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A B S T R A C T   

Hydrogen (H2) has emerged as a viable solution for energy storage of renewable sources, supplying off-seasonal 
demand. Hydrogen contamination due to undesired mixing with other fluids during operations is a significant 
problem. Water contamination is a regular occurrence; therefore, an accurate prediction of H2-water thermo-
dynamics is crucial for the design of efficient storage and water removal processes. In thermodynamic modeling, 
the Peng–Robinson (PR) and Soave Redlich–Kwong (SRK) equations of state (EoSs) are widely applied. However, 
both EoSs fail to predict the vapor-liquid equilibrium (VLE) accurately for H2-blend mixtures with or without 
fine-tuning binary interaction parameters due to the polarity of the components. This work investigates the 
accuracy of two advanced EoSs: the Schwartzentruber and Renon modified Redlich–Kwong cubic EoS (SR-RK) 
and perturbed-chain statistical associating fluid theory (SAFT) in predicting VLE and solubility properties of H2 
and water. The SR-RK involves the introduction of polar parameters and a volume translation term. The proposed 
workflow is based on optimizing the binary interaction coefficients using regression against experimental data 
that cover a wide range of pressure (0.34 to 101.23 MPa), temperature (273.2 to 588.7 K), and H2 mole fraction 
(0.0004 to 0.9670) values. A flash liberation model is developed to calculate the H2 solubility and water 
vaporization at different temperature and pressure conditions. The model captures the influence of H2-gas (CO2) 
impurity on VLE. The results agreed well with the experimental data, demonstrating the model’s capability of 
predicting the VLE of hydrogen-water mixtures for a broad range of pressures and temperatures. Optimized 
coefficients of binary interaction parameters for both EoSs are provided. The sensitivity analysis indicates an 
increase in H2 solubility with temperature and pressure and a decrease in water vaporization. Moreover, the 
work demonstrates the capability of SR-RK in modeling the influence of gas impurity (i.e., H2–CO2 mixture) on 
the H2 solubility and water vaporization, indicating a significant influence over a wide range of H2–CO2 mix-
tures. Increasing the CO2 ratio from 20% to 80% exhibited almost the opposite behavior of H2 solubility 
compared to the pure hydrogen feed solubility. Finally, the work emphasizes the critical selection of proper EoSs 
for calculating thermodynamic properties and the solubility of gaseous H2 and water vaporization for the effi-
cient design of H2 storage and fuel cells.   

Introduction 

Hydrogen (H2) is an attractive clean fuel, enabling the vast expansion 
of renewable sources toward achieving a net-zero carbon economy [1]. 
The accelerated growth of the world population is causing an unprece-
dented increase in energy demand, imposing an additional driver to 
promote alternatives [2,3]. Outlooks from global energy anticipate 
about 40% of the worldwide electricity to come from renewable alter-
natives by 2040 [4]. However, the produced energy from renewable 

resources, such as wind power and solar, provides only an intermittent 
supply due to their seasonal nature [5,6]. Hydrogen is anticipated to 
play a vital role in storing energy from renewables for off-seasonal de-
mand [7–11]. 

Applications of H2 in the energy sectors are vast and diverse and 
include transportation, heating, fuel cells, and petrochemical industrial 
use [12,13]. Hydrogen is known for its low volumetric energy density 
attributed to its low density under standard conditions [14–16]. 
Hydrogen is compressed and cooled for storage and transportation, 
causing the density to increase significantly [16–18]. Several H2 
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compression methods have been proposed for effective storage in fuel 
cell electric vehicles and electrochemical H2 compressors [19,20]. The 
latter is analogous to fuel cells designed based on proton exchange 
membrane (PEM) technology, where water (H2O) enables the proton 
transfer via the membrane (Fig. 1). The advantages of electrochemical 
H2 compressors compared to conventional techniques have been 
extensively reviewed [13,14,19,21]. Nonetheless, a major disadvantage 
is the necessity to hydrate the membrane with water to enable proton 
transportation through the membrane. As a result, the generated H2 is 
always saturated in water, causing unpremeditated impurities. The In-
ternational Organization for Standardization (ISO) provided a standard 
maximum allowable limit of 5 μmol of H2O per mol of H2 for the water 
content in vapor-phase H2 for PEM fuel cells used in vehicles [14]. 

However, a large expansion of a H2-based economy requires massive 
storage capacity on the terawatt scale [22–24]. Such a scale can be 
offered by underground storage in geological formations, including salt 
caverns, depleted hydrocarbon reservoirs, and deep saline aquifers, 
where gas mixing with reservoir fluids is inevitable [25], as illustrated in 
Fig. 2. The presence of water co-existing in the transportation and in-
jection process and the uncaptured phase can cause fluctuations in 
pressure, leading to major cavitation and pipeline damage [26]. 
Therefore, accurate modeling of water solubility in H2 and vice-versa is 
critical for the success of the storage process and the application of 
transportation and PEM technology. 

