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Abstract

The goal of this thesis is to design and build a web platform that integrates access to
data from several Open Data portals. This platform will be used as a tool to explore
and showcase the results of different techniques of data discovery, with the goal of
developing and implementing a method to efficiently detect similarities and datasets
that can be joined. This thesis is highly practical, and is focused on explaining the
technical decisions and implementation details behind the final tool developed.

With the popularization of Open Data platforms the amount of data available on
the internet is growing exponentially, and with it the question of how to extract
value of such large amounts of data. This project not only looks for a way to unify
the data in a single place, but also for ways to be able to explore this data, making
special emphasis on ways to detect similarities between datasets.

The project initially revolved around the data provided from the municipal open
data portals from Barcelona and L’Hospitalet de Llobregat, but the final solution is
meant to be scalable and easily adaptable to other data sources.

The initial idea for this thesis was to be focused mainly on exploring methods for
detecting similarity and joinability between datasets based on profiles, but during
development, it became obvious that the infrastructure required to unify all the
datasets and provide a tool to explore the data was not simple at all. So in the end,
a big part of the thesis consists of the discussion of technical decisions made and
details of the tool built for the project.



Resum

L’objectiu d’aquesta tesi és dissenyar i construir una plataforma web que integri
l’accés a dades de diferents portals de Dades Obertes. Aquesta plataforma es farà
servir com a eina per explorar i mostrar els resultats de diferents tècniques de ”Data
Discovery”, amb l’objectiu de desenvolupar i implementar un mètode per, de forma
eficient, detectar similituds i datasets als quals es pot aplicar una operació de ”join”.
Aquesta tesi és altament pràctica, i està centrada en descriure les decisions tècniques
i detalls d’implementació al darrere de la versió final de l’eina desenvolupada.

Amb la popularització dels portals de Dades Obertes la quantitat de dades disponibles
a internet està creixent de forma exponencial, i amb aquest creixement sorgeix la pre-
gunta de com extreure valor d’aquesta quantitat de dades enorme. Aquest projecte
no només busca una manera d’unificar les dades en un sol lloc, sinó també trobar
maneres d’explorar aquestes dades, fent especial èmfasi en mètodes per detectar
similituds entre datasets.

El projecte inicialment girava al voltant de les dades proporcionades pels portals de
Dades Obertes municipals de Barcelona i l’Hospitalet de Llobregat, però la solució
final té l’objectiu de ser escalable i fàcilment adaptable a altres fonts de dades.

La idea inicial per aquesta tesi era centrar-se principalment a explorar mètodes
per detectar similitud i ”joins” entre els datasets basats en perfils, però durant el
desenvolupament, va esdevenir obvi que la infraestructura requerida per unificar tots
els datasets i proporcionar una eina per explorar-los no era una tasca gens senzilla.
Com a conseqüència, finalment una gran part d’aquesta tesi consisteix en la discussió
de les decisions tècniques fetes i dels detalls de l’eina constrüıda per al projecte.



Resumen

El objetivo de esta tesis es diseñar y construir una plataforma web que integre el
acceso a datos de diferentes portales de Datos Abiertos. Esta plataforma se utilizará
como herramienta para explorar y mostrar los resultados de distintas técnicas de
”Data Discovery”, con el objetivo de desarrollar e implementar un método para, de
forma eficiente, detectar similitudes y datasets a los cuales se les pueda aplicar una
operación de ”join”. Esta tesis es altamente práctica, y está centrada en describir
las decisiones técnicas y detalles de implementación detrás de la versión final de la
herramienta desarrollada.

Con la popularización de los portales de Datos Abiertos la cantidad de datos disponibles
en internet está creciendo de forma exponencial, i con este crecimiento surge la pre-
gunta de como extraer valor de esta cantidad de datos enorme. Este proyecto no
solo busca una forma de unificar los datos en un mismo sitio, sino también encontrar
maneras de explorar estos datos, haciendo especial énfasis en métodos para detectar
similitudes entre datasets.

El proyecto inicialmente giraba alrededor de los datos proporcionados por los por-
tales de Datos Abiertos municipales de Barcelona y L’Hospitalet de Llobregat, pero
la solución final tiene el objetivo de ser escalable y fácilmente adaptable a otras
fuentes de datos.

La idea inicial para esta tesis era centrarse principalmente en explorar métodos
para detectar similitud y ”joins” entre datasets basados en perfiles, pero durante
el desarrollo, resultó obvio que la infraestructura requerida para unificar todos los
datasets y proporcionar una herramienta para explorarlos no era una tarea nada
sencilla. Como consecuencia, finalmente, una gran parte de esta tesis consiste en
la discusión de las decisiones técnicas hechas y de los detalles de la herramienta
construida para el proyecto.
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1 Introduction and Contextualization

In recent years, the field of data science has an experienced exponential growth [1].
After its popularization with the famous “The sexiest job of the 21st century” article
published almost 10 years ago [2], data science has not only grown in popularity,
but nowadays its value proposition is better understood by business and academic
institutions. Data science cannot be understood without data, and its popularization
has grown together with the availability of free data on the internet.

The increasing digitization of our lives has created an even more exponential growth
on the available data. With people spending more and more time online, we gener-
ate huge amounts of digital data. The governments and public institutions are no
exception, its digitization come together with a growth in the ability of processing
large amounts of data [3].

During these last decades, the relations between the citizens and the government
have tightened. The citizens nowadays are in general more interested in taking an
active role in governance, they expect public opinions to be respected and trans-
parency from the government. This transparency from the government has been
increasingly important, as is considered vital for the citizen to be able to monitor
or be aware of how the government uses its resources.

In the context of these two tendencies, digitization of institutions and demand for
transparency, the concept of Open Data emerges. Open Data can be understood as
a source of data that has public access and that can be shared or edited with any
purpose [4]. This data is in many cases found in governments websites or portals
that provide free access to its internal data.

The first benefit of this movement is, as already discussed, transparency. These ini-
tiatives have been found to enhance participation of the whole society and account-
ability for governments, as it forces them to be more responsible with its actions
and resource allocations.

But transparency is not the only benefit, Open data can bring benefits in various
fields, such as health, food security, education, climate, intelligent transport systems,
and smart cities - and is considered ”an essential resource for economic growth, job
creation and societal progress”[5].

1.1 Motivation

A search on the internet with some simple key words such as “dades obertes catalunya”1

returns a surprising amount of related sites. Every important government institu-

1”dades oberted catalunya” can be translated as ”open data catalonia”. Along the thesis, most
of the examples and samples will be in Catalan, as it’s the language of the data sources used for
this project.
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tion has its own websites that provide its internal data. In some cases, different
institutions from the same geographical location will have their own independent
data portals. Some examples are:

• Generalitat de Catalunya: https://analisi.transparenciacatalunya.cat/

• Diputació de Barcelona: https://dadesobertes.diba.cat/

• Ajuntament de Barcelona: https://opendata-ajuntament.barcelona.cat/

With the growth in popularity of open data platforms a huge amount of portals have
appeared, often different institutions are providing data from the same geographical
location. This makes the data scattered around different websites, making it difficult
to have a global vision on what data exists on a specific topic. These platforms,
being developed by different institutions with little relation to each other, do not
follow any standard in design, which results in datasets organized in completely
different categories.

This is the central issue that this thesis is trying to solve. The goal is to develop a
solution that acts as a federation layer for open data portals, that will allow access
to all the data from different sources in the same place and that provides a method
to detect similar datasets. The platform is intended to unify sources in the context
of Catalonia public institutions (municipal data, government, public services, . . . ),
but the final solution should be independent of the kind of data hosted, and could
be easily used in other cases.

