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a b s t r a c t

The number of cameras deployed to the edge of the network increases by the day, while emerging
use cases, such as smart cities or autonomous driving, also grow to expect images to be analyzed
in real-time by increasingly accurate and complex neural networks. Unfortunately, state-of-the-art
accuracy comes at a computational cost rarely available in the edge cloud. At the same time, due to
strict latency constraints and the vast amount of bandwidth edge cameras generate, we can no longer
rely on offloading the task to a centralized cloud. Consequently, there is a need for a meeting point
between the resource-constrained edge cloud and accurate real-time video analytics. If state-of-the-art
models are too expensive to run on the edge, and lightweight models are not accurate enough for the
use cases in the edge, one solution is to demand less from the lightweight model and specialize it
in a narrower scope of the problem, a technique known as model specialization. By specializing a
model to the context of a single camera, we can boost its accuracy while keeping its computational
cost constant. However, this also involves one training per camera, which quickly becomes unfeasible
unless the entire process is fully automated. In this paper, we present and evaluate COVA (Contextually
Optimized Video Analytics), a framework to assist in the automatic specialization of models for video
analytics in edge cloud cameras. COVA aims to automatically improve the accuracy of lightweight
models by specializing them to the context to which they will be deployed. Moreover, we discuss and
analyze each step involved in the process to understand the different trade-offs that each one entails.
Using COVA, we demonstrate that the whole pipeline can be effectively automated by leveraging large
neural networks used as teachers whose predictions are used to train and specialize lightweight neural
networks. Results show that COVA can automatically improve pre-trained models by an average of 21%
mAP on the different scenes of the VIRAT dataset.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The edge cloud aims to provide compute and storage resources
loser to where the data is produced to filter the amount of
ata crossing the backhaul and alleviate it. Nevertheless, a ge-
graphically distributed edge cloud entails two characteristics
hose implications are often undermined. First, different physical

ocations (at which resources are installed) involve different sets
f constraints that ultimately impact the type and size of the
esources that can be installed [1]. For example, a street cabinet
ight be limited to a handful of server-grade nodes, while a solar-
owered node in a street pole might have to settle for an IoT gate
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with a low-power processor. Regularly, resources become scarcer
the closer we are to the edge of the network. Consequently, the
more challenging yet more critical it becomes to leverage those
resources efficiently.

Second, the workloads (i.e., services) and the distribution of
the incoming requests are tightly coupled to the geographical
area the edge location is serving. This relation has long been
experienced and exploited in traditional CDNs (Content Delivery
Networks). Several factors, such as the time of the day or local
trends, shape users’ access patterns to the different internet loca-
tions daily. CDNs leverage this information aiming to predict what
users will access next and cache it near them. Together, the com-
bination of scarce resources, workloads coupled to a geographical
location, and any other outside-world data that might affect the
workload makes the context of the edge deployment up.

Video analytics, powered by all kinds of DNNs (Deep Neu-
ral Networks), is already one of the prominent use cases being
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Speed versus mAP (mean Average Precision) on the COCO for different
bject detection pre-trained models [6]. Bubble size represents the input size of
he model.

xecuted at the edge [2]. At the same time, the edge has been
ppointed as a required actor and the primary accelerator for
arge-scale video analytics [3,4]. All over the world, cameras
enerate constant data streams whose contents remain largely
isregarded unless a specific event triggers their review. Some
f these events require immediate action (e.g., alert security if
omeone breaks in a store or open a barrier after a car approaches
t upon checking credentials), while others involve bulk analysis
e.g., crowd counting at a fair or car counting for traffic analysis
n smart cities). However, in both cases, action and information
re taken at a local level. Therefore, images can be processed in
he edge while only a fraction of the data (the results) must be
ent back to centralized locations to be registered.
Moreover, there is a direct relationship between the accuracy

f a trained neural network and the size of the network (i.e., num-
er of trainable parameters). Unfortunately, bigger networks tend
o have higher computational complexity than simpler ones, as
epicted in Fig. 1. Ultimately, resource constraints on edge nodes
et a limit to the size of the neural networks that execute and,
hus, also to the accuracy they can achieve. State-of-the-art ac-
uracy is usually out of the picture for the so-called edge DNNs
nd is only within reach of bigger neural networks. The differ-
nce between these two may imply orders of magnitude more
rainable parameters, and the gap is only increasing with time [5].
t the same time, hardware acceleration becomes a must to
rovide anything near real-time performance. Altogether, these
imitations pose a challenge for the edge cloud to postulate itself
s a serious alternative to current data centers for video analytics
nless the hardware installed is upgraded or the models deployed
re greatly optimized.
One of the main reasons for bigger models to achieve higher

ccuracy is that the extra trainable parameters can be used to
earn more robust high-level features that allow the model to
eneralize its predictions in new environments successfully. Sim-
ler models may face difficulties in capturing the relationship
etween the input examples (i.e., images) and the target values
i.e., predictions), which is known as underfitting. However, it is
ssential to emphasize that simple or big are adjectives relative
o the scope of the problem, and neural networks should be
imensioned according to the level of generality and complexity
equired for the task at hand. Otherwise, the underfitting we
experience whenever we expect too much from a model may turn
into overfitting when the network is big enough to memorize the
training examples, which will translate into poor generalization
on unseen examples.

Several popular challenges evaluate neural networks on spe-
cific datasets to tell how well a neural network architecture might
perform. For example, ResNet152 scores 94.5% Top-1 accuracy
400
on the ImageNet [7] dataset, while a smaller edge model like
a MobileNetV2 is limited to only 71% Top-1 accuracy on the
same challenge [8]. However, challenges like ImgeNet or COCO
(Common Objects in Context) [9] are notoriously generalists, and
models are required to distinguish a car from a toothbrush while
also telling a water snake and a vine snake apart. Such diversity
of objects is rarely captured by static cameras deployed to the
edge. Just as a camera in the wild will hardly see many trucks,
a camera controlling traffic at an urban intersection will not
capture many wild animals. By narrowing down the diversity of
objects to detect, simpler neural networks become available to be
executed in the edge in real-time.

Nevertheless, the loss of generality brought about by the spe-
cialization of the model also implies that models are now po-
tentially tight to a camera’s context. Where we previously had
a single model for the analysis of many cameras, we now poten-
tially need one model per camera, each requiring its very own
training process with properly annotated training examples. One
training per camera quickly becomes unrealistic as the number
of cameras grows, limiting the potential benefits of model spe-
cialization unless the process can be optimized and completely
automated.

This paper presents COVA (Contextually Optimized Video An-
alytics), a framework to automate the specialization of models
for real-time edge video analytics. Through it, COVA funnels the
generality of big neural networks with state-of-the-art accuracy
into specialized edge neural networks, resulting in models with
high accuracy but on a narrowed scope. Our work is based on
a simple observation: static cameras do not move, but objects do.
At the same time, in the context of edge video analytics, we can
safely assume that moving objects are equivalent to objects of
interest, which allows us to leverage computer vision techniques
to simplify the task. Moreover, we define the context of a camera
as the set of invariant properties associated with its deployment
location. For example, height or focal distance determine the
perspective from which objects are seen. Similarly, the back-
ground and the environment (e.g., urban area, indoor, or nature)
determine the type of objects that we can expect the camera to
capture. Once the context of a camera is defined, automating the
specialization of models can be vastly simplified.

The contributions of this paper are two-fold. On one hand,
we present and evaluate COVA (Contextually Optimized Video
Analytics), a framework to assist in the rapid deployment of
tailored edge models for real-time video analytics. The pipeline
in COVA is conceived to be highly modular and easily extensible
to allow for different types of contextual analysis of the scenes.
It supports TensorFlow [10] (training and inference) and Open-
VINO [11] (inference only) and can run either local or on Amazon
Web Services (AWS) and orchestrated from the edge. Moreover,
source code is made publicly available [12]. On another hand,
we present an extensive exploration and review of the different
steps involved in the process of automating the specialization of
models, including considerations and findings to be taken into
account in case some of the pipeline stages are to be exchanged
or extended. In COVA, we leverage automated specialization of
edge models to boost their accuracy, showing that models with
state-of-the-art accuracy (ground-truth) can generalize to new
environments, that more specialization translates to higher accu-
racy when the scope of the problem is equally specialized, and
examples automatically annotated by the ground-truth models
can be effectively used to train edge models.

