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Abstract: In structures with reduced monitoring budgets, the high cost of commercial metering
devices is always an obstacle for monitoring structural health. This might be an issue when tem-
peratures must be measured for both structural and environmental reasons. To fill this gap, in this
paper, a novel monitoring system is proposed for the accurate measurement of indoor temperature in
buildings. This protocol is characterized by its generality, as it can be easily adapted to measure any
structural or environmental parameters on site. The proposed monitoring system uses from one to
eight low-cost sensors to obtain multiple measurements of the ambient temperatures. The accuracy
ranges of the developed monitoring systems with different numbers of sensors are statistically anal-
ysed. The results indicate that the discrepancy of the measurements decreases with the increase in
the number of sensors, as the maximum standard deviation of 10 sensors (0.42) decreases to 0.32 and
0.27 for clusters of 20 and 30 sensors, respectively.

Keywords: building monitoring; Arduino microcontroller; thermal analysis; low-cost sensor;
statistical analysis; indoor temperature

1. Introduction

The effects of extreme natural hazards (such as storms, earthquakes and climate
change) on structures, together with natural deterioration, might require continuous evalu-
ation and monitoring of them during their service life. Using different equipment, struc-
tural health monitoring (SHM) enables not only assessing serviceability of structures but
additionally enables the detection and quantification of damage [1]. A number of SHM
techniques have been proposed in the literature for monitoring various parameters of
structures such as stresses, strains, accelerations and temperatures [2–6]. One of the main
problems in the application of current systems is the high cost of the measuring devices,
which can limit their applicability in structures with low monitoring budgets. As an al-
ternative to traditional monitoring devices, a number of scholars have proposed low-cost
solutions based on low-cost sensors [7] (LCSs) and open-source microcontrollers such as
Arduino UNO [8], Arduino Nano [9], Arduino DUE [10], Arduino MEGA 2560 [11] and
Raspberry [12]. Application of low-cost sensors for various monitoring projects can be
found in the literature. For instance, Alvarez et al. [13] developed a real-time monitoring
system for water content in cement mortars during the hydration process. Frei et al. [14]
proposed a wireless sensor network to estimate building performance by measuring en-
vironmental parameters. Bidgoli et al. [15] used low-cost accelerometers to measure road
pavement roughness. Rashid et al. [16] developed intuitive protocols to interact with electric
appliances in smart buildings. Dave et al. [17] provided a web-based system that captures
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information about energy usage, occupancy and user comfort through various types of
sensors. An example of studying dynamic behaviour of scaled structures using low-cost
accelerometer can be found in [18]. Lucchi et al. developed a low-cost and accurate conser-
vation remote sensing technology for the hygrothermal evaluation of historic walls before
and after retrofitting [19]. This methodology provided the assessment of the real condition
of walls and to study various thermal insulation materials placed on the inner side. The
proposed system was composed of sensor measurements, data acquisition system, data
storage, and communication system. Aiming to lessen the cost, the data acquisition system
was established based on Raspberry Pi 3. In addition, Amphenol temperature humidity
sensors were used as they were characterized by high quality (RH:±2% T:±0.3 ◦C), a lower
cost than the similar ones in the market, and easier acquisition compared with industrial
ADC systems. Therefore, establishment of the proposed system required a smaller budget
(EUR 20) compared to the commercial ones in the market (EUR 96). Given to the impossi-
bility of removing samples and the unknown hygrothermal behavior of walls, the same
authors developed an in situ hot box providing analysis of various insulation technologies
when applied on a historic building so as to determine the hygrothermal performance of
historic masonry buildings [20]. A systematic literature review of application of LCSs for
building monitoring has been presented in the article of Mobaraki et al. [21].

Figure 1 presents the evolution of articles published corresponding to the use of low-
cost sensors in various fields, from 2011 to 2021. The information visualized in this figure
is in percentages, which correspond to the quantity of publications in the associated year
relative to the whole number of publications in the studied period. Figure 1 illustrates this
information corresponding to the fields of civil and building engineering, medical engineer-
ing, electrical engineering, industrial engineering, mechanical engineering, and architecture.
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The strategy used to obtain the information in Figure 1 is based on the following
two steps. (1) Using keywords for various fields: a number of keywords such as “low-cost
monitoring”, “low-cost sensor”, “monitoring”, and “SHM” were introduced in the Scopus
database. The obtained results were filtered in the following fields: civil and building engi-
neering, industrial engineering, mechanical engineering, medical engineering, electronic
engineering, and architecture. This step was followed by the search algorithm “AND”.
(2) Filtering the obtained articles: The obtained articles were filtered to eliminate duplica-
tions and out of topic works. This filtration led to a massive reduction in the quantity of
articles found in the first step. For instance, considering the field of mechanical engineering
only in 2021, the number of articles was reduced from 4753 to 1867. In the same way, the
entire number of publications found in the field of civil and building engineering was
reduced from 3052 to 2334. In this step, the search algorithm “AND NOT” was adopted
for filtration. The remaining quantity of the articles was clearly addressing or assessing
the application of low-cost sensors in the studied disciplines. It is also relevant to state
that in this search algorithm, the authors were not focusing only on the English language
articles. Thus, the acquired publications contain various languages from different parts of
the world. The reviewed methodology was followed by another work in the literature [22]
and by the same authors in the same journal (Buildings) [21]. Environmental temperature
plays an important role in controlling a number of phenomena on sites as well as in the
analysis of energy consumption in buildings [23]. Monitoring is commonly limited by
equipment availability; therefore, elements and spaces are traditionally represented by
a single temperature value. Connection problems and unexpected circumstances may
invalidate long-term monitoring records when using only one device. The advantages of
using several low-cost sensors have been stated in a number of studies [24]. For example,
the authors developed a novel data acquisition system using low-cost sensors, to charac-
terize thermal parameters of building envelopes [25]. Additional literature examples of
the application of multiple low-cost sensors for environmental monitoring purposes are
summarized in Table 1. This table includes the proposed application (air quality, ambient
monitoring and indoor environmental monitoring), the sensor types, and the number of
sensors used in each of the reported works.

