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Abstract: The current study focuses on minimising the bubbles in polyester-insulated ignition coils,
which were produced with a defect level of ~21–25% or 210–250 coils per 1000 batch size by using
the potting method. This high-level rejection makes a substantial financial impact by increasing
waste material, manufacturing, and after-sales costs. Hence, to control the bubbled problem without
using expensive and maintenance-heavy techniques, the process parameters in the potting method
were alternated and investigated using one factor at a time, which played a vital role in the forma-
tion/reduction of bubbles in the ignition coil insulation. Process parameters, including pre/process
heating, the appropriate MEKP/cobalt naphthenate ratio, the pouring amount/increments, and
the stirring speeds, reduced the bubble formation per lot from 205 ± 30 to 146 ± 25, 108 ± 21,
61 ± 17, and 10 ± 2 per 1000 lot accordingly. In addition, a comparative study was conducted in
terms of performance and life cycle endurance, using Japanese and Indian standards. Furthermore,
an after-sale warranty claim also supports the proposed changes in the potting technique. This
modification may reduce the after-sales rejection within two years to approximately ~85%. This
modification in the potting technique is extremely cost-effective in comparison to expensive processes,
i.e., vacuum-pressure impregnation and vacuum impregnation, which require extensive labour and
maintenance.

Keywords: polyester; bubble formation; high-quality insulation; failure possibility; waste reduction

1. Introduction

Ignition coils are a major component in automobiles, boilers, and generators that
provide ignition with a proper sequence [1,2]. Ignition coil step-ups need low to relatively
high voltages, i.e., 20–35 kV (depending upon design), to generate a reasonable spark [3,4].
Exposure to harsh conditions, including engine heat, oils, lubricants, loose mountings, and
greases, makes this task substantially challenging [5]. Additionally, bearing higher envi-
ronmental and engine-generated temperatures (~−40 to 150 ◦C depending on application)
makes these coils vulnerable [6,7]. Materials with an appreciably higher breakdown voltage
and dielectric strength are required. Epoxies are mainly used to insulate high-voltage coils
and applications [8]. However, prominent defects such as cracks significantly affect the
insulation quality [9,10]. However, polyester-based insulations usually contain a noticeable
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quantity of bubbles (see Figure 1). These bubbles affect the performance of the coil by en-
hancing the possibility of unnecessary discharges. Furthermore, the difference in coefficient
of thermal expansion between three different materials, i.e., copper winding, cured epoxy
insulation, and polypropylene capsule, causes cracking [11]. Therefore, polyester may
be preferred over epoxy-based insulations in this application. Moreover, bubbles mostly
entrap air, which is a good insulator of heat and electricity. Therefore, these bubbles do not
conduct heat properly, which causes the coil to heat up. Heating high-voltage insulation for
a longer period may cause a significant decrease in dielectric strength, ultimately leading
to failure [12]. Additionally, captured air may entrap tiny dust or other charged particles,
which can also contribute to the failure of the device by ionization. Besides, an increase
in bubble dimensions boosts the possibilities of failure in coils. Previous literature also
suggests that size, shape, position, and quantity inside insulation may noticeably enhance
the possibilities of partial discharges (PD) and ionization [13].
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Figure 1. The bubble and cracks inside the insulation of the ignition coil.

An improvement in dielectric strength with the addition of nano-fillers is usually
unlikely [14,15]. Likewise, the addition of ceramics, i.e., BaTiO3, SiO2, TiO2, and Al2O3,
were also ineffective in these applications [16]. Moreover, micro and nanocomposites
with thermosetting polymers are not an economical route. Therefore, effective methods
to remove the bubbles/voids from insulation need to be investigated stepwise. Hence,
an existing potting method was modified by changing several parameters during the
insulation process to minimise the percentage of bubbles in the ignition coils. However, its
non-economical maintenance entailed procedures and processes, i.e., vacuum impregnation
(VI) and vacuum pressure impregnation (VPI), which were used to mitigate bubbles-
related problems [17]. However, bubbles are formed in coils manufactured from these
two processes due to the development of partial pressure in the vacuum chamber. Partial
pressure, as a consequence, evaporates polyester itself, which also results in bubbles [18].
To the best of our knowledge, a reduction in the bubble percentage of ignition coils by
modifying the cost-effective potting method using the one-factor-at-a-time approach (OFAT)
additionally supported with process-related parametric analysis was not comprehensively
performed previously. Therefore, a thorough study needs to be performed on this specific
manufacturing problem.