The platform to be developed in this project has three main goals. First, it needs
to have an administration process as automatized as possible, this will allow a fast
growth of the number of information hosted without a need for more resources.
Second, it has to provide an as easy as possible way to update the platform and
integrate data from new sources on an ongoing basis. And finally, it has to provide a
method for Data Discovery, centered around identifying similarities and joinability
2 between datasets.

The Data Discovery feature is considered a crucial part of the project. Being able
to identify which datasets have similar content, pertain to related categories or even
contain the same data is vital in order to have a meaningful integration of all the
data. This resulting website developed for this project can be understood as an open
data portal itself, and it should follow requirements and specifications expected as
such. In the next section we revise what is exactly an open data portal and what
features it must have.

2Joinability is a concept repeated many times along this thesis, it’s understood as the probability
or possibility of joining two datasets having at least one common column
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1.2 What is an Open Data platform

An Open Data portal is an infrastructure (usually a website) that hosts a collection
of datasets with free access on the internet. Usually the portal will have datasets
related to each other, either by having a similar topic or by coming from the same
location. When a portal starts growing in size, it is expected to also provide means
to store metadata about dataset and ability to browse and search among the catalog
of datasets.

The Center for Government Excellence (GovEx ) at Johns Hopkins University [6]
is an academic institution with the mission of educating governments about best
practices for the collection, measurement, and analysis of data to get public trust.
The GovEx center is one of the pioneers in trying to define a standard definition of
requirements for a open data portal to be truly open [7].

In the GovEx standards users are defined in three groups:

• Consumers. Anyone who visits the portal to access and use the data

• Publisher. Creators of the content published on the dataset.

• Administrator. Manager of the website infrastructure.

In the platform developed in this project the roles of publisher and administrator
are different, as everyone will be able to propose data for publishing but only the
administrator will be able to accept and add this new data to the website. The
publisher role will be a little different from the one defined in GovEx standards,
because it will only be able to propose new data to be added, but cannot further
modify it. Obviously this comes from the technical limitations of only building a
proof of concept platform.

This thesis is concerned with implementing the data catalog features. Because
the platform created will not be storing any dataset (only pointing towards the
original resource), most of the required features are not feasible to implement. Also
the community and account features are mostly out of the scope for this project,
although they could be implemented.

The following section enumerates the features of a data catalog based on the GovEx
standards, divided between the ones that are pretended to be implemented in this
project and the ones that aren’t.

1.2.1 Data catalog features

• Implemented

– Consumers: must be able to search for datasets by one or more terms
contained in dataset metadata

– Consumers: must be able to browse or explore data by category
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– Consumers: must be able to download the catalog in a machine-readable
format compatible with the common core metadata schema from a well-
known address (typically /data.json)

– Consumers: must be able to view a summary page for each dataset which
details data resources, metadata, and other relevant documentation.

– Administrators: must be able to create, edit, and retire metadata cate-
gories

• Missing

– Consumers: may be able to search for datasets by terms contained in the
data

– Publishers: must be able to add, edit, or remove catalog entries

– Publishers: may be able to mark catalog entries as private so they are
not visible to the public

– Administrators: must be able to configure default sorting for data catalog

– Administrators: must be able to configure global settings for data catalog,
including color theme, branding/logo, titling.

– Administrators: may be able to configure additional global settings for
data catalog, including custom Cascading Style Sheets (CSS), homepage
display elements and layout, displayed catalog elements, and more.

1.3 Resources used

Although the result of the platform developed in this project is intended to be able
to be integrated with any open data platform, in the initial development only two
platforms are integrated. In order for the data from new sources to be added to the
portal it needs to be formatted in a specific way, that is described further in the
document.

The main issue with data integration is that the transformation to the required
format can be cumbersome to do without proper access to the whole catalog of
the data source. To be able to recollect the input data from these two sources its
websites had to be scraped. In this section we discuss the two data sources initially
used and why these ones. Its important to note that when talking about extracting
data from the data sources it refers to the metadata and information about the
available datasets, not the datasets contents itself.

This project is centered around open data portals in Catalonia, as nowadays there
still does not exist a solution for unified datasets, and there is a heavy segmenta-
tion among portals from different level institutions that provide data of the same
topics. As an example of a similar portal, data.europa.eu(Fig.1) is an open data
portal at European Union level that aggregates data from several governments and
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institutions of European countries, although most of the data comes from European
institutions [8].

Figure 1: EU data portal screenshot

1.3.1 Open Data BCN

Open Data BCN (Fig.2) is a portal of open data for the city of Barcelona. It is
administered by Barcelona city council, and has the goal to make public all the data
managed by Barcelona municipal entities. It hosts around 500 datasets from different
areas, mostly focused around population statistics and city governance(Fig.3).

Most of the datasets are provided in csv format, which are the ones that will be
used in this project. Support for other file types could also be implemented, but
ended up being considered out of scope for this project because of the low amount
of datasets with different file types.

Some of the datasets are owned by third-party organizations and a token needs to
be acquired in order to use the data. Although these datasets will appear on the
project portal, the similarity measures can’t be applied because of the lack of access
(more details on these issues are described in future sections). The portal also has an
API with access to datasets and a csv catalog with information on all the available
datasets.
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Figure 2: Open Data BCN home page

Figure 3: Open Data BCN catalog

1.3.2 Dades Obertes L’Hospitalet

Dades Obertes L’Hospitalet(Fig.4) is a portal for open data for the city of L’Hospitalet
de Llobregat, managed by the city council. This portal is much more new and re-
duced than the Barcelona one, with only around 100 datasets(Fig.5). It’s a good
example of an open data portal of a small local institution.

Most of the datasets are in csv format, but there are some data sources that are not
datasets, like maps for example. It also has an API, but some of the endpoints don’t
work correctly. It doesn’t provide a catalog with data of all the available datasets.
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Figure 4: Dades Obertes Hospitalet home page

Figure 5: Dades Obertes Hospitalet catalog
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2 Data Discovery

Data discovery can be defined as the process of exploring a group of datasets in
order to find relations between them. These relations can be obtained by means of
applying complex analysis in order to detect patterns in the contained data. Data
Discovery is a vital process for any data science project, understood as the process
of finding relevant data among a huge collection of datasets. Data Discovery can
be considered part of the preprocessing required before starting the proper machine
learning in a dataset, together with data cleaning for example. Data Discovery is
more of an heuristic problem, without a clear solution, it is very time intensive for
the user and there aren’t efficient computational solutions, taking into account the
large amounts of data used.

Data discovery processes can be divided into manual methods and smart or auto-
mated methods. Manual discovery is, as its name indicates, the manual classification
by a human. Datasets are organized in categories, described and standardized for
future use. The manual method is effective for very small collections of data, but
it’s not scalable at all, and it’s not an option with the huge amount of data available
nowadays. The smart method provides an automated solution that with the help
of data mining and machine learning methods is capable of discovering patterns in
data collections. Automatized data discovery is still an open problem in the com-
puter science community, the complexity of the task and increasing amount of data
makes it very difficult to find an efficient solution.

There’s tendency in the business world of becoming a “data-driven” company [9], a
company where business decisions are taken using collected data as a perspective of
the company performance, and building the business with data generation from the
first moment, in order to have large amounts of it for decision taking. So, taking into
account this tendency and the exponential growth of available data on the internet
(such as government open data portals), the amount of available data makes it
necessary to develop automated data discovery tools. Effective data discovery is
essential for any kind of data analytic, as data found and its quality will directly
affect the final result.

