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We numerically solve a generalized nonlinear
Schrödinger equation and find a family of pure-
quartic solitons, existing through a balance of positive
Kerr nonlinearity and negative quartic dispersion.
These solitons have oscillatory tails, which can be
understood analytically from the properties of linear
waves with quartic dispersion. By computing the
linear eigenspectrum of the solitons, we show that
they are stable, but that they possess a nontrivial
internal mode close to the radiation continuum. We
also demonstrate evolution into a pure-quartic soliton
from Gaussian initial conditions. The energy-width
scaling of pure-quartic solitons differs strongly from
that for conventional solitons, opening possibilities for
pure-quartic soliton lasers. © 2022 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

The experimental discovery of pure-quartic solitons (PQSs)
by Blanco-Redondo et al [1] has opened up a new direction for
the investigation of nonlinear wave effects. In contrast to conven-
tional solitons, which exist through a balance of positive Kerr
nonlinearity and negative quadratic dispersion, pure-quartic
solitons exist through a balance of the Kerr effect and negative
quartic dispersion. Though originally demonstrated in silicon
photonic crystal waveguides, some of the authors have subse-
quently shown that PQSs should also exist in silica photonic
crystal fibers [2], and indeed they should exist in any nonlinear
medium with a dominant quartic dispersion. PQSs are interest-
ing from a fundamental point of view and provide insights, for
example, into certain matter-wave solitons [3] and lattice solitons
[4]. PQSs are characterized by an approximately Gaussian shape
near the center, and an energy-width scaling relation that differs
from that of conventional solitons. This scaling makes PQSs
promising for use in ultrafast soliton lasers [5] and frequency
combs [6], and may explain the behavior of Titanium:sapphire
lasers operating at zero group-velocity dispersion [7].

The detailed stationary and dynamical properties of PQSs
have not yet been explored. Here we first analyze stationary
solutions: their shape, scaling relation and oscillatory tails. We
then show the existence of a nontrivial internal mode. Then

considering the dynamics, we find that PQSs are robust, and
may be generated from general initial conditions.

We can see heuristically why the existence of PQSs may be
expected. The (positive) nonlinear Kerr effect generates new red
frequencies on the leading edge of a pulse, and new blue frequen-
cies on the trailing edge. In conventional solitons the anomalous
quadratic dispersion causes blue frequencies to travel faster than
red frequencies, thus avoiding pulse spreading, and forming a
soliton [8]. The quadratic and quartic dispersion parameters are

respectively defined by β2 = dv−1
g

/
dω and β4 = d3v−1

g

/
dω3 .

As they have the same symmetry, the anomalous quadratic and
anomalous quartic dispersion have qualitatively similar effects,
with the group velocity increasing monotonically with frequency
for both. Thus quadratic and quartic dispersion might be ex-
pected to affect high-intensity pulses in similar ways.

For our theoretical model we use the generalised nonlinear
Schrödinger equation for the electric field envelope ψ under the
combined effects of quartic dispersion and a Kerr nonlinearity

i
∂ψ

∂z
− |β4|

24
∂4ψ

∂τ4 + γ|ψ|2ψ = 0, (1)

with z the propagation distance, τ the retarded time in the frame
of the pulse, γ the nonlinear coefficient, and β4 is negative. Un-
like the integrable nonlinear Schrödinger equation, Eq. (1) is non-
integrable, and exact analytic solutions are not known. Eq. (1)
strictly speaking has no soliton solutions; nonetheless for conve-
nience we will use this term in the discussion below.

We search for stationary solutions of Eq. (1) of the form

ψ(τ, z) = u(τ; µ)eiµz, (2)

so the soliton shape is preserved with propagation. Parameter
µ is a nonlinear phase shift, and is used to identify members
of the family of solutions. For PQSs, µ increases monotonically
with peak power. For the solution to be stationary in one dimen-
sion it must have a uniform temporal phase, so without loss of
generality we take u(τ; µ) to be real.

