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Abstract
Muscle torque generators (MTGs) can be used as an alternative of detailed musculoskeletal
models in computer simulations of human movement, and have been used by researchers to
generate accurate dynamic simulations while mantaining a reasonable degree of biofidelity.

The main goal of this thesis is to improve the reliability of two torque-driven models (i.e., at
skeletal level) of different complexitywhenmuscle torque generators are added to them in order
to perform a concrete motion. For this purpose, we defined two problems based on different
optimal control techniques. The first problem predicts the motion of a simple pendulummodel
and the second one tracks experimental data from a humanwalkingmotion in a 2DHAT (head,
arms and trunk)model. In both problems, two versions of themodels are considered: a torque-
driven version and a version in which muscle torque generators are employed. Both torque-
drivenmodels are obtained from theOpenSim repository and the implementation of theMTGs
has been programmed withMATLAB.

For each problem, different studies were conducted to reach the stated goal. In the predictive
problem, several simulations were carried out based on different initial and final conditions.
Subsequently, a qualitative evaluation between both models showed that muscle torque gener-
ators were slightly advantageous than its torque-driven version when the studied simulation
encompassed a shorter range of motion. Conversely, in the tracking problem, a more complex
study was performed, based on different optimal control formulations. A final quantitative as-
sessment showed that the tracking in torques was adequate and quite similar between models,
but when tracking experimental coordinates the torque-driven version provided better results.
Despite the fact the tracking with MTGs was correct, a more realistic behaviour than its torque-
driven version was expected.

This project can be considered a first research work in muscle torque generators modelling in
the Biomechanical Engineering Lab (BIOMEC) at UPC. Thus, further studies would need to
be conducted in order to obtain a more realiable modelling. Parameters such as the maximum
isometric torque or the characteristic musculotendon curves involved in the MTGs could be
more in depth investigated to gain better insights.
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1 Introduction
1.1 Motivation
The human musculoskeletal system, responsible for the locomotion, is composed by about 200
bones and 300 muscles. The development of models of such a complex system is a non-trivial
task that involves the traditional compromise between straightforwardness and accuracy. On
the one hand, the models should be complex enough to deliver accurate estimations of the phe-
nomena studied. On the other hand, the models should be simple enough to keep the problem
tractable and the results and analysis straightforward [1].

Using detailed musculoskeletal models in computer simulations of human movement can pro-
vide insights into individual muscle and joint loading; however, these muscle models increase
problem dimensionality and require difficult-to-fit parameters [15]. This prompts the ques-
tion regarding what methods are available to maintain accuracy within a given musculoskele-
tal model while limiting the required computational demand. To mitigate these effects while
maintaining a reasonable degree of biofidelity, we employ muscle torque generators (MTGs).

The implementation ofMTGs in complexmodels can be tedious at first. However, if themodel is
simplified from several degrees of freedom to only one, then the problem formulation becomes
easier to understand and also an extension of the problem to a more complex version can be
easily done. Therefore, in this thesis, two problems of different complexity have been evaluated.
In both cases, a torque-driven model and a model which includes MTGs have been studied.

1.2 Project objectives
Themain goal of this thesis is to improve the reliability of two torque-drivenmodels of different
complexity when muscle torque generators are added to them in order to perform a concrete
motion. The first study is based on a predictive optimal control problem that uses a simple pen-
dulum as a model. Whereas the second study is based on an optimal control tracking problem,
in which the ability of the model to reliably reproduce a gait cycle is evaluated.

The specific objectives that involve the main goal of this project are:

• Research the state of the art in the modelling of muscle torque generators for human mo-
tion simulations.

• Implement muscle torque generators in a simple pendulum model withMATLAB.

• Compare the predictive behaviour between the torque-driven model and the MTG-based
model through a qualitative evaluation.

• Study different optimal control formulations for human gait tracking whenmuscle torque
generators are taken into account in the model.

• Implement muscle torque generators in a 2D HAT model withMATLAB.

• Compare the tracking behaviour between the torque-driven model and the MTG-based
model when a quantitative evaluation is conducted.
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2 Theoretical background
This section gives theoretical insight into the basis of human walking and its modelling, as well
as some key concepts used throughout the project.

2.1 Biomechanics of human motion
2.1.1 Anatomical planes
In order to describe the orientation and location of human body structures it is convenient to de-
fine some reference planes (see Figure 1). They are called anatomical planes and they separate
the body into different sections. Those are:

• The sagittal plane. It splits the human body up into left and right sections.

• The coronal plane. It divides the body into posterior and anterior portions.

• The transverse plane. It separates the body into an upper and a lower part.

Figure 1: The anatomical planes from the human body. Extracted from [17].

Depending on the type of motion that is analyzed, some planes contain more relevant informa-
tion than others. Even so, many textbook authors [35] and researchers emphasize in the use
of the sagittal plane in gait analysis and ignore the other two. However, when a motion from a
pathological subject is analyzed, other planes (e.g. the coronal plane in the case of bilateral hip
pain) would yield relevant information as well [5].

In this project, a 2D gait model will be used. Only motion in the sagittal plane, which is where
most of the movement takes place, will be considered.
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2.1.2 Gait cycle
Human walking can be described as a cyclic pattern of body movements which moves forward
an individual’s position (see Figure 2). Therefore, studying the walking process can be simpli-
fied by investigating one walking cycle [2].

Each of these cycles is characterized by a sequence of single and double supports. When one
foot is in contact with the ground while the other advances to another support contact, we refer
to a single support. Conversely, if both feet are in contact with the ground while the weight is
transferred from one limb to the other, then we refer to double support.

Figure 2: Human walking gait cycle of the right leg. Extracted from [26].

For a single limb, a gait cycle is composed of two phases depending on the period of time when
the foot is in contact with the ground. Therefore, we contemplate the stance phase, which is the
period of time when the foot is in contact with the ground, and the swing phase in which the
same foot is no longer in contact with the ground surface.

Note that Figure 2 shows the human gait cycle from a healthy subject. In this case, the stance
phase accounts for 60% of the cycle, whereas the other part corresponds to the swing phase
[26].

Another commonway to describe the human gait is by the stride and step terms. The step length
is the measured distance from the point of foot contact to the point of contralateral foot contact.
Hence, two steps make one stride, and thus, the linear distance covered by one gait cycle.

Figure 3: Stride describing the gait cycle. Extracted from [26].



Development of MTGs for OCT of human walking Page 9

2.2 Multibody system modelling
The human’s neuromusculoskeletal system can be viewed as a servo-controlled multibody sys-
tem in which bones are modelled as rigid bodies connected by joints, actuated by muscles and
controlled by the central nervous system (CNS) [11]. These kinds of models are crucial for
clinical improvements [12] as well as for the analysis of human motion.