2.1 Defining the problem

On this project, the data discovery is focused around tabular data. Most of the data
available in open data portals is tabular data, usually in csv format. Although there
is a tendency of trying to adopt NoSQL databases in many businesses, most of the
data available is still in tabular datasets. Also, the most notable previous work on
the field is based on tabular datasets [10]. A data discovery process can return as a
result different metrics about the datasets, as the profiling can be done in different
levels (dataset level, attribute level, . . . ). The expected result for this thesis are:

• Defining similarity measures between datasets, based on the contents of the
datasets and the metadata provided. Using this similarity to detect duplicate
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datasets that can be unioned.

• Defining a similarity measure between dataset columns. Using the column
similarity to detect columns from different datasets that represent the same
variable, and that can be joined.

Determining the similarity between two datasets is a very complex task, because
there isn’t a clear definition of similarity and there are many variables to measure.
A dataset could be understood as a set of attributes, each attribute consists of a
name and a list of values (Eq.6). The similarity between attributes can be measured
in different ways, but defining the similarity between two datasets remains a complex
task.

Di = {Ai1 , ..., Ain}

Dj = {Aj1 , ..., Ajn}

Di ▷◁ Dj =⇒ ∃k : Aik ≈ Ajk

Equation 6: Two datasets are joinable if they share a common atribute [11]

In this project, the representation of the datasets in order to calculate similarities will
be based on profiles. Profiles are representations of datasets that contain information
about its schema and data values [12]. Some common similarity techniques are:

• Comparison by value. This method is based on comparing the exact values
contained in the datasets. This is the most precise method but its also the
most complex and difficult to scale.

• Comparison by hash. In this approach, similarity is measured comparing the
output of hash functions.

• Comparison by profile. With profile methods, some important features are
extracted from the datasets to build the profiles, that can be compared between
them to find common information.

Figure 7: Efficiency of different approaches. The table is extracted from [12]

As it can be seen in the Figure 7, there is a direct trade-off between exactitude of the
result and computational expensiveness. Finding exact results needs a significantly

10



larger amount of resources, while approximate results can be found more easily.
As the goal of this project is to apply data discovery to a real web app with a
potential large amount of datasets in catalog, scalability is key and the efficiency
of calculations has to be maximized. For these reasons the solutions studied will
revolve around dataset profiles.

Methods based on profiles allows for using a summary of the data available condensed
in the form of profile, in this way much less data needs to be processed and a much
better performance in terms of calculation speed can be obtained. The trade-off is
that the profiles are only approximate representations of the data contained in the
dataset or attribute, so the results will also be approximated.

2.2 Previous work

Data Discovery is a problem with extensive research done, but it is a problem still
not solved. The current state-of-the-art solutions still does not provide a satisfactory
result, with the main issue being the trade-off between precision and computational
speed [12]. As it was discussed before the different methods for data discovery lack
the efficiency to be deployed on real-time web use cases, with the exception of the
profile method that sacrifices precision for speed.

Research seems to indicate that relying on profiles is the way to go in order to reach
a satisfactory scalability, and NextiaJD 3 was one of the first software to explore this
approach [12]. NextiaJD is a software developed at UPC, it is a tool that extracts a
complex profile from a dataset(Fig.8). These profiles are used to calculate joinability
between datasets, and in this way detect pairs of attributes that can be crossed. One
of the limitations of NextiaJD is that it only considers categorical attributes. Some
further research has been done to develop machine learning models to predict dataset
jonability based on the profiles generated by NextiaJD. There has also been research
around building graph neural networks to predict joinability [13]. The conclusions
from the NextiaJD paper were that profile based methods could be a solution for
the scalability problem, but that there were still some unresolved challenges on how
to satisfactorily identify joins.

The similarity methods explored in this thesis are pretty much inspired by the
research done in NextiaJD, but there is a strong focus in providing a solution that can
be implemented in a web context. So there’s much more focus in producing a solution
that is scalable rather than in bettering the prediction results from NextiaJD.

3Repository can be found at https://github.com/dtim-upc/NextiaJD
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Figure 8: Profiles generated by NextiaJD. The table is extracted from [13]

2.3 A first solution

The datasets used in this project all come from open portal data, so it is worth
studying what kind of data these portals provide. Usually, the open data portals
not only host the dataset itself, but also provide a lot of relevant information and
metadata about it. All of this information it’s already provided for free by the portal
itself, and it might be interesting to use it.

Some additional data provided by both Barcelona and Hospitalet portal:

• Dataset title

• Text description of the dataset

• Category

• Publish date

From these variables, it seems that categories could directly be used to classify the
datasets in groups. The issue with it is that categories might differ a lot between
different portals, so it’s not a good way to cluster datasets. This leaves us with
the dataset title and description which are interesting. Having a description of the
dataset provides a lot of information that can allow a human to understand what
a dataset is about. Using the dataset title and description, a human would be
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capable of approximating the similarity between two datasets. Now the challenge is
to translate this into an algorithm.

We have a set of datasets D, where each dataset is composed of a title t and a
description d.

D = {D1, ..., Dn}

Di = {tDi
, dDi

}

We can assume that we have a function sim that returns the similarity between two
text strings. In this case, we can have two functions that respectively return the
similarity between titles and descriptions. With those similarities we can have a
third function that aggregates both results into a single similarity(Eq.9). Finally,
the challenge is to come up with a sim function as an S function.

S(St, Sd) := similarity between two datasets

St(D1, D1) = sim(tD1 , tD2)

Sd(D1, D1) = sim(dD1 , dD2)

sim(text1, text2) := similarity between two texts

Equation 9: Dataset similarity based on title(t) and description(d)

For this algorithm we are only concerned with the title and description of the dataset,
ignoring schema, profile and internal values. The goal is to find a minimum viable
similarity that can be obtained only with the resources already provided by the open
data portals.

In order to obtain a representative representation, both title and description are
preprocessed. The preprocessing consists of first eliminating punctuation signs and
transforming all the words to the lowercase. After that all stopwords are removed to
keep only significant words. All the descriptions used for the similarity calculation
are in Catalan, so the stopword dictionary used is also in Catalan [14]. The result
is a set of key words found in the text, that will be useful to identify similarities.

The similarity function will be derived from Tf-idf (Eq.10). Tf-idf (term frequency
- inverse document frequency) is a statistical function that intends to represent how
important a word is in a document in relation to a collection of documents. The
Tf-idf value increases proportionally to the number of times a word appears in the
document and is offset by the number of documents in the corpus that contain the
word, which helps to adjust for the fact that some words appear more frequently in
general.
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wi,j = tfi,j ∗ log
N

dfi

tfi,j = number of ocurrences of i in j

dfi = number of documents containing i

N = total number of documents

Equation 10: Tf-idf equation

Tf-idf is often used by search engines for ranking a document’s relevance based on
a query. A survey conducted in 2015 showed that 83% of text-based recommender
systems in digital libraries use Tf-idf [15].

Tf-idf is implemented using the sklearn library[16]. The similarities are calculated
separately for the titles and descriptions. First, the texts are all condensed together
in a vector that is imputed into the vectorizer function. The output is a Tf-idf vector
that contains values for all the texts. Last step is to multiply it by its transpose,
and the result is a matrix of similarities between all the texts.

In the following piece of code it can be seen the process of generating a similarity
matrix for all datasets.

1 from sklearn.feature_extraction.text import TfidfVectorizer

2

3 vect = TfidfVectorizer(min_df =1)

4 tfidf = vect.fit_transform(text)

5 pairwise_similarity = tfidf * tfidf.T

At this moment, we have two similarity matrices, one for the titles and one for the
descriptions. A way to unify both results needs to be found, and the proposed one
is defined on equation 11.

sim(Di, Dj) = α ∗ simtitle[i, j] + (1− α) ∗ simdescription[i, j]

α ∃ [0, 1]

Equation 11: Equation to unify title and description similarities

The equation is a weighted sum, the α parameter defines the relation between both
values. A high α gives more importance to the title, while a close to zero α gives
more importance to the description similarity. The resulting similarity is a value
between 0 and 1, where 1 indicates that both texts are identical.

