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Abstract

The research within this thesis is directed developing, training, and testing unsuper-

vised astrophysical clustering algorithms that extract meaningful structures from

their input data. It is a well-studied consequence of the ΛCDM cosmological model of

the Universe that these structures form hierarchically through the continual merging

of smaller structures. Once a merger has occurred however, the mergers are not

entirely lost but can instead remain detectable as coherent groups for some time –

dependent on the ongoing conditions of the surrounding environment. As such, galax-

ies are expected to contain a myriad of substructure that act as fossil records of the

galaxies themselves. As larger and more advanced surveys continue to be conducted,

we are faced with the task of unearthing these galaxies and their substructures over

a vast range of ever-more-complicated data sets. To tackle this issue, it is necessary

to prepare ourselves with appropriate tools that can sift through these data sets and

discover new structures. This is the goal that motivates the works within this thesis.

First I developed Halo-OPTICS, a new algorithm designed to hierarchically classify

astrophysical clusters within N-body particle simulations. I showed that it performs

well against a current state-of-the-art code (e.g. VELOCIraptor) even though it uses

comparatively less of the available information within the simulation data. Next I de-

veloped CluSTAR-ND and in doing so I make various algorithmic improvements upon

its predecessor Halo-OPTICS. These upgrades dramatically improved CluSTAR-ND’s

computational footprint, its sensitivity to relevant clusters, and its capacity to oper-

ate over any size data set containing any number of dimensions. Finally, I developed

CluSTARR-ND which boasts all the operational virtues of CluSTAR-ND while also

providing an OPTICS-style representation of clustering structure and identifying

clusters as statistically distinct overdensities (when compared to the noisy density

fluctuations) of the input data. As the culmination of the sequential development

of state-of-the-art unsupervised clustering algorithms, CluSTARR-ND opens up the

opportunity for adaptively providing a meaningful hierarchical astrophysical cluster-

ing of any n-point d-dimensional data set with an extremely modest computational

demand, resulting in rapid run times.
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Chapter 1

Introduction

1.1 Structure Formation within the Universe

The observed matter content of the Universe is particularly clumpy with discernible

astrophysical structures existing over a mass range spanning ≳ 20 orders of magnitude,

from stars (down to ∼ 10−1M⊙ for hydrogen-fusing main-sequence red dwarf stars

[1–3] and down to ∼ 10−2M⊙ for deuterium-fusing brown dwarf stars [4]) to cluster of

galaxies (up to ∼ 1019M⊙ as in the case of the largest known structure, the Hercules-

Corona Borealis Great Wall [5–7]). The formation of these structures is guided by

the evolution of the Universe – which under the widely accepted theory of the Λ

Cold Dark Matter cosmological model (ΛCDM) [8–12] is predicted to have assembled

hierarchically through the continual merging of smaller constituent substructures

[13–16]. This process applies to structure formation on nearly all scales, from the

formation of compact objects to the large scale structure of the Universe, and at

nearly all times.

1.1.1 The Λ Cold Dark Matter Cosmological Model

The ΛCDM model of cosmology is a unifying theory that explains a wide range of

observed and theorised phenomena within the Universe. Currently, it provides the

most complete understanding of the Universe’s origin, evolution, and composition –

as such it is often referred to as the standard model of cosmology. According to this

standard model, the Universe; began with the Big Bang [17–22] and subsequently

expanded exponentially for a brief period known as inflation [23]; is currently

experiencing accelerated expansion due to dark energy making up ∼ 68% of its

energy density (resulting in a positive cosmological constant, Λ) [24–27]; is also

composed of ∼ 5% baryonic matter and ∼ 27% cold dark matter [28, 29] such that

1



1.1. STRUCTURE FORMATION WITHIN THE UNIVERSE 2

Figure 1.1: An artistic illustration of the history of the Universe and the formation
of the structure within it as predicted by the ΛCDM model of cosmology. Depicted
is the quantum fluctuations of the Big Bang, inflation, the CMB, the dark ages
that preceded the birth of the first stars, and then the gradual structure formation
that occurred within the expanding Universe that is accelerated by the presence
of dark energy. This figure has been reproduced from [43].

its energy-density combines precisely to allow for it to be spatially flat [30–33]; and is

gravitationally described by the General Theory of Relativity [34, 35], specifically by

the Friedmann-Lemaitre-Robertson-Walker metric [20, 36–42] on cosmological scales.

Accordingly, the ΛCDM model has 6 independent parameters: the physical baryon

density (Ωbh
2 = 0.0224 ± 0.0001); the physical dark matter density (Ωdh

2 = 0.120 ±
0.001); the age of the Universe (t0 = 13.787 ± 0.020 Gyr); the scalar spectral index

(ns =); the curvature fluctuation amplitude (∆2
R = 2.441+0.088

−0.092 × 10−9 [44]); and

the reionization optical depth (τ = 0.054 ± 0.007). Implicitly, there are a further 6

assumed-to-be-fixed parameters underlying this model: the total density (Ωtot = 1);

the equation of state of dark energy (w = −1); the tensor/scalar ratio (r = 0); the

running of the spectral index (dns/dlnk = 0), the sum of the three neutrinos masses

(Σmν = 0.06 eV/c2 [45]); the effective number of relativistic degrees of freedom

(Neff = 3.046 [45]).

The values of these parameters have been confirmed by measuring them directly

(from [33] unless otherwise cited). They can also be validated by matching observa-

tions with numerical simulations. Such simulations work by initialise a mock universe

with particles constructed to represents small clusters of baryonic and dark matter.

With these initial conditions, the simulation then exposes these particles to various
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test laws of nature and evolves a universe whose structure and evolution can be

compared with observation to credit or discredit those test laws.

As illustrated in Fig. 1.1, the ΛCDM model also predicts that following inflation

the mass distribution of the Universe was described by a Gaussian distribution of

adiabatic density fluctuations with a similar amplitude on all spatial scales [46] –

arising from the quantum fluctuations inherent in the initial conditions of the Big

Bang. This is confirmed through observations of the Cosmic Microwave Background

(CMB) [30, 31, 47–50] and is the precursor for the evolution of all structure. It

is the coupling of these small anisotropies with the effects of gravity that leads

to localised gravitational instabilities which collapse over time to form structure

[51]. The spatially flat and expanding Universe of ΛCDM, composed with ∼ 5.4

times as much cold dark matter as baryonic matter, dictates the way in which these

instabilities collapse, the type of structures that form, as well as the manner in which

this occurs – giving rise to the agglomerative (bottom-up) model of hierarchical

structure formation.

1.1.2 Galactic Building Blocks

The first structures to form in the Universe were concentrations of dark matter

and, attracted to these through their gravitational pull, clouds of baryonic particles.

Initially, these clouds were made of ∼ 75% protons and ∼ 25% helium nuclei with

small traces of the nuclei of deuterium, lithium, and beryllium – according to accepted

models of the Big Bang Nucleosynthesis (BBN) that followed inflation [52]. However

as these clouds cooled, these particles were able to recombine with electrons when the

Universe was ∼ 3.8 × 105 years old [53] making the clouds mostly neutral hydrogen –

and later molecular hydrogen. Over time these gas clouds became more dense and

developed their own substructure due to their own internal gravitational instabilities.

Broadly speaking, these gas clouds can be categorised into Giant Molecular Clouds

(GMCs), clumps, and cores [51] – with each of these being a substructure of the

one before it. GMCs are large and typically have masses of ∼ 105–107 M⊙, while

clumps and cores – being smaller and denser – have masses of ∼ 102–104 M⊙ and

∼ 10−1–10 M⊙ respectively. These gas cloud cores, often called protostellar cores,

will eventually collapse to form a star [54]. Consequently, the GMCs and clumps will

harbour the transformation of many cores into stars and as such form themselves

into larger stellar structures.
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Figure 1.2: An observational Hertzsprung-Russell diagram composed with 22000
stars plotted from the Hipparcos Catalogue [55] and 1000 stars from the Gliese
Catalogue of nearby stars [56]. The diagram depicts the stars as described by their
luminosity/absolute magnitude and the colour/spectral type/surface temperature.
Multiple luminosity classes are also depicted here. This figure has been reproduced
from [57].

Stars

The characteristics of a star depend entirely upon the environment that it forms

within. Though the star formation process is not fully understood, it is known that

there are many factors that affect the type of the final star including the; protostellar

core size and density; gas temperature and cooling rate; gas cloud angular momentum

distribution; metallicity within the gas; radiation and magnetic field strengths; as well

as the turbulence of the gas cloud [58–61]. The effects of these factors in the process

of star formation give the resultant star its type which is typically described using

the Morgan-Keenan (MK) classification system [62, 63]. The MK system classifies
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stars based on the their spectral type1 and luminosity class2 which can be visualised

through the Hertzsprung-Russell diagram (a plot of absolute magnitude/luminosity

vs spectral type/colour/temperature) in Fig. 1.2.

Stars can be categorised into additional physical classes – such as populations

I, II [73], and III [13, 74, 75]. These populations correspond directly to age and

metallicity (the abundance of elements heavier than hydrogen and helium), such that

population III stars3 were the first stars forming from only those light elements that

were created during the BBN and population I stars are the most recently formed

stars emerging from the stellar debris of the previous populations. Population I and

II stars are observed directly in the Milky Way’s spiral arms and bulge/globular

clusters respectively [80, 81]. Importantly, due to the differing chemical abundances

between stars born from differing gas clouds and of different types, the abundances

of each metal within each star serve as a record of its formation and evolution and

can be used to associate the stars with their parent structure.

Open and Globular Clusters

Among the structures defined by groupings of stars are open and globular clusters.

Open clusters are the direct result of active star formation in a GMC, and as such,

consist of population I stars and are located in dynamic regions of their parent

structure4 – where gas is condensed and star formation occurs [87–89]. The stars of

an open cluster are only loosely bound by their mutual gravitational attraction and

hence are easily disassociated from one another [90, 91]. For this reason, open clusters

will often be observed to have an irregular shape and, as they age, will become

spatially and kinematically indistinguishable as a coherent group when compared to

their neighbouring stars [88, 89, 92–94]. Since the lifetime of the stars themselves

is commonly much longer than the expected lifetime of the open cluster, once the

cluster has disassociated, the stellar chemical abundances become the strongest

predictor of its existence and former phase-space coherence.

1Historically, these only included the O, B, A, F, G, K, and M types (in order of hot to cold),
although now these types now also include the hotter W type Wolf-Rayet stars [64, 65] and the
colder L, T, and Y type brown dwarf stars [66–72]. Each spectral type is also followed by a
subdivision from 0 to 9 that provides a finer tuning to this classification.

2The luminosity classes are 0, I, II, III, IV, V, VI, and VII (or D) and classify whether a star is
a hypergiant, supergiant, bright giant, giant, subgiant, dwarf (main-sequence), subdwarf, or white
dwarf (or degenerate) respectively.

3At present, only indirect evidence of population III stars exists as these stars are hypothesised
to have been very short-lived and only existed prior to the re-ionisation epoch [76–79].

4There are ≳ 3800 known open clusters [82–85] within the Milky Way – most of which are found
within the spiral arms [86] – with estimates predicting that the total number could be an order of
magnitude larger than this.
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Figure 1.3: Composite Hertzsprung-Russell diagrams consisting of 32 open
clusters (top) and 14 globular clusters (bottom) determined using Gaia DR2 data
[95]. The open cluster stellar members are coloured according to log(age) using
extinction and distance moduli as determined from the Gaia data. The globular
cluster stellar members are coloured according to metallicity, [Fe/H]. This figure
has been reproduced from [96].
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Contrary to open clusters, globular clusters are more massive (∼ 106 M⊙), much

older (up to ∼ 13×109 years old and contain predominantly population II stars), and

are typically entirely devoid of dark matter, gas, and dust [97]. While the mechanisms

behind their formation is still poorly understood, they are commonly found in the

stellar haloes of galaxies. Here they only experience weak tidal forces, which – along

with them being more massive – is thought to be the reason that they are able to

remain self-bound for extended time periods [98]. Globular clusters are typically

pressure supported and hence have large velocity dispersion. As such, globular

clusters are predominantly identified by being strongly spatially and chemically

coherent5. Fig. 1.3 depicts composite Hertzsprung-Russell diagrams for both open

and globular clusters as observed with Gaia DR2 – indicating that members of these

structures can be determined through the use of stellar isochrone models.

1.1.3 Galaxies

As is mentioned in Sec. 1.1, the ΛCDM cosmological model predicts that all baryonic

structure forms through the continual merging and accretion of smaller stellar

structures. The main driver of this formation for galaxies is the presence of large

amounts of dark matter which had gradually formed into self-bound haloes following

inflation [51, 104]. The presence of these dark haloes facilitates the condensing of

baryonic gas within them which then coalesces into increasingly large observable

structures. Recent observations of the most distant galaxies suggest that dark

protogalaxies had formed before the first stars had even emitted any light [105–110].

Galactic Classification

Galaxies have been observed throughout the Universe in various shapes and sizes

(∼ 108–1014 M⊙) [51]. Historically, the method of categorising these is through the

Hubble classification system (see the original schematic in Fig. 1.4) which separates

them into elliptical, spiral, lenticular, and irregular [111, 112]. Elliptical galaxies (E)

appear smooth, without molecular gas, and are, as their name suggests, ellipsoidal in

shape [113]. Elliptical galaxies are therefore divided into subclasses, dependent upon

how elliptical they are, i.e. E1, E2, ..., E76 such that this integer has been rounded

5Globular clusters have also been sub-categorised by the degree of concentration of stars toward
their core in a system known as the Shapley-Sawyer Concentration Class [99–103]. This system
classifies globular clusters on a scale from one to twelve such that a Class I cluster has a high
density of stars in its centre while a Class XII cluster has essentially uniform density throughout.

6There are no recorded E8, E9, or E10 galaxies and even most E4 – E7 are mis-classfied lenticular
galaxies [114–116].
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Figure 1.4: The original Hubble tuning fork diagram indicating schematics of
elliptical, lenticular, and spiral (with and without a bar) galaxies as published in
[112].

from the result of 10(1 − b/a) where a and b are the lengths of the semi-major and

semi-minor axes respectively [117].

Spiral galaxies (S) have thin disks and spiral arms. Roughly two-thirds of these

also exhibit a barred structure in their centre (denoted SB) [118]. As such, they are

not only categorised based upon the presence of this bar, but also upon the; fraction

of their total light that comes from their central bulge; the tightness with which

their spiral arms are wound; and the degree to which the spiral arms are resolved

into stars, molecular hydrogen, and ordered dust lanes. The latter three criteria are

correlated such that; spiral galaxies with a distinct bulge usually also display tightly

wound spiral arms with poorly resolved stellar, molecular hydrogen, and dust lane

components are labelled as Sa or SBa; spiral galaxies with weak or absent central

bulges usually have open arms with clearly resolved material components are labelled

as Sc or SBc; and with a spiral galaxy whose features belong in between these types

being labelled as Sb or SBb.

Lenticular galaxies (S0) are a galaxy classification that is intermediary to both

elliptical and spiral galaxies. Similarly to elliptical galaxies, they exhibit a smoothly

varying light distribution without spiral arms. Similarly to spiral galaxies, they

feature a thin disk and a bulge – although this is typically more dominant than in a

spiral galaxy. Lenticular galaxies may also have a central bar, in which case they are

denoted by SB0. Irregular galaxies (Irr) are those that do not fit the characteristics

of the other galaxy types. They lack any obvious symmetry, do not have a disk or

central bulge. Generally, their appearance is uneven and patchy – although they

do often show regions dominated by molecular hydrogen. Originally, galaxies were

thought to progress from elliptical, through the lenticular stage, and then on to
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become a spiral galaxy – giving rise to the shape of the Hubble tuning-fork diagram

shown in Fig. 1.4. While this is no longer an accepted theory of galactic formation

and evolution, some research has suggested that the disk structure of spiral galaxies

may be built around an existing elliptical galaxy [113, 119, 120]. The conditions that

create each these galaxy types are still a topic of active research.

Further classifications of galaxies can be made to extend the Hubble classification

scheme. Dwarf galaxies are denoted with the prefix of a lowercase ’d’ to above types

– although historically there have also been dwarf spheroidal galaxies (dSph) and

there is now evidence for and against differentiating these from dwarf ellipticals.

According to the system developed by de Vaucouleurs [121–123], galaxies can be

classified using a finer gradation of Hubble’s scheme e.g. S0a (between lenticular

and a spiral with tightly wound spirals), Sbc (between Sb and Sc), and SA (for

spirals without bars – and SAB for weakly barred spirals). In this system, there

are new spiral types which appropriately extend the spiral galaxies towards the

irregular galaxies (Scd, Sd, Sdm, Sm, Im, I0 – and their barred counter-types – where

’m’ stands for Magellanic since the Magellanic Clouds are the model for the Im

type) and there are also peculiar -typed galaxies (P) which do not fit the standard

classification scheme. Peculiar galaxies show some coherent features but not others

and are typically in the midst of transformation – having been strongly perturbed due

to a recent major-merger such as the Antennae galaxy. An addition feature, rings, is

also classified in this extended system – where ’(r)’ denotes galaxies possessing at

least one ring-like structure, ’(s)’ for those without rings, and ’(rs)’ for transition

galaxies.

Galactic Substructure

During the hierarchical satellite merging process that guides the formation of galaxies,

structures can become disrupted and the debris of this event can remain detectable

as a distinct and coherent stellar structure for some time that is dependent on the

ongoing conditions of the surrounding environment [125–128]. In such a disruption

event, the tidal forces will begin to distort both structures involved in the merge along

an axis pointing roughly towards and away from their perturber. This distortion will

begin to shear the structures and introduce a velocity differential across the tidal

force vector. The magnitude of this differential depends upon the mass and density

profile of the structures as well as their positions and velocities, but predominantly,

the smaller structure will be separated into its tidal debris and a progenitor. If both

structures are of similar mass, then tidal debris will be ejected from both. As such,

the presence of this debris is a strong indicator of past interactions between the
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Figure 1.5: The positions on-the-sky of known tidal streams within the Milky
Way found by various studies. This figure has been reproduced from [124].

host galaxy and other structures and therefore is effectively a record of its formation

history [129–132]. The debris can form from the disruption of any globular cluster,

dwarf or regular galaxy in the presence of another galaxy and as a result is not

typically self-bound – although most are gravitationally bound to their host galaxy.

Categorically, the debris will either form an elongated curved structure or a thin

membrane – commonly referred to as stellar (or tidal) streams and shells [133,

134] respectively. In observations, stellar streams are most commonly seen in spiral

galaxies [135–139] while shells are more common within in elliptical galaxies [140–142]

– although this discrepancy may be the result of our position with respect to these

structures. In simulations, it has been shown that shells are produced following the

disruption of satellites that have merged on near-radial orbits while streams are

generated from disrupting satellites on more circular orbits [127, 128, 143, 144]. In

the Milky Way, there are currently ∼ 100 known stellar streams as shown in Fig. 1.5

– the progenitors of which are disrupting or disrupted globular clusters and dwarf

galaxies. Whereas in simulations, it is expected that many more streams and shells

should exist [16, 145–149]. This is active point of research within the field of galactic

archaeology.
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1.1.4 Large-Scale Structure

Just as gas and dust particles are grouped to form clouds and stars, and clouds

and stars are grouped to form clusters and galaxies, galaxies are also grouped into

parent structures on scales much larger than themselves. Referred to as large-scale

structure, the mechanism behind the formation of these groupings of galaxies and

their constituents is, at its core, largely similar to that of the formation of the

galaxies themselves – the macroscopic stretching of Big Bang quantum fluctuations

via inflation and the gravitational instability that resulted from this leading to the

accretion of matter (particularly of dark matter). However, the configuration of these

structures are distinct in shape [9].

Both ΛCDM-based simulations and observations show that the matter of the

Universe organises itself on these into a cosmic web (as shown in Fig. 1.6). Ongoing

and upcoming observational surveys such as DES [152], Euclid [153], and 4MOST

[154] still require the identification of the cosmic web and its components within

them. The cosmic web can be sub-categorised into voids, sheets, filaments, and

knots – which can be thought of as corresponding to overdensities in 0, 1, 2, and 3

spatial dimensions respectively [155–158]. It is also in approximately this order that

these structures will form chronologically. This can be understood by considering an

ellipsoid-shaped Gaussian perturbation in the early Universe following inflation. The

perturbation will collapse fastest along its shortest axis and create a pancake-like

sheet. The intermediate axis will collapse and fragment next, turning the sheet into

a filament (or perhaps multiple filaments). Finally, the longest axis will collapse into

a knot.

Voids

Voids are the vast regions of space between sheets and filaments defined as containing

very few or no galaxies and being dominated by accelerated expansion. In addition to

emerging as the negative space adjacent to structure forming regions, the formation

of voids is thought to be shaped by baryon acoustic oscillations in the early Universe

– i.e. gravity driven oscillations occurring in collision-prone baryonic materials that

are analogous to the compression and rarefaction of sound waves in air [159–162]. As

inflation slowed, these oscillations resulted in both underdense and overdense regions.

Where the latter have developed into baryonic structures, the former have grown

into voids. Voids will typically be 10–200 Mpc in diameter with particularly large

voids being labelled supervoids [163, 164].
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Figure 1.6: A series of two-dimensional slices of the galaxy distribution found
within spectroscopic redshift surveys (upper/left wedges) and mock catalogues
from the Millennium N-body simulation [150] (lower/right wedges). The depiction
not only shows the various types of large-scale structure but also that this has
developed and become increasingly clustered over time – indicated by the increased
smoothness in the left/right wedges at redshift increases. This figure has been
reproduced from [151].

Sheets

Sheets, also referred to as great walls, are large planar structures containing galaxies.

As they age, the galaxies within them begin to align into linear filament-like structures,

however the signature of the great wall remains intact as these linear structures will

be locally co-planar. Great walls can be hundreds to thousands of Mpc in length

and width while only being a few Mpc thick [5–7, 165–167].
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Filaments

Filaments are elongated structures that form from sheets and are observed to connect

galaxy clusters linearly into the cosmic web [168, 169]. Their cross-section is roughly

circular throughout the length of their principle axis. They are thought to play

a major role in galaxy formation by directing the flow of extra-galactic material

towards galaxies and clusters of galaxies. Some studies suggest that they are

responsible for galaxy alignment within galaxy clusters [170, 171] and for statistically

unusual alignments within the galaxies themselves such as hemispherical and planar

asymmetries of galactic substructure [172–177].

Knots

Knots, often referred to as galaxy clusters, are typically defined as having both

a sufficiently high density and number of galaxies [178]. This leads to some ill-

defined notions about exactly what a galaxy cluster is, however, typical galaxy

clusters contain 50–10, 000 member galaxies, have masses of 1014–1015 M⊙, and have

diameters of 1–10 Mpc [179–181]. Galaxy clusters can be further classified into

different morphological types using the Bautz-Morgan system [182, 183] – such that

a type I galaxy cluster possesses a large bright central dominant galaxy, a type III

galaxy cluster exhibits no dominant central galaxy7, and type II galaxy clusters

contain central elliptical galaxies whose brightness is intermediate to those in types

I and III. Lesser associations of galaxies that do not meet these requirements are

typically labelled as galaxy groups [184–186] – such as the Local Group that the

Milky Way belongs to – while associations of galaxy clusters and galaxy groups are

called galaxy superclusters [187–190] (originally labelled second-order clusters [178]).

Due to the bottom-up hierarchical formation of structure that occurs within the

ΛCDM cosmological model, galaxy groups, clusters, and superclusters are the latest

structures to form with their ongoing formation still occurring today.

1.2 Approach

In addition to providing a brief overview of the astrophysical structure within the

Universe and the mechanisms under which it has formed, the secondary purpose of

Sec. 1.1 is to highlight a vast network of classifications and classification systems

that have been placed on the patterns that have emerged due to the nature of the

Universe. These classification systems include those defined by; events that occur for

7Types IIIE and IIIS are often used to denote a higher proportion of elliptical or spiral galaxies
respectively.
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fixed periods of time (inflation, BBN, recombination, etc.); physical overdensities of

matter that occur in space and time (gas clouds, stars, globular clusters, galaxies,

filaments, etc.); subdivisions of object types that are labelled due to a value of a

particular attribute (protostellar cores, population I stars, SBa galaxies, type IIIS

galaxy cluster, etc.); and the names of different models/theories (ΛCDM, General

Theory of Relativity, etc.). Each of these systems of classification has come about

through a process of pattern recognition known as clustering.