Nomenclature 

Symbols 
a Equation term for attraction 
b Equation term for co-volume 
c Volume-shift correction factor or volume translation factor 
Cd Parameter of BM-PR and SR-RK 
f Helmholtz free energy 
ka Binary interaction parameter for attraction term,a 
kb Binary interaction parameter for co-volume term,b 
kB Boltzmann constant 
kij Binary interaction parameter for components i and j 
lij Secondary binary interaction parameter for components I 

and j in the co-volume 
m Parameter of the cubic EoS related to ω 
M Number of molecular chain segments 
n, N Number of data points 
P Pressure 
R Universal gas constant 
T Temperature 
V Volume 
Vm Molar volume 
w Parameter of the general formalism EoS 
x Mole fraction in the liquid phase 
x Average mole fraction in the liquid phase 
Xij Binary interaction parameter for volume translation,c 
y Mole fraction in the gas phase 
α(T) Alpha function in the cubic EoS 
δ Coefficient of the binary interaction 
ε Dispersion energy between segments 
εAB Association energy between sites or molecules 
κAB Association volume 
ρ Density 
σ Standard deviation 
σ(Å) Diameter of the chain segment 
ω Acentric factor 
Ωa Unitless constant of the cubic EoS of a 
Ωb Unitless constant of the cubic EoS of b 

Abbreviation 
AAD Average absolute deviation 
BM-PR Boston–Mathias Peng–Robinson 
EoS Equation of state 
MLF Maximum likelihood function 
NG Number of data groups 
NP Number of data points 
NC Total number of components 
PC-SAFT Perturbed-chain statistical associating fluid theory 
PR Peng–Robinson 
RK Redlich–Kwong 
RMSE Root mean square error 
SAFT Statistical associating fluid theory 
SR-RK Schwartzentruber–Renon Redlich–Kwong 
SRK Soave Redlich–Kwong 

Super/subscripts 
a Coefficient parameter for attraction 
assoc Association 
b Coefficient parameter for co-volume 
c Critical 
Cal. Calculated value 
disp Dispersion 
e Estimated 
Exp. Experimental value 
g Gas 
hc Chain formation 
hs Hard-sphere repulsion 
i, j Component labels 
l Liquid 
m Measured 
mix Mixture 
polar Interpolar 
r Reduced 
ref Reference 
res Residual 
v Vapor  

Fig. 1. Schematic of the basic structure of proton exchange membrane (PEM) 
fuel cell. 
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The knowledge of pure H2 thermodynamics is well established 
[27,28]. However, available experimental data on H2-blend mixtures 
does not cover the full range of gas mixtures and H2 operational con-
ditions for underground storage or fuel cell electric vehicles. Therefore, 
reliable equations of state (EoSs) are needed to predict these properties. 

The cubic EoSs, such as Peng–Robinson (PR) [29] and Soave Red-
lich–Kwong (SRK) [30], are widely used in compositional reservoir 
simulators. Several researchers have intensively investigated their reli-
ability [31], where varying accuracy was observed in different condi-
tions. The PR and SRK EoSs are often used with flash calculations to 
determine equilibrium phases, phase properties, and the compositional 
flow and transport of each phase [32–36]. However, challenges arise 
when classical cubic EoSs are used to calculate the phase equilibrium 
and mixture density at conditions of high pressure and temperature for 
H2-blend mixtures. Such predictions become less accurate at high den-
sities caused by the quantization of translational motion and the quan-
tum nature of H2 [37]. This poor predictability becomes more 
pronounced when H2 is mixed with one or more polar components. 

In 1949, Redlich and Kwong proposed one of the earliest extensions 
of the attraction term in the van der Waals EoS [38]. The particle- 
interaction term was introduced as a temperature-dependent term (i. 
e., a(T)) to improve the predictions of vapor-liquid equilibria (VLE) for 
nonideal gases [39]. Later, the alpha function, as a function of reduced 
temperature, was developed by Wilson [40]. Then, Soave proposed the 
use of a generalized alpha function [30], leading to the development of 
the current EoSs, such as SRK. These EoSs use different forms of the 
temperature-dependent term and an acentric factor (ω) as an additional 
parameter. A volume correction factor (c) in the alpha function was 
introduced to improve the accuracy of the density prediction [41,42]. 
Boston and Mathias extended the range of temperature and pressure by 
distinguishing the sub- and super-critical regions [43,44]. Mathias 
(1983) [45] improved the developed relations to cover highly polar 
substances, such as H2O, CO2, and CO, by introducing a polar parameter 
in the alpha function. Afterward, Schwartzentruber and Renon further 
improved polar substances by introducing three polar parameters (i.e., 
po,p1,p2) [46]. 