In the following examples, it can be seen that the result is very satisfactory. The
following results are first only comparing title similarities, then only description
similarities and finally both with the described equation. It can be seen that the
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results are very related to the original text, sharing a lot of keywords (Barcelona,
Guàrdia Urbana, accidents, . . . ) and always sharing the same topic. The most
similar text is always the same text itself with a 1.

Text
similarity
%

Accidents gestionats per la Guàrdia Urbana a la
ciutat de Barcelona segons tipologia

original

Accidents gestionats per la Guàrdia Urbana a la ciutat de
Barcelona segons tipologia

0.99

Accidents gestionats per la Guàrdia Urbana a la ciutat de
Barcelona

0.88

Persones involucrades en accidents gestionats per la
Guàrdia Urbana a la ciutat de Barcelona

0.70

Persones involucrades en accidents gestionats per la
Guàrdia Urbana a la ciutat de Barcelona

0.70

Descripció de la causalitat dels accidents gestionats per la
Guàrdia Urbana a la ciutat de Barcelona

0.66

Table 1: Similarity with original title.

15



Text
similarity
%

Llistat dels tipus d’accidents gestionats per la
Guàrdia Urbana a la ciutat de Barcelona. Un ac-
cident pot estar tipificat com més d’un tipus ( ex:
caiguda (dues rodes) i abasti).

original

Llistat dels tipus d’accidents gestionats per la Guàrdia
Urbana a la ciutat de Barcelona. Un accident pot estar
tipificat com més d’un tipus ( ex: caiguda (dues rodes) i
abasti).

1.0

Llistat dels vehicles implicats en accidents gestionats per
la Guàrdia Urbana a la ciutat de Barcelona. Un accident
pot tenir associat més d’un vehicle. Inclou si la causa és
del vianant, el tipus de vehicle, model, marca, color i tipus
carnet i antiguitat de la persona que ho condüıa.

0.41

Llistat de de la causalitat dels accidents gestionats per la
Guàrdia Urbana a la ciutat de Barcelona. Un accident pot
tenir una o més causes mediates les quals fan referència
a factors externs del resultat en temps, lloc o grau (ex:
Alcoholèmia i Excés de velocitat o inadequada).

0.33

Llistat dels accidents gestionats per la Guàrdia Urbana a
la ciutat de Barcelona. Incorpora el número de lesionats
segons gravetat, el número de vehicles implicats i el punt
d’impacte.

0.23

Llistat de les persones que han estat involucrades en un
accident gestionats per la Guàrdia Urbana a la ciutat de
Barcelona i que han sofert algun tipus de lesió ( ferit lleu,
ferit greu o mort). Inclou descripció de la persona (con-
ductor, passatger o vianant), sexe, edat, vehicle associat
a la persona i si la causa ha sigut del vianant.

0.20

Table 2: Similarity with original description.

2.4 Similarity based on profiles

The solution explained in the last section returns good results, but it completely
ignores the data in the dataset itself. The problem with the text similarity solution
is that it depends entirely on the description provided from the open data portal,
which could be misleading and not be related to the dataset contents at all. In some
cases the portal might not provide a description of the dataset, or we might want
to compare it with a dataset out of context (not coming from an open data portal).
Apart from that, we are leaving on the table a lot of valuable information from the
insides of the dataset.

To sum up, the text based solution is good to have a fast recommendation system
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that is able to detect related datasets (related in terms of topic) very fast. It is not a
good solution to detect joinable datasets, where we are more interested in detecting
similarities between columns. The benefits in finding joinable datasets is that when
joined, the data can be augmented with attributes from both datasets.

Two datasets are considered joinable if a join operation can be performed between
them. A join operation is an operation that combines columns from one or more
tables into a new table. So, we can consider that if two datasets have a column
in common then they are joinable, the more columns in common the highest is the
probability of a satisfactory join.

Taking into account these observations, the problem can be divided into two parts,
first finding a similarity measure between columns, and second , aggregating datasets
by the number of common columns.

We have a set of datasets D. Each dataset Dn has an arbitrary number of attributes
Ai.

D = {D1, ..., Dn}

Di = {A1, ..., An}

We define three functions. P is the profile calculating function that outputs a profile
from an attribute (details on implementation will be seen further). Then there’s a
similarity function between profiles and a function that calculates the ease of join
from the two datasets.

P (A)

sima(P (A1), P (A2))

J(D1, D2)

First step is to define what is the profile that will be used and how to extract them.
The first idea on this project was to use NextiaJD as a generator of profiles.

NextiaJD is able to generate extremely detailed profiles from datasets. Its profiles
consist of a set of around 30 variables measuring things such as cardinality, distri-
bution of words, syntactic data, . . . . NextiaJD outputs one profile from the whole
dataset, so there’s no way of identifying individual column similarities. The creators
of NextiaJD also developed a machine learning algorithm that is capable of predict-
ing the joinability between two profiles generated with NextiaJD. An issue with
NextiaJD is that it only considers categorical attributes, so numerical attributes are
ignored(Fig.8).

When trying to implement NextiaJD in this problem there were several issues that
ended up not being possible (which are detailed in a further section). The main
reason was that it was too slow to run in real time. The goal of this project is to
develop an implementation that can be used in real time by multiple users, so it’s
not feasible to use a heavy tool like NextiaJD.
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Once again, there is a trade-off between exactitude in profile definition and compu-
tational efficiency. NextiaJD profiles are very detailed, because they have a lot of
different variables but it’s very slow to calculate. Taking into account the practical
nature of this project, the computational performance can’t be sacrificed, so a more
approximate way to calculate the profiles needs to be found.

The idea between profiles is to define a statistical representation that resumes the
data contained in it. We can divide the attributes between categorical and numerical,
because both of them will have different profile extraction methods and they will be
only compared between the same group.

If we observe the variables contained in the NextiaJD profile, it can be seen that
many variables measure similar things and that possibly a more reduced version of
the profile can be defined. For categorical attributes, this means creating a statistical
representation of the categorical values contained in the attribute (words), and we
already have a model for that from the last section: Tf-idf. Tf-idf can be used as
a first experiment to see if a very simple method is enough to provide acceptable
results.

In order to calculate the Tf-idf value as profile for a column, all the values are
extracted and a similar preprocessing as done in last section is done (removing
punctuation, transforming to lowercase and removing stopwords). Repeated words
are removed and the rest is aggregated in a text. This text is the one that will
be used for Tf-idf. Because Tf-idf is already a similarity measure, the profile itself
(frequency for each word) doesn’t need to be stored.

For the numerical attributes, a way of generating a list of statistical values from it
needs to be found. In past work related to NextiaJD [13], it was proposed to use the
python pandas function pd.DataFrame.describe(). This function generates a list
of descriptive statistical values from a column of a dataset (attribute). The values
generated are the following:

• count: The number of rows of the dataset

• mean: Mean value of the numeric attribute

• std: The standard deviation of the numeric attribute

• min: The minimum value of the numeric attribute

• 25%: Percentile 25% of the numeric attribute

• 50%: Percentile 50% of the numeric attribute

• 75%: Percentile 75% of the numeric attribute

• max: Maximum value of the numeric attribute

This function returns a list of variables that can be understood as a profile of the
attribute, but a way to calculate a similarity between different results needs to be
defined. The need is to find a similarity function between vectors of variables. In the
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context of information retrieval and text mining the cosine similarity is often used.
Cosine similarity(Eq.12) is a measure of similarity between two numerical vectors.
The vectors are in an inner product space and the similarity is defined as the cosine
of the angle between them (dot product of the vectors divided by the product of
their lengths). The result is bounded between 0 and 1, where 1 indicates the highest
similarity.