The rest of the paper is organized as follows: Section 2 revises
the previous work and discusses the gaps that our work aims to
fill. Section 3 breaks the problem of automating the specialization
of models down, and provides the background to understand
the challenges behind deploying accurate neural network mod-
els to the edge. Section 4 describes the COVA framework and
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ts components. Section 5 describes the methodology followed
hroughout the evaluation. Section 6 presents and discusses the
xperimental results. Finally, Section 7 presents the conclusions
f our work, and introduces future lines of research opened by
he COVA framework.

. Related work

.1. Edge video analytics

The edge cloud has been previously proposed as a key enabler
f video analytics [13]. In some cases, the edge is considered
he only realistic approach to meet the latency requirements
eeded for real-time video analytics [3], while maximizing QoE
y minimizing the cost and flow of data between data centers
nd users [4]. However, the edge cloud presents as many oppor-
unities as new challenges that will have to be properly addressed
n any new edge deployment [13,14].
Within the context of edge video analytics, there have been

ots of efforts focused on optimizing the data flow between edge
evices and the data center. Authors in [15] propose an edge
nfrastructure with the pipeline for deep learning execution dis-
ributed across different points in the network (edge, in-transit,
nd cloud resources). Another optimization point consists of fil-
ering what is sent to the data center. Authors in [16] present
ilterForward, a system aimed to reduce bandwidth consumption
nd improve computational efficiency on constrained edge nodes
y installing lightweight edge filters that backhaul only relevant
ideo frames.

.2. Model specialization

Model specialization is recurrently used as a mean to optimize
he inference cost in scenarios where generality is known to be
nnecessary. On the one hand, some approaches leverage special-
zation over time through online training. For example, authors
n [17] identify short-term skews in the class distribution often
resent in day-to-day videos and exploit it by training models
pecialized for such distribution online. On the other end of the
pectrum, authors in [18] propose Once-for-All, a neural network
rchitecture that can be repurposed and deployed under diverse
rchitectural configurations but is trained only once.
Moreover, model specialization in edge video analytics is core

o various video query systems [19–22]. Such systems aim to
nswer queries about a video by analyzing its contents (e.g., re-
urn frames containing instances of a red car between two points
n time). Authors in [19] are able to reduce the cost of run-
ing queries against a video by up to three orders of magnitude
hanks to NoScope, a system that uses inference-optimized model
earch to find and train the optimal cascade of binary classifiers
pecialized for the video being queried. Authors in [20] propose
he use of inexpensive specialized NN at ingest time (i.e., when
mages are captured) to filter the frames to be considered at query
ime. Nonetheless, these systems focus on the optimization of
ueries. Therefore, their main metric to optimize is the latency
f a query (involving multiple inferences) and not that of a single
nference. Consequently, such systems are subject to a different
et of requirements and constraints than real-time edge video
nalytics.

.3. Automatic training

Model specialization at large-scale can only be feasible if the
rocess is automated. When the goal is to generate specialized
odels, previous works have focused on distilling previously ac-
uired knowledge from complex and accurate models (teachers)
401
into simpler ones (students) [23]. Through distillation, the stu-
dent model is trained by trying to mimic the output of the teacher
model. On the one hand, distillation can be used to transfer the
knowledge of the teacher model into the student. The resulting
model can be seen as a simplified or compressed version of the
original teacher model, which aims to retain its original accuracy
with a reduced computational footprint [24]. On the other hand,
distillation can be used to generate specialized models in cases
where the problem to be solved by the student is a subset of
the problem for which the teacher was trained. In such cases,
the teacher model works as an oracle that is consulted to predict
the labels of the training examples for the student [19,25]. In this
paper, we focus on the latter to automatically specialize models
for the context of each camera deployment.

Other works have focused on self-supervised learning. Authors
in [26,27] demonstrate that such methods are able to outperform
traditional methods for supervised training in terms of accu-
racy. However, while very promising, these methods rely on vast
amounts of compute resources and tackle the problem from a
completely different baseline than does not fit the requirements
and restrictions of the edge cloud.

2.4. Spatio-temporal locality

When analyzing video feeds from static cameras or any other
kind of video where the camera remains still, there is a piece
of information that is key to guessing where interesting objects
may lie: anything new in the scene. Vehicles, persons, birds,
or anything moving is subject to be identified. Spatio-temporal
information can tell us when something has moved within the
range of view, and the region around the moving object can be
used as the region of interest to start looking. Authors in [25]
leverage the spatio-temporal locality captured by static cam-
eras to drive the online training of a small specialized model,
while authors in [28] propose a training mechanism in which
temporal information is used to train a deep neural network at
instance level (instead of pixel level) and successfully identify even
occluded objects.

Beery et al. take this approach a little bit further with Context
R-CNN [29] and propose a neural network that is divided into two
stages: the first one is trained as a traditional R-CNN for object
detection whose region proposals are used to train an LSTM. Stage
2 is an attention block that will consider the information of pre-
vious frames where detected objects have already appeared. The
authors used video feeds from the span of more than one month
to train the Context R-CNN. This method is able to correctly
identify and detect objects even under challenging environmental
conditions such as dense fog. However, authors in [30] make the
observation that without sufficient data variability, models learn
to focus on correlations in the background, which leads to poor
generalization to new deployments. In this paper, we propose to
take the previous observation and invert the variable to optimize.
Instead of finding methods to generalize to new deployments, we
propose to specialize models for each deployment using images
from the same static camera. By removing the generalization as
the goal, simple and lightweight architectures for object detection
become available, which is a requirement to run real-time video
analytics in resource-constrained nodes in the edge.

2.5. Comparison of existing approaches

As revised in this section, the previous work has come a long
way when it comes to optimize edge cloud deployments and
leverage an interplay with the centralized cloud (Section 2.1),
to specialize neural network models and make them adapt to
changes in the class distribution (Section 2.2), to automate the
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Fig. 2. Breakdown of the different steps involved in the automation of specializing models.
training of neural networks using larger models that work as
teachers and distill their knowledge to smaller student networks
(Section 2.3), and to leverage the spatio-temporal locality present
in video feeds from static cameras to drive the training of special-
ized models and achieve higher accuracy (Section 2.4). However,
to the best of our knowledge, there is no existing framework that
combines advances in different fields to provide an end-to-end
solution. Such framework is needed if the resource-constrained
edge cloud is expected to take over real-time video analytics
at large-scale. In this paper, we aim to close the gap existing
in the literature and provide a solution that can enable accu-
rate and real-time video analytics deployed at scale in the edge.
Consequently, this paper presents and evaluates COVA, a frame-
work to provide automatic specialization of models for real-time
edge video analytics along with tools to ease the development
of new custom video analytics applications. Moreover, COVA is
envisioned with extensibility in mind and could be used in con-
junction with some of the methods mentioned above to further
increase accuracy or speed. To the best of our knowledge, no
previous work provides the framework and tools here provided.

3. Problem breakdown

Convolutional Neural Networks (CNNs) are able to learn ab-
stract high-level representations of the objects they are trained
to detect. The rule of thumb is that assuming proper training,
the bigger the network, the better it can learn high-level features
to generalize with high accuracy on new data. However, the
deployment of generalist CNNs with state-of-the-art accuracy
raises three main difficulties:

• They require a vast amount of training examples and each
one must be properly labeled with their respective ground-
truth (e.g., object class and coordinates of the bounding box
surrounding the object for detection problems).

• The training phase often takes hundreds, if not thousands,
of hours, even with high-end accelerators (such as GPUs or
TPUs).

• Complex models may provide good accuracy but are not
suitable to be executed on resource-constrained edge nodes,
while simpler models suitable for the edge achieve lower
out-of-the-box accuracy that is often not enough for many
use cases.