Other types of advanced EoSs have been developed based on statis-
tical mechanics, referred to as statistical associating fluid theory (SAFT). 
Perturbed-chain SAFT (PC-SAFT) is a widely applied SAFT EoS that uses 
the chain fluid of unbonded spheres. This EoS has been applied for H2- 
blend mixtures with hydrocarbon [47–49]. The SAFT and similar EoSs 
are not universal and are mostly restricted to linear alkanes and alkenes. 
Thus, they may induce undesired numerical pitfalls and often fail to 
represent the critical zone of pure compounds with reasonable accuracy 
[50–54]. Therefore, they require fitting using experimental data by 
regressing the binary interaction parameters (kij). 

The classical EoSs, such as PR and SRK, with or without using kij 
coefficients, often fail to accurately predict the phase equilibrium of 

various gas mixtures with one or more polar components [14]. There-
fore, the present work investigates the capability of the latest modifi-
cation by Schwartzentruber and Renon (1989) using the Redlich–Kwong 
(1949) EoS (SR-RK) and another type of EoS (PC-SAFT) in predicting the 
solubility of H2 in liquid-phase water mixture and water vaporization in 
gaseous H2 for a wide range of pressures and temperatures. 

Methodology 

The workflow approach starts by generating accurate thermody-
namic models using a sophisticated regression algorithm with each of 
the selected EoSs (i.e., SR-RK and PC-SAFT) calibrated against VLE 
experimental data. Then, a flash liberation simulation was used to 
calculate the solubility scenarios between H2O and H2 using a separator 
unit in adiabatic conditions. The results were validated against a wide 
range of conditions found in the collected experimental work. After-
ward, the approach was used to assess the influence of potential gas 
impurity on the solubility calculations over a wide range of tempera-
tures and pressures by introducing CO2 into the feed gas at different 
ratios. 

The approach used only experimental data with reported uncertainty 
information. Insufficient data points with high uncertainty were 
excluded. Moreover, comprehensive objective functions were used to 
regress the thermodynamic parameters of the models against the 
experimental data. The parameters with the least root mean square error 
(RMSE) were used to predict different properties for several isothermal 
systems. For instance, the error between the experimental mole fraction 
of component, yi,exp and the calculated mole fraction of component i, 
yi,cal over the total number of components, n, is given by [55]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(
yi,exp − yi,cal

)2

n

√
√
√
√ . (1) 

In this work, Aspen Plus (v. 12.0) [56] was used to validate the 
models and simulate the solubility behavior of H2 in water and the water 
content in the vapor phase of the mixture (i.e., water vaporization). 
After obtaining the optimized parameters for the EoSs from VLE 
regression, a flash simulation model was built using Aspen Plus Flow-
sheet simulation. An adiabatic flash separator at a given temperature 
and pressure is fed by two streams: H2 and water. The product streams 
corresponding to the resulting two phases (vapor and liquid) are 
measured, as illustrated in Fig. 3. 

The statistically most reliable parameter estimates are obtained 
using the maximum likelihood function (MLF). Assuming that all mea-
surements are independent and that the measurement noise follows a 

Fig. 3. Flash liberation experiment schematic using Aspen Plus flowsheet 
simulation (v. 12.0) [56]. 

Fig. 2. Illustration of hydrogen storage in an underground geological formation 
with a cushion gas and an aquifer zone. 
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Gaussian distribution with a zero mean, the MLF can be obtained using a 
weighted least-squares minimization with weights (wn) related to the 
standard deviation (STD) of the measurement. The MLF model in-
corporates all compositions (liquid-phase mole fraction x and vapor- 
phase mole fraction y) at a temperature (T) and pressure (P), such that,  

where NG is the number of the data group, NP is the number of points in 
each data group, and NC is the total number of components. 

Thermodynamic Modeling Using Equations of State 

Cubic Equations of State 

The EoSs are semi-empirical correlations that interrelate pressure 
(P), temperature (T), and volume (V) with the phase composition (xi) to 
calculate the thermodynamic behavior of a fluid. In pressure-explicit 
EoSs, the volume is commonly solved. Then, the rest of the properties 
are derived [57–59]. A general form of a cubic EoS was suggested by 
Daridon et al. (1993) [60] based on Schmidt and Wenzel’s work (1980) 
[61], presented as follows: 

P =
RT

Vm − b
−

aα(T)
V2

m + ubVm − wb2, (3)  

where R is the universal gas constant, Vm denotes the molar volume, u 
and w represent parameters of the generalized EoS, and α(T) is a 
component function introduced to capture the temperature effect, 
especially around the critical region. The α(T) function has been 
extensively assessed by researchers to develop accurate formalisms for 
different types of fluids with a high consensus level [57,62,63]. The 
constants a and b are component-dependent, representing the attraction 
between the molecules and defining the volume of a pure component as 
a function of the critical temperature (Tc) and critical pressure (Pc), with 
the following forms: 

a = Ωa
R2T2

c

Pc
, (4)  

b = Ωb
RTc

Pc
, (5)  

where Ωa and Ωb represent unitless constants, corresponding to the 
developed EoS. The forms of the different α(T) functions are summarized 

in Table 1. 
In addition to the above EoSs, the modified SR-RK EoS is also 

investigated in this work. The main improvement in the SR-RK 
compared to the classical cubic EoS is achieved by introducing polar 
parameters in the α function (po, p1, p2), following the approach by 
Mathias [45] with the acentric factor (ω) and reduced temperature (Tr =