Table 1. Previous studies using multiple low-cost sensors for environmental monitoring.

Application Sensor Type Number of Sensors Reference

Air quality CO, NO, NO2 4 [26]
Air quality MOx, SHT21, light sensor 2 [27]
Air quality CO, NO, O3, NO2 5 [28]

Indoor environmental monitoring SHT15-
NTC-TSLl2561-PARALLAX-SENSAIR K30- 2 [29]

Indoor environmental monitoring DHT11-DS18B20-LM35 3 [30]
Ambient NO2 monitoring Alphasense cell 16 [31]

All of the studies in Table 1 define the monitoring accuracy with multiple sensors.
Nevertheless, none of these works studied the statistical benefits of increasing the number
of sensors in the monitoring of ambient temperatures. To fill this gap, this paper presents a
novel monitoring system using cheap sensors available in the market. Unlike commercial
thermometers, this protocol is based on multiple measurements of the indoor temperatures,
enabling the application of a statistical analysis to improve the low accuracy of the low-
cost sensors. This monitoring system was applied to five of the low-cost sensors most
commonly used in the literature (BMP280, BMP180, DHT22, SHT21 and SHT35) to develop
five independent measurement devices. For each of these devices, the improvements in
accuracy by increasing the number of sensors (ranging from 1 to 8) were studied. The
five developed devices were calibrated with statistical references obtained by averaging
the measurements of 30 sensors of each studied sensor type. This monitoring system is
characterized by its generality; it can be applied to measure any structural (such as stress,
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strain or acceleration) or environmental (such as transmittance value, resistance parameter,
rate of heat flux or conductivity coefficient) parameters on site. Monitoring of these
parameters is a decisive factor for maintenance operations of buildings [32], bridges [33],
tunnels [34,35], and other infrastructure [36]. Implementation of the proposed methodology
helps engineers to improve maintenance activities and operational efficiency while at the
same time decreasing the cost and increasing the accuracy [37]. Application of affordable
and reliable monitoring systems could solve challenges of long-term monitoring of the
aforementioned structures [38].

This paper is organized as follows. In Section 2, the hardware and software of the
five developed monitoring system are detailed. In Section 3, the main characteristics of
the commercial thermometers in the literature are reviewed. In Section 4, a laboratory
test is described that compares the accuracy of the developed monitoring system with
thermometer uses in the literature. Then, the normal distribution of the data of the sensor
sets is demonstrated. Next, the benefits of increasing the number of low-cost sensors are
studied to provide recommendations for the selection of the types and numbers of sensors
for different accuracy ranges. A cost comparison between the proposed monitoring systems
and commercial alternatives is also presented. Finally, in Section 5, some conclusions
are drawn.

2. Development of a Novel Monitoring System

In this section, the hardware and software of the five proposed monitoring system
devices are presented.

2.1. Hardware of the Proposed Monitoring System

Various types of low-cost sensors are available to derive the temperature of surround-
ings. Examples of these sensors are the DHT11 [39], DHT22 [40], SHT10 [41], SHT21 [42],
SHT35 [43], BMP180 [44], BMP280 [45], and LM75 [46]. The selection among these alter-
natives is traditionally based on the information presented in the commercial datasheets.
The main characteristics of the abovementioned sensors (model, detection range, accuracy,
resolution, response time, communication protocol, and cost) are listed in Table 2, which
includes references to the application of associated sensors in the literature.

Table 2. Specifications of low-cost thermometers from their catalogues.

Nº Model Detection
Range (◦C)

Accuracy
(◦C)

Resolution
(◦C)

Response
Time (s)

Communication
Protocol Cost (EUR) Reference

1 DHT11 [0 to 50] 2 0.1 2 Single wire/bus 1.56 [39]
2 DHT22 [−40 to 80] 0.5 0.1 2 Single wire/bus 5.40 [47]
3 SHT10 [−40 to 125] 0.5 0.01 8 I2C 4.57 [41]
4 SHT21 [−40 to 125] 0.3 0.01 8 I2C 4.61 [42]
5 SHT35 [−40 to 125] 0.2 0.01 8 I2C 5.76 [43]
6 BMP180 [−40 to 85] 2 0.1 0.0075 I2C 3.72 [44]
7 BMP280 [−40 to 85] 1 0.01 0.55 I2C and SPI 3.59 [45]
8 LM75 [−55 to 125] 1 0.1 0.5 I2C 2.80 [46]

This paper studied the five most commonly used sensors, as shown in Table 2 (BMP180,
BMP280, DHT22, SHT21 and SHT35). The chosen sensors for establishment of the five
monitoring systems have different characteristics in terms of the accuracy, response time,
communication protocol, and cost. The accuracies of these sensors range between 0.2 ◦C
(SHT35) and 2 ◦C (BMP180), while their prices range between EUR 3.59 (BMP280) and
EUR 5.76 (SHT35). The sensors studied are based on different communication protocols.
For example, the sensor DHT22 uses a single wire/bus, while BMP180, SHT21 and SHT35
operate with the inter-integrated circuit protocol, I2C, and sensor BMP280 uses both I2C
and the serial peripheral interface (SPI) [48].
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An independent monitoring system was built with each of the five selected low-cost
sensors. Each of these monitoring systems included the following elements. (1) The Arduino
MEGA 2560: This microcontroller enables the physical computing and controlling of the
protocol. This device was previously used in other complex projects (such as [30,31]). (2) A
power source: A USB cable was attached to the laptop to supply the required power for an
individual monitoring system. (3) The multiplexer TCA9548A: for enhancing the amount
of network data transferred in a specific period of time by sensors with I2C communication
protocols. (4) Breadboard: for easing the assembling of the system wires. (5) A clock sensor
DS3231: for capturing the exact date and time of each measurement. (6) An SD card: for
storing the data of each individual. Finally, (7) low-cost sensors.