Clustering the objects of the Universe allows us to study the origin of these objects

and make predictions about the nature of the Universe. Specifically, classifying stars

separately from groupings of hydrogen gas allows us to study the conditions needed

in order for the gas to undergo nuclear fusion. Similarly, classifying open clusters

from stars simply belong to their host galaxy allows to study the conditions that

lead to the expulsion of gas from the their interior. By classifying spiral galaxies

from elliptical galaxies, tidal streams from shells, voids from knots all contributes

to our ability to study the processes in play that govern their formation. However,

while each of these structures can be defined as their constituent objects bounded

by some region of overdensity (at least within some intrinsic feature space) that is

in essence the limit of their similarities. Hence, in order to classify these structures

and tell them apart from each other we need a systematic approach that robustly

classifies them – preferably with the aid of as little prior knowledge of their existence

as possible.

1.2.1 Outline

The focus of the research works within this thesis is the development of new astro-

physical clustering algorithms that produce high quality clustering results and are

applicable to any size data set with any feature space. In particular, the objective is

to build these algorithms so that they can excel at uncovering galaxies and galactic

substructure from both large-scale synthetic and observational survey data. By

creating such algorithms, the ultimate goal of this thesis is provide the necessary

tools that can be used to study the formation and evolution of galaxies such as our

own MW and others in the Local Group.

To establish the existing and relevant work on the topic, I first review clustering

algorithms in Chapter 2. I introduce their development and use throughout history as

well as summarise their functionalities and the computational/statistical techniques

used alongside them. I also discuss the current state of astrophysical clustering

algorithms and outline the existing divide between simulation-specific and observation-

specific astrophysical clustering algorithms – asserting that generalised structure
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finding algorithms are sorely needed to bridge this gap.

In Chapter 3, I begin the task of developing such an algorithm by creating

Halo-OPTICS – which extends the general-purpose density-based clustering algo-

rithm OPTICS to be well-suited to find galaxies and their substructure from the

spatial information of their constituents. I then develop the novel generalised as-

trophysical clustering algorithm CluSTAR-ND in Chapter 4 which – when compared

to Halo-OPTICS – boasts far more modest run-times and can be applied to data

sets of any size and dimensionality while exhibiting a finer sensitivity to existing

structure. As a work in progress and the last installation of this series of gener-

alised astrophysical clustering algorithms, I then present CluSTARR-ND in Chapter 5.

CluSTARR-ND reduces the complex cluster extraction process of its predecessors to

one with a simple-to-interpret functionality, i.e. the returned clusters are statistically

distinct from the implicit noisy density fluctuations that occur within the data.

CluSTARR-ND also produces an ordered-density plot that can be used to visually

inspect the clustering structure – as is the case with OPTICS and Halo-OPTICS.

Finally in Chapter 6 I summarise these works and their findings, concluding that

CluSTARR-ND is ideally suited for generalised astrophysical structure finding in the

contexts of both synthetic and observational data sets. I also provide my comments

on future work including a series of upcoming applications of the CluSTARR-ND

algorithm to observational data sets and the additional machine learning techniques

that can be employed to further maximise the clustering quality.



Chapter 2

Clustering Algorithms

Clustering is the meaningful grouping of similar objects. Methods that provide

statistically motivated cluster analyses originated in the early 20th century within

the field of anthropology [191, 192] and were later adapted for the classification of

personality traits in psychology [193–196] in the 1930’s and 1940’s. These methods

were mostly variations on what is today described as multiple group factor analysis,

which in many of these cases was used to reduce the complex feature spaces involved

in determining personality traits down to a small number of factors. However, Cattell

[196] also laid the groundwork for a series of processes now known as single-linkage

clustering. Despite this early work on cluster analysis within psychology, the field

did not gain traction among the broader scientific community until the 1960’s and

70’s when computers became more widely available and the concepts broke out

into various other fields including biology [197, 198], medicine [199–202], psychiatry

[203–206], archaeology [207, 208], economics [209, 210], linguistics [211], legislation

[212, 213], and of course astrophysics and cosmology (refer to Sec. 2.5).

Following this flourishing period for cluster analysis, research of the clustering

algorithms themselves became widespread among generalist computing scientists.

A wide range of more complex algorithms were developed in the following decades,

however, finding structure from within a data set would still remain a difficult task

to accomplish. This is due to the inherent subjectivity that surrounds the definition

of such structures. Just as there are multiple contextual definitions of a cluster there

are also multiple differing methods that can be used in order to find the various kinds

of structure that may appear within any given data set. Hence, deciding upon which

method will be most suitable in any given situation can be a challenge, requiring

a thorough understanding of both the structures and the algorithms themselves to

overcome [214]. Many clustering algorithms now exist within the machine learning

field of data mining for the purpose of extracting statistically coherent groups from

16
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data sets. As such, the present day field of clustering research is an expansive and

prolific topic that is now summarised within the remainder of this chapter.

2.1 Measuring Similarity

The broadly defining notion of clustering is that the clusters are constructed such

that the objects of one cluster are more similar to each other than they are to the

objects of another cluster – thereby prescribing a statistical coherence to the clusters.

There are many ways to assess this similarity and its exact definition must also

depend on the data types that are being clustered over – sometimes requiring a

custom metric. The typical definition relies on some distance metric (d) defined over

the input data (X), the core axioms [215] of which are that for all x, y, z ∈ X,

d(x, y) = 0 ⇐⇒ x = y,

d(x, y) = d(y, x),

d(x, y) ≤ d(x, z) + d(y, z). (2.1)

Together these also imply that d(x, y) ≥ 0. This is an intuitive way to construct

the idea of similarity within a data set i.e. a small distance between two data

points depicts them being more similar than if that distance had been larger. Some

examples of distance metrics commonly used for clustering are as follows.

2.1.1 Hamming Distance

d(x, y) =
n∑

i=1

zi, zi =

0 if xi = yi

1 otherwise
(2.2)

The Hamming distance [216] is a simple discrete distance metric that can be used

to define distances between two equal length sequences of symbols. It prescribes a

distance equal to the number of positions in the sequences at which the corresponding

symbols are different. The Hamming distance can be used within clustering algorithms

for error detection and diagnosis as well as for genetic sequence clustering [217],

among other purposes. Variants of this distance metric include the Lee distance

[218] and the Levenshtein distance [219].

2.1.2 Minkowski Distance

d(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

, p ∈ Z≥1 (2.3)
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The Minkowksi distance is a generalisation of the Euclidean (p = 2) and Manhattan

(p = 1) distance metrics to arbitrary integer exponents, p. Strictly speaking, this

distance function is only a true metric for p ≥ 1 since it violates the triangle inequality

for p < 1 – however, a metric can still be obtained by removing the exponent of 1/p.

All p-Minkowski distances are translation-invariant and the Euclidean metric is also

rotation-invariant making them a powerful choice when measuring similarity within

data sets whose data points are defined relative to one another.

2.1.3 Mahalanobis Distance

d(x,y) =
√

(x− y)TΣ−1(x− y) (2.4)

One extension of the Euclidean distance is that of the Mahalanobis distance [220]

which is equivalent to defining Euclidean distances on a unit-scaled principal-

component-analysis transformed data set. Here Σ is the covariance matrix of

the data set and constructing the distance metric in this way removes any global

correlations and scaling dependencies in the data. As such, this distance metric

is often used when to assess similarity within data sets that combine feature with

different units of measurement.

2.1.4 Wasserstein Distance

Wp(µ, ν) = (inf E [d(X, Y )p])1/p , p ∈ Z≥1 (2.5)

The Wasserstein distance [221] is a measure of the minimum cost required to transport

the probability mass of one distribution to another – e.g. between µ(x) and ν(y).

Here, the inner distance function (d) defines the distance (the cost of moving) between

any two points (x ∈ X and y ∈ Y ) in the domain of the probability distributions.

Hence given the optimal transportation plan, the p-Wasserstein distance generalises

the p-Minkowski distance to measure the distance between probability distributions.

As such, the p-Wasserstein distance can be used to assess the similarity in data

sets consisting of fuzzy objects. Other metrics that provide similarity measures of

between probability distributions include the Kullback-Leibler divergence [222, 223]

and the Hellinger distance [224].

2.2 Clustering Models

In general, the clusters that clustering algorithms produce will fall into one or

more categories of various statistical models. The clustering model of a clustering
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algorithm is the manner in which that algorithm constructs the resultant clusters.

The clustering model of the algorithm is therefore a major contributor in how the

algorithm prescribes the shape, size, and definition of the clusters it finds. There are

various types of clustering models, some common and basic models being those that

are; connectivity-based (often referred to as hierarchical); centroid-based; distribution-

based; density-based; and graph-based. A brief overview is given for each of these

below.

These models also couple with the cluster membership models, which can be

broadly categorised hard or soft (also referred to as fuzzy) clustering. A hard

clustering is produced if each data point either belongs to a cluster or not. A

soft clustering is produced if each data point is associated to a cluster with some

membership probability specific to that cluster. In this sense, a hard clustering can

be thought of as a soft clustering where the only allowed probabilities are either 0

or 1. Generally speaking however, clustering algorithms can be further classified

by the data-partitioning scheme that they use. Among these schemes, data points

can belong to exactly one cluster such that clusters are mutually exclusive (strict

partitioning) or data points can belong to multiple overlapping clusters such that

clusters may be mutually inclusive (relaxed partitioning). In addition to these

distinctions, clusters can also form a hierarchy such that each cluster can have a

parent and/or child cluster(s). Furthermore, clusters may not completely partition

the data and may leave some data points unclassified as outliers from all clusters

or, in the case of hierarchical clusters, from each cluster within some level of the

hierarchy.

2.2.1 Connectivity-based Clustering

Connectivity-based clustering algorithms create a data point hierarchy such that

data points with a high similarity will be inter-connected through fewer connections

than those with a lower similarity. The dendrogram – a trademark of connectivity-

based clustering – can be found either; by merging groups of data points together

in order of decreasing similarity (referred to as agglomerative clustering), or by

splitting groups of data points in order of increasing similarity (referred to as divisive

clustering). By keeping track of these similarities and the order in which these groups

are merged or split, the resultant dendrogram (an example of which is shown in Fig.

2.1) represents the clustering structure within the data set which can be used to

extract classifications of the data points. The standard variants of connectivity-based

clustering algorithms are the single-linkage [225–227], complete-linkage [228], and

weighted/unweighted average-linkage [229] which each boast different measures of
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Figure 2.1: A toy data set and the dendrogram produced from using a
connectivity-based clustering model with Euclidean distance as its distance metric.
This figure has been reproduced from [230].

similarity between groups of data points.

Fig. 2.2 depicts the predicted clusters that various algorithms produce when

applied to different toy data sets. The connectivity-based algorithms will have mixed

as their results depend heavily upon the connectivity rules underlying their processes,

however it tends to be true that any one algorithm will not be capable of finding

clusters of various shapes, sizes, and densities.

2.2.2 Centroid-based Clustering

Centroid-based clustering algorithms create clusters on the basis that each object

in a cluster is more similar to that cluster’s centroid that to the centroid of any

other cluster. Typically this means that the number of clusters needs to be specified

prior to clustering over the data set. The most well-known and, perhaps, simplest

centroid-based clustering algorithm, K-Means [231, 232], finds k cluster centres and

assigns data points to them by minimising the sum of squared distances between

each of these data points and their closest centres. In K-Means the cluster centroids

are chosen at random which only guarantees that the clustering solution is a locally

optimal solution, however in K-Means++ [233] the centroids are chosen less-randomly

to ensure a more uniformly distributed initial set of k-centroids – which increases

the probability of finding the globally optimal solution. Other variants of K-Means

define their centroids and similarity measures differently e.g. K-Medioids [234] and
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K-Medians [235, 236]. Another adaption also defines fuzzy clusters, e.g. Fuzzy

C-Means [237].

By referring again to Fig. 2.2 it can be seen that centroid-based algorithms do

not perform well when faced with clusters of arbitrary shape and size. While the

definition of a centroid and its relation to the subsequently classified cluster members

may change between each algorithm, their generally poor performance in these

scenarios is largely due to them classifying clusters as the sets of point that are most

similar to the centroids. As such, they will tend to lose their effectiveness when the

clusters of the data set overlap, oddly shaped, or are difficult to separate.

2.2.3 Distribution-based Clustering

Distribution-based clustering algorithms extract clusters from the data set such that

the data points within each cluster belong to the same distribution model as each

other. These algorithms can be subject to over-fitting, either because the distribution

model of the clusters is overly complex for the data or because the cluster finding

process prefers too many clusters. As such, these algorithms are usually restricted

to find a fixed number of clusters using a simple distribution model. A common

algorithm is the expectation-maximisation algorithm (EM) [238] which can fit a fixed

number of distribution models from the exponential family of distributions to the

data – although this is most commonly used to fit Gaussian distributions – also

referred to as Gaussian mixture models. As with k-means and the other common

centroid-based clustering algorithms, the initial states of the Gaussian distributions

are chosen at random, hence only guaranteeing a locally optimal solution and so is

often computed multiple times in hopes of obtaining the globally optimal solution.

As shown in Fig. 2.2, Gaussian mixture models will perform well on Gaussian-like

clusters even when those clusters are overlapping within the feature space. However,

such a clustering model is not appropriate when the clusters deviate from this

distribution. As seen with the concentric circles and the half moons, modelling the

clusters as Gaussian distributions will not yield good quality results.

2.2.4 Density-based Clustering

Density-based clustering algorithms find clusters such that the data points within

them are bounded by some contour surface of equal density. Unlike centroid- and

distribution-based methods, the number of clusters does not need to be chosen prior

to clustering and the clusters can be of arbitrary size and shape. A popular density-

based clustering algorithm is DBSCAN [241] which extracts clusters defined by the
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Figure 2.2: A visual comparison of the clustering output and run-times of various
clustering algorithms available through the scikit-learn software package [239].
Among the algorithms compared here there are connectivity-based (Ward and
Agglomerative Clustering), centroid-based (MiniBatch K-Means, Affinity

Propagation, MeanShift, Spectral Clustering, BIRCH), distribution-based
(Gaussian Mixture), and density-based (DBSCAN and OPTICS) algorithms. The
differences between these clustering models can be broadly understood by noticing
the algorithm’s ability to match clusters of different sizes, shapes, and densities.
This figure has been reproduced from [240].

same bounding density. Generalisations of DBSCAN such as OPTICS [242], DeLi-Clu

[243], and HDBSCAN [244, 245] extend this cluster definition to be hierarchical by

using concepts from connectivity-based clustering methods. Other algorithms that do

not rely on the connectivity-based methods, such as Mean-Shift [246], also extract

arbitrarily shaped density-based clusters.

Fig. 2.2 illustrates that density-based clustering algorithms perform well on a

variety of cluster types. While OPTICS is more capable of appropriately dealing with

clusters of varied densities, both codes can be seen outperforming the others in nearly

all toy data set examples.

2.3 Computational Techniques

As the sizes and complexities of data sets have increased so to have the methods used

for clustering over those data sets. These methods are an active topic of research in the
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data mining field of machine learning are commonly used for; reducing computation

times; appropriately reducing the amount of information available for clustering over;

or highlighting the relevant information within a data set. Roughly speaking, these

techniques can be thought of as pre-process, mid-process, and post-process methods.

2.3.1 Pre-Process Methods

To extract a relevant clustering of the input data it is essential to choose the

appropriate similarity measure for the objects in that data as well as the appropriate

clustering model. However, it is often also necessary to refine the data itself so that

it is representative of the clustering structure that the user wishes to find. If, for

example, a large multiple-choice-based questionnaire is conducted and the task at

hand is to use the results of this to identify the set of most-common personality traits

among people – then it is necessary to ask if the survey results are representative of

the true distribution of the general populous. This is often a difficult query to confirm

in the social sciences, however in the natural sciences this is usually motivated by

enacting some ground truth concept about the data.

Most real-world data sets will contain some level of noise or contamination within

them. Thus, before any clustering application it is worth attempting to clean the

data set. In this case of the example above, this might be the removing of survey

results for everyone who answered with all A’s on their questionnaire or it may be

the removing of foreground and background objects in the case of observational

data of a galaxy. Simply put, there is no one-size-fits-all method for cleaning the

data but there are some generalist techniques that can help. For instance, there

are various local-outlier-detection methods, such as [247] and the many others that

appear in the extensive review by Alghushairy et al. [248], that compute a local-

outlier-factor (LOF) which can then be used to identify local-outliers within the

data. In the case of [247], the LOF of a point, p, is computed by first finding the

local-reachability-density (LRD) of each of p’s k nearest neighbours. The LRD of

a point is the average reachability-distance (used in OPTICS [242]) from each of its

own k nearest neighbours. The LOF of p is then the average of its neighbours LRDs

divided by its own LRD. This gives a density-based LOF whose value is strictly

positive and can be understood as indicating how much less dense the neighbourhood

of p is than the neighbourhoods of its neighbours are. Typically, a local-outlier is

considered to be any point with an LOF > 2 – although this can and should be

adjusted on a case-by-case basis.

Another common pre-process technique is the use of data transformation. There

are many algorithms designed for this that can used to remove unwanted correlations
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in the data or remove over-dependencies on a particular feature of the data. The

most common (and perhaps the most simple) of these is the principle-component-

analysis (PCA) [249, 250] which can be used to reduce global correlations and

over-dependencies on particular features. The PCA transformation successively finds

orthogonal components so that the variances in these directions are maximised –

which effectively imposes a Mahalanobis distance metric if a Euclidean distance

metric is then used on the output. However, the PCA transformation can also then

be used for dimensionality reduction, by choosing some number of dimensions (less

than in the input data) in order of decreasing variance. Similarly to the PCA, the

independent-component-analysis (ICA) [251–255] can be used to reduce additional

non-Gaussian co-dependencies between the features of a data set – as well as reduce

the data dimensionality in the same way as with PCA. While these techniques

reduce the global correlations and feature over-dependencies, they can not do this

locally within the data unless used iteratively (as is done within EnBid [256]). More

complicated techniques, such as UMAP [257] and t-SNE [258], can achieve this while

also performing a dimensionality reduction via a Riemannian manifold embedding.

2.3.2 Mid-Process Methods

Regardless of whether the choice similarity measure and clustering model are ap-

propriate, and regardless of whether the data has been cleaned and transformed to

highlight the relevant structure, the task of clustering can (and often does) still pose

significant computational difficulties. This is particularly relevance if the clustering

algorithm needs to perform a series of comparison between in order to operate. Of

course, well-built clustering algorithms will make use of vectorised 1 and parallelised
2 operations wherever possible – but these techniques alone are often not enough to

overcome the ordinarily extreme run-times of most complex algorithms.

If it is the mid-process task of a clustering algorithm to compare each object in

the input data to other objects in the input data, then redefining the data into a

tree structure can often reduce computational times significantly. For example, the k

nearest neighbours or neighbours within some distance can be efficiently queried using

the KD-Tree algorithm [259]. The KD-Tree algorithm iteratively partitions the data

in two along cycling dimensions so as to create this tree structure. When querying

the tree, entire regions of the data can be ignored by checking whether any objects

in a branch will satisfy the query. This effectively reduces the computational time

1Vectorised operations are applied simultaneously to contiguous blocks of memory without the
processor needing to retrieve any new instructions.

2Parallelised operations are a set of of instructions that are given to multiple processors to
execute simultaneously.
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complexity of querying the nearest neighbour of any object from O(n) to O(log n) 3

(since there are now only log n branches to check instead of naively checking every

object in the input data, n. Other tree-partitioning algorithms exist for this same

purpose, such as Ball-Tree [260] and R-Tree [261]. Notably, approximate nearest

neighbour search methods are also very powerful for reducing computational times.

Implementations such as Faiss [262] can conduct exact and approximate nearest

neighbour searches that are orders of magnitude faster than standard approaches –

particularly for high dimensional data – and is capable of GPU acceleration.

If a clustering algorithm is required to minimisation of some cost/loss function, then

it will likely be time-effective to implement an appropriate optimisation technique.

The most appropriate technique will depend upon the complexity of the cost function

landscape as well as the constraints and bounds of its variables. The restrictions

on the cost functions themselves are minimal – i.e. any map between Rn and R
– although it does need to convex within the variable domain and appropriately

represent the model that the minimisation provides a solution for [263]. Typical

cost functions include the; sum of absolute errors between the model and the data

(L1 norm); sum of squared errors between the model and data (L2 norm); negative

log-likelihood of the model given the data; the Kullback-Leibler divergence [222,

223] between the desired function output and the model output given the data; the

mutual information [264] between the desired function output and the model output

given the data; among others. Simple minimisation techniques include the; downhill

simplex method (zeroth order) [265]; steepest gradient descent (first order) [266, 267];

and the BFGS algorithm (second order) [268–271]. The order of these methods refers

to the order of the function derivative that is used to approach the solution – which

also gives an indication of the computational complexity of the algorithm and of the

accuracy of the solution it provides. These methods however, do not guarantee a

global minimum – only a local one. Guaranteeing the global solution is not always

possible, but methods such as basin-hopping [272], simulated annealing [273–276], as

well as genetic algorithms can do remarkably well at finding the global solution.

2.3.3 Post-Process Methods

In some cases, it may be necessary to apply further techniques to the already clustered

data in order to extract additional information. It may also be the case that the use

of a post-process method effectively achieves the same clustering results with the

added benefit of reduced run times and/or computational resources. For example,

3Big-O notation denotes the asymptotic dependency of the computation time on any independent
variable within the data or algorithm.
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if a clustering is taken of a snapshot of a data stream, then it is likely useful to

know how the predicted clusters evolve over time and which clusters new data points

belong to without having to perform the entire clustering procedure over again.

A simple way that this can be achieved is through the use of a nearest neighbour

classification algorithm [277, 278]. Nearest neighbour classification algorithms con-

struct a tree structure that contains pre-labelled data (in this case the cluster labels

of a previous clustering). The tree can then be queried with new unlabelled data

to find which class (or set of classes) the new data point is most likely to belong

to. The labels of the existing tree structure can then be updated and/or the new

data can be added to the tree – effectively evolving the clusters in a modest O(log n)

time complexity. This technique is only reliable for so long as at some point the

original clustering will not contain the relevant information for providing new and

accurate classifications of novel data [279]. The nearest neighbours classification

technique can be used to update the clustering results of any algorithm, however,

there are stand-alone data stream clustering algorithms that do a better job at

maintaining robust clustering results. The STREAM algorithm [280] works by creating

a k-Medians-like clustering of a flowing data stream. Similarly, the BIRCH algorithm

[281] is a hierarchical clustering algorithm that can predict clusters from a single

passing of a data stream.

2.4 Statistical Evaluation

Even with an appropriate clustering algorithm and a data set to apply it to, it is still

pertinent to question the quality of the output in relation to the desired classification

result. By assessing the quality of the clustering that is produced from a clustering

algorithm and a data set, it is possible to; begin a process of hyperparameter

optimisation; alter pre-, mid-, and post-process methods; or determine whether the

procedure is even appropriate. In order to assess the quality of a clustering, an

objective function that represents that quality needs to be constructed, the specifics of

which will be entirely dependent on the clustering model and the desired classification.

Broadly speaking, there are two modes of evaluation – internal and external.

2.4.1 Internal Evaluation

An internal evaluation measure assesses the clustering quality by considering only the

data and resultant classifications. Typically, internal evaluation measures provide a

balanced indication of the level to which the intra-cluster similarity and the inter-

cluster dissimilarity are both maximised. Care must be taken when using any internal
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evaluation as they are more suitable for quality assessment on some clustering models

than others.

For example, using an internal evaluation measure to optimise the hyperparameters

of a density-based clustering model with noise (such as DBSCAN) may incentivise the

algorithm to return zero clusters. This is because intra- and inter-cluster similarities

are simultaneously increased and decreased respectively when the density of clusters

is increased. Without some care, the use of an unsuitable internal evaluation measure

will motivate continued increasing of the threshold density of labelled clusters until

the true clusters are no longer dense enough to be labelled as such. As a contrasting

example, optimising the hyperparameters of a centroid-based clustering model without

noise (such as K-Means) using an internal evaluation measure will appropriately

incentivise self-similar and distinct clusters. Under the constraint that all points

must be attributed to self-similar clusters there exists a configuration of k clusters

that maximises both cluster self-similarity and distinctness [214].

The highest quality configuration will depend heavily upon the measure and so

an understanding of the various measures is needed before any attempt at refining

the process can be made. Some common measures include the Davies-Bouldin index

[282], the Dunn index [283], and the Silhouette coefficient [284]. A comparison of

these and more is performed by Hassani and Seidl [285] in the context of data stream

clustering.

2.4.2 External Evaluation

An external evaluation measure assesses the quality of a clustering by considering

how well the resultant classification system matches some predefined notion or label

set that acts as a benchmark for the ideal clustering of the input data. As such,

external evaluation measures quantify the similarity between the predicted clustering

and the ground truth clustering benchmark. This means that the ground truth

clustering must be heavily scrutinised and verified as such or else any optimisation

that uses an external evaluation measure will inevitably produce sub-optimal results.