In the present paper, a combination of values of factors is determined using a one factor
at a time approach (OFAT) to eradicate bubbles in polyester-based insulations of ignition
coils using the potting technique. These factors include pre and process heating of coils by
LEDs, accelerator/hardener quantity, pouring amount, and the application of centrifugal
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force. Additionally, the relationship of influencing factors is also presented to elaborate the
outcome statistically. Afterward, 10 coils from the improved lot are subjected to quality
tests (performance and endurance tests) based on IS-14380 and JIS D- 5121 and receive
after-sale claim analysis. The outcome of improved and previously manufactured coils is
compared. However, based on positive results, an amendment in the conventional potting
procedure is suggested.

The production of 21–25% of bubbled coils is major concern using the polyester
and potting method. This higher quantity of bubbles reduces the quality by enhancing
the chances of failure by increasing the probability of PD and corona. Therefore, the
potting method needs substantial improvement by manipulating the factors. Therefore, the
prime objective of this study is to improve the potting process to reduce the bubbled coils
percentage to at least less than 2%.

2. Materials and Methods
2.1. Materials and Curing Procedure

The general-purpose unsaturated polyester (UPR) resin was purchased from Al-Khair
chemicals (Pvt) Ltd. and used in the current study. The UPR was synthesised mainly by
the reaction of polypropylene glycol and maleic anhydride. The initiator comprises 50%
methyl ethyl ketone peroxide (MEKP) solution in dimethyl phthalate. Moreover, cobalt
naphthenate (accelerator) accelerates the reaction [19,20]. For making a coil insulation, the
initiator and accelerator are incorporated in UPR to initiate curing. The accelerator (cobalt
naphthenate) decomposes the initiator (50% MEKP solution in dimethyl phthalate) into
a free radical (as shown in Figure 2) [20]. Afterward, free radical attacks UPR and gets itself
attached to the UPR chain. UPR is also radicalised and further attacks styrene molecules.
Furthermore, styrene gets attached to the UPR chain and becomes radical to connect with
another chain (see Figure 2) [20].
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2.2. Manufacturing of Ignition Coil

The coils are manufactured using the potting method because it is economical com-
pared to the other six high-voltage impregnation techniques. 25.6 ± 0.20 g of the UPR
polyester resin was incorporated into the capsule. Additionally, the UPR polyester resin
was heated at 50 ◦C for 5–10 min before being poured into the capsules. All the coils were
manufactured using the Fontalba technique by over-molding the polyester insulation with
another polymer [21]. In our case, the polyester insulation was further over-molded by
polypropylene. The relative humidity was maintained at 35 ± 5% in all the experiments,
as per the American Society of Heating, Refrigerating and Air-conditioning Engineers
(ASHRAE) guidelines.
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2.3. One Factor at a Time Experiments