Thanks to automating the retrieval, selection and annotation
of the training images (even if it results in an imperfect anno-
tation) and tailoring or specializing lightweight models, we can
provide high accuracy models with real-time performance that
can be reliably trained within minutes (or less than an hour on
CPU-only).

The end-to-end process of specializing models is composed
of various steps, each with its own set of challenges. Therefore,
the automation of the process with satisfactory results requires
several considerations to be made. This section breaks the prob-
lem of model specialization down into its core parts to analyze
402
its challenges and considerations. Fig. 2 depicts the different
steps involved in the process, as described in detail in the next
subsections. Once images are captured by the camera, the most
representative are selected to be annotated by the ground-truth
model and be included in the training dataset. Following, the edge
model is trained using the generated dataset. Once deployed,
the model’s accuracy can be monitored to trigger new training
iterations if it falls below a certain threshold.

3.1. Static context from static cameras

Before we delve into the specifics of the problem and the
solution we propose, we would like to highlight the main ob-
servation that makes everything possible: static cameras do not
move. While this observation may seem obvious, it simplifies the
problem and the solution to a great extent.

The training of object detection models requires a large num-
ber of diverse training examples. Object instances in the training
dataset should appear in all their diversity (e.g., different colors,
shapes, or perspectives). This diversity allows the neural network
to learn high-level features inherent to the object class and invari-
ant regardless of the specifics of the observed instance. In the end,
diversity during training lets the model generalize. At the same
time, a static camera is a camera whose position and orientation
remain invariable throughout time. That is, it always points at the
same scene using the same lens and from the same distance and
point of view. Therefore, thanks to assuming static cameras, we
are able to define the context of a camera and, then, tailor models
for it.

A static camera thus allows the effective optimization of the
pipeline by applying simple traditional computer vision tech-
niques. Specifically, we make use of simple techniques for back-
ground subtraction with two purposes: (1) select for training
and annotation only those frames where there was any mean-
ingful change and (2) let the ground-truth model use the image
resolution to its full extent by focusing on the changing parts.

3.2. Capture (relevant) training images

Each image annotated by the ground-truth model has a cost
associated in terms of network bandwidth and compute power
in the data center. However, not all images captured by a camera
provide the same amount of new information (if any, at all).
Video streams from static cameras tend to have a high degree
of temporal locality as frame rates between 10 to 30 frames per
second are standard for edge cameras. Such frame rates translate
to new images being captured every 100 ms to as low as 30 ms.
In most scenarios, nothing new happens within 30 ms, but simply
increasing the time between frames does not guarantee that new
objects enter the scene. Therefore, we should find the right set
of images that will maximize the accuracy of the resultant edge
model while minimizing the number of queries to the data center.

Luckily, we can exploit the temporal locality to easily detect
changes or quantify similarity between consecutive frames. As
the scene’s background remains mostly still throughout time,



D. Rivas, F. Guim, J. Polo et al. Future Generation Computer Systems 134 (2022) 399–413

c
t
n
t
c
r
n

l
t
c
a
i
w
t
m

c
t
a
a
o
r
s
F

a
n

hange can be detected by simply comparing frames and set a
hreshold to decide whether a frame should be considered or
ot. Relatively simple and inexpensive distance metrics, such as
he Mean Squared Error (MSE), can be used to detect meaningful
hanges between frames [19], while other mechanisms, more
obust but also more computationally expensive, rely on Siamese
eural networks [31].
Furthermore, thanks to the same temporal locality, we can also

everage robust motion detection and background subtraction
echniques. When working with static cameras, we can consider
hange to be caused by movement. Therefore, we can identify
nd isolate the regions of the scene that contain movement,
.e., regions of interest. For such purposes, different approaches
ith different accuracy-cost trade-offs are available, from those
hat make use of traditional computer vision techniques [32] to
ore modern neural networks [33].
COVA, as detailed in Section 4.1, makes use of traditional

omputer vision techniques to model the background and de-
ect and extract the regions containing movement. These regions
re regularly smaller than the full scene and can be compared
gainst the same region in previous frames to quantify the level
f similarity at a finer grain. Moreover, the extraction of such
egions brings an unexpected benefit that, according to our re-
ults, boosts the accuracy of the annotations [34]. Nowadays,
ullHD video (1920 × 1080 pixels), if not 4K (3840 × 2160

pixels), is widely used even among inexpensive cameras available
on the market. However, neural networks are rarely deployed
with an input resolution matching the camera’s resolution, as the
computational cost of their execution would become intractable.
However, it does not appear to be a limitation on technology
but rather a matter of diminishing returns. On the contrary,
neural networks do not require large pixel densities to distinguish
objects of different classes. An input size of 768 × 768 × 3
(as the ground-truth model used throughout the paper) is above
average, judging by what can be found in the literature [6], while
300 × 300 × 3 pixels is a typical size for edge models (like the
one used throughout the paper).

If we consider object detection in the outside world, small
input sizes may indeed become a problem. In these scenarios,
objects are captured from arbitrarily large distances, and the
smaller objects quickly turn into a small set of indistinguishable
pixels as the image is resized to the neural network’s input size.
In such cases, it is worth considering the image to its full extent.
The same motion detection techniques we use to optimize the
collection of images allow us to do this. Once motion is detected,
COVA crops the bounding box containing all frame regions that
changed with respect to the background model. Consequently,
regions that did not add any information are discarded, and the
model can focus on detecting whatever was that moved. For
example, before passing the image to the ground-truth model,
we have compressed the information captured by the camera
between 3.5 and 14 times for FullHD and 4K images, respectively
(or between 23 and 92 times for the edge model). As Fig. 3 shows,
the average percentage of the frame’s area containing motion
in different scenarios is often a small fraction of the total area.
According to the results, these regions represent as little as 3% of
the scene’s area.

3.3. Considerations on automatic annotation

The bigger models (potentially) have higher accuracy because
they have more trainable parameters. When properly trained,
the extra parameters can learn more and better features. These
may come in the form of more layers, but the easiest way to
increase accuracy (at the expense of computational cost) is to
increase the input size [5]. A larger input size increases the
 b
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Fig. 3. Average percentage of the frame’s area containing motion for different
scenes. Frames from the Racetrack dataset have much smaller areas, as cars
in the track can only drive through the asphalt and always follow the same
paths. The VIRAT dataset contains scenes with up to 67% of the area covered
by objects of interest, common in busy urban scenarios with objects appearing
from multiple points.

amount of information that the network receives in the form
of pixels and allows models to see objects bigger, meaning the
network’s receptive field takes more pixels into account which is
particularly important when trying to detect small objects in the
background.

Experiments show that mispredictions often come from the
model’s inability to distinguish the object from the background
(i.e., while Top-1 or Top-5 recall might be good, the confidence
is below the threshold to be considered) [20]. In other words,
the model may correctly distinguish an object from other ob-
jects but not be sure whether the object is actually there. This
phenomenon increases as the object gets smaller and becomes
just a few pixels large, as showcased by the experiment depicted
in Fig. 4. The figure shows the impact that the size of the input
image has on the confidence of a model’s predictions for different
models trained on the same dataset. The input images belong to
different frames captured from one scene of the Racetrack dataset,
all containing a single car centered in the scene. For each frame,
the region of interest (RoI) containing the car object is cropped in
different sizes and fed to the model. Therefore, the car represents
a smaller area of the model’s input as we increase the RoI size. The
experiment evaluates models with three different neural network
architectures: SSD detector with MobileNet V2 feature extractor
(left), SSD detector with ResNet101 feature extractor (center),
and EfficientDet (right), which is also an SSD detect but with
an EfficientNet feature extractor. The models are different pre-
trained versions of these three neural network architectures that
were trained and dimensioned with different input sizes. These
results show that confidence drops as the object gets smaller with
respect to the rest of the scene. There are two factors contributing
to this effect. First, the model’s input size. Intuitively, bigger input
sizes have a larger receptive field and are, potentially, better at
locating small objects. Second, the neural network architecture.
While the more modest MobileNet achieves on-par confidence
compared to the state-of-the-art EfficientDet when the car rep-
resents the largest part of the input image, its confidence quickly
drops as the object becomes smaller regardless of its input size.
On the contrary, the ResNet101 and the EfficientNet backbones
seem to sustain their confidence as the object gets smaller. How-
ever, their confidences still drop for the larger RoI sizes, especially
for the models with smaller input sizes.