Substituting ansatz Eq. (2) into Eq. (1) gives

− µu− |β4|
24

d4u
dτ4 + γu3 = 0. (3)

This nonlinear ODE is solved by the Newton conjugate-gradient
method [9]. The resulting numerical solution for the intensity
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profile |u(τ)|2 of the PQS is shown in Figs 1(a) (linear scale)
and 1(b) (logarithmic scale), for β4 = −2.2 ps4 mm-1, γ = 4.07
W-1 mm-1 and µ = 1.76 mm-1, corresponding to the parameters
in the experiments of Blanco-Redondo et al [1]. In contrast to
the hyperbolic secant shape of conventional solitons, PQSs have
periodic oscillations in the exponentially decaying tails. Similar
oscillations, but in the presence of both negative β4 and β2, have
been reported by Akhmediev et al [10].
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Fig. 1. (a) Power versus time for a PQS (linear scale), as found
by the Newton-CG method. β4 = −2.2 ps4 mm-1, γ = 4.072
W-1 mm-1, µ = 1.76 mm-1. (b) Same as (a), but on a logarith-
mic scale, showing oscillatory tails. (c) Normalised spectra
(blue solid) of the PQS of (a) compared with conventional soli-
ton (red dashed), both of FWHM w = 1.20 ps. (d) Same as (c),
but on logarithmic scale.

Though PQSs do not have a Gaussian shape, near the peak
the PQS appears to be approximately parabolic on a logarith-
mic scale (Fig 1(b)). This explains the Gaussian profile initially
reported [1]. The low-power oscillating tails are only captured
by the high accuracy of our numerical method, and are not ob-
vious on a linear intensity plot. The ratio of intensities of the
next-order peaks to the main maximum is 0.0014.

We can understand the oscillations analytically by neglecting
the nonlinear term in Eq. (1) for the low-intensity tails. The
remaining equation −µu− |β4| u′′′′/24 = 0 is linear, and has
solutions that are a superposition of terms of the form

u(τ; µ) ∼ e±(24µ/|β4|)1/4(1±i)τ . (4)

Since the solution is real, the leading and trailing edges of PQSs
must be of the form

u(τ; µ) ∝ e±(24µ/|β4|)1/4τ cos
(
(24µ/|β4|)1/4τ

)
. (5)

Thus in the tails the decay rate equals the oscillation frequency,
consistent with the numerical solution of Fig 1(b).

We now turn to the PQS spectrum, as it is straightforwardly
measured in experiments. Fig 1(c) compares the normalized
spectra ũ( f ) for the PQS in Fig 1(a) (blue solid) with a conven-
tional soliton (red dashed) of the same pulse width (full-width
at half maximum) w = 1.20 ps. Using the full-width at half
maximum (FWHM) in both time and frequency, we find the
time-bandwidth product of PQSs to be 0.53, compared to 0.32
for conventional solitons. Therefore, for a given bandwidth, PQS

pulses are somewhat longer than conventional solitons. We can
account for the flatness of the PQS spectral maximum by relating
the curvature ũ′′(0) to the second order moment of the temporal
profile u(τ) (see Fig 1(a) for the PQS)

ũ′′( f = 0) = −
∫

τ2u(τ)dτ, (6)

which is dominated by contributions from the low-amplitude
tails. The oscillations in the tails of the PQS cause cancellations
in the integral, giving a small value of ũ′′(0) compared with
the positive definite temporal profiles of conventional solitons.
Fig 1(d)) shows that the PQS spectrum decays exponentially
with no zero crossings.