To find an adequate solution for bubble eradication, the OFAT approach is used in
which one factor is changed at a time while other factors are kept constant. The appropriate
input value of each factor is determined and kept consistent in the succeeding experiment.
Besides heating UPR before pouring it in capsules, 4-watt light-emitting diodes (LEDs) are
installed on all the coils’ partial assembly and placed inside the potting fixture. A lot of coils
are pre-heated for different amounts of time before polyester is poured inside the coils and
process-heated consistently after polyester addition by installed LEDs. The outcome of the
experiments on bubble percentage are recorded and analyzed. Furthermore, the quantity of
the initiator and hardener vary from the existing quantity, and its consequence on average
bubble formation percentage per lot (%BFPL) are also analyzed. In addition, the alteration
in pouring sequence (pouring UPR in single or multiple incremental amounts in coils) of
UPR is also performed, and its influence on bubble formation per lot is also analyzed. After
determining the appropriate value of other factors, the effect of angular velocity on bubble
formation percentage is investigated. Appropriate optimal values for each of the factors
are determined using experimental outcomes and combined to improve the conventional
potting technique. Finally, statistical relations are manipulated, which shows the interaction
between these factors and is also used to validate an improvement in modified insulation
manufacturing procedures. These statistical relations are also used to explain the possible
scientific reasons behind the increase or decrease in bubble formation percentage.

2.4. F and T Statistics

Statistical studies are assisted by analysis of variance (ANOVA). We conclude about
the significance of these outcomes by evaluating the sum of squares (SS), mean squares
(MS), and F-values. Moreover, SS is comprised of two prime factors, i.e., SStreatment and
SSError. The summation of these aforementioned factors (SSError and SStreatment) is equal to
SSTotal. Mathematically, SSTotal can be written as:

SSTotal = SSTreatment + SSError (1)

Likewise, SSError is estimated using Equation (2):

SSError =
n

∑
i=1

n

∑
j=1

(yij − yi.)
2 (2)

Equation (3) is further used to estimate SStreatment as:

SSTreatment = n
a

∑
i=1

(yi. − y..)
2 (3)

MS is determined by the ratio between SStreatment and the corresponding degree of
freedom/s (DOFs). In case of error and treatment, DOFs are N − a and a − 1.

MSTreatment =
SSTreatment

DOF
=

SSTreatment
a − 1

(4)

MSError =
SSError
DOF

=
SSError
N − a

(5)

The F-value can be estimated by an under-mentioned relation:

F =
MStreatment

MSError
(6)
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t-statistics were used for two or more input parameters related to a single output. Mathe-
matically, the t-statistics relation can be written as:

t =
β̂

SE
(

β̂
) (7)

In the above-mentioned relation, β̂ and SE
(

β̂
)

are the predictor and its error of re-
spective input parameter. Furthermore, t-statistics values are converted to their respective
p-values.

2.5. Testing Sample Coils

Afterward, coils are subjected to three different analyses, such as a performance test,
an endurance test and an after-sale warranty claim percentage. Performance and endurance
tests are conducted by creating a situation similar to the motion of a vehicle. Test equipment
for performance and endurance includes a motor connected to capacitor discharge ignition
(CDI), alternating to a direct current (AC/DC) converter, magneto and three-point specified
gaps between electrodes. Performance is analyzed using Indian standard (IS-14380) at
three different speeds, i.e., 1500, 2500, and 6000 rpm, for 5 minutes, having a three-point
spark gap of 5 and 8.5 mm, respectively, on the abovementioned testing equipment [22].
The reason for being subject to Indian standards is that most bikes are sold in south Asian
countries, i.e., India, Pakistan, and Bangladesh. Therefore, coils are tested in accordance
with Indian standard IS-14380. All the manufactured lots are subjected to a performance
test for 5 min. The coil is considered for rejection if it produces a distorted spark or no spark
during the specified testing time. Moreover, from the performance, the test percentage of
failed coils is calculated. The percentage reduction in conventional and proposed insulation
manufacturing is used for analysis. Afterward, an endurance test (JIS D-5121) is performed
on a hundred coils randomly selected from both the lots (the existing and the proposed
method) on the aforementioned machine. Coils are subjected to the motor running at
3000 rpm and 20 kV voltage is applied between two electrodes at a three-point spark
gap of 12.5 mm, continuously for 300 h as per the JIS standard [23,24]. Finally, after-sale
warranty claims analyses of coils within two-year periods of usage are also considered
for existing and modified lots of coils. The final comparison between conventional and
modified potting techniques is made based on the percentage of coils received within
two years’ time.