2.2.1 Skeletal modelling
The skeleton is usuallymodelled as an open kinematic chainwhich includes rigid segments and
joints that link each rigid segment to the next one. These rigid segments represent the bones and
they gather physical information such as their actual mass, length, tensor of inertia and center
of mass. Those physical variables are called body segment parameters (BSP). The anatomical
joints are usually considered as ideal joints and they restrict the relative movement between the
bones involved in each joint [1]. Figure 4 shows an example of a biomechanical model which
consists of 12 anatomical segments and their corresponding revolute joints which define a 14
degree-of-freedom model.

Figure 4: 2D biomechanical model used in a running gait analysis. Extracted from [25].

Depending on the purpose of the study, models can be three- or two-dimensional (as shown
in Figure 4), and can represent the whole body or only a part of it [21]. For instance, when a
set of bones barely have a relative movement between them, they can be assembled as a single
body. That leads to an easier way to tackle complex formulations and thus, can be simplified. A
common example in human walking is the so-called HAT model, where head, arms and trunk
are modelled as a single body, whereas legs are more precisely modelled. An example of a HAT
model is represented in [10].

In this thesis, severalmodels of different complexitywill be used in order to determine the equa-
tions of motion needed in the dynamic analysis. For this purpose, some analytical expressions
such as the Newton-Euler equations or Lagrange equations can be applied. The Newton-Euler
method relates the motion of each rigid body with the sum of external forces and torques that
act on each element. An example of this formulation can be found in [1]. While the above-
mentioned method obtains the motion equations from forces and torques, the Lagrange for-
mulation allows to systematically obtain them from the kinetic and potential energies of the
multibody system and the involved generalized forces. An example of this second methodol-
ogy is shown in [30].
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2.2.2 Individual muscle modelling
Themechanical behaviour of muscle tissue can be described bymeans of passive elements such
as springs and damping elements [28]. Commonly, these elements are represented by massless
actuators in the model; and their actual mass is considered to be rigidly attached to bones [32].
These elements, combined properly, allow to understand the response of muscle tissue under
compressive and tensile loads [28].

In the literature [36] it is possible to find different models that combine the properties of those
mechanical components. For instance, the contraction of the muscle-tendon dynamics can be
modelled as a pair of muscle torque generators (as it is described in Section 2.2.3), but also as
the so-called Hill-type muscle model [14], which is described in this section. See Figure 5 for
an illustration of the muscle model.

Figure 5: The Hill-type muscle model. Adapted from [9] and [37].

The model consists of four overall components: the contractile element (CE), the serial elas-
tic element (SEE), the parallel elastic element (PEE), and the tendon (T). CE represents the
active, i.e., contractile, properties of the muscle, whereas SEE, PEE, and the tendon represent
passive nonlinear stiffness. SEE represents the elasticity of the actin-miosyn crossbridges, PEE
represents the passive elastic properties of themuscle fibers, and the tendon captures the elastic
properties of the tendon and the aponeurosis combined [37]. The contribution of these elements
to overall tension can be represented graphically via four characteristic curves [9]:

• The force active length curve fa. It represents the active tension generated by theCE of the
sarcomere, that is, the interaction between myofibrils. The peak tension is reached when
sarcomeres are at their resting length ℓopt, as this provides the optimum alignment be-
tween the actin and myosin filaments. The function presents a decline in force-generating
capacity with shortening and lengthening. That is due to the fact that myofibrils overlap
each other when shortening or because they are out of range from each other during the
sarcomere lengthening. While in the first case, there is no further potential for myofibrils
to contract, the lattermeans fewermyosin heads bindingwith actin filaments [27]. In both
extreme cases, that leads to no force generation.

• The passive force length curve fPE . It shows the passive tension generated by the PEE
and therefore it does not contribute to the generation of tension with shortened lengths.
As sarcomere lengths increase, the passive tissues reach their full length and start to pro-
vide resistance to further increases in length [27]. The length where force starts to rise is
called slack length ℓ0 and it is usually the same as ℓopt.



Development of MTGs for OCT of human walking Page 11

• The force velocity curve fv. It describes the fact that the force-generating capacity of
the muscle also depends on the contraction velocity and on whether it is an eccentric or
concentric contraction. The force-generating capacity of the muscle increases for eccentric
contraction, whereas it declines for concentric contraction [37].

• The tendon force length curve fT . The forces generated by CE and PEE are transferred to
the bone through the tendon. The tendon is nonlinearly elastic and the force-strain rela-
tionship of the tendon includes a slack region, where no force is generated, and nonlinear
elasticity when strained that gets gradually more linear at higher strain [37].

Despite the fact that most Hill-type muscle models share the same mathematical formulation,
these characteristic curves may differ between models by changing some of the parameters that
define them. Figure 6 illustrates the characteristic curves for the Thelen2003 [33] and the Mil-
lard2012 [7] models together so that the differences between these curves can be clearly seen.

Figure 6: The characteristic musculotendon curves. Extracted from [9].

2.2.3 Muscle torque generators
Anymovement in the body is the result of the coordination of action between agonist and antag-
onist muscles. That means that when a muscle contracts to produce a movement (agonist), the
other is relaxed to allow themotion to occur (antagonist). For instance, when a bicep curl is per-
formed (Figure 7a), the biceps will be the agonist as it contracts and raises the forearm, whereas
the triceps will be the antagonist since it relaxes. Figure 7b shows the opposite situation.

Figure 7: Biceps and triceps as an example of antagonistic pairs. Adapted from [3].
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Bearing in mind the non-trivial behaviour of the muscle contraction and the complex geometry
which imply when modelling, one method that can simplify the problem while maintaining a
reasonable degree of biofidelity is the use of muscle torque generators (MTGs).

Functionally, an MTG provides a joint torque that mimics the behaviour of muscles crossing a
given joint [15]. That means that a pair of torques acts at each joint of the model in order to
copy the behaviour of agonist and antagonist muscles.

Besides, MTGs also allowmultibody system reduction by approximating the characteristicmus-
culotendon curves directly at the joint level. As an example, Figure 8 illustrates a schematic of
the knee, ankle, and hip joint within Norman-Gerum’s sit-to-stand model [23], actuated by
Hill-type muscles (Figure 8a) and actuated by muscle torque generators (Figure 8b):

Figure 8: Model actuated by (a) Hill-type muscles and (b) MTGs. Extracted from [15].

In practice, MTG’s models can be employed for different purposes. For instance, in [15], three
specific cases of MTG-driven multibody sports simulations have been carried out. Other exam-
ples are [19], where a set of MTGs have been applied in a wearable robotic system developed
to prevent injury to the low back, or in [31], where the MTGs have been implemented in the
prediction of a pathological gait.

In this thesis we employ muscle torque generators in models of different complexity in order
to improve the reliability of their respective model at skeletal level when performing a concrete
motion.
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2.2.4 Foot-ground contact modelling
A foot-ground contact model determines the interaction between body and ground. Regarding
the modelling of foot-ground contact interaction during walking, there are mainly two options:
using kinematic constraints (hard contact) or a constitutive contact model (compliant contact)
[20].