Finally, the ground-truth model is assumed to be knowledge-
ble of the scope in which edge deployments will happen but is
ot required to be trained on images from those deployments. We

uild this assumption upon the observation that large models are
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Fig. 4. Average confidence of car detections from three models with different input sizes and varying the size of the Region of Interest (RoI) passed as inputs. All
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etter at retaining features that allow them to generalize better.
hese models are therefore expected to correctly identify most of
he objects from classes they have been trained to detect, even
f these objects are seen from new perspectives and distances.
his level of generalization is a characteristic that models small
nough to run on edge devices do not share.

.4. Model specialization

To deploy video analytics to multiple cameras (each one with
ts own context), we could take two main directions. On the one
and, we could run big and complex CNNs capable of gener-
lizing and delivering high accuracy regardless of the cameras’
ontext. This solution could work out-of-the-box if the model
as already been trained to detect the same set (or a superset)
f object classes as those we want to detect in the edge. More-
ver, this solution would require a single training for multiple
ameras. However, the reality is that edge deployments do not
ave the luxury to run such models whose compute require-
ents are rarely met at the edge. Accuracy comes at the price
f high latency and low throughput, often below the minimum
equired to run real-time use cases. On the other hand, we can
se lightweight neural networks but specialize them to each spe-
ific deployment and let them deliver their full potential on a
arrower scope.
The edge cloud is limited on the size of the neural networks

hat can run. At the same time, this puts a limit on the level of
ccuracy that a model can achieve with respect to that in the
tate-of-the-art [8]. Hence, models deployed to the edge may
ace difficulties extrapolating their knowledge to detect objects
n new environments. The specific lighting conditions, points of
iew, or focal distance of every deployment may impact the
bility of small neural networks to extrapolate using previously
earned features. One approach to mitigate the effects of lack of
eneralization from smaller models is called model specialization,
hich implies narrowing the scope of what the network has
o learn and, thus, demanding less from it. In the context of
dge video analytics, model specialization allows us to adapt a
odel for the specific context of each camera deployment. The
pecifics of a context may not be known beforehand but can be
asily extracted once the camera has been deployed and begins
o capture images.

Model specialization can be achieved through different means.
ne option is to train the network from scratch on a specialized

ataset. However, the computational cost plus the number of s
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labeled training images required to train a network from scratch
on a per-camera basis makes it unfeasible for rapid deployments.
Nevertheless, different techniques, such as model distillation [35]
or transfer learning, allow us to use previously learned knowledge
and repurpose it faster while requiring fewer training images. In
this paper, we focus on transfer learning to specialize pre-trained
models on the specifics of each deployment. The knowledge of a
pre-trained generic model with state-of-the-art accuracy, work-
ing as teacher or ground-truth model, is distilled into a specialized
training dataset used to train the student or edge model.

Nonetheless, a neural network’s predictions are as good as
he dataset used to train the network, and transfer learning still
equires properly labeled images to specialize models. A proper
raining dataset is essential to produce an accurate yet small
odel that can process images in real-time on constrained nodes.

.5. Concept drift detection

Concept drift refers to a change in the statistical properties
f the variable that a model tries to predict. In the context of
dge deployments, concept drift could arise in different ways.
or example, a camera in the wild would capture predominantly
reen backgrounds during spring that turn white during winter
ue to snow; a camera whose perspective changes substantially
fter it is relocated; a change in light conditions from day to
ight; or simply because the user is interested in new classes. A
ew training should be triggered to adapt the models to the new
nvironment or contextual features in all these cases.
This said, concept drift detection is not trivial. Traditional

pproaches try to detect concept drift by performing statistical
ypothesis testing on multivariate data [36], while more recent
nes explicitly designed for neural networks propose the use of
n oracle or teacher model that is consulted intermittently to
ssess the deployed model’s accuracy [25] and drive the training
ate whenever accuracy falls below a threshold.

Nonetheless, it is important to highlight how, in the con-
ext of static cameras, concept drift is highly coupled to the
evel of specialization of the deployed model. A highly-specialized
odel trained using only daytime examples may face difficulties

n detecting the same objects during nighttime due to lighting
ariations. On the contrary, a model trained with all-day exam-
les and big enough to retain the sufficient level of generality
ill not experience a concept drift as day turns to night. Con-
equently, prediction cascades can help mitigate the problems
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Fig. 5. Default pipeline in COVA for automatic specialization of models.
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ssociated with concept drift without requiring retraining. In pre-
iction cascades, multiple specialized models (either binary [19]
r multi-label classifiers [37]) are sorted by decreasing level of
pecialization (or increasing level of accuracy and cost) and a
odel is only consulted if the previous one is not confident
nough of its predictions. In the event of a short-term concept
rift that cannot be absorbed by the more specialized models,
rediction cascades use the more expensive models as fallback
o ensure the accuracy of the predictions. However, in the event
f a long-term concept drift, the specialized models will be ren-
ered useless and counterproductive, as the cascade will keep
onsulting them even when they can no longer produce reliable
redictions. Therefore, prediction cascades can mitigate the prob-
em but do not solve it. As such, they are a better suited for
uery systems where the model search can consider the full video
tream being queried.

.6. Incremental learning

The detection of a concept drift irredeemably results in a
ew training of the model to adapt it to the new environment.
his is especially true in ever-changing scenarios, like seasons
n a forest, where we have to rely on incremental learning to
rain a model with whatever data is available at the time of
he deployment and, as new examples appear, retrain the model
sing the newly captured examples. However, there is one crucial
imitation: catastrophic forgetting [38], which refers to the ten-
ency of neural networks to forget previously learned features
ntirely upon learning new ones. The straightforward solution
s to train again using the entire dataset, i.e., include the newly
aptured examples into to the training dataset used during pre-
ious iterations. However, this can lead to an oversized dataset
hat can quickly become intractable for edge nodes, while older
xamples may not be significant anymore in the current envi-
onment. When the set of classes that are missing is known,
nother solution is to add generic instances for those classes
e.g., using online image search engines [39] or reusing a subset of
he examples used during the training of the ground-truth model
r other students). Nonetheless, previous work demonstrates that
sing knowledge distilling techniques [35] networks can retain
ost of the previously learned features, even if trained only on
ew classes of objects [40,41].

. The COVA framework

COVA is a framework that automates the task of specializing
eural network models for edge video analytics. As a framework,
t aims to enable the rapid deployment of customized applica-
ions in resource-constrained edge nodes. As such, it has been
mplemented with customization and extensibility in mind.

COVA is made out of two main building blocks. On one side, it
rovides high-level structures to allow video analytics models to
e tailored for a specific deployment in just a few lines of code.
n the other side, it also provides multiple built-in methods to
ase the extension and customization of the existing structures.
405
4.1. Framework architecture

The backbone component in the workflow of COVA is the
pipeline (or COVAPipeline). A pipeline describes the sequence of
steps involved in specializing a neural network model and how
each step communicates with the next. Together, a sequence
of steps conforms a pipeline. Fig. 5 depicts the default pipeline
implemented in COVA entailing five steps. These are 1. capture
images, 2. filter images, 3. annotate images, 4. create the dataset,
and 5. training. The default pipeline iterates over steps 1–3 until
enough images are available to continue. Then, step 4 generates
the training dataset from the images and the annotations from
the previous steps. Finally, the model is trained in step 5.

The potential of COVA relies on the high level of customiza-
tion allowed by the pipeline architecture while keeping a simple
structure within its core. Each step in the pipeline is implemented
using a plugin architecture, allowing to easily extend or modify
the default behavior. For example, the annotation step can be
carried out using the built-in server exposing a REST API or the
annotation plugin offloading the task to Amazon Web Services.
Moreover, any step implementation (i.e., plugin) is interchange-
able with any other implementation of the same step as long
as their interfaces match what is described in the pipeline def-
inition. Furthermore, it is possible to define different pipelines
that use different stages and plugins and do so only through the
configuration file, i.e., without any modification in the code.