A few commonly used measures include recovery (often called recall), purity (often

called precision) [286], and the Jaccard index [287]. These measures are simple to

interpret and, given a true cluster and a predicted cluster, are equal to the size

of the intersection between the true and predicted cluster as a ratio to the size of

the; true cluster; predicted cluster; and union of the true and predicted clusters

respectively. As such they provide a powerful indication of the match between two

clusters. However, gaining an understanding of the match between a set of true

clusters and a set of predicted clusters defined over the same data set can be difficult
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as these measures do not take into account true negative predictions and are not

straight forward to use when trying to optimise hyperparameters controlling the

overlap of predicted clusters with multiple true clusters or vice versa. Other external

evaluation measures, particularly those that are information-based (e.g. adjusted

mutual information [288] and variation of information [289]), can demonstrate the

quality of fit between two entire clusterings and typically do not suffer from the

above downfalls.

2.5 The State of Astrophysical Structure Finding

Finding and classifying astrophysical structure is an important part of understanding

the Universe as is detailed Sec. 1. The techniques used to do this do not always

involve the use of a clustering algorithm as often the classification can be made via

expert inspection. The planets of our solar system, stars, and the MW have been

observable since antiquity. Galaxies and galaxy clusters [178] have been detected via

inspection of photographic plates. Even more recently there are still studies that

essentially make their discoveries via the inspection of data. For example, many

of the MW’s stellar streams have been detected simply by noticing overdensities

in projections that surmount to comoving groups of stars [290–293]. While these

structures have been identified robustly, inspection methods can not be used to search

data sets exhaustively, and only with data mining algorithms can we hope to do so.

Astro- and cosmo-related structure finding clustering algorithms have seen continued

attention and growth over the last few decades. Functionally, these algorithms are

often similar and will typically fall into one of a few common algorithm types.

2.5.1 Simulation Specific Finders

A common way to study the effect of cosmology and the structure that emerges

due to this, is by conducting cosmological simulations that model the Universe

(or a hypothetical one) from the Big Bang to the present time. Constrained by a

cosmological model, the initial conditions of the Universe are created within the

simulation. The spatial and kinematic information of the dark and baryonic particles

are then evolved with time using equations of motion that arise from FLRW gravity.

With ongoing structure formation taking place at every epoch of the simulation, it is

necessary to be able to systematically classify this structure in order to understand

the effect of the model.
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Table 2.1: A chronological history of simulation-specific (sub)galactic structure
finders. Among the algorithm’s year of development, the algorithm’s name, and
the base code of the algorithm (a blank space indicating a first-of-its-kind algo-
rithm) is the feature space (some combination of spatial, kinematical, metallicities
and colour-magnitude diagram information, a blank space indicating that the
algorithm can take any combination of this information) and a few indicators of
the algorithm’s ability to find certain structure types. Namely, a tick or cross
is given the Gal., Sub. and Tid. columns specifying whether the algorithm is
capable of finding galaxies/haloes, subhaloes, and tidal debris respectively.

Year Algorithm Base Space Gal. Sub. Tid.

1974 SO [294] x ✓ ✗ ✗

1985 FOF [295] x ✓ ✗ ✗

1991 DenMax [296, 297] SO x4 ✓ ✗ ✗

1995 Adaptive FOF [298] FOF x ✓ ✗ ✗

1996 IsoDen [299] SO5 x ✓ ✗ ✗

1997 BDM [300] DenMax5 x4 ✓ ✓ ✗

1998 HOP [301] DenMax x ✓ ✓ ✗

1999 HFOF [302] FOF x ✓ ✓ ✗

2001 SKID [303, 304] DenMax x4 ✓ ✓ ✗

2001 Enhanced BDM [305] BDM x4 ✓ ✓ ✗

2001 SubFind [306] FOF x4 ✓ ✓ ✗

2004 MHF [307] SO x4 ✓ ✓ ✗

2004 AdaptaHOP [308] HOP x ✓ ✓ ✗

2004 DenMax2 [309] DenMax x4 ✓ ✓ ✗

2004 SURV [310, 311] SO {x, t}4 ✓6 ✓ ✗

2005 Improved DenMax [312] DenMax x4 ✓ ✓ ✗

2005 VoBoZ [313] DenMax x4 ✓ ✓ ✗

2006 PSB [314] FOF x4 ✓ ✓ ✗

2006 6DFOF [315] FOF {x, v} ✓ ✓ ✗

2007 Subhalo Finder [316] DenMax5 x4 ✓ ✓ ✗

2007 Ntropy-FOF [317, 318] FOF x ✓ ✗ ✗

2009 HSF [319] SubFind {x, v}4 ✓6 ✓ ✗

2009 LANL [320] SO5 x ✓ ✗ ✗

2009 AHF [321] MHF x4 ✓ ✓ ✗

2010 pHOP [322] HOP {x, v} ✓ ✗ ✗

2010 ASOHF [323] SO x4 ✓ ✓ ✗

4An unbinding procedure is performed with both positions and velocities.
5This code also uses the FOF algorithm to first find field haloes.
6Can also be used to find large-scale-structure.
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Year Algorithm Base Space Gal. Sub. Tid.

2010 pSO [324] SO x ✓ ✗ ✗

2010 pFOF [325, 326] FOF x ✓ ✗ ✗

2010 ORIGAMI [327] x4 ✓6 ✗ ✗

2010 MENDIETA [328] FOF x4 ✓ ✓ ✗

2010 Enhanced SURV [329] SURV {x, t}4 ✓6 ✓ ✗

2011 STF [330] FOF {x, v}4 ✓ ✓ ✓

2012 ROCKSTAR [331] FOF {x, v}4 ✓ ✓ ✓

2012 HBT [332] FOF {x, t}4 ✓ ✓ ✗

2013 S-Tracker7 HBT {x, t} ✓ ✓ ✓

2013 GRASSHOPPER7 HOP + SKID x4 ✓ ✓ ✗

2013 Jump-D7 SO x ✓ ✓ ✗

2018 HBT+ [337] HBT {x, t}4 ✓ ✓ ✗

2019 VELOCIraptor [338] STF {x, v}4 ✓ ✓ ✓

2020 HIKER [339] Mean-Shift x4 ✓ ✓ ✗

2021 FOF-Halo-Finder [340] FOF x ✓ ✗ ✗

2021 CompaSO [341] SO5 x4 ✓ ✓ ✗

In order to find galaxies, haloes, and subhaloes, clustering algorithms must identify

some isolated region of space that has some pre-specified spatial overdensity and only

contains self-bound particles. The earliest methods developed to achieve this are the

Spherical Overdensity algorithm (SO; [294]) and the Friends-Of-Friends algorithm

(FOF; [295]). The SO method finds density peaks within the data and then expands

spherical surfaces out from each of these until the density within these regions

(defined by the top-hat kernel) reaches the specified overdensity. The SO algorithm

therefore uses a Euclidean distance-based similarity measure to define density and

then employs a distribution-based clustering model to collect the particles that the

structures are composed of. Contrarily, the FOF algorithm collects all particles that

can be chained together by distances less than the FOF linking length. This linking

length is typically chosen as 0.2lmean where lmean is the mean particle separation

within the simulation box. As such, the FOF algorithm also uses the Euclidean

distance as its similarity measure except it uses a connectivity-based clustering model

to assemble the structures.

Whether the clustering models of these algorithms perfectly suited the original

intended definition of these structures or not is now barely relevant as most clustering

algorithms designed for application to simulation data are built off of either the SO

7A paper for this algorithm was never published although it was used within one or more
comparison papers, e.g. [333–336].
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or the FOF algorithms – as depicted in Tab. 2.1. In this sense, these algorithms now

effectively prescribe the definition of such structures. A series of comparison papers

found that most modern galaxy/(sub)halo finders strongly agree on the; dark matter

haloes [333]; galaxies [334]; subhaloes [342, 343]; tidal debris [335]; merger trees [344,

345]; and major mergers [346] that they find.

Among modern galaxy/(sub)halo finders there are three types; configuration space

finders; phase space finders; and tracking finders. Configuration space finders (e.g.

SubFind [306], AHF [321], and CompaSO [341]) use the 3D spatial positions of particles

to find physical overdensities – which are then often reduced to bound haloes using

kinematic information as well. Phase space finders (e.g. HSF [319], ROCKSTAR [331],

and VELOCIraptor [338]) use both the 3D spatial and 3D kinematical attributes of

each particle to find structures. Tracking finders (e.g. SURV [310, 311], S-Tracker7,

and HBT+ [337]) use either configuration and/or phase space to find structures and

keep track of them over time within a simulation.

Table 2.2: A chronological history of observation-specific (sub)galactic structure
finders. Among the algorithm’s year of development, the algorithm’s name, and
the base code of the algorithm (a blank space indicating a first-of-its-kind algo-
rithm) is the feature space (some combination of spatial, kinematical, metallicities
and colour-magnitude diagram information, a blank space indicating that the
algorithm can take any combination of this information) and a few indicators of
the algorithm’s ability to find certain structure types. Namely, a tick or cross
is given the Gal., Sub. and Tid. columns specifying whether the algorithm is
capable of finding galaxies/haloes, subhaloes, and tidal debris respectively.

Year Algorithm Base Space Gal. Sub. Tid.

1996 GC3 [129] x ✗ ✗ ✓

2002 MF [347] [348] {x, CMD} ✗ ✗ ✓8

2011 mGC3 [351] GC3 {x, v} ✗ ✗ ✓

2011 Improved MF [352] MF {x, CMD} ✗ ✗ ✓8

2018 xGC3 [353] mGC3 {x, v} ✗ ✗ ✓

2018 Streamfinder [354] {x, v} ✗ ✗ ✓

2018 StarGO [355] SOM [356] {x, v} ✗ ✓ ✓

2022 HSS [357] {α, δ} ✗ ✗ ✓

2022 Via Machinae [358] HSS {x, v} ✗ ✗ ✓

2022 IOM [359] SLINK [227] {E, J} ✗ ✓ ✓

8This implementation is only used for stream finding, although matched filter techniques [348]
have been used widely from the discovery of galaxy clusters [349] to exoplanets [350].
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2.5.2 Observation Specific Finders

In the pursuit of structure discovery, many studies have conducted clustering analyses

to find structure from large scale observational survey data sets such as Gaia [360],

SDSS [361], PAndAS [362], and GALAH [363]. While there are many existing

methods of observational structure finding that rely somewhat on an algorithmic-like

process, there a far fewer named and stand-alone methods for this purpose than

there are for simulation-based structure finding. Specifically, it is popular for studies

to use ready-made clustering algorithms such as K-Means (e.g. [364, 365]), DBSCAN

(e.g. [366, 367]), or HDBSCAN (e.g. [368, 369]) when searching observational data

sets for structure. These are blind applications and without an understanding of

the functionality of these algorithms it is not obvious whether these structures are

statistically robust in an astrophysical setting.

Figure 2.3: The positions on-the-sky of a series of tidal streams recovered
by Ibata et al. [139] using the StreamFinder algorithm with the Gaia EDR3
catalogue as its input. The stream members are coloured by their proper motions
in the µl (top) and µb (bottom) directions.
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The algorithms that have purpose built to find structure from observational data

will typically use some physical model to motivate their findings. Many of these

algorithms are shown in Tab. 2.2 and most commonly, they rely on some potential

model of the host galaxy. Famously, the StreamFinder algorithm [354], which has

has discovered many new stellar streams within the Milky Way [139, 370–374], must

use a potential model of the Milky Way and in recent applications has needed a

set of stellar isochrone models as well. While this method is powerful and has been

able to retrieve many streams from the Milky Way halo (as shown in Fig. 2.3), it

struggles to find structures that are not well described by these models, i.e. those

structures whose self-gravity is non-negligible and whose stars belong to multiple

isochrones – hence why it only finds tidal streams.

For those observation specific substructure finders (e.g. StarGO [355], HSS [357],

and Via Machinae [358]) that do not require a model, certain projections of the

data are often created (e.g. the Hough transform [375]) that restricts the information

content of the data set. Again, this can work well for specific clustering situations

but is not generally applicable to finding all relevant substructure.

2.5.3 Generalised Structure Finders

Contrary to simulation and observation specific structure finders, there exists another

category of astrophysical clustering algorithm that align more closely with the

generalised data mining methods used within observational studies such as HDBSCAN.

However, instead of being applied blindly these methods are still purposefully created

for astrophysical clustering. Unburdened by flat clustering methods (e.g. FOF) or

galactic potential models, the clustering algorithms shown in Tab. 2.3 are able to

retrieve all types of relevant structure and are usually applicable to any data set.

While the EnLink algorithm uses an entropy-based locally adaptive metric to improve

the clustering power of what is otherwise essentially the SubFind algorithm without

the unbinding procedure, and HOT is an adaptive extension of the FOF formalism using

a minimum-spanning-tree, the OPTICS based codes are able to return a representation

of the entire clustering structure. It is this adaptive measure of structure that lies at

the centre of the scope of this thesis.
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Table 2.3: A chronological history of generalised structure finders. Among
the algorithm’s year of development, the algorithm’s name, and the base code
of the algorithm is the feature space (some combination of spatial, kinematical,
metallicities and colour-magnitude diagram information, a blank space indicating
that the algorithm can take any combination of this information) and a few
indicators of the algorithm’s ability to find certain structure types. Namely, a tick
or cross is given the Gal., Sub. and Tid. columns specifying whether the algorithm
is capable of finding galaxies/haloes, subhaloes, and tidal debris respectively.

Year Algorithm Base Space Gal. Sub. Tid.

2009 EnLink [376] SubFind ✓9 ✓ ✓

2010 HOT10 MST [377] ✓9 ✓ ✓

2017 FOPTICS [378] OPTICS {x, v} ✓9 ✓ ✓

2020 Halo-OPTICS (1) OPTICS x ✓9 ✓ ✓

2022 CluSTAR-ND (2) Halo-OPTICS ✓9 ✓ ✓

CluSTARR-ND (3) CluSTAR-ND ✓9 ✓ ✓

9Can also be used to find large-scale-structure.
10A paper for this algorithm was never published although it was used within one or more

comparison papers, e.g. [333–336].



Chapter 3

A Novel Approach to Astrophysical

Clustering

As is outlined in Chapter 2, most astrophysical clustering algorithms are either

designed for application to simulated data or observational data – and rarely both.

Of the simulation specific finders, almost all are based off of either the SO [294]

and/or the FOF [295] algorithms which alone can only provide flat clusterings of data

unless applying they are applied iteratively or the method appeals to the physics

of self-boundedness. Contrarily, most observation specific finders are either model

dependent or create projections of the data that can limit the overall information

content of the clustering. While these restrictions can prove powerful when targeting

specific structure types, removing them can open up a clustering algorithm to be

able to discover multiple cluster types simultaneously.

While only a small handful of purpose-built astrophysical clustering algorithms do

not adhere to the formulae of the others, it is clear that many researchers in the field

(particularly those working with observational data sets) have begun to notice the

power that a generalised clustering algorithm can have in an astrophysical context.

While the K-Means [231, 232], DBSCAN [241], and HDBSCAN [244, 245] algorithms have

been used extensively in recent years, these applications are essentially blind – as

without thorough tests the findings of these remains unclear in an astrophysical

context. One such algorithm general-purpose hierarchical and density-based clustering

algorithm that as seen extensive use outside of astrophysics and cosmology is OPTICS

[242]. It has only been applied a handful times within astro- and cosmo-related fields

[138, 378–385].

I create Halo-OPTICS from the OPTICS algorithm in order to overcome the restric-

tions of the simulation and observation specific structure finders and provide an adap-

tive measure of the spatial clustering structure within galactic haloes. Halo-OPTICS

35
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is capable of choosing search radius parameter of OPTICS based on the more phys-

ically motivated overdensity factor, ∆. Halo-OPTICS also comes with a cluster

extraction method that derives astrophysical structure from the reachability plot

that OPTICS produces. I optimise the Halo-OPTICS parameters and then compare it

to the simulation specific algorithm, VELOCIraptor [338]. In this comparison I find

that although Halo-OPTICS only uses the 3D spatial positions of data points while

VELOCIraptor uses the entire phase-space (positions and velocities), Halo-OPTICS

is able to provide a good match to the tidal debris that VELOCIraptor finds. The

following section presents the published paper in which this research is conducted

and the code for the Halo-OPTICS algorithm can be found in App. B.1.

While the test cases used here illustrate the effectiveness of Halo-OPTICS when

applied to simulated galactic haloes (and mock/toy data sets), it is important to

recognise that at the core of the algorithm there is not any particular function that

requires the input data set to be of this exact nature. Allowing for minor adjustments

to the parameters of the algorithm, Halo-OPTICS can be meaningfully applied to

any astrophysical data set whereby the data points represent objects in 3D space.

Even though the latter does impose a limitation on the input data set’s feature

space, the applicability of Halo-OPTICS to stars within galaxies, simulation particles,

galaxies within simulation boxes, etc. serves as a critical step towards defining a

robust generalised astrophysical structure finder.

3.1 Structure Finding with Halo-OPTICS

This section presents the published journal article:

1. The Hierarchical Structure of Galactic Haloes: Classification and Characterisa-

tion with Halo-OPTICS. W. H. Oliver, P. J. Elahi, G. F. Lewis, & C. Power.

MNRAS 501, 4420, 2021. [arXiv:2012.04823].

Author Contributions: I developed and trained the Halo-OPTICS algorithm, pro-

duced the clustering outputs, drew comparisons between Halo-OPTICS and the

state-of-the-art galaxy/(sub)halo finder VELOCIraptor, and wrote the manuscript.

Dr. Pascal J. Elahi assisted with the development of the algorithm training method

and provided the clustering outputs from VELOCIraptor – of which he is the creator.

Prof. Geraint F. Lewis conceived the idea of using the OPTICS algorithm [242] for

astrophysical clustering and supervised the project. Prof. Chris Power provided the

data sets of the simulated MW-type galaxies. All authors reviewed and commented

on the paper.

https://doi.org/10.1093/mnras/staa3879
https://arxiv.org/abs/2012.04823
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ABSTRACT
We build upon Ordering Points To Identify the Clustering Structure (OPTICS), a hierarchical clustering algorithm well known
to be a robust data miner, in order to produce HALO-OPTICS, an algorithm designed for the automatic detection and extraction
of all meaningful clusters between any two arbitrary sizes. We then apply HALO-OPTICS to the 3D spatial positions of halo
particles within four separate synthetic Milky Way-type galaxies, classifying the stellar and dark matter structural hierarchies.
Through visualization of the HALO-OPTICS output, we compare its structure identification to the state-of-the-art galaxy/(sub)halo
finder VELOCIRAPTOR, finding excellent agreement even though HALO-OPTICS does not consider kinematic information in this
current implementation. We conclude that HALO-OPTICS is a robust hierarchical halo finder, although its determination of lower
spatial-density features such as the tails of streams could be improved with the inclusion of extra localized information such as
particle kinematics and stellar metallicity into its distance metric.

Key words: galaxies: clusters: general – galaxies: structure – dark matter.

1 IN T RO D U C T I O N

A primary prediction of hierarchical galaxy formation in the cold
dark matter (CDM) cosmological model is that galaxies should be
surrounded by numerous low-mass satellites as a result of historical
and ongoing accretion (White & Rees 1978; Kauffmann, White
& Guiderdoni 1993; Ghigna et al. 1998). Simulations of galaxy
formation under this regime have predicted that galaxies of a size
similar to the Milky Way (MW) could harbour 300–500 satellites at
least as massive as ∼108 M� at z = 0 (Klypin et al. 1999; Moore
et al. 1999; Reed et al. 2005; Springel et al. 2008; Tollerud et al.
2008; Ishiyama et al. 2013). Observations within and around the
MW have identified ∼60 satellites of the same size; refer to tables
A1 and A2 from Newton et al. (2018) and more recently Koposov
et al. (2018), Homma et al. (2019), Mau et al. (2019), and Torrealba
et al. (2019) for catalogues of these. This has become known as the
missing satellite problem.

Studies have shown that by suppressing the small-scale power
spectrum (Kamionkowski & Liddle 2000; Zentner & Bullock 2003),
by considering warm dark matter as an alternative model (Colin,
Avila-Reese & Valenzuela 2000; Bode, Ostriker & Turok 2001),
or by enforcing that dark matter emerged from the late decay of
a non-relativistic particle (Strigari, Kaplinghat & Bullock 2007),
the inconsistency is brought to within a reasonable margin of error
as a result of a reduced theoretical number of satellites (as well
as the slowly increasing number of the observed). In conjunction

� E-mail: woli0618@uni.sydney.edu.au

with these cosmological solutions, the observations of the faintest
MW satellites have also suggested that the discrepancy is smaller
than previously thought and that smaller dark matter haloes are far
less efficient at forming stellar populations than their more massive
counterparts (Bullock, Kravtsov & Weinberg 2000; Benson et al.
2002; Somerville 2002; Ricotti & Gnedin 2005; Moore et al. 2006).
The implication is that the observed mass-scale of MW dwarfs
may be an artefact of detection bias. By considering more complex
baryonic physics such as reionization and supernovae feedback,
the most recent cosmological N-body simulations suggest that the
missing satellite problem may no longer be an obstacle for the CDM
model (Brooks & Zolotov 2014; Sawala et al. 2015, 2016; Dutton
et al. 2016; Wetzel et al. 2016; Zhu et al. 2016; Kim, Peter & Hargis
2018; Fielder et al. 2019).

Even though the tension of CDM with the number of satellites
has relaxed, the search for satellites in the Local Group is ongoing.
In simulations, the abundance of subhaloes has been shown to be
dependent on the mass of the subhalo such that dnsub/dMsub ∝ M−α

sub

with α ≈ 1.9 (Gao et al. 2004; Reed et al. 2005; Diemand, Kuhlen
& Madau 2007; Springel et al. 2008; Angulo et al. 2009; Garrison-
Kimmel et al. 2014; Xie & Gao 2015; Rodriguez-Puebla et al. 2016;
Elahi et al. 2018), where nsub is the number of subhaloes with mass
greater than Msub – the individual subhalo masses. This relation is
appropriately descriptive of subhaloes whose dark matter hosts have
masses within the range of 1012–1015 M�, although this range has a
lower bound set by the each simulation’s particle mass resolution;
however, it is expected to hold true for host halo masses much
smaller than this. Observationally, this power law appears to hold
for subhaloes with luminosity down to 108 L� – approximately the
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luminosity of the brightest satellites of the MW and M31 – although
it is not consistent for those satellites whose luminosity is below that
limit (Tollerud, Boylan-Kolchin & Bullock 2014). This could again
support the notion that currently our satellite detection capabilities
fail to easily detect those ultrafaint satellites (Koposov et al. 2008;
Tollerud et al. 2008; Walsh, Willman & Jerjen 2008; Bullock et al.
2010; Sesar et al. 2014) that are hosted by the aforementioned
dark matter subhaloes responsible for suppressing the star formation
within them (Wolf et al. 2010; Martinez et al. 2011).

Surveys have exposed a considerable amount of substructure
surrounding the MW (e.g. Zhao et al. 2012; Blanton et al. 2017;
Starkenburg et al. 2017; Gaia Collaboration et al. 2018) and other
nearby galaxies such as M31 (McConnachie et al. 2009, 2018).
We see that while this structure may not be directly associated
with specific satellites of these galaxies, it is still intimately linked
to them having arisen from the satellite–host tidal interactions.
Characterizing the observed structure quantitatively will complement
studies of satellite galaxies. As such an important component of
subhalo analysis is the initial determination of such objects. There
are many algorithms used to ascertain clustered data from data sets.
Data miners such as K-MEANS (Lloyd 1982), MEAN-SHIFT (Fukunaga
& Hostetler 1975), and DBSCAN (Ester et al. 1996) work well for
certain cluster shapes, although they will not indicate the hierarchy of
clusters present in a data set. Astrophysical clustering algorithms like
SUBFIND (Springel et al. 2001), Robust Overdensity Calculation using
K-Space Topologically Adaptive Refinement (ROCKSTAR; Behroozi,
Wechsler & Wu 2012), Amiga Halo Finder (AHF; Knollmann &
Knebe 2009), VELOCIRAPTOR (Elahi et al. 2019), and others (refer
to Knebe et al. 2011 for a comparison of these and 14 others) mostly
rely on the Spherical Overdensity (SO) method (Press & Schechter
1974), Friends-Of-Friends (FOF; Davis et al. 1985), or some iterative
combination of the two.

The SO method aims at identifying the density peaks enclosed
within some dense region of N nearest neighbours. Following
this, spherical surfaces expand about each peak until a specified
overdensity is achieved within it whilst iteratively adapting the
centre of the sphere to the new centroid of the enclosed particles.
The biggest downfall of the SO method is that it fails to detect
clusters below the specified overdensity threshold. Contrarily, the
FOF algorithm endeavours to link together those particles that are
physically close to each other and then subsequently computes the
centroid of this particle composition. Neither the SO method nor
the FOF algorithm is inherently hierarchical unless used iteratively
on the findings of their previous applications with a larger over-
density or smaller linking length, respectively. Only then can these
algorithms differentiate between clusters of two different densities
within the same hierarchy. A novel and complementary algorithm
to the traditional structure finders that is hierarchical in this sense is
the Ordering Points To Identify the Clustering Structure (OPTICS)
algorithm (Ankerst et al. 1999). OPTICS can be readily applied
to observational data sets in ways that some traditional structure
finders cannot since it does not require estimates of the gravitational
potential.

