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Abstract: Offshore wind energy is increasingly being realized at deeper ocean depths where jacket
foundations are now the greatest choice for dealing with the hostile environment. The structural
stability of these undersea constructions is critical. This paper states a methodology to detect
and classify damage in a jacket-type support structure for offshore wind turbines. Because of the
existence of unknown external disturbances (wind and waves), standard structural health monitoring
technologies, such as guided waves, cannot be used directly in this application. Therefore, using
vibration-response-only accelerometer measurements, a methodology based on two in-cascade
Siamese convolutional neural networks is proposed. The first Siamese network detects the damage
(discerns whether the structure is healthy or damaged). Then, in case damage is detected, a second
Siamese network determines the damage diagnosis (classifies the type of damage). The main results
and claims of the proposed methodology are the following ones: (i) It is solely dependent on
accelerometer sensor output vibration data, (ii) it detects damage and classifies the type of damage,
(iii) it operates in all wind turbine regions of operation, (iv) it requires less data to train since it is
built on Siamese convolutional neural networks, which can learn from very little data compared
to standard machine/deep learning algorithms, (v) it is validated in a scaled-down experimental
laboratory setup, and (vi) its feasibility is demonstrated as all computed metrics (accuracy, precision,
recall, and F1 score) for the obtained results remain above 96%.

Keywords: offshore fixed wind turbine; jacket structure; damage detection; damage diagnosis;
vibration-based SHM; data-driven; Siamese neural network; convolutional neural network

MSC: 00A69; 68T07

1. Introduction

The world energy system is undoubtedly in transition. The widespread adoption
and use of renewable energy is key to fighting climate change and ensuring a sustainable
future. According to WindEurope [1], the European Commission’s forecasts demonstrate
that renewable-based electricity will be critical to achieving climate neutrality in Europe
by 2050. This will need wind accounting for 50% of the EU’s power mix, with renewables
accounting for 81%. To accomplish this target, offshore wind is a crucial component as it
offers higher and steadier wind speeds and vast possibilities for their placement (easy to
find new locations compared to on-shore).
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The crux of the matter in the advancement of the offshore wind industry is the
reduction in the levelized cost of energy, and a key factor to accomplishing it is through
the optimization of the inspection and maintenance strategies. In particular, structural
health monitoring (SHM) of the support structure has an added value, estimated to be
between 1.93–18.11 M€, see [2]. An effective structural integrity management of offshore
wind farm assets could reduce the number of inspections they need during their lifetime.
SHM has been widely applied to civil infrastructures [3], such as bridges, but there is
a research gap in the area when being applied to hazardous environments, such as the
ones where support structures of offshore wind turbines (WT) are installed. On the one
hand, in this complex environment, the data suffer from noise measurement that must
be removed in deep learning methods. Noise reduction in the data are crucial and can
be accomplished, for example, by a Savitzky–Golay filter and wavelet decomposition,
e.g., [4]. On the other hand, WTs are placed in a marine environment, subject to potential
extreme winds, waves, and currents, which can change rapidly and are initially unknown.
Related to the main challenges of SHM in offshore foundations, as stated in [5]: “A defining
marine environment main characteristic is that structures are always subject to excitations.
Techniques for structural health monitoring, vibration, and data analysis must be capable
of coping with such ambient excitations. As the input is typically not known, a normal
input–output formalism cannot be used”. That is, the standard SHM approach based on
guided waves (where the input excitation is known and imposed to the structure and
then the output vibration is measured), widely used in many areas such as aeronautics [6],
cannot be applied in a straightforward manner to offshore WTs; as the excitation is not
known (wind, waves, currents), neither can be imposed. Thus, an output-only approach
is imperative.

A new paradigm, a vibration-response-only methodology, must be developed that
assumes unknown input excitations and that only the vibration response is measurable by
means of different sensors (accelerometers or fiber Bragg grating, for instance). In recent
years, interest in this type of methodology has grown. For example, in [7], parametric
reduced order models for cracked shells are developed and applied to crack detection
problems, and an output-only scheme is adopted based on transmissibility functions. It is
also noteworthy that the vibration-response-only approach for a jacket structure in [8] where
a comprehensive and critical assessment of the diagnostic performance of five prominent
response-only methods is presented based on incipient, ‘minor’ to ‘mild’, damages on
a lab-scale wind turbine jacket structure. In [9], an SHM method for floating offshore
WTs was tested using operational modal analysis. The results showed that the curvature
mode shape was the most effective modal property to detect damage location and intensity.
Likewise, Ref. [10] contributed an SHM system for real tripod WT supports based on fiber
Bragg grating (FBG) sensors to detect and localize the damage. A meaningful work was
presented in [11], where a time–frequency analysis is proposed based on single mode
function decomposition to overcome the mode-mixing problem. Finally, some publications
using the same test bench as the one used in this study are: [12], where the SHM for
jacket foundations is stated via a signal-to-image conversion of the accelerometer data into
multichannel images and convolutional neural networks, combined with synthetic data
augmentation; Ref. [13] that proposes the fractal dimension as a suitable feature to identify
and classify different types of damage; and Ref. [14], where structural damage classification
is achieved by using principal component analysis and extreme gradient boosting. It is
noteworthy that, in contrast to all aforementioned references, where large datasets with
faulty data are available (or synthetic data need to be generated); in this work, Siamese
neural networks (SNNs) are used, taking advantage of their ability to learn from very little
data. Furthermore, most of the aforementioned references only detect one specific type of
damage but do not face the challenge of detecting and classifying different types of damage,
which is accomplished in this study.