Using the Cosine similarity(Eq.12) its possible to calculate a percentage of similarity
between two columns, and if this similarity is above a threshold, both columns can
be considered equal. Sharing a columns is a minimum condition for two datasets
to be joinable, because the join action consists on combining rows from both tables
based on the shared column value. In the approach used in equation 14 its assumed
that the more columns in common two datasets have the more joinable they are.
If column pairs are classified in similar or not similar (binary classification based
on a threshold), using Jaccard similarity(Eq.13) makes sense as a simple similarity
measure.

Sc(A,B) := cos(θ) =
A ·B

||A|| · ||B||

Equation 12: Equation for cosine similarity

SJ(A,B) :=
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|

Equation 13: Equation for Jaccard similarity

Di = {Ai1, ..., Ain}

Dj = {Aj1, ..., Ajn}

∨k Sc(Aik, Ajk) > threshold =⇒ Aik = Ajk

joinability(Di, Dj) = SJ(Di, Dj)

Equation 14: Equation for calculating dataset joinability assuming columns with
similarity larger than threshold a to be equal
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3 Implementation Scope

This section describes what are the goals of the project regarding the open data tool
built. The following list of requirements is an exhaustive list of all the specifications
that are considered indispensable to be built in order for the tool to be considered
successful. The requirements are divided between functional(physical requirements
that need to be implemented by the developer) and non-functional(criteria that
judges the operation of the system).

3.1 General objectives

The main goal of this project is to develop a website that aggregates datasets from
different sources and provides a way to explore the dataset collection. As a way to
add value to the user, the website must provide a way to recommend similar and
joinable datasets. This goal can be broken down into more detailed objectives:

• Develop a database that aggregates dataset metadata from different sources
and that can be accessed with an API. The database should be able to be
updated in an easy way, and adding new data should also be easy.

• Develop a front-end website that showcases the data from the database and
that is easy to use.

• Explore ways to calculate similarities and joinability among datasets.

3.2 Functional requirements

Back-end

• Ability to extract data from Barcelona and L’Hospitalet websites.

– Obtain download url, website url, title, description, . . .

– Scrap websites in an automatized way, scrapping should be fast.

– Unify data from all sources into a single dataset or database.

• Store data extracted in a way that can be accessed with a REST API.

– Data is preferably stored in a database that can be queried.

– There is an abstraction layer that makes it easy to extract data stored

– There is an API that allows you to obtain the data from external sources.

• Ability to update stored data and add data from new sources easily.

– Easy update of data from original sources

– A way to add data from a different source

– All actions are highly automatized and require little manual action
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• A way to calculate dataset similarity.

– A way to calculate similarity using dataset profiles.

– A way to calculate similarity using text descriptions in original sources.

Front-end

• A way to explore the catalog of datasets

– Should showcase all the datasets from the catalog in an automatized way

– Generate an individual page for each of them

– Automatically identify all sources in the database, create pages for them

• Search functionality and filtering by category and origin

• Instant update from back-end changes

– direct connection via API from back-end

• Recommendation based on text and attribute similarities.

• Users should have the ability to contribute proposing new data to the platform

3.3 Non-functional requirements

• Scalability

– Platform should be able to accommodate an increasing number of datasets,
without needing more development work.

• Extensibility

– Should be able to incorporate new data sources without code changes

• Usability

– Easy to use interface.

• Open Source

– Final solution code should be open, with a focus to be agnostic with data
sources used in order to allow it to be exported for other uses.
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3.4 Design

When a government creates an open data portal, it’s rarely built from scratch.
Instead an open data delivery solution is used. These delivery solutions are SaaS
services, often open source, that provide the underlying infrastructure to host the
portal. Two of the most commonly used services are CKAN [17] (used for Open
Data BCN) and Socrata [18] (used in Hospitalet portal). Some of the features CKAN
provides [19]:

• Upload data via custom spreadsheet

• Tools to manage metadata and permissions

• Automatically generated JSON API

• Search capability and ability to explore data on the website.

• Host geospatial data

For this project the decision was made to avoid using open data delivery systems and
instead create a custom solution. The main reason behind that is that this project
is not going to host the data itself, so there’s no use in many of the features provided
by such a service. Apart from that, some of the required features for this project
(such as a similarity calculation and custom search method) make it necessary to use
custom code that would be impossible to integrate with a portal delivery system.

The global vision of the project is, as it can be seen on figure 15, composed of a
back-end that obtains and organizes data from several original sources and a front-
end that showcases the data to the users. The idea is that the back-end should
perform all the required computations and the front-end should be just a lightweight
interface that provides access to the content. The front-end has to be connected with
the back-end via an API, that allows access to individual elements of the back-end
in an efficient way. The back-end and front-end should be independent from each
other and be able to be hosted on different servers.

Figure 15: General structure of the project
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3.4.1 Implementation details

The back-end main task is to extract data from different sources and convert it into
a common format. The back-end also needs to perform some calculations to obtain
the similarity between datasets, host data needed to populate the front-end and
provide a way to update the data or add new data sources. It also needs to host the
API to allow the front-end interaction with it.

Taking into account these tasks and the data intensive nature of it, it seemed that
Python was the most adequate language for the back-end, because it provides plenty
of libraries for dataset management such as pandas [20] and for machine learning such
as scikit-learn[16].

The back-end also needs some kind of database to hold data in a structured way.
During the first test implementations it was just using csv files to hold the data, but
some kind of scalable database is needed for the final version of the project. The
solution used on the final version was TinyDB [21], which is a simple object oriented
database for Python, based on json files. TinyDB is very limited in functionality,
but is enough for this project and it works as a proof of concept. For a real world
project, a cloud document-based database like MongoDB should be more adequate.

The API is built with the library FastAPI[22]. FastAPI is a Python web framework
for developing RESTful APIs. It’s a tool that allows for a very fast creation of an
API (as the name suggests) that fulfills the needs of the project.

The front-end is developed in React.js[23]. React is an open-source Javascript front-
end library for developing user interfaces. React provides a very good developer
experience, with a smooth learning curve. Its reusable UI components and state
handling allows it to build scalable and very powerful front-ends, Airbnb and Twitter
are two popular websites built with React. Apart of its benefits, React was also
chosen for this project because of already having previous experience with it.
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4 Back-end Implementation

The back-end can be logically structured in four areas. These areas are intercon-
nected among them and provide different utilities that are unified and accessed
through the API(Fig.16). This four components are:

• Scraping tool: Tool to extract the necessary data from the Barcelona and
Hospitalet portals. The scraping is only used to obtain the initial data for
the portal, but the idea is that adding data from new data sources should not
require a scraper.

• Upload: Code and data packages used to add data from new data sources
into the database. The upload tool should be used to add new data sources
through a csv file instead of scraping.

• Similarity Calculation: Code to calculate dataset similarity, joinability, and
its respective recommendations.

• Database: TinyDB database that holds data and API to access it.

Figure 16: Back-end detailed structure

4.1 Scrapers

In the final product, new data sources should be added via the upload folder. These
new data sources should follow the specified format and have all the information in
a csv file. The idea is that third parties that would be interested in having their
data available in this platform would provide the data in the specified format. To
populate the initial proof of concept for this project some kind of data was needed, in
this case the data from Barcelona and L’Hospitalet. This data was not available in
the specified format required to upload it with the upload tool, but it was scattered
through APIs and the websites itself.

The solution was to create one script for each of both data sources that extracts the
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data from their websites(Fig.17). There’s one additional script that unifies the data
from both sources into the common format, (generateCatalog.py). The scraping
script differs a lot from both data sources, because of the particularities of each
portal.

