations [42].

As a simple example on how this technique can be used to com-
pute arithmetic operations onmatrices and vectors, we can consider
the sum of two vectors u and v, both compised of elements in the
[0, 2b) range. Following Equation (1), and defining the clustering
width (cw) as cw = b+1, we can create two integers Ucw and Vcw
via binary segmentation, sum them as a single sum of integers, and
recover the output vector, obtaining the element-wise sum of the
two vectors. The clustering width is defined to be greater than the
actual bitwidth of the input elements b, as it includes extra guard-
band bits to avoid overflows in the segmented data due to carry
propagation. This allows performing the summation of n narrow
integers with only one summation of two long integers, instead
of n summations of short integers. It is worth noticing that binary
segmentation is not an approximate computing technique, since it
guarantees exact computations, as the clustering width dimension

BiSon-e: A Lightweight and High-Performance Accelerator for Narrow Integer Linear Algebra Computing on the Edge

already accounts for the number of bits needed to represent the
computation output without introducing precision losses.

Below, we describe how binary segmentation can improve the
efficiency of more representative kernels belonging to the linear
algebra field, namely Inner Product (IP) and Linear Convolution
(LC) of two vectors.

2.1 Inner Product of Two Vectors via Binary
Segmentation

The IP of two vectors composed of n elements u = [u0, . . . , un-1]
and v = [v0, . . . , vn-1], having bitwidths bu and bv, can be obtained
by the following expression:

IP =

𝑛−1∑
𝑖=0

𝑢𝑖𝑣𝑖 (2)

To compute the IP via binary segmentation, it is first necessary
to reverse the vector v such that:

𝑣 ′𝑖 = 𝑣𝑛−1−𝑖 , 𝑖 = 0, 1, . . . , 𝑛 − 1 (3)
According to Equation (1), we create the integers Ucw and Vcw

from u and v’, with the following clustering width:
𝑐𝑤 ≥ 𝑏𝑢 + 𝑏𝑣 + ⌈log2 (𝑛)⌉ (4)

Then, the IP computed via binary segmentation is the multipli-
cation between Ucw and Vcw, resulting in the integer Wcw. The
IP result is derived from Wcw by extracting the bits expressed as
follows:

IP =𝑊{(𝑛−1)𝑐𝑤+𝑐𝑤, (𝑛−1)𝑐𝑤 } (5)
Considering the reference example depicted in Figure 1a, we can
evaluate the IP between u = [7, 5] and v = [4, 2] via binary segmen-
tation employing a single integer multiplication. Specifically, we
represent each element of the input vector with a bitwidth equal to
the clustering width defined in Equation (4) (i.e., 7-bit), and we revert
the order of the elements belonging to v (blue). Then, we express
the resulting vectors as single integers (green), and we perform
their multiplication (yellow). Finally, we extract the IP result from
the seven bits resulting from Equation (5) (red). For this example, we
employed a single integer multiplication in place of two multiplica-
tions and one sum to obtain the final result. As detailed in Section 3,
the same approach can be used to compute the IP between three to
ten elements concurrently on a 64-bit architecture, for input sizes
ranging from 8-bit to 1-bit.

2.2 Convolution of Two Vectors via Binary
Segmentation

Given u = [u0, . . . , um-1] and v = [v0, . . . , vn-1], we compute the
vectorw = [w0, . . . , wK], having length K =m+n-1, as the LC between
u and v:

𝑤𝑘 =

𝐾∑
𝑖=0

𝑢𝑖𝑣𝑘−𝑖 , 𝑘 = 0, 1, . . . , 𝐾 − 1 (6)

The same expression can be computed via binary segmentation
by representing Ucw and Vcw as in Equation (1), with a clustering
width of:

𝑐𝑤 ≥ 𝑏𝑢 + 𝑏𝑣 +
⌈
log2 (𝑚𝑖𝑛 {𝑚,𝑛})

⌉
(7)

7 5

000111001001100010100

0000010000010000001110000101

4 2

38

0000111 0000101 0000010 0000100

0001110 0100110 0010100

(a)

3 1 2 1 2

00011 00001 00010 00001 00010

00011001110010000100

00011 00111 00100 00100

3 7 4 4

000100010000110000100010

(b)

Figure 1: Examples of IP (a) and LC (b) kernel computations
via binary segmentation, with clustering widths of 7-bit and
5-bit, respectively. The input vectors are represented with
clustering widths bits (blue), merged into single variables
(green), and multiplied (yellow). The final result is then ex-
tracted from the multiplication output (red).

Then, we recover w from the output of the integer multiplication
between Ucw and Vcw. An example of LC between two vectors u =
[3, 1, 2] and v = [1, 2] is shown in Figure 1b. First, the bitwidth of
each element belonging to u and v is represented as a 5-bit number,
according to Equation (7) (blue). Then, the two input vectors are
converted to single integers (green) and multiplied (yellow). By
segmenting the multiplication result into four 5-bit binary numbers,
it is possible to recover the LC result2 (red). This example only uses
one multiplication to compute the LC between u and v, which
would have required six multiplications and two additions to be
computed with Equation (6). Figure 1a and Figure 1b highlights the
steps required to obtain the final result.

The IP and LC examples reported in Figure 1 reduce their arith-
metic complexity by a factor of 3× and 7×, respectively. Certainly,
the ratio between the processor word size and the data size highly
impacts the achievable arithmetic complexity reduction. Moreover,
if the vector length does not fit the processor word size, the arith-
metic problem must be partitioned into smaller-size subproblems.
It is also worth considering the effort required to convert a set of
vector elements into a single integer, and to extract the output ele-
ments from the integer multiplication result. These requirements
increase the overall arithmetic complexity of binary segmentation if
the underlying architecture is not efficient in clustering, extracting,
and masking data, leading to a decrease in the overall performance
gain. We deeply explore and quantify these considerations in Sec-
tion 3, while in Section 4 we show how our architecture overcomes
these limitations, allowing narrow integer linear algebra kernels to
fully benefit from the advantages that binary segmentation offers.

3 DESIGN SPACE EXPLORATION
The proposed DSE aims to explore the benefits and the pitfalls of
implementing binary segmentation on edge processors, exploiting
2LCout = [3 × 1, 1 × 1 + 3 × 2, 2 × 1 + 1 × 2, 2 × 2]

Enrico Reggiani, Cristóbal R. Lazo, Roger F. Bagué, Adrián Cristal, Mauro Olivieri, and Osman S. Unsal

standard CPU architectures. The efficiency of binary segmentation
strictly depends on the ratio between the CPU registers size and
the application data bitwidths. On the one hand, the greater this
ratio is, the larger the number of elements embedded in a single
operation. On the other hand, increasing the number of elements
clustered in a single register implies a higher overhead required
to pack data into single integers, or to extract the results from the
multiplication output. Following Section 2, our evaluation mainly
focuses on the IP and LC, as they represent the core kernels of our
benchmarks. However, the proposed methodology can be extended
and applied to other arithmetic operators that would benefit from
this approach, such as the one listed in Section 2.

To characterize the binary segmentation technique on CPU ar-
chitectures, it is important to define the number of elements that
can be computed concurrently. We denote this set of elements as
input-cluster, and we evaluate the input-cluster dimension on both
32-bit and 64-bit CPU architectures. As a reference, Figure 1a has
input-clusters composed of two elements, while Figure 1b features
asymmetric input-clusters of three and two elements. In this work,
we consider the same input-cluster dimension for each operand of
the FU. This choice is optimal for CPUs architectures, as they are
equipped with symmetric FUs. Moreover, the clustering width of the
IP and LC input-clusters, defined in Equation (4) and Equation (7),
is reduced to the same expression if the input-cluster dimension of
the two input vectors is the same. However, architectures featur-
ing asymmetric multipliers, like Field Programmable Gate Arrays
(FPGAs) [27], could benefit from having asymmetric input-cluster
dimensions.

The maximum number of elements composing an input-cluster
can be derived as the ratio between the CPU register bitwidth and
the clustering width:

input-cluster𝑑𝑖𝑚 =
CPUbitwidth

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝑊𝑖𝑑𝑡ℎ
(8)

Figure 2 reports the maximum input-cluster dimension on 32-bit
and 64-bit registers, for input bitwidths ranging from 1-bit to 16-bit.
As Figure 2 shows, the input-cluster dimension is inversionally pro-
portional to the input data size. Specifically, a 32-bit architecture
handles from two 7-bit to six 1-bit input data concurrently for the
selected kernels, while a 64-bit architecture can compute from two
15-bit to ten 1-bit elements concurrently. Thus, when the ratio be-
tween the underlying hardware architecture and the target data size
is wide enough, using binary segmentation allows computational
concurrency. Specifically, data concurrency is exploited when the
input-cluster dimension is equal or greater than two, as multiple
data are processed in parallel using a single operation. According to
Figure 2, this concurrency starts to be effective for 15-bit data sizes
on 64-bit architectures, and it is supported on 32-bit architectures
for data ranging from 1-bit to 7-bit.