Each monitoring system included 30 of the following sensors: BMP180, BMP280,
DHT22, SHT21 and SHT35. To provide a better understanding of the proposed method-
ology (statistical reference as well as combinatorial analysis), Figure 2a,b are presented.
Figure 2a depicts the defined order/label of the installed sensors for each of the five moni-
toring systems in the written algorithm. The statistical reference of each monitoring system
comes from the mean value of the associated 30 sensors. Figure 2b demonstrates the order
of the sensor’s selection for combinatorial analysis, ranging from 1 to 8 out of 30 sensors.
Through this combinatorial analysis, all the possible sensor arrangements will be chosen
and compared with the associated statistical reference.
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Table 3 provides information over the main characteristics (accuracy, response time
and detection range) of the five developed data acquisition systems. This table also in-
cludes a picture of an individual developed monitoring system and the sketch of the wiring
connections of a single sensor to Arduino MEGA using Fritzing software [49]. The analysis
of this table shows that the utilized sensors were characterized by different accuracies,
response time, and detection ranges. This use of different models of sensors provides
the opportunity to investigate the statistical benefits of increasing the number of sensors
on different sensor types. As shown in Table 3, four breadboards were used to ease the
connections of the 30 sensors of an individual system. The size of each monitoring system
was 27 × 6 cm. These dimensions are close to those of other commercial thermome-
ters in the literature (such as TESTO 435-1 and FLUKE 971, with 22 × 7.5 cm [50] and
19.5 × 6 cm [51], respectively).
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Table 3. Established data acquisition systems and the associated technical characteristics of the
used sensors.

System Accuracy
(◦C)

Response
Time (s)

Detection
Range (◦C) Figure Wire Connection to

Arduino MEGA

BMP280 1.0 0.5500 −40 to 85
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For the development of each monitoring system, two different algorithms were written
for the following purposes: (1) capturing the data from low-cost sensors and (2) analysing
the obtained data from an individual monitoring system. These algorithms are detailed in
the following sections.
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2.2.1. Algorithm for Reading Sensor Data

Arduino IDE was used for programming the functionality of the input data introduced
to the ports of the microcontrollers in each of the five developed monitoring systems. This
algorithm was divided into the following steps. (1) Loading the SD card library (SD.h), the
serial port interface library (SPI.h) and the corresponding sensor library (BMxI2C.h) into
the project sketch. (2) Initializing the serial monitor and ports of the multiplexers to enable
the readings. (3) Adjusting the measuring frequency and opening the SD card for saving
the temperature measurements. In all the measurement sets, the recording intervals were
set as the minimum response time of the commercial device, EL-USB-2 LASCAR (10 s).
(4) Recording the temperatures and saving them on the SD card over time.

A summary of the developed algorithm is presented in Figure 3. To ease the algorithm
replication, specific Arduino functions are included on the right of this figure.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 24 
 

For the development of each monitoring system, two different algorithms were 
written for the following purposes: (1) capturing the data from low-cost sensors and (2) 
analysing the obtained data from an individual monitoring system. These algorithms are 
detailed in the following sections. 

2.2.1. Algorithm for Reading Sensor Data 
Arduino IDE was used for programming the functionality of the input data 

introduced to the ports of the microcontrollers in each of the five developed monitoring 
systems. This algorithm was divided into the following steps. (1) Loading the SD card library 
(SD.h), the serial port interface library (SPI.h) and the corresponding sensor library 
(BMxI2C.h) into the project sketch. (2) Initializing the serial monitor and ports of the 
multiplexers to enable the readings. (3) Adjusting the measuring frequency and opening the 
SD card for saving the temperature measurements. In all the measurement sets, the recording 
intervals were set as the minimum response time of the commercial device, EL-USB-2 
LASCAR (10 s). (4) Recording the temperatures and saving them on the SD card over time. 

A summary of the developed algorithm is presented in Figure 3. To ease the 
algorithm replication, specific Arduino functions are included on the right of this figure. 

 
Figure 3. Algorithm to record the temperature measurements on each monitoring system. 

2.2.2. Data Analysis Algorithm 
To establish a statistical reference, each monitoring system included 30 sensors 

whose temperature outputs were monitored with the algorithm presented in the previous 
section. This statistical reference is independent for each monitoring system and is 
obtained by averaging the measurements of all the sensors. The different statistical 
references were used to evaluate the accuracy improvements in each monitoring system 
when increasing the number of sensors. To define the number of possible combinations 
for a specific number of sensors, the following combinatory equation was followed: 𝐶 𝑛, 𝑟 = 𝑛! 𝑟! 𝑛 − 𝑟 !⁄  (1)

where 𝑛 is the number of sensors (30 sensors) and 𝑟 the number of sensors used in each 
combination (after checking the results, this number ranged from 1 to 8). To obtain the 
arrangements of the different numbers of sensors, an algorithm was developed in 
MATLAB. “Arrangement” is defined as each of the sensor configurations presented in 
Figure 2b. The main steps of this algorithm for the calibration and data analysis are as 

Figure 3. Algorithm to record the temperature measurements on each monitoring system.