By further examining the PQS spectrum, we can clarify the
significance of the parameter µ. By taking the Fourier transform
of ansatz (2) with respect to space and time, we find

ψ̃ (Ω, Q) = ũ (Ω) δ(Q− µ), (7)

where Ω and Q are the temporal and spatial frequencies respec-
tively, and where the tilde (˜) indicates the Fourier transform.
This result is illustrated in Fig 2(a). It shows a single spatial
frequency µ, due to the δ-function in Eq. (7). In contrast, there
is a spread of temporal frequencies, represented by the color
scale on the horizontal line, corresponding to Figs 1(c) and 1(d).
Superimposed is the linear dispersion relation Q = −|β4|Ω4/24
(black curve) – the spectrum of any linear wave must lie on this
curve. Thus, µ quantifies the degree of separation due to the
nonlinearity between the soliton and the linear waves. Since the
two do not intersect, PQSs are robust against radiation loss [11].
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Fig. 2. a) Two-dimensional Fourier transform of the PQS in
Fig 1(c) (horizontal line), juxtaposed with the linear dispersion
relation (black). Spectral amplitude is shown by the color scale;
FWHM is indicated by red crosses. (b) Peak power versus
nonlinear phase shift µ for the PQS family. Solid blue line: nu-
merical results; yellow dashed line: scaling prediction. Green
star: PQS solution in Fig 1(a). (c) Energy-width scaling for the
PQS (blue solid; β4 = −10 ps-2 mm-1) and conventional soli-
tons (red dashed; β2 = −2.2 ps-4 mm-1). (d) Power versus time
for the PQS (blue solid) and conventional soliton (red dashed),
each with FWHM of 0.25 ps, indicated respectively by blue
circle and red diamond in (c).

Although in Fig 1(a) we show a single PQS solution, by a
scaling argument we obtain an entire family of solutions. Eq. (3)
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is invariant under the transformation

u→ αu, τ → α−1/2τ, µ→ α2µ, (8)

so there exists a continuous family of PQSs with the same pulse
shape but varying amplitudes and widths, parametrized by µ.
This is illustrated in Fig 2(b), showing peak power P0 versus µ.
Dimensional analysis shows that µ ∝ γP0. The yellow dashed
line represents the predicted P0 versus µ curve based on rescal-
ing the PQS solution shown in Fig 1(a) (green star in Fig 2(b)). By
numerically tracing the PQS family we find the blue solid line,
confirming the scaling, and find the proportionality constant

µ ≈ 0.62γP0. (9)

By comparison, for conventional solitons µ = 0.5γP0; thus for
a given peak power, the temporal profile of the PQS induces a
larger nonlinear phase shift than conventional solitons.

Under the transformations of Eq. (8), the pulse energy U =∫
|u|2dτ → α3/2U. Since the full-width at half maximum of the

temporal profile w → α−1/2w, we conclude that U ∼ w−3 [1].
By dimensional analysis and numerically tracing the PQS family,
we find the energy-width scaling relation of the PQS

U ≈ 2.87
|β4|
γw3 , (10)

whereas U = 4 cosh−1(
√

2)|β2|/(γw) for conventional solitons.
Figure 2(c) shows that for sufficiently narrow pulses with

w . 0.902
√
|β4/β2|, (11)

the energy of a PQS (blue solid) exceeds that of an NLS soliton
(red dashed) of equal width. This is exemplified in Fig 2(d),
which compares the PQS and NLS soliton for the blue circle and
red diamond in Fig 2(c). The dispersion coefficients used are
characteristic of the waveguide used by Blanco-Redondo et al.

For conventional solitons, we compare the relative sig-
nificance of dispersion and nonlinearity by introducing the
quadratic dispersion length LGVD = T2

0 /|β2| and the nonlinear
length LNL = 1/γP0, where T0 is the half-width of the intensity
at sech2(1) ≈ 0.42 of the maximum. The ratio LGVD/LNL = N2,
where N is the soliton number. For the fundamental NLS soliton
N = 1 [8]. We analogously define a quartic dispersion length
LFOD = T4

0 /|β4| for the PQS using the same definition of T0. For
the PQS family, we find numerically

LFOD/LNL = 0.26, (12)

consistent with the experiments of Blanco Redondo et al. [1].
Thus a lower peak power is required to excite a PQS than a
conventional soliton with the same dispersion length.