4.2. Pipeline components

By default, COVA implements a pipeline with the five stages
previously described. However, the pipeline itself can be ex-
tended or modified if another sequence of stages is needed.
Nonetheless, we describe and focus on the default pipeline, its
stages, and the built-in plugins.

COVACapture. Captures and decodes images from a stream
input) and returns decoded frames as an RGB matrix. COVA im-
lements capture using OpenCV, which, in turn, accepts different
ackends such as FFmpeg or GStreamer.
COVAFilter . Filters decoded frames (input) and returns a list

f RGB matrices. Among the built-in filters, no_filter returns the
ame frame it received as input, i.e., does not apply any filtering;
ilter_static_frames returns either the same input frame or an
mpty list, depending on whether any movement was detected
n the latest frame or not; moving_objects_only returns a list of
he regions of the input frame where movement was detected.

COVAAnnotate. Annotates images. It receives filtered frames
nd returns the list of bounding boxes and labels of the objects
etected on the input images. COVA implements two annotation
ethods: using the built-in REST API or using AWS. Both methods
ssume a ground-truth model trained on the target problem
hose predictions are assumed to be ground-truths during train-

ng. Section 6 evaluates the impact of this assumption. This stage
upports both TensorFlow and OpenVINO models.
COVADataset . Generates the training dataset from the filtered

mages and their respective annotations. The built-in plugin re-
ults in a TFRecord file as output (format used in TensorFlow
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Fig. 6. Example of configuration file defining a COVA pipeline.

that stores data as a sequence of binary strings). However, the re-
sulting dataset can be subject to different processes. Specifically,
COVA implements a default dataset in which all annotations make
it into the dataset (since filtering occurs in the Filter stage).

COVATrain. Trains a neural network using the previously gen-
erated training dataset. TensorFlow is the default library used.
Built-in plugins support two flavors of training: standard Ten-
sorFlow and TensorFlow Object Detection API (used for training
or fine-tuning object detection models). Both flavors can be exe-
cuted either locally or using AWS. As output, this stage generates
a specialized model (in TensorFlow’s SavedModel format).

.3. Pipeline configuration

COVA allows pipelines to be fully defined using a configuration
ile in JSON format. The configuration file allows users to dynam-
cally define the plugins to be used on each pipeline stage and
he parameters expected by each stage. Fig. 6 shows an example
f a pipeline defined using a configuration file in JSON format.
ustom plugins can be loaded in the configuration file using the
lugin_path keyword. The set of parameters accepted by each plu-
in will ultimately depend on the specific plugin implementation.
owever, some of the most important ones include:
Target classes of objects. List of object classes for which the

odel will be specialized. The list of classes is the basis of model
pecialization for two reasons. On the one hand, the type of
bjects expected to be seen and detected in the scene is essen-
ial to define a camera’s context. Limiting the classes of objects
he model has to learn to identify helps specialize the resulting
odel, and the learning process can focus on those classes it will
 a

406
eventually encounter. On the other hand, the precision of the
ground-truth model gets a boost after we discard detections from
classes that are unlikely to be seen in a specific context (e.g., a
boat detected crossing a pedestrian crossing can be omitted or,
at the very least, flagged to be double-checked). Only frames
containing instances of one of the target classes are considered
during the dataset’s creation, while the rest are filtered out.

Training deadline. It is important to set a deadline to force
the trigger of the training process in scenarios where there is no
high influx of new objects of interest entering the scene. If the
training is triggered by the deadline, results may not be optimal,
but, at least, the model can start working while new images are
being captured for a new training iteration.

Motion sensitiveness. If the filter plugin uses motion detec-
ion, it can be tweaked to be more or less sensitive to small
hanges in the frame. This parameter will highly depend on the
haracteristics of the scene. The smaller the objects we want to
apture, the higher the sensitivity required to detect their move-
ent. However, high sensitivity may incur an undesirably large
umber of frames being flagged with motion, as small variations
an occur due to glitches, camera jitter, or the wind blowing on
ackground objects.
Trainable Layers. If the training plugin uses a checkpoint of

pre-trained model, COVA allows defining the layers that are to
e trained while the rest are frozen. We have tested three con-
igurations: unfrozen (all weights are trainable), box regression
only the layers of the object detector head are trainable), and top
box regression plus the last few layers of the feature extractor).
ccording to our experiments, the optimal configuration will
ighly depend on the size of the training dataset. With enough
xamples, unfrozen seems to yield the best results. However, box
egression is the safest option and yields good results even with
nly tens of images, while unfrozen has a higher risk of overfitting
ith small datasets.

.4. Built-in utilities

COVA also provides several built-in methods aimed at assisting
ith the development of new applications. Among all the utilities
nd auxiliary methods, we primarily focus on motion detection,
s it is the basis of how COVA analyzes the scene to provide better
esults while reducing the amount of network bandwidth (as only
portion of the frame needs to be sent) and compute used (by

educing the amount of annotations required).

.4.1. Motion detection
There is a myriad of existing methods to perform motion

etection. Nonetheless, it involves many challenges (e.g., camera
itter or lighting variations), and, as a problem, it is far from
eing solved. There is not a de-facto approach that can handle all
cenarios robustly, and different methods offer different trade-
ffs in terms of speed or accuracy. In COVA, we prioritized speed
ver accuracy when selecting the methods to implement for two
easons. First, the accuracy of these methods is usually evalu-
ted using image quality metrics of the generated background
r error metrics at the pixel level to compare the generated
ackground to the ground-truth background. Second, COVA must
un on resource-constrained Edge nodes and do it faster and more
ost-effectively than the alternative: send whole frames over the
etwork and process them in a centralized data center. Therefore,
OVA implements two simple methods consisting of two steps or
uilding blocks:
Background Modeling of the scene is the key step for motion

etection to work effectively. Take an incorrect background of
he scene, and any advantage from motion detection fades away,

s every single frame could be incorrectly flagged as containing
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hanges. As previously mentioned, COVA assumes images from
tatic cameras, which greatly simplifies the background modeling.
onetheless, the optimal algorithm will still be highly dependent
n the specific context in which the camera is placed. Therefore,
OVA implements several methods. The first and simplest is to
ssume that the first frame captured is the background of the
cene. This method works best when the scene is known to be
mpty of moving objects when the process starts, and the back-
round is not subject to long-term changes. However, in many
ases, this is not only false, but the definition of background can
hange over time (e.g., sunlight turning into darkness or objects
eft unattended for long periods, like parked cars). Therefore,
ackground modeling works best when the background is com-
uted over time. In this direction, COVA implements background
odeling using a Mixture of Gaussians (MoGs) [42]. Our results
ave shown that this method yields robust results while being
omputationally inexpensive (i.e., on average, 2.7 ms on a single
ore of an Intel Xeon 4114). This is the method used by default.
Monitor the scene for any substantial changes. A simple

subtraction operation will give us the pixel-to-pixel absolute
difference between the current frame and the background model.
Nonetheless, in real-world deployments, two consecutive frames
will never be identical. Multiple factors will cause small pixel
changes even with a static background and no objects moving.

On the one hand, digital camera sensors are imperfect and
introduce tiny variations that cause pixel values to vary, even
when the scene remains seemingly invariant. Applying a Gaussian
blur to both the background and the current frame filters noise
out when computing the pixel-to-pixel difference. Next, COVA
applies a binary threshold to the computed difference to consider
only those regions containing significant changes in the pixel
intensity. After applying a dilate operation to fill in the holes over
the result of the binary threshold, we obtain a mask with the
changing regions in the frame. Finally, we compute the bounding
boxes by finding the contours on the masked frame. A contour
is a curve joining all the adjacent points along the boundary of a
region of pixels with the same color or intensity.