SNNs are made up of two identical artificial neural networks that function in parallel
and compare their outputs at the end, typically using a distance metric. The output of
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the SNNs execution may be thought of as a semantic similarity between the projected
representations of the two input vectors. The ability to learn from very little data has made
SNNs more popular in recent years, being applied in a wide variety of applications. For
example, in [15], SNNs are employed in differential lung diagnoses with CT scans as a key
element of the proposed approach to facilitate the implementation of explainable artificial
intelligence systems. In [16], they are proposed to identify cyber-physical attacks dealing
with the problem of few labeled data and to alleviate the over-fitting issue while enhancing
accuracy. In [17], robust and discriminative gait features for human identification are
automatically extracted based on SNNs and limited training data. However, to the best
of the authors’ knowledge, SNNs have not yet been used in the area of damage detection
and/or diagnosis. In this work, two in cascade Siamese convolutional neural networks are
proposed to detect and classify the faults under study.

This work contributes a vibration-response-only SHM methodology for jacket type
support structures in offshore WTs, based on convolutional SNNs. In contrast to standard
SNNs, which are feedforward neural networks [18], this is proposed to introduce convolu-
tional layers. To avoid the traditional complex feature extraction processes that appear in
machine learning approaches [19], this study advises utilizing deep convolutional SNNs.
Thus, the initial raw accelerometer data will be converted into gray-scale multichannel
images, and then features will be automatically extract by the deep convolutional SNNs.
The methodology then follows the subsequent steps: (i) Vibration data are acquired, (ii)
conversion of the dataset to multichannel gray-scale images, (iii) a first convolutional SNN
discerns between healthy and damaged structural states, and a second convolutional SNN
classifies the samples, detected as damaged by the first network, between crack or unlocked
bolt types of damage. In a nutshell, the contributions of the proposed methodology that
should be highlighted are:

• It is based only on the output vibration data gathered by accelerometer sensors (the
excitation given by the wind is assumed to be unknown). Thus, it is a vibration-
response-only methodology.

• It achieves damage detection and, in case damage is detected, damage type classifica-
tion based on two in-cascade Siamese convolutional neural networks.

• It works under all regions of operation of the wind turbine.
• It needs little data to be trained, as it is based on Siamese convolutional neural networks

that have the ability to learn from very little data in comparison to standard machine
learning approaches.

• It is tested in a downscaled experimental laboratory structure.
• The performance indicators show all results above 96%.

The following is the paper’s outline. The experimental down-scaled setup is intro-
duced in Section 2. Section 3 details the proposed strategy. Finally, findings are discussed
in Section 4, and conclusions are derived in Section 5.

2. Laboratory Setup

The configuration of the experimental test bench is detailed in Figure 1. The process
begins with the white noise signal obtained by the function generator model GW INSTEK
AF-2005. The generated signal is amplified and enters the inertial shaker model Data
Physics GW-IV47, located in the upper side of the scale turbine structure, which simulates
gusts of wind. The vibrations produced by the wind gust simulation are directly related to
the amplitude of white noise, which has factors of 0.5, 1, 2, and 3. Vibration monitoring
is carried out using eight triaxial accelerometers (PCB R Piezotronic, model 356A17),
positioned as shown in Figure 2 (right); there are 24 vibration signals. The sensors are
linked up to six National InstrumentsTM cartridges (model NI 9234) that are attached to
the National Instruments cDAQ-9188 chassis.
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Figure 1. Experimental test bed.

The structure itself is 2.7 m high and divided into three sections (see Figure 2 (left))
shown below.

• The upper section is composed of a bar one meter long and 0.6 m wide; here, the wind
turbine nacelle and the wind speed are simulated using the agitator and different
excitation signals.