To investigate the stability and internal mode dynamics of
PQSs, we consider small perturbations f , g to the stationary PQS
u(τ), i.e.

ψ(τ, z) =
(

u(τ) + f (τ)eΛz + g∗(τ)eΛ∗z
)

eiµz, (13)

where the eigenvalue Λ characterizes the evolution of the per-
turbations. Substituting Eq. (13) into Eq. (1) and retaining only
terms linear in f and g yields the eigenvalue equations

−|β4|
24

f ′′′′ +
(

2γu2 − µ
)

f + γu2g = −iΛ f (14)

|β4|
24

g′′′′ −
(

2γu2 − µ
)

g− γu2 f = −iΛg, (15)

which we solve numerically by the Fourier collocation method
[12]. Fig 3(a) shows the eigenvalue spectrum for the PQS with
µ = 1.76 mm-1 (Fig 1(a)). As all eigenvalues are imaginary, no
linearized perturbations grow exponentially, so PQSs are linearly
stable. Thus, as for fundamental NLS solitons [13], sufficiently
close input pulses are expected to evolve towards a soliton.

-2 0 2

Re( )

-2

0

2

Im
(

)

0

Re( )

1.76

1.77

Im
(

)

a)

-20 -10 0 10 20

Time (ps)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d
e
 (

a
. 
u
.)

b)

0 2 4 6 8 10

z|
int

|/2

-6

-4

-2

0

2

4

6

T
im

e
 (

p
s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
o
w

e
r 

(W
)

c)

Fig. 3. (a) Spectrum of linearised eigenvalues Λ of the PQS
with µ = 1.76 mm-1. Green star at Λ = 0 represents the PQS
translational and phase invariance. Blue diamonds represent
PQS internal mode. Red points represent a continuum of ra-
diation modes. (b) Conjugate eigenfunctions f (τ) (blue thin
solid), g(τ) (red thick solid) for the internal mode shown in
(a). Yellow dashed curve: associated PQS solution for compar-
ison. (c) Evolution of PQS in Fig 1(a) when subjected to a 10%
perturbation by the internal mode in (b).

Further insights into PQS dynamics can be obtained from the
magnitudes of the eigenvalues in Fig 3(a). The red points form
a numerical approximation on a finite interval, to a continuum
of high spatial frequency perturbations which are not bound by
the PQS potential, and thus radiate into the far-field as disper-
sive waves [12]. The continuum edge is at Im(Λ) = ±µ. The
modes at Λ = 0 (green star) reflect the translational and phase
invariance of the PQS. Any discrete imaginary eigenvalues (blue
diamond) then correspond to internal modes of the PQS, shape
oscillations which only decay as the nonlinearity induces higher
harmonics within the continuum of radiation modes [12, 14].
With Λ occurring in complex conjugate pairs, PQSs have one
internal mode with

Im(Λint) = 0.9972µ, (16)

close to the continuum (Fig 3(a) inset). Thus the internal mode
may be susceptible to perturbations in realistic waveguides.

Figure 3(b) shows the internal mode, with the red thick solid
and blue thin solid curves showing the different phases of the
shape oscillation, represented by the conjugate eigenvalue pair.
The associated PQS is shown by the yellow dashed curve for
comparison. Figure 3(c) shows the results of a propagation
simulation when the PQS is subjected to a 10% perturbation by
its internal mode (blue thin solid curve in Fig 3(b)). The beating
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Fig. 4. (a) Evolution of Gaussian input with peak power
P0 = 0.7 W and FWHM w = 1.2 ps over 50 LFOD. β4 = −2.2
ps4 mm-1; γ = 4.072 W-1 mm-1. (b) Power versus time for the
Gaussian input (red dashed) and output after 50 LFOD (blue
solid) in (a). Corresponding PQS solution is shown by yellow
dotted curve. (c) Evolution of peak power over 50 LFOD for
Gaussian input pulses with varying amplitude multiplier N.
Color scale is normalized to each input peak power. (d) Evo-
lution of peak power (blue solid; left axis) and FWHM (red
dashed; right axis) for N = 2 in (c).

of the three terms in Eq. (13) leads to symmetric breathing, with
energy exchanged between the PQS center and its tails. This
oscillation occurs with a period 2π/|Λint|, as expected.