On the other hand, small changes can still be undesirably
(although not necessarily incorrectly) flagged as motion. There is
no rule of thumb to determine how large a region must be to be
considered a potential moving object, as it will highly depend on
the specifics of the scene and the objects we want to detect. For
example, in the Racetrack dataset, some cameras point directly
to the track at a relatively short distance, and cars are seen big
enough to consider only large regions as motion. However, other
cameras have a broader view and capture cars and other objects
from different distances, and, area-wise, a distant car might be in-
distinguishable from a leaf fluttered by the breeze from a nearby
tree. Therefore, COVA considers a user-defined threshold that sets
the minimum area for regions to be considered of interest.

Fig. 7 depicts an example of the process, where two cars
are correctly detected as the only two objects moving in the
scene. Each one of these operations is already implemented by
OpenCV [43]. Altogether, they result in an inexpensive yet effec-
tive method for our purpose. Through them, motion detection
takes orders of magnitude less time than computing a single
inference on resource-constrained nodes. Therefore, it becomes
ideal to be executed on resource-constrained nodes on a frame-
by-frame basis to optimize the automatic annotation of images,
which is indeed the most expensive single operation in the whole
process.

4.4.2. Cloud-assisted edge deployments
As part of the Edge-Cloud interplay that COVA aims to lever-

age, some of the built-in plugins already implement the usage of
Amazon Web Services. Specifically, S3 to upload images and Sage-
Maker for the annotation and training stages. Moreover, COVA
provides several auxiliary modules and utilities to integrate these
services on new applications.
407
Fig. 7. (a) Two cars in the racetrack with bounding boxes around them, obtained
after performing background subtraction on the frame. (b) Thanks to a static
background, the task of separating moving objects from the background is
largely simplified. The regions of interest after applying simple computer vision
techniques are much smaller than the whole FullHD frame captured by the
camera lens, which allows us to focus the attention closer to the objects and
increase the accuracy of the ground-truth model. In an scenario like the racetrack
of the image, motion detection alone is able to filter all empty frames out and
only consider those with cars and minimize the annotation costs.

Table 1
Summary table of the model taxonomy with the different types of models
considered throughout the paper.
Model Variant Trained/Specialized on

Ground-truth Off-the-shelf MS COCO
Generic Similar edge scenarios

Edge Off-the-shelf MS COCO
Generic Similar edge scenarios
Specialized Scene to be deployed

4.5. Source code availability

The entirety of the COVA project has been made publicly
available in the project’s repository [12] with an open license
(Apache License 2.0) to encourage the community to use it, test
it, and extend it. The repository includes the fully documented
source code with detailed instructions on deploying it end-to-end
and reproducing the experiments described in this paper.

COVA is implemented in Python. By default, its only require-
ments are OpenCV and TensorFlow, while CUDA can be used if
available.

5. Methodology

In this section, we detail the methodology followed through-
out the experiments whose results are presented and analyzed in
Section 6.

5.1. Edge model taxonomy

The evaluation in Section 6 is carried out using two neural
network architectures and three different versions of each one.
Table 1 describes the model taxonomy used throughout the re-
mainder of the paper. The edge model refers to the model that
we aim to optimize (i.e., specialize) for its deployment to the
edge. It is typically a lightweight model that can run at real-time
performance on resource-constrained nodes. The ground-truth
model refers to the model whose predictions are considered to
be ground-truths while building the dataset to use during the
training phase of the edge model. Edge and ground-truth are
conceptual classifications for two models that play different roles
within our proposed solution. Therefore, these do not refer to any
specific neural network architectures, and any model can be used
as either edge or ground-truth models. However, the ground-
truth model is expected to be more accurate and more complex
than the edge model. Otherwise, the latter would be a better
choice to deploy to the edge.
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Moreover, we define three different variants that refer to how
he model was trained: off-the-shelf, generic, and specialized. Off-
he-shelf (OTS) refers to the model pre-trained on the COCO
ataset (Common Objects in Context) [9] without any further
raining nor tuning on any other context. It is easy to find most
f the well-known neural network architectures already trained
n this dataset. Generic and specialist variants are categories
lways relative to the model to deploy. Generic refers to a version
f the model trained or fine-tuned on contexts similar to the
eployment context. For example, if we want to deploy a model
o control cars at a parking lot, a generic model could have been
rained using images from other parking lots or urban areas with
ostly cars. Specialized refers to a model that has been trained
sing images from the same edge camera of the deployment.

.2. Datasets

Throughout this paper, we use two datasets to evaluate the
ifferent points of our approach.

• VIRAT Video Dataset [44]. Data collected in ‘‘in natural scenes
showing people performing normal actions in standard con-
texts, with uncontrolled, cluttered backgrounds’’. After filtering
scenes that were not fully annotated, the dataset we used
contains a total of 10 scenes from 10 different static cam-
eras. We have grouped these 10 scenes into 4 contexts:
Campus Inside for scenes 0000, 0001, and 0002; Campus
Outside for scenes 0100, 0101, and 0102; Parking Lot for
scenes 0401 and 0403; and Street for scenes 0501 and 0503.
The name of these groups is descriptive of the context in
which the images were captured.

• Racetrack. Custom dataset with footage captured during car
training session in a racetrack. The dataset includes im-
ages from 6 static cameras placed in different spots along
the track and captured at 12 different points in time. This
dataset is not fully annotated, and we use it only for a meta-
analysis of its characteristics. It is nonetheless interesting,
as it gives the perspective of a use case in which cars are
virtually the only moving objects crossing the field of vision
of the cameras.

In the experiments presented in Section 6, we focus the eval-
ation on the VIRAT dataset, as we consider it to present enough
iversity of scenes to be representative.

.3. Evaluation metrics

In image classification, the two main metrics to evaluate a
odel are precision and recall. For a certain class of objects, pre-
ision will tell us how much we can trust that a given prediction
as been correctly classified (i.e., the ratio of True Positives with
espect to the total of predictions), while recall will tell us how
uch we can trust that images of a certain class are correctly
lassified (i.e., the ratio of True Positives with respect to the
otal number of ground-truth True Positives). However, the goal of
bject detection models is to find the bounding box coordinates
f each detected object, and these coordinates are real numbers.
herefore, to classify a prediction as True or False Positive and
egatives, the Intersection over Union (IoU) tells us the ratio of
verlap between the predicted box and the ground-truth. Then, a
etection is considered a True Positive if the computed IoU is over
certain threshold and considered a False Positive otherwise.

ean Average Precision (mAP): We use mAP (mean Average Preci-
ion) as the main metric to evaluate each version of the different
odels resulting from the experiments. Within object detection,
408
AP has gained popularity as it is used in some of the most pop-
lar challenges in the field, such as PASCAL Visual Object Classes
VOC) [45] and MS Common Objects in Context (COCO) [9]. How-
ver, the details of how mAP is computed may vary from chal-
enge to challenge. In this paper, we compute mAP as specified
y the COCO challenge.

.4. Experiment setup

The experiments explore the different considerations we have
dentified. The training configuration and most hyperparameters
re fixed throughout the experiments and only the training im-
ges and their respective annotations vary from one experiment
o another (i.e., scene or scenes from which images were captured
nd their annotations correspond to either ground-truth or auto-
atic annotation). All the models used in the experiments take

he same off-the-shelf edge model as starting point, which can be
ound in [46]. Therefore, most of the hyper-parameters are like-
ise shared with the off-the-shelf model. On the one hand, those
elated to the neural network remained untouched: mobilenetv2
eature extractor and SSD detection head for box regression, both
ith l2 regularization (weight = 0.0004) and RELU6 as activation

function.
However, some hyper-parameters related to training required

to be tuned, considering the specifics of the experiment de-
sign. The relatively small number of training examples, although
enough for transfer learning, forces us to take some precautions
to prevent the neural network from forgetting valuable features.
First, the training affects only the parameters on the box re-
gression layers of the model, i.e., box regression layers are left
unfrozen, while feature extraction layers are frozen. Additionally,
the momentum optimizer (momentum = 0.9) uses a cosine
decay learning rate with a relatively low initial value (base =

0.001). Moreover, we add a pipeline of pre-processing layers
during training to leverage data augmentation using the follow-
ing TensorFlow functions: horizontal_flip, vertical_flip, rotation90,
adjust_brightness, adjust_hue, adjust_saturation (all preceded by
the random_ prefix), and ssd_random_crop. Finally, the batch size
is set to 16 images and training stops after 5000 epochs.