Figure 2 also shows that the number of elements composing
the input-cluster is rarely improving the kernels memory footprint.
Indeed, only 1-bit input-clusters can hold more elements than a
conventional byte-based allocation. For this reason, creating the
input-clusters before each computation while keeping data com-
pressed in memory would be beneficial from a memory consump-
tion perspective. However, such data manipulation would increase
the computational cost of performing binary segmentation, reducing

32-bit
64-bit

In
pu

t C
lu

st
er

 D
im

en
si

on
 [#

 e
le

m
en

ts
]

0

2

4

6

8

10

Input Data Size [bit]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2: Maximum input-cluster dimension achievable on
32-bit and 64-bit architectures, for data sizes ranging from
1-bit to 16-bit. The input-cluster dimension is defined as the
number of elements that can be packed in a single register,
following the binary segmentation constraints.

its overall arithmetic complexity improvement. These considera-
tions are analyzed in detail in Section 3.1 and Section 3.2. We focus
our study on 64-bit architectures, as they are capable of supporting
more data sizes than the 32-bit ones.

3.1 Inner Product Kernel Analysis
From Equation (2), we can notice that computing the IP of two
vectors having length n requires nmultiplications and n-1 additions.
As discussed in Section 2, we can perform the same computation
by means of a single multiplication, as long as the input-cluster can
hold n elements. We used the maximum input-cluster dimension
for every considered data size, reported in Figure 2, to derive the
arithmetic complexity decrease, defined as the ratio between the
arithmetic operations (i.e., multiplications and additions) needed
to compute the IP kernel by using either Equation (2) or binary
segmentation. As shown in Figure 3a, the analyzed technique can
save a considerable number of arithmetic operations to compute the
IP kernel. Specifically, the number of multiplications and additions
required by the binary segmentation technique is reduced from a
3× for 15-bit computations, to a 19× for 1-bit computations.

Although this reduction can have a huge impact on linear alge-
bra kernels computing IPs, the implementation of this technique
exploiting standard ISAs leads to sub-optimal results, mostly due
to their inability to efficiently support non-standard bitwidth data
manipulations. Indeed, each element of the input-cluster needs to
be converted to non-standard bitwidths (i.e., the clustering width) to
respect Equation (4). As a result, the input-cluster creation becomes
the bottleneck of the IP kernel using binary segmentation. Figure 4a
reports the profiling of the IP kernel execution, computed via binary
segmentation on 64-bit architectures, for the input-cluster widths
defined in Figure 2. We split the arithmetic operations in three main
categories: data are firstly pre-processed through Pack instructions
to create the input-clusters, then aMultiply operation performs their
IP computation, whose result is filtered by the Extract operation.

BiSon-e: A Lightweight and High-Performance Accelerator for Narrow Integer Linear Algebra Computing on the Edge
Ar

ith
m

et
ic

 C
om

pl
ex

ity
 R

ed
uc

tio
n

0

5

10

15

20

Input Data Size [bit]
1 2 3 4 5 6 7 8 9 101112131415

(a)

Ar
ith

m
et

ic
 C

om
pl

ex
ity

 R
ed

uc
tio

n

0

20

40

60

80

100

Input Data Size [bit]
1 2 3 4 5 6 7 8 9 101112131415

(b)

Figure 3: Arithmetic complexity reduction when computing
IP (a) and LC (b) kernels on 64-bit architectures, accounting
for multiplications and additions.

Ideally, the Multiply phase of Figure 4a should cover the whole exe-
cution time percentage, enabling the performance improvements of
Figure 3a. However, Figure 4a shows that the number of instructions
required for the actual IP computation using binary segmentation
is minimal, while the greatest contribution is attained by the pre-
processing phase, whose purpose is to create the input-clusters.
Aiming to alleviate the data pre-processing overhead introduced
in the Pack phase, we also implemented custom bit-manipulation
instructions, namely PACK and MASK, to quickly create the input-
cluster and extract a specific data slice from the output result. These
instructions are common in ISAs bit-manipulation extensions [21].
However, as further discussed in Section 5, our evaluation reports
that these bit-manipulation instructions can slightly increase the
time spent in the Multiply phase of Figure 4a, by a factor ranging
from 4.5% to 15% for 1-bit and 15-bit data, respectively. We tackle
this challenge by proposing an enhanced architecture to compute
the IP kernel via binary segmentation. As detailed in Section 4.1,
we implemented BiSon-e to fuse both the input-cluster creation, the
multiplication, and the output extraction into a single operation.
We also exploit the data compression scheme offered by binary
segmentation in Equation (1) to reduce the memory movements of
this kernel.

3.2 Linear Convolution Kernel Analysis
Figure 3b shows the LC arithmetic reduction on 64-bit architectures,
for the input-cluster dimensions defined in Figure 2, with data
sizes ranging from 1-bit to 15-bit. From Figure 3b, it can be noted
that computing a 2 × 2 LC among 15-bit integers induces a 2.5×
arithmetic saving, while a 10×10 LC of boolean data obtains a 90.5×
arithmetic reduction with respect to a standard implementation.

As the number of output elements of each LC computation, called
output-cluster, is greater than the input-cluster (i.e., n+m-1), to re-
cover each output-cluster, for the input-cluster dimensions reported
in Figure 2, it is necessary to perform two separate multiplications,
computing the low and high slices of the multiplication, respec-
tively.

Extract Multiply Pack

Ex
ec

ut
io

n
Ti

m
e

[%
]

0%

25%

50%

75%

100%

Input Data Size [bit]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a)

OvAdd Extract Multiply Pack

Ex
ec

ut
io

n
Ti

m
e

[%
]

0%

25%

50%

75%

100%

Input Data Size [bit]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b)

Figure 4: Amount of time spent in Pre-Processing, Process-
ing and Post-Processing phases of the IP (a) and LC (b) ker-
nels computed via binary segmentation on 64-bit architec-
tures.

Listing 1 reports the pseudo-code of the binary segmentation-
based LC between two input vectors v_in0 and v_in1, whose lengths
are m and n.

f o r (i = 0 ; i < m/ i c_d im ; i ++) {
c r e a t e _ i c (i c 0 , &v_ in0 [i ∗ i c_d im]) ;
f o r (j = 0 ; j < n / i c_d im ; j ++) {

/ / b u f f e r input − c l u s t e r
i f (i == 0)

c r e a t e _ i c (i c 1 _v [j] , &v_ in1 [j ∗ i c_d im]) ;
/ / a c t u a l C1D computa t ion
m_out_l = i c 0 ∗ i c 1 _ v [j] ;
m_out_h = MULH(i c0 , i c 1 _v [j]) ;
/ / e x t r a c t the output− c l u s t e r
c r e a t e _ o c (oc_v , m_out_l , m_out_h) ;
/ / a ccumula te us ing over l ap −add
ove r l ap_add (c1d_v , oc_v) ;

}
}

Listing 1: Pseudo-code of the LC kernel using binary
segmentation.

The inner-most loop of Listing 1 computes the LC among the i-th
input-cluster belonging to v_in0 (i.e., ic0) and the whole v_in1 vector.
The create_ic function creates both the input-clusters, exploiting

Enrico Reggiani, Cristóbal R. Lazo, Roger F. Bagué, Adrián Cristal, Mauro Olivieri, and Osman S. Unsal

either bitwise instructions (i.e., left-shift and OR) or a set of PACK
instructions. Since the resulting output-cluster is divided among the
twomultiplications output, the create_oc function extracts the result
of each 𝑖𝑐_𝑑𝑖𝑚× 𝑖𝑐_𝑑𝑖𝑚 convolution, composed of ic_dim+ic_dim-1
elements, from the two multiplications output, creating the oc_v
vector. Finally, the overlap-addmethod [22] composes the LC output
vector, called c1d_v. Since each output-cluster represents a segment
of c1d_v, the overlap-add method accumulates each segment into a
given position of c1d_v.