3. Results
3.1. Pre and Process Heating of Coils

Coils are preheated before UPR is poured inside capsules. Four-watt LEDs are used to
preheat the coils for 15, 30, 45, 60, 75, 90, and 120 min, respectively, for the installed LEDs
in the potting fixture. Furthermore, the consistent heating of UPR is performed by the
LEDs inside the capsule at TProcess = 50 ± 5 ◦C until it is cured. Moreover, Figure 3b depicts
that preheating the coil exponentially affects the bubble formation percentage up to ~55 to
60 min. The results show the effect of pre-heating on %BPFL by decreasing bubbled coils
from ~22 to 14.7% (as shown in Figure 3a). The exponential relation (see Equation (17))
perfectly fits the data set with the fitting parameter as yo = 14.50 ± 0.70, A = 9.64 ± 1.90,
and Ro = −5.31 × 10−4, with the statistical relation error α = 0.1 (as exhibited in Table 1).
Equation (17) almost confirms the exponential decrease in percent bubbled coils up to
55 ± 5 min. Intercept yo represents the minimum bubble proportion in the manufactured
coils with preheating above 60 ◦C, i.e., 13.07 ± 1.70%. Similarly, the slope or pre-exponential
constant (A) of the relationship represents the difference between two failure percentages,
i.e., without and with treatment. Beyond 55 min, no considerable effect of preheating is
observed on bubble formation, which is also confirmed by the first derivative (as depicted
in Figure 3c,d). Similarly, the size of spherical bubbles is also reduced significantly in
comparison to conventional procedures (1.13 to 0.33 mm2) (see Figure 4). However, the
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effects of pre-heating time and process heating on elliptical bubbles are smaller (3.5 to
3.2 mm2) (as evidenced in Figure 4).
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Table 1. An ANOVA analysis of the multiplication factor of the process temperature and the preheat-
ing temperature against the % bubble formation per lot—Part 1.

Variables DOF Sum of Squares Mean Square FValue > F0.1,v1,v2 p-Value

Regression 3 2008.71 669.57 1914.61 > 3.07 <0.1
Residual 7 2.448 0.34972

Uncorrected
Total 10 2011.16

Corrected Total 9 18.6066

We assume the rate of change %BPFL w.r.t. preheating time. The derivative equals the
exponential of constant Ro the process temperature and preheating time.

d (%BPFL)
dtPreheating

= eRoT·tPreheating (8)
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where T is also the constant process temperature.

d(%BPFL) = eRoT·%BPFL·tPreheating dtpreheating (9)

Taking the integral on both sides of the relation∫
d(%BPFL) =

∫
eRoT·tPreheating dtpreheating (10)

(%BPFL) + C1 =
1

RoT
(eRoT·tPreheating) + C2 (11)

(%BPFL) =
1

RoT
(eRoT·tPreheating) + C2 − C1 (12)

(%BPFL) =
1

RoT
(eRoT·tPreheating) + C3 (13)

(%BPFL) =
1

T·Ro
(eRoT·tPreheating) + C3 (14)

(%BPFL) =
1

C4
(eRoT·tPreheating) + C3 (15)

where (C3) and can be written/replaced by another constant yo or intercept of this relation
and slope 1/C4 = C5 = A.

(%BPFL) = C5 (e
RoT·tPreheating) + C3 (16)

%BFPL = yo + A × e[Ro Tprocess×tpreheating] (17)
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by keeping the process temperature constant.