We build upon OPTICS to develop HALO-OPTICS and apply it
to the synthetic galactic haloes generated by Power & Robotham
(2016) at redshift zero. We first summarize the details of this
data set and outline our choice of physical quantities from these
synthetic haloes in Section 2.1. We then summarize the OPTICS

algorithm in detail in Section 2.2. Next, we present HALO-OPTICS;
by first justifying our choice of the OPTICS hyperparameters ε and
Nmin in Section 3.1, then defining our automatic cluster extraction
technique in Section 3.2. We conduct parameter optimization tests in

Section 3.3 and inform the reader about the nature of the HALO-
OPTICS hierarchy in Section 3.4. We then present our findings;
by visualizing the HALO-OPTICS output in Section 4.1, comparing
HALO-OPTICS with VELOCIRAPTOR in Section 4.2, and by analysing
the galactic hierarchy returned by HALO-OPTICS in Section 4.3.
Later in Section 5, we discuss these results and the implications
of providing HALO-OPTICS with extra localized information. Finally,
we make our conclusions and express our intent for future works in
Section 6.

2 BAC K G RO U N D

2.1 Synthetic haloes

For our synthetic halo data we use those produced by Power &
Robotham (2016) at redshift zero. These haloes are drawn from a
set of cosmological zoom simulations. The parent simulation (run
with GADGET-2; Springel 2005) is a � cold dark matter (�CDM) N-
body simulation conducted in a 50 Mpc h−1 cube with 2563 particles.
The total matter, baryon, and dark energy density parameters are
�m = 0.275, �b = 0.0458, and �� = 0.725, respectively, and the
dimensionless Hubble constant is h = 0.702. The power spectrum
normalization is σ 8 = 0.816, and the primordial spectral index is
ns = 0.968. At z = 0, the FOF algorithm was used to select MW-
type haloes with M200 ≈ 2 × 1012 M� h−1 that reside in low-density
(void) regions, which were identified with the V-web algorithm of
Hoffman et al. (2012). These galaxies were then resimulated with
a version of GADGET-3, as discussed in Power & Robotham (2016),
from z = 99 to z = 0 using all particles contained within a radius
of 5R200. The resimulations include the baryonic physics of cooling,
star formation, supernovae feedback, but do not include any chemical
evolution. More details on these simulations are found in Power &
Robotham (2016). The stellar particle mass and dark matter particle
mass in these resimulated galaxies are Ms ≈ 106 M� h−1 and Md ≈
5 × 106 M� h−1, respectively.

To appropriately consider the structures within stellar haloes we
use an open-source PYTHON package for data analysis, namely YT

(Turk et al. 2011), to separately read the 3D positions and the
masses for all stellar and dark matter particles present in each of
the �CDM synthetic haloes at z = 0. To be unambiguous, we only
use the 3D positions of these particles to identify the presence
of clustering in the data sets. Fig. 1 provides a visualization of
each of the synthetic haloes within 100 kpc h−1 of their barycentre.
The barycentres are determined using the shrinking spheres method
outlined in Power et al. (2003). Fig. 1 indicates that there is an
abundance of hierarchical substructure present within each galactic
halo.

2.2 Ordering points to identify clustering structure

The OPTICS algorithm is a robust tool for hierarchically identifying
density-based structure in any n-dimensional data set for which a
distance metric can be defined. It has been used across various fields
to quantify human behaviour and mobility patterns (Zheng et al.
2008), characterize the genomic diversity in wheat (Wang et al.
2014), optimize the distribution of urban energy supply systems
(Marquant et al. 2017), and more. For data sets containing variables
with incompatible units, the distance metric can be difficult to
construct. However, given a data set of spatial coordinates, the choice
of a distance metric is obvious, namely the Euclidean distance. This
certainty makes the application of OPTICS to the physical clustering of
particles in 3D space very powerful and robust. Despite this, OPTICS
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4422 W. H. Oliver et al.

Figure 1. A 2D projection of each of the synthetic haloes within 100 kpc h−1 of their barycentre. Each of the panels is marked in their lower left according to
the galaxy they contain. The colour scheme of these markings corresponds to those used to distinguish the galaxies in Fig. 12. It can be seen that each MW-type
galaxy contains a dense central region with an abundance of substructure surrounding it.

has only been applied in an astrophysical context a handful of times
(e.g. Fuentes, De Ridder & Debosscher 2017; McConnachie et al.
2018; Canovas et al. 2019; Massaro et al. 2019).1

For each point in a data set, OPTICS calculates a measure of the local
density surrounding that point called a reachability distance – see
equation (2) below. OPTICS also concurrently creates an ordered list
of all points in the data set, such that any point with an ordered index
of i is the most reachable previously unordered point to all points with
an ordered index less than i. The visualization of the output of the
OPTICS algorithm is the reachability plot – the reachability distances
as a function of the ordered index for all points in the data set. Fig. 2
depicts the way in which OPTICS achieves this. The reachability
distance is an inverse measure of the local density surrounding each
point and as such, clusters in the data set present themselves as
valleys in the reachability plot. Refer to Section 3.2 and Fig. 4 for

1Fuentes et al. (2017) examine the suitability of OPTICS to be applied to
large-scale data sets by testing its performance when applied to a simulated
astrophysical data set. McConnachie et al. (2018), Canovas et al. (2019), and
Massaro et al. (2019) apply OPTICS to observational data sets to identify both
new members of existing clusters and new clusters entirely. We build upon
these works in order to produce HALO-OPTICS by standardizing the approach
under which OPTICS should be applied to astrophysical data sets, establishing
a cluster extraction method that appropriately identifies a full hierarchy of
astrophysical clusters from the OPTICS output, and verifying its performance.

details on the algorithm we use to extract meaningful clusters from
the reachability plot.

The power of OPTICS is in part owed to the minimal input required
on the user’s behalf. OPTICS only requires the user to provide two
parameters, ε and Nmin. These parameters are chosen according to
the data set and are robust enough that small changes in their choice
do not strongly affect the reachability plot nor the determination of
any clusters present in the data.2 Refer to Section 3.1 for details
regarding our choice of these parameters.

(i) The parameter ε is the radius for which a nearest neighbour
radius query is performed for each point in the data set, and
consequently is also the largest possible reachability distance for any
point. An appropriate choice of ε is made through a consideration of
the trade-off between the least dense structures that the user wishes
to detect, as well as the runtime of the algorithm.

(ii) The parameter Nmin is the minimum number of points that a
structure must contain such that it can be detected as a cluster. This
parameter is also fundamental in the calculation of the reachability
distance. Increasing Nmin reduces noise in the reachability plot,
but limits the smallest possible structures determinable to clusters
containing at least Nmin points.

2The OPTICS output can be greatly affected if the fractional change in Nmin is
large even if the change in Nmin itself is small.
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Figure 2. The OPTICS activity chart with nodes outlined in blue, red, and
orange to indicate that they are one-time operations, part of the outer while
loop, or part of the inner while loop, respectively. The solid and dashed lines
indicate the paths to be taken if a condition is or is not satisfied, respectively.
Paths that are not conditional are also shown as solid lines. Paths with arrow
heads are unidirectional whereas those without arrow heads may be traversed
in either direction depending on the current context, i.e. the process moves
towards satisfied conditions. Traditionally the core distances are computed
for each point individually after they are appended to O, however computing
them collectively speeds up the process and also allows this step to be run
in parallel without changing the reachability plot. The inner while loop may
also be run in parallel for any given o, though the outer while loop cannot
be parallelized due to the sequential data access order. It should be noted
that there are no additional constraints when retrieving the next point to be
ordered into O, if multiple points have equal reachability distances, then the
next point is chosen randomly from them. It is also due to this that the first
ordered point is simply a random element of P.

For a given point o in the data set, if at least Nmin points are returned
from its nearest neighbour radius query, i.e. |Nr ≤ ε(o)| ≥ Nmin,3 then
that point is labelled as a core-point. Every point is assigned a core
distance such that

core dist(o) = ||o − p||2, (1)

where p is o’s Nminth most nearest neighbour. It then follows that
every core-point will have a core distance less than or equal to ε.
Given that o is a core-point, it will at some stage of the algorithm be
used to ascertain the reachability distance for each of its currently (at
that stage) unprocessed nearest neighbours, q, within a radius of ε

from o, i.e. q ∈ Nr ≤ ε(o)∩P, where P are those currently unprocessed
points. The reachability distance for each of these nearest neighbours
with respect to o is

reach dist(q, o) = max(core dist(o), ||q − o||2). (2)

This ensures that the closest Nmin points to o have a reachability
distance with respect to o equal to the core distance of o, while
all other nearest neighbours of o have a reachability distance with
respect to o equal to their Euclidean distance from o. The reachability
distance with respect to o of any given unprocessed nearest neighbour
q is assigned to q if it is smaller than q’s currently assigned
reachability distance.

For clarity, each point in the data set is initialized with a reachabil-
ity distance of infinity and the ordered list is determined by iteratively
appending to it; the point with the smallest reachability distance. For
each iteration, the above set of reachability distances with respect to
the current point o is calculated and used to adjust the reachability
distances in the data set as is described above and as in Fig. 2.

This process of adjusting the reachability distance ensures that
the reachability plot remains smooth, contains less noise than it
otherwise would, and ultimately gives a reliable representation of the
density of any structures present within the data set. Furthermore,
it is an effective process for limiting the algorithm’s knowledge of
local densities at any particular iteration to those points that have
been ordered up until that iteration, whilst concurrently seeking
out the regions of highest density from them. This process makes
the reachability distance non-deterministic, as it depends upon the
ordered list. As such, the final reachability distance of a point, q, is
always ≥ the smallest core distance of the points in the set of q’s Nmin

reverse nearest neighbours – which is defined to be the set of all points
in the data whose Nmin nearest neighbours contain q. Consequentially,
and although not intended for this purpose, the reachability distance
of a point (or rather the density within the volume of the n-sphere
it encompasses) can only be interpreted as an approximate density
estimator that has been found at the resolution of Nmin nearest neigh-
bours. Density estimators commonly used in numerical cosmology
such as the smoothed particle hydrodynamics (SPH; Monaghan
1992) and Voronoi (Voronoi 1908; van de Weygaert 1994; Okabe
2016) estimators are deterministic and do provide a unique measure
of density for each point – qualities that the reachability distance
does not possess. Ultimately, the reachability distance and the process
under which it is created provides not only an approximate measure of
local density but more importantly a means for ordering the points of
a data set and thereby reducing the n-dimensionality of the clustering
structure to a 2D representation of it. Fig. 3 shows a demonstration
of the OPTICS process for a 2D toy data set. Here each point has
been marked corresponding to its ordered index. Furthermore, the

3Note that by convention a point o is included amongst its own nearest
neighbour search and hence the Nmin nearest neighbours include o as well.
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Figure 3. A 2D toy example of the OPTICS algorithmic process and the
corresponding reachability plot output. This example is conducted using Nmin

= 3 with an arbitrarily scaled ε parameter, the corresponding core distances
and nearest neighbour search radius are also shown for the ordered indices
0, 1, 3, and 10. The colour of each coloured bar in the reachability plot
corresponds to the colour of the point that produced that bar’s reachability
distance value. Notice that the points with ordered indices 0 and 10 actually
have reachability distances of infinity (although it is not shown here) as a result
of never having previously (at the time they are appended to the ordered list)
been a part of any other core-point’s unprocessed nearest neighbourhood –
refer to Fig. 2 and the main text of Section 2.2 for more details on the process.

core distances and commonly shared ε parameter have been marked
and uniquely coloured for the ordered indices 0, 1, 3, and 10. The
figure illustrates that the more spatially clustered points have been
consecutively ordered in the reachability plot and have been assigned
smaller reachability distances than the other points.

One of the major drawbacks to OPTICS is that it is computationally
demanding, particularly for large data sets. Ankerst et al. (1999)
report a constant factor increase in runtime of 1.6 when compared
to its predecessor DBSCAN (Ester et al. 1996). The main difference
between the two being that DBSCAN returns one level of clustering,
i.e. all lists of points that are densely connected through core-
point neighbourhoods. Whereas OPTICS extends the rigidity of a
point either being part of a cluster or not, to a measure of how
much is a point a part of a cluster through the means of the
reachability distance. The worst-case time complexity for OPTICS is
O(n2), although in general the time complexity is O(n × rε), where
rε is the average runtime of the nearest neighbour radius queries.
Choosing fast nearest neighbour search algorithms, such as scikit-
learn’s KDTREE algorithm (Bentley 1975; Pedregosa et al. 2011)
(O(rε) → O(log(n))), as well as taking small values for ε, help
to reduce the runtime of a nearest neighbour radius query. Other
improvements of the total runtime can be made through seed list
optimization, partial sorting, and parallelization (Fuentes et al. 2017),
although the parallelization of OPTICS is notoriously difficult due to
its strongly sequential data access order, and typically the algorithm
must be altered (Patwary et al. 2013). Another property of OPTICS

is that it does not naturally identify the clusters present within the
data since it only returns a measure of local density about each point.
However as is explained below in Section 3.2, this is also its most
advantageous quality as it allows the user to be specific about the
density, hierarchy level distinction, and point inclusion criteria that
they wish to use to define a cluster.

3 HALO-O P T I C S: A H I E R A R C H I C A L
GALAXY/ (SUB)HALO FI NDER

3.1 Choosing appropriate OPTICS hyperparameters

As is mentioned in Section 2.2, the choices of ε and Nmin are
determined through a consideration of the minimum size and density
of structures the user wishes to detect, as well as the runtime
constraints the user wishes to adhere to. In order to provide a
substantially high degree of resolution for the identifiable clusters,
we choose to set Nmin = 20 – a common choice for the minimum
size of meaningful clusters in substructure finders. The choice to set
Nmin as a constant between each application to the galactic haloes
is implemented so that the minimum possible mass of the clusters
remains roughly equal between them (and only differs due to the
small differences between particle masses in these simulations). The
lower mass limit of clusters is ≈2 × 107 M� h−1 for stellar clusters
and ≈1 × 108 M� h−1 for dark matter clusters. This ensures that we
can meaningfully compare the clustering between different particle
types and different haloes. Having such a small value of Nmin does
however introduce more noise to the reachability plot than when
compared to that of larger Nmin values. This extra noise makes
meaningful cluster extraction more involved and less obvious, and
so we have constructed our own algorithm for automatic cluster
detection that we present in Section 3.2.

Making the choice for ε is a little more difficult as this essentially
specifies the size and extent of the least dense structures. The
FOF analogue for this parameter is the linking length that, in
cosmological simulations and given a halo with virial overdensity �

that contains N� particles within a radius of R�, may be chosen using
lx = (2π/N�)1/3R� (Elahi, Thacker & Widrow 2011). To extrapolate
this to the ε parameter we need to account for the fundamental
difference between the algorithms. A point will only be assigned a
reachability distance if it has previously been included in a now-
ordered core-point’s set of unprocessed nearest neighbours within a
radius of ε. Therefore, the least dense core such a point can be a
part of is the core that surrounds the core-point that has exactly Nmin

nearest neighbours that extend out to exactly a radius of ε. This can
be leveraged to find the factor by which ε must be larger than the
FOF linking length to encompass the same overdensity.4

4Because of the fundamental differences between OPTICS and FOF there will
not, in general, be a value for ε that produces precisely the same grouping of
points as FOF would by using a particular linking length lx. This is because
OPTICS does not care about intracore structure while FOF does, i.e. OPTICS

is less susceptible to point–point noise than FOF is. It should also be noted
that constructing ε from lx in this way is an approximation for finding haloes
that enclose a specified overdensity. As detailed in the study by More et al.
(2011), there does not exist a unique linking length that encloses a specified
overdensity for all FOF haloes. It is shown therein that the resultant enclosed
overdensity of FOF haloes is not only dependent on the number of particles in
the halo but also the concentration of the density peak. As such, the enclosed
overdensity of HALO-OPTICS haloes is also subject to this ambiguity. However,
since the mapping between an FOF halo and a HALO-OPTICS halo is not exact
either, we do not find it necessary to conduct a more thorough determination
of lx for the purpose of computing ε.
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For each application of HALO-OPTICS, we first compute the
corresponding FOF linking length (as detailed above) and then seek
to multiply this by the mean of the end-to-end distance of a chain of
Nmin points, each separated by unit length and each sampled from a
directionally uniform probability distribution. Even though we only
use Nmin = 20 in this work, the following describes how we prepare
the code for use with all possible values of Nmin. Since there is no
analytical solution to the mean of this distance distribution in terms of
elementary functions, we run a series of Monte Carlo simulations for
Nmin = 3–20 that compute it and store them as hard coded variables
within the code. The case when Nmin = 2 is trivial since this is identi-
cal to the FOF case and ε = lx. For larger values of Nmin we can base
our approximation off the root-mean-square distance since it does
have an analytical formula and is given by drms(Nmin) = √

Nmin − 1.
The root-mean-square of the end-to-end distance of the chain ap-
proaches a constant value of ∼1.084 times the Monte Carlo simulated
mean of the end-to-end distance of the chain. Therefore, a good
approximation of the mean of the end-to-end distance of the chain
for Nmin > 20 is given by drms(Nmin)/1.084. For a set of 10 roughly
log-spaced integers between Nmin = 21 and 1000, this approximation
is always within 0.2 per cent of the mean found from Monte Carlo
simulations. All Monte Carlo simulations used here calculate 107

separate chains from which the end-to-end distances and resultant
means are found. This calculation of ε from Nmin and the FOF linking
length, lx, effectively switches the OPTICS input parameter ε, to the
physically motivated HALO-OPTICS input parameter �, which we
choose as � = 200 (times the critical density of our Universe). This
also means that the root haloes (refer to Section 3.2 for a breakdown
of this terminology) found by HALO-OPTICS encompass a similar
overdensity to those that would be found by an FOF-based code.

3.2 Extracting clusters from OPTICS

Since the OPTICS algorithm itself does not return any clusters, the
extraction of clusters from reachability plots is a separate and unique
problem whose difficulties arise due to the innate subjectivity with
regards to the definition of a cluster. Two commonly used automatic
cluster extraction techniques are the ξ -steep method, first proposed
in the original OPTICS paper (Ankerst et al. 1999), and the DBSCAN

method, which effectively returns those clusters that the OPTICS

predecessor DBSCAN (Ester et al. 1996) would have. While the ξ -
steep method is able to extract a hierarchy and the DBSCAN method
can do so after being applied iteratively, neither is robust enough
to extract all necessary clusters at any overdensity. To combat these
downfalls, we have developed our own extraction process based
on the designs of Sander et al. (2003), Zhang et al. (2013), and
McConnachie et al. (2018); Fig. 4 summarizes the steps involved.
This extraction process produces a series of tree structures consisting
of clusters for nodes that we refer to as the HALO-OPTICS hierarchy.
In alignment with the standard terminology for this data structure,
we refer to any pair of clusters separated by a single branch as a
parent–child cluster pair, and we refer to a tree’s terminating clusters
as the root and leaf clusters.

3.2.1 Step 1

Given that dense regions of the data are described by valleys in the
reachability plot, our first step to extracting the clusters present in
the data is to define all local maxima in the reachability plot as the
boundaries of clusters. For the purpose of finding these local maxima,
we treat all undefined reachability distances as being equal to ε, which

Figure 4. The cluster extraction activity chart summarizing the steps we
take to determine clusters from the OPTICS output. Steps 1, 2, 3, and 6 can be
parallelized, while steps 4, 5, and 7 can only be partially parallelized – due to
the need to preserve the state of the hierarchy before these steps whilst the step
is conducted, refer to step 3 in the main text for more details on this. However,
we only perform these steps using a single core due to the entire extraction
process only taking a small fraction of the time it takes to run OPTICS for any
particular data set. It is important that these steps be performed exactly in this
order else the extracted clusters may not all be meaningful.

occur when a point has never been included in a nearest neighbour
radial query of another point that returns at least Nmin points.

3.2.2 Step 2

We then construct clusters out of lists of consecutively ordered points
contained within valleys of the reachability plot. Since each valley
must be bordered by a local maximum, we link up contiguous sets
of points on both sides of every local maximum in the reachability
plot with reachability distance less than that at the corresponding
local maximum. This creates two clusters for every local maximum.
Following this step, every cluster will contain at least one local
minimum, and be bordered by one (possibly two, if a valley is
bordered by two local maxima with the same reachability distance)
local maximum.

3.2.3 Step 3

As expected, this process incurs many artefact clusters that are
insignificant and so we now move through a rejection process that
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removes these clusters from the list. Since the reachability distance
of a particle is the radius of a particle encompassing sphere, we now
approximate that the local density is inversely proportional to the
volume of the n-sphere – n = 3 in this paper – with a radius of
the reachability distance. We use this concept in the first step of our
rejection process that rejects any potential clusters that satisfy either
of the following.

(i) The cluster contains less than Nmin particles.
(ii) The median local density of the cluster is less than ρ threshold

times that at the local maximum that was used to create it.

The first of these criteria ensures that clusters contain at least Nmin

particles as required by the resolution of structures in OPTICS. For the
second criterion, the chosen density contrast, ρ threshold, guarantees
that half of the points of a cluster must be at least ρ threshold as dense as
that cluster’s surroundings. Refer to Section 3.3 for our determination
of a reasonable ρ threshold value, ultimately we use ρ threshold = 2. Some
of the remaining steps are performed by first considering whether
each cluster in the list satisfies a condition before then rejecting all
such clusters at once. We conduct the process in this way due to
some of these conditions depending on the state of the hierarchy
and therefore whether or not a cluster satisfies such a condition
is susceptible to change under a typical reject mid iteration type
method.

3.2.4 Step 4

We now mark all clusters that are a single child of their parent cluster,
before then rejecting each of them. We justify this as a necessary step
to remove any clusters that are simply smaller versions of their parent
cluster. Single child clusters occur in the hierarchy when one of the
two clusters for each local maxima that was originally created in step
2, has been rejected during step 3.

3.2.5 Step 5

At this step, the list of clusters still typically contains many cascading
parent–child clusters that share large numbers of points. For all
parent–child cluster pairs sharing at least freject of the parent’s points;
mark the child for rejection if it has child clusters of its own, otherwise
mark the parent for rejection if it has a parent cluster of its own. We
then reject those marked clusters after inspecting the entire list. This
step further ensures the individuality of clusters in consecutive levels
of the hierarchy. Refer to Section 3.3 for our determination of a
reasonable freject value, ultimately we use freject = 90 per cent.

3.2.6 Step 6

Another artefact of determining clusters in this way is that each
cluster will likely contain outlier points that do not belong as part of
the cluster. We now reject outlier particles from all clusters that either
have a parent cluster, or that have neither a parent cluster nor any child
clusters. By exempting all root clusters (with child clusters) from the
outlier rejection, we maintain the lists of particles that give the best
description of larger halo environments. For those clusters that we do
apply the outlier detection to, we reject particles on the basis outlined
by Breunig et al. (1999) who define the local-reachability-density of
a point, o, as

lrd(o) = Nmin∑
q∈Nr≤o.cd (o)

reach dist(o, q)
. (3)

Here o.cd = core dist(o) from equation (1) and reach dist(o, q) is
defined in equation (2). It should be noted that these values are found
using only the points from within each cluster and in general will be
different to those found during the OPTICS process, and will also differ
from cluster to cluster for any point contained in multiple clusters.
The local-outlier-factor of o is then defined as

lof(o) =

∑
q∈Nr≤o.cd (o)

lrd(q)
lrd(o)

Nmin
. (4)

We find the local-outlier-factor for all points of a cluster, for all
clusters. For each cluster, we then reject all points from it that have
a local-outlier-factor greater than Soutlier. Any point that is a part of
n-many clusters will therefore have n individual local-outlier-factors
that are respective to each. It then follows that such a point may be
rejected from one cluster and not another. However, it also important
to note that since a parent cluster contains a larger number of lower
density points than its child cluster, the local-outlier-factor of a point
contained in both parent and child clusters will always be larger
than or equal with respect to the child cluster than it is with respect
to the parent cluster. Therefore following this step, a child cluster
will still never contain a point that a parent cluster does not. Refer
to Section 3.3 for our determination of a reasonable Soutlier value,
although ultimately we use the suggestion from Breunig et al. (1999)
that Soutlier = 2.