Figure 17: Detailed structure of scraper scripts

4.1.1 Scraping the Barcelona portal

Obtaining the data from the Barcelona portal was very easy, because the website
provides access to a csv catalog with information of all available datasets. It was
only necessary to transform the data to a common format. The Barcelona portal also
provides an API, but it was not necessary to get the initial data, because everything
needed was contained in the csv catalog.

4.1.2 Scraping L’hospitalet portal

The Hospitalet portal doesn’t provide such a catalog, so it was much more difficult
to obtain the data. It also has an API, but because it doesn’t have an available
catalog, it is not possible to access all the endpoints. Besides, many API endpoints
weren’t working. It was necessary to access the html code and move page by page
retrieving the desired data.

4.2 TinyDB and storage

TinyDB is the database service used in the project. It is a very simple document
oriented database that can be used in Python. It is basically a json format file that
hosts rows of data and can be accessed with simple queries.

The following piece of code is an example of some of the functionalities of TinyDB.

1 from tinydb import TinyDB , Query

2 db = TinyDB(’path/to/db.json’)

3 User = Query()

4 db.insert ({’name’: ’John’, ’age’: 22})

5 db.search(User.name == ’John’)

6 # Output: [{’name ’: ’John ’, ’age ’: 22}]

In the first iterations of the project a csv file was used instead, but for the final
implementation a more robust solution was needed. TinyDB allows for a more easy
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access of the data and simplifies the code a lot. It’s also not acceptable from an
scalability standpoint to use a csv as “database”.

TinyDB is a simple solution that works well for this project, because it’s just a json
file that can be hosted together with the Python scripts. Because this project is just
a proof of concept, this solution is enough, but in a real use case a proper database
should be used.

The following text is an example of how an item is stored in TinyDB’s json file.

1 "1": {

2 "index": 0,

3 "title": "Unitats administratives de la ciutat de Barcelona",

4 "description": "Detall de les unitats administratives de la

ciutat de Barcelona: districtes , barris , \u00e0rea inter\

u00e8s , \u00e0rees estad\u00edstiques b\u00e0siques (AEB) i

seccions censals ",

5 "category": "Administraci\u00f3",

6 "date_published": "2017 -07 -06",

7 "source": "Ajuntament de Barcelona",

8 "web_url":

9 "https :// opendata -ajuntament.barcelona.cat/data/ca/dataset?q=&name

=20170706 - districtes -barris",

10 "download_url": "https :// opendata -ajuntament.barcelona.cat/data/

dataset /808 daafa -d9ce -48c0 -925a-fa5afdb1ed41/resource /4cc59b76 -

a977 -40ac -8748 -61217 c8ff367/download",

11 "status": "-",

12 "origin": "Barcelona"

13 }

4.3 API

The API is one of the most important elements of the back-end. Its function is
to allow communication between the back-end and external elements, it’s used to
access its data and modify it from the front-end. As described previously, the API
is built with FastAPI, a Python framework that allows easy building of REST APIs.

REST is an architectural design for APIs that is based on resources with unique
endpoints that can be accessed with an http request. All resources hosted on the
server can be accessed via the API with a unique endpoint that is an url. The com-
munication between server and client is stateless, meaning that no user information
is stored during requests and that each request is separated and unconnected.

The API is based around two files(Fig.18):

• functions.py : All the complex functions that the API needs are defined here.
Basically it handles all the calculations requested from the API and the access
to all the internal resources.

• main.py : Interface of the API, it hosts the FastAPI endpoints and accesses
the functions on functions.py.
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The use cases of the API are:

• Accessing the TinyDB database in order to retrieve information about indi-
vidual datasets or the whole catalog.

• Access files representing similarity calculations for the text similarity.

• Execute the functions required to calculate the profiles of a dataset and join-
ability.

• Generating and updating the json files that populate the front-end based on
TinyDB data.

• Accessing the json files for the front-end

It’s important to note that this API, together with TinyDB works on a proof of
concept basis. The number of datasets contained in the catalog is small enough for
the API to handle and send all the information togheter in one packet. In a real
live solution it wouldn’t be possible to send all the catalog data in one packet.

API endpoints:

• /catalog

– Returns the complete catalog with information from all the datasets

– As a proof of concept works, but in case of scalability of the website with
a large number of datasets, an alternative solution should be designed,
to retrieve datasets in batches.

• /item/{itemId}

– Returns all the information of an individual dataset.

– Needs itemId as a parameter, id of dataset that wants to be retrieved

• /frontend/MainPage

– Data required to populate MainPage.js

• /frontend/Catalog

– Data required to populate Catalog.js

• /frontend/DataSource/{source}

– Data required to populate DataSource.js

– The parameter source is the identifier of the data source
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Figure 18: Detailed structure of API scripts

4.4 Upload

The upload tool is meant to be an utility to easily update and upload content to the
database and automatically distribute the new content among the different areas of
the back-end and the front-end(Fig.19). The main utility is to allow for upload of
large packets of datasets from a new data source, but it also allows for updating the
current data sources with new datasets.

The way it works is by receiving the new data in a specific format and first intro-
ducing it in the TinyDB database and second updating the data in the front-end.
The idea is that new data can be introduced effortlessly with one click, and that the
whole front-end and back-end will accommodate it without further action needed
from the user. The main peculiarity of the implementation is that new data has to
be inputted in a specific format in order to be read correctly. The packed with the
new data has to be introduced in the backed files, in further work an interface for
uploading could be built on the front-end, but this also meant building an authenti-
cation system to allow only an administrator to modify data, and it was out of the
scope for this project.

The new data has to be introduced in a folder with the name of the data source on
/upload/uploadPackets and it has to contain the following elements:

• newData.csv

• config.json

The data about the new datasets introduced will be contained in newData.csv,
which needs to provide a specific set of attributes in the same order in order to be
read properly. The configuration file config.json contains the metadata about the
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data source that will be used mainly to populate the front-end with the new data
source.

The following text is an example of the data required on the config.json file, and
the table is a description of the columns on newData.csv.

1 {

2 "databaseIdentifier": "generalitat",

3 "frontendIdentifier": "Generalitat de Catalunya",

4 "title": "Dades Obertes Catalunya",

5 "description": [

6 "...", "...", "..."

7 ],

8 "shortDescription": "Datasets de la Generalitat de Catalunya",

9 "api": "yes"

10 }

Variable name Description %
title Title of the dataset
description Text describing the dataset content

category
Category in which the dataset pertains inside the original
dataset collection

date published Publishing date of the dataset. Can be empty
source Creator of the dataset

web url
URL that redirects to the website where the original
dataset is hosted.

download url
URL to download file. Important to be able to identify
similar columns

status
Identify the http status of the download url. Optional
variable

origin Dataset collection identifier

Table 3: Columns of newData.csv

Figure 19: Detailed structure of upload scripts
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5 Front-end Implementation

In order for the back-end functionalities to be accessed a user interface is required.
For this project the option was to create a website, as the goal of it is to be publicly
accessible. This website is supposed to be a way for any user to interact with the
back-end, the basic functionalities provided are:

• Explore the data catalog and download or access the original dataset source

• See recommendations for a specific dataset, either based on description simi-
larity or on profile joinability.

• Have information about the several data sources available.

• Provide a platform for users to submit new data.

As mentioned before the front-end is built using React. This framework allows to
design reusable components that can be then used in several different places. Other
peculiarities are the use of the Router library [24] that allows linking the different
pages with unique urls(Fig.21) and MaterialUI[25], a front-end library that is used
for most of the UI design.