T/Tc) (refer to Table 4). The volume translation (c) is used to improve 
the density predictions. The form proposed by Pilz [57,67] is presented 
as follows: 

P =
RT

Vm + c − b
−

a.α(T)
(Vm + c)(Vm + c + b)

, (6)  

α(T) =

⎧
⎪⎪⎨

⎪⎪⎩

[
e[Cd (1− Td

r )]
]2

Tr > 1
[
1 + m(ω)

(
1 −

̅̅̅̅̅
Tr

√ )
− po(1 − Tr)(1 + p1Tr + p2T2

r )
]2

Tr ≤ 1,

(7)  

m(ω) = 0.48508+ 1.55191ω − 0.15613ω2, (8)  

d = 1+
m
2
− po(1 + p1 + p2) (9)  

Cd = 1 −
1
d
. (10)  

a =
1

9
(
21/3 − 1

)
R2T2

c

Pc
. (11)  

b =
1
3
(
21/3 − 1

)RTc

Pc
(12)  

Table 1 
Alpha functions as a function of reduced temperature (Tr = T/Tc) and various parameters (u and w) for the general formalism of the cubic equations of state.  

EoS α(T) u w Ωa Ωb Reference 

Van der Waals α(T) = 1 0 0 0.421875 0.12500 
[38] 

Redlich–Kwong α(T) = 1/
̅̅̅̅̅
Tr

√ 1 0 0.427480 0.08664 
[39] 

Soave Redlich–Kwong α(T) =
[
1 + m(ω)

(
1 −

̅̅̅̅̅
Tr

√ ) ]2 1 0 0.427480 0.08664 
[30,64,65] 

m(ω) = 0.480 + 1.574ω − 0.176ω2 

Peng–Robinson α(T) =
[
1 + m(ω)

(
1 −

̅̅̅̅̅
Tr

√ ) ]2 2 1 0.457240 0.07780 
[29,66] 

m(ω) = 0.37464 + 1.54226ω − 0.26992ω2 

Boston–Mathias Peng–Robinson* 
α(T) =

⎧
⎨

⎩

[
1 + m(ω)

(
1 −

̅̅̅̅̅
Tr

√ )]2
Tr ≤ 1

e[Cd(1− Td
r )] Tr > 1 

2 1 0.457240 0.07780 
[43,45,62] 

m(ω) = 0.37464 + 1.54226ω − 0.26992ω2 

d = 1 + m/2 

Cd =
m
2  

* Cd and d are equation parameters.  

MLF =
∑NG

n=1
wn

∑NP

i=1

[(
Te,i − Tm,i

STDT,i

)2

+

(
Pe,i − Pm,i

STDP,i

)2

+
∑NC− 1

j=1

(
xe,i,j − xm,i,j

STDy,i,j

)2

+
∑NC− 1

j=1

(
ye,i,j − ym,i,j

STDy,i,j

)2
]

, (2)   
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amixture =
∑N

i=1
xixj

̅̅̅̅̅̅̅̅aiaj
√ (

1 − ka,ij − lij(xi − xj)
)
, (13)  

bmixture =
∑N

i=1

∑N

j=1
xixj

bi+bj

2
(
1 − kb,ij

)
, and (14)  

cmixture =
∑N

i=1
xici, (15) 

The constants a and b, as a function of Tc and Pc, are given by the 
following: 

For mixture calculations, the nonquadratic mixing rule proposed by 
Schwartzentruber and Renon (1989) [46] is applied with three 
temperature-dependent binary interaction parameters (kaij, kbij, andlij), 
that is, 

Where 

ka,ij = δa,0 + δa,1T +
δa,2

T
, (ka,ij = ka,ji), (16)  

kb,ij = δb,0 + δb,1T +
δb,2

T
, (kb,ij = kb,ji), (17)  

lij = l0 + l1T +
l2

T
, (lij = − lji) (18) 

The binary interaction coefficients, polar parameters, and volume 
translation (ka,ij, kb,ij, lij, pi, andci) are all fine-tuned using experimental 
data in the reference data section. 

PC-SAFT Equation of State 

The PC-SAFT is the second type of EoS investigated in this work. The 
PC-SAFT is based on statistical mechanics similar to any high-order 
SAFT EoSs [68,69] developed by Gross and Sadowski using the pertur-
bation theory [70,71]. 

