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Scientific study of the behavior of complex physical and 
social systems over the past three decades has led to sig-
nificant insights about the world that classical approaches 

tended to oversimplify or to ignore (Bar-Yam, 2003). However, 
the application of complexity perspectives to education research 
is at a relatively early stage, although use of conceptual perspec-
tives from complex systems is increasing (e.g., Jacobson & 
Wilensky, 2006; Wilensky & Jacobson, 2014). For example, 
Bereiter and Scardamalia (2005) noted this influence in the use 
of complexity concepts in the education research literature: “self-
organization and emergence … [in] mainstream educational psy-
chology … [make it] increasingly apparent that there are no 
simple causal explanations for anything in this field” and “learn-
ing itself, at both neural and knowledge levels, has emergent prop-
erties” (p. 707; italics added).

We are also seeing suggestions that complexity perspectives 
provide important ways to understand more deeply educational 
change and have the potential to inform educational policy 
(Mason, 2008). Lemke and Sabelli (2008) have noted that the 
“education system is one of the most complex and challenging 
systems for research” (p. 128). They recommend combining 

conceptual perspectives about complex systems with computer 
modeling capabilities to inform policymakers about proposed 
interventions and their potential impact.

The main purpose of this article is to consider education as a 
complex system and to discuss conceptual and methodological 
implications. We review two recent studies for which complexity 
conceptual perspectives and methods allowed insights that may 
not have been revealed by conventional education research tech-
niques. We conclude with a consideration of how using complex 
systems’ conceptual and methodological tools can help advance 
education research that also informs policy.

Education as a Complex System

Scientific views of complex systems (sometimes referred to as the 
field of complexity) primarily come from research in the physical 
sciences, mathematics, and computer science (Gell-Mann, 1994; 
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Holland, 2006; Stuart Kauffman, 1993; Wolfram, 2002) and the 
social sciences (Byrne, 2013; Mason, 2008; Sawyer, 2005).1 To 
consider what it means to view education as a complex system, 
Jacobson, Kapur, and Reimann (2016) have proposed a Complex 
Systems Conceptual Framework for Learning (CSCFL), which con-
sists of a set of conceptual perspectives that are generally shared 
by complex systems relevant to education (see Table 1).

The CSCFL organizes these conceptual perspectives in two 
focus areas: collective behaviors of a system and behaviors of individ-
ual agents in a system. Key conceptual perspectives in the first focus 
area are: (a) interactions of individual agents or components of the 
system that often may be described in terms of simple rules; (b) 
feedback interactions between agents that may occur within or 
across system levels; (c) self-organization of agents in a system that 
typically result from the two previous conceptual perspectives; (d) 
sensitivity to initial conditions or chaos, where there is an amplifi-
cation of initial state differences in a system (often based on posi-
tive feedback interactions) that may contribute to major behavioral 
changes in a system; and (e) emergence, regarded by many scien-
tists as the most important complexity construct (Bar-Yam, 2003; 
Gell-Mann, 1994; Holland, 2006; S. Kauffman, 1995; Mitchell, 
2009). There is also a somewhat counter-intuitive aspect of emer-
gence, which is described by Jacobson et al. (2016) as the:

formation of collective properties at a macroscopic level of a system 
from simple behaviors of the parts, with those properties frequently 

are not found in the parts. For example, in a traffic system the 
macro-level formation of a traffic jam propagates backwards even 
though the individual cars at the micro-level general move forward 
as they speed up or slow down, with some lateral lane changes—
but rarely do the cars move backwards in traffic. (p. 211)

This example includes conceptual perspectives (a) – (d) of complex 
collective behaviors of a system while also illustrating key features of 
emergence, which are that the whole of a complex system is not 
merely the sum of parts (i.e., cars move forward), but are also often 
different than those parts (i.e., the traffic jam goes backwards) in 
key and perhaps even surprising ways (Casti, 1994).