• The central section is made up of a tower divided into three parts and bolted together.
• Finally, at the bottom is the jacket section, which is made up of 32 S275JR steel bars,

DC01 LFR steel sheets, and components like screws and nuts. All sections are screwed
in with a torque of 12 Nm.

Figure 2. Components of the scale offshore jacket-type support laboratory model (left); sensor
location on the wind turbine down-scaled model (right).

The approach of the proposed strategy is that it must be able to detect and classify the
types of damage studied, as well as be robust enough to replace a bar with a new healthy
one (avoiding false alarms). The following structural states are presented:

• Bar damaged by a 5 mm crack;
• Bar with unlocked bolt;
• Replica bar.
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Figure 3 shows the different structural states in detail.

(a) (b)

(c)

Figure 3. Different structural states studied: (a) replica bar (Healthy); (b) unlocked bolt; (c) details of
the crack damage. L is the bar length, d = 5 mm is the crack size, and X = L/3 specifies the position of
the crack.

The down-scaled laboratory structure is a simplified but valid model for the practical
study of this work, which aims to be a proof of concept for the detection and diagnosis
of damaged bars in jacket-type platforms. This is demonstrated by the fact that similar
laboratory structures have been previously used in the literature for this aim, such as [8]
and [12].

3. Methodology

The suggested methodology’s stages are all listed below. First, the raw data from the
sensors are collected. Second, an exploratory data analysis process is carried out to validate
the hypothesis of this research. Then, the data are pre-processed to obtain a 24-channel
image dataset. Subsequently, the data are reshaped and divided to be later entered into
the first convolutional SNN. Then, the images classified as damaged are introduced to a
second convolutional SNN to classify the damage between the crack or unlocked bolt types.
Next, subsections comprehensively draw the above-mentioned different stages.

3.1. Data Acquisition

Each experimental test lasts 60 s with an approximate sampling frequency of 275.27 Hz.
As a result, 16,516 measurements were obtained from each of the 24 sensors (24 vibration
signals). Twenty-five experimental tests were carried out for each of the white noise
(WN) amplitudes (0.5, 1, 2, and 3), obtaining a total of 100 experiments. The experiments
performed for each amplitude are detailed below:

• 10 tests with the original bar;
• 5 tests with the replica bar;
• 5 tests with a bar damaged by a 5 mm crack;
• 5 tests with an unlocked bolt damage.

Table 1 presents the number of experiments for each structural state and associated
white noise amplitude factor.

Table 1. Number of experiments for each structural state and white noise (WN) amplitude factor.

Label Structural State 0.5 WN 1 WN 2 WN 3 WN

1 Healthy bar 10 tests 10 tests 10 tests 10 tests
2 Replica bar 5 tests 5 tests 5 tests 5 tests
3 Crack damaged bar 5 tests 5 tests 5 tests 5 tests
4 Unlocked bolt 5 tests 5 tests 5 tests 5 tests
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Table 2 shows the data obtained from each experimental test. The number of times-
tamps (16516) determine the number of rows, and the number of columns reflect the
number of sensors. Take note that the data in the first column is connected to sensor A,
the data in the second column is related to sensor B, and so on and so forth, until all 24
available sensors are covered.

Table 2. Data in each experimental test.

0 1 2 3 4 5 6 7 . . . 23

A1 B1 C1 D1 E1 F1 G1 H1 . . . X1
A2 B2 C2 D2 E2 F2 G2 H2 . . . X2
A3 B3 C3 D3 E3 F3 G3 H3 . . . X3
A4 B4 C4 D4 E4 F4 G4 H4 . . . X4
A5 B5 C5 D5 E5 F5 G5 H5 . . . X5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A16516 B16516 C16516 D16516 E16516 F16516 G16516 H16516 . . . X16516

3.2. Exploratory Data Analysis

Exploratory data analysis is essential to fully comprehend the information available
from the data, and it is very useful when it comes to obtaining insights from the available
data. The role of this process is to explore all the data to answer questions that help validate
the hypotheses raised [20].

In this work, the following concern is stated: How does the distribution of each
sensor signal, associated with a specific state, perform with different white noise amplitude
factors? For this, after the data collection process is implemented, data visualization is
created via a histogram.

As can be observed in Figure 4, there are four plots. On each of these plots, the
statistical distributions for each state (healthy, replica, crack and unlocked bolt) are shown.
On the upper left plot, where the white noise amplitude factor is small (0.5), it can be
noted that the statistical distributions of the default state and the replica state (henceforth
called healthy pair) are similar, as their centers tend to the plot’s right side. Moreover, the
statistical distributions of the crack state and the unlocked bolt state (henceforth called
faulty pair) are similar to each other, but their centers tend to the plot’s left side.