The theoretical bases of SAFT models are based on the first-order 
perturbation thermodynamic theory of Wertheim [72–74] to develop 
EoSs, such as those introduced by [75] and [69]. The perturbation-based 
models are often introduced to represent simplified solutions for a given 
molecular model. In PC-SAFT, the underlying molecular model is 

described as a coarse-grained representation of the molecules and their 
intermolecular interactions, as illustrated in Fig. 4. 

The principal idea of using the perturbation solutions is to split the 
total intermolecular forces into a reference term representing repulsive 
interactions and a perturbation or correction term that accounts for the 
attractive forces. The attractive forces are additionally split into various 
contributors. Theoretically, the first term is known, and the perturbation 
term is determined as a function of temperature, composition, and 
pressure or density. Once a perturbation term is selected, the rest of the 
remaining thermodynamic parameters are estimated using conventional 
thermodynamic formulations. 

The attractive intermolecular forces are further divided into different 
contributions. The PC-SAFT, similar to many SAFT EoSs, is expressed as 
an aggregation of the reduced residual Helmholtz free energy (Fres) for 
each contributor term that represents the type of intermolecular force in 
the system. The residual Helmholtz free energy is the same as the 
Helmholtz free energy at the same temperature and volume minus the 
ideal gas Helmholtz free energy. Thus, the molecular interaction forces 
for a specific number of molecules (Ni) for each individual component, 
volume (V), and density (ρ) in the PC-SAFT are written as follows: 

Fres

NikBT
=

f res

kBT
=

f hc

kBT
+

f hs

kBT
+

f disp

kBT
+

f assoc

kBT
+

f polar

kBT
, (19)  

where kB denotes the Boltzmann constant, and the right-hand expression 
in Eq. (19) represents the hard-chain reference fluid that characterizes 
the PC-SAFT. The superscripts for the various Helmholtz energy terms 
denote the contribution from the chain formation (hc), hard-sphere 
repulsion (hs), and dispersion (disp), association (assoc), and interpolar 
(polar) interactions, respectively. 

In PC-SAFT, three parameters for each pure component are incor-
porated to account for the nonassociating components: the number of 
molecular chain segments (M), dispersion energy between segments (ε), 
and either the diameter of the chain segment (σ) or volume of the chain 
segment (v00), respectively. For the pure components with association 
interactions, two more parameters are included: the association volume 
(κAB) and association energy between sites, the molecules (εAB). 
Following the methodology adopted in this work, the above parameters 
in PC-SAFT were adjusted to fit the experimental data used for the pure 
component vapor and liquid saturation pressures. 

The PC-SAFT can be extended to mixtures by modifying σmix and εmix 
using mixing rules [69,76] derived from the single-fluid theory by van 
der Waals, as indicated .below: 

σ3
mix =

∑n
i=1

∑n
j=1xiMixjMjσ3

ij
( ∑n

i=1xiMi
)2 , (20)  

εmixσ3
mix =

∑n
i=1

∑n
j=1xiMixjMjεijσ3

ij
( ∑n

i=1xiMi
)2 . (21) 

The association parameters, like the dispersion interaction, were 
calculated using Lorentz–Berthelot combining rules [69,70]. Accord-
ingly, the dispersion cross energy between segments (εij) and the 
diameter of the chain segment (σij) are given below: 

Fig. 4. Molecular model representing the perturbed-chain system in the PC-SAFT, demonstrating different interactions, including dispersion, dipole-dipole, and 
association. 

Table 2 
Experimental data for vapor-liquid equilibria (VLE) and solubility for H2–H2O 
mixtures [14].  

No. Reference Temperature range, K Pressure range, MPa 

1 [77] 273.15–373.15 2.5–101.3 
2 [78] 310.93–588.71 0.34–13.79 
3 [79] 323.15–423.15 3.18–15.37 
4 [80] 366.48–588.7 1.38–11.03 
5 [81] 373.15–573.15 2.1–10.0 
6 [82] 373.15–498.15 3.1–11.8 
7 [83] 310.95–366.45 1.38–13.79 
8 [84] 323.15–573.15 5.0–30.0 
9 [85] 323.15 10.13–101.33 
10 [86] 300–650 0.5–4.5  
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εij =
(
1 − kij

) ̅̅̅̅̅̅̅εiεj
√

, (22)  

σij = 0.5
(
σi + σj

)
. (23) 

The combining rules incorporate the binary interaction parameter 
(kij), allowing a direct comparison with other EoSs used in this work. 
Additionally, the binary interaction parameter can be used to apply a 
complex temperature dependence with multiple equation coefficients, 
such as the one used in this study, using the reduced temperature, as 
presented below: 

kij = aij +
bij

Tr
+ cijlnTr + dijTr + eijT2

r , (24)  

where aij, bij, cij, dij, and eij are equation parameters. The PC-SAFT, 
similar to the cubic EoSs, requires some optimization of the regression 
parameters in the binary interaction coefficients, as indicated in Eq. 
(24). 