Our reading of the complex systems and education literature is 
that, in general, the conceptual perspectives in the CSCFL focus 
area complex collective behaviors of a system, such as nonlinearity and 
emergence, have been emphasized. However, conceptual perspec-
tives in the focus area behaviors of individual agents in a system have 
received less attention, even though educational systems, in com-
mon with complex systems, “involve many components that adapt 
or learn as they interact” (Holland, 2006, p. 1). Holland proposes 
several important characteristics of how individual elements or 
agents behave, of which three are currently included in the CSCFL 
as being the most relevant for educational systems: (a) parallelism, 
(b) conditional actions, and (c) adaptation and evolution.

Parallelism is exhibited when agents in a complex system have 
simultaneous interactions with each other by sending and 

Table 1
Components of the Complex Systems’ Conceptual Framework for Learning With Examples

Complex Systems 
Conceptual Perspectives Complex Systems Example Learning or Educational Example

Complex Systems Focus Area: Collective Behaviors of a System

Agents or elements in system Ants foraging for food. Neurons in the brain.
Students in a classroom.

Self-organization Birds flocking. P-prims forming coordination classes.
Children forming groups on playground.

System levels Micro level of chemical interactions, macro level of 
chemical system equilibrium.

Individual student cognition, collaborative learning activities.
Vygotskian learning from interpersonal interactions that are 

internalized.
Sensitivity to initial conditions 

and nonlinearity
Butterfly effect. Gap in academic performance of low and high SES children increases 

from kindergarten to high school.
Cognitive activation in initial learning influences subsequent learning.

Emergence Classic “V” formation of flocking of individual birds. Collaborative interactions of students leading to convergence in 
problem solutions.

Emergence of conceptual understanding in conceptual change: “aha” 
moments.

Complex Systems Focus Area: Behaviors of Individual Agents in a System

Parallelism Numerous biological cells typically interact via a  
variety of protean signals.

Numerous brain cells activated during problem-solving tasks.
Collaborative learning activities.

Conditional actions If a wolf is hungry and sees a sheep, then the wolf  
tried to eat the sheep.

If a student is engaged they have greater persistence and greater 
subsequent learning.

Adaptation and evolution The wing coloration of the peppered moth changed  
(evolved) from mainly whitish/mottled to mainly 
darkish brown from pre- to post-industrial age Great 
Britain.

Young children often have “flat earth” mental models, primary school 
age children often have synthetic “hollow earth” mental models, and 
older students have “globe earth” mental models.

Source.Reproduced from Jacobson, Kapur, and Reimann, 2016.
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receiving signals. For example, students on a playground will be 
doing a variety of things simultaneously while talking and listen-
ing to each other (sending and receiving signals), some riding a 
swing or perhaps pushing a friend, others throwing a ball back 
and forth, playing hopscotch, and so on.

Conditional actions are how an agent might respond to 
received signals, often described with rules such as IF a certain 
signal is received, THEN act in a certain way. For example, if a 
soccer ball is close to a player (i.e., an agent in the system), then 
they would try to kick it, unless IF the player is the goal keeper 
THEN they would try to catch or deflect the ball. An important 
characteristic of complex systems is that the combination of rela-
tively simple agent rules, and the parallelism of many agents 
simultaneously acting based on these rules, can result in very 
complex and dynamically changing behaviors.

Adaptation and evolution is a particularly important concep-
tual perspective in complex systems, of relevance to educational 
systems in that the agents themselves change over time; that is, 
they learn.2 Gell-Mann (1994) has described learning as changes 
in an agent’s internalization of perceived regularities in their 
environment which, in turn, increases the agent’s potential for 
adaptive behavior in their environment. For example, students 
in a classroom may be regarded as agents in an educational com-
plex system who, at a given time, have certain internal cognitive 
structures and affective knowledge related to a subject, and who, 
over time at school, will (hopefully) construct (i.e., evolve) new 
or modified cognitive structures from their learning activities.