The first approach defines the interaction between the foot and the ground using ideal kinematic
constraints, which change at each phase of the gait cycle [20]. Therefore, foot can bemodelled as
a rigid body and hence, numerical stiffness of the model does not change from swing to stance
phase [6] (see Figure 9a).

Conversely, the second method establishes a physical relationship between the developed con-
tact forces (normal and tangential) and the relative foot-ground displacements and velocities
[20]. Viscoelastic models such as in [18], or volumetric contact models like in [4] (see Figure
9b), are adequate approaches for this method.

Figure 9: Foot-ground contact modelled as (a) a kinematic constraint between an ellipse and a
plane (extracted from [18]) and (b) a constitutive volumetric contact model.

In this thesis, no contactmodel has been used since the gait problem studied is based on tracking
experimental data and therefore the experimental forces are imposed as the ground reaction
forces (GRF) of the model.

2.3 Dynamics Analysis
Once the model is obtained, a dynamic analysis is carried out to better understand how the
motion of study is performed. For example, a dynamic analysis can be useful to determine
muscle forces, to analyse the way the central nervous system controls a motion, or to compare
a healthy motion against an impaired one [21].

Depending on the purpose of the study, two kinds of dynamic analyses can be carried out: the
inverse dynamic analysis (IDA) or the forward dynamic analysis (FDA).

2.3.1 Inverse Dynamic Analysis
Inverse dynamic analysis consists in obtaining the net joint torques involved during the motion
of study. These torques can be obtained from kinematic data, ground reaction forces (GRF) and
the physical characteristics from the model (the body segment parameters).
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Mathematically speaking, this approach requires the system’s coordinates and its derivatives.
Therefore, by evaluating them in the motion equations for a time range, joint forces and torques
can be computed.

Reflective markers and force plates are used to obtain motion data and GRF respectively. Since
these devices do not provide directly the coordinates nor their time derivatives, a preprocess
called inverse kinematics (IK) must be applied (see Figure 10). This consists in solving an
optimization problem where the difference between captured marker trajectories and model
marker trajectories is minimized.

Figure 10: Diagram of an inverse dynamic analysis.

2.3.2 Forward Dynamic Analysis
Forward dynamic analysis describes the motion of the system when some particular forces or
torques are applied. The input data in this approach are the muscle forces or the resultant joint
torques. Body segment parameters and GRF are considered as inputs as well (see Figure 11).
It is also possible to find muscle excitations as input data. In that case, the simulation is called
muscle-driven simulation.

Unlike the IDA, in FDA the differential equations of motion shall be integrated with respect to
time in order to find the evolution of joint coordinates. This can sometimes lead to integration
errors and thus, combinedwith the unstable character of humanwalking, conduct to non-stable
solutions. However, these errors can be compensated with the use of control methodologies.

Figure 11: Diagram of a forward dynamic analysis.

In this thesis, an inverse dynamic analysis is carried out within an optimal control formulation.
This formulation is explained in the following section 2.4.
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2.4 Optimal control prediction
Techniques defined in the previous section 2.3 can be used to predict novel human motions (a
priori unknown) for which no experimental data are available at first. During the last years,
there has been a growing interest in motion prediction due to its applications. Some of them
are: anticipating the result of a surgery, designing assistive devices or analysing the dynamic
simulation of a specific motion [24].

There are several ways to predict humanmotion. However, themost accepted approach consists
of formulating an optimisation problem. The main idea is to find which system configuration
provides an optimal solution to a problem given some constraints and a cost function to be opti-
mized. Therefore, any optimal control problem is usually defined by the following parameters:

• State variables. They are used to describe the current state (position, velocity) of the
system. Examples of state variables in gait simulations are: joint coordinates, velocities,
muscle length...

• Control variables. These variables manipulate the state variables in order to satisfy some
desired conditions. Examples of control variables in gait simulations are: joint accelera-
tions, muscle activation/excitation, muscle torques...

• Dynamic constraints. They are a set of equations governed in the states and have to be
satisfied during the optimization problem.

• Path constraints. They are inequalities that must be satisfied during an entire time in-
terval. These restrictions can either be bounds on states and controls, or algebraic path
constraints.

• Boundary conditions on state and time. Some state and time situations are imposed at
the beginning and at the end of the time interval.

• Cost function. It is the mathematical expression that wants to be optimized, which is a
function of state and control variables.

Different cost functions have been used to predict gait. Some examples areminimizingweighted
normalized torques [29] or joint accelerations as well as minimizing muscle activations [13].

In this thesis, we employ optimal control within an inverse dynamic analysis in the problem for-
mulation. The two problems studied in this project (see sections 3.1.2 and 3.2.2) have a similar
structure in terms of the problem formulation. However, the first one predicts a novel motion
and the other tracks a motion from experimental data. The main difference in these two kinds
of formulation lies in the cost function.
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3 Methods
This section introduces themodels used throughout the project aswell as how themuscle torque
generators have been implemented in each of them. The implementation of MTGs in complex
models can be tedious at first. If the model is simplified from several degrees of freedom to
only one, then the problem formulation becomes easier to understand. Not only is it easier to
implement the MTGs, but also an extension of the problem to a more complex version can be
easily done.

In order to ease the understanding of MTGs in human walking simulations, a simpler problem
has been defined. Thus, it was considered that the formulation of a simple pendulum with a
single joint could be easily transferred to several joints of the human body. Hence, the chapter
is divided into two different parts. The first part corresponds to an optimal control predictive
problem using a simple pendulum model, while the second one is an optimal control tracking
problem using a 2D HATmodel. That means that in the simple pendulum problemwe look for
a new motion and in the 2D HAT problem we look for a motion which is as close as possible to
an experimentally measured one.

In each of the parts two different models are presented: a torque-driven model (i.e., at skeletal
level) and a model where muscle torque generators have been implemented. In both problems,
the torque-driven model is obtained from the OpenSim repository and the implementation of
the MTGs has been programmed with MATLAB.

3.1 Simple pendulum simulations
The simple pendulum problem consists of an m = 1 kg massive bob which is attached to a
massless stick with length ℓ = 0.5 m and they both swing back and forth in a periodic motion.
The joint where themotion is produced is fixed to the ground and hence, only rotational motion
is allowed. The coordinate that describes this one-degree-of-freedomproblem is the angle q and
it will change from an initial position qini to a final one qfin within a bounded time t ∈ [tini, tfin].
The motion of the pendulum in the torque-driven problem is given by an external momentMz

(see Figure 12a), while in the problem with MTGs, it is due to two torques (see Figure 12b),
one associated with the extension τME and the other referred to flexion τMF .