Reference Data 

The thermodynamic properties of H2–H2O mixtures have been 
extensively investigated experimentally since 1927, covering a wide 
range of temperatures and pressures (up to 573K and 101.33 MPa). 
Rahbari et al. [14] provided a review of these experimental data 
(Table 2), which are used to validate H2–H2O VLE models in this work. 

This work uses the H2–CO2–H2O mixture to demonstrate the influ-
ence of impurity with CO2 on the performance of H2 solubility in liquid 
water and water in vapor H6. The phase equilibrium experimental data 
for H2–CO2 are required to validate thermodynamic models before 
modeling solubility (see Table 3). 

The properties of pure components found in H2 mixtures concerning 
the storage process in the investigated EoSs are listed in Table 4. These 
properties facilitate predicting the thermodynamic behavior of the 
mixtures using different EoSs. Predictions are calculated by regressing 
the binary interaction, polar parameters, and volume translation (ka,ij,

kb,ij, lij, pi, and ci) against the experimental data for the considered 
mixtures. 

Results and discussion 

The calibrated thermodynamic models were first generated using 
reference data points for the solubility calculations. Predictions were 
compared to the measurements at high temperatures and pressures to 
investigate the influence of pressure and temperature on solubility. 
Then, the influence of H2 impurity due to CO2 on solubility at various 
mixing ratios was assessed. 

Regression parameters for H2–H2O and H2–CO2 mixtures 

Regression for key EoS parameters was performed by comparing the 
calculated VLE envelopes for H2–H2O and H2–CO2 mixtures with 
measured reference data points. The selected parameters for the PC- 
SAFT EoS include ε/k, σ, and M, as listed in Table 5. The final opti-
mized parameters for PC-SAFT (kij) and SR-RK (kaij, kbij, andlij) for both 
mixtures, are presented in Tables 6 and 7, respectively. 

The SR-RK and PC-SAFT calculations for VLE diagrams at 367K for 
H2–H2O mixtures are displayed in Fig. 5a and 5b, respectively, where 
both EoSs obtain a reasonable match with the experimental data. 
Similarly, for H2–CO2 mixtures, the predicted VLE envelopes by the two 
EoSs agree well with the experimental data, as illustrated in Fig. 6a and 
6b. 

The RMSE (%) and average absolute deviation (AAD, in %) for the 
vapor and liquid pressure curves are listed in Table 8 for both mixtures. 
The results indicate low values for the RMSE (%) and AAD (%), which 
further support the qualitative matching in Figs. 5 and 6. 

The mixing of H2 and water feeds was simulated using a flash 
liberation model with a block separator unit under adiabatic conditions. 
The calculated vapor and liquid streams produced from the separation 
process were measured following the schematic in Fig. 3. The mixing 
and separation conditions were selected to mimic the solubility condi-
tions chosen from the experimental reference work in Table 2. The 
solubility data points are depicted in mole fractions of the liquid H2 and 
vapor H2O measured at various pressures, temperatures, and composi-
tional conditions. The results of the flash calculations at temperatures of 
298K, 323K, and 423K are provided in Fig. 7. The figure compares the 
solubility results calculated using SR-RK and PC-SAFT EoSs against 
experimental reference data for pressure values of up to 100 MPa. While 
classical PR and SRK EoSs fail to accurately predict the solubility of H2 

Table 3 
Review of experimental data for vapor-liquid equilibria (VLE) of H2–CO2 
mixtures.  

H2 mole fraction in 
liquid phase 

T range, K P range, 
MPa 

References 

0.0013-0.4720 219.9–303.1 1.07–96.65 [72,80,90–93,81–85,87–89]  

Table 4 
Critical properties and acentric factors (ω) for pure components commonly in 
H2–blend mixtures [94–98].  

Properties Unit H2 H2O CO2 CO 

Mw kg/kmol 2.0159 18.015 44.01 28.01 
Tc K 33.145 647.1 304.13 132.86 
Pc MPa 1.2964 22.064 7.3773 3.494 
ρc kg/m3 31.262 322.0 467.6 303.91 
ω Unitless -0.219 0.3443 0.22394 0.0497  

Table 5 
Adjusted PC-SAFT parameters for components in H2–H2O and H2–CO2 mixtures.  

Component ε/k(K) σ(Å) M 

H2 31.57 3.54 0.68 
H2O 150.17 2.61 2.58 
CO2 86.15 2.84 1.38  

Table 6 
Optimized coefficients of binary interaction parameters in PC-SAFT EoS for 
H2–H2O and H2–CO2 mixtures.  