From Listing 1, we can notice that the LC offers more data-reuse
possibilities at the input-cluster level than the IP kernel, as the first
inner-most loop iteration creates the c1d_v, that is reused till the pro-
gram ends. Instead, the advantages offered by binary segmentation
for LC are mitigated by the extra-computation required to extract
c1d_v and to perform overlap-add. Indeed, for every inner-most
loop iteration, it is required to extract ic_dim+ic_dim-1 elements
from the multiplication results, storing them into the c1d_v vector,
and compute the element-by-element addition between c1d_v and
a segment of oc_v. This overhead is reported in Figure 4b, showing
the percentage of time spent on each phase of the computation.
Specifically, we can note that extracting the output-cluster from
c1d_v takes roughly the 50% of the total execution time, and that
the overlap-add kernel takes averagely 26% of the overall time to
be computed. As detailed in Section 4.2, we propose an enhanced
implementation of the LC algorithm, that improves the analyzed
limits by properly creating the output-cluster, allowing to skip the
c1d_v extraction and to compute the overlap-add kernel exploiting
binary segmentation.

4 BISON-E ARCHITECTURE
The architecture proposed in this paper has been built on top of the
binary segmentation technique, presented in Section 2. Although
this technique has proved its strength to optimize memory compact-
ness and arithmetic complexity of integer linear algebra kernels, to
the best of our knowledge, this is the first work that investigates
it from a computer architecture perspective. As Section 3 shows,
exploiting binary segmentation naïvely leads to practical inefficien-
cies, mainly due to the standard ISAs and architectures lack of
support for non-standard data sizes bit-manipulation operations. In
this Section, we tackle this problem by presenting BiSon-e, a light-
weight architecture that enables exploiting binary segmentation
on resource-constrained devices. BiSon-e extends general-purpose
ISAs with instructions facilitating narrow-integer computations by
leveraging the extremely area-efficient binary segmentation idea.
The insight behind BiSon-e is to fill the gap between application-
specific accelerators and SIMD/Vector units for die-area sensitive
edge computing use-cases. On the one hand, as detailed in Section 5,
BiSon-e is comparably more efficient than a high-performance Vec-
tor Processing Unit (VPU) for narrow integer computations, while
featuring 600× less area overhead. On the other hand, BiSon-e fea-
tures more flexibility than an application-specific accelerator, as it
can be used for any kernel exploiting SIMD-style narrow computa-
tions. BiSon-e is efficient formodern edge computing systems for the
following reasons. It leverages existing FUs on scalar architectures
to provide a more flexible integer compute fabric than SIMD archi-
tectures. Its flexibility implies a better fine-tuning of the data sizes

Pre-Processing

Extend Unit

Pack Unit

Post-Processing

Mask Unit
src1 Ro

Control

cnt_isrc2

ic
_1

ic
_2

BiSon-e

cnt_o

Control Register

m
_o

ut

Ex
ec

ut
io

n
to

 W
rit

e-
Ba

ck

Re
ad

-R
eg

is
te

rs
 to

 E
xe

cu
tio

n

Integer 64-bit Multiplier

Processor Units BiSon-e Units Register

Figure 5: BiSon-e block diagram.

involved in the computation than standard narrow-SIMD units, that
rarely support arithmetic and memory instructions for data formats
below 8-bits, and typically neither cover all the possible data size
granularities nor support mixed-precision computations. As an ex-
ample, the current RISC-V vector extension [41] has deprecated its
support for narrow-SIMD computations (i.e., Zvediv), whose initial
specifications only accounted for 8-bit, 4-bit, 2-bit, and 1-bit data
types. As opposed to standard SIMD units, BiSon-e allows every
data size discussed in Section 3 to be kept compressed in memory,
and computed in a SIMD fashion, without incurring data manipula-
tion related area overheads. BiSon-e also features mixed-precision
computation support by design, as the clustering widths of Equa-
tion (4) and Equation (7) already account for different data sizes
between the data sources. Thus, BiSon-e is capable of computing
compressed data and performing flexible SIMD-style computations,
whose width is proportional to the data size of every operation
operand, without associated overheads. Moreover, implementing
BiSon-e, whose key novelty relies on hardware reutilization, does
not require any additional datapath, or a separate Register File (RF)
or FU, leading to a negligible area and power overheads.

As detailed in Section 3.1 and Section 3.2, the main bottleneck
of implementing binary segmentation on standard architectures is
either represented by the pre-processing phase, responsible of the
input-clusters creation, or by the post-processing one, whose main
purpose is to extract the output from the segmented data and per-
form accumulations using the overlap-add method. On the contrary,
binary segmentation does not affect the computation complexity, as
it can rely on standard arithmetic units (e.g., integer multipliers),
whose datapaths and implementations are already implemented in
processors supporting integer computations. Thus, the principal
aim of the proposed architecture is to efficiently cluster data be-
fore the multiplication, and to optimize the data extraction on the
multiplier output side. BiSon-e, whose main functional blocks are
depicted in Figure 5, tackles these problems by means of two stages,
called pre-processing and post-processing. The pre-processing stage
functionality is twofold. Its extend-unit converts ic_dim elements

BiSon-e: A Lightweight and High-Performance Accelerator for Narrow Integer Linear Algebra Computing on the Edge

Table 1: BiSon-e Control parameters list

Input Data Input Cluster Iterations

Bitwidth N.Elements Bitwidth N.Elements Pre-Proc Post-Proc

Ex
te
nd

8 8 21 3 3 1
7 9 16 4 3 1
6 10 16 4 3 1
5 12 16 4 3 1
4 16 12 5 4 1
3 21 9 7 3 1
2 32 8 8 4 1
1 64 6 10 7 1

Pa
ck

8 8 1 64 1 8
8 8 2 32 1 4
8 8 4 16 1 2

Table 2: Overview of the BiSon-e custom instructions

Instruction Description

bs.set control registers configuration
bs.pack pack n elements from Rs1 and Rs2
bs.ip returns the Inner Product
bs.lc.l returns the lower slice of the Linear Convolution
bs.lc.h returns the higher slice of the Linear Convolution

belonging to src1 and src2 into the input-clusters, and forwards
them to the processor multiplier to perform the actual computation.
The number of elements to be clustered, as well as the src1 and
src2 bitwidths, are specified in the control register, whose configura-
tions3 are defined in the Extend part of Table 1, and programmed
through the bs.set custom instruction reported in Table 2.

As an example, when configuring the control register with the
parameters listed in the first row of Table 1, the extend-unit expects
eight 8-bit elements in both src1 and src2, and creates the input-
clusters composed of three 21-bit elements. The Pre-Proc parameter,
defined in Table 1, is used to cyclically offset the src1 and src2
registers content, depending on the cnt_i value, spanning from 0
to Pre-Proc - 1. Indeed, as expressed in the first row of Table 1,
a single 64-bit register containing eight elements requires three
iterations (i.e., clock cycles) to be completely processed, each one
computing three elements of the input registers. The input-clusters
are forwarded to the multiplier through the ic_1 and ic_2 output
busses. Then, themultiplication result is processed by themask-unit,
that composes the final result depending on the instruction opcode.
Specifically, the mask-unit extracts data in the range expressed in
Equation (5) if a bs.ip instruction is decoded, while it outputs either
the lower or the higher part of the convolution in case of a bs.lc.l
or a bs.lc.h instruction.

To speed-up the data compression phase, BiSon-e implements the
pack-unit, which compress its input data into their actual data sizes.
The pack-unit functionality is inferred by the bs.pack instruction,
listed in Table 2. The source operands of this instruction contain the
input register to be compressed (i.e., src1) and the final compressed
register (i.e., src2).

3For space reasons, we omit part of the possible configurations allowed by BiSon-e,
including the one concerning mixed-precision computations.

Each instruction call converts the src1 elements into the target
output bitwidth, and forwards both the results and src2 to themask-
unit to merge them. As an example, the first row of the Table 1 Pack
block could convert eight 8-bit input elements to a single register,
composed of sixty-four 1-bit elements. To do that, BiSon-e only
requires eight iterations, more precisely, eight bs.pack instructions.
On every iteration, the pack-unit converts the eight elements of
src1 into 1-bit format, while themask-unit concatenates the created
data slice into src2. The concatenation offset used by the mask-unit
on every iteration depends on the cnt_o value, ranging from 0 to
Post-Proc - 1. Therefore, the post-processing stage either acts as a
filter to extract the meaningful slice of data from the multiplier
output, or it is used to compress data in case of bs.pack instructions.
Its behaviour depends on the decoded instruction, as well as on the
values set in the control register.

As detailed in Section 5, the proposed solution introduces a min-
imal impact on power and area consumption, as the actual compu-
tation is performed by the existing processor multiplier. Moreover,
we designed the proposed architecture to avoid a latency overhead
increase. Indeed, as in the case of standardmultiplication operations
on the considered target processor, both bs.ip and bs.lc instructions
feature a latency of three clock cycles. In the first clock cycle, data
are read from the RF, processed by the pre-processing stage, and
forwarded to the multiplier input registers. The second clock cycle
performs the multiplication, while the third one stores the result
into the RF, after being properly extracted by the post-processing
stage. As Table 1 reports, the number of Pre-Proc iterations required
by all the Extend configurations is greater than one. As detailed in
Section 4.1, this implies that consecutive bs.ip or bs.lc instructions
share the source operands, allowing to pipeline the execution of
multiple iterations.