Figure 12: Simple pendulum configuration as a (a) torque-driven model (b) MTGs-based
model.
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3.1.1 MTGs modelling
The net torque at the model’s joint is the sum of the signed flexor and extensor muscle torques
acting at that joint:

τ = τMF + τME (1)

Since each muscle torque acts in a single direction, there are two MTGs acting at the joint, a
flexor τMF and an extensor τME . The torque τM developed by a single MTG is given by an
adapted formulation from [19]:

τM = τMo afA (q) fV (q̇) (2)

The torque developed by Equation 2 is a function of the control input a from the solver, the
angle q, and the angular velocity q̇ of the joint. While the angle of the joint changes the value
of the passive torque-angle curve fA (q), the angular velocity of the joint affects the value of the
torque velocity curve fV (q̇). Finally, the parameter τo helps to build the characteristic curve of
the MTG as it provides the maximum value achieved during the motion. Either the flexor and
extensormaximum torques were set to τMF

o = τME
o = 10Nm. These values were adjusted from

the torque-driven problem.

In this model, the characteristic curve fA (q)was defined as a parabolic function as it follows:

fA (q) =
1

4p
· q2 − h

2p
· q + h2 + 4pk

4p
(3)

where (h, k) correspond to the vertex coordinates and p changes the concavity of the function.
These parameters were set as: h = −0.02 rad, k = 1 and p = −0.57 rad2.

Conversely, the torque velocity curve fV (q̇) was extracted from the literature [28] and can be
written as the following piecewise function:

fV (q̇) =



0 for q̇ ≤ −1,

1+q̇
1− q

kCE1

for −1 ≤ q̇ ≤ 0,

1+ q̇fmax
kCE2

1+ q̇
kCE2

for q̇ > 0

(4)

where kCE1 and kCE2 are force velocity shape factors and are set to kCE1 = 0.25 and kCE2 = 0.06
in this work. In contrast, fmax is the maximum normalized achievable torque and it is set to
fmax = 1.6.
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3.1.2 Optimal control predictive problem
To predict the simple pendulum motion, two different models have been used: the torque-
driven model and the MTG-based model. Therefore, the formulation of the problem differs
depending on whichmodel is studied. Table 1 shows the optimal control configuration for each
of the models, where all the magnitudes are represented in the international system units.

Both problems have the same state variables and the angular coordinate q will move from an
initial position qini to a final one qfin within a bounded time t ∈ [tini, tfin].

Note that a reserve actuator τreserve was added in the controls from the MTG-driven statement.
This torque will help to satisfy the path constraints when the MTG torques are unable to per-
form the desired motion. Also, note that the activations are only considered in the MTG-driven
statement since they are only dependant on the muscles. As it is stated in section 2.4, these acti-
vations together withMz as well as τreserve will be considered in the cost function to minimise.

It is also remarkable that the path constraints are different for each model. While in the torque-
driven model the generated torque at the joint has to be equal to the one computed with the in-
verse dynamic analysis, in theMTG-driven is the sum of the flexor and extensor muscle torques
(plus the reserve actuator).

Table 1: Simple pendulum optimal control predictive statement.

Torque-driven MTG-driven
States q,q̇ q,q̇
State constraints −π

2 ≤ q ≤ π
2 −π

2 ≤ q ≤ π
2

−100 ≤ q̇ ≤ 100 −100 ≤ q̇ ≤ 100

Controls q̈,Mz q̈, τreserve, a

Control constraints −100 ≤ q̈ ≤ 100 −100 ≤ q̈ ≤ 100

−10 ≤ Mz ≤ 10 −10 ≤ τreserve ≤ 10

0 ≤ a ≤ 1

Path constraints τ = Mz τ = τMF + τME + τreserve

Cost function J = 0.1τ2 + 0.01q̈2 J = 0.1τ2 + a2 + τ2reserve

In order to implement the optimal control algorithm,we usedGPOPS−II , whichworkswithin
a MATLAB environment.
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3.1.3 Simulations of interest
For each of the two models, four different simulations have been carried out based on different
initial and final conditions (see Figure 13). The main purpose of these has been twofold. On
the one hand, we wanted to check the consistency of the MTGs for each simulation. For this
purpose, the evolution of the system states (q, q̇) as well as the Mz torque will be qualitatively
compared in both models. On the other hand, a study will also be made comparing the four
simulations in which the MTGs have been implemented. In this way, it will be possible to check
if the pendulum shows any kind of tendency in its motion depending on its initial and final
conditions when the MTGs are applied.

Figure 13: Simple pendulum simulations.

Note that each of the simulations has been conducted in both the torque-driven version and the
version with muscle torque generators implemented.
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3.2 2D HAT simulations
Having studied the simple case for a single joint as was the case of the pendulum, we can now
proceed to a more complex study, which will include several joints as is the case of human
walking. Bodies and generalized coordinates of the model are illustrated in Figure 14.

The studied problem consists of ten degrees of freedom (see Table 2). From these ten, the three
involving the pelvis are actuated by residual forces and moments. These have been artificially
added so that the equations of motion of the system are dynamically consistent.

Table 2: Coordinates and DoF.

Coordinate Degree of freedom (DoF)
x0 Pelvis x displacement
y0 Pelvis y displacement
q0 Pelvis tilt
q1 Lumbar extension
q2 Right hip flexion angle
q3 Right knee angle
q4 Right ankle angle
q5 Left hip flexion angle
q6 Left knee angle
q7 Left ankle angle

Figure 14: Bodies and generalized coordinates of the model.

The approach that has been studied in this part of the project is to addmuscle torque generators
on theOpenSim existingmodel, which has been scaled to the subject forwhich the experimental
data were available.The main objective is to study the consistency of the model whenMTGs are
added to it.

For this purpose, two studies will be carried out: a torque-driven version (see Figure 15a) and
a version where MTGs have been implemented (see Figure 15b). Similarly to the pendulum,
the torque generators in the first model are external moments τi at each joint i ∈ {1, 2, ..., 7};
whereas in the second model a pair of muscle torque generators τMF

i and τME
i are acting at

each joint. Note that both models contain the residual forces and moment acting in the pelvis,
but neither an external moment nor a pair of MTGs are applied in it such as in the rest of joints.
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Figure 15: 2D HAT configuration as a (a) torque-driven model (b) MTGs-based model.

Finally, bothmodels will be comparedwith experimentally obtained data, which include the co-
ordinates qexp aswell as the torques τexp involved in the tracking. These datawere obtained from
markers and force plates respectively and were collected in a previous study [22]. Therefore,
in this problem, an optimal control framework that tracks experimental data will be applied in
both 2D HAT models.

3.2.1 MTGs modelling
In this study, the human body is modelled as a sagittal-plane multibody system that is actuated
by agonist and antagonist pairs of muscle torque generators at each joint. In comparison to the
simple pendulum problem, apart from studying several joints, other parameters in relation to
the suppression of vibrations in the model as well as the incorporation of passive elements will
be considered. Then, the net torque at each of the model’s joints is the sum of the signed flexor
and extensor muscle torques acting at that joint and joint damping [19]:

τi = τMF
i + τME

i − βq̇i (5)

Since each muscle torque acts in a single direction, there are two MTGs acting at the joint, a
flexor τMF

i and an extensor τME
i , for a total of 14 MTGs for the whole model. The parameter

β corresponds to joint damping coefficient defined at Equation 7 and q̇i is the derivative of the
coordinate qi (i.e., the angular velocity acting at the joint i).