H2 Mixtures kij = aij + bij/Tr + cijlnTr + dijTr + eijT2
r 

aij bij cij dij eij 

H2–H2O 2.262 -2.560 -3.424 0.000 0.000 
H2–CO2 0.047 -0.017 0.014 0.399 -2.449  

Table 7 
Optimized coefficients of binary interaction parameters in SR-RK EoS for 
H2–H2O and H2–CO2 mixtures.  

H2 Mixtures H2–H2O H2–CO2 

ka,ij = δa,0 + δa,1T + δa,2/T δa,0 4.048 1.172 
δa,1 -0.016 -0.003 
δa,2 66.576 -69.240 

kb,ij = δb,0 + δb,1T + δb,2/T δb,0 17.125 -2.678 
δb,1 -0.036 0.011 
δb,2 -1939.77 133.5 

lij = l0 + l1T + l2/T l0 10.198 -5.891 
l1 -0.017 0.032 
l2 -1563.2 252.8  
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and water vaporization with or without tuning the binary interaction 
parameters [14], the SR-RK and PC-SAFT EoSs demonstrate their 
capability to adequately calculate the solubility of H2 and H2O at the 
high temperatures and pressures, as depicted in Fig. 7. 

Nevertheless, the accuracy level of the solubility predictions varies 
with temperature and pressure. At low temperatures, the deviation be-
tween the calculated and experimental data for H2 in H2O becomes 
higher as the pressure increases to above 50 MPa. However, the devia-
tion in water vapor at 323K demonstrated a very good match at high 
pressures, even up to 100 MPa. The predictions follow the trend of the 
experimental data with acceptable deviation, indicating that both EoSs 
can be reliable in compositional and engineering simulators. However, 
careful attention should be exerted while using such models because the 
validation is only applicable within the considered ranges of pressure, 
temperature, and compositions in this study. 

Effect of temperature and pressure 

We studied the influence of temperature and pressure on H2 solu-
bility and water vaporization. The solubility of gas in water and its 
relationship to pressure is often expressed by Henry’s law, which relates 
the amount of gas dissolved to the partial pressure of the gas at equi-
librium with the liquid [99]. The relationship constant is called Henry’s 
law proportionality constant, symbolized by kH, and the mathematical 
formula of Henry’s law can be written as follows: 

Pg = kH × cg, (25)  

where Pg is the partial pressure of the gas phase, and cg denotes the 
volume of dissolved gas in the liquid. The value of kH depends on the 
nature of the gas and solvent. The law is only valid for infinite-dilute 
solutions in equilibrium conditions [100]. The relationship indicates 
that the solubility of gas increases with increased partial pressure at a 
constant temperature. However, Henry’s law has limitations in 
modeling solubility under high-pressure conditions or in nonideal fluids 
[99]. Such nonideal behavior is obtained by the EoSs at high pressure, as 
observed in Fig. 7a and 7c. An extended version was proposed by [101] 
for real (nonideal) fluid, formulated to relate the fugacity of the aqueous 
H2 (aH2 ,aq) component to the fugacity of the gaseous H2 (aH2 ,g) compo-
nent at equilibrium, that is, 

aH2 ,aq = K@P,T × aH2 ,g, (26)  
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Fig. 5. Experimental data and calculated phase diagrams for H2–H2O mixtures at 367K, using thermodynamic models: a) SR-RK and b) PC-SAFT.  
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Fig. 6. Predictions of the phase diagrams for H2–CO2 mixtures at various temperatures using thermodynamic models: a) SR-RK and b) PC-SAFT.  

Table 8 
Average absolute deviation (AAD, %) and root mean square error (RMSE, %) of 
the thermodynamic models using SR-RK and PC-SAFT EoSs for H2–H2O and 
H2–CO2 mixtures.  

Mixtures AAD (%) in mixture 
vapor pressure 

AAD% in mixture 
liquid pressure 

RMSE (%) 

SR-RK PC-SAFT SR-RK PC-SAFT SR-RK PC-SAFT 

H2 – H2O 1.84 2.53 0.18 0.24 3.97 4.91 
H2 – CO2 26.8 32.9 1.12 1.04 8.10 8.0  
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where K@P,T refers to the equilibrium constant of the dissolution of H2 at 
specific pressure and temperature values. Pray et al. (1952) experi-
mentally demonstrated the proportional linear relationship between H2 
solubility in pure water and the pressure of various isothermal experi-
mental systems, as predicted by Henry’s law (see Fig. 8a). Additionally, 
solubility was measured at isobaric conditions, capturing some 

nonlinearity with the temperature at high pressures, as illustrated in 
Fig. 8b. 