In closing this section, we note that Jacobson et al. (2016) do 
not claim that the CSCFL’s currently included complexity con-
ceptual perspectives are exhaustive. There are, of course, many, 
many more complexity concepts—such as autocatalytic systems 
(S. Kauffman, 1995), activation and inhibition (Bar-Yam, 
2003), bifurcations (Mitchell, 2009), and so on—that can also 
have relevance for understanding various aspects of education as 
a complex system. Still, we believe the CSCFL includes a reason-
able core of complexity conceptual perspectives relevant to edu-
cational and learning systems, and that these can be useful 
analytical tools for education researchers. For example, they can 
provide a principled way to reconcile the long-running debate 
between cognitive and situative theories of learning (Jacobson  
et al., 2016). In the next two sections, we consider how the 
CSCFL also has relevance for research and methodological issues 
concerning educational complex systems.

Complexity and Research Methodologies for 
Education

We now shift our focus from the CSCFL to considering implica-
tions for methodologies used for education research and to 
inform policy about educational systems. But first it is important 
to establish how areas of education research and policy are con-
nected so that complexity perspectives can be valuable analytical 
tools to each. One key way is that the information flows avail-
able to inform policy decisions are constrained by the types of 
methodologies that have been developed and validated by educa-
tion and social sciences researchers.

Broadly speaking, existing methodological approaches for 
education research fall into two main categories: quantitative 

and qualitative (Firestone, 1987). Quantitative approaches 
(including experimental and quasi-experimental) are pervasively 
used in education research (Kapur, Hung, Jacobson, & Voiklis; 
Suthers & Hundhausen, 2003). Rooted in a positivist philo-
sophical tradition, quantitative methods typically seek to estab-
lish causal or quasi-causal explanations of design or intervention 
effects versus control or comparison conditions. In contrast, 
qualitative approaches have a phenomenological philosophical 
basis that seeks to describe and to understand educational con-
texts and environments. Although there are education research-
ers who exclusively use one or the other of these methodologies, 
since the late 1980s it has become increasingly common for edu-
cation researchers to use the different, but complementary, types 
of information generated by these two methodological perspec-
tives in order to understand the educational issue being investi-
gated (Firestone, 1987).

However, there is an important question that must be asked. 
Are the existing quantitative and qualitative methodologies—
whether separate or in combination—in fact sufficient for pro-
viding appropriate information and understandings of the 
dynamics of educational systems viewed from the complexity 
perspectives outlined in the previous section?

Unfortunately, the answer is no. Most mathematical tools 
commonly used in quantitative research (e.g., differential equa-
tions and statistical modeling) are linear tools that work by 
breaking a system into its components or parts, studying the 
parts individually, and then adding the parts together to form 
the whole. However, emergent phenomena in an educational 
complex system generally have nonlinear properties, which can-
not be analyzed by adding up the parts because the patterns at 
the macro-level of a complex system generally have different 
properties to the constituent parts at the micro-level of the sys-
tem. Holland (1995) argues, “Nonlinearities mean that our most 
useful tools for generalizing observations into theory—trend 
analysis, determination of equilibria, sample means, and so on—
are badly blunted” (p. 5).

There is another important limitation to quantitative and 
qualitative approaches: they are best suited to explaining and 
understanding what has already emerged (Epstein & Axtell, 
1996). For example, opinions, norms, convergence in group dis-
cussions may be viewed as intra- or inter-personal patterns. 
Once these emerge, then quantitative methods may explain 
aggregate-level relationships and qualitative methods may pro-
vide rich descriptions of these opinions, norms, or group interac-
tions. However, as Kauffman (1995) observes, the same trajectory 
of interactions may not have occurred, even if there had been 
similar initial conditions. In order to understand emergent phe-
nomenon in complex systems of education (and other domains) 
more fully, it is necessary to study and explain the patterns that 
actually unfolded, as well as the space of possible trajectories that 
could have unfolded.

For policy purposes, the space of possible trajectories for an 
educational system is of particular importance, as we discuss fur-
ther below. However, it is clear that the two predominately used 
methodological approaches available to education researchers 
and policy makers have fundamental limitations for understand-
ing two key components of the CSCFL—nonlinearity and 
emergence—in complex systems of education.
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We certainly acknowledge that quantitative and qualitative 
approaches each have value for the study of linear characteristics 
of educational systems in education research, as well as 
approaches that integrate or blend these methods (Firestone, 
1987). However, complex systems have regions where system 
behaviors are both linear and nonlinear. Jacobson and Kapur 
(2012) have argued that there is a “dialectical co-existence of 
linearity and non-linearity in terms of feedback interactions 
within and across levels of the system so that collective properties 
arise (i.e., emerge) from the behaviors of the parts, often with 
properties that are not exhibited by those parts” (p. 310). While 
currently used quantitative and qualitative techniques are gener-
ally appropriate for studying the linear dynamics of educational 
systems, it is important to ask what techniques are appropriate 
for studying the nonlinear dynamics of educational complex 
systems.