In the upper right of the plot, where the white noise amplitude factor is mid-low (1),
it can be seen that the healthy pair and faulty pair statistical distributions still maintain a
similarity to each other. However, the similarity differs among the pairs, where the centers
of the healthy pair and the faulty pair are close to the right and left of the plot, respectively.
At the lower left plot, where the white noise amplitude factor is mid-high (2), it can be
observed that the pairs of distributions are almost similar to each other—however, with a
slight level of difference. Finally, for the lower right plot, where the white noise amplitude
factor is high (3), it can be noted that the distribution pairs, healthy and faulty, are almost
indistinguishable due to the overlay behavior of each individual distribution. Taking
into account that the different applied white noise amplitude factors represent different
wind-speed regions of operation of the wind turbine, it may be stated that, at greater wind
speeds (region where WTs intended to run the majority of the time), distinguishing whether
a sample belongs to a given structural state becomes more challenging.
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Figure 4. Histograms for each structural state (blue stands for the healthy state, orange for the replica
bar, green represents the crack damage, and pink is related to the unlocked bolt state) and for each
different white noise (WN) amplitude factor.

3.3. Data Preprocessing: Reshape

In this section, a feature engineering technique, data reshaping, is applied to ensure
that each one of the samples to be processed by the SNNs have sufficient information
from each sensor to determine the state of the structure. Initially, each experiment had
24 columns and 16,516 rows, representing the source of the data (sensors) and the data
acquired over time, respectively (see Table 2).

In this study, images (samples) that contain the information of approximately one
second of data are created. Recall that the sample rate is 275.27 Hz. Thus, the first 256 values
from each column (approximately one second of data) were reshaped into 16 × 16 matrices.
Then, the next 256 values from each column were reshaped into 16 × 16 matrices, and so on,
as can be seen in Figures 5 and 6. At the end, the final target images’ shapes were 16 × 16
for each sensor. Note that, in Figures 5 and 6, the values Ai, Bi, · · · , Xi are measurements of
the different sensors that correspond to the same time step—that is, acquired at the same
time instant. In other words, in general, Ai, Bi, . . . , and Xi all correspond to the same time
step i.

0 1 2 3 4 5 6 7 … 23

A1 B1 C1 D1 E1 F1 G1 H1 … X1

A2 B2 C2 D2 E2 F2 G2 H2 … X2

… … … … … … … … … …

A256 B256 C256 D256 E256 F256 G256 H256 … X256

A257 B257 C257 D257 E257 F257 G257 H257 … X257

… … … … … … … … … …

A511 B512 C512 D512 E512 F512 G512 H512 … X512

A512 B513 C513 C513 E513 F513 G513 H513 … X513

… … … … … … … … … …

… … … … … … … … … …

A16516 B16516 C16516 D16516 E16516 F16516 G16516 H16516 … X16516

256 values

256 values

Figure 5. Selection of 256 sequential values for each row.
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Figure 6. Reshape of the 256 values into 16 × 16 size matrices.

The last 132 values from each column were not considered because they could not
complete the 256 values required to build a (16 × 16) matrix. Once the two-dimensional
matrices were obtained, the process was continued with the creation of the 16 × 16 × 24
size images. For each experiment, the first matrices formed by the 256 first values of their
respective columns were time-related. Meaning that each value from a specific position
on each matrix was sampled at the same time as the values occupying the same position
on the rest of the 23 matrices. Basically, the first 24 matrices were grouped together to
maintain this relation provided by this new feature. The same was applied to the second
group of matrices, and so on and so forth, until 64 groups of matrices were obtained from
each experiment (see Figure 7).

X1 X2 X3 … X16

X17 X18 X19 … X32

… … … … …

A241 A242 Z243 … X256

… … … … …

… … … … …

… … … … …

… … … … …
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B17 B18 B19 … B32

… … … … …

A241 A242 B243 … B256
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A17 A18 A19 … A32

… … … … …

A241 A242 A243 … A256

X16129 X16130 X16131 … X16144

X16145 X16146 X16147 … X16160

… … … … …
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… … … … …

… … … … …

… … … … …

… … … … …

B16129 B16130 B16131 … B16144

B16145 B16146 B16147 … B16160

… … … … …

A241 A242 B243 … B16384

A16129 A16130 A16131 … A16144

A16145 A16146 A16147 … A16160
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A16369 A16370 A16371 … A16384

.

.

.

Figure 7. Shape of the images obtained from experiments.
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At the end of the process, 1280 images were obtained from each of the replica bar,
cracked, and unlocked bolt bar experiments, while 2560 images were obtained from the
healthy bar experiments.