3.2.7 Step 7

Following the rejection of outlier points from all clusters, a possible
fringe case occurs where the ordered list for some clusters now
encompasses one or more points (that are not necessarily contained
in the cluster itself) whose local density is less than that of either of
the points at the cluster’s ordered list bounds. This is essentially a
discontinuity in the density field of the cluster as we have determined
it thus far. So for any cluster that satisfies this condition, we reject
it if it contains a child cluster, otherwise we remove all points from
this cluster from whichever side (in the ordered list) of the local
maximum contains less of them. If the removal of these points leaves
the cluster with less than Nmin particles, then we reject the cluster.

Following these steps, we are left with a list of clusters that we have
determined to be significantly denser, distinct, and self-consistent
when compared to their surroundings. Moreover, the process is
completed with the addition of only three user-defined parameters
– ρ threshold, freject, and Soutlier. It should be noted that the clusters
and the hierarchy they are a part of is not necessarily the hierarchy
that might be assigned based on physical reasons. It is particularly
dependent upon ε in the root level and similarly upon Nmin in the leaf
level. Importantly, the detection of significant overdensities by HALO-
OPTICS is still very informative even though it may not be physical,
and further still there is the possibility for implementing changes to
the extraction process such that it presents a more physical set of
clusters.

3.3 Performance optimization

To justify our extraction process in Section 3.2 we now present some
performance statistics of this process and how they are affected by
the extraction parameters ρ threshold, freject, and Soutlier, type of structure
present, as well as the level of non-structured background noise
within the data set. To do this, we create a mock cluster set designed
to mimic typical astrophysical structures. The data are contained
within a unit cube centred on the origin and the total number of
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Table 1. The descriptions and distributional parameters of each of the nine mock clusters used to investigate the purity and recovery
statistics of HALO-OPTICS. The analysis is conducted inside a cube with a side length of 1 that is centred on the origin. The total
number of points within each cluster is N × (1 − fb) × fc rounded to the nearest integer, where N is the total number of points inside
the unit cube, fb is the proportion of background noise, and fc is the proportion of clustered points belonging to that particular cluster.
Notice that

∑
fc = 1.

Cluster Description Centre coordinates Spread fc

A Sphere (x, y, z) = (0, 0, 0) (σ x, σ y, σz) = (0.06, 0.06, 0.06) 0.05
B Sphere inside A (x, y, z) = (0, 0, 0) (σ x, σ y, σz) = (0.01, 0.01, 0.01) 0.25
C Sphere at edge of B (x, y, z) = (0.05, 0, 0) (σ x, σ y, σz) = (0.005, 0.005, 0.005) 0.25
D Cone extending radially from A (x, y, z) = (0.2, 0.2, 0) (σ r, σ θ , σφ ) = (0.05, 2◦, 2◦) 0.05
E Sphere nearby F (x, y, z) = (0.3, 0, 0.03) (σ x, σ y, σz) = (0.01, 0.01, 0.01) 0.1
F Sphere nearby E (x, y, z) = (0.3, 0, −0.03) (σ x, σ y, σz) = (0.01, 0.01, 0.01) 0.1
G Angular arc nearby H (x, y, z) = (0, −0.3, 0) (σ r, σ θ , σφ ) = (0.01, 5◦, 25◦) 0.1
H Sphere inside tail of G (r, θ , φ) = (0.3, 90◦, −135◦) (σ x, σ y, σz) = (0.01, 0.01, 0.01) 0.02
I Angular arc nearby G (x, y, z) = (0, −0.4, 0) (σ r, σ θ , σφ ) = (0.01, 30◦, 2◦) 0.08

Figure 5. Projection of the mock clusters listed in Table 1. The clusters,
which are coloured by their true label, are designed to mimic a variety of
typical astrophysical clusters that also provide many intricacies for OPTICS

to interpret such as closely situated yet unique overdensities, elongated
structures, and a (somewhat) arbitrarily multilevelled hierarchy.

points is kept at a constant N = 104. The OPTICS hyperparameters
are chosen as Nmin = 20 to mimic our application to the MW-type
galaxies and ε → ∞ so that the root cluster includes all points.

The clusters are created using 3D Gaussian distributions of various
sizes, spreads and positions in both x, y, z and r, θ , φ coordinates.5

The descriptions and distributional parameters of these clusters are
presented in Table 1, and a 2D projection of one sampling is shown

5We do not use typical halo profiles here as the performance of HALO-OPTICS

does not depend on the exact density profile of a cluster. This is due to OPTICS

not using any information about the exact structure of a cluster in order to link
the points within it, and is precisely why it excels at finding arbitrarily shaped
clusters. We do, however, use a typical halo profile for clusters in Section 3.4
as the exact density profile will affect the conditions under which particle
bridges are created – which in turn affects the shape of the HALO-OPTICS

hierarchy.

in Fig. 5. The proportion of the total clustered points is given by
(100 per cent − fb), where fb is the percentage of background noise.
We vary the background noise from fb = 0 per cent to 90 per cent in
increments of 3 per cent and sample it using a uniform distribution
of points throughout the space. For each level of fb we run OPTICS

50 times, resampling from all distributions for each run.
We first assess the performance of HALO-OPTICS through measures

of recovery and purity. We define the recovery to be a function of
the true clusters and to be dependent on the levels of the predicted
hierarchy such that

R(T |L) =
∑{|T ∩ C| | ∀C ∈ L}

|T | , T ∈ M ∧ L ⊂ H. (5)

Here T is a true (mock) cluster, M is the set of mock clusters, C
is a HALO-OPTICS predicted cluster, and L is the set of predicted
clusters that belong to the Lth level of the predicted hierarchy, H.
This way the recovery of a particular true cluster can be interpreted
as the fraction of that cluster that is returned in the Lth level of the
predicted hierarchy. Since predicted clusters from HALO-OPTICS in
the same hierarchical level cannot overlap, this value will always be
contained to the interval [0, 1].

Similarly, we define the purity to be a function of the predicted
clusters and to be dependent on the levels of the predicted hierarchy
such that

P (C|L) =
∑{|T ∩ C| | ∀T ∈ M}

|C| , C ∈ L ⊂ H. (6)

Here T, M, C, L, and H are the same terms as in equation (5). This
definition of the purity of a particular predicted cluster, C, can be
interpreted as the fraction of C that is not background noise.

For each of the background noise/distribution resam-
pling combinations we find the recovery versus purity rela-
tions for 27 HALO-OPTICS parameter combinations. The com-
binations draw from ρ threshold ∈ {1.5, 2, 2.5}, freject ∈
{60 per cent, 75 per cent, 90 per cent}, and Soutlier ∈ {1.5, 2, 2.5}.
Whilst masking all zero recovery and zero purity values, we then
average over both the distributional resamplings and each level of
the predicted hierarchy.

Fig. 6 depicts these recovery versus purity relations as dependent
on the parameter combination, the level of the hierarchy, and the level
of background noise. For all parameter combinations the recovery
and purity decrease and increase, respectively, for a given level of
background noise as the level of the hierarchy deepens. This should
be expected, clusters in deeper levels of the hierarchy are denser
and have fewer points than their parent clusters. As a result, they
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4428 W. H. Oliver et al.

Figure 6. The recovery and purity relations of HALO-OPTICS as dependent on various combinations of the extraction parameters – ρthreshold, freject, and Soutlier –
after having been applied to the mock clusters listed in Table 1. Each panel displays the recovery versus purity for a different ρthreshold/freject combination. Within
each panel is the recovery versus purity as it is dependent on the various Soutlier values, hierarchy levels, and levels of background noise. We do not show level
0, the root level, as it contains all points in the data set and hence its recovery versus relation is a trivial line of constant recovery (=1) and decreasing purity
(= 1 − fb/100 per cent). We find that the main contribution to the performance of HALO-OPTICS comes from the ρthreshold and freject parameters with Soutlier

making little difference. The bold bordered panels showcase the two best performing parameter combinations that we compare against each other by way of the
maximum Jaccard index in Fig. 7.

are less affected by the increase in noise (higher purity per level of
background noise) and are less likely to include more of the total
clustered points in the data set (lower recovery in general).

Another noticeable feature in Fig. 6 is that some deep levels
of the hierarchy reveal a drop in recovery at fb = 0 per cent.
This characteristic is exaggerated for low ρ threshold and low freject

values. Following step 1 of the extraction process, the valley of the
reachability plot that corresponds with any particular true cluster
will typically have some non-zero number of cascading parent–child
predicted clusters associated with it – these range from high density
with a few points, to lower density with more points. In general,
lowering ρ threshold allows for the extraction of higher density child
clusters within this valley, and lowering freject effectively removes the
parent clusters above them. Increasing the level of background noise
lowers the density contrast surrounding the each of the mock clusters,
which in turn stops the low ρ threshold from allowing the extraction of
as many child clusters. Likewise, the resulting predicted cluster has
a higher recovery and slightly lower purity for some fb > 0 per cent
since it contains more points at a lower density. Eventually, as the
background noise level increases, the prediction of the true clusters
breaks down and the recovery drops dramatically. This can be seen
at each hierarchy level for every parameter combination.

We see here that the choice of Soutlier makes little difference to the
recovery versus purity relation and as such we choose to take Soutlier =
2, the suggestion by Breunig et al. (1999). Effectively, Soutlier is only
responsible for removing a small number of points in comparison
the size of the cluster, so it should be expected that this parameter
has little effect on the recovery and purity. The bold bordered panels
are the best performing ρ threshold/freject parameter combinations. It is

also clear here that freject = 90 per cent is a good choice, however it
is not immediately obvious as to whether ρ threshold = 2 or ρ threshold =
2.5 is a better choice.

To help distinguish between the two ρ threshold choices, we also
look at the maximum Jaccard index for each true cluster and some
hierarchical combinations of them. The maximum Jaccard index is
defined as

Jmax(T ) = max

{ |T ∩ C|
|T ∪ C| | ∀C ∈ H

}
, T ∈ M ′. (7)

Here M
′

is the set of true clusters and some typically predicted
hierarchical combinations of them. Likewise, T is any element of M

′
,

and C is any cluster in the predicted hierarchy, H, regardless of the
hierarchy level it belongs to. The maximum Jaccard index provides
a measure of how close of a match does the best-fitting predicted
cluster provide for any given true cluster – a true cluster here being
any element of M

′
. In this way, we can test the performance of HALO-

OPTICS by examining how well it predicts M
′
. Fig. 7 depicts the mean

and one standard deviation range of each T ∈ M
′

for both ρ threshold

= 2 and ρ threshold = 2.5 when freject = 90 per cent and Soutlier = 2.
Here the mean and standard deviation are found from the series of
HALO-OPTICS outputs over each of the distributional resamplings.

These also reveal a few features of the HALO-OPTICS predicted
clusters in general. One such feature is that the stream-like structures
– D, G, and I – are more affected by the increase in background noise.
This could be expected since these structures are elongated and will
have a lower spatial density than a Gaussian sphere, and therefore will
become less distinguishable from the background noise more readily.
Another feature is overencompassing clusters, such as cluster A, are
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Figure 7. The maximum Jaccard index of all mock clusters, and some hierarchical combinations of them, as listed in Table 1. This measure indicates how close
of a match the best-fitting predicted cluster from HALO-OPTICS is to any particular (union of) true cluster(s). Here we show the mean value and μ ± σ range of
the maximum Jaccard index for both ρthreshold = 2 and ρthreshold = 2.5 when freject = 90 per cent and Soutlier = 2. Here we see that the denser more spherical
clusters are predicted almost perfectly, whereas the more stream-like cluster predictions made by HALO-OPTICS gradually suffer from the increase in background
noise. However, it is obvious from this comparison that ρthreshold = 2 does perform better than ρthreshold = 2.5 in that the extraction process consistently produces
better fitting predictions of the true clusters D, G, H, and I as well as some hierarchical combinations of these. This higher quality performance is particularly
noticeable for the more stream-like structures as the background noise increases – a desired quality of structure finders.

not shown to be well matched here and have a lower maximum
Jaccard index than other clusters. This is due to the algorithm not
separating out the inner clusters, B and C, and in this way the best-
fitting match for cluster A is most probably that provides the best
match to the hierarchical combination of clusters A, B, and C. Of
course, if the set difference of the best-fitting match to the latter
was taken with the best-fitting matches to clusters B and C, we
could provide a better match to cluster A alone. Interestingly, the
maximum Jaccard index of the hierarchical combination of clusters
A, B, and C has a slight peak around fb ≈ 30 per cent. This occurs
as a result of the reachability distance for the outer points of cluster
A being reduced by the addition of the background noise points
in these regions. This effect is small and, as the background noise
increases, is outweighed by the inclusion of additional intracluster
noise.

Fig. 7 also includes two panels of a pair of disjoint hierarchical
combinations of clusters – namely the union of clusters A, B, C, D,
E, and F, and the union of clusters A, B, C, D, G, H, and I. These
have been included to express that the purposely arbitrary hierarchy
we have constructed within our mock cluster set has been translated
into an equally ambiguous predicted hierarchy. For the purpose of
providing an explanation with regards to this, we will refer to the

former hierarchical combination as HC1 and the latter as HC2 for
the remainder of this paragraph. The disjoint nature of HC1 and HC2
ensures that their respective best-fitting predicted clusters cannot be
one and the same unless their shared best-fitting predicted cluster
either contains only those leaf clusters that are common to both HC1
and HC2 (i.e. A, B, C, and D), or contains all leaf clusters (i.e. A–
I). In the following we refer to these scenarios as case 1 and case
2, respectively.6 For fb = 0 per cent, the Jaccard index for cases 1
and 2 is 0.6/0.8 = 0.75 and 0.8/1 = 0.8, respectively, and hence
the maximum Jaccard index for both HC1 and HC2 at this level of
background noise is 0.8. However, as the background noise level
increases the Jaccard index for each of these cases changes in a way
that depends on the effective occupied volume with the unit cube of

6There are technically more cases that can occur, for example, where HC1
(or HC2) is best matched by a predicted cluster that includes only points from
the leaf clusters within it (and some level of background noise), and then HC2
(or HC1) is best matched by either of the predicted clusters in cases 1 and 2.
While this occurs for some other hyperparameter combinations that return a
larger number of hierarchy levels, it does not occur within the hyperparameter
combinations featured in Fig. 7 – and so we do not discuss these extra cases.
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the true and predicted clusters proportionally – there is also some
random component to this due to the randomized sampling of both
the true clusters and the background noise. The occupied volume of
the predicted clusters changes with the background noise as well.
As a result, the best-fitting predicted cluster is not always provided
by that from case 2, and the corresponding maximum Jaccard index
to the best-fitting predicted cluster is not confined to less than 0.8
either. This is shown by the increase in the spread of the maximum
Jaccard index for both HC1 and HC2.

From Fig. 7, we clearly see that with ρ threshold = 2, HALO-OPTICS

out performs that with ρ threshold = 2.5 for true clusters D, G, H, and
I – as well as some hierarchical combinations of the latter three –
particularly when the background noise dominates the data. Not only
is the mean value of the maximum Jaccard index for these clusters
larger under the ρ threshold = 2 parameter scheme, but the spread
is smaller too. It is now apparent that ρ threshold = 2 is the better
parameter choice. So to summarize, we use ρ threshold = 2, freject =
90 per cent, and Soutlier = 2 as our (near) optimal HALO-OPTICS

hyperparameters.

3.4 Understanding the HALO-OPTICS hierarchy

We now wish to inform the reader about the nature of the HALO-
OPTICS hierarchy. To do this we construct another mock example
of clusters, only now we intend for these clusters to constitute an
easily understandable hierarchy. The mock example we use here
consists of two distributions that are intended to represent a main
halo and a satellite halo. Both of these haloes are modelled using the
spherical Navarro–Frenk–White (NFW) profile (Navarro, Frenk &
White 1996) that has a density profile of the form

ρ(r) = ρ0

r
Rs

(
1 + r

Rs

)2 , (8)

where ρ0 and Rs are the characteristic density and radius, respectively.
We use this to create a cumulative distribution function for the NFW
profile from which to sample the main and satellite halo distributions
from. We integrate the mass density profile in equation (8) over the
volume and out to some variable radius r, and then renormalize this
such that the integral out to some maximum radius, Rmax, is unity. It
then follows that an appropriate cumulative distribution function for
the haloes is given by

FNFW(r) =
[
ln

(
1 + r

Rs

)
− r

(r+Rs)

]

[
ln

(
1 + Rmax

Rs

)
− Rmax

(Rmax+Rs)

] , (9)

where 0 ≤ r ≤ Rmax. For the main halo we choose Rs = 1 and for
the satellite halo we choose Rs = 0.2. For both haloes we use Rmax =
10Rs and for the main halo we treat the effective R� as being equal
to 5Rs for the purposes of constructing ε from the data in the way
described in Section 3.1.

We now vary the resolution, mass fraction, and separation distance
of the two-halo system and run HALO-OPTICS over each realization
using the previously mentioned values of the HALO-OPTICS hyper-
parameters. The resolution is the total number of points in the data
set that we sample from 13 logarithmically spaced values between
40 and 104. The mass fraction is the ratio between the number of
points in the satellite and the number of points in the main halo
that we sample from 11 logarithmically spaced values between
0.002 and 1. These values correspond to the number of particles
belonging to the satellite being equal to the lowest possible limit of
detection by HALO-OPTICS when the resolution is 104 (when using

Table 2. Details of the number of clusters, |H|, in the HALO-OPTICS hierarchy
and the dependency of this on the resolution, mass fraction, and separation
distance variables of the two-profile system described in Section 3.4. Because
of the non-linear dependencies between the four, discretely sampled, variables
we only give a qualitative description of the generalized domain for which
a particular number of clusters may be found in the input space. For the
purposes of being succinct, we refer to the resolution, mass fraction, and
separation distance as R, M, and S, respectively.

|H| Occurrences Domain description

0 417 Very small R ∧ very large M ∧ large S
1 10 471 (Small R ∧ small M) ∨ (very small S)
2 484 Mid-range R ∧ mid-range M ∧ large S
3 2488 Mid-range R ∧ mid-range M ∧ mid-range S
4 209 Very large R ∧ very large M ∧ large S
5 374 Very large R ∧ very large M ∧ mid-range S

Nmin = 20) and equal to the number of particles in the main halo.
The separation distance is the distance between the centres of the
two distributions that we sample from 101 linearly spaced values
from 0 to 20 – so as to provide a reasonable range of possible
hierarchies.

From Table 2 we see the dependencies of the size of the HALO-
OPTICS hierarchy, |H|, upon the input space defined above. The exact
number of input space combinations that correspond to a particular
value of |H| is not as important as the domains within which these
particular values of |H| occur. The case where |H| = 0 reflects the
scenario where HALO-OPTICS is unable to gather any grouping of Nmin

points within a radius of ε. As such, this occurs at a small resolution,
large mass fraction, and large separation distance – which effectively
spreads a small number of points among two distinctly separate and
equally massive distributions. The case of |H| = 1 typically occurs
due to either, or a combination, of a small resolution and a small
mass fraction. The fact that it is the most commonly occurring case
is simply an artefact of having performed a logarithmic sampling
of both the resolution and mass fraction variables – which has
artificially created a sampling bias towards the smaller values of
these variables. A single cluster may also be returned for very
small separation distances. As such, these variable ranges force
HALO-OPTICS to ignore the satellite in the system and only find the
points from the main halo to be significantly clustered. This is a
consequence of the satellite having too few points associated with it
and/or the two density profiles being indistinctly separated from each
other.

The case where |H| = 2 is simply a partitioning of the main and
the satellite halo distributions into two root clusters and hence occurs
at large separation distances – provided that the resolution and mass
fraction variables are large enough to create significant samplings of
both the main and satellite halo distributions. The case where |H| = 3
generally occurs for the mid-range values of the separation distance –
again, provided that the resolution and mass fraction variable values
are suitable. A hierarchy consisting of three clusters marks the case
where the main and satellite halo distributions are connected via
the means of a particle bridge, whilst still having the two density
peaks remain distinctly separate. In this scenario, HALO-OPTICS finds
both the sampled distributions to be leaf clusters of an overarching
root cluster. In a real astrophysical data set, such a root cluster
would have a particular overdensity that is related to the mapping
from ε to the overdensity factor � in the way that is outlined in
Section 3.1.

The mock system we investigate here contains two NFW profiles
that can only be hierarchically connected via a single overarching
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Hierarchical clusters in haloes 4431

Figure 8. The reachability plot of the stellar particles from the MW02 synthetic halo where the colours indicate different clusters as determined by the
extraction process outlined in Section 3.2. The top panel is the full reachability plot and has only the root clusters coloured. The middle panel is the section of
the reachability plot that is marked with the grey dashed lines in the top panel. The clusters in this panel are coloured at the first child level below the root level.
The bottom panel is the section of the reachability plot that is marked with the grey dashed lines in the middle panel. The clusters in this panel are coloured at
the second child level below the root level. The black regions within each panel correspond to unclustered points at that level of the hierarchy. The bold letter
labels in this bottom panel correspond to the reachability profile of those clusters that have been similarly marked in Fig. 9.

root cluster, and as such our explanations thus far have covered all
hierarchies that should be expected from the density profile of this
system. However, since we perform a random and discrete sampling
of these distributions in order to construct the system, the hierarchies
that are feasibly possible here extend out to larger sizes than this –
although they are strongly probabilistic in nature. All occurrences
of hierarchies in which more than three clusters are found are due
to the presence of randomly occurring clusters (ROCs) and are an
artefact of the combination of the largest values of both the resolution
and mass fraction variables. Together these effectively increase the
probability that at least Nmin points will form a randomly positioned
and distinct overdensity within the system. When such a ROC is
found, it is forced to a deeper level of the hierarchy as a leaf cluster,
alongside another leaf cluster that conforms to the remainder of the
sampled distribution that occupies the region that is denser than the
saddle point of the density field – this saddle point is produced due
to the presence of the ROC.

It is apparent that the general domain of these larger hierarchies
becomes increasingly restricted towards the largest values of the
resolution and mass fraction variables as |H| increases. The general
decrease in the occurrences for larger hierarchies is due to the
probability of a ROC being found within this input space. As such,
the cases where |H| = 4 and where |H| = 5 are effectively extensions
of the |H| = 2 and |H| = 3 cases into this domain, respectively, i.e.
the same separation distance ranges with the larger resolution/mass
fraction values. Even larger values of |H| are also possible within
this input space, although the probability of their occurrence is
much lower. It should be noted that in this mock system, we could
decrease the likelihood of the ROCs being found by simply increasing
the HALO-OPTICS hyperparameter, ρ threshold. However, the value of
ρ threshold = 2 has a particular significance when pertaining to the
detection and extraction of streams. Furthermore, the legitimacy
of ROCs changes and becomes somewhat ambiguous when a true
astrophysical data set is concerned. Nevertheless, this result may
hint at the benefit that HALO-OPTICS stands to gain from some extra
hierarchical cleaning processes.

4 O U TPU T A NA LY SIS

4.1 Visualizing the HALO-OPTICS output

The 3D positions and masses for the stellar and dark matter particles
are taken from the MW02, MW03, MW04, and MW06 synthetic
haloes simulated by Power & Robotham (2016). We use HALO-
OPTICS on the stellar and dark matter particle types within each halo
both separately and combined. HALO-OPTICS gives us a reachability
plot (detailed in Section 2.2) and a list of significant clusters extracted
from that (detailed in Section 3.2). The reachability plot for the stellar
particles from the MW02 halo is shown in Fig. 8. The three panels
display various ranges of the ordered index of particles, and the
colours within each panel are cyclic between consecutive significant
clusters of the root, first child, and second child levels from top to
bottom, respectively. Fig. 9 contains a main panel and an inset one
that depict the positions of the particles contained within the middle
panel and bottom panels of Fig. 8, respectively. The colour scheme
and bold letter labels within these two panels correspond to those
used in the middle and bottom panels of Fig. 8, respectively.

It can be seen in Fig. 8 that even though the reachability plot is not
smooth, our extraction process retrieves the more significant clusters
while ignoring smaller undulations and noise. The reachability plot
from each of the stellar and dark matter particle runs for each of
the synthetic haloes always contain a very large valley relating to
the denser region that surrounds the MW-type galaxy. Within this
root level valley there is another very large valley – as well as many
other smaller ones. This other very large valley is the inner halo (the
right edge of which can be seen on the left of the middle panel in
Fig. 8), which is the most massive leaf cluster present within each
synthetic halo. The reachability distance of the inner halo is not only
small, indicating a high density, but also quite smooth. The central
region of Fig. 9 features the MW02 inner stellar halo’s least dense
particles (i.e. those that possess the largest reachability distances).
Towards the most dense parts of this inner halo, there are typically
many small sharp peaks in reachability (not visible at the scale of
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Figure 9. The main and inset panels are the positions – with the corresponding colour schemes – of all points in the middle and lower panels of Fig. 8,
respectively. Here we showcase that HALO-OPTICS retrieves the relevant clusters and the appropriate hierarchy that they are contained within.

the top panel in Fig. 8), however these are artefacts of the OPTICS

process and occur due to the reachability distance not being updated
for points that have already been appended to the ordered list. Our
extraction process successfully ignores these artefacts.