Jacobson and Kapur (2012) note that scientists conducting 
research into nonlinear dynamics in other complex systems areas 
(e.g., physics, biology, economics) have been developing and 
using a range of computer modeling techniques. They also pro-
pose that modeling methods such as agent-based models (ABMs) 
can function as a methodological complement to quantitative 
and qualitative approaches.

Briefly, there are two main types of computational modeling: 
agent-based models (ABMs) and equation-based models (EBMs) 
(Parunak, Savit, & Riolo, 1998). These two approaches have a 
similar goal, which is to create a computer model of a system, 
but they differ in two fundamental ways. First, they use different 
assumptions to define relationships between entities in the 
model. EBMs typically use quantitative formalisms such as alge-
braic or partial differential equations to express how entities in 
the system are related over time. In contrast, ABMs use algorith-
mical formalisms to represent the behaviors of the individual 
entities (i.e., agents) such as wolves eating sheep or teachers 
interacting with students, and then “turns them loose to inter-
act” (Parunak et al., 1998, p. 10).

Second, ABMs and EBMs differ fundamentally in terms of 
their respective direction of focus on levels.3 ABMs are often 
referred to as being “bottom up” in that they algorithmically 
model the behaviors of agents or component elements at a par-
ticular level of the system and then allow a focus “up” at emer-
gent behaviors at a higher level. In contrast, EBMs are often 
viewed as being “top-down” in that they also start at a higher 
system level but use equations to model component behaviors at 
a lower system level.

EBM methods are best suited if the interest of the modeler is 
at a macro-level of a system where the aggregate properties are 
reasonably well understood to the degree that they can be cap-
tured by equations and then used to explore different “what-if ” 
scenarios, such as a reduction in tax revenue during a recession 
that leads to a reduction in a school district’s budget and options 
such as increasing class size or reducing extra-curricular activities 
to balance the budget. In these examples, the macro level rela-
tionships between tax revenue, school budget, class size, and 
extra-curricular activities might be linear. However, EBMs do 
not consider micro-level interactions such as specific individuals 
who are out of work and thus pay few or no taxes, individual 
school staff having to make decisions about whether to purchase 

a greater number of chairs and other classroom supplies for 
larger classes or cut popular extra-curricular classes such as art, 
music, and sports, and so on. In general, if the behavior of a 
system is linear, then normalized assumptions about micro-level 
behaviors that contribute to the macro-level properties (such as 
we described) may be sufficient to generate a model that can be 
useful for certain types of education research or policy 
decisions.

However, what if the micro-level interactions and possible 
emergent properties at the macro-level are not necessarily well-
understood, or cannot be anticipated because of nonlinearity in 
the educational system of interest? In such circumstances, ABM 
approaches can be effective because they can focus on micro-
level interactions—for which there is often quantitative and/or 
qualitative data to inform the specification of agent-based 
rules—and then to allow model runs (i.e., turn them loose to 
interact) to explore various possible outcomes. This will, in turn, 
likely generate macro-level system behaviors that may or may 
not have been anticipated, as well as information about interac-
tions between micro- and macro-levels of the system. It is also 
possible to explore the model through multiple runs in order to 
gain insights into possible trajectories of what could have 
unfolded (S. Kauffman, 1995), such as by identifying attractors 
in a high dimensional space that may influence system behaviors 
(Gick, 1987).[AQ: 1]

We also note that ABM methods are increasingly being used 
not only in the natural sciences (Wilensky & Rand, 2015) but 
also in economics (Arthur, Durlauf, & Lane, 1997; Testfatsion, 
2006), business (Rand & Rust, 2011), sociology (Squazzoni, 
2012; Watts & Strogatz, 1998), and socio-cultural psychology 
(Axelrod, 1997; Epstein, 2006), to name a few areas. Grounded 
in complexity theory, ABM provides important theoretical and 
empirical insights into the dynamics of complex systems in the 
social sciences (Eidelson, 1997) .