From Table 2, we can also note that BiSon-e requires a mini-
mal set of simple instructions. As today’s compilers can optimize,
through vectorization, computations such as IP and LC, the pro-
posed methodology can be exploited by a compiler, as soon as the
target language supports sub-byte data types. Alternatively, as per-
formed in this work and as a current trend in many fields like deep
learning, users can define high-level libraries, optimized with the
low-level instructions of Table 2.

4.1 Enhanced Inner Product Computation

The pseudo-code of the IP computation exploiting BiSon-e is re-
ported in Listing 2.

Firstly, the control register is configured according to Table 1.
Once the parameters have been loaded into the control register, the
main loop computes the IP between two vectors having length
v_dim. Note that the number of iterations required to perform the
computation is given by the ratio between v_dim and the number
of elements packed in the register (i.e., el_in_reg). Indeed, every
loop iteration computes the IP of el_in_reg elements belonging to
v_in0 and v_in1, and each bs.ip instruction processes input-cluster
elements. For example, considering the BiSon-e configuration for 1-
bit input data in Table 1, a single iteration of the loop contains seven
bs.ip instructions, each tackling ten elements of v_in0 and v_in1.
The partial IP is then further accumulated into the final result.

Enrico Reggiani, Cristóbal R. Lazo, Roger F. Bagué, Adrián Cristal, Mauro Olivieri, and Osman S. Unsal

bs.lc.l
bs.lc.h

ova[0] ova[1] ova[2] ova[3] ova[4] ova[5] ova[6]

Figure 6: Improved overlap-add using BiSon-e. Different col-
ors represent different outer loop iterations.

/ / Con f i gu re Con t ro l R e g i s t e r
bs . s e t (c o n f i g . params) ;
f o r (i = 0 ; i < v_dim / e l _ i n _ r e g ; i ++) {

f o r (j = 0 ; j < Pre−Proc ; j ++) {
/ / Compute P a r t i a l I nne r P roduc t s
bs . i p (ip_tmp , v_ in0 [i] , v_ in1 [i]) ;
/ / Accumulate F i n a l I nne r Produc t
i p += ip_tmp

}
}

Listing 2: Pseudo-code of the IP kernel using BiSon-e.

As Listing 2 shows, the IP computation exploiting BiSon-e has
several advantages with respect to both the naïve algorithm and
the one exploiting binary segmentation on standard CPUs. Firstly, it
allows to fully take advantage of the binary segmentation benefits
of reducing the memory footprint and the computation arithmetic
complexity. Indeed, BiSon-e supports compressed data as inputs,
that do not require extra manipulation to be extracted into a stan-
dard bitwidth before performing the computation. Secondly, it re-
duces the number of iterations required for the computation by a
factor that scales from eight to sixty-four, for 8-bit and 1-bit data
sizes, respectively. Finally, as every bs.ip instruction belonging to
the same loop iteration deals with the same input registers, its exe-
cution can be pipelined at the hardware level, allowing reducing
the overall computation latency. As Figure 5 shows, we used the in-
put and output registers of the two-stage multiplier to pipeline the
instructions execution, allowing to execute up to two instructions
concurrently.

4.2 Fused Overlap-Add

As detailed in Section 3.2, the main bottleneck of performing the
LC kernel with binary segmentation relates with the post-processing
phase, since the result of every convolution has to be extracted and
accumulated into the output vector. The proposed solution exploits
BiSon-e and binary segmentation to perform fused overlap-add accu-
mulations. The bs.lc.l and bs.lc.h custom instructions compute and
extract the whole ic_dim+ic_dim-1 result of the convolution. As
in the bs.ip case, the two instructions share their inputs. However,
bs.lc.l returns the lower ic_dim elements of the result, while bs.lc.h

returns the higher ic_dim-1 elements. Thus, differently from the
LC reference implementation of Listing 1, the LC result does not
require to be further manipulated before the overlap-add phase,
as it is possible to perform overlap-add via binary segmentation
without extracting the data. Indeed, the configurations of Table 1
allow for extra computation in the segmented data format. As an
example, considering the first row of Table 1, we can notice that
the input-cluster bitwidth (i.e., 21 bits) is greater than the cluster-
ing width resulting from Equation (7), which is equal to 18 bits
for input-clusters of three elements and 8-bit data sizes. We ac-
counted for the remaining three bits to compute overlap-add via
binary segmentation. As an example, Figure 6 illustrates the fused
overlapp-add of a LC performed on two 16×12 input vectors having
4-bit data size, and with BiSon-e configured to produce input-clusters
with four 4-bit elements. With that configuration, after every bs.lc.l
and bs.lc.h instructions sequence, the post-processing stage outputs
seven elements divided into two registers. Specifically, the first reg-
ister includes four 16-bit elements corresponding to the outcome
of the bs.lc.l instruction, while the second register contains three
16-bit elements created by the bs.lc.h instruction. As can be seen
from Figure 6, the overlap-add can be reduced to two additions
per iteration, the first adding the bs.lc.l result into the current ova
register (i.e., the current output register), and the second adding the
bs.lc.h result into the next ova register. The twenty-seven elements
are accumulated via binary segmentation, and stored in seven ova
registers. Thus, the overlap-add phase can be computed without
pre-extracting the result of every multiplication, and computing
only twenty-four additions, instead of the eighty-four needed by the
standard overlap-add implementation to create the twenty-seven
elements final result.

5 EXPERIMENTAL EVALUATION
This Section evaluates BiSon-e in terms of performance, energy
efficiency, and area consumption. We also perform a comparison
with an embedded VPU, integrated in the target SoC, to show the
efficiency of BiSon-e when compared with a more conventional
high-performance embedded architecture.

5.1 Experimental Setup
Performance numbers have been measured using the gem5 sim-
ulator, configured with a 5-stage, single-issue in-order pipeline,
supporting the 64-bit RV64IM RISC-V ISA. The cache hierarchy
comprises 4-way 16 KB L1D and L1I caches, having 2-cycle access
latency, and a unified 8-way 64 KB L2 cache with 20-cycle access
latency. Moreover, the processor is equipped with a VPU processor,
exploiting 2-lanes and a maximum vector length of 4096 bits. We
use the gem5 VPU proposed in [39], implementing the RISC-V-V
v0.7.1 vector extension [41] to run the vectorized implementation
of the workloads implemented with vector intrinsics instructions.
We extended the RISC-V GNU Compiler Toolchain [40] with the
custom instructions of Table 2 to support binary segmentation and
BiSon-e, integrated in C/C++ implementations of the benchmarks
through intrinsic instructions. We used the MacPat simulator [28]
to extract energy efficiency metrics.

BiSon-e: A Lightweight and High-Performance Accelerator for Narrow Integer Linear Algebra Computing on the Edge

5.2 Workload Description
Convolutional Neural Networks. CNNs represent one of the most

widespread models used in computer vision deep learning algo-
rithms. Being a CNN composed of a variety of kernels, the most
time-consuming ones are represented by the Convolutional and the
Fully-Connected layers. To optimize the performance of these lay-
ers through customized libraries [31, 46], data is usually reshaped
to convert them in linear algebra computations [13, 47]. Moreover,
to further cope with the runtime requirements of CNNs inference,
one of the most attractive solutions is quantization [23, 30, 33], a
technique that converts CNN data and parameters from floating-
point to integer formats, whose size typically ranges from 8-bit
down to 1-bit [38] featuring negligible accuracy losses when com-
pared to the floating-point baseline [8, 15, 29, 34, 49]. Investigating
the optimization of QCNN computations is an important research
topic, as they represent a critical application for CPUs, Graphics
Processing Units (GPUs), and hardware accelerators [1, 24, 45]. We
leverage on BiSon-e to improve the efficiency of the AlexNet [26]
and VGG-16 [44] QCNNs. For these benchmarks, we exploit the IP
kernel computed on BiSon-e, improving its execution by reducing
the overall number of required multiplications and additions. To
test the performance scalability of BiSon-e, we explored different
data sizes of both data and weights of the selected networks.