5.5. Baseline off-the-shelf models

For the evaluation, we start from an edge and ground-truth
off-the-shelf models. These models are publicly accessible from
the TF Model Zoo [6] and have been pre-trained on the COCO
(Common Objects in COntext) dataset [9]. For the experiments,
we have selected a MobileNetV2 feature extractor with a Single
Shot Detector (SSD) detection head [46] with an input size of
300 × 300 × 3 pixels as the edge model and an EfficientNet
feature extractor with an SSD head [47] and an input size of
768 × 768 × 3 pixels as our ground-truth model. The edge model
was selected for being the smallest and fastest pre-trained model
available with a while the ground-truth model was selected for
being on the high-end of best performing models. The mAP of the
models on the COCO dataset is 20.2% and 41.8%, for the edge and
ground-truth models, respectively.

6. Results

We have broken down the process of automatic tuning of
neural networks into different steps. Each step invariably brings
a trade-off that we must understand before moving forward.
The following experiments are designed to test the contributions
and premises in which COVA is based. That is, that ground-
truth models generalize better than smaller edge models, that
model specialization can help boost accuracy of a model when
evaluated on the same context it is expected to be deployed, and
that ground-truth models can be effectively used to automatically
specialize edge models.
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Fig. 8. Mean Average Precision of three ground-truth models and two edge
models off-the-shelf evaluated on the VIRAT dataset. Breakdown by scene.

Table 2
Comparison of mean Average Precision on the COCO and VIRAT (average of all
scenes) datasets for different off-the-shelf ground-truth and edge models.
Model Category COCO VIRAT Diff

EfficientDetD3 Ground-truth 45.4 46.7 +3%
EfficientDetD2 Ground-truth 41.8 41.7 −0.25%
R-CNN ResNet152 Ground-truth 39.6 43.5 +10%
SSD MobilenetV2- Edge 22.2 20.5 −8%FPNLite
SSD MobilenetV2 Edge 20.2 15.4 −25%

6.1. Off-the-shelf generalization

Here we test the hypothesis that models expected to act
s ground-truth models (i.e., complex models able to achieve
tate-of-the-art accuracy) generalize substantially better than
heir smaller and less compute-demanding counterparts, the edge
odels. For this, we consider three off-the-shelf ground-truth
odels and two off-the-shelf edge models and evaluate them on

he VIRAT dataset, unknown to all models.
Table 2 shows the average mAP achieved by different ground-

ruth and edge models off-the-shelf, i.e., pre-trained on the COCO
ataset. According to the evaluation, all three ground-truth mod-
ls achieve similar or higher accuracy when evaluated on the
ifferent scenes of the VIRAT dataset compared to what they
chieved on the dataset on which they were trained. On the
ontrary, both edge models struggle to generalize to the VI-
AT dataset using their pre-trained knowledge and drop their
ccuracy between 8% and 25%, on average.
Fig. 8 zooms into the mAP of all models broken down by scene.

gain, all ground-truth models consistently outperform the edge
odels on all scenes. The difference between ground-truth and
dge models fluctuates between 2x and 18x, depending on the
cene. On average, the ground-truth models outperform the edge
odels by a factor of 6x. These results highlight two things. First,

he ground-truth models achieve significantly better accuracy
han the smaller edge models, as expected. Second, ground-truth
odels seem to sustain their accuracy in new environments,

mplying a higher generalization level.

.2. Generic vs. specialized

Here we test the hypothesis that a specialized model performs
etter than a generic model when evaluated on the same context
f its deployment. For this, we evaluate the three versions of the
dge model described in 5.1, which can be mapped to three levels
409
Fig. 9. Mean Average Precision of the generic edge model compared to the
specialized edge model for the VIRAT dataset. Breakdown by scene. Bars show
average mAP and lines and dotted lines show person and car AP, respectively.

of specialization (being off-the-shelf the less specialized, followed
by generic and specialized). We define the generic edge model
as a version of the edge model that has been fine-tuned using
images from scenes similar to the one to which we want to deploy
the model. That is, images from other cameras different than the
one to evaluate but belonging to the same supercategory as used
in Section 3 (i.e., Campus Outside, Campus Inside, Parking Lot,
Street). Analogously, we define the specialized edge model as a
version of the edge model that has been fine-tuned using images
from the context to deploy. That is, the model is fine-tuned using
images from a single camera. Nonetheless, images on the training
and evaluation datasets are from videos captured at different
times, i.e., a video is used for either training or evaluation dataset,
but never in both.

Fig. 9 shows the mAP of the generic and the specialized edge
models. On the one hand, the off-the-shelf models consistently
underperform both generic and specialized models except on
one scene. In scene 0102, the pre-trained model achieves 10%
higher mAP than the generic and 15% higher than the special-
ized. Diving into the breakdown accuracy by object classes, the
specialized achieves higher accuracy on person detection but still
drops the average accuracy due to poor car detection. Upon closer
inspection of the contents of the scene, we observed that the
scene (supercategory Campus Inside) contains a single instance of
a car, which was seemingly insufficient during training. On the
other hand, the specialized model outperforms the generic model
on every scene of the dataset (except, again, scene 0102) by a
minimum of 2% and up to 87%, with an average improvement
of 30%. These results prove how model specialization can help
us achieve greater accuracy without altering the computational
complexity of the model. However, they also highlight that spe-
cial care should be taken in scenes where there is an imbalance
on the class distribution of the objects captured.

6.3. Manual ground-truth vs. automatic annotation

Here, we test the hypothesis that ground-truth models can
be effectively used to annotate images that will be used to train
specialized edge models. For this, we evaluate the impact of
automatic annotation on the resulting model’s accuracy. The edge
model is trained three times, each time with a different dataset
containing the exact same set of training examples but whose an-
notations differ in each case. On the one hand, manual annotation,
which is taken as the reference, as it is assumed to be perfect.
On the other hand, automatic annotation in which predictions
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Fig. 10. Mean Average Precision of a specialized edge model after being trained
on a manually annotated dataset vs. a dataset automatically annotated by the
ground-truth model with thresholds of confidence of 0.3 and 0.5. Bars show
average mAP, and lines and dotted lines show person and car AP, respectively.

from the ground-truth model are taken as ground-truths during
training. Automatic annotation is evaluated with a minimum
confidence threshold of 0.3 and 0.5. Therefore, predictions from
the ground-truth model with lower confidence are discarded.
Moreover, the ground-truth model is assumed to be trained on
(or, at least, knowledgeable of) the classes of objects that will
have to annotate and detect.

Fig. 10 shows the mean Average Precision of the specialized
edge model using three datasets annotated differently: manual,
automatic (conf = 0.3) and automatic (conf = 0.5). Compared
o manual annotation, the automatic annotation yields similar
esults on some scenes while it lags behind on others. Automatic
nnotation seems to struggle in those scenes where smaller ob-
ects are predominant, as the ground-truth model fails to detect
hem with enough confidence to be included in the training
ataset. Interestingly enough, automatic annotation outperforms
anual annotation, which is supposed to be an upper bound,

n three scenes, although not significantly. Overall, automatic
nnotation successfully outperforms the results of the off-the-
helf model and increases the mAP of all scenes in average by 21%.
t is worth noting that varying the confidence threshold from 0.3
o 0.5 does not result in substantial differences. This seems to be
ue to the low number of False Positives introduced during the
nnotation of the dataset.