4.2 A comparison with VELOCIRAPTOR

We now wish to inform the reader as to what the structures are
that HALO-OPTICS has found. We do this via a comparison with
the state-of-the-art galaxy/(sub)halo finder VELOCIRAPTOR. We
apply VELOCIRAPTOR to both the stellar and dark matter particle
types within each MW-type galaxy’s snapshot file. VELOCIRAPTOR

first searches for field haloes from particle positions using a 3D
FOF algorithm. Then, each field halo is searched for phase-space
overdensities using an adaptive 6D FOF algorithm where the position
and velocity linking lengths are based on the average spatial and
kinematic dispersions of the parent cluster. These linking lengths
are iteratively decreased in order to identify local maxima in phase-
space density (cores) until no local maxima with enough particles
are found. Particles of the root cluster are then iteratively assigned to
their nearest core in phase space, according to the core’s phase-space
dispersion tensor. A core’s phase-space dispersion tensor is updated
as new particles are assigned. This process is similar to a Gaussian
mixture model but where the number of distributions is fixed to the
number of significant phase-space cores found.

To appropriately compare the two codes, we find the best-fitting
match from the VELOCIRAPTOR catalogue of clusters for each
HALO-OPTICS cluster, which we do by means of the maximum

Jaccard index, described in equation (7). Then for each HALO-
OPTICS–VELOCIRAPTOR best-fitting pair we compute the recovery
and purity fractions. Fig. 10 depicts the recovery versus purity
fractions for all HALO-OPTICS clusters as compared to their best-fitting
VELOCIRAPTOR cluster for both stellar and dark matter particle types
within each MW-type galaxy’s snapshot file.

We see from these that for a large majority of HALO-OPTICS

clusters there is a good match present within the corresponding
VELOCIRAPTOR catalogue. Of the HALO-OPTICS clusters that have
not been well matched by VELOCIRAPTOR, there is a small portion
that have high purity and low recovery. We note that of these,
many sit deep within the HALO-OPTICS hierarchy and have a best-
fitting VELOCIRAPTOR cluster that sits comparatively towards the
root clusters of the VELOCIRAPTOR hierarchy. The particles within
these clusters are likely to be spatially clustered and not kinemat-
ically clustered, hence VELOCIRAPTOR does not find them to be
significantly clustered at a deeper level of its hierarchy. In this
scenario it is probable that, given the same particle information as
VELOCIRAPTOR, HALO-OPTICS would too find these clusters to be
insignificant.

It is particularly striking to see that HALO-OPTICS does quite
well at retrieving a large majority of VELOCIRAPTOR clusters –
an impressive result considering VELOCIRAPTOR’s use of particle
kinematics in order to find many of these. These clusters must
still have a significant spatial density contrast with respect to their
background to be detected by HALO-OPTICS but some fine-tuning
would be needed in order to retrieve these clusters with just a 3D FOF
algorithm. This hints at the greater detection and extraction power
of the comparatively adaptive HALO-OPTICS algorithm over that of
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Hierarchical clusters in haloes 4433

Figure 10. The recovery versus purity relations for all HALO-OPTICS clusters and their best-fitting (by means of the maximum Jaccard index) VELOCIRAPTOR

clusters. Each column displays the relations for a different MW galaxy analogue and the rows correspond to the two particle types – stars and dark matter.
The colour within each panel reflects the normalized density (such that the maximum is 1) of best-fitting cluster pairs within the cells of a 15 by 15 histogram
for the stellar clusters and within a 45 by 45 histogram for the dark matter clusters. Within each panel the upper right, lower right, upper left, and lower left
corners indicate the regions that a HALO-OPTICS cluster will be placed if it is well matched by contained within and comparatively smaller than, containing and is
comparatively larger than, and mostly (or completely) unrecovered by its best-fitting VELOCIRAPTOR cluster. It is shown that a large portion of the clusters from
HALO-OPTICS are well matched by the VELOCIRAPTOR catalogue with high recovery and purity. We also see here that the HALO-OPTICS dark matter clusters do
have a more variable purity than that of their stellar counterparts when comparing to the VELOCIRAPTOR output, however these clusters do mostly have high
recovery and high Jaccard indices.

a static FOF algorithm. VELOCIRAPTOR overcomes this problem
by searching through a data-driven position–velocity phase space to
further separate these clusters from their background – which does
not require as much fine-tuning to achieve. Since HALO-OPTICS does
not require this kind of fine-tuning, these results bode well for the
performance of HALO-OPTICS in the event that it is applied using
a more informative metric – inclusive of particle kinematics and
metallicities for example.

Fig. 11 illustrates the 2D projections of a selected few clusters
produced by HALO-OPTICS and their best-fitting VELOCIRAPTOR

counterparts. The panels therein indicate the particles attributed to
each cluster by only HALO-OPTICS (in blue), only VELOCIRAPTOR

(in orange), and by both codes (in green). Various information about
the cluster representations from the codes are annotated within each
panel. We see that HALO-OPTICS provides a strong match to the
predictions made from VELOCIRAPTOR with high recovery, purity,
and Jaccard index between each of the representations.

In panel (A), HALO-OPTICS has retrieved extended stellar com-
ponents – that are likely of kinematic interest – associated with
the galaxy’s surroundings that VELOCIRAPTOR has not attributed
to the galaxy. The inner halo from HALO-OPTICS depicted in panel
(B) also overextends that from VELOCIRAPTOR. Both of these
overextensions, particularly the former, are largely resultant from
the differences between the OPTICS and FOF algorithms, i.e. OPTICS

is not affected by noisy interparticle spacing as it detects density
fluctuations at the resolution of Nmin points. The overextension seen
in panel (B) is also due to the differences between the featured
structure’s spatial and phase-space densities – a disparity that can
likely be mitigated with the inclusion of particle kinematics into the
HALO-OPTICS distance metric.

Panels (C) and (D) show that HALO-OPTICS does remarkably well
in retrieving and matching these streams without the knowledge
of particle kinematics. Given this knowledge, HALO-OPTICS could
provide better quality matches to these streams than it does in the
application we present here and potentially find some associated
particles that VELOCIRAPTOR does not.

We note that HALO-OPTICS does not find any of the substructures
contained within the inner halo of the MW02 galaxy.7 However,
it should also be expected that HALO-OPTICS would do better in
resolving these substructures with the knowledge of kinematics. Not
indicated in Fig. 11 is that of the 22 substructures found within the
HALO-OPTICS root cluster depicted in panel (A), 12 are contained
exclusively within the best-fitting cluster found by VELOCIRAPTOR

– which contains 29. By accounting for the known substructures
in panels (B), (C), and (D) (and subsubstructures therein), we can
deduce that there are precisely eight not visualized substructures from
VELOCIRAPTOR within this region, and eight from HALO-OPTICS.
These substructures are mostly the same between the codes, however
there is disagreement between the codes, namely the grouping shown
in the lower panel of Fig. 8 and the inset panel of Fig. 9. This grouping
implies that there must be at least one other cluster found by HALO-
OPTICS that is in dispute with those found by VELOCIRAPTOR. Such
clusters are likely to be clustered spatially but not kinematically, and
given the same phase-space information as VELOCIRAPTOR, we
expect that HALO-OPTICS will find these clusters to be insignificant.

As mentioned in Section 2.2, a major drawback to OPTICS – and
by extension HALO-OPTICS – is that it is computationally demanding.
For example, to complete a clustering run over the MW02 galaxy’s
stellar particles (209 834 particles), HALO-OPTICS takes ∼10 min to
create the reachability plot and then ∼7 s to extract clusters from that.
For HALO-OPTICS to complete a clustering run over the dark matter
particles (2441 561 particles) within the MW02 galaxy, the runtime
is ∼5 h to create the reachability plot and then ∼1 min to extract
the clusters therein. In comparison, running VELOCIRAPTOR over
the MW02 galaxy’s stellar particles only takes ∼4.4 s to search for
substructure and ∼25 s to get the 6D FOF haloes. For the dark matter
particles, VELOCIRAPTOR takes ∼16 s to search for substructure
and ∼37 s to get the 6D FOF haloes.

7This is by definition since we choose the inner halo to be the largest leaf
cluster in the hierarchy.
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Figure 11. A series of 2D projections of a select few stellar clusters from the MW02 galaxy that have been found by both HALO-OPTICS and VELOCIRAPTOR.
Particles colour: blue belong exclusively to the clusters as predicted by HALO-OPTICS; orange belong exclusively to the clusters as predicted by VELOCIRAPTOR;
green belong to the intersection of the clusters from both codes. Panels (A)–(D) depict the HALO-OPTICS cluster and its best-fitting VELOCIRAPTOR candidate for
the root stellar cluster that surrounds the MW02 galaxy barycentre (large pink valley in top panel of Fig. 8), the inner stellar halo of MW02 (partially shown in
purple at the leftmost edge of the middle panel of Fig. 8), and two streams nearby the inner stellar halo (not explicitly shown in colour within Fig. 8 as they reside
towards the left-hand edge of the inner stellar halo’s ordered list). The coordinate system of each panel is the same and is centred on the inner halo’s barycentre.
Annotated in orange in the upper left-hand corner of each panel is the hierarchy level, number of substructures, and recovery of the cluster as predicted by
VELOCIRAPTOR. Similarly, annotated in blue in the lower right-hand corner of each panel is the hierarchy level, number of substructures, and purity of the
cluster as predicted by HALO-OPTICS. Annotated in green in the upper right-hand corner is the (maximum) Jaccard index of the two cluster representations.

These runtime discrepancies are partially due to our naive im-
plementation of HALO-OPTICS being run with PYTHON-3 through
a single core on an Intel Xeon E5-2698 v4 processor, whereas
VELOCIRAPTOR is a ready compiled program written in C++11
with ≥−O2 optimization using GCC that in this instance used a
single core and single MPI on an Intel i7 vPro processor. However,
the largest runtime setback for HALO-OPTICS comes from the fact
that not only does its nearest neighbour radial search need to be
much larger than the corresponding FOF nearest neighbour radial
search, but HALO-OPTICS also needs to return the exact distances of
each neighbour during this search, whereas VELOCIRAPTOR does
not. It should also be noted that as our implementation currently
exists, HALO-OPTICS has no parallelization capabilities and only
uses optimized vectorized functions, whereas VELOCIRAPTOR has
massively parallel capabilities. Using VELOCIRAPTOR in this way
can dramatically reduce the overall runtimes. For example, by
allowing VELOCIRAPTOR to use eight threads on the same dark
matter particles as above, the substructure search time reduces to
∼13 s and the 6D FOF search reduces to ∼26 s.

4.3 Inside the high-resolution zone

Each synthetic halo has a virial mass (M200) of approximately 2 ×
1012 M� h−1 (details of each halo may be found in table 1 of Power
& Robotham 2016). The proportion of M200 made up of stellar and
dark matter particles also remains similar between haloes, however
the total number of each type of particle within each galaxy snapshot
does vary. The stellar and dark matter particles extend much further
than R200 and as such the size and complexity of the reachability plot
varies as well. To reduce this variability between haloes we now take
only those clusters whose barycentres are contained within 5R200 ≈
1 Mpc h−1 from the barycentre of the inner halo of each galaxy. This
radial cut is chosen as it represents the approximate boundary of

the high-resolution regions within each of the cosmological zoom
simulations that contain each MW-type galaxy. Fig. 12 demonstrates
the cluster hierarchy within this region of each of the galaxies for
both the stellar and dark matter particles.

From Fig. 12 we see that within 5R200 each galaxy’s hierarchy of
clusters is similar. The number of clusters defined at the root level
(level 0) is solely dependent on the OPTICS parameter ε. By increasing
ε, the hierarchy will deepen overall and narrow at the zeroth level
until eventually the zeroth level will only contain a single cluster –
the entire data set. To some extent the shape of the hierarchy at each
particular level will be influenced by the choice of ε, although since
we use a rigorous definition for ε in our application of HALO-OPTICS

the hierarchy shape between galaxies is meaningful.
Despite being born from the same simulation regime, the distinct

hierarchy of stellar substructure within MW03 is seen in Fig. 12,
where the peak is noticeably larger in magnitude than the other
galaxies. The stellar component of MW03 appears to exhibit the
most galaxy–galaxy variation as seen in fig. 8 of Power & Robotham
(2016). Compared to the other galaxies the density of MW03 is
large for small radii, drops for radii ∼0.1R200, and also features
considerable spikes in density for radii approaching ∼R200. The
significant differences in stellar density within this region are
certainly the reason for the large number of clusters at the first
level of MW03’s stellar hierarchy as these clusters will have a lower
background density and therefore be in contrast with it more so than
for the other MW-type galaxies.

5 D ISCUSSION

We have demonstrated that the HALO-OPTICS algorithm is a powerful
tool to be used for the global identification of all meaningful
clusters of a data set containing at least Nmin data points and
the hierarchy within which they are embedded. When applied to
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Figure 12. Stellar (top) and dark matter (bottom) cluster hierarchies for
each galaxy. Levels 0–6 indicate the root to leaf layers of the hierarchy,
respectively. The solid and dashed lines illustrate the total number of clusters
and the number of leaf clusters at each level, respectively. The total number
of leaf stellar clusters is 39, 71, 38, and 38 for the MW02, MW03, MW04,
and MW06, respectively. Similarly, the total number of leaf dark matter
clusters is 201, 220, 273, and 313 for the MW02, MW03, MW04, and MW06,
respectively.

the physical clustering of particles, the ambiguity of a meaningful
metric disappears and the output becomes particularly robust when
compared to other algorithms that operate under the same metric.
We applied HALO-OPTICS to the 3D positions of stellar and dark
matter particles from four MW-type galaxies produced through a
set of cosmological zoom simulations. We used HALO-OPTICS to
detect and extract the significant clusters from these galaxies. We
compared the output with VELOCIRAPTOR before then analysing
the hierarchy of clusters that are situated within a radius of 5R200

from their corresponding system’s galactic centre.
Through our comparison with VELOCIRAPTOR in Section 4.2, we

have demonstrated that HALO-OPTICS retrieves the more significant
clusters while electing to ignore those clusters whose density does
not appreciably differ from their surroundings. Furthermore, this
comparison indicates the power of adaptive hierarchical clustering
algorithms such as HALO-OPTICS as it is able to uncover many
clusters from only the 3D particle positions that VELOCIRAPTOR

had identified by using both particle positions and kinematics.8

For HALO-OPTICS to achieve this, these clusters must still have a
significant spatial density contrast with their background, however
for a 3D FOF algorithm to do the same, some level of fine-tuning
would be needed.

The depth and shape of the hierarchy are influenced by the HALO-
OPTICS hyperparameters. Those from the original OPTICS algorithm,

8This is not to say that VELOCIRAPTOR is not adaptive – it is – VELOCIRAP-
TOR iteratively uses a 6D FOF algorithm by locally adapting its phase-space
metric to further separate clusters from their surroundings. This typically
means that as the algorithm searches for clusters deeper within the hierarchy
the phase space becomes more heavily weighted towards particle kinematics
rather than particle positions.

ε and Nmin, are respectively responsible for the extents of lowest
density and smallest size the clusters can be. Changing the HALO-
OPTICS input parameter � has similar affect as its less physical OPTICS

counterpart, ε. The additional extraction parameters exclusive to
HALO-OPTICS – ρ threshold, freject, and Soutlier – are responsible for the
number of divisions in between the root and leaf levels and which
particles belong to each level and each cluster. However, the largest
contributor to hierarchy is of course the physics of the interactions
between the particles themselves. Being cold, the dark matter easily
clumps together to form deep hierarchies by z = 0. Between baryonic
feedback effects and the relative subdominance of stellar particles
within the region defined by a radius of R200 as a whole (refer to
table 1 of Power & Robotham 2016), the resultant stellar hierarchies
are shallower than their CDM counterparts. However due to stellar
particles being kinematically cold, we should expect the stellar
hierarchy to deepen with the inclusion particle kinematics.

It is likely that the inclusion of extra localized information – i.e.
velocities, chemical abundances, etc. – into the metric will have the
largest impact on cluster yields in the inner regions of galaxies where
large numbers of particles are very spatially dense and neighbouring
local spatial densities are indistinct. This metric augmentation could
conceivably be implemented as a non-linear combination of spatial,
kinematic, and metallicity variables that are each weighted by a
factor relative to their local variation within the data. Alternatively,
HALO-OPTICS could perform its nearest neighbour searching over the
spatial dimensions – preserving the maximum spatial scales defined
by the overdensity factor � – and then order points by a distance
metric containing information about spatial, kinematic, and chemical
variables – although this may not be necessary due to the adaptive
nature of OPTICS.

Modifying the metric in this way will provide the means for
determining clusters more distinctly from their background so long
as the metric only includes good indicators of clustered data. The
reachability plot will in general change shape for any given cluster,
though not so significantly that we should not expect our cluster
extraction method to still recover all relevant clusters. However, the
optimal HALO-OPTICS hyperparameters may be different in a higher
dimensional metric from those used in conjunction with a 3D spatial
one.

The root levels of the hierarchy of clusters in a particular
astrophysical data set will likely stay consistent across various
metrics. Although, the hierarchy may deepen with the addition
of extra clustering indicators since our cluster extraction process
will be able to retrieve additional low spatial density and kinemati-
cally/metallicity coherent substructures at the leaf levels. Likewise,
we may reasonably expect that changing the metric in these ways
will not adversely affect the more massive substructures – nor
will it resolve any new ones – and that the effect of an improved
metric will predominantly modify the proportion of the less massive
substructures compared to those that are larger.

6 C O N C L U S I O N S

We have shown HALO-OPTICS to be a robust cluster finder that is
effective in determining a wide variety of cluster types, shapes,
and sizes, even with a spatial distance metric as its only handle
on localized information. Furthermore, we are satisfied that our
extraction process is capable of determining these clusters without
the need for supervised learning nor the restrictions of the more
conventional extraction techniques. The ability for the HALO-OPTICS

algorithm to retrieve the hierarchy of galaxies in this relatively
fast and secure manner should pave the way for HALO-OPTICS to
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be used complementary to a more traditional structure finder such
as VELOCIRAPTOR, and as a simple and practical halo finder in
astrophysics and its related fields. In a future work, we will extend
HALO-OPTICS to use a multidimensional metric that is inclusive
of extra localized information, such as particle kinematics and
stellar metallicity. We also intend to build upon our extraction
technique so that it incorporates more physical aspects of clusters
such as particle boundedness. Among these changes, we leave the
further optimization and potential parallelization of HALO-OPTICS for
future work as well. These concepts, particularly the latter, present
significant challenges due to the strongly sequential data access order
that OPTICS makes use of.
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R., Poulton R., 2018, MNRAS, 475, 5338
Elahi P. J., Canas R., Poulton R. J. J., Tobar R. J., Willis J. S., Lagos C. d. P.,

Power C., Robotham A. S. G., 2019, Publ. Astron. Soc. Aust., 36, e021
Ester M., Kriegel H.-P., Sander J., Xu X., 1996, in Simoudis E., Han J., Fayyad

U., eds, KDD 1996: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining. AAAI Press, Palo Alto, CA,
p. 226

Fielder C. E., Mao Y.-Y., Newman J. A., Zentner A. R., Licquia T. C., 2019,
MNRAS, 486, 4545

Fuentes S. S., De Ridder J., Debosscher J., 2017, A&A, 599, A143
Fukunaga K., Hostetler L., 1975, IEEE Trans. Inf. Theory, 21, 32
Gaia Collaboration et al., 2018, A&A, 616, A1
Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V., 2004, MNRAS,

355, 819
Garrison-Kimmel S., Boylan-Kolchin M., Bullock J. S., Lee K., 2014,

MNRAS, 438, 2578
Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 1998,

MNRAS, 300, 146
Hoffman Y., Metuki O., Yepes G., Gottlober S., Forero-Romero J. E.,

Libeskind N. I., Knebe A., 2012, MNRAS, 425, 2049
Homma D. et al., 2019, PASJ, 71, 94
Ishiyama T. et al., 2013, ApJ, 767, 146
Kamionkowski M., Liddle A. R., 2000, Phys. Rev. Lett., 84, 4525
Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Kim S. Y., Peter A. H. G., Hargis J. R., 2018, Phys. Rev. Lett., 121,

211302
Klypin A., Kravtsov A. V., Valenzuela O., Prada F., 1999, ApJ, 522, 82
Knebe A. et al., 2011, MNRAS, 415, 2293
Knollmann S. R., Knebe A., 2009, ApJS, 182, 608
Koposov S. et al., 2008, ApJ, 686, 279
Koposov S. E. et al., 2018, MNRAS, 479, 5343
Lloyd S., 1982, IEEE Trans. Inf. Theory, 28, 129
McConnachie A. W. et al., 2009, Nature, 461, 66
McConnachie A. W. et al., 2018, ApJ, 868, 55
Marquant J. F., Evins R., Bollinger L. A., Carmeliet J., 2017, Appl. Energy,

208, 935
Martinez G. D., Minor Q. E., Bullock J., Kaplinghat M., Simon J. D., Geha

M., 2011, ApJ, 738, 55
Massaro F., Alvarez-Crespo N., Capetti A., Baldi R., Pillitteri I., Campana

R., Paggi A., 2019, ApJS, 240, 20
Mau S. et al., 2019, ApJ, 875, 154
Monaghan J. J., 1992, ARA&A, 30, 543
Moore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P.,

1999, ApJ, 524, L19
Moore B., Diemand J., Madau P., Zemp M., Stadel J., 2006, MNRAS, 368,

563
More S., Kravtsov A. V., Dalal N., Gottlöber S., 2011, ApJS, 195, 4
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Chapter 4

A More Suitable Algorithm for Big

Data

Following a clear demonstration by Halo-OPTICS of the power of using an adaptive-

density clustering structure finder such as OPTICS in an astrophysical context, it

has become obvious that the concept should be extended for application to any

astrophysical data set. In order to be readily applicable to any astrophysical data set,

however, the algorithm would need to facilitate structure finding with an arbitrary

number of data points and be defined with an arbitrary number of features. The

former of these two issues presents a unique problem for extending the algorithm,

OPTICS and by extension Halo-OPTICS, both perform a radial nearest neighbour

search about every point in the data set which as the data set grows can result in

a very large run-time – even more so for data sets with a large number of features.

The latter issue requires the extended algorithm to be capable of dealing with

combinations of features with differing units and, preferably, in such a way that

maximises the information available for producing relevant astrophysical clustering

structure.

To overcome these downfalls I create CluSTAR-ND. CluSTAR-ND reduces the time-

costly radial nearest neighbour search to a much faster k nearest neighbour search

and then orders points in a similarly to OPTICS to produce a similar output of

clusters. Since the ordering process of CluSTAR-ND can be decoupled from the

density estimation (unlike in OPTICS and Halo-OPTICS), I also have it compute the

local density at each data point using the more robust Epanechnikov kernel [386]

and balloon estimator [387]. So that it can operate on input data with any number

of features, I give the user the option of using one of 3 metric adaptivity settings –

corresponding to no transformation, a global PCA transformation, and an iterative

PCA transformation. Using either of the PCA transformation settings allows for

55
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CluSTAR-ND to find structures from data whose features have differing units.

In the research presented in Sec. 4.1 I perform a comparison between CluSTAR-ND

and Halo-OPTICS finding excellent agreement between the two when operating on

the same data and feature space. In this comparison, I also show that the run-time

of CluSTAR-ND is at least 3 orders of magnitude faster than that of Halo-OPTICS

and has a modest time-complexity of O(n log n) instead of the inevitable O(n2) that

arises in Halo-OPTICS from the large search radius needed to define galactic haloes.

I then re-optimise the CluSTAR-ND hyperparameters and find characteristic functions

of their optimal parameters that allow for them to be automatically and optimally

chosen given the input data. I find that the clustering power of the optimised

CluSTAR-ND algorithm increases with an increasing feature space and that it is able

to retrieve a large portion of tidal debris from galactic haloes. The code for the

CluSTAR-ND algorithm can be found in App. B.2.

As with Halo-OPTICS, CluSTAR-ND is designed to be a generalised astrophysical

structure finder and, while these algorithms are aimed at revealing the hierarchical

structure of galactic haloes, it is also the case that CluSTAR-ND can be applied

to other astrophysical data sets. Unlike Halo-OPTICS however, CluSTAR-ND may

be applied to much larger and more complex data sets with arbitrarily defined

feature spaces. This extends the generalised nature of CluSTAR-ND to be capable of

identifying density-based clusters within chemo-dynamical data sets of objects or

even (subject to parameter adjustments) time-domain clustering – so long as the

definition of the predicted clusters remains appropriate.