2.2.2. Data Analysis Algorithm

To establish a statistical reference, each monitoring system included 30 sensors whose
temperature outputs were monitored with the algorithm presented in the previous section.
This statistical reference is independent for each monitoring system and is obtained by
averaging the measurements of all the sensors. The different statistical references were
used to evaluate the accuracy improvements in each monitoring system when increasing
the number of sensors. To define the number of possible combinations for a specific number
of sensors, the following combinatory equation was followed:

C(n, r) = (n!)/(r!(n− r)!) (1)

where n is the number of sensors (30 sensors) and r the number of sensors used in each
combination (after checking the results, this number ranged from 1 to 8). To obtain the
arrangements of the different numbers of sensors, an algorithm was developed in MATLAB.
“Arrangement” is defined as each of the sensor configurations presented in Figure 2b. The
main steps of this algorithm for the calibration and data analysis are as follows: (1) input the
data from the SD card, (2) establish the statistical “reference temperature” from the average
of the measurements of the 30 sensors of each individual monitoring systems, (3) input the
desired number of sensors to be considered in each combination, determine the possible
sensor arrangements and the associated mean values, and finally compare them with
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the statistical reference temperature so as to check the performance of the chosen sensor
arrangement, (4) select both the most accurate and inaccurate sets of sensors, and (5) check
the repeatability of the sensors through the standard deviation. A summary of these steps
is shown in Figure 4. With the purpose of specifying the most accurate/inaccurate sets of
arrangements, the order of the sensors in all monitoring systems has been specified in the
proposed algorithm. To evaluate the accuracy of the sensor arrangements, two parameters
were compared with the reference temperatures of each monitoring system over time:
(1) average temperature and (2) standard deviation. This algorithm enables the automatic
identification of outliers.
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The number of possible arrangements for the different sensors studied (from 1 to 8)
obtained by this algorithm is summarized in Table 4, together with the computation
times. Computation time refers to the duration required for conducting the whole loop
presented in Figure 4. Statistical analysis of the sensor arrangements provides the accuracy
range (minimum and maximum errors) of the different sensor configurations in each
monitoring system.

Table 4. Number of arrangements and computation time for all possible configurations of sensors in
monitoring system with 30 sensors.

Nº of Sensors Nº of Arrangements Time (min)

1 30 0.01
2 435 0.01
3 4060 0.02
4 27,405 0.09
5 142,506 0.50
6 593,775 4.28
7 2,035,800 19.22
8 5,852,925 28.16
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3. Commercial Thermometers

In this section, six of the commercial thermometers most commonly used in the
literature to monitor ambient temperatures are studied. The main characteristics of these
devices are listed in Table 5. This table includes the model’s name, the sensor accuracy, the
temperature range, price, and the associated references to the application of the instrument
in the literature.

Table 5. Commercial thermometers in the market and literature.

Nº Model Accuracy (◦C) Range (◦C) Price (EUR ) Reference

1 PROTMEX MS6508 1.0 [−20 to 60] 50 to 60 [52]
2 REED R6001 0.8 [−20 to 60] 130 to 150 [53]
3 FLUKE 971 0.5 [−20 to 60] 350 to 500 [54]
4 EL-USB-2 LASCAR (*) 0.5 [−35 to 80] 50 to 100 [55]
5 TESTO 435-3 (**) 0.2 [−25 to 75] 750 to 1200 [56]
6 EXTECH EN510 0.1 [−100 to 1300] 180 to 220 [57]

(*) Price can vary depending on the number of items ordered. (**) Including external probes for air and sur-
face temp.

An analysis of Table 5 shows the commercial sensor accuracy ranges between 0.1 ◦C
(EXTECH EN510) and 1.0 ◦C (PROTMEX MS6508). The price range presents significant
variations between the cheapest sensor (PROTMEX MS6508 with a cost of EUR 57) and
most expensive one (TESTO 435-1 with a cost of EUR 750).

A commercial thermometer with intermediate characteristics (EL-USB-2 LASCAR
thermometer) was used simultaneously to validate the performance of the five developed
monitoring systems. This device works with a normal 1/2 AA battery and can export its
data to a PC through a USB port.

4. Experiment

This section describes an experimental test conducted to validate the performance of
the five developed monitoring systems. First, the experiment is described, and the obtained
results are compared. Then, the normal distribution of the data recorded by the five studied
sensor types is evaluated. Finally, the accuracy range (maximum and minimum errors)
with different numbers of sensors in each monitoring system is statistically studied.

4.1. Description

The ambient temperatures measured by the five developed monitoring systems were
compared with those obtained simultaneously by the commercial thermometer EL-USB-2-
LASCAR. Different devices used in the experiment are illustrated in Figure 5. The experi-
ment was conducted in a controlled environment in the laboratory of the Civil Engineering
Department of the University of Castilla-La Mancha (UCLM) in Ciudad Real, Spain in
February 2020. During the experiment, the temperature was controlled by the air con-
ditioning (AC) and divided into the following two scenarios: Scenario 1, in which the
temperature was kept constant at 25 ◦C, and Scenario 2, in which the AC was turned off
with the consequent drop in the temperature. The sensor locations were chosen far from
windows to avoid the effects of direct sun radiation.

During the experiment, the laboratory temperature was recorded for 12 h continuously,
with a sampling frequency of 10 s, providing more than 4000 readings in each of the
30 sensor copies of the five monitoring systems as well as in the commercial thermometer.
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Figure 5. Elements in the experiment: (1) laptop, (2) monitoring system BMP280, (3) monitoring
system BMP180, (4) monitoring system DHT22, (5) monitoring system SHT21, (6) monitoring system
SHT35, and (7) EL-USB-2-LASCAR.