3.4. Data Split: Train, Validation, and Test Sets

For the data split process, 80 percent of the data was considered for the training set,
10 percent of the data for the validation set, and the remaining 10 percent was put on hold
to be used only for testing. This applies to both the damage detection and the damage
diagnosis SNN models. For the damage detection SNN, the data were grouped in such a
way that the healthy and the replica structure state images were grouped into the first class
(healthy), while the crack and the unlocked bolt structure state images were grouped into
the second class (faulty). On the other hand, for the damage diagnosis SNN, the data were
grouped into following two classes: crack structural state and unlocked bolt structural state.

Once the images were in their assigned classes, various subsets were created in order
to separate the images, as per the structural state and white noise level. After this process,
the following subsets were obtained per state: white noise level of 0.5, white noise level
of 1, white noise level of 2, and white noise level of 3. Finally, recall that 80, 10, and the
remaining 10 percent of each one of the obtained subsets are used in the training, validation,
and test set, respectively. Thus, a data balance is ensured per structural state and white
noise level, as can be seen in Tables 3 and 4.

Table 3. Number of images used in the train, validation, and test sets per white noise (WN) amplitude
factor and per studied class for damage detection.

0.5 WN 1 WN 2 WN 3 WN

Train
Healthy & Replica 768 768 768 768

Crack & Unlocked Bolt 512 512 512 512

Validation
Healthy & Replica 96 96 96 96

Crack & Unlocked Bolt 64 64 64 64

Test
Healthy & Replica 96 96 96 96

Crack & Unlocked Bolt 64 64 64 64

Table 4. Number of images used in the train, validation, and test sets per white noise (WN) amplitude
factor and per studied class for damage diagnosis.

0.5 WN 1 WN 2 WN 3 WN

Train
Crack 256 256 256 256

Unlocked Bolt 256 256 256 256

Validation
Crack 32 32 32 32

Unlocked Bolt 32 32 32 32

Test
Crack 32 32 32 32

Unlocked Bolt 32 32 32 32

3.5. Siamese Neural Network (SNN)

The SNN algorithm was developed by Bromley et al. [21] in 1994 to verify signatures
written on a touch-sensitive pad. The SNNs consist of two identical neural network
architectures capable of learning and extracting the hidden representation of their respective
inputs [18].

In this work, the two neural networks are both convolutional neural networks [22] and
employ back-propagation during training [23]. The basic idea of this methodology is that
both networks work in parallel and finally compare their outputs. The comparison function
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is the Euclidean distance. The output generated by an SNN execution can be considered
the semantic similarity between the projected representation of the two input matrices [24].

Two models were deployed for the damage detection and diagnosis problems to
compare their performance. The first model (model 1) consisted of an SNN with a feature
extraction stage of one convolutional layer (see Figure 8), while the second model (model 2)
implemented two convolutional layers in its feature extraction stage (see Figure 9). The
rest of this section details each step in the methodology:

Sigmoid

Input Layer
Conv2D Flatten

Dense Layer

Input 1

Input 2

Euclidean distance

Image Pair Creation 
& Input Stage

Feature 
Extraction Stage Semantic Similarity & Output Stage

𝒙𝒙𝒊𝒊

𝒙𝒙𝒋𝒋

Figure 8. One convolutional layer SNN’s architecture.

Sigmoid

Input Layer
Conv2D Flatten

MaxPooling2D Dense Layer

Input 1

Input 2

Euclidean distance

Image Pair Creation 
& Input Stage

Feature 
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Figure 9. Two convolutional layer SNN’s architecture.

1. Image pair creation Stage: The SNN has a pair of images input, where this pair can
be positive or negative. A positive pair consists of two images that belong to the
same class, while a negative pair consists of two images from different classes [25].
For the training, validation, and test sets, positive and negative pairs were created.
For explanation, the two classes are noted as class A and class B. First, an empty
array for the pair of images is set as well as an empty array of labels, which help to
indicate by index if a pair of images (from the pair of images array) is positive (1) or
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negative (0). Next, an iterative process is performed through the set of images that
belong to class A. For each image, a random image is selected from the same class.
Next, a positive pair is created by the image that is being iterated, and the random
image selected from the same class (this pair is added to the image pair array). Then,
a label with the value of one is added to the labels array previously created, so the
image pair added, and the label are related by position through both of the arrays.
This process can be observed in Figure 10.
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Figure 10. Positive pairs’ creation process.