Development of MTGs for OCT of human walking Page 22

The torque τM developed by a single MTG is given by [19]:

τM = τMo

(
afA (q) fV (q̇) + fPE (q)

(
1− βPE q̇

q̇Mmax

))
(6)

The torque developed by equation 6 is a function of the control input a from the solver (in
this case mapped to the activation of the muscle), the angle q, and angular velocity q̇ of the
joint. The angle of the joint changes the value of fA (q), the passive torque-angle curve. The
angular velocity of the joint affects the value of fV (q̇), the torque velocity curve, and also the
damping torque of the passive element. A non-linear normalized damping term βPE is added
to the passive element to suppress possible vibrations. This parameter is usually set to 0.1 in
muscles and thus, it was also decided to keep that value in this model. Another parameter
that is taken into account when passive elements are considered is q̇Mmax, which corresponds to
the maximum angular velocity achieved by the joint. Note that this value changes depending
whether the torque is the flexor or the extensor. Finally, τMo is the maximum isometric torque
achieved by the joint. Similarly to the maximum angluar velocity, τMo is also dependant on the
nature of the torque and thus, it will be different for both the flexor and extensor torques.

The light damping at the joint in Equation 5 is the passive damping introduced by the muscu-
lature and tissue surrounding the joint. The damping coefficient is defined as [19]:

β = η
τMF
o + τME

o

q̇MF
max + q̇ME

max

(7)

Therefore, the amount of damping is proportional to the strength of the musculature and in-
versely proportional to its maximum angular velocity. The parameter η is a normalized joint
damping scaling factor and it can take the values 0.2 or 0.4 depending on which kind of joint is
studied. The first value corresponds to lower body joints and the latter to arms. Since themodel
used in this thesis only accounts on lower body joints, then η is set to 0.2.

Several literature sources are used to build the characteristic curves for the MTGs (see "MTG
Parameters" at Table 3). Regarding the musculotendon characteristic curves, the torque-angle
and torque-velocity curves have been described as in the pendulum problem (see Equation 3
and Equation 4) but transferred to several joints. While the parameters p, h and k that define
the first mentioned curve change according to Table 3 (refer now to "f Parameters"), the pa-
rameters that define the torque velocity curve kCE1, kCE2 and fmax are kept as in the pendulum
formulation 3.1.1. Finally, the passive torque angle curve is defined according to the literature
[28] as:

fPE (q) =
e(kPE ·q−l0)/εM0 − 1

ekPE − 1
(8)

The parameter kPE is a shape factor, εM0 is the parallel element strain and l0 is the slack angle
which is different for each joint. These parameters are represented at Table 3 as well.
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Table 3: Parameters that define the characteristic curve of the MTG in the 2D HAT problem.
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3.2.2 Optimal control tracking problem
The tracking problem formulation depends on the studiedmodel as well. Therefore, two differ-
ent optimal control statements are considered: a torque-driven formulation (see Table 4) and
anMTG-driven one (see Table 5). A remarkable fact, in comparison to the predictive statement,
is that experimental data qexp and τexp are required to solve the problem. Note that a new path
constraint fresidual is added in the 2D HAT model. This constraint indicates that the residual
forces and torque that act in the pelvis relative to the ground have to be zero in order to make
the system dynamically consistent. Finally, states and controls are bounded in both formula-
tions within minimum and maximum values, which contemplate a certain tolerance, from the
experimentally obtained data.

Regarding the MTG formulation it is remarkable that a new control ȧ is considered. It corre-
sponds to the derivative of muscle activation and it has been taken into account as a control in
order to provide a smoother evolution of muscle activations. Also note that no reserve actuator
has been taken into account. This is because in an initial test it was found that the MTGs were
already strong enough to perform the entire motion. Finally, it is important to mention that the
MTG cost function to minimise is not totally defined as it depends on some weight factors wi.
The choice of these factors are discussed in the following section 3.2.3.

Table 4: 2D HAT Torque-driven optimal control statement.

Torque-driven
States q,q̇
Controls q̈, τ
Path constraints fresidual = 0

τ = τ IDA

Cost function J =
∑nq

i=1(qi − qexpi)
2 + 0.1

∑nq

i=1(τi − τexpi)
2 + 0.01

∑nq

i=1 a
2
i

Table 5: 2D HAT MTG-driven optimal control statement.

MTG-driven
States q,q̇, a
Controls q̈, τ, ȧ
Path constraints fresidual = 0

τ = τ IDA

τi = τMF
i + τEF

i

Cost function J = w1
∑nq

i=1(qi − qexpi)
2 + w2

∑nq

i=1(τi − τexpi)
2 + w3

∑nq

i=1 ȧ
2
i + w4

∑nq

i=1 q̈
2
i

Similary to the simple pendulum, in order to implement the optimal control algorithm, we used
GPOPS − II , which works within aMATLAB environment.

3.2.3 Simulations of interest
The main objective of this study is to obtain a model that includes muscle torque generators
in which both the coordinates and the moments involved are as close as possible to reality.
Therefore, several studies will be carried in order to obtain the MTG model configuration that
provides best results in terms of tracking the experimental data. An important fact to take into
account is that all the simulations in the 2D HAT model only account on the 80% of the gait
cycle. That is due to the fact that the there are only measurements for a double support, as
in the other, one foot is outside the plates. The final configuration of the MTG model will be
compared to the torque-driven version.
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The first study consists in changing the weights from the cost function in the MTG formulation
(see Table 6). Hence, the cost function that leads to better results will be taken into account
in the following study. Note that from each cost function proposed, only one weight factor is
changed with respect to the first one.

Table 6: Set of cost functions studied.

Cost function w1 w2 w3 w4

A 1 0.1 0.001 0.01
B 1 1 0.001 0.01
C 1 0.1 0.01 0.01
D 1 0.1 0.001 0.1

Once the best cost function has been chosen, a second study will be conducted looking at the
relevance of the joint damping parameters and passive elements. The configuration that shows
better results in terms of tracking the experimental data, will finally be compared with the
torque-driven model. Figure 16 shows a diagram which represents the process that is carried
out in order to obtain the final version of the MTG model.

Figure 16: Process that leads to the final version of the MTG model.

The final study will take into account which of the two models shows more similarities with re-
spect to the experimentally obtained data, as well as the time and number of iterations required
for each version to achieve the optimal solution. In order to quantify how well the tracking is
performed, the Root Mean Square Error (RMSE) (see Equation 9) is considered.