We believe that ABMs, when integrated with quantitative 
and qualitative methods, can potentially reveal insights about 
the dynamics of complex systems of education across the range 
of levels and time scales, such as those discussed by Lemke and 
Sabelli (2008), which may not be possible through the use of any 
single methodology. We view the integration of complexity 
modeling with quantitative and qualitative methods as overlap-
ping and complementary (see Figure 1), with each method pro-
viding analytical tools for gaining different types of insights into 
the dynamics of the educational system issue being explored, 
while also providing analytical focus when used together (as sug-
gested by the Venn diagram overlap in the center of Figure 1). 
Further, we are beginning to see examples of education and edu-
cation policy research in which modeling methods such as ABMs 
are being productively used as an important complement to 
quantitative and qualitative approaches, which are discussed in 
the next section.

Studying Education as a Complex System:  
Two Research Case Studies

In this section we have selected two research case studies to 
illustrate the use of complexity conceptual perspectives and 
computer modeling tools. We believe that certain findings may 
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not have been identified with more commonly used quantita-
tive and qualitative education research methods and analytical 
perspectives. We discuss these two programs of research in 
turn.

Our first research case study is the work of Maroulis, Bakshy, 
Gomez, and Wilensky (2014) that involved the use of ABMs to 
study initiatives to provide parents with school choice in the 
United States. Briefly, proponents of school choice reform argue 
that competition introduced by allowing parents to select the 
schools their children attend will lead to better schooling and 
incentives for school reform. In contrast, opponents of this type 
of reform claim resources are drained away from schools and that 
school quality is thus hurt, not helped, by such a reform. 
Research into this issue, since the 1990s, has employed standard 
quantitative and qualitative methods, but studies have provided 
inconclusive and even conflicting findings.

Maroulis et al. (2014) investigated this policy debate by creat-
ing ABMs of a school district’s transition from a local neighbor-
hood school catchment area system to a school choice system. 
The agents in the system were schools and students. Schools 
agents varied in terms of the quality and building capacity of 
existing schools, and in that new schools entered the system by 
imitating top existing schools. Student agents varied in their 
ability and background, and they ranked schools according to 
achievement and geographic proximity. The academic achieve-
ment of the student agents combined individual traits and the 
value-added by the quality of the school they attended. Real data 
from Chicago Public Schools was used to initialize the model 
(see Figure 2).

The use of these ABMs helped identify dynamics—such as 
CSCFL conceptual perspectives of micro-macro levels, nonlin-
earity, and emergent properties—that had not been revealed in 
previous quantitative and qualitative research. Specifically, 
model runs demonstrated that the timing of new schools enter-
ing the system was a critical factor. The overall system improves 
because new schools entering the system imitate the top existing 
schools. However, a high emphasis on achievement at the schools 

lead to new schools entering the system earlier, which resulted in 
lower achieving new schools. Thus, there was a paradoxical mis-
match between macro-level and micro-level behaviors of the sys-
tem in that increasing the emphasis on school achievement at the 
household level did not generally lead to increasing achievement 
at the district level. From a policy perspective, results of using 
ABMs suggest that the critics of school choice reform were cor-
rect that school achievement in the overall system would not 
rise. However, the reason proposed by the critics—draining of 
resources away from existing schools—was not actually the 
causal factor; rather, it was the timing of new schools entering 
the system.