Approximate String Matching. Research in pattern matching ap-
plies to many important use cases, ranging from biological sequence
alignments and genome pre-alignment filters [5, 6, 9], to web search
engines and data compression. One of the principal fields of pattern
matching, called string matching, verifies if a sequence of charac-
ters belonging to a given alphabet (i.e., the pattern) matches into a
reference string (i.e., the text). The string matching problem can be
solved by following many different methods [4]. One widespread
algorithm breaks up both the text and the pattern into boolean
vectors, one for every letter of the alphabet, and computes boolean
LCs among each vector pair. Each LC result is then accumulated
into the output vector, whose elements identify the number of mis-
matches among the pattern and the text, starting from each text
position. This solution, firstly proposed in [16], is an extension
of the Knuth-Morris-Pratt (KMP) algorithm [32], and represents a
valid candidate to solve the problem of approximate string matching
with don’t care conditions. Although this solution has proved its
efficiency on several works in the literature [7, 17], its performance
can be further improved by applying data compression, as well as
by decreasing the arithmetic complexity of boolean LCs. Both of
these optimizations can be efficiently achieved by the enhanced LC
computation enabled by BiSon-e.

5.3 Performance
As a first performance analysis, we study the IP and the LC kernels
exploiting binary segmentation, and we compare their run-time
with their naïve implementations of Equation (2) and Equation (6).
In Figure 7, we benchmark three implementations using binary
segmentation: one exploiting the standard 64-bit integer RISC-V ISA
(i.e., RV64IM), one featuring bit-manipulation instructions, and one
computing with BiSon-e.

For the IP, the speed-ups obtained with respect to the naïve
kernel are reported in Figure 7a, and ranges from 1.3× to 1.5×,

naive
RV64IM

bit-manip
BiSon-e

22.6x 14.1x 7.1x 4.4x

Ex
ec

ut
io

n
Ti

m
e

[C
yc

le
s]

0

2×104

4×104

6×104

Input Data Size [bit]
1 2 4 8

(a)

naive
RV64IM

bit-manip
BiSon-e

61x 17.4x42x 3.5x

Ex
ec

ut
io

n
Ti

m
e

[C
yc

le
s]

0

2×106

4×106

6×106

Input Data Size [bit]
1 2 4 8

(b)

Figure 7: Execution time of IP (a) and LC (b) kernels us-
ing naïve implementation and binary segmentation exploit-
ing either standard ISA, bit-manipulation instructions, and
BiSon-e.

and from 2.5× to 3.4×, for the binary segmentation implementation
featuring standard and bit-manipulation instructions, respectively.
These results are in line with our analysis in Figure 3a, as the
instructions needed to pack and extract data typically exploit a
smaller latency than the multiplication one, and because of the
smaller number of loop iterations required by the binary segmen-
tation implementations. Figure 7a also shows that, in contrast to
Figure 3a, the achieved speed-up does not scale with the number
of elements composing the input-cluster. As analyzed in Figure 4a,
this behavior is due to the input-cluster creation complexity, which
grows with the number of elements composing the cluster. While
the speed-ups obtained in Figure 7a highly differ from the theoreti-
cal performance gain that binary segmentation could exploit, the
implementation exploiting BiSon-e leads to a 4.4×, 7.1×, 14.1× and
22.6× speed-up with respect to the reference implementation of
Figure 7a, for data sizes of 8-bit, 4-bit, 2-bit, and 1-bit, accordingly.
Note that the performance of BiSon-e are comparable with the max-
imum theoretical improvement allowed by binary segmentation for
the IP kernel, reported in Figure 3a.

The experimental evaluation of the LC kernel is reported in Fig-
ure 7b. The RV64IM-based implementation improves the reference
by a factor ranging from 1.1× to 3.5×, while the implementation
exploiting bit-manipulation instructions reaches from 1.6× to 3.8×
with respect to the reference. When compared to Figure 7b, our im-
plementation leveraging BiSon-e features a speed-up of 3.5×, 17.4×,
42× and 61× for input bitwidth of 8-, 4-, 2- and 1-bit, respectively,
proving that the proposed architecture can significantly improve
the naïve binary segmentation computation reported in Figure 7b.

We implemented three workloads belonging to two different
application classes, namely deep learning and approximate string
matching.

For the deep learning benchmark analysis, we focus our evalua-
tion on the Convolutional and Fully-Connected layers of both the
AlexNet and the VGG-16 CNNs, for input and weights data sizes
ranging from 8-bit to 2-bit. All the kernels (i.e., scalar, vector, and
featuring BiSon-e) have been implemented using img2col, reshaping

Enrico Reggiani, Cristóbal R. Lazo, Roger F. Bagué, Adrián Cristal, Mauro Olivieri, and Osman S. Unsal

BiSon-e (8-bit)
BiSon-e (4-bit)
BiSon-e (2-bit)
VPU

Sp
ee

d-
up

0

5

10

15

20

AlexNet Layers
c1 c2 c3 c4 c5 fc1 fc2 fc3

(a)

BiSon-e (8-bit)
BiSon-e (4-bit)
BiSon-e (2-bit)
VPU
Scalar

En
er

gy
 E

ffi
ci

en
cy

 [G
O

PS
/W

]

0

20

40

60

80

AlexNet Layers
c1 c2 c3 c4 c5 fc1 fc2 fc3

(b)

BiSon-e (8-bit)
BiSon-e (4-bit)
BiSon-e (2-bit)
VPU

Sp
ee

d-
up

0

5

10

15

20

25

VGG-16 Layers
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 fc1 fc2 fc3

(c)

BiSon-e (8-bit)
BiSon-e (4-bit)
BiSon-e (2-bit)

VPU
Scalar

En
er

gy
 E

ffi
ci

en
cy

 [G
O

PS
/W

]

0

10

20

30

40

VGG-16 Layers
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 fc1 fc2 fc3

(d)

Figure 8: Speed-ups (a, c), and energy efficiency (b, d) of the AlexNet and the VGG-16 CNNs with respect to the scalar imple-
mentation, exploiting either BiSon-e or the VPU.

the Convolutional layers as blocked matrix-matrix multiplications,
and the Fully-Connected layers as matrix-vector multiplications.
The obtained results, in terms of performance and energy efficiency,
are summarized in Figure 8. On the performance side, Figure 8a
reports the speed-ups of the vectorized and the BiSon-e implemen-
tations of the AlexNet CNN, with respect to the scalar reference. As
Figure 8a shows, the BiSon-e implementation performance scales
with the decrease of the input data size. Specifically, the proposed
solution runs up to 5.4×, 10.1×, and 20.5× faster than the scalar
implementation for Convolutional layers, and up to 3.7×, 7.2×, and
14.2× for the Fully-Conected layers, for 8-, 4- and 2-bit data sizes,
respectively. Averagely, when compared with the VPU implementa-
tion, BiSon-e exhibits comparable performance on the 4-bit test, and
outperforms it on the 2-bit test by a factor of 1.9×. BiSon-e shows a
1.8× higher run-time than the VPU only for the 8-bit test. However,
as Figure 8b illustrates, the 8-bit AlexNet performed with BiSon-e
shows comparable energy efficiency with respect to the vectorized
counterparts, and exhibits better efficiency in the 4-bit and 2-bit
layers, by a factor that ranges from 1.5× to 3.1×.

Similarly, Figure 8c shows the performance improvement of
BiSon-e and the VPU of the VGG-16 network, with respect to the
scalar baseline. Specifically, a back-to-back execution of the network
performed with BiSon-e peaks a 4.7×, 9.1×, and 18.5× with respect

to the scalar implementation, for 8-, 4-, and 2-bit computations, also
showing comparable and better performance than the VPU, by a
factor up to 1.9× for 2-bit data sizes. In terms of energy efficiency,
as detailed in Figure 8d, the VGG-16 network is computed with
BiSon-e gains averagely 1.1×, 1.8×, and 3.6× with respect to the
VPU implementation, for 8-, 4-, and 2-bit computations. For both
the AlexNet and the VGG-16 networks, the performance scalability
of BiSon-e is guaranteed by the increasing number of operations
performed concurrently, as well as by the compressed input format
on both data and weights, which allows decreasing the overall
memory transfers.