4.1 Structure Finding with CluSTAR-ND

This section presents the published journal article:

2. The Hierarchical Structure of Galactic Haloes: Generalised N-Dimensional

Clustering with CluSTAR-ND. W. H. Oliver, P. J. Elahi, & G. F. Lewis.

MNRAS 514, 5767, 2022. [arXiv:2201.10694].

Author Contributions: I developed and trained the CluSTAR-ND algorithm, pro-

duced the clustering outputs, drew comparisons between the outputs of CluSTAR-ND

and it’s predecessor Halo-OPTICS, and wrote the manuscript. Dr. Pascal J. Elahi

made valuable contributions to the concept of the algorithm, it’s training, and the

interpretation of the final results. The project was conducted under the supervision

of Prof. Geraint F. Lewis, who also recommended using the Galaxia code [388] to

produce synthetic MW data. All authors reviewed and commented on the paper.

https://doi.org/10.1093/mnras/stac1701
https://arxiv.org/abs/2201.10694
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A B S T R A C T 

We present CLUSTAR-ND , a fast hierarchical galaxy/(sub)halo finder that produces Clu stering S tructure via T ransformative 
A ggregation and R ejection in N - D imensions. It is designed to improve upon HALO-OPTICS – an algorithm that automatically 

detects and extracts significant astrophysical clusters from the 3D spatial positions of simulation particles – by decreasing 

run-times, possessing the capability for metric adaptivity, and being readily applicable to data with any number of features. We 
directly compare these algorithms and find that not only does CLUSTAR-ND produce a similarly robust clustering structure, it 
does so in a run-time that is at least 3 orders of magnitude faster. In optimizing CLUSTAR-ND ’s clustering performance, we have 
also carefully calibrated 4 of the 7 CLUSTAR-ND parameters which – unless specified by the user – will be automatically and 

optimally chosen based on the input data. We conclude that CLUSTAR-ND is a robust astrophysical clustering algorithm that can 

be leveraged to find stellar satellite groups on large synthetic or observational data sets. 

Key words: methods: data analysis – methods: statistical – galaxies: star clusters: general – galaxies: structure. 

1  I N T RO D U C T I O N  

The process of identifying clusters – often referred to as clustering 1 

– from a data set has been an ongoing data mining problem within 
the field of machine learning. The function of any algorithm tasked 
with undertaking this problem is to determine a set of statistically 
coherent groups within the intrinsic feature space of the data. Many 
such algorithms exist for this purpose, ho we ver, due to the innate 
subjectivity of the definition of a cluster it is not al w ays obvious as 
to which of these may be useful for clustering of a given type. 

The groupings found by a clustering algorithm can be categorized 
into one or more of the typical models, such as; centroid-based 
(e.g. K-MEANS ; MacQueen et al. 1967 ; Lloyd 1982 ), distribution- 
based (e.g. EM ; Dempster, Laird & Rubin 1977 ), density-based 
(e.g. DBSCAN ; Ester et al. 1996 ), and others. The way in which 
a clustering algorithm partitions the data is also of importance and 
provides a similar categorization. These algorithms may return a flat 
or hierarchical clustering such that clusters are mutually e xclusiv e 
or can be proper sub/supersets of one another – this is one of the 
differences between DBSCAN and HDBSCAN (Campello et al. 2015 ) 
for example. In addition to these, an algorithm may also return an 
o v erlapping set of clusters. A clustering may place all points within 
clusters (e.g. K-MEANS ) or more commonly it may leave some points 
out of clusters classifying them as noise or outliers to the clusters that 
hav e been predicted. Moreo v er, these algorithms may return a hard 
or soft – also referred to as fuzzy – clustering. This distinguishment 

� E-mail: woli0618@uni.sydney.edu.au 
1 Note that we use this term throughout this paper to mean both the general 
process of finding clusters and the resultant set of classifications from this 
process – depending on the context. As such, our use of this term is much 
broader than its typical use within astro- and cosmo-related fields, e.g. 
referring specifically to large-scale structure. 

clarifies whether the nature of a point being within a cluster is binary- 
based or probability-based (e.g. FUZZY C-MEANS ; Dunn 1973 ). Since 
each of these separate class systems are codependent – in that an 
algorithm may be classified by multiple at a time – it suffices to say 
that choosing an appropriate clustering algorithm for the problem at 
hand is non-trivial. 

In cosmology, a typical description of a galaxy and its halo is any 
spatial o v erdensity that is denser than the critical – or mean – density 
of the universe by some f actor � . Tw o common w ays to identify 
such o v erdensities from both cosmological simulations and observed 
data sets are via the Spherical-Overdensity method ( SO ; Press & 

Schechter 1974 ) and the Friends-of-Friends algorithm ( FOF ; Davis 
et al. 1985 ). By themselves, these algorithms perform a density-based 
flat and hard clustering with noise which is well suited to the intended 
definition of galactic haloes – and as an additional constraint, the SO 
method can also be considered part of the distribution-based family 
due to ensuring that clusters adhere to a particular volumetric shape. 

It is a primary prediction of the Lambda cold dark matter ( � CDM) 
cosmological model that galaxies are formed hierarchically via con- 
tinual accretion and merger events (White & Rees 1978 ; Kauffmann, 
White & Guiderdoni 1993 ; Ghigna et al. 1998 ). Depending upon 
the conditions of the satellite at the time of the merger as well as 
the ongoing conditions of the host halo (Bullock & Johnston 2005 ; 
Johnston et al. 2008 ), the particles within these infalling groups may 
become mixed in with, and indistinguishable from, the surrounding 
halo. 2 This prediction is mostly confirmed in nature barring a few 

exceptions such as the missing satellite problem (Klypin et al. 
1999 ; Moore et al. 1999 ; Reed et al. 2005 ; Springel et al. 2008 ; 
Tollerud et al. 2008 ; Ishiyama et al. 2013 ) and the core–cusp problem 

2 The phase-space volume of infalling groups is conserved in a fully colli- 
sionless Newtonian gravity simulation. 

© 2022 The Author(s) 
Published by Oxford University Press on behalf of Royal Astronomical Society 
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(Flores & Primack 1994 ; Moore 1994 ; Van Den Bosch et al. 2000 ). As 
such, an appropriate fla v our of clustering algorithm for application 
to within galactic haloes is that of the density-based hierarchical type 
with noise. Many such algorithms exist for specifically this purpose, 
including but not limited to; SUBFIND (Springel et al. 2001 ), AHF 
(Knollmann & Knebe 2009 ), ROCKSTAR (Behroozi, Wechsler & Wu 
2012 ), VELOCIRAPTOR (Elahi et al. 2019 ), and more. Comparisons 
of these and others tend to show the outputs of halo-finders to be 
similar (Knebe et al. 2011 , 2013 ). 

The abo v e halo-finders mostly rely on the SO method and/or the 
FOF algorithm which both restrict the clustering to certain types of 
clusters. The varied shapes and density profiles of subhaloes often 
mean that these base algorithms need to be applied iteratively in 
order to find a range of subhalo types. In doing so, the run-times 
become larger although this does also allow some of these halo- 
finders to return hierarchical clusterings and even utilize adaptive 
metrics. Despite these measures of fine-tuning, SO -based halo- 
finders struggle to find curved structures such as streams and FOF - 
based halo-finders can still fall victim to point-point noise and fail 
to detect sparsely populated structures. The galaxy/(sub)halo finder 
HALO-OPTICS (Oliver et al. 2020 ) is based on OPTICS (Ankerst 
et al. 1999 ), a generalisation of DBSCAN , and is more robust to 
point-point noise. Coupled with an adaptive metric, HALO-OPTICS 
could be a powerful astrophysical clustering algorithm if not for 
the fact that the run-time of OPTICS can become unmanageable 
when operating in this way. Alternatives typically only use a set of 
nearest neighbours to perform locally adaptive metric computation. 
One such algorithm, the subhalo-finder ENLINK (Sharma & Johnston 
2009 ), uses an entropy-based locally adaptive metric in combination 
with a group finder that is also robust to point-point noise in order to 
find a range of subhalo types. VELOCIRAPTOR and HSF (Maciejewski 
et al. 2009 ) also can attempt to generate locally adaptive metrics to 
identify clusters. 

Having a fast clustering algorithm is not simply a matter of 
convenience. It is critical when clustering o v er e xtensiv e data sets 
with large feature spaces. It is also of particular importance when 
used to find a fuzzy clustering of an astrophysical data set. Unlike 
the output from the FUZZY C-MEANS algorithm, which is a fuzzy 
clustering of a hard data set, the fuzzy clustering found in this context 
is itself from a fuzzy data set and needs to have propagated the 
uncertainties of a point’s features into the probability of that point’s 
membership within a given cluster as well as the probability of that 
cluster’s existence. Solving this problem typically requires taking 
many samplings of the data and comparing each of the clusterings 
therefrom (e.g. Fuentes, De Ridder & Debosscher 2017 ; Malhan 
et al. 2022 ). In order to be able to perform such a task whilst also 
maintaining a high-calibre clustering power, it is becoming necessary 
to use an algorithm that is: density-based; hierarchical; robust 
to point–point noise; equipped with adaptive metric capabilities; 
applicable to data sets with any number of features; and demonstrates 
exceptionally modest run-times. 

We present CLUSTAR-ND , a deri v ati ve of HALO-OPTICS that 
possesses the abo v e qualities, and apply it to synthetic surv e y data 
produced by GALAXIA (Sharma et al. 2011 ) in order to formalize 
the process of clustering N -dimensional data sets of galactic haloes. 
We first provide a rele v ant outline of the HALO-OPTICS algorithm 

(Section 2 ). We then describe the CLUSTAR-ND algorithm in Sec- 
tion 3 . In doing so we give an o v erview of the concept and moti v ation 
behind the algorithm (Section 3.1 ), describe the root-haloes produced 
(Section 3.2 ), and the means by which the substructure therein is 
found (Section 3.3 –3.6 ). In Section 4 , we summarize the details 
of the synthetic galaxies from GALAXIA . Following this we make a 

direct comparison between CLUSTAR-ND and the HALO-OPTICS 
algorithm in Section 5 . In Section 6 , we discuss the influence of 
the algorithm’s parameters and optimize them by training them on 
the galaxies from GALAXIA . We then discuss the contrast in the 
information content available from the clusterings produced from 

different clustering scenarios in Section 7 . Finally, we present our 
conclusions and directions for future work in Section 8 . 

2  A N  OV ERVI EW  O F  T H E  HALO-OPTICS 

A L G O R I T H M  

In order to understand CLUSTAR-ND, it is first necessary to grasp 
the algorithm HALO-OPTICS (Oliver et al. 2020 ). HALO-OPTICS 
is a hierarchical galaxy/(sub)halo finder that can be used for the 
density-based determination of astrophysical clusters in a 3D spatial 
data set via a global distance metric, i.e. the Euclidean distance. It 
is an extension of the well-known hierarchical clustering algorithm, 
OPTICS (Ankerst et al. 1999 ) – which is itself an extension of 
DBSCAN (Ester et al. 1996 ). DBSCAN is non-hierarchical and will 
produce a flat clustering with noise of a given data set such that 
the points in each cluster are densely connected with a density 
greater than some threshold. All points with a density lower than 
this threshold are classified as noise and are not clustered. OPTICS 
not only connects all points in this manner, but also keeps track of 
how the points are connected together – i.e. in which order and with 
what measure of local density. This adjustment allows OPTICS to 
build a reachability plot which contains information of the clustering 
structure. 

Both the OPTICS and DBSCAN algorithms require 2 parameters; 
ε, a search radius, and N min (often denoted as MinPts ), the minimum 

number of points a cluster can have. The algorithms also need a 
distance metric to be defined o v er the feature space of the input 
data. Conditioned upon this metric, OPTICS uses the concepts of 
core distance and reachability distance to produce its output – the 
reachability plot. The core distance of any given point is the distance 
between that point and it’s N min 

th nearest neighbour. It then follows 
that a core-point is any point whose core distance is less than or 
equal to ε. The reachability distance of any point, q , with respect to 
another, o , is the maximum of the core distance of o and the distance 
between q and o . 

Initially, OPTICS computes the core distances of each point and 
sets the reachability distances of all points to infinity. The algorithm 

then iteratively orders each point in the data set. In each iteration 
of this ordering process, the next-to-be-ordered point is chosen as 
the point with the smallest reachability distance from the set of all 
unordered points – for this reason the first point is chosen at random. 
The chosen point is then remo v ed from the list of unordered points 
and appended to the ordered list. If this point is a core-point, then all 
remaining unordered points within a radius of ε of it are found. The 
reachability distance of each of these unordered neighbours is then set 
to be the minimum of their currently assigned reachability distance 
and their reachability distance with respect to the recently ordered 
core-point. Following this step, the ordering process continues on 
to the next iteration – repeating this cycle until all points are in the 
ordered list. It is in this manner that OPTICS creates an ordering of 
the data points, whilst concurrently seeking out regions of minimal 
reachability distance, i.e. highest density. After the ordering process, 
the reachability plot can then be constructed by plotting the final 
reachability distances as a function of the corresponding ordered 
indices, for all points. Within this plot, mutually clustered points 
appear as valleys since these points are both denser than their 
surrounds (smaller distances between points) and local to each other 
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(ordered consecutively). More details on the OPTICS algorithm can 
be found in Ankerst et al. ( 1999 ) and Oliver et al. ( 2020 ). 
HALO-OPTICS takes the OPTICS algorithm and not only for- 

malizes the way in which the OPTICS parameters are chosen but 
also provides a robust cluster extraction technique that operates on 
the reachability plot in order to extract a tree-structured hierarchy 
of suitable astrophysical clusters. 3 In HALO-OPTICS , the OPTICS 
parameter ε is ef fecti v ely conv erted to the more physical parameter 
� , thereby classifying the root-level galaxy haloes using the factor 
by which they are denser than the critical (or mean) density of 
the Universe. HALO-OPTICS does this by using an approximate 
mapping between the FOF linking length l x , N min , and ε. The 
technique of extracting clusters is based on the designs of Sander 
et al. ( 2003 ), Zhang et al. ( 2013 ), and McConnachie et al. ( 2018 ). The 
cluster extraction technique of HALO-OPTICS creates the hierarchy 
of clusters by finding the valleys within valleys that satisfy a range 
of conditions. These conditions assert that a cluster must; contain at 
least N min points; have a median density that is a factor of ρ threshold 

denser than the cluster’s surrounds; not be a single child cluster 
of it’s parent cluster; not share more than f reject of it’s points with 
it’s parent; and it rejects local outliers that have local-outlier-factors 
(defined in equation 8 and Breunig et al. 1999 ) greater than or equal 
to S outlier from each cluster. The HALO-OPTICS algorithm therefore 
transforms one OPTICS parameter and adds 3 unitless parameters 
for which near optimal values are ρ threshold = 2, f reject = 0.9, and 
S outlier = 2. More details on the HALO-OPTICS algorithm can be 
found in Oliver et al. ( 2020 ). 

3  C L U S TA R - N D :  A  H I E R A R C H I C A L  

GAL A X Y/ ( SU B) HA L O  F I ND E R  

3.1 Concept and moti v ation 

Originally, our intention was to create an optimized version of 
the HALO-OPTICS algorithm (refer to Section 2 for details) that 
implemented a locally adaptive metric and could be applied to a data 
set with an arbitrary number of features with minimal additional input 
from the user. Ultimately, since HALO-OPTICS iteratively performs 
a radial search about each of the n d-dimensional points in the data 
set, the cost of having it compute the distances via a locally adaptive 
metric is too great. For m points within some radius of the query 
point, this algorithm would ef fecti vely need to have computed the 
inverse and determinant of m - d × d covariance matrices which makes 
the time complexity of the radial search and distance calculations 
O ( m log ( n )) and O ( md 3 ), respecti vely (each with dif ferent constant 
factors). In practice this increases the run-times dramatically such 
that even applying this to small galactic haloes becomes challenging. 

We have designed CLUSTAR-ND with the intention of mimicking 
HALO-OPTICS along with the additional benefits of having; faster 
run-times, a variety of adaptive metric settings, and the capability of 
performing on a data set with any number of features. In addition 
to the input data, CLUSTAR-ND has 7 parameters that it uses to 
construct clusters: 

(i) l x ( ∈ R > 0 ), the spatial linking length that is used to find root- 
level haloes as discussed in Section 3.2 . May be given by the user 

3 The tree-structure of this hierarchy allows for clusters to be referred to by 
the typical terminology, e.g. root-level cluster (largest cluster in the tree), 
parent cluster (superset of the child), child cluster (subset of the parent), and 
leaf cluster (has no child clusters of its own). 

although is set to ∞ by default – which makes CLUSTAR-ND treat 
the input data as a root-level halo. 

(ii) Adaptive ( ∈ { 0, 1, 2 } ), a flag that defines the behaviour of the 
metric used to calculate the Mahalanobis distances between points 
as discussed in Section 3.3 . May be given by the user although is set 
to 1 by default – which provides consistently robust results as shown 
in Section 7 . 

(iii) k den ( ∈ N ≥7 ), the number of nearest neighbours that are used 
to calculate the measure of local density for each point as discussed in 
Section 3.4 . May be given by the user although is set to 20 by default 
– which provides consistently robust results as shown in Sections 6 
and 7 . 

(iv) k link ( ∈ N ≥7 ∧ ≤k den ), the number of nearest neighbours that 
are used to densely connect the points in the data as discussed in 
Section 3.5 . May be given by the user although is automatically 
calculated to be optimal by default as in Section 6.1 – these optimal 
values are based on the input data and the value of k den and ensure 
maximal cluster completeness and interneighbourhood connectivity. 

(v) ρ threshold ( ∈ R ≥1 ), the factor by which the median density of 
a cluster must be denser than that cluster’s surrounds as discussed 
in Section 3.6 . May be given by the user although is automatically 
calculated to be optimal by default as in Section 6.2 – these optimal 
values are based on the input data and the value of k den and ensure that 
the leaf level of the returned clusters are satellite-like overdensities. 

(vi) f reject ( ∈ R ≥0 ∧ ≤1 ), the maximum fraction of points that can 
be shared by parent-child clusters in the hierarchy as discussed in 
Section 3.6 . May be given by the user although is set to 0.9 by 
default – which provides a simple to interpret hierarchy that agrees 
with analyses in Oliver et al. ( 2020 ) as discussed in Section 6.4 . 

(vii) S outlier ( ∈ R ≥1 ), the local-outlier-factor that is used to reject 
outlier points from a candidate cluster as discussed in Section 3.6 . 
May be given by the user although is set to 2.5 by default – which 
provides a moderate level of outlier removal whilst maintaining good 
clustering results as is shown in Section 6.3 . 

Since optimized values for four of these parameters are found, the 
user only needs to consider choosing values for l x , adaptive , and k den . 
The details of the algorithm CLUSTAR-ND and how to choose these 
three parameters is outlined in the subsections of Sections 3 and 6 . 

3.2 Defining root-level clusters 

One major distinction between the group-finding component of the 
CLUSTAR-ND algorithm and that of the HALO-OPTICS algorithm is 
that the implementation of CLUSTAR-ND does away with having to 
perform a radial search about each point. This is the largest factor in 
why CLUSTAR-ND is so much faster than HALO-OPTICS and is also 
why CLUSTAR-ND does not have an equi v alent parameter to that of 
the OPTICS parameter ε. In OPTICS this parameter not only aids in 
the ordering of points but also defines the maximum reachability 
distance that a clustered point can have – thereby prescribing 
an approximate minimum density that a cluster can have. The 
functionality of ε that leads to the detection and extraction of clusters 
can be approximated without its presence (refer to Section 3.5 for 
details on this), ho we ver the effect of defining a cluster’s minimum 

density requires another separate step. 
In HALO-OPTICS , the choice of ε is redirected to the choice of 

� – the o v erdensity f actor. This is the f actor by which a field halo 
(root-level cluster) is denser than the critical density of the Universe, 
ρcrit . This is accomplished via a mapping between the FOF linking 
length, l x , and ε and is used to approximate the FOF field haloes. 
In CLUSTAR-ND ’s implementation, we offer the functionality of 
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Figure 1. An activity of the outer methods of the CLUSTAR-ND process. 
Before finding the substructure CLUSTAR-ND first decides on the root-level 
clusters – where the option is given to produce 3D FOF field haloes or to treat 
the input data as if it were a field halo. 

directly computing the 3DFOF field haloes from the positions 4 of 
the data set as a whole. This splits the input data into some number 
of field haloes and opens the opportunity for trivial parallelization 
o v er each of these haloes for the remaining steps. 

These 3DFOF field haloes will be found by CLUSTAR-ND when- 
ever l x �= ∞ . A common choice for l x when finding field haloes from 

cosmological simulations is l x = 0.2 L box / N – where L box is the side 
length of the simulation box and N is the number of particles within 
it – which corresponds to field halo o v erdensities of � 100 ̄ρ (Elahi 
et al. 2019 ). Alternatively when l x = ∞ (default), CLUSTAR-ND will 
neglect finding field haloes in this way which results in the root-level 
cluster becoming the entire data set. The choice of whether to find 
field haloes using the 3DFOF approach or not must be made under 
consideration of the input data and the intended output. This choice 
is outlined in the first few nodes of Fig. 1 . 

Other hierarchical astrophysical clustering algorithms such as 
VELOCIRAPTOR (Elahi et al. 2019 ) also perform this step in order 
to define the root-level clusters before then finding the substructure 
within them. Ho we ver due to the possibility of not having to perform 

this step in CLUSTAR-ND , it is also possible for the user to apply 
some other algorithm to the data – or to not do so at all – in order 
to perform this step prior to using CLUSTAR-ND . By default l x is set 
to ∞ which forces CLUSTAR-ND to treat the input data as a single 
root-level halo from which the substructure therein is subsequently 
found. 

Once the root-level cluster(s) have been found, we add them to 
a list of unsearched clusters in order to find the substructure within 
them. Each of the unsearched clusters are independent of each other, 
meaning that we can search for substructure in parallel. This remains 
true even when we set adaptive = 2, which ensures that CLUSTAR- 
ND iteratively searches within the top level of substructure until there 
are no more clusters found – as shown in Figs 1 , 2 , and 3 . In this way, 
setting adaptive = 2 creates a locally adaptive metric since the data 
are transformed before each instance of finding substructure. The 
following subsection provides details of how these transformations 
are performed. 

4 If this functionality is used, then the first 3 features of the input data must 
be the Cartesian spatial coordinates of the points. 

Figure 2. An activity chart of the methods concerned with the set up 
for finding substructure. A transformation of the data is taken, the nearest 
neighbour lists are found, and then from them the density of each point is 
calculated. This generalizes the approach to clustering the substructure. If 
such a clustering is found and adaptive parameter is set to 2, then the process 
in this activity chart is invoked again on first level of substructure. This 
occurs iteratively until there are no more significant clusters found, at which 
point the process produces a cascade of returns of the adaptive hierarchy of 
substructure. If adaptive is set to 0 or 1, the process returns the hierarchy 
of substructure that has been found using a parent cluster (globally) defined 
metric. 

3.3 Data transformation 

When searching for substructure within a previously unsearched 
cluster, we must implement a strategy that scales the various 
dimensions so that the clusters found are not o v erly dependent on 
a subset of the features. Such a strategy needs to be robust against 
the unit choice and coordinate orientation. So that we produce the 
desired effects, we choose to use a Principle Component Analysis 
(PCA) to first transform the data within the cluster. We then scale 
each PCA component to unit variance. If we calculate distances via 
the Euclidean distance metric on the transformed space, we are then 
ef fecti vely using a Mahalanobis distance metric (Mahalanobis 1936 ) 
such that 

s 2 ( x i , x j ) = ( x i − x j ) 
T � 

−1 ( x i − x j ) , (1) 

where � = E [( X − μX )( X − μX ) 
T ] is the covariance matrix of the 

cluster before the transformation. This guarantees that substructure 
found within a cluster will be dense with regards to the cluster. 
When adaptive = 2, CLUSTAR-ND approximates a locally adaptive 
Mahalanobis metric since a new covariance matrix is redefined at 
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Figure 3. The activity chart for the aggregation and rejection process that 
constructs a hierarchy of subclusters similar to those from HALO-OPTICS . 
The nearest neighbour lists are reduced and from them the local density 
maxima are found. The lists of densely connected points are then seeded 
with these local maxima. In order of decreasing local density, the points 
are either appended to an existing list of densely connected points or used 
to merge multiple into a new one. In the event of the latter and subject 
to the conditions of equations ( 4 ) and ( 5 ), these lists are considered to be 
potential clusters. Following this inner loop, if not all points were densely 
connected, the remaining connected lists are subject to these same conditions 
in order to become potential clusters. The hierarchy of clusters is then cleaned 
using equation ( 6 ), and each remaining cluster is also cleaned subject to 
equation ( 9 ). 

e very le vel of the hierarchy. 5 Hence, the choice of whether to set 
adaptive to be 0, 1, or 2 must be made in consideration of the trade- 
off between run-time constraints and the additional clustering power 
that an adaptive metric gives over that of a global metric. 