RMSE(xi) =

√√√√ 1

K

K∑
j=1

(xi,j − xexpi,j )
2 (9)

The parameter K is the total number of frames of the gait cycle; xi,j is the ith component of
the optimal control problem x ∈ {q, τ} at the jth frame; and xexpi,j the ith component reference
vector obtained from the experimental capture xexp ∈

{
qexp, τexp

}
at the jth frame.
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4 Results and discussion
The purpose of this section is to show and discuss the results obtained by applying the method-
ology explained in section 3. Similarly to that section, this section will be divided in two: a first
part focusing on the pendulumproblem and a second part focusing on the human gait problem.

4.1 Simple pendulum predictive problem
In this problem, several simulations are carried out based on different intitial and final condi-
tions (see Figure 13). The purpose of this section is to discuss the dynamics behind the predic-
tive problem, i.e., how the different states evolve in order to minimise the cost function while
satisfying the constraints at the same timewhendifferent conditions andmodels are considered.

4.1.1 Simulation I
The first situation to be studied consists of varying the pendulum coordinate from an initial
state qini = −70o to a final value of qfin = −20o (see Figure 17).

Figure 17: Evolution of states and joint torque in the torque-driven model and the MTG-driven
model when Simulation I is conducted.

As can be seen in both models, the pendulum goes through positive angles instead of going
directly to the desired position. Otherwise, the pendulum would have to stop very suddenly,
which would imply a very high deceleration. This would lead to the application of an external
negative momentum (in the opposite sense to the natural evolution of the state due to gravity)
of a very high value. Therefore, the cost function would be more difficult to minimise. It is for
this reason that the optimal motion goes through such positive angles.
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Another remarkable fact is that in the torque-driven model there is always some external mo-
ment applied, whereas in the MTG only the extensor torque is considered. More specifically,
when the pendulum reaches its maximum angle it also changes the joint torque monotony.
While in the MTG version only a very few from the flexor torque is required to go back to the
desired position, in the torque-driven model a bit more torque is needed.

4.1.2 Simulation II
In the second situation studied the initial and final positions are changed in respect to the previ-
ous study and thus, the pendulum changes from an inital postion qini = −20o to a final position
qfin = −70o (see Figure 18).

Figure 18: Evolution of states and joint torque in the torque-driven model and the MTG-driven
model when Simulation II is conducted.

Similarly to the first study, the pendulum goes through positive angles as well, instead of going
directly to the desired position. However, in comparison to the first study, the torque needed
to conduct this motion has opposite sense. Hence, only the flexor torque is considered in the
MTG version. That is due to the fact that initial and final conditions have been changed from
the previous simulation. Note again that once the maximum position is reached, no torques are
involved in the MTG model. Nonetheless, the torque-driven version presents its highest value
there since it needs to slow down when the pendulum is reaching its final position.
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4.1.3 Simulation III
In comparison to the rest of studies, the third situation is the one that encompasses more range
of motion, thus varying from an initial angle qini = −70o to a final one qfin = 70o (see Figure
19). Also note that given the symmetry of the problem, both states (q and q̇) as well and the
joint torque evolve as symmetric functions.

Figure 19: Evolution of states and joint torque in the torque-driven model and the MTG-driven
model when Simulation III is conducted.

Now, if both models are compared, there is almost no difference between the torque-driven
version and the MTG one. Regarding the joint torque in the MTG model, an extensor torque is
applied at the beginning of the motion as it tries to diminish the initial acceleration. Conversely,
when the pendulum is reaching the final configuration, a flexor torque will be employed in
order to reduce the value of the deceleration. A similar situation occurs in the case of the torque-
driven, although with a single torque.

4.1.4 Simulation IV
The last situation studied changes the the angle from an initial value of qini = −20o to a final
value that is qfin = 70o (see Figure 20).

As it happened in the third study, the pendulum reaches its final position without the need
of moving back and forth as it happened in the first two cases. One more time, the predicted
motion in both models is quite similar between them.
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Figure 20: Evolution of states and joint torque in the torque-driven model and the MTG-driven
model when Simulation IV is conducted.

It is remarkable that in comparison to the third study, the contribution of the extensor torque to
the predictedmotion is considerably lower than the flexor. Note that something similar happens
to the torque-driven model. The main cause of this is the value of the initial angle. The higher
the value, the higher the initial potential energy and hence, a higher external moment opposed
to the motion would be required to slow it down to eventually reach the final position in stable
conditions (i.e., q̇ ≈ 0).

4.1.5 General discussion
Everyhting considered, it seems that for lower ranges of motion (i.e., the first two simulations)
muscle torque generators models provide better results in terms of minimising the cost func-
tion. That can be clearly seen since the time to reach the optimal predicted motion is reduced
compared to their respective torque-driven versions. Note in these cases that not only are the
angular velocities higher, but also the joint torque is reduced and hence, the predicted results
are closer to the optimal. Despite the fact that the other two simulations do not show this be-
haviour and thus, the difference between models is not that significant, it is still remarkable
that less time is required to perform the predicted motion. Since all the simulations are equally
modelled, the only reason that provokes these differences is the set of initial and final condi-
tions. Therefore, the more natural these conditions are to the dynamics of the pendulum, the
less time would be needed to perform the predicted results.
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4.2 2D HAT tracking problem
The main purpose of this section is to faithfully reproduce a gait cycle by using a 2D HAT
model when muscle torque generators are added to it. The more similar the coordinates and
the torques are to experimentally obtained data, the better the tracking and therefore, the more
reliable the model. In order to quantify how well the tracking is performed, the Root Mean
Square Error (RMSE) (see Equation 9) has been taken into account throughout this section.

As it is stated in section 3.2.3, several studies are carried out in order to determine the final MTG
version that will eventually be compared to the torque-driven model. Therefore, in this section
it is discussed the process that leads to this final version as well as the comparison between the
two models.

4.2.1 Study of different formulations in the MTG cost function
In a first attempt to choose the cost function that yields to best results in terms of tracking, we
calculated the RMSE of coordinates (see Table 7) and torques (see Table 8) at each joint for
the different cost functionsA,B,C andD previously defined in section 3.2.3. Also note that the
RMSE mean for each cost function is computed in both cases.

Table 7: RMSE of coordinates obtained from the different formulations.

Cost
function

Lumbar
extension [◦]

Hip flexion [◦] Knee angle [◦] Ankle angle [◦]
Right Left Right Left Right Left Mean [◦]

A 0.81 2.66 1.83 1.86 0.91 3.16 8.84 2.87
B 1.12 3.39 2.82 2.60 1.98 3.23 6.43 3.08
C 0.73 2.82 1.74 2.02 1.12 3.23 6.58 2.60
D 0.79 3.43 2.11 3.09 2.69 3.66 6.76 3.22

Table 8: RMSE of torques obtained from the different formulations.