For the creation of negative pairs, a similar process is carried out, but the random
image is chosen from class B. Then, a label with the value of 0 is added to the labels
array previously created in order to maintain the index relation between the pair and
the label. This iterative process is carried out also for class B (the negative image
comes from class A and positive image comes from class B), so it can be ensured that
all the images are used. This process can be observed in Figure 11.
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If the sets of images are not of the same length, then the difference is resolved by
iterating a quantity of images equal to this difference on the lower length set. At the
end, a set X is composed by N sample pairs

(
xi, xj

)
, which are two images from

the same or different classes. Remember, for both creations’ processes (positive and
negative), both states’ groups in each case are used. For example, for the damage
detection stage, first, the healthy and replica images are used as class A and positive
pairs are created. Then, the other group class (crack and unlocked bolt) is used as class
A, and the other positive pairs are created. The same process is used for the negative
pairs creation and the damage diagnosis stage. Tables 5 and 6 detail the number of
image pairs used for training, validation, and test datasets.

Table 5. Number of pairs of images used for training, validation, and test in the damage detection
model.

Training Validation Testing

Positive pair images 6144 768 768
Negative pair images 6144 768 768

Table 6. Number of pairs of images used for training, validation, and test in the damage diagnosis
model.

Training Validation Testing

Positive pair images 2048 256 256
Negative pair images 2048 256 256

2. Input Stage: In the proposed methodology, two two-dimensional CNNs are used
to extract hidden representation (spatial feature vectors), so the input is the matrix
mentioned in Section 3.3, in the shape of 16 × 16 × 24.

3. Feature extraction: A Siamese network architecture is employed at this stage to
extract features from the input sample pairs. The Siamese network is made up of two
identical CNNs with the same network topology and one fully connected layer at the
end. Tables 7 and 8 indicate the different feature extraction layers, their configurations,
and their dimensions for the two studied models noted as model 1 (shallow NN with
only one CNN layer) and model 2 (NN with two CNN layers).

Table 7. One convolutional layer SNN (model 1).

Layer Kernel Size Stride Padding Filters Output Size

Convolutional 2D 3 1 1 64 16 × 16 × 64
Flatten - - - - 1 × 16,384

Fully connected 4960 - - 1 1 × 4960

Table 8. Two convolutional layers SNN (model 2).

Layer Kernel Size Stride Padding Filters Output Size

Convolutional 2D 3 1 1 64 16 × 16 × 64
MaxPooling 2D - - - - 8 × 8 × 64

Convolutional 2D 3 1 1 128 8 × 8 × 128
Flatten - - - - 1 × 8192

Fully connected 4960 - - 1 1 × 4960

4. Similarity measurement: The output vectors obtained from both fully connected lay-
ers are introduced to a new function layer to compute the similarity (distance) between
them. This process can be carried out by metrics such as Euclidean distance, cosine
distance, or Manhattan distance [26] because it highlights the geometric differences
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between two elements. In this work, the Euclidean distance is used as the similarity
matrix. The similarity between the input vectors is calculated by the formula

Sk
i,j =

√
F
(
xk

i
)
− F

(
xk

j

)
, (1)

where F(x) represents the feature vector obtained by one of the CNNs, x refers to the
input, and k denotes the k-th sample for a pair

(
xi, xj

)
.

5. Output stage: After the similarity Sk
i,j is calculated, this value enters a last fully

connected layer to convert it to a similarity scalar value Ok
i,j. Because the idea is

to calculate a similarity probability between 0 and 1, a sigmoid function is used as
activation function

Pk
i,j = σ

(
Ok

i,j

)
, (2)

where σ is the sigmoid function [27]

σ(x) =
1

1 + e−x . (3)

Note that Pk
i,j is a value between 0 and 1. The closer this value is to 1, the greater the

probability that the two matrices are of the same class. Likewise, the closer this value
is to zero, the lower the probability that the two matrices are of the same class.

6. Hyperparameters: The SNNs are configured with the following hyperparameters’
selection. The Adams optimizer with learning rate 0.05, β1 = 0.9, β2 = 0.999, ε = 10−7

is used. The used cost function is the binary cross entropy, and the batch size is set
to 32. Hyperparameter tuning did not change the obtained results much, except for
the value of the learning rate, where lower values improved the accuracy.

4. Results

To recognize whether a model is overfitting, the loss curves of the training set and
the validation set are first presented. Overfitting implies that the model is too closely
aligned with a limited set of data points (training data) [28], thus reducing its predictive
power. In Figure 12 (left), it can be observed that, for the damage detection stage, model 1
is overfitting (from epoch 2, the validation loss starts to increase while the training loss
continues to decrease). On the other hand, Figure 12 (right) shows that model 2 has an
appropriate fitting.

Figure 12. Loss curves for damage detection models 1 (left) and 2 (right).

The same performance is observed in the damage diagnosis stage. As can be seen in
Figure 13, model 1 (left) is overfitting, while model 2 (right) is able to adapt properly to
previously unseen data.
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Figure 13. Loss curves for damage diagnosis models 1 (left) and 2 (right).