3.2. Effect of Initiator and Accelerator

In these trials, the best outcome obtained (based on particular input parameter/s
and conditions) were unchamged (it was determined in the aforementioned experiments).
Several quantities of hardener and accelerator are mixed with polyester for curing. The
outcomes of these experiments reveal that with an increase in hardener and catalyst bubble
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formation, the percentage also increases per lot. The bubble percentage increases because
the gel formation time duration reduces, which hinders more entrapped air form escaping
from the environment [25]. The available literature also suggests that increasing the applied
temperature, hardener and catalyst enhances the reaction rate due to an increase in the
degree of cure. Hence, air lacks sufficient time to escape in the environment. Similarly,
a reduction in the amount of hardener and accelerator reduces bubble formation. The
experimental results exhibit that MEKP and the accelerator (cobalt naphthenate) are 1.2 and
0.3%, as seen in Figure 5a. Similarly, the contour analysis supported with ~90% significance
level using Equation (22) suggests that the suitable amount of the initiator (50% MEKP)
and accelerator (cobalt naphtenate) are ~1.2 and 0.3%, respectively, as shown in Figure 5b
and Table 2.
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Figure 5. (a) The experimental data on various concentrations of accelerator and initiator (by weight
%) on %BFPL. (b) The theoretical estimated values of the accelerator and initiator on the %BFPL
ignition coil exhibited by the contour plot using Equation (22).

Table 2. An ANOVA analysis of the multiplication factor of the process temperature and the preheat-
ing temperature against the % bubble formation per lot—Part 2.

Predictor Coefficient
(β)

Standard Error
(SE) t = β/SE p-Value

Correction factor (βo) 11.576 7.00 1.65 0.098
MEKP wt% −6.96 3.299 −2.11 0.041

Cobalt naphthenate wt% 20.25 2.741 7.46 0.001

Equation (22) can be derived by assuming the ratio between change in the %BPFL w.r.t.
quantity of the MEKP and the cobalt naphtenate, which is assumed to be equal to K.

d (%BPFL)
d(k1MEKP + k2Co)

= K (18)

∫
d(%BPFL) = K·k1

∫
d
(

MEKP + K·k2

∫
d(Co)

)
(19)

where K.k1 and K.k2 are replaced by C1 and C2, respectively.

%BPFL = C1(MEKP) + C2(Co) + Co (20)
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Which can further be written as:

%BPFL = β1(MEKP) + β2(Co − Napthenate) + βo (21)

%BFPL = βo + β1 × (%MEKP) + β2 × (%Co − Napthenate) (22)

Relatively reduced percentages and sizes of bubbles are observed on the abovemen-
tioned quantities of the MEKP and the cobalt naphthenate by experimental results and the
statistical model.

3.3. Incremental Pouring

Assuming a decrease in %BPFL w.r.t. to a pouring weight of resin can be related to the
undermentioned relation:

d (%BPFL)
dW

= −(%BPFL)× C1

Co
(23)

d (%BPFL)
%BPFL

= −dW × C1

Co
(24)

∫ d(%BPFL)
%BPFL

= −C1

Co

∫
dW (25)

ln(%BPFL) + C2 = −
[

C1

Co
W +

C3

Co

]
(26)

ln(%BPFL) + C2 = −
[

C1W + C3

Co

]
(27)

ln(%BPFL) + C2 = C1C3

[
−C3W − C1

Co

]
(28)

Taking an exponential on both sides of the relation, we get:

%BPFL ×
(

eC2
)
= eC1C3 ·e[

−C3W−C1
Co ] (29)

%BPFL + (C4) =
eC1C3

eC2
·e[

−C3W−C1
Co ] + C4 (30)

%BPFL + C4 = A·e[
−C3W−C1

Co ] ∓ C4 (31)

On left side of relation consider change in %BPFL negligible by putting C4 = 0 on left
hand side. Additionally, considering C3 = 1, C4 = C5 + C6 (on righthand side).

%BPFL = A·e[
−W−C1

Co ] + C5 + C6 (32)

where C5 + C6 = yo or y-intercept, C1 = Wo, Co = Wcrit, accordingly.