Cost
function

Lumbar
extension [Nm]

Hip flexion [Nm] Knee angle [Nm] Ankle angle [Nm]
Right Left Right Left Right Left Mean [Nm]

A 8.97 10.41 8.84 4.77 5.17 2.17 3.04 6.20
B 5.84 7.22 6.33 3.89 3.70 2.10 3.02 4.59
C 8.53 10.62 9.74 4.80 5.44 2.16 3.33 6.37
D 7.61 10.33 9.76 5.37 5.70 1.55 3.23 6.22

Clearly, the cost function that provides best results is B as it shows significantly lower RMSE
values, specially when tracking torques. The root cause of this value is that cost function B is
precisely the one that has a highest weighted factor in the termwhere torques are involved. That
leads to a higher penalization if the difference between the computed torque and the experimen-
tal one is higher as well. Bearing in mind that the differences when tracking coordinates are not
that significant between the different cost functions, it was decided to keepB (see Equation 10)
as the cost function in the next study.

J =

nq∑
i=1

(qi − qexpi)
2 +

nq∑
i=1

(τi − τexpi)
2 + 0.001

nq∑
i=1

ȧ2i + 0.01

nq∑
i=1

q̈2i (10)
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4.2.2 Influence of passive elements and joint damping in motion tracking
Similarly to the previous study, we compute the RMSE to see whether adding passive ele-
ments and the joint damping to the model can indeed lead to more realistic results (see Table
9 and Table 10). Remember that these elements are added to supress possible vibrations in the
musculature and thus are supposed to give a better insight into the human walking behaviour.

Table 9: RMSE of coordinates with and without passive elements (PE) and joint damping
(DAMP).

DAMP
& PE

Lumbar
extension [◦]

Hip flexion [◦] Knee angle [◦] Ankle angle [◦]
Right Left Right Left Right Left Mean [◦]

With 1.79 1.87 3.12 2.06 6.92 2.99 5.20 3.42
Without 1.12 3.39 2.82 2.60 1.98 3.23 6.43 3.08

Table 10: RMSE of torqueswith andwithout passive elements (PE) and joint damping (DAMP).

DAMP
& PE

Lumbar
extension [Nm]

Hip flexion [Nm] Knee angle [Nm] Ankle angle [Nm]
Right Left Right Left Right Left Mean [Nm]

With 7.27 6.98 7.21 3.21 3.72 1.98 2.93 4.76
Without 5.84 7.22 6.33 3.89 3.70 2.10 3.02 4.59

In this case, the final choice is not that clear. While more than half of the joints present lower
RMSE values when these elements are added in both cases (coordinates and torques), it is still
not enough to the overall contribution. That is due to the fact that in some cases, the RMSE
calculated are notably higher compared to the version without these elements. Some examples
are the left knee angle in coordinates or the lumbar extension in torques. If a further exploration
of the parameters defining these elements was conducted, that would probably yield lower
errors and hence, a better tracking.

Despite the fact that a formulation without these elements seems to provide better results, a
comparison between both computational times was conducted in order to secure a final choice.
The results were that the computational time with the passive elements and joint damping was
more than twice as long as without them. Therefore, the final study was carried out without
these elements.

4.2.3 Evaluation of muscle torque generators implementation
Once the final version of the MTG model is clearly defined, we can now proceed to the final
study. As it was previously stated, in this last section, theMTGmodel is compared to the torque-
driven model, which is a previous version of the 2D HAT model at skeletal level. Likewise the
previous studies, the RMSE of coordinates (see Table 11) and torques (see Table 12) at each
joint will also be of interest in this final study.

Table 11: RMSE of coordinates in the torque-driven model (TD) and the MTG model.

Model Lumbar
extension [◦]

Hip flexion [◦] Knee angle [◦] Ankle angle [◦]
Right Left Right Left Right Left Mean [◦]

TD 0.41 0.47 0.46 0.64 0.61 0.84 0.70 0.59
MTG 1.12 3.39 2.82 2.60 1.98 3.23 6.43 3.08
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Table 12: RMSE of torques in the torque-driven model (TD) and the MTG model.

Model Lumbar
extension [Nm]

Hip flexion [Nm] Knee angle [Nm] Ankle angle [Nm]
Right Left Right Left Right Left Mean [Nm]

TD 3.95 4.54 6.15 2.49 2.16 1.79 1.94 3.29
MTG 5.84 7.22 6.33 3.89 3.70 2.10 3.02 4.59

When computing theRMSE in the final study, we obtain considerably low values in bothmod-
els, which means that the tracking is well performed in both cases. More specifically, if we take
a look at the obtained errors in torques, we note that in general the difference betweenmodels is
quite low. For instance, the obtained RMSE for the left hip flexion torque in the torque-driven
model is 6.15 Nm and similarly, a value of 6.33 Nm in the MTG version is obtained. Nonethe-
less, in some joints the difference between models is still relevant. For instance, the joint in the
MTG model that presents the maximum relative error obtained when tracking coordinates is
the left ankle with an RMSE value of 6.43o compared to 0.70o in the torque-driven version.

Since the RMSE only takes into account the average error between functions, it is decided to
complement this information with an evolution of the coordinates and torques for each joint.
If we take a look at Figure 21 a more detailed comparison between the tracking motion in both
models is carried out. Therefore, it is possible to check if the tracked results show a similar
tendency to the experimental data. In order to ease the visualization of the results, only left
joints were plotted. We decided to show left joints instead of the right ones because the stance
phase begins with the left leg.

Figure 21: Tracking of coordinates and torques in a 2D HAT model based in a torque-driven
(in blue) and an MTG (in red) versions. Experimental data is shown with a dashed black line.

The gait accounts the 80% of the cycle and left joints are shown.
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If we take a look at the hip left flexion again, it is possible to see that despite the fact thatRMSE
in torques is similar between models, the error is still a bit high compared, for example, to the
tracked torque in the ankle angle. The hip flexion angle shows much better results than its
torque version. Note that when MTGs are considered in coordinates, a slight difference in the
peak value is produced. Nontheless, the rest of the tracking is generally adequate.

Moving now to the knee angle, similar results to the hip flexion are obtained. For instance,
there is also a small difference between the peak values in the tracked coordinates when MTGs
are employed, but the rest of the tracking is fine. If we now analyse the torques, the torque-
driven model seems that is performing a better tracking. That can also be explained through
theRMSE obtained. While the value obtained with the torque-driven version is only 2.16Nm,
when we apply MTGs a value of 3.70 Nm is reported.

As it was previously stated, the ankle angle shows the maximum relative error in terms of coor-
dinate tracking when MTGs are applied. However, the tendency of it is still adequate. Moving
now to the torque tracking analysis, we observe an almost perfect tracking in both models. This
notorious difference between coordinates and torques suggests that further exploration regard-
ing the MTG implementation in the ankle should be undertaken.