4.2. Analysis of the Reference Temperatures

After applying the algorithm of Section 2.2.1 for sensor data reading, the ambient
temperatures of each sensor was recorded. Figure 6 plots the evolution of the temperature
recorded by each of the 30 copies of sensor SHT35 obtained in the corresponding data
acquisition system. This figure clearly demonstrates the synchronised measurements of the
SHT35 sensors to identify the laboratory temperatures in the two studied scenarios.
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Figure 6. Evolution of the temperatures recorded by the 30 sensor copies of SHT35.

Dispersion of the measurements of the five developed monitoring systems is presented
in Figure 7, in terms of the standard deviations of the reference temperatures (average of
the 30 sensor copies) over time.
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Figure 7. Standard deviations of the five monitoring systems with 30 sensors.

The analysis of Figure 7 illustrates that different standard deviation ranges are ob-
tained for the different types of sensors analysed. From these results, it can be concluded
that sensors SHT35 and BMP280 have the lowest (0.028 ≤ SDSHT35 ≤ 0.066) and the
highest (0.336 ≤ SDBMP280 ≤ 0.404) standard deviation ranges, respectively. Precise as-
sessment of this figure additionally indicates that temperature sensors (such as SHT21,
SHT35 and DHT22) have better performance in dynamic environments (Scenario 2 in the
last 3600 measurements) than in the static ones (Scenario 1 in the first 400 measurements).
During Scenario 1, the sensor nodes recorded scattered values, and the associated standard
deviations gradually increased. Furthermore, after encountering changes of temperature
(Scenario 2), the standard deviation remained practically constant with limited fluctuations.
In the case of the pressure sensors (such as BMP180 and BMP 280), the standard devia-
tion changed gradually in both the static and dynamic scenarios and did not follow any
specific pattern.

Standard deviation (SD) is a measure to determine the dispersion of data relative to
its average value where a higher range of this parameter presents a higher uncertainty of
measurements. Figure 8 studies the impact of increasing number sensors on variation of
SD, randomly for one of the monitoring systems, DHT22. To do so, this figure plots the
ranges of the SD when the number of sensors was increased between 10 and 30 units. In
this figure, the vertical axis refers to the obtained SD, while the horizontal one refers to the
measurements taken in the test.

According to Figure 8, the uncertainty of measurements was lessened by enhancing
the number of sensors. Increasing the number of sensors resulted in a decreasing trend
of standard deviation of the monitoring system DHT22 as: 0.19 ≤ SD10 sensors ≤ 0.42,
0.18 ≤ SD20 sensors ≤ 0.32, and 0.16 ≤ SD30 sensors ≤ 0.27. In other words, the standard
deviation related to the observations of the most inaccurate 20 sensors tend to be closer to
the associated statistical reference than that of the 10 most inaccurate sensors.

To assess the applicability of the five developed monitoring systems, a comparison
between the reference temperatures and the commercial thermometer EL-USB-2 LASCAR
is presented in Figure 9. This Figure illustrates the time history of the temperature captured
by the EL-USB-2 LASCAR and the reference temperature of each monitoring system.
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Figure 8. Standard deviation of the monitoring system DHT22 with different numbers of sensors (10,
20 and 30).
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Figure 9. Comparison between the reference temperatures recorded by the five monitoring systems
with measurements of the commercial thermometer EL-USB-2 LASCAR.

The analysis of Figure 9 shows significant differences between the results of EL-USB-
2 LASCAR and the reference temperatures of the developed monitoring systems. The
limited accuracy and resolution of the EL-USB-2 LASCAR device (0.5 ◦C) resulted in a
sawtooth-shaped temperature plot. In contrast, the developed monitoring systems recorded
continuous increments of temperature that were closer to the actual temperature variation.

To further study differences between the measurements of the developed monitor-
ing systems and the EL-USB-2 LASCAR, Figure 10 is presented where the error of this
commercial thermometer is calculated in terms of the statistical reference of an individual
system. An overall result of this figure is that the lower the range of temperatures captured
by the monitoring systems (according to the Figure 9), the higher the rate of errors of
EL-USB-2 LASCAR. According to the obtained results, the highest and the lowest ranges of
errors were obtained when considering the statistical references of the monitoring systems
BMP280 and SHT21, respectively.
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4.3. Normality Test of the Reference Temperature

A statistical normal-distribution analysis (normality test) of the data obtained by the
five developed monitoring systems was conducted to verify whether the temperatures
measured by the different sensor copies follow a normal distribution. This normality
test was performed for random clusters of the monitoring information using the software
SPSS-2019 [58]. Table 6 summarizes the statistical values of one of the analysed clusters in
each of the five developed monitoring systems. The results in this table include the mean,
standard deviation (SD), minimum (Min) and maximum (Max) recorded temperatures,
standard error of skewness (Std. Error. Sk), standard error of kurtosis (Std.Err.Ku), Z-value
skewness (Z-val.Sk), and Z-value kurtosis (Z-val.Ku).

Table 6. Statistical data analysis in SPSS for each developed monitoring system.

Monitoring System

SHT35 SHT21 DHT22 BMP280 BMP180

Mean 25.68 26.08 25.43 25.64 25.79
SD. 0.04 0.11 0.19 0.35 0.29

Min. 25.60 25.84 25.00 25.18 25.18
Max. 25.76 26.28 25.90 26.35 26.28

Std.Err.Sk 0.43 0.43 0.43 0.43 0.427
Std.Err.Ku 0.83 0.83 0.83 0.83 0.83
Z-val.Sk −0.65 −0.57 −0.37 1.07 −0.74
Z-val.Ku −1.08 −0.42 −0.05 −1.40 −0.81

As indicated by [59], skewness (Z-val.Sk) and kurtosis (Z-val.Ku) Z-values should be
in the range of −1.96 to 1.96. As shown in Table 6, according to the inferred Z-values, it can
be expressed that all the five clusters of data are normally distributed in terms of skewness
and kurtosis since they are within a range of +/−1.96.