%BPFL = A·e[
−W−Wo

Wcrit
]
+ yo (33)

The polyester resin is mixed with the aforementioned percentages of the cobalt naph-
thenate and the MEKP. The approximate weight of the polyester solution, including the
MEKP and cobalt naphthenate, is 26.05 ± 0.03 g. This quantity of polyester is added in
a single step and incremental steps in each coil. Results depict that the coils formed in
higher increments had a lower percentage of bubbles. The exponential decreasing be-
haviour of %BFPL can be ascribed to Equation (33), where y-intercept yo = 11.0 ± 0.6 and
slope A = −5.76 ± 0.5 having the p-value < 0.1 (refer to Table 3). The slope and intercept of
Equation (33) represent %BFPL at one and five increments. Moreover, the fitting parameter
(Wo) depicts the minimum pouring quantity of the polyester resin (4.79 ± 0.3 g), which sub-
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stantially reduces the bubbles percentages. Similarly, Wcrit depicts the minimum quantity
below which there is no considerable decrease in percentage bubble formation per lot. Phe-
nomenologically, the percentage of bubbled coils declines exponentially with an increase
in incremental amount. However, beyond five increments, no substantial improvement
in bubble reduction is observed (see Figure 6a). Especially, spherical bubbles are mostly
eliminated; however, some elliptical bubbles remain, which need to be further investigated
(as depicted in Figure 6b).

Table 3. An ANOVA analysis of pouring quantity against % bubble formation per lot.

Variables DOF Sum of Squares Mean Square FValue > F0.1,v1,v2 p-Value

Regression 4 7041.148 1760.287 385.484 > 4.11 <0.1
Residual 4 18.26573 4.56643

Uncorrected Total 8 7059.413
Corrected Total 7 473.4712
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coil lot. (b) The effect of incremental pouring on the bubble sizes of elliptical and spherical bubbles.

3.4. Dipping Electric Stirrer at Various Speeds

Keeping all the values of the abovementioned factors constant, an additional factor
is added to the analysis. An electric stirrer is dipped inside the polyester-impregnated
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capsules and rotated at various angular speeds. The fallouts depict that initially with an
increase in angular speed (from 20 to 30 rpm) of the stirrer, the bubble formation is reduced
to ≤2% (shown in Figure 7). Figure 7 further depicts that after 30 rpm bubble formation,
the percentage per lot increases again. The behaviour is depicted by a typical second-order
polynomial relation (as evidenced by Equation (39) and Figure 7). Hence, the second-degree
polynomial relation perfectly fits the obtained data results with 90% confidence interval (as
shown in Table 4).

%BPFL = Co + C1

(
wspeed

)
+ C2

(
w2

speed

)
(34)

%BPFL
dω

= (ω + C) (35)

%BPFL = (ω + C)· dω (36)∫
%BPFL =

∫ (
ω·dω +

∫
C·dω

)
(37)

%BPFL = k1
ω2

2
+ k2ω + ko (38)

%BPFL = Co + C1

(
wspeed

)
+ C2(w2

speed) (39)
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Figure 7. The effect of angular speed of the electric stirrer, dipped inside the capsule, on the percentage
of bubble formation per lot.

Table 4. An ANOVA analysis of the second-degree polynomial relation with the stirring speed.