Finally, if we give some insight into the observed results in the lumbar extension angle, the
torque-driven model provides better results again, especially at the beginning of the motion.
Nonetheless, the tendency of the tracking is correct and generally well adjusted to the experi-
mentally obtained data. Conversely, tracking in torques are a bit further from the experimental
values. Similarly to the hip flexion case, both models perform a similar tracking while none of
them is perfectly adjusted to the experimental data.

In order to give a deeper insight into the pairs of muscle torque generators involved in each
joint, we decided to break them down into their flexor and extensor part. Figure 22 shows the
contribution of each MTG pair throughout the cycle.

Figure 22: Pairs of muscle torque generators at each left joint and lumbar.
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Two remarkable facts can be seen clearly seen in Figure 22. On the one hand, the different MTG
pairs are almost symmetric to one another, except in the left ankle at the beginning of the gait
cycle, in which a higher contribution of the extensor torque is reported. On the other hand, we
obtained quite high unexpected values in some parts of the cycle in each of the joints. Bearing
in mind how these pairs of MTGs are calculated in the final version of the MTG model (see
Equation 11), all terms are the same except the isometric maximum torque τo and the muscle
activations a.

τMi = τMo afA (q) fV (q̇) (11)

Therefore, a further exploration in these two parameters could be conducted in order to gain
better insight into the contribution of each the flexor and extensor torques in the gait cycle.

4.2.4 General discussion
By and large, the tracking performed when muscle torque generators are taken into account
is adequate since no extreme RMSE are reported nor any undesired tendency in the tracking
is observed for the plotted joints. It is also remarkable that a better tracking in the torques is
achieved in comparison to the coordinates. However, the tracking is still better performed by
the torque-driven model, especially when tracking coordinates. That is probably due to the fact
that the cost function considered in the MTG-driven model penalizes more the torque errors
rather than the coordinate ones. Therefore, if we wanted to obtain better results in terms of
tracking coordinates new readjustments in the cost function should be considered.

Another fact that has not yet been mentioned in this section is the computational time as well
as the iterations needed to obtain the optimal solution. Table 13 shows both the time and the
number of iterations that the solver needed to converge to an optimal solution in the studied
tracking problem.

Table 13: Computational time and number of iterations required in both models

Time [s] Iterations
TD 2.91 23
MTG 92.87 1403

As it was expected, the model in which muscle torques generators are employed shows higher
values in both the computational time and number of iterations. That is because more restric-
tions have to be satisfied in the optimal control formulation regarding the torques in comparison
to the torque-driven version.

Finally, despite the fact that the tracking performed by the MTG model is correct, it was ex-
pected that the model had provided a more realistic behaviour in comparison to the torque-
driven model. That is due to the fact that still further explorations need to be conducted in
some of the parameters that define the pairs of MTGs before this model is employed for other
purposes such human motion prediction. Parameters such as the maximum isometric torque
or the characteristic musculotendon curves involved in each pair of the MTGs could be more in
depth investigated to gain better insights.
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5 Project impact
In this sectionwe provide a detailed explanation about the economic cost of the project. Besides,
we contemplate the environmental impact produced in this work. .

5.1 Economic cost
The economic cost of the project is based on four different aspects: the depreciation of the com-
puter used for the simulations, theMATLAB and GPOPS-II licenses, the working time (student
and supervisors), and finally, the electrical energy consumed.

Depreciation is calculated from the total price of the electronic device, its useful time and the
total time it has been used. The useful life of the computer is considered to be 4 years, which
corresponds to a total of 35040 hours. Finally, the laptop has been used for an amount of 320
hours during the thesis.

MATLAB and GPOPS-II licenses expire after one year. Therefore, their useful life is about 8760
hours. Considering that the softwarewas used only during half of the hourswhen the computer
was used, it is then estimated that both MATLAB and GPOPS-II have been used for a total of
160 hours.

Regarding the student’s hours of dedication, it should be taken into account the time in which
the computer was used (320 hours), plus 30 hours of meetings, calculations and reflections.
The hours of support and supervision are considered to be 40 hours in total (considering both
supervisors).

Finally, the electrical power of light and computers have been estimated to be 35 W for each of
them. A light bulb was only switched on during the hours of less light (a total of 100 hours)
and the computer during the previously mentioned 320 hours. We assumed constant the price
of electricity, with a value of 0.29 €/kWh.

As can be seen in Table 14, the total cost of the project is 3428.28 €.

Table 14: Calculation of the final project cost. Variable costs of the computer and licenses are
obtained from dividing their fixed cost by their useful life in hours. Variable cost of electrical
energy is found from its price multiplied by the power consumption of computers and light.

Fixed cost [€] Useful life
[years]

Variable
cost [€/h]

Time spent in
the project [h]

Cost related to
the ptoject [€]

Laptop 750 4 0.0214 320 6.85
MATLAB license 840 1 0.0959 160 15.34
GPOPS-II license 100 1 0.0114 160 1.83
Student - - 8 350 2800.00
Supervisors - - 15 40 600.00
Electrical energy - - 0.0102 420 4.26
TOTAL COST 3428.28 €
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5.2 Environmental impact
The environmental impact of this project is minimal since the main studies were based on sim-
ulations using a computer at home. However, electricity and electronic devices such as a laptop
and a tablet can be considered.

Regarding the electrical consumption, a computer and a light bulb have been assumed to be
switched on while working on the thesis. However, their consumption is marginal and thus,
they are not considered to have such a negative environmental impact in the project.

When evaluating the deterioration of the electronic devices we have to take into account that
once their useful life is finished, they must be treated individually. This evaluation is in agree-
ment with the Regulation 2017/699 [34], which establishes a commonmethodology for the cal-
culation of the weight of electrical and electronic equipment (EEE) as well as for the calculation
of the quantity of waste in electrical and electronic equipment (WEE).
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Conclusions
In this bachelor’s thesis, optimal control techniques have been applied to both the prediction
of a new motion and the tracking of a known one. In order to implement the optimal control
algorithm, we used GPOPS − II , which works in MATLAB. Therefore, there has been a
process of getting acquainted with optimal control theory and its environment.

In both formulations, a torque-drivenmodel (i.e., at skeletal level) is obtained from theOpenSim
repository. Subsequently, we employed muscle torque generators with MATLAB in each of
them as an alternative of detailed musculoskeletal models.

Regarding the predictive problem when using a simple pendulum model, muscle torque gen-
erators were slightly advantageous than its torque-driven version when the studied simulation
encompassed a shorter range of motion. Conversely, when using a 2D HAT model for human
gait tracking, despite the fact that the tracking performed with MTGs was adequate, a more
realistic behaviour than its torque-driven version was expected.

This project can be considered a first research work in muscle torque generators modelling in
the Biomechanical Engineering Lab (BIOMEC) at UPC. Thus, further studies would need to be
conducted in order to obtain more realistic models. Parameters such as the maximum isometric
torque or the characteristic musculotendon curves involved in each pair of the MTGs could be
more in depth investigated to gain better insights.
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