We now turn to PQS generation, first considering an initial
Gaussian pulse with the same peak power and width as a PQS.
The resulting evolution over 50 LFOD by the split-step method
in Figure 4(a), shows slight radiation of energy into the far-
field. Figure 4(b) shows the pulse at 50 LFOD (blue solid) and
the initial Gaussian pulse (red dashed). Using the average rate
of change of the nonlinear phase µ = dφNL

/
dz , we find the

corresponding stationary PQS solution (yellow dotted). Despite
the radiation into dispersive waves, the first zero crossing of
the PQS is reproduced at the correct location. Input pulses with
non-Gaussian profiles also appear to evolve towards a PQS [1].

We now examine the evolution of a Gaussian pulse which is
not matched to the correct PQS peak power, varying the input
amplitude while keeping the width fixed. This is analogous
to numerical higher-order NLS soliton experiments. Figure 4(c)
tracks the peak power over 50 LFOD, with input pulses generated
by applying an amplitude multiplier N (vertical axis) to the
Gaussian input (red dashed) in Fig. 4(b). N is therefore like a
soliton number (see discussion immediately before Eq. (12). We
normalized the color scale to the input peak power, so that the
excitation dynamics can be observed. While higher order NLS
solitons are observed when N > 1.5 [15], we see no evidence of
higher-order PQS solitons in Fig. 4(c). Instead we see persistent
oscillations of the peak power and pulse width about an average
value. Figure 4(d) illustrates these persistent oscillations for
N = 2 (corresponding to dashed line in Fig 4(c)). The average
peak power and width of the oscillating pulse are consistent
with the parameters of a PQS (P0 = 1.68 W, w = 0.97 ps), while
the oscillation period is consistent with the PQS internal mode.
We have checked that this applies for all values of N in Fig 4(c).
Thus, for these input powers PQSs are excited, with damped

small-scale shape oscillations. This is unlike NLS solitons, which
at high peak powers tend to evolve towards higher order solitons
with substantial periodic pulse reshaping. At low peak powers,
there is a threshold value of N ≈ 0.5 below which dispersion
dominates and no PQS is formed.

We have seen that the large basin of attraction allow for PQS
generation in realistic experiments with small-scale shape os-
cillations. While a thorough investigation of PQS collisions is
beyond the present scope, preliminary numerical studies, in
which the relative velocities of the PQSs are induced by a phase
ramp, indicate that collisions are inelastic. They lead either to
asymptotically free PQSs with revised parameters, or to a sin-
gle PQS with strongly excited internal mode, which provides a
degree of freedom for energy transfer in inelastic collisions [12].

Here we have characterized the stationary and dynamical
properties of PQSs. While our numerical Newton-CG method
has found stationary bound states of PQSs, held together by
the mutual interactions of their oscillating tails, a linear stability
analysis shows them to be at best metastable. Though the pa-
rameters used are characteristic of photonic crystal waveguides
[1], we established a scaling relation connecting all possible solu-
tions to a single numerical solution. The favorable energy-width
scaling relation, compared to conventional solitons, suggest that
PQSs may have applications in soliton lasers, where high power,
short pulses are desirable. However, further research, for ex-
ample, in the effect of Raman scattering or a gain medium, is
required to demonstrate the feasibility of such lasers. Finally,
though we have set β2 = 0 the inclusion of small values of β2,
does not affect our conclusions in any significant way.
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