The front-end is designed in conjunction with the API, in a way that all its content
is automatically adapted from the API(Fig.20). All the datasets showcased on the
front-end are fetched from the API, together with the data sources information
and metadata. Thanks to React functionality [26] the information from the API is
fetched every time the page is refreshed, so the information is always updated.

Figure 20: Diagram of front-end API calls
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Figure 21: Diagram of front-end Router connections
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Each of the following files renders a page on the website.

App.js

This file is one of the only ones that doesn’t render a page on the website. This is
the initial page the browser accesses and it contains the routing endpoints for the
rest of pages.

MainPage.js

The main page(Fig.22) acts as a “home” for the website, it’s the first page that users
will see. It includes a header space that should provide some initial information
about the website. After that there’s a link to the catalog of datasets. There’s a
section with information of all the data sources available on the website and a list
of all the categories.

Figure 22: Screenshot of MainPage.js render

Catalog.js

The catalog page(Fig.23) provides access to the whole collection of available datasets.
Its intention is to allow the user to browse the collection and search for specific
datasets. It contains search functionality based on the description text and title and
the search can also be filtered by category or by the dataset source. Only 10 datasets
are shown at the same time, and there’s a functionality to advance the page.
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Figure 23: Screenshot of Catalog.js render

Contribute.js

The goal of this page(Fig.24) is to make it possible for external users to contribute
to the website catalog, and propose the addition of new data sources to it. In order
to add new data, users are expected to provide a catalog of datasets in csv in a
required format. The format is very important to follow the guidelines, otherwise it
cannot be automatically introduced into the database, that’s the reason why there’s
an example row with all the necessary columns and a description of each one of
them.

The page links to a Google Form(Fig.25) that lets the user upload the csv together
with some basic information. The answers to the form are received by the owner of
the portal, who can decide whether to introduce the submitted information in the
catalog. The form to submit the data was chosen because it was much easier than
implementing an upload mechanism in the website itself. As future work, it would
be interesting to have a way to submit directly from the website.
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Figure 24: Screenshot of Contribute.js render

Figure 25: Screenshot of the form to upload new data
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DataSources.js

DataSource(Fig.26) is a page that shows basic information about a specific data
source. The page can be rendered with a parameter that defines which data source
wants to be visited, so that only one page is needed in order to have an individual
page for each data source. It shows a description of the data source, the number of
available datasets, etc.

The page for each data source is generated automatically from the database. Through
the API, the front-end identifies the several data sources available in the catalog and
retrieves metadata about them, that is shown on the front-end.

Figure 26: Screenshot of DataSources.js render

DatasetPage.js

DatasetPage(Fig.27) is a page that shows basic information about a specific dataset.
In the same way that DataSource.js does, the page can be rendered with a parameter
to define which dataset wants to be visited. All the dataset pages are also rendered
automatically based on data fetched from the API.

The page not only shows basic information related with the dataset, but it’s also
meant to be a way to explore the profile calculation and similarity based recommen-
dation. Just after the information about the dataset, the columns of the dataset
are shown and on click the collection of similar columns is found. In this way the
user can explore the recommended similar columns and access the datasets of such
columns that are probably joinable. After that there’s a list of recommendations
based on joinability and a list based on text similarity.
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Figure 27: Screenshot of DatasetPage.js render
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6 Unsuccessful implementations

The original goal for this project was to implement the web app around NextiaJD,
and use the profiles generated from it to calculate joinability and similarity. The
intention was to also use machine learning models created on past related research
to predict the joinability. At the moment of implementation, many problems were
found that made it not viable to use NextiaJD on the web app.

One of the most important requirements was for the similarity and joinability cal-
culations to be real time in order to be usable on a web format. One of the issues
with NextiaJD is that it’s quite slow in calculating the profiles, because the profiles
are very detailed, containing a large amount of parameters. Calculating a profile
between two datasets that can be used with machine learning can take between 30
and 40 seconds. Taking into account that the catalog (containing data only from
Barcelona and Hospitalet) has around 600 datasets and all the pairs’ similarities
should be calculated, it makes it impossible. And the real life version of this project
should have even more datasets.

For NextiaJD to calculate the profile, data needs to be inputted in csv format. After
experimenting uploading several csv files retrieved from the open portal data, it was
found that in many cases NextiaJD wasn’t able to calculate the profile because of
little changes in csv format. Because of this lack of uniformity among csv files from
open data portals it is very difficult to build a working pipeline that downloads the
files from the portals and calculates its profiles with NextiaJD.

The main fault of not being able to use NextiaJD is, with exception of its speed,
the lack of standardization in open data portals. Open data portals are meant to be
used using the website interface, and for the users to download individual datasets
or explore them with the website incorporated tools. In many cases, even though
they provide an API, they are not meant to have all its data downloaded in bulk.
Some of the issues found that make the processing of bulk data difficult are:

• API endpoints that don’t work (mostly a problem with Hospitalet portal)

• Not having a clear definition of the file type. The file needs to be downloaded
and the type guessed.

• Files defined as csv that are actually of json type.

• Different codifications in csv files that are not defined and have to be guessed
(utf-8 and utf-16, for example).

• Unstandardized csv format. Some datasets don’t have column names, the
delimiters can be different in many cases.

• Errors in the dataset itself. Rows without all the elements, empty spaces. A
very common issue is having a delimiter written inside the text and creating
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an error on parsing 4.

Most of these errors are not visible to users that are only interested in exploring
the data through the internal tools, which is the majority of users. Also, even for
users that want programmatic access, the usual is just to download a specific dataset
they are interested in and so there isn’t much of an issue. The big problem is when
trying to programmatically download all available data and process all of it, that
these problems start to accumulate and it’s difficult to manage them.

Another issue with NexiaJD is that it’s very heavy and difficult to install. The fact
that it’s written in Scala and it requires you to have installed Scala and Java makes
it need a lot of space. This can be an issue when trying to install the back-end in
some cloud server in order to deploy the website, where the size required is larger
than what usually the free instances provide 5.

4For example, in a csv with ”,” as a separator, a cell with the content ”Sant Pere, santa Caterina
i la Ribera” will be wrongly divided in two, because it contains the separator itself as a character
of the string.

5Amazon EC2 free tier includes the t3.micro instance, that provides 1 GiB of memory
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7 Further work

The final prototype developed for this project has all the minimum requirements
necessary to consider it a success. Although it accomplishes all the specifications
defined in last sections, it just works on a proof-of-concept basis, and would need
many changes in order to become a fully scalable web version that could be used
by thousands of users. Apart from these limitations, the front-end could have much
more features implemented, that although not indispensable it would improve the
user experience. Most of these features were not implemented because of time
restrictions and being out of the main scope for the project.

In terms of scalability the principal bottleneck is the API and the database. The
database currently is just a json file with some querying functionalities (TinyDB),
and although this works for now, it’s difficult to envision a real live version of this
project hosting thousands of datasets and still using a json file as a database. A
migration to a real object oriented database shouldn’t be too complicated, and it’s
the most logical upgrade for a project like this.

On the other hand, the API is not designed to handle large amounts of data, for
example the whole catalog is sent on a single API call. This is probably considered
a bad practice, and with a growing collection of datasets it shouldn’t be possible.
The solution is to rebuild the API with scalability in mind, and probably sending
data in batches instead of all together.

Regarding to the possible front-end additions, the main one would be an adminis-
trator interface. In the current version, in order to add new data to the database
the administrator needs to manually upload it to a specific folder of the back-end.
This could be done easily with an interface where new data is uploaded and posted
with a one button click. Going even further, now the users submit data through a
Google Form, but there could be an interface in the website itself that allows users
to post new data, automatically adapts it to the required format and wait for an
acceptance from the administrator to submit it on the database. Another front-end
update would be to allow users to login in accounts. With these accounts users
would be able to save datasets, comment on them and check the state of proposed
new data. Implementing all these features required a large amount of work and
non-trivial learning to know on how to, which ended up being considered too out of
scope for this project.