Variables DOF Sum of Squares Mean Square FValue > F0.1,v1,v2 p-Value

Regression 3 1170.99016 390.33005 186.24 > 4.19 <0.1
Residual 4 8.38318 2.09579

Uncorrected Total 7 1179.37333
Corrected Total 6 635.32739

3.5. Testing of Coils and Analysis of Results

Entire sample lots are subjected to performance tests. The outcome of the performance
test depicts that at 1500 rpm, 2% of the manufactured coil from the existing procedure was
rejected. However, no single coils were rejected at 1500 rpm that were manufactured from
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proposed technique. Similarly, coils produced from the conventional procedure were also
run at 2500 and 6000 rpm, respectively, and it was observed that 6 and 19% of coils were
rejected, respectively, due to improper or no discharge. Conversely, from the proposed
manufacturing procedure at 2500 and 6000 rpm, less than 1 and 2.5% of the coils were
rejected, respectively, as shown in Figure 8a. This result shows the significance of the
proposed method.
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Figure 8. (a) The failed coils’ average percentage during the performance test of the existing and
modified manufacturing technique at 1500, 2500, and 6000 rpm. (The spark gap at 1500 rpm is 5 mm,
while at 2500 and 6000 it is 8.5 mm as per IS-14380). (b) The failed coils mean the percentage during
the endurance test of the existing and modified manufacturing technique at 3000 rpm. (The spark
gap at 3000 rpm is 12.5 mm, as per JIS D-5121 standard). (c) A depiction of the average percentage of
an after-sale warranty claim received for the existing and modified technique.

A hundred coils were randomly selected from the consecutive two lots manufactured
using both the methods (conventional and modified). In addition, all the sample coils were
subjected to an endurance test, which was performed for 300 h continuously. The failure
rates of coils manufactured from the conventional potting procedure were from 20% to
25%. However, after running for 300 h, only 2 and 4% of the coils of the modified method
were not qualified during the analysis (as shown in Figure 8b). Upon a close investigation
of the failed coil (from the modified method), it was found that they had small bubbles that
may remain, possibly due to the improper dipping of the electric stirrer.

An after-sale claim analysis further validates and supports the improved procedure.
Five consecutive lots prepared from both the method (conventional as well as modified)
were mounted on motorbikes. Subsequently, all the motorbikes were sent to dealers to be
sold. After selling most of the bikes, their warranty claim records were monitored. After
the passage of two years of the sale of these bikes, it was found that less than 2% of the
coils were received, which were manufactured from a modified procedure compared to
12% from a conventional procedure (clearly shown in Figure 8c). This further supports
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the idea that the modification in the potting method was necessary for the production of
high-quality products.

4. Discussion

Three prominent reasons for bubble formation are the entrapment of gases/air during
the filling of these resins in respective packing bottles. Moreover, during the mixing of
polyester resin with accelerator and hardener, air present inside the mixing container may
also become trapped. Similarly, air and moisture content present inside the molding cup
may also become entrapped in the polyester solution [25]. The dominant heterogeneous
nature of air and polymers results in higher proportions of undissolved gas to nucleate
bubbles [26]. Preheating coils at 55 ± 5 ◦C possibly reduced bubble formation per lot due
to the evaporation of moisture content. As aforesaid, the reason is also validated from
the available literature, which supports the contribution of absorbed moisture in bubble
formation [27,28]. Additionally, after pre-heating coils for 55–60 min, a significant amount
of moisture evaporates; therefore, further, pre-heating does not noticeably contribute
towards bubble percentage reduction.

Increasing the bubble dimensions enhances the possibilities of failure in coils. There-
fore, the chances of unnecessary discharges (including partial discharges and corona)
increase. The findings of Adhikari et al. [29] also validate the abovementioned fact and lead
one to further conclude that the probability of partial discharges occurrence increases in
polymer-based insulations with the rise in bubble sizes. However, partial discharges occur
more severely in cylindrical-shaped bubbles than in circular bubbles. Similarly, bigger
bubbles and higher relative humidity provide suitable conditions for partial discharges
and corona [24,30].