Concerning the approximate string matching workload, we con-
sider a pattern of 256 characters, a text whose length ranges from
4K to 128K characters, and an alphabet of 4 (e.g., A, T, G, C) and
256 letters. Figure 9 reports the speed-ups of BiSon-e and the VPU
with respect to the scalar reference. BiSon-e outperforms both the
scalar and the VPU implementations for all the considered datasets.
Concerning the 4-letters alphabet benchmark, BiSon-e gains from
21.8× to 51.6×, and from 1.3× to 3.2× execution time with respect to
the scalar and the VPU implementations. We obtain similar results
for the 256-letters alphabet benchmark, where BiSon-e outperforms
both the scalar and the VPU execution time by a factor ranging

BiSon-e: A Lightweight and High-Performance Accelerator for Narrow Integer Linear Algebra Computing on the Edge

BiSon-e
VPU

Sp
ee

d-
up

0

10

20

30

40

50

Text Length [characters]
4K 8K 16K 32K 64K128K

(a)

BiSon-e
VPU

Sp
ee

d-
up

0

10

20

30

40

50

60

Text Length [characters]
4K 8K 16K 32K 64K128K

(b)

Figure 9: Approximate string matching kernel speed-up ex-
ploating either BiSon-e (dark-green bars) or the VPU (light-
green bars) with respect to the scalar implementation, fea-
turing a 4 (a) and a 256 (b) letters alphabet.

L1-D
Cache

L1-I
Cache

L2-D
Cache

VGA
Buffer

PLL and ADC
IPs

VPU
VRF

LANE0

VPU
VRF

LANE1

Figure 10: Layout of the DRAC SoC including BiSon-e, high-
lighted in green and circled in black, for the 65nm technol-
ogy.

from 25.9× to 60.6×, and from 1.4× to 3×, respectively. Further-
more, for the approximate string matching benchmarks of Figure 9,
BiSon-e gains an average energy improvement of 40× and 5× when
compared to the scalar and the VPU implementations.

5.4 Area and Power Analysis
We integrated BiSon-e into the DRAC SoC design [2], using the
Cadence tool flow (Genus/Innovus), to obtain the layout and main
performance metrics of the overall microarchitecture. We imple-
mented the design in two different technologies, namely TSMC

Table 3: Area and Power Consumption

Component
Area [mm2] Total Power [mW]

65nm 22nm 65nm 22nm

Scalar Core 4.167 0.383 1419 283.4
VPU 2.277 0.236 1757 309.3

BiSon-e 0.003704 0.000419 1.089 0.236

65nm bulk CMOS and GlobalFoundries 22 nm FDSOI. The 65nm lay-
out, reported in Figure 10, is ready for production, and includes the
SoC along with the VPU, peripheral controllers, a PLL, an ADC, and
the IO pad-ring. The design employs standard- and low-threshold
cells, and the synthesis and P&R target frequency is set to 600
MHz. The 22nm layout includes the SoC along with the VPU and
peripheral controllers, as an IP block ready to be connected to a
PLL and an IO pad-ring. The design employs 8-track standard cells
without using body-biasing, with a target frequency of 1GHz. For
both implementations, we analyzed the physical impact of BiSon-
e incorporation on area, timing and power figures, referring to
the above-defined timing constraints. Regarding the timing perfor-
mance, target constraints are met in the typical corner, and it has
been demonstrated that BiSon-e does not introduce new critical
paths in the processor datapath. Regarding area and power con-
sumption, results are summarized in Table 3. In both technologies,
the area overhead of BiSon-e in the whole layout is below 0.07%,
and the contribution to the total power consumption is lower than
0.04%. The cell count of BiSon-e is 1210 in the 65 nm library, while
it is 1081 in the 22 nm library. For comparison with Bison-e, we
implemented and synthesized a narrow-SIMD unit in 22nm, capa-
ble of computing 8-,4-,2-,1-bit data on a 64-bit datapath, and our
evaluation reported a 10× area increase with respect to Bison-e,
whose key novelty relies on reutilizing hardware, featuring low
area-overhead and high flexibility.

6 RELATEDWORK
Enhanced Processing Units. Although, to the best of our knowl-

edge, this is the first work investigating the application of binary
segmentation on computer architecture, several works have ana-
lyzed the reduction of arithmetic complexity by packing multiple
computations in a single arithmetic operation. [18], exploits the
Xilinx FPGA DSP48E2 slices to pack two 8-bit multiplications, both
sharing one of the multiplicands, into a single DSP slice, achieving
a 1.75× speed-up compared to a naïve multiplication on the same
device. The same approach has been improved in [11], where the au-
thors propose an enhanced DSP slice architecture able to compute
four 9-bit concurrent multiplication with 0.6% area overhead.

Low-Area Application Specific Accelerators. Among the works
investigating the optimization of narrow integer computing on
edge processors targeting CNNs, [19] proposes SIMD Multiply-
Accumulates (MACs) units and bit manipulation instructions to
improve the computation of QCNNs on a multi-core embedded
processor. However, their architecture performance does not scale
with the input data size decrease, as their SIMD units are only opti-
mized for 8-bit computations, and require additional instructions

Enrico Reggiani, Cristóbal R. Lazo, Roger F. Bagué, Adrián Cristal, Mauro Olivieri, and Osman S. Unsal

for 4-bit and 2-bit data computations. The authors tackled this lim-
itation in [20], proposing dot product units and custom RISC-V
instructions to improve the performance of byte and sub-byte com-
putations, reducing the runtime of a small Convolutional layer by
a factor of 5.3× and 8.9× with respect to their baseline, for 4-bit
and 2-bit data sizes. We modeled in gem5 the CPU architecture de-
scribed in [20], and we integrate it with the proposed architecture.
The results show that our solution is 4× more efficient in terms
of area, and 3.14×, 3.19×, and 2.53× more performant in terms
of Performance-Per-Unit-Area[Cycles/Area] for 8-bit, 4-bit, and
2-bit data sizes. The work in [35] proposes SIMD instructions and
custom FUs to accelerate CNN Convolutional layers with narrow
mixed-precision data types, on a RISC-V based edge processor. [35]
runs 1.3×, 1.1×, and 1.4× faster than BiSon-e for 8-,4-, and 2-bit
data types, while occupying 11.6× its area. Thus, BiSon-e outper-
forms [35] by 8.9×, 11.2×, and 8.4× for 8-,4-, and 2-bit computations
in terms of Performance-Per-Unit-Area, while natively supports
mixed-precision computation, as detailed in Equation (4) and Sec-
tion 4. Moreover, while [19, 20, 35] proposes accelerators that are
tied to the deep learning domain, BiSon-e, as detailed in Section 2,
can be exploited for a wide range of computational kernels.

High-Performance Application Specific Accelerators. The method-
ology proposed in this work through BiSon-e features even more
flexibility than high-performance application-specific accelerators
like [14, 48]. For example, [14], represents a state-of-the-art DNN
accelerator for mobile devices, featuring 192 processing elements
and line buffers for a total area of 36mm2 on the TSMC 65nm
technology node. However, the architecture proposed in [14] only
supports computations based on 8-bit data and weights. Certainly,
[14] provides better performance than a single BiSon-e instance
featuring a single multiplier and integrated on an off-the-shelf pro-
cessor, mainly because of its tailored design and its demanding
area, roughly 2227× larger than BiSon-e in 65nm. Indeed, [14] out-
performs BiSon-e by a factor of 39.9×, 21.4×, and 10.9× in terms
of Performance-Per-Unit-Area, for the computation of AlexNet on
8-, 4-, and 2-bit data types. Considering the perceived 100× effi-
ciency gap between CNN accelerators based on ASICs and CPUs
[50], this work goes toward closing this gap. Moreover, the same
area budget of [14], would enable the integration of up to 8 scalar
cores, each featuring one BiSon-e unit, or up to 4 scalar cores, fea-
turing one VPU and one BiSon-e unit. As a result, a specific solution
can be chosen depending on the latency, throughput, area, and
power constraints of the target processor, as well as on the variety
of workloads it has to execute. Moreover, the proposed method-
ology can be exploited to design application-specific accelerators
based on the binary segmentation, and BiSon-e can be integrated on
SIMD or Vector processors to scale their performance on narrow-
precision computations, exploiting the same benefits in terms of
area, reduced memory footprint, and flexibility on the employed
data types, with a minimal ISA extension, and without designing
application-specific and area-consuming FUs.

7 CONCLUSIONS
This work proposes a novel methodology to accelerate linear al-
gebra kernels based on narrow integers. We present BiSon-e, a

lightweight and high-performance accelerator targeting narrow in-
teger linear algebra computing on resource-constrained processors.
We built the proposed solution upon the binary segmentation math-
ematical technique, which reduces both the memory footprint and
the arithmetic complexity of integer linear algebra computations,
and whose efficiency is proportional to the ratio between the target
data sizes and the architecture bitwidth. We perform a detailed
DSE of binary segmentation on 64-bit architecture, highlighting
its strengths and pitfalls. Then, we propose BiSon-e to overcome
the main limitations of the analyzed technique on standard CPU
architectures and ISAs, and showing that the proposed engine can
run important linear algebra kernels such as IP and LC from 3.5× to
61× faster than a scalar RISC-V edge processor. We benchmark the
proposed solution on three algorithms belonging to two key edge
computing application domains, namely deep learning and approx-
imate string matching. We integrate the proposed architecture into
a complete SoC, based on RISC-V, past the P&R step. Our analysis
shows that BiSon-e considerably enhances the performance of nar-
row integer computations, introducing a negligible 0.07% impact on
the overall processor area. Specifically, our experimental evaluation
shows that BiSon-e outperforms the scalar processor from 4.7× to
19.3× on the AlexNet and the VGG-16 CNN benchmarks in terms of
execution time, and shows comparable or higher energy efficiency
than a VPU on the same tasks. Moreover, BiSon-e on approximate
string matching tasks reaches execution speed-up from 1.4× to 3×
when compared to the VPU implementation, showing an avarage
5× improvement in terms of energy efficiency.