This ABM also provided other school choice policy insights, 
such as the unintended transfer of top students to private schools 
where vouchers issued by the government were used to pay for 
the private schooling, which was an emergent property of the 
changes in the Chicago Public School system (Maroulis et al., 
2010). Another unexpected dynamic of the Maroulis et al. (2014) 
model was that being a top-rated school (based on the mean 
achievement levels of its students) was an unstable (i.e., nonlin-
ear) state: the top-rated school attracted many new students, 
some of whom did not achieve as highly, thus bringing down the 
school’s achievement rating, so that another school became a top-
rated one. This unexpected insight from their modeling has pol-
icy implications for the domain being modeled. Many choice 
schools avoided this issue by being selective, but if school choice 
is really implemented in the so-called free market form that advo-
cates sketched out, then this instability will become a reality. That 
is, if students and parents really have choice and base that choice 
on the level of achievement by students at a school, then the 

Figure 1. Quantitative, qualitative, and modeling methods 
areas of overlap and distinctiveness.

Figure 2. Visualization from an agent-based model of school 
choice in Chicago, Illinois.
Note. Small dots represent students, large circles represent schools, 
circle size represents academic performance, and dark red and dark 
green colors show high and low poverty areas respectively 
Source. Reproduced from Maroulis et al. (2014).
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highest achieving school will get the most applications from a 
range of students which, if they have to accept all or a random 
selection of those students, will lead to that school no longer 
being a top-school. Or, to put it differently, what makes a school 
a top-school is precisely its selective admissions policy, which in 
fact is counter to a free choice model.

Our second case study involves the work of White and Levin 
(2016) and Levin and Datnow (2012) which used computer 
simulation models based on complexity theory to better under-
stand and guide educational change initiatives. In a study at a 
continuation high school (a school of last resort for students hav-
ing difficulties in regular high schools), several conceptual per-
spectives from complex systems, such as self-organization, 
feedback loops, equilibrium, nonlinearity, and emergence, were 
used to guide the implementation of a reform to provide access 
to higher education for these students. These complexity con-
cepts were also used as a means for understanding the ways that 
the reform unfolded, and to provide a guide (i.e., inform policy) 
for implementing similar reforms in other high schools.

Changing a stable complex system (i.e., one at equilibrium) 
requires a perturbation to how the agents interact with each other 
in order to shift to a different stable state. In their research, White 
and Levin developed the concept of a “purposeful perturbation,” a 
change in the everyday operation of education that both makes 
sense locally and moves the stable educational system away from 
the status quo, through a “tipping point” or nonlinear change, and 
then to a new desired stable state in which the educational reform 
becomes routine practice (i.e., a new equilibrium emerges). Several 
of these purposeful perturbations that were identified in the school 
reform design experiment research were captured in agent-based 
models by White and Levin (2016), within a modeling framework 
called multi-mediator modeling (MMM).

One of the MMM models they developed is shown in Figure 
3. The labeled orange circles represent the key concepts in the 
model, and the blue globes represent the impact of everything 

outside the model on the concepts in the model. Green lines 
show the positive impact that one concept in the network has on 
another concept, and red lines show the negative impact that a 
concept in the network has on another.

This model captures the initial effort of teachers involved in 
the reform (called ACCESS) to raise student expectations of 
their own capabilities for success in college-level academic work. 
This effort by teachers was opposed by the students’ low self-
expectations, which unfortunately were further reinforced by the 
low expectations of these students held by other staff members at 
the school. Still, the expectations of the students were raised in a 
nonlinear way, in part by the ACCESS teacher expectations and 
in part by the improved college placement test scores of the stu-
dents. However, the ACCESS change alone did not lead to a 
school-wide implementation of the reform. It was found that 
protection from the Principal of the school was needed along 
with the improved student scores over time in order to reach a 
tipping point, after which the ACCESS reform replaced the pre-
vious status quo programs at the school.

The White and Levin research demonstrates how conceptual 
perspectives from complex systems can inform and help analyze 
the changes in the school practices over time related to a reform 
initiative. The multi-mediator models provided runnable repre-
sentations of the key agents (e.g., teachers, students, school staff ) 
and factors changing the school environment (e.g., ACCESS 
reform) that resulted in outcomes from various runs of these 
models that aligned in key ways to the qualitative research find-
ings. In particular, the ability to model the tipping-points—the 
nonlinear changes—that were found illustrates our assertion of 
how computer modeling of complex systems can synergistically 
be combined with more standard education research methods, 
such as, in this example, a qualitative design experiment.