The normal distribution of the measurements of the 30 copies of the five developed
monitoring systems is illustrated in Figure 11. The Q-Q plots in Figure 11a,d,g,j,m show
that all monitoring systems follow a normal distribution, as their data fall well along the
expected regression line. The sensor that provided the worst approximation was BMP280.
The histograms in Figure 11b,e,h,k,n illustrate the Gaussian distribution via the bell-shaped
curve of the different recorded data associated with the monitoring systems SHT35, SHT21,
DHT22, BMP180, and BMP80, respectively. These figures visually assess skewness, anoma-
lies and frequency of observations. Due to the minimum discrepancy of the measurements
obtained from SHT35 and SHT21, the distributions in histograms are symmetric. How-
ever, sensor BMP280 presents a higher asymmetry. Finally, the box-and-whiskers plots
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in Figure 11c,f,i,l,o provide the overall information over the obtained temperature ranges
captured from SHT35, SHT21, DHT22, BMP180, and BMP80, respectively. The sensor with
the narrowest range was the SHT35 (25.76 − 25.6 = 0.16 ◦C), while the sensor with the
widest range was the BMP280 BMP280 (26.35 − 25.18 = 1.2 ◦C). The box-and-whiskers
plot related to the DHT22′ set indicates that this metering system has the maximum num-
ber of observations close to the median. However, it contains the minimum number of
temperatures detected on the top 25% phase of the records.

Buildings 2022, 12, x FOR PEER REVIEW 15 of 24 
 

 

SH
T3

5 
   

  

 

SH
T2

1 

  

D
H

T2
2 

  

BM
P1

80
 

  
 

BM
P2

80
 

 

Figure 11. (a) Normal Q-Q plots (SHT35), (b) Histograms (SHT35), (c) Box-and-whiskers plot 
(SHT35), (d) Normal Q−Q plots (SHT21), (e) Histograms (SHT21), (f) Box-and-whiskers plot 
(SHT21), (g) Normal Q−Q plots (DHT22), (h) Histograms (DHT22), (i) Box-and-whiskers plot 
(DHT22), (j) Normal Q−Q plots (BMP180), (k) Histograms (BMP180), (l) Box-and-whiskers plot 
(BMP180), (m) Normal Q−Q plots (BMP280), (n) Histograms (BMP280), and (o) Box-and-whiskers 
plot (BMP180). 

4.4. Analysis of the Individual Sensors 

(l) 

(a) 

(d) (e) 

 Temperature (ºC) Temperature (ºC) 

Temperature (ºC) Temperature (ºC) 

Temperature (ºC) Temperature (ºC) 

Temperature (ºC) Temperature (ºC) 

Temperature (ºC) Temperature (ºC) 

(f) 

(i) (g) 

(m) (n) (o) 

(c) 

(j) 

(b) 

 (h) 

 (k) 

 

Figure 11. (a) Normal Q-Q plots (SHT35), (b) Histograms (SHT35), (c) Box-and-whiskers plot (SHT35),
(d) Normal Q−Q plots (SHT21), (e) Histograms (SHT21), (f) Box-and-whiskers plot (SHT21), (g) Nor-
mal Q−Q plots (DHT22), (h) Histograms (DHT22), (i) Box-and-whiskers plot (DHT22), (j) Normal
Q−Q plots (BMP180), (k) Histograms (BMP180), (l) Box-and-whiskers plot (BMP180), (m) Normal
Q−Q plots (BMP280), (n) Histograms (BMP280), and (o) Box-and-whiskers plot (BMP180).
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4.4. Analysis of the Individual Sensors

The accuracy ranges of the five analysed sensor types are illustrated in Figure 12,
where the errors of the most and least accurate sensors were derived and compared with
the information presented in commercial catalogues of the associated sensor (presented in
Table 2).
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Figure 12. Comparison between the most- and least-accurate sensors in the sets and the accuracies
described in their respective commercial catalogues.

Figure 12 shows that the higher the accuracy of the sensor is, the smaller both the
maximum and minimum calculated errors are by the reference temperatures. This figure
additionally illustrates that the information in the catalogues of the different sensor types
does not correspond with the actual performance of these devices on site. For example, the
maximum obtained error of sensor BMP180 (4.68%) was 57% higher than that presented in
the catalogue for this sensor (2%).

4.5. Analysis of the Developed Monitoring Systems with Different Number of Sensors

The error of each single sensor is systematic and comes from a number of uncertainties
(such as observational errors, instrumental errors and environmental errors). To reduce
the measurement errors of the sensors in the different monitoring systems, their respective
measurements were averaged with the data analysis algorithm presented in Section 2.2.2.
Temperature analysis was conducted for each monitoring system. In this analysis, the
average temperatures of all the possible arrangements of sensors, from one to eight, of
each monitoring system were compared with the corresponding reference temperatures to
obtain the accuracy ranges (maximum and minimum errors).

The maximum errors (related to the most inaccurate sensor arrangements) for the five
studied monitoring systems were compared with those of state-of-the-art thermometers
(from 0.1 to 0.5 ◦C), which are presented in Figure 13. In this figure, the horizontal axis
represents the number of sensors in different sensor combinations (ranging from one to
eight), while the vertical axis shows the absolute value of the maximum error (Abs(Max
Error)) obtained by all possible combinations of the sensor arrangements described in
Table 4. The errors in Figure 13 are calculated from the average measurements of the
different sensor arrangements and the associated reference temperature, and they represent
the maximum expected errors of a random set of sensors that are chosen. The area between
the red arrows in the figure highlights the range of errors of the commercial devices
presented in Table 5 (from 0.1 to 0.5 ◦C).
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Figure 13. Maximum absolute errors of all possible arrangements of the different sensors in the
five developed monitoring systems and in the state-of-the-art thermometers.