.4. Discussion

The experimental results show the potential of model special-
zation within an automated training pipeline. At the same time,
hey also highlight the steps where more work is required or
pecial care should be taken to build a more robust pipeline.
It is important to emphasize that the desired property for a

odel to be used as ground-truth is a high level of generalization.
hat is, a model able to sustain a certain level of accuracy when
valuated in previously unseen scenarios. State-of-the-art neural
etworks, like those used as ground-truth, can get unreason-
bly expensive to train. Consequently, generalization becomes the
nabler of an automated training pipeline where a single ground-
ruth model is expected to specialize multiple edge models at
arge scale. In the first experiment we observe how, on top of
higher accuracy, ground-truth models are able to maintain or
ven increase their accuracy when evaluated on the different
cenes of the VIRAT dataset, contrary to the edge models.
Moreover, specialized models have shown to consistently out-

erform their more generic counterparts, except on a single scene
410
where the reduced number of cars led to a high imbalance on the
class distribution during training, causing the specialized model
overspecialize the features of that class. This could be mitigated
by adding generic instances to the specialization training dataset
until more instances are captured from the deployed camera to
trigger a new training.

Additionally, the quality of the models specialized using an
automatically annotated dataset has shown, on average, an ac-
curacy boost compared to off-the-shelf models. However, we
have observed certain limitations that should be addressed to
make the quality of the results more robust. We have found a
relationship between the average object size in a scene and the
accuracy obtained by these models, being accuracy higher the
larger the average object. A closer look at the composition of
the scenes where automatic annotation lacks significantly behind
manual annotation hinted that the problem lies in the smaller
objects being predominant in those scenes, like person instances
captured from afar. Small objects are usually more difficult to
detect for obvious reasons, and this translates to second-order
errors, as the ground-truth model introduces annotation errors
(mostly in the form of False Negatives by not detecting them).
Thus, the edge model fails to detect them during inference due
to size and deficient training. In this regard, we would like to
highlight the importance of the main observation used to build
COVA: objects of interest move. Before introducing motion de-
tection and background subtraction to the pipeline, even the
ground-truth models were unable to detect most of the regular-
size objects in a common scene, as most objects would turn into
just a few pixels after downsizing the image to the model’s input
size. Nonetheless, automatic annotation could benefit from an
improved preprocessing of the images fed to the ground-truth
models.

Moreover, we have observed some scenes in which the au-
tomatic annotation outperforms the manual annotation, which
was supposed to be an upper limit. We believe this is due to a
beneficial side-effect of distilled learning, as models are trained
to mimic the behavior of another model (ground-truth). Conse-
quently, the specialized model focuses, during training, on those
objects that will be able to realistically identify after being de-
ployed and disregard those that could not be identified even by
the ground-truth model, which is expected to be significantly
more capable than the specialized (edge) model. This effect has
been already shown in the literature [23] and could be further
exploited to increase accuracy or reduce training costs in COVA.

Finally, it is worth stating that the edge model used through-
out the experiments, even if arguably small, accounts for the
non-negligible amount of 4.5 billion trainable parameters. It uses
a MobileNetV2 architecture that can achieve a considerable 72%
accuracy on the notoriously generalist ImageNet and 19% mAP
on COCO when coupled with a Single Shot Detector head for
box regression. Such neural network architectures can be useful,
especially if they have been pre-trained on a related problem
(even if it is loosely related). They offer a reasonable level of gen-
eralization that makes it easier to adapt to new environments, all
at a relatively low computational cost. However, we believe there
is a margin to further specialize the models used while keeping
the same accuracy. Nevertheless, it is important to highlight the
challenges involved in specializing neural networks. The more
specialized a model is, the harder it becomes to use it reliably
under uncontrolled environments, as these effectively increase
the number of possible inputs the model will observe and for
which it cannot generalize. Analogously, the better the automated
analysis of a camera’s context, the better and faster concept drifts
can be detected, i.e., detect whenever the scene’s context evolves
into something the model is not trained to recognize.
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Fig. 11. (a) Image captured by a static camera on a street. (b) Position (within
he scene) and size of the objects captured by the camera throughout a day.
oordinates represent the centroid of the object and the point size is relative
o the object size as per its detected bounding box.

. Conclusions and future work

In this paper, we have presented and evaluated COVA (Contex-
ually Optimized Video Analytics), a framework that automates
he process of model specialization to ease the deployments of
eal-time video analytics on resource-constrained edge nodes.
OVA provides various high-level structures and tools that allow
sers to quickly define and customize the automated pipeline,
esulting in object detection models specially tailored for their
eployments.
COVA results from an extensive exploration and a subsequent

nalysis of the considerations to optimize the execution of mod-
ls in resource-constrained edge nodes. We have successfully
dentified several key characteristics of edge video analytics that
llowed us to efficiently and largely simplify the scope of the
roblem. For example, our results have shown that simple motion
etection techniques can boost the accuracy of already trained
odels by allowing us to direct the inference to those parts of

he frame that are moving.
Moreover, COVA allowed us to explore some of these con-

iderations, which we hope can help pave the way for future
mprovements. We have shown how, in the case of static cameras,
t is worth assuming a certain loss of generality to boost accuracy
n the specific surroundings of the deployment. Specifically, re-
ults have shown that the edge model (MobileNetV2 with an SSD
ead for box regression) specialized for the context of a camera
chieved between 2% and 87% higher accuracy than the same
odel trained using images from various cameras. At the same
411
time, results have shown how, using COVA, the specialization of
the edge model for the context of specific cameras results in an
increase of the off-the-shelf accuracy by an average of 21%, while
keeping the computational cost constant, all through an auto-
mated process that uses a pre-trained model with state-of-the-art
accuracy as teacher. From the same results, we have observed
some beneficial side-effects of using automatic annotation, as
the resulting model is trained to mimic the ground-truth model,
which seem to improve the efficiency of training in some cases
and yield higher accuracy than manual annotation. However,
the ground-truth model seems to struggle to detect objects that
are small with respect to the rest of the scene and, therefore,
provides a sub-optimal annotation in scenes where such objects
are predominant. Additionally, results also highlight that special
care should be taken in scenes where there is a clear imbalance
on the class distribution of the objects captured. In such cases,
reusing examples captured by cameras in similar contexts can
help mitigate the issue.

As future work, we intend to explore alternative methods to
further exploit the context of a camera. The modular design of
COVA and its components open the door to seamlessly introduce
new contextual features into the analysis of the scene, during
the stages of automatic annotation and generation of the training
dataset. We expect these new features to drive the generation of
inexpensive and highly-specialized models that can still achieve
high accuracy. Towards this goal, we intend to explore the use of
custom and highly specialized neural networks for image classi-
fication and rely on the same techniques already used for motion
detection to leverage localization. These networks are orders of
magnitude smaller than the one used as the edge model previ-
ously mentioned. As a result, they are unable to generalize even in
the slightest. In contrast, several of these can be trained for each
camera context due to their small size and be quickly re-trained
as soon as a concept drift is detected.

We could argue that COVA leverages the context of a camera
by exploiting the implicit inductive biases of convolutional neural
networks, i.e., CNNs learn to consider the surroundings of an
object and COVA uses during training images where objects are
seen in the same context they will be when captured during
inference. However, the context can offer much more than just
visual information. For example, when considering static cameras
within a given context, objects tend to follow pre-established
paths unless an extraordinary event occurs. From the point of
view of a street camera, cars drive following the driveway, while
pedestrians walk mostly on the sides of the street and the cross-
walk. Therefore, the coordinates of an object can be indicative
of the type of object. Additionally, if the camera is placed in the
middle of the street, cars and pedestrians get bigger or smaller
as they get closer or further from the camera while following
their paths. Consequently, the size of an object, along with its
coordinates, can tell us its distance from the camera and, thus,
be indicative of the type of object. Fig. 11 depicts an example of
how the type of object is strongly related to its position and size
within the scene where it is captured. In the example, pedestrians
(blue) walk mainly on the sidewalk and the crosswalk. Similarly,
cars (orange) and motorcycles (green) are mostly captured on the
driveway or entering the parking lot. Pedestrians and cars can be
seen together in the region of the crosswalk, but the fact that not
many people are the size of a car helps discern between them.
Therefore, we observe a strong relationship between the position
and size of an object with the type of object. It is important to
highlight that the distribution shown in Fig. 11(b) will vary even if
the camera is only shifted in place, let alone moved to a different
location. Therefore, these features can be considered part of a
camera’s context, and context is tightly coupled to its camera. It is
precisely for this reason that the process of model specialization
must be automated or, otherwise, it becomes unfeasible at scale.
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