ACKNOWLEDGEMENTS
This research was supported by the European Union Regional De-
velopment Fund within the framework of the ERDF Operational
Program of Catalonia 2014-2020 with a grant of 50% of the total
cost eligible, under the DRAC project [001-P-001723], and from
the Spanish State Research Agency - Ministry of Science and In-
novation (contract PID2019-107255GB). This research was also
supported by the grant PRE2020-095272 funded by MCIN/AEI/
10.13039/501100011033 and, by “ESF Investing in your future”

REFERENCES
[1] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, and François Berry. 2018.

Accelerating CNN inference on FPGAs: A Survey. arXiv e-prints, Article
arXiv:1806.01683 (May 2018), arXiv:1806.01683 pages. arXiv:1806.01683 [cs.DC]

[2] J. Abella, C. Bulla, G. Cabo, F. J. Cazorla, A. Cristal, M. Doblas, R. Figueras, A.
González, C. Hernández, C. Hernández, V. Jiménez, L. Kosmidis, V. Kostalabros,
R. Langarita, N. Leyva, G. López-Paradís, J. Marimon, R. Martínez, J. Mendoza,
F. Moll, M. Moretó, J. Pavón, C. Ramírez, M. A. Ramírez, C. Rojas, A. Rubio,
A. Ruiz, N. Sonmez, V. Soria, L. Terés, O. Unsal, M. Valero, I. Vargas, L. Villa,
and C. Ramííez. 2020. An Academic RISC-V Silicon Implementation Based on
Open-Source Components. In 2020 XXXV Conference on Design of Circuits and
Integrated Systems (DCIS). 1–6. https://doi.org/10.1109/DCIS51330.2020.9268664

[3] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi, and K.
Gopalakrishnan. 2019. DLFloat: A 16-b Floating Point Format Designed for Deep
Learning Training and Inference. In 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH). 92–95. https://doi.org/10.1109/ARITH.2019.00023

[4] Koloud Al-Khamaiseh and Shadi ALShagarin. 2014. A Survey of String Matching
Algorithms. International Journal of Engineering Research and Applications 4 (08
2014), 144–156.

[5] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan.
2019. Shouji: A fast and efficient pre-alignment filter for sequence alignment.
Bioinformatics (Oxford, England) 35 (11 2019), 4255–4263. https://doi.org/10.1093/
bioinformatics/btz234

https://arxiv.org/abs/1806.01683
https://doi.org/10.1109/DCIS51330.2020.9268664
https://doi.org/10.1109/ARITH.2019.00023
https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234

BiSon-e: A Lightweight and High-Performance Accelerator for Narrow Integer Linear Algebra Computing on the Edge

[6] Mohammed Alser, Taha-Michael Shahroodi, Juan Gómez-Luna, Can Alkan, and
Onur Mutlu. 2020. SneakySnake: a fast and accurate universal genome pre-
alignment filter for CPUs, GPUs and FPGAs. Bioinformatics 36 (12 2020). https:
//doi.org/10.1093/bioinformatics/btaa1015

[7] Amihood Amir, Avivit Levy, and Liron Reuveni. 2008. The Practical Efficiency
of Convolutions in Pattern Matching Algorithms. Fundam. Inf. 84, 1 (jan 2008),
1–15.

[8] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. 2018. Post-
training 4-bit quantization of convolution networks for rapid-deployment.
arXiv e-prints, Article arXiv:1810.05723 (Oct. 2018), arXiv:1810.05723 pages.
arXiv:1810.05723 [cs.CV]

[9] Zülal Bingöl, Mohammed Alser, Onur Mutlu, Ozcan Ozturk, and Can Alkan.
2021. GateKeeper-GPU: Fast and Accurate Pre-Alignment Filtering in Short Read
Mapping. 209–209. https://doi.org/10.1109/IPDPSW52791.2021.00039

[10] Dario Bini and Victor Pan. 1986. Polynomial division and its computational
complexity. Journal of Complexity 2, 3 (1986), 179 – 203. https://doi.org/10.1016/
0885-064X(86)90001-4

[11] Andrew Boutros, Sadegh Yazdanshenas, and Vaughn Betz. 2018. Embracing
Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs.
35–357. https://doi.org/10.1109/FPL.2018.00014

[12] BruceW. Char, Keith O. Geddes, and Gaston H. Gonnet. 1989. GCDHEU: Heuristic
polynomial GCD algorithm based on integer GCD computation. Journal of
Symbolic Computation 7, 1 (1989), 31 – 48. https://doi.org/10.1016/S0747-7171(89)
80004-5

[13] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High Performance
Convolutional Neural Networks for Document Processing. In Tenth International
Workshop on Frontiers in Handwriting Recognition, Guy Lorette (Ed.). Université
de Rennes 1, Suvisoft, La Baule (France). https://hal.inria.fr/inria-00112631
http://www.suvisoft.com.

[14] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9 (06 2019),
292–308. https://doi.org/10.1109/JETCAS.2019.2910232

[15] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. 2019. Low-bit
Quantization of Neural Networks for Efficient Inference. 3009–3018. https:
//doi.org/10.1109/ICCVW.2019.00363

[16] Michael J Fischer and Michael S Paterson. 1974. String matching and other
products. In Complexity of Computation, RM Karp (editor), SIAM-AMS Proceedings,
Vol. 7. 113–125.

[17] Kimmo Fredriksson and Szymon Grabowski. 2009. Fast Convolutions and Their
Applications in Approximate String Matching. 254–265. https://doi.org/10.1007/
978-3-642-10217-2_26

[18] Yao Fu, EphremWu, Ashish Sirasao, Sedny Attia, Kamran Khan, and RalphWittig.
2016. Deep learning with int8 optimization on xilinx devices. White Paper (2016).

[19] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.
2020. PULP-NN: accelerating quantized neural networks on parallel ultra-low-
power RISC-V processors. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 378 (02 2020), 20190155. https:
//doi.org/10.1098/rsta.2019.0155

[20] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini. 2020. XpulpNN:
Accelerating Quantized Neural Networks on RISC-V Processors Through ISA
Extensions. In 2020 Design, Automation Test in Europe Conference Exhibition
(DATE). 186–191. https://doi.org/10.23919/DATE48585.2020.9116529

[21] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio
Pullini, Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. 2017.
Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint
Devices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 10
(2017), 2700–2713. https://doi.org/10.1109/TVLSI.2017.2654506

[22] D. Griffin and Jae Lim. 1984. Signal estimation from modified short-time Fourier
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing 32, 2
(1984), 236–243. https://doi.org/10.1109/TASSP.1984.1164317

[23] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations. arXiv e-prints, Article arXiv:1609.07061 (Sept.
2016), arXiv:1609.07061 pages. arXiv:1609.07061 [cs.NE]

[24] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. 2019.
A Survey of the Recent Architectures of Deep Convolutional Neural Networks.
arXiv e-prints, Article arXiv:1901.06032 (Jan. 2019), arXiv:1901.06032 pages.
arXiv:1901.06032 [cs.CV]

[25] Wazir Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed. 2019.
Edge computing: A survey. Future Generation Computer Systems 97 (02 2019).
https://doi.org/10.1016/j.future.2019.02.050

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. 2012. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. Neural Information Processing
Systems 25 (01 2012). https://doi.org/10.1145/3065386

[27] Steve Leibson and Nick Mehta. 2013. Xilinx ultrascale: The next-generation
architecture for your next-generation architecture. Xilinx White Paper WP435

143 (2013).
[28] Sheng Li, Jung Ho Ahn, Richard Strong, Jay Brockman, Dean Tullsen, and

Norman Jouppi. 2009. McPAT: An integrated power, area, and timing mod-
eling framework for multicore and manycore architectures. Proceedings of
the Annual International Symposium on Microarchitecture, MICRO, 469–480.
https://doi.org/10.1145/1669112.1669172

[29] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei
Yu, Wei Wang, and Shi Gu. 2021. BRECQ: Pushing the Limit of Post-Training
Quantization by Block Reconstruction. arXiv e-prints, Article arXiv:2102.05426
(Feb. 2021), arXiv:2102.05426 pages. arXiv:2102.05426 [cs.LG]

[30] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. 2016. Fixed
Point Quantization of Deep Convolutional Networks. In Proceedings of the 33rd
International Conference on International Conference onMachine Learning - Volume
48 (New York, NY, USA) (ICML’16). JMLR.org, 2849–2858.