Additionally, to measure the performance of detection and diagnostic models, the
results of a confusion matrix can be used to determine the accuracy, precision, recall, and
F1 score of the predictions made on the test data set [29]. As can be seen in Figure 14,
a confusion matrix is an array that shows the predictions of the true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) made by a classification
model [30]. Note that, in this work, the output of the model is a probability of similarity
between two images. In other words, the algorithm states whether the two samples are
similar (labeled as 0) or not (labeled as 1). For the binary problem at hand, a TP occurs when
both samples in the pair (images) are similar (positive pair), and the algorithm predicts
accordingly. A TN occurs when both images in the pair are not similar (negative pair)
and the algorithm predicts correctly. An FP results when the samples are similar, but the
algorithm predicts that they are not similar. Finally, an FN occurs when both samples are
not similar, but the algorithm predicts the opposite. The aforementioned metrics can be
obtained from Equations (4)–(7).
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Figure 14. Confusion matrix.

• Accuracy: proportion of true results among the total number of results:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4)

• Precision: positive predictive value:

Precision =
TP

TP + FP
. (5)

• Recall: proportion of true positive predictions made out of all positive predictions that
could have been made:

Recall =
TP

TP + FN
. (6)
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• F1-score: harmonic mean of precision and recall:

F1 = 2· Precision·Recall
Precision + Recall

. (7)

The confusion matrices obtained from the implementation of the two models, model 1
and model 2, in both stages (damage detection and damage diagnosis) are shown in
Figures 15 and 16. For the first model, the failed predictions consist of 18 FPs and 3 FNs for
the detection stage, and 13 FPs and 3 FNs for the diagnosis stage. As it can be observed,
adding an extra convolutional layer to the SNN feature extraction stage can improve the
performance of the model in both stages, since the confusion matrices show neither FPs nor
FNs. Figures 17 and 18 demonstrate the same confusion matrices, but using a 70%, 15%,
and 15% data split (for the training, validation, and testing sets, respectively). The results
are shown to be comparable to those obtained with the 80%, 10%, and 10% data split.
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Figure 15. Confusion matrices for damage detection models 1 (left) and 2 (right).
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Figure 16. Confusion matrices for damage diagnosis models 1 (left) and 2 (right).
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Figure 17. Confusion matrices for damage detection models 1 (left) and 2 (right) when using a data
split of 70% training, 15% validation, and 15% for testing.
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Figure 18. Confusion matrices for damage diagnosis models 1 (left) and 2 (right) when using a data
split of 70% training, 15% validation, and 15% for testing.

A follow-up was conducted on the performance of model 1, according to the different
levels of WN amplitude factors (0.5, 1, 2, 3) for the initial 80%, 10%, and 10% data split. The
purpose was to find how many failed predictions are made for each of the different WN
amplitudes. Figure 19 (left) shows the results for the damage detection stage. Specifically,
it can be seen that, for the case of WN with amplitude factor 0.5, there are no wrong
predictions. Similarly, for the WN amplitude factor 1, there is only one incorrect prediction
that is at least identified as belonging to amplitude 1. In the case of WN amplitude factor
2, there are seven incorrect predictions that are assigned as similar to amplitude factor
0.5. Finally, for WN with factor 3, there are 10 incorrect predictions that map to WN with
factor 0.5, and two incorrect predictions where the model assimilates them to samples
in WN factor 1. Figure 19 (right) shows similar results but for the damage diagnosis
stage. These results can be summarized in the following manner. When an image comes
from a WT operating at higher wind speeds (simulated in the experimental tower with a
higher white noise amplitude factor), the model has far more failed predictions, which is
in good agreement with the insight obtained in the exploratory data analysis performed
in Section 3.2.

Figure 19. Damage detection (left) and damage diagnosis (right) number of failed predictions per
WN combination for model 1. Rows are related to the true amplitude factor and columns to the
predicted amplitude factor.

In Tables 9–12, a deeper exploration of the results is shown to gain an insight on how
many FP or FN outputs are obtained, according to the structural state, among the images
by model 1. It is shown that the predictions given by model 1 (one convolutional layer) for
both cases, damage detection and damage diagnosis, output a higher number of FNs than
FPs. Furthermore, model 2 (two convolutional layers) outperformed model 1 with no false
predictions.

Table 9. False positives for damage detection (model 1).

Class 1 Class 2 False Positives

healthy unlocked bolt 1
healthy crack 2
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Table 10. False negatives for damage detection (model 1).

Class 1 Class 2 False Negatives

healthy replica 2
healthy healthy 4
crack unlocked bolt 4
crack crack 5

unlocked bolt unlocked bolt 3

Table 11. False positives for damage diagnosis (model 1).