Figure 13 illustrates that the benefits of adding additional sensors depend to a great
extent on the sensor type and its accuracy. In regard to sensors with lower accuracy (such
as the BMP180), adding sensors presents higher benefits. For example, the maximum error
obtained from measuring temperatures using a unique BMP180 sensor (4.67%) is reduced
to 4.13% when two sensors are considered (11.6% reduction of the error). This error is
reduced to 2.26% when eight sensors are considered. Furthermore, the sensors with higher
accuracy (such as the SHT35) present lower marginal benefits. For example, in this case,
the errors with one unique sensor copy (0.46%) are reduced to 0.44% when two sensor
copies are considered (4.3% reduction of the error) and to 0.29% when eight sensor copies
are considered.

The analysis of Figure 13 additionally illustrates how the maximal errors are reduced
with more sensors. The higher the number of sensors averaged, the lower the maximum
errors in the reference temperature. In the worst sensor combinations, the accuracy of
the FLUKE 971 and EL-USB-2 LASCAR thermometers (0.5 ◦C) can be achieved when
averaging eight SHT21 sensors (concretely, 0.47 ◦C). The same precision can be obtained
directly with any of the studied numbers of the SHT35 sensor. Although the error reduction
is not significant, the use of at least three of these sensors is advised to have multiple
simultaneous temperature readings. In this case, an accuracy of 0.42 ◦C is obtained. In
the case of the rest of the studied sensors (BMP180, BMP280 and DHT22), an average of
more than eight copies is required to achieve an accuracy of 0.5 ◦C, considering the worst
sensor combination.

Not all sensor types were easy to work with. During the assembling process, a few
sensor types were easily burned out due to variations in the voltage in the circuit. To take
this problem into account and to determine the real cost of the monitoring systems, a
correction factor (FC) was devised, determined by dividing the total number of sensors
needed by 30 (number of sensors in each monitoring system). For example, in the case of
sensor type SHT21, eight sensors were burned out during the assembling process such that
38 sensors were needed to achieve the targeted 30. Therefore, the correction factor of this
type of sensor is FC.SHT21= 38/30 = 1.3 . Assuming a linear response, this parameter can
be used to include the effects of the burned-out sensors in the monitoring systems with any
number of sensors. The FC values for the monitoring systems BMP180, BMP280, DHT22,
and SHT35 are 1.1, 1.2, 1.0 and 1.0, respectively.

The costs of the two selected monitoring system alternatives (SHT21 with eight sensors
and SHT35 with three sensors) with maximum errors are reviewed in Table 7. This table
includes the prices of the monitoring system elements as follows: (1) sensors: this number
is obtained by multiplying the sensors by the corresponding Fc factor; (2) microcontroller;
(3) breadboard; and (4) the multiplexer.
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Table 7. Cost of the chosen monitoring systems with the least accurate sensors of SHT21 and SHT35.

SHT35 SHT21

Components Price (EUR) Nº Price (EUR) Nº
Sensors 5.76 3 4.61 11

Breadboard 3.5 1 3.5 1
Arduino 35.5 1 35.5 1

Multiplexer 1.2 1 1.2 1
Clock Sensor 1.3 1 1.3 1

Total Cost (EUR) 58.8 92.1

Information presented in Table 7 shows that the total costs of the proposed monitoring
systems are EUR 58.8 for SHT35 and EUR 92.1 for SHT21. These costs are similar to
commercial alternatives presented in the Table 5 with 0.5 ◦C accuracy (such as EL-USB-2
LASCAR (EUR 50 to 100)) and lower than other thermometers with the same accuracy (such
as FLUKE 971 (EUR 350 to 500)). The assembling and programming cost of the monitoring
system is not included in Table 7. Depending on the sensor type, the time is 10 min on
average per sensor. Coefficient of variation (R2) of the linear regression line between
sensor measurements and reference data has been frequently used in the literature to
verify the linearity of responses of low-cost sensors [60,61]. In other words, this parameter
illustrates how well the measurements of studying sensors agree with the reference values,
according to a regression module. A higher R-squared presents an increase in precision
of the regression model. This analysis was carried out for the most inaccurate sensor
arrangements and is summarized in Figure 14, where the pairwise correlation between
sensor measurements and the associated statistical reference for an increasing number
of sensors (ranging from one to three) are presented. According to Table 4, the most
inaccurate sensor arrangements associated with combinations of one, two, and three units
of sensors were selected among from 30, 435, and 4060 possible configurations, respectively.
Evaluating the accuracy, the mean value of and individual sensor arrangement were
compared with the associated statistical reference. For the combination of each number of
sensors, the dependent (sensor data) and independent (statistical reference data) variables
were plotted in Figure 14 on the vertical and horizontal axis, respectively. Comparison
of R2 values in an individual sensor set demonstrates how effective it is to increase the
number of sensors. According to Figure 14, DHT22 provides the lowest linearity for the
combination of all the studied number of sensors. For instance, for the case of one sensor,
R2 is equal to 0.9882 and reaches 0.9926 when the number of sensors is increased to three.
However, when considering a number of sensors up to three, sensors SHT21 and SHT35
provided the best results, as R2 = 0.9992 was obtained. Further assessment of the sensors in
this figure also proves that the correlation of BMP180 pressure sensors with the associated
statistical reference is strong, as the range of 0.9906 ≤ R2

BMP180 ≤ 0.9961 was obtained
when the number of sensors was increased from one to three.