There are many details in the website that could be added, but there was a time
limitation for this project and priorities had to be handled. It would be nice to have
a complete “About” page with information about the project, and the landing page
could have more features and a better design.

Finally, the project came to completion but never got to be a real website because of
a lack of available hosting. The website should be hosted on a server and available
through the internet to anybody. Although this isn’t possible yet, the project was
built from the beginning with this goal in mind and everything is designed and
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documented to make a deployment straightforward once there’s an available server.
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8 Conclusions

In general, the requirements defined during the thesis were accomplished with the
delivered result. Developing and building the tool can be considered a success, as
the resulting website can be used for its intended purpose, that is exploring a unified
catalog of datasets. Also, the exploration of similarity measures between datasets
resulted in an acceptable method that is proved to deliver good results.

The general objectives described in the “Implementation scope” section are satisfied,
and although as described on the “Further work” chapter there are a lot of missing
things that could be implemented, the current functionalities work in an expected
way and as a proof-of-concept it’s enough to have an overview of the possibilities of
such tool.

In regards to the search for an efficient similarity measure, the approaches explored in
this thesis are much simpler than the ones done in previous work. Mainly because
of the failure in trying to integrate NextiaJD into the solution, it was forced to
look for simpler ways to calculate similarity and joinability. The final solution is
an approximation to similarity calculation, but this approximation is traded for a
much easier calculation process that allows for true scalability in a website context.

The resulting recommendations from the similarity and joinability calculations seem
to be good enough. It seems that in a web context where users are more interested
in having a recommendation from a huge pool of available datasets, the precision
of the recommendation is not something indispensable, and that an approximate
recommendation is good enough for users to discern a small set of interesting datasets
from the total of the collection.

Finally, there’s plenty of lessons learned from the process of building this tool. First
is the appreciation for the complexity of building a website with this amount of
integrated parts. From the outside it can seem easy, but connecting all the parts
and having a global vision of such a huge codebase is a challenge.

As lessons learned, the main one is about organization. This project started with
a general vision of its direction, and new ideas and features were added with time.
This was a big challenge in how to manage the codebase to add these changes, and
the issues of not starting with a clear vision of the project were evident. In many
cases it was needed to fully refactor parts of the code that were no longer useful or
required big changes. All of this added a lot of working hours that could have been
avoided with a better planning from the beginning, an example of this issues was
the decision of abandoning the idea of integration NextiaJD after hours and hours
trying to make it work.
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9 Annex
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9.1 Published code

The final code is publicly available on two Github repositories, one for the front-
end and one for the back-end. The decision of storing the code in two different
repositories is that the back-end and front-end are independent and and be hosted
on two different places different.

• Front-end repository: https://github.com/marcvernet31/TFG-frontend

• Back-end repository: https://github.com/marcvernet31/TFG-backend

The structure for the front-end(Fig.29) is the standard file structure for a React
project, with the main code hosted on \src. For the back-end(Fig.28), the repository
is structured in folders based on the function of the scripts.

TFG-backend

api

frontend

Catalog.json

DataSource.json

MainPage.json

functions.py

main.py

atribute-similarity

columnProfile.py

similarityCategoricalMatrix.py

similarityMatrices.py

stopwords ca.py

scrappers

generateCatalog.py

scrapperBarcelona.py

scrapperHospitalet.py

text-similarity

similarityMatrices.py

stopwords ca.py

upload

uploadPackets

template

config.json

newData.csv

...

update.py

upload.py

guide.txt

Figure 28: File directory for back-end Github repository
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TFG-frontend

public

...

src

About.js

404.js

App.js

Catalog.js

Contribute.js

DataSources.js

DatasetPage.js

JoinPage.js

LogIn.js

MainPage.js

SignUp.js

index.js

reportWebVitals.js

userContext.js

assets

...

components

Footer.js

Main.js

MainFeaturedPost.js

MultipleSelect.js

ResponsiveAppBar.js

package-lock.json

package.json

Figure 29: File directory for front-end Github repository

(a) Back-end (b) Front-end

Figure 30: Programming languages used in each repository
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9.2 Instructions for deployment

From an overview, the project is divided in two blocks, the back-end and the front-
end. Both blocks can be installed separately on different servers or together, and
its installation is independent from each other. In this guide it’s assumed that the
installation is done locally on the same machine, for sake of simplicity. This project
was entirely developed on a 2020 Apple M1 computer, so the commands in this
section are for MacOS, which should differ from the commands needed for a Linux
computer.

9.2.1 Back-end

In order for the front-end to work properly, an installation of the back-end is required
first. The back-end is fully written in Python, so the only requirements for it
are having installed Python itself (I personally used version 3.9), and the required
libraries.

Because of the code needs quite a lot of time to do the initial setup and be able
to see the results, in the repository there’s attached a working test version already
populated with data compressed in a zip file. This version is recommended to use
for testing purposes, and only needs to be uncompressed and after that run the api
command.

Install code from the github repository and access the home folder. All the following
commands after installation are assumed to be executed from the home directory.

1 > git clone https :// github.com/marcvernet31/TFG -backend.git

2 > cd TFG -backend

Execute the scraper scripts to generate and populate the catalog from the datasets
available in Barcelona and Hospitalet portals.

1 > python3 scrappers/generateCatalog.py

Calculate the similarity based on text descriptions for all the dataset pairs in the
catalog.

1 > python3 text -similarity/similarityMatrices.py

Personally, I had many troubles installing the python library scikit-learn on my work
computer (Apple M1) and I ended up having to install the library through a Conda
environment. In that case, the command used is instead:

1 > conda run -n <env -name > python3 text -similarity/

similarityMatrices.py

The next step is to execute the script to extract the column values for every dataset
in the catalog and calculate the profiles. This operation is very slow, because it
needs to individually download every dataset in the catalog, check that the format
is correct and calculate the profiles for individual columns. The long execution time
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is not a big issue, because this process should be executed only once to create the
profiles.

1 > python3 atribute -similarity/columnProfiles.py

Now that the column values are extracted, it’s time to calculate the profiles and
similarities

1 > python3 atribute -similarity/similarityCategoricalMatrix.py

Again, if there are issues with the sikit-learn library, it can also be executed with:

1 > conda run -n <env -name >python3 atribute -similarity/

similarityCategoricalMatrix.py

Finally, the API can be started. While all the last commands were just to set up all
the required files, this command is the one that keeps the API working, and should
be kept running for a s long as the website needs to be working. The ideal would
be to have a server space dedicated to running the API.

1 > cd api

2 > uvicorn main:app --reload

(explain where the api runs, localhost, ...)

There are also the update and upload utility scripts. The upload scripts introduce
new data to the database in the form of a packet (specific description on . . . .)
and the update script regenerates the front-end files with the current data on the
database.

1 > python3 upload/upload.py -packet <name >

2 > python3 upload/update.py

9.2.2 Front-end

The front-end because of it being a React app, it’s fully contained and needs very
little configuration. The only requirement is to have installed the Node Package
Manager (npm)[27] for Javascript.Assuming that npm is installed, the front-end
files can be installed with:

1 > git clone https :// github.com/marcvernet31/TFG -frontend.git

2 > cd TFG -frontend

3 > npm install

And the program can be executed with:

1 > npm start

By default, the frontend is hosted on the localhost:3000, and it assumes that the
back-end is hosted on localhost:8000. The base url for the back-end is hardcoded
in many places in the front-end, and it should be changed if the back-end is not
running on the same local machine.
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