In this work, solubility was calculated under the same isothermal 
conditions using the selected EoSs and was plotted against the experi-
mental data, as displayed in Fig. 9. The models adequately capture the 
linear trend of the relationship, with better accuracy provided by the SR- 
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Fig. 7. Solubility of H2 in liquid water and liquid-water fraction in the produced vapor (i.e., water vaporization) calculated using SR-RK and PC-SAFT, compared to 
the experimental data at various temperatures: a), c), and e) are H2 solubility in liquid H2O at 298K [77], 323K [77], and 423K [79,81], respectively, and b), d), and 
f) are the H2O fraction in vapor H2 at 298K, 323K [84,85], and 423K [84], respectively. 
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RK than the PC-SAFT. Therefore, the SR-RK EoS was selected to study 
the solubility behavior of H2 and water content in the vapor phase at 
high pressures (up to 100 MPa pressure) for three isothermal 
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Fig. 8. Experimental solubility measurements of H2 in pure water by Pray et al. (1952) [86] expressed as a function of a) pressure at isothermal conditions and b) 
temperature at isobaric conditions. 
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Fig. 10. Solubility calculations from thermodynamic models of H2 into liquid H2O and H2O in vapor H2 in mole fraction (water vaporization) using SR-RK at 350K, 
450K, and 550K extended with pressure: a) solubility of H2 in liquid H2O and b) solubility of H2O liquid in vapor H2. 

Fig. 11. Flash liberation experiment schematic for the H2–CO2 mixture in one 
feed and the second pure water feed using Aspen Plus flowsheet simulation (v. 
12.0) [56]. 
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temperatures (350K, 450K, and 550K), as plotted in Fig. 10. 
The plotted solubility in Fig. 10a indicates a proportional relation-

ship with pressure up to approximately 50 MPa, at which the correlation 
becomes nonlinear, demonstrating the mentioned limitation of Henry’s 
law at higher pressures. The relationship of the water fraction to pres-
sure (Fig. 10b) indicates a sharp decline, with pressure at varying points 
depending on the temperature condition. Overall, the analysis empha-
sizes the high sensitivity of the H2 solubility in pure water and water 
vaporization at high temperatures and pressures. 

Influence of H2 Impurity 

Impurities are commonly found during various H2 processes, 
including storage and transportation, such as CH4, CO2, N2, O2, Ar, and 
H2S [15,102]. We investigate the influence of CO2 (as an example of an 
impurity) on the solubility of H2 in liquid H2O and H2O content in the 
vapor phase of the H2–H2O mixture. 

The solubility calculations were performed using a flash separation 
model to mix the feed of the H2–CO2 mixture in a flash tank under 
adiabatic conditions with pure water (Fig. 11). The first sensitivity run 
was performed using SR-RK for a wide range of temperatures from 323K 
to 473K and at a fixed pressure of 50 MPa. 

The results of H2 solubility in pure water indicate a significant effect 
of CO2 on the solubility behavior over a wide range of mixing ratios, as 
presented in Fig. 12a. In addition, the H2 solubility profile exhibits 
strong nonlinearity when the CO2 concentration in H2–CO2 mixture is 
between 20 % and 60%, particularly at high temperatures, depicting 
almost opposite behavior for a pure H2 feed solubility. As illustrated in 
Fig. 12b, the water vaporization behavior demonstrates a varying 
decline with temperature. The solubility calculated using SR-RK dem-
onstrates a major influence of impurity by CO2 and by temperature and 
pressure on both the H2 solubility in the liquid phase and the H2O 
vaporization behavior. 

Conclusion and remarks 

The present work proposes a modeling workflow to study the capa-
bility of the modified SR-RK cubic EoS and PC-SAFT in predicting the 
solubility of H2 in pure liquid H2O and H2O vaporization into the 
gaseous H2. The results obtained from SR-RK provided very good 
agreement with the experimental data, a major improvement of the 
classical cubic EoS. Similarly, PC-SAFT performed very good pre-
dictions. The results indicate that both EoSs are reliable to be used for 
compositional simulators and engineering applications. 

Furthermore, the demonstrated regression process provides an 

approach to better optimize the binary interaction parameters in SR-RK 
(i.e., kaij,kbij, andlij) and PC-SAFT (i.e., kij) for a wide range of pressures 
(0.34 to 101.23 MPa), temperatures (273.2K to 588.7K), and mole 
fractions of hydrogen (0.0004 to 0.9670). The flash liberation scenarios 
were generated using Aspen Plus and evaluated to calculate H2 solubility 
and water vaporization of known ratios at adiabatic conditions. The 
solubility values at different temperature and pressure conditions using 
SR-RK and PC-SAFT depicted very good predictions of the data trend. 
The observed deviation from the linear proportionality of the solubility 
at high pressures (i.e. above 50 MPa) confirms the known limitations of 
Henry’s solubility law at high pressures for nonideal mixtures. 

Finally, the influence of CO2 in the H2 blend mixture was evaluated 
to demonstrate the influence of impurity on H2 solubility in pure water 
and the water content in the vapor phase at various conditions. The 
simulated influence of the H2 solubility profile in water indicates the 
great influence of impurity due to CO2 on H2 solubility and water, 
particularly at higher temperatures and high mixing ratios. 
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