These two projects represent proof-of-concept research that 
illustrates how the use of computer modeling, in particular 
ABMs, in conjunction with complexity conceptual perspectives 
such as those from the CSCFL, can provide useful and some-
times unique research and policy insights about educational 
complex systems. Also, these two projects demonstrate that 
complexity-based computer modeling approaches can provide 
analytics and information that go beyond traditional quantita-
tive and qualitative education research approaches. As Jacobson 
and Kapur (2012) suggest, these projects use modeling methods 
to complement and extend traditional education research meth-
odologies, not to replace them. Future work is now needed to 
further develop and validate modeling approaches that will meet 
the needs of education researchers and policy makers.

For those who are interested in exploring and extending 
approaches such as those we have discussed, then we recommend 
consulting other research in areas that have employed modeling 
approaches and conceptual perspectives from complex systems. 
For example, Mitchell (2009) provides a balanced discussion of 
the conceptual and methodological issues related to research 
involving complex systems in a wide range of areas in the physi-
cal and social sciences. Wilensky and Rand (2015) discuss both 
general techniques for developing agent-based models as well as 
an historical overview of computational modeling and a range of 
case examples. But given these are still early days in the use of 
such approaches for education research, we recommend 

Figure 3. A multi-mediator model of two purposeful 
perturbations involved in a successful school-wide reform.
Source. Reproduced from White and Levin (2016)
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examination of high quality research in other social sciences 
fields that have used various computational modeling approaches 
(e.g., Epstein, 2006; Epstein & Axtell, 1996; Testfatsion, 2006). 
Overall, we believe such modeling approaches can be effectively 
adapted and employed in education research and can inform 
educational policy as well.

Conclusion

Viewing education as a complex system has important implica-
tions both for education research and for educational policy 
(Lemke & Sabelli, 2008). Combining new conceptual tools, 
such as the Complex Systems Conceptual Framework for 
Learning (CSCFL), with new methodological tools for complex 
system analysis, especially agent-based modeling, can provide 
education researchers with new insights into the dynamics of 
complex educational systems. We also believe these complexity 
oriented conceptual and methodological tools can inform educa-
tional policy by showing different possible futures that various 
efforts at systemic educational reform might follow, especially as 
these tools allow ways of examining the often-nonlinear dynam-
ics of educational complex systems. We hope this overview of 
conceptual perspectives and computer modeling methods will 
stimulate further awareness of these approaches among educa-
tion researchers and policy makers as they engage the wide range 
of critically important challenges in 21st century education.

Notes

This paper was supported in part by a grant to the first author from 
the Australian Research Council, DP150102144. This paper incorpo-
rates material (with permission) from Jacobson et al. (2016), Maroulis 
et al. (2014), and White and Levin (2016). We wish to acknowledge our 
research colleagues and collaborators over the years who have helped us 
learn and deepen our understanding of the intricacies and wonders of 
complex physical and social systems, especially Uri Wilensky, Yaneer 
Bar Yam, David White, and Amanda Datnow. We also thank three 
anonymous reviewers who provided feedback and made several helpful 
suggestions.

1For further background about the field of complexity, Mitchell 
(2009) provides an excellent overview of key conceptual perspectives 
about complex systems and their application in many areas of science.

2Some complexity scientists make a distinction between a complex 
nonadaptive system and a complex adaptive system (Holland, 2006). The 
former refers to a complex system where the agents in the system do not 
change over time, such as atoms in a chemical molecular system. The 
latter refers to a complex system with agents that change (i.e., evolve) 
over time, such as a genotype change in DNA that results in a pheno-
typic change in the traits of the organism or how it behaves in its envi-
ronment. The changes in the individual agents in a complex adaptive 
system may also be described as the adaptation of these agents to their 
current and changing environments. The adaptation and evolution of 
agents is the main distinguishing conceptual perspective between an 
adaptive complex system and a nonadaptive complex system.

3We view the notion of levels in a system as being relative, and so 
regard a macro-level as meaning a higher, less granular level, and micro-
level as meaning a lower, more granular level.
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