[31] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. 2019.
Optimizing CNN Model Inference on CPUs. In 2019 USENIX Annual Techni-
cal Conference (USENIX ATC 19). USENIX Association, Renton, WA, 1025–1040.
https://www.usenix.org/conference/atc19/presentation/liu-yizhi

[32] Xiangyu Lu. 2019. The Analysis of KMP Algorithm and its Optimization. Journal
of Physics: Conference Series 1345 (11 2019), 042005. https://doi.org/10.1088/1742-
6596/1345/4/042005

[33] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst. 2017. Minimum
energy quantized neural networks. In 2017 51st Asilomar Conference on Signals,
Systems, and Computers. 1921–1925. https://doi.org/10.1109/ACSSC.2017.8335699

[34] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. 2020. Up or down? adaptive rounding for post-training quantization.
In International Conference on Machine Learning. PMLR, 7197–7206.

[35] Gianmarco Ottavi, Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca
Benini, and Davide Rossi. 2020. A Mixed-Precision RISC-V Processor for Extreme-
Edge DNN Inference. In 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 512–517. https://doi.org/10.1109/ISVLSI49217.2020.000-5

[36] Victor Pan. 1984. How to Multiply Matrices Faster. Springer-Verlag, Berlin,
Heidelberg.

[37] V. Pan. 1993. Binary segmentation for matrix and vector operations. Computers
and Mathematics with Applications 25, 3 (1993), 69 – 71. https://doi.org/10.1016/
0898-1221(93)90144-K

[38] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu
Sebe. 2020. Binary neural networks: A survey. Pattern Recognition 105 (2020),
107281. https://doi.org/10.1016/j.patcog.2020.107281

[39] Cristóbal Ramírez, César Alejandro Hernández, Oscar Palomar, Osman Unsal,
Marco Antonio Ramírez, and Adrián Cristal. 2020. A RISC-V Simulator and
Benchmark Suite for Designing and Evaluating Vector Architectures. ACM Trans.
Archit. Code Optim. 17, 4, Article 38 (Nov. 2020), 30 pages. https://doi.org/10.
1145/3422667

[40] RISC-V GNU Compiler Toolchain [n.d.]. RISC-V GNU Compiler Toolchain. https:
//github.com/riscv/riscv-gnu-toolchain

[41] RISC-V "V" Vector Extension [n.d.]. RISC-V "V" Vector Extension. https://github.
com/riscv/riscv-v-spec/releases

[42] Arnold Schönhage. 2006. Asymptotically fast algorithms for the numerical muiti-
plication and division of polynomials with complex coefficients. 3–15. https:
//doi.org/10.1007/3-540-11607-9_1

[43] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (2016),
637–646. https://doi.org/10.1109/JIOT.2016.2579198

[44] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[45] Marc Solé-Bonet and Leonidas Kosmidis. 2022. SPARROW: A Low-Cost Hard-
ware/Software Co-designed SIMD Microarchitecture for AI Operations in Space
Processors. 2022 Design, Automation Test in Europe Conference Exhibition (DATE)
(2022).

[46] Aravind Vasudevan, Andrew Anderson, and David Gregg. 2017. Parallel Multi
Channel Convolution using General Matrix Multiplication. arXiv e-prints, Article
arXiv:1704.04428 (April 2017), arXiv:1704.04428 pages. arXiv:1704.04428 [cs.CV]

[47] A. Vasudevan, A. Anderson, and D. Gregg. 2017. Parallel Multi Channel con-
volution using General Matrix Multiplication. In 2017 IEEE 28th International
Conference on Application-specific Systems, Architectures and Processors (ASAP).
19–24. https://doi.org/10.1109/ASAP.2017.7995254

[48] S. Venkataramani, V. Srinivasan, W. Wang, S. Sen, J. Zhang, A. Agrawal, M. Kar,
S. Jain, A. Mannari, H. Tran, Y. Li, E. Ogawa, K. Ishizaki, H. Inoue, M. Schaal,
M. Serrano, J. Choi, X. Sun, N. Wang, C. Chen, A. Allain, J. Bonano, N. Cao,
R. Casatuta, M. Cohen, B. Fleischer, M. Guillorn, H. Haynie, J. Jung, M. Kang,
K. Kim, S. Koswatta, S. Lee, M. Lutz, S. Mueller, J. Oh, A. Ranjan, Z. Ren, S.
Rider, K. Schelm, M. Scheuermann, J. Silberman, J. Yang, V. Zalani, X. Zhang,
C. Zhou, M. Ziegler, V. Shah, M. Ohara, P. Lu, B. Curran, S. Shukla, L. Chang,
and K. Gopalakrishnan. 2021. RaPiD: AI Accelerator for Ultra-low Precision
Training and Inference. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE Computer Society, Los Alamitos, CA, USA,
153–166. https://doi.org/10.1109/ISCA52012.2021.00021

https://doi.org/10.1093/bioinformatics/btaa1015
https://doi.org/10.1093/bioinformatics/btaa1015
https://arxiv.org/abs/1810.05723
https://doi.org/10.1109/IPDPSW52791.2021.00039
https://doi.org/10.1016/0885-064X(86)90001-4
https://doi.org/10.1016/0885-064X(86)90001-4
https://doi.org/10.1109/FPL.2018.00014
https://doi.org/10.1016/S0747-7171(89)80004-5
https://doi.org/10.1016/S0747-7171(89)80004-5
https://hal.inria.fr/inria-00112631
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/ICCVW.2019.00363
https://doi.org/10.1109/ICCVW.2019.00363
https://doi.org/10.1007/978-3-642-10217-2_26
https://doi.org/10.1007/978-3-642-10217-2_26
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.23919/DATE48585.2020.9116529
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TASSP.1984.1164317
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1901.06032
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1145/3065386
https://doi.org/10.1145/1669112.1669172
https://arxiv.org/abs/2102.05426
https://www.usenix.org/conference/atc19/presentation/liu-yizhi
https://doi.org/10.1088/1742-6596/1345/4/042005
https://doi.org/10.1088/1742-6596/1345/4/042005
https://doi.org/10.1109/ACSSC.2017.8335699
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://doi.org/10.1016/0898-1221(93)90144-K
https://doi.org/10.1016/0898-1221(93)90144-K
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1145/3422667
https://doi.org/10.1145/3422667
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-v-spec/releases
https://github.com/riscv/riscv-v-spec/releases
https://doi.org/10.1007/3-540-11607-9_1
https://doi.org/10.1007/3-540-11607-9_1
https://doi.org/10.1109/JIOT.2016.2579198
https://arxiv.org/abs/1704.04428
https://doi.org/10.1109/ASAP.2017.7995254
https://doi.org/10.1109/ISCA52012.2021.00021

Enrico Reggiani, Cristóbal R. Lazo, Roger F. Bagué, Adrián Cristal, Mauro Olivieri, and Osman S. Unsal

[49] PeisongWang, Qiang Chen, Xiangyu He, and Jian Cheng. 2020. Towards accurate
post-training network quantization via bit-split and stitching. In International
Conference on Machine Learning. PMLR, 9847–9856.

[50] Qianru Zhang, Meng Zhang, Tinghuan Chen, Zhifei Sun, Yuzhe Ma, and Bei Yu.
2019. Recent advances in convolutional neural network acceleration. Neurocom-
puting 323 (2019), 37–51. https://doi.org/10.1016/j.neucom.2018.09.038

https://doi.org/10.1016/j.neucom.2018.09.038

	Abstract
	1 Introduction
	2 Binary Segmentation
	2.1 Inner Product of Two Vectors via Binary Segmentation
	2.2 Convolution of Two Vectors via Binary Segmentation

	3 Design Space Exploration
	3.1 Inner Product Kernel Analysis
	3.2 Linear Convolution Kernel Analysis

	4 BiSon-e Architecture
	4.1 Enhanced Inner Product Computation
	4.2 Fused Overlap-Add

	5 Experimental evaluation
	5.1 Experimental Setup
	5.2 Workload Description
	5.3 Performance
	5.4 Area and Power Analysis

	6 Related work
	7 Conclusions
	References