The bubble percentage increases because the gel formation duration decreases, which
hinders more entrapped air from escaping into the environment [31]. The available litera-
ture also suggests that increasing the applied temperature, hardener, and catalyst enhances
the reaction rate due to an increase in the degree of cure [32,33]. Hence, air lacks sufficient
time to escape into the environment. Similarly, a reduction in the amount of hardener and
accelerator reduces bubble formation. The previous literature suggests that the quantity
of MEKP is ~2% by weight [34,35]. However, the previously determined amounts of the
aforesaid chemicals (MEKP and cobalt naphthenate) result in a relatively higher percentage
of bubbles (see Figure 5a,b). Furthermore, the quantities of MEKP and cobalt naphthenate
stated in the earlier literature are not suitable for 25.6 ± 0.02 g of general-purpose UPR used
in the manufacturing of ignition coil insulation. Additionally, relatively higher pouring
increments also facilitated the air evacuation and provided appropriate opportunities to
easily escape from the environment. The addition of the higher proportions of MEKP and
cobalt naphthenate in the polyester resin enhances the radical formation, which ultimately
combines other radicalised species or polyester resin chains to complete unpaired electrons
and terminates the reaction. As a consequence, some monomers of the polyester resin
remain unattached to the polymer chain, resulting in premature curing (see Figure 5a,b).
The role of radicals in terminating the reaction is also mentioned in the literature for radical
polymerization [36]; this may contribute to a higher proportion of bubbles and voids. Pour-
ing in five increments seems to be the most suitable option for this process. An additional
increase in pouring increments had no substantial effect on %BFPL.

An increase in the percentage of bubbled coils can be ascribed towards the release of
dissolved air inside the resin at relatively higher angular speeds. In addition, the removal
of elliptical bubbles is difficult because they are concealed inside bobbin-designed spaces.
Therefore, the confiscation of elliptical bubbles occurred due to the application of centrifugal
forces, which are produced due to the electric stirrer angular motion. Consequently, the
centrifugal force pushes the bubbles away from designed spaces in the bobbin. Bubbles
move away from the bobbin and towards the capsule’s internal surface. Finally, heat
gained via the polyester resin by LEDs forces entrapped air to evacuate the liquid polyester
resin. The IS-14380 results were also in agreement with the results of Islam et al., at
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1500, 2500, and 3000 rpm, accordingly [37]. Islam et al. used 0.05% or 1.28 kg per lot of
chopped fiber glass in polyester, which is an uneconomical method [37]. However, our
study reported a significant improvement without the addition of any costly procedure or
material addition.

5. Conclusions

The potting process was studied and modified based on obtained results. The follow-
ing conclusions can be systematically drawn, which are under-mentioned:

• In the existing potting technique, 210–250 bubbled coils per lot are produced. These
manufactured coils are wasted or usually received in market claims bearing consid-
erable financial losses. Therefore, the aforesaid technique is improved by pre- and
process heating of the coil for ~55–60 min for 50 ± 5 ◦C before and after pouring UPR,
which reduces bubbled coils 1.31 times. Moreover, the UPR heated at 50 ± 5 ◦C is
mixed with the accelerator/initiator (at 0.3 and 1.2%); poured in five increments; and
further reduced to 1.89 and 3.36 folds, respectively.

• Dipping the electric stirrer inside the capsule forces elliptical bubbles towards the
capsule’s inner-surface. Hence, most of the air escapes from the environment. Fur-
thermore, lots manufactured using this modified technique were almost minimised
25.6 folds.

• IS-13480 and JIS-D5121 quality tests validate that non-qualified or failed specimens
decreased by applying the OFAT approach stepwise. Additionally, after-sales claim
tests also validate the effectiveness of the improved technique in producing high-
quality coils.

• Based on the abovementioned results, suitable combinations of pre-treatment temper-
ature, initiator/catalyst amount, pouring amount, and stirring speeds are extracted to
alter the process and achieve minimum bubbled coils. This modification may reduce
the waste material to approximately ~85%, which is received as a market claim within
two years.

• The surface treatment of polymeric materials, i.e., laser and plasma, can be performed
in future studies to tailor the dielectric strength and constant for high-voltage and other
applications. Similarly, functionalised and non-functionalised micro fillers can also be
investigated in making ignition coils and in the measurement of their properties.
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