The algorithm in Section 2.2.2 was applied to determine the accuracy of the best sensor
combinations for each monitoring system, and the obtained results are summarized in
Figure 15. In this figure, the horizontal axis represents the number of sensors considered
in different arrangements (ranging from 1 to 8), and the vertical axis shows the absolute
minimum error (Abs (Min Error)) generated by all possible combinations, as defined in
Table 3.

The analysis of Figure 15 illustrates how increasing the number of sensors reduces
the minimum errors significantly. This beneficial effect can be observed in the BMP280
monitoring system, as its minimum absolute error is reduced from 0.17 ◦C for one sensor
to 0.006 ◦C for eight. Figure 15 additionally shows that the most accurate single low-cost
sensors SHT21 (0.06 ◦C) and SHT35 (0.05 ◦C) are more accurate than the most accurate
commercial thermometer (EXTECH EN510 (0.1 ◦C)).
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Nevertheless, to perform a cost comparison with the most accurate commercial ther-
mometers, three sensors were considered in each monitoring system to enable multiple
simultaneous temperature measurements. In this comparison, the two sensors that pre-
sented higher accuracy were BMP280 and SHT35. Their accuracies (0.015 and 0.023 ◦C,
respectively) are significantly better than that of the best commercial thermometer reviewed
(0.1 ◦C).

The cost of the different elements (sensors, microcontroller, breadboard and multi-
plexer) of aforementioned alternatives (SHT35 and BMP280) is detailed in Table 8.
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Table 8. Cost of the chosen monitoring systems with the most accurate sensors of SHT35 and BMP280.

SHT35 BMP280

Components Price (EUR) Nº Price (EUR) Nº

Sensors 5.7 3 3.6 4
Breadboard 3.5 1 3.5 1

Arduino 35.5 1 35.5 1
Multiplexer 1.2 1 1.2 1

Clock Sensor 1.3 1 1.3 1

Total Cost (EUR) 58.6 55.9

The information presented in Table 8 indicates that the total costs of the proposed
monitoring systems are EUR 58.6 and 55.9 for SHT35 and BMP280, respectively. These
costs are lower than those of the commercial alternatives (such as EXTECH EN510 (EUR
180 to 200) and TESTO 435-3 (EUR 750 to 1200) presented in Table 5; they also presented
higher accuracies. As in the case of Table 7, the assembly and programming costs of the
monitoring systems are not included in Table 8. The prices presented in Tables 7 and 8 are
related to purchases carried out in September 2019 from an electronic store in Spain [62].
To better accomplish a comparison of the sensors presented in Table 4 with the proposed
ones (Table 8) in this study, Table 9 is presented. This table contains the cost and technical
characteristics of both series of sensors in terms of range and accuracy. It can be clearly
seen that by adopting the proposed data analysis algorithm (in the Section 2.2.2.) to the
measurements of the established monitoring systems, accuracies of 0.023 and 0.015 have
been achieved for three sensors of each SHT35 and BMP280, respectively. When comparing
prices of the proposed sensor sets with those of the commercial thermometers, a high level
of cost efficiency could be observed. As installation of the sets SHT35 and BMP280 costs
less than EUR 60, however, most of the commercial ones are higher than EUR 170. The
development of accurate and affordable monitoring systems plays an important role in
the quality of monitoring projects, especially for the ones with an extended period. Thus,
simply by increasing the number of measurements (e.g., low-cost sensors) and at the same
time adopting statistical analyses to the obtained data could highly help to carry out an
efficient monitoring campaign.
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Table 9. Comparison of the sensor characteristics.

Name SHT35 BMP280 EXTECH
EN510 TESTO 435-3 FLUKE 971 EL-USB-2

LASCAR

Accuracy (◦C) 0.023 0.015 0.1 0.2 0.5 0.5
Range (◦C) [−40 to 125] [−40 to 85] [−100 to 1300] [−25 to 75] [−20 to 60] [−35 to 80]
Price (EUR) 58.8 55.9 180 to 220 750 to 1000 350 to 500 50 to 100

5. Conclusions

In this article, a methodology to improve monitoring projects has been proposed
through a novel monitoring system. This monitoring system has proven the impor-
tance/advantage of increasing the number of sensors/measurements in monitoring projects.
To validate performance of the proposed monitoring system, indoor temperatures have
been studied experimentally through five developed monitoring systems, and the results
have been compared with the associated statistical references and a traditional commercial
thermometer. The comparison of three sensors sets, namely, 10, 20 and 30 sensors, has
proven that the higher the number of sensors considered, the lower the standard devi-
ation of the measurement, as evidenced by the standard deviation of 10 sensors (0.42)
that decreased to 0.32 and 0.29 for the cases of 20 and 30 sensors, respectively. From
the results, it can also be concluded that sensors SHT35 and BMP280 have the lowest
(0.028 ≤ SDSHT35 ≤ 0.066) and highest (0.336 ≤ SDBMP280 ≤ 0.404) standard deviation
ranges. The proposed algorithm has also indicated that the error information in the sensor
catalogues does not correspond to the actual performance of these devices on site (the
maximum obtained error of the BMP180 sensor (4.68%) was 57% higher than that presented
in its catalogue). Moreover, the accuracy of standard commercial thermometers, such as
the FLUKE 971 and EL-USB-2 LASCAR (0.5 ◦C), has been achieved by averaging eight
sensors of SHT21 (concretely, 0.47 ◦C). The results additionally show that the proposed
monitoring system can save up to 88% on costs compared to the most expensive commercial
thermometers when choosing the best combinations of sensors. Future studies should
address wireless communication protocols and on-site demonstration of sensor kits for
long-term thermal and structural monitoring of buildings.
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