Class 1 Class 2 False Positives

crack unlocked bolt 3

Table 12. False negatives for damage diagnosis (model 1).

Class 1 Class 2 False Negatives

crack crack 10
unlocked bolt loose bolt 3

Eventually, the accuracy, precision, recall, and F1 score for both stages and models
are detailed in Tables 13 and 14. The results show that the damage detection and damage
diagnosis results are promising, as they achieved great performance on different structural
state samples.

Table 13. Performance of damage detection models.

Models Accuracy Precision Recall F1 Score

1 conv 98.63 97.66 99.60 98.62
2 conv 100.00 100.00 100.00 100.00

Table 14. Performance of damage diagnosis models.

Models Accuracy Precision Recall F1 Score

1 conv 96.88 94.92 98.78 96.81
2 conv 100.00 100.00 100.00 100.00

Finally, to thoroughly test the functional characteristics of the algorithm, a comparison
is made with four other methodologies given in [31], [32], [13], and [12] that use the same
laboratory structure. The first methodology, given in [31], is based on principal component
analysis and support vector machines. The second methodology, given in [32] (page 67),
is based on the well-known damage indicators: covariance matrix estimate and scalar
covariance. The third methodology, given in [13], is based on machine learning methods
and the fractal dimension feature. The last methodology, given in [12], utilizes a signal-to-
image conversion of the accelerometer data into multichannel images and convolutional
neural networks (CNN), combined with synthetic data augmentation. First, when using the
first approach stated in [31], the crack damaged bar has a recall of 96.08% and is therefore
inferior to the one obtained with the strategy proposed in this work, which reached a value
of 100%. Note that the crack damage is the most challenging. In fact, the second approach
stated in [32] (page 82) was unable to detect this type of incipient damage when using scalar
covariance or mean residual damage indicators. Furthermore, the first approach obtains a
recall of 99.02% for the unlocked bold damage, while, with the proposed strategy, a slightly
higher value of 100% is obtained. Note that the unlocked bold damage is not studied
in the second approach. The third approach [13] requires hand-made feature extraction,
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and the performance metrics obtained are inferior to those obtained in the present study.
Furthermore, the machine learning methods proposed in [13] need a large data set to
achieve good performance, while Siamese neural networks have the ability to learn from
very little data, which is crucial in the specific application faced in this work. Finally, the
fourth approach [12] requires a deep CNN as well as a data augmentation of 25,200% in
the total number of samples to achieve 99% accuracy, while, with the proposed strategy,
a better accuracy is obtained using much fewer data and a much simpler neural network
architecture.

5. Conclusions

In this work, the proposed test bench consists of a WN generator, connected to an am-
plifier that simulates different wind speed regions of the operation of the WT. Subsequently,
triaxial accelerometers are connected to obtain the vibration signals. Different simulations
were carried out, taking into account four types of structural states, such as the healthy bar,
the replica bar, the crack damaged bar, and the unlocked bolt. It was concluded that, when
wind speeds are higher (regions where turbines operate or are desired to operate most of the
time), it is more challenging to distinguish when a sample belongs to a specific state. The
main contribution of this work is informing the use of SNNs for the damage detection and
damage diagnosis stages. Increasing the number of convolutional layers to extract features
from the data increased the performance of the model. The conceived SHM methodology
with two convolutional layers showed exceptional performance, demonstrating results
of 100% for all considered metrics. These findings indicate that SNNs are promising for
developing SHM techniques for offshore platforms.

Note that this study is a proof-of-concept contribution, as the data were obtained
in a controlled laboratory environment. Therefore, as future work, it is proposed to
incorporate other environmental conditions, such as the wave excitation, by placing the
experiment in a water tank facility to simulate the effect of regular and irregular waves.
Finally, it is important to note that environmental and operational conditions (EOC) play
an important role when dealing with long-term monitoring because they can complicate
damage detection. Large variations in EOCs make EOC monitoring almost as important
as structural monitoring itself. Therefore, its influence should be compensated. Several
methods for EOC compensation for WTs have been developed to make SHM possible. For
example, in [33], affinity propagation clustering is used to delineate data into WT groups of
similar EOC. In [34], covariance-driven stochastic subspace identification is used. Finally,
in [35,36], fuzzy classification techniques are used for EOC compensation. However, as
noted previously, this work is an experimental proof of concept, and EOC compensation is
left as future work using pattern recognition techniques in a more realistic environment.
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Abbreviations
The following abbreviations are used in this manuscript:

SHM Structural Health Monitoring
SNN Siamese Neural Network
WN White Noise
TP True Positive
TN True Negative
FP False Positive
FN False Negative
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