3.4 Density estimation 

Following the transformation of the data, we now seek to find a 
measure of the local density surrounding each point. We do this by 
first finding the k den nearest neighbours for each point within the 
transformed space. The density for each point is then approximated 
using the neighbour list and a multi v ariate kernel within a balloon 
estimator such that 

ρi ∝ 

1 

h 

d 
i 

k den ∑ 

j= 1 

K 

(
s( x i , x j ) 

h i 

)
. (2) 

Here, s ( x i , x j ) is defined in equation ( 1 ), d is the dimensionality of 
the feature space, K is a kernel function, and h i is a smoothing length 
corresponding to point p i – which we choose to be the distance from p i 
to it’s k den 

th -most nearest neighbour. Choosing the smoothing length 
in this way is not atypical (e.g. Sain 2002 ), ho we ver, this also has 
the added bonus of being equal to the core distance from OPTICS . 
Together with an appropriate kernel function, K , this choice allows 
CLUSTAR-ND to compute a determinable and smoothed analogue of 
the rigid density estimator that is the reachability distance. For this 
we implement an Epanechnikov kernel (Epanechnikov 1969 ), which 
is defined as 

K( u ) ∝ 

(
1 − u 

2 
)
, (3) 

and is 0 for u > 1. Typically there is a normalization constant that 
is defined such that the integral of the kernel o v er the space is 
1. Ho we ver, as we clarify in the following section, the process of 
determining significant substructure with CLUSTAR-ND only relies 
on density by processing points in order of descending density and 
by comparing the relative densities of points. For this reason, we do 
not need to compute the constant factors of equations ( 2 ) and ( 3 ). 

3.5 Densely connecting points via neighbourly aggregation 

Once the data has been transformed, the nearest neighbour lists found, 
and the local densities computed for any given unsearched cluster, 
the algorithm now seeks to find the substructure of that cluster by 
aggregating the points that are densely connected. The key to creating 
a similar output to that of HALO-OPTICS without performing 
any radial search is to densely connect points via their nearest 
neighbour lists. The OPTICS process allows for the algorithm to 
gain knowledge about the locality of points nearby to (and from 

the perspective of) the points that have already been appended to 
the ordered list. It uses this knowledge to constantly be seeking out 
regions of higher denser since the next-to-be-ordered point is al w ays 
the point with the smallest reachability distance i.e. largest density. 

5 It should be noted that this is not equi v alent to the locally adaptive Maha- 
lanobis metric of ENLINK (Sharma & Johnston 2009 ), which is constructed 
via a entropy-based binary space partitioning algorithm and defines a unique 
covariance matrix for each point a priori to the clustering of the data. While 
this method is very ef fecti ve for defining a locally adaptive metric based on 
the local distribution of points, it has a substantially larger run-time than the 
top-down method we implement in CLUSTAR-ND . 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/4/5767/6611698 by guest on 10 August 2022



5772 W. H. Oliver, P. J. Elahi and G. F. Lewis 

MNRAS 514, 5767–5785 (2022) 

CLUSTAR-ND mimics this process by further restricting the 
nearest neighbour lists of each point to the nearest k link points, 6 

finding all points that are local density maxima with respect to 
their surrounds, and then using these points as seeds from which to 
densely connect other points to. Seeding the list of dense connections 
with each of the local maxima ensures that the aggregation process 
within CLUSTAR-ND does not need to seek out regions with a higher 
density than the points that have already been connected together. 
Instead it simply connects each point (that is not a local density 
maximum) in order of decreasing density to a set of already densely 
connected points – this process is similar to those of the core-search 
in VELOCIRAPTOR (Elahi et al. 2019 ) as well as the group-finders of 
SUBFIND (Springel et al. 2001 ) and ENLINK (Sharma & Johnston 
2009 ). 

The key condition that CLUSTAR-ND exploits here is that even 
though the OPTICS algorithm gains knowledge of all unordered 
points within a radius of ε, the reachability distance of those points 
will typically be large if they are not directly connectable via the 
N min nearest neighbours of either itself or the already ordered points. 
Hence at any given time during OPTICS ordering process, the next- 
to-be-ordered point is almost al w ays a neighbour of a point (or 
vice versa) that has already been ordered. The only time that it is 
not as such, is if the next-to-be-ordered point cannot be directly 
connected through the N min -sized neighbourhoods of those points 
that have already been ordered – or of such a neighbourhood of it’s 
own. This does not mean that such a point can never be connected 
through N min -sized neighbourhoods, ho we ver, doing so will require 
traversing points that are less dense than itself – densely connecting 
points concurrently. Such a scenario where the point with the smallest 
reachability distance cannot be densely connected through N min - 
sized neighbourhoods is possible in OPTICS , although whether two 
points belonging to entirely separate sets of densely connected points 
are at all associated with somewhat uncertain in an astrophysical 
context. This distinction between CLUSTAR-ND and HALO-OPTICS 
is investigated further in Section 5 . 

The process of aggregating points is iteratively performed; by 
retrieving the unprocessed point with the highest density ( p i ), finding 
the set(s) of densely connected points ( T ) that have members within 
the k link nearest neighbours of p i , then either appending p i to an 
existing list of densely connected points or constructing clusters 
from T and merging the lists of T to create a new list of densely 
connected points (with p i included). The condition for whether 
clusters are to be constructed and a new list of densely connected 
points created, is if | T | > 1 i.e. if the point p i can be densely connected 
to multiple sets of densely connected points. In this scenario, the 
previous sets of T are only retained as potential clusters if they 
satisfy equation ( 4 ) – a relative density condition dependent upon 
the trainable parameter ρ threshold . More details on this condition 
and others that are responsible for cluster rejection are given in 
Section 3.6 . 

The circumstances under which | T | > 1 for any given point depend 
strongly upon the value of k link since this determines how many 
neighbours are considered for connecting the points. Decreasing k link 

ensures that a greater number of points can be densely connected to 
the potential clusters before eventually finding a connecting point 

6 The reason for doing this is that the number of neighbours needed to densely 
connect points is not necessarily equal to number of neighbours that should 
be used to calculate the local density of a point. In fact, by restricting the 
nearest neighbour lists, CLUSTAR-ND is able to return a greater resolution 
on the clustering structure – as is described in Section 3.5 . 

whose neighbourhood satisfies | T | > 1. In effect, this gives a greater 
resolution to the clusters and, since k link can be much less than 
k den , is typically greater even than those from HALO-OPTICS . Of 
course, there is a reasonable lower limit to the value of k link that 
can be found by ensuring that all points be densely connected under 
a uniform distribution of points. This lower limit is investigated 
further in Section 6.1 . Finally, if all points within the previously 
unsearched parent cluster do not become densely connected through 
this aggregation process and if more than 1 of the densely connected 
subsets have at least k link points, then we append those that do to the 
list of substructures as well. 

3.6 Cluster and cluster member rejection 

The cluster extraction algorithm of HALO-OPTICS is implemented 
in CLUSTAR-ND , ho we ver, it is not entirely its o wn separate process 
that simply takes place after the aggregation/ordering of points as 
it is in HALO-OPTICS . To detect and extract clusters from the 
reachability plot, HALO-OPTICS performs a set of routines – each 
of which are described in section 3.2 of Oliver et al. ( 2020 ). First, 
the algorithm determines all local maxima of the reachability plot 
from OPTICS and then using this, builds the hierarchy of clusters by 
taking contiguous subsets of the ordered list that are situated on either 
side of each local maxima – ensuring that each subset only contains 
points with reachability distances less than that at the corresponding 
local maxima. CLUSTAR-ND performs these steps by ensuring that 
points are aggregated in order of decreasing local density and then 
by considering lists of densely connected points that are connected to 
one another via the neighbourhood of a less dense point as potential 
clusters. 
HALO-OPTICS then rejects all potential clusters that contain 

less than N min points or that have median local densities less than 
ρ threshold times the surrounding density of those potential clusters. 
Following this, the algorithm rejects all single leaf potential clusters. 
These criteria are fulfilled by CLUSTAR-ND in a single step during 
the aggregation process when multiple lists of densely connected 
points are considered to be potential clusters. As such, CLUSTAR- 
ND conducts the following: 

reject any d from T if it has no children and either; 

| d| < k link or 

median { ρj | p j ∈ d} /ρi < ρthreshold . (4) 

Here, ρ i is the local density of p i – the point responsible for densely 
connecting the otherwise disconnected sets in T . Following the 
rejection of all d ∈ T that do not meet these criteria, the set T is 
then subject to the condition that 

if | T | = 1 , set T = ∅ . (5) 

The conditions in equations ( 4 ) and ( 5 ) are related to steps 3 and 4 
from the cluster extraction process of HALO-OPTICS . Next, for all 
parent-child cluster pairs sharing at least f reject of the parent’s points; 
CLUSTAR-ND rejects the child if it has child clusters of its own, 
otherwise CLUSTAR-ND rejects the parent. To re-iterate, given a set 
of substructure S and any parent-child pair s parent and s child , 

if | s child | / | s parent | ≥ f reject then , 

reject s child if; ∃ s ∈ S such that s ⊂ s child , 

else; reject s parent . (6) 

This is equi v alent to step 5 of the extraction process in HALO- 
OPTICS . Steps 6 and 7 of the HALO-OPTICS extraction process are 
concerned with removing outliers based on how their local density 
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compares with the rest of their neighbours. While this approach 
works in the context of using a reachability distance as the measure 
of inverse density, it can be improved upon with a more robust 
measure of density such as that that CLUSTAR-ND computes. The 
measure used by HALO-OPTICS is the local-outlier-factor which 
relies upon the local-reachability-density (Breunig et al. 1999 ), both 
of which are defined in equations (3) and (4) of Oliver et al. ( 2020 ). 
In effect, the local-outlier-factor compares how reachable a point is 
from its neighbours to how reachable its neighbours from their own. 
We provide CLUSTAR-ND with a comparable measure with which to 
define outliers that incorporates the estimate of local density it uses 
from equation ( 2 ). 

We define the kernel density estimate analogue of the local- 
reachability-density of a point p i with respect to transformed space 
as 

lrd ( p i ) ∝ 

1 
∑ 

p j ∈ N k den 

min 
(
ρi , ρj 

)−1 /d , (7) 

where N k den is the k den nearest neighbours of p i within the previously 
unsearched cluster. CLUSTAR-ND then uses this to similarly compute 
an analogue of the local-outlier-factor 

lof ( p i ) = 

∑ 

p j ∈ N k den 

lrd ( p j ) 
lrd ( p i ) 

k den 
. (8) 

In HALO-OPTICS , a point is considered an outlier from a cluster 
if the local-outlier-factor (calculated with respect to that cluster) 
is larger than S outlier . In CLUSTAR-ND , we adjust this rule by first 
defining a cut-off density, 

ρcut = min { ρi | lof ( p i ) < S outlier } , (9) 

which we then use to reject all points from a cluster that have a 
density less than this. This ensures that only local-outliers at the 
outskirts of a cluster are rejected and not those that are embedded 
deeper within it – a more appropriate regime for outlier detection 
and rejection within a hierarchical set of clusters. 

4  SY N THETIC  DATA  

Within the remainder of this paper we compare (Section 5 ), train 
(Section 6 ), and scrutinize (Section 7 ) our algorithm against synthetic 
surv e y data of Milky Way (MW)-type galaxies produced by GALAXIA 
(Sharma et al. 2011 ). Giv en certain surv e y restrictions, such as one 
or more colour–magnitude bounds, a surv e y size, and geometry, 
GALAXIA is able to return a synthetic catalogue of stars in accordance 
with a given model of the MW. The code is generalized enough 
so that it can also accept star formation rates, age–metallicity 
relations, age–velocity-dispersion relations, and analytic density 
distribution functions from which it can also use to produce stellar 
catalogues. 

Among the synthetic data that can be produced with GALAXIA 
are resamplings of the 11 � CDM stellar haloes from Bullock & 

Johnston ( 2005 ) and the complementary 6 artificial stellar haloes 
from Johnston et al. ( 2008 ). The original � CDM haloes are simulated 
using a hybrid semi-analytical plus hydrodynamic N -body approach 
that replicates a density profile and satellite distribution that is similar 
to the MW. The simulation model assumes a � CDM cosmology 
with parameters �m 

= 0.3, �� 

= 0 . 7, �b h 2 = 0.024, h = 0.7, 
and σ 8 = 0.9. The simulations generate, track, and evolve a 
number of individual satellites that are first modelled as N -body 
dark matter systems within a parent galaxy whose disc, bulge, and 

halo are represented by time-dependent semi-analytical functions. 
Semi-analytical prescriptions are then used to assign star formation 
histories and leaky accreting boxes to each. A chemical enrichment 
model is also used to calculate the metallicities as a function of age 
for the stellar populations (Robertson et al. 2005 ; Font et al. 2006 ). 
Ultimately, the dark matter distributions of the satellites follow NFW 

profiles (Navarro, Frenk & White 1996 ) while the stellar distributions 
follow King profiles (King 1962 ) – the latter of which is constructed 
in order to reproduce an agreement with the structural properties of 
the Local Group’s dwarf galaxies. 

Each satellite created in this way has three main model parameters; 
the time since accretion ( t acc ), the luminosity ( L sat ), and the orbital 
circularity ( ε = J / J circ ). The distribution of these parameters specify 
the accretion history of a halo and as such a further 6 artificial haloes 
were created in Johnston et al. ( 2008 ) for the purpose of studying 
the effects of different accretion histories on the properties of haloes. 
These 6 artificial haloes have accretion events that are predominantly; 
radial ( ε < 0.2); circular ( ε > 0.7); old ( t acc > 11 Gyr); young ( t acc 

< 8 Gyr); high luminosity ( L sat > 10 7 L �); and low luminosity ( L sat 

< 10 7 L �). Importantly, the output from GALAXIA also bestows each 
star with a label that corresponds to which satellite group it belonged 
to at the time that that satellite was created within the simulation –
this allows us to test how well CLUSTAR-ND performs in Section 6 . 
In addition to this, GALAXIA maintains a list of satellite properties 
that includes information on whether the satellite is self-bound or 
not. More details on these simulations can be found in section 3.4 of 
Sharma et al. ( 2011 ) and references therein. 

We use GALAXIA to produce a random sample from each synthetic 
galaxy in both sets of the stellar haloes. From these we use various 
combinations of the spatial (denoted by x = ( x , y , z) in the later 
sections), kinematic (denoted by v = ( v x , v y , v z ) in the later sections), 
and chemical (denoted by m = ([Fe/H], [ α/Fe]) in the later sections) 
information in order to compare, optimize, and apply our algorithm. 
For each galaxy, the points are contained inside the 282 kpc virial 
radius of the corresponding host dark matter halo – these have an 
o v erdensity factor of � ≈ 337 times the mean dark matter density 
of the universe. As such we treat these galaxies as field haloes 
and hence do not use CLUSTAR-ND to find field haloes before 
finding substructure. Since these field haloes and those that are 
found via 3D FOF are well-defined, the analysis in the following 
sections is an assessment of the substructure finding component of 
CLUSTAR-ND . 

5  A  C O M PA R I S O N  WI TH  HALO-OPTICS 

Our first assessment of CLUSTAR-ND ’s performance is done by 
comparing it to HALO-OPTICS . We compare both the clustering 
and the run-times of these algorithms when applied to the synthetic 
haloes outlined in Section 4 . Since HALO-OPTICS is designed for 
clustering on 3D spatial data, we only apply these algorithms to the 
3D positions of the points in these haloes. 

We apply CLUSTAR-ND in a way that treats each synthetic galaxy 
as a field halo ( l x = ∞ ) – due to each galaxy only containing 
points within its virial radius. Similarly, for HALO-OPTICS we 
find the smallest value of ε that will guarantee that every point 
in these reduced galaxies is a part of at least one core-point’s N min 

nearest neighbours – thereby ensuring that every point will be given 
a reachability distance less than or equal to ε. By applying these 
algorithms to ready-made galactic data sets, we can ensure that we 
are only comparing the substructure found and not the root-level 
clusters – which in both cases are equal to the entire data set due to 
the abo v e. 
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Figure 4. A clustering comparison of the outputs of HALO-OPTICS and CLUSTAR-ND after having been applied to the 3D spatial dimensions of the synthetic 
galaxies from GALAXIA . Each panel belongs to one of three pairs and each pair corresponds to a different comparison wherein CLUSTAR-ND has been used 
with a different metric adaptivity setting – which is annotated on the rele v ant panels. Plotted within each panel are the reco v ery and purity fractions of each 
best-fitting cluster to either; the HALO-OPTICS predicted clusters (left-hand panel in each pair) or the CLUSTAR-ND predicted clusters (right-hand panel in 
each pair). Best-fitting clusters are those that produce the maximum Jaccard index in equation ( 10 ) (i.e. T ∗ = arg max T ∈ S 2 J ( C, T )), the reco v ery and purity 
are then found according to equation ( 11 ). To clarify, the label at the top of each panel indicates which clustering is used as S 1 within these equations. Every 
cluster, except for the root-level clusters ( L = 0), appear in these panels as a marker coloured by its level within the hierarchy and shaped by whether or not its 
best fitting cluster is a mutually best fitting – note that BFNM here stands for best fitting not mutual . The axes are extended beyond the possible recovery and 
purity values for easier readability, this extended area is coloured grey. Within this area on each panel and for both the recovery and purity distributions, there is 
a box and whisker plot that denotes the Q 0 – Q 4 quartiles with mean values also indicated with diamonds markers. 

In order to assess how adequately CLUSTAR-ND reproduces 
HALO-OPTICS , we set k den = 20 and similarly for HALO-OPTICS 
we set N min = 20. For CLUSTAR-ND we set k link = 7, as is described 
in Section 6.1 . For both codes we use the near-optimal parameters 
found in Oliver et al. ( 2020 ) such that ρ threshold = 2, f reject = 0.9. 
Ho we ver since the outlier detection is different between the codes, 
we set S outlier = ∞ which ensures that there are no outliers remo v ed 
from clusters. We re vie w the optimal choice of these parameters in 
Sections 6.2 –6.4 . 

5.1 Output similarity 

To appropriately compare the output of the two codes, we find the 
best-fitting match from the HALO-OPTICS catalogue of clusters for 
each of the CLUSTAR-ND clusters (ignoring the root-level clusters 
which are fixed to be equal). As a measure of which pair is best-fitting 
we use the maximum Jaccard index (Jaccard 1912 ), which – given 
two clusterings of the same data set ( S 1 and S 2 ) – allows us to not 
only find which clusters from S 1 are best fitting to the clusters from 

S 2 but to also compare how well the clusters in S 2 are matched by 
those in S 1 . Hence for two such clusterings the maximum Jaccard 
index is given by 

J max ( C) = max { J ( C, T ) | ∀ T ∈ S 2 } , C ∈ S 1 , where 

J ( C, T ) = 

| C ∩ T | 
| C ∪ T | . (10) 

Once each cluster from S 1 has been assigned a best-fitting cluster 
from S 2 , we then compute the reco v ery and purity fractions of the 
pairs. We define these such that 

R( C) = 

| C ∩ T ∗| 
| T ∗| , and 

P ( C) = 

| C ∩ T ∗| 
| C| , (11) 

where T 

∗ ∈ S 2 is the best-fitting match to C ∈ S 1 – i.e. T ∗ = 

arg max T ∈ S 2 J ( C, T ). Neatly, this implies that 

1 

J max ( C) 
= 

1 

R( C) 
+ 

1 

P ( C) 
− 1 , and hence 

J max ( C) ≤ min { R( C) , P ( C) } . (12) 

Fig. 4 depicts the reco v ery and purity fractions determined in 
this way for all of the best-fitting cluster pairs found within the 
synthetic haloes from GALAXIA for various values of the adaptive 
parameter. Here, we see that the clusterings from CLUSTAR-ND 
are best fitted by those from HALO-OPTICS in a way that most 
commonly leads to clusters from CLUSTAR-ND being encompassed 
by those from HALO-OPTICS – indicated in each comparison by 
high purity and varied reco v ery in the left-hand panel of each pair 
and the opposite in the right-hand panel of each pair. This matches 
the trends seen in both figs 6 and 10 of Oliver et al. ( 2020 ) where 
HALO-OPTICS was typically shown o v er-encompassing both mock 
cluster sets and predicted clusters found by VELOCIRAPTOR (Elahi 
et al. 2019 ). Regardless, this property of the best-fitting clusters from 

CLUSTAR-ND and HALO-OPTICS suggests that CLUSTAR-ND may 
benefit from an additional method to allocate points to the clusters 
that it already finds. Such a task could be achieved via an expectation- 
maximization-like technique that allocates previously noisy points 
to already existing clusters from CLUSTAR-ND depending on how 

well they would assimilate within them. 
A small number of clusters are also shown in Fig. 4 to have 

high purity and very low recovery ( < 0.2). These clusters are those 
that have been found by one algorithm but not the other – hence 
they are not mutually best fitting – and are consequences of: (1) 
CLUSTAR-ND ’s density estimate being more reliable than that of 
HALO-OPTICS ; (2) CLUSTAR-ND being able to robustly detect 
clusters with a smaller number of points; and (3) the algorithmic 
differences between connecting points. We do also see a few high 
reco v ery and high purity clusters whose best-fitting cluster is not 
mutually best-fitting returned by both codes. These are clusters from 

one code that ef fecti vely sit between two levels of the hierarchy in 
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the other code – this can produce a good fit to a cluster that is not 
necessarily a mutually best-fitting cluster. These clusters arise for the 
same reasons as abo v e. 

Overall, it is clear that CLUSTAR-ND is able to reproduce the 
clusters and hierarchy of HALO-OPTICS with a similar clustering 
power. We see from Fig. 4 and the box and whisker plots therein 
that typically the clusters from CLUSTAR-ND ( HALO-OPTICS ) are 
mutually best fitting to those from HALO-OPTICS ( CLUSTAR-ND ) 
with both high reco v ery and high purity with medians of ∼0.860 
( ∼0.990) and ∼0.998 ( ∼0.926), respectively. 

For completeness, we also discuss the clustering power of these 
outputs from HALO-OPTICS in comparison with the optimized 
outputs of CLUSTAR-ND in Section 7 . In Section 7 , we see that 
o v erall CLUSTAR-ND is expected to provide an equal clustering 
power to HALO-OPTICS , however the clustering power does tend 
to differ slightly on a per galaxy basis. This difference is due to the 
competing effects of CLUSTAR-ND having a more robust density 
estimation, while the ordering process of HALO-OPTICS can more 
easily gather like-satellite points before joining child clusters into 
their shared parent cluster. We will now define this measure of 
clustering power as it is used throughout both Sections 6 and 7 . 

5.1.1 Measuring clustering power 

In order to measure the clustering power of CLUSTAR-ND we must 
construct a scalar function that reduces the complexity of comparing 
the quality of fit between an entire CLUSTAR-ND clustering output 
when applied to a synthetic galaxy and the ground truth labels of that 
synthetic galaxy. Since each galaxy has been constructed through the 
accretion of satellites (refer to Section 4 for details), the ground truth 
labels form a flat clustering without noise, i.e. each data point in the 
galaxy is a member of exactly one satellite. This is a fundamentally 
distinct clustering type from the hierarchical clustering with noise 
that CLUSTAR-ND produces – so we only find the goodness of fit 
between the leaf clusters produced by CLUSTAR-ND and the satellite 
labels within each galaxy. 

In order to compare a leaf-clustering produced by CLUSTAR-ND 
( C g ) to the ground truth clustering ( T g ) defined o v er the same galaxy 
( g ), we construct a mutual-information-based objective function 
similar to that built by Vinh, Epps & Bailey ( 2009 ). To do this 
we must first append an additional cluster to those in C g to create 
C 

∗
g so that the sets C 

∗
g and T g are defined o v er the same set of data 

points. The additional cluster is made of the remaining points in the 
data set that have not been clustered into the leaf clusters returned 
by CLUSTAR-ND . This means that C 

∗
g is an artificial construction 

of a flat clustering without noise using C g which we can then easily 
match to the flat clustering without noise that is T g . 

The mutual information between C 

∗
g and T g , I ( C 

∗
g ; T g ), is then the 

amount of information obtained about the true clusters by having 
observed the predicted clusters (Shannon 1948 ). 

I ( X; Y ) = H ( X) − H ( Y | X) , where 

H ( X) ≡ −
∑ 

x∈ X 
P ( x) log ( P ( x)) , and 

H ( Y | X) ≡ −
∑ 

x ∈ X, y ∈ Y 
P ( x , y ) log 

(
P ( x , y ) 

P ( x ) 

)
. (13) 

This measure is non-ne gativ e and will have a different theoretical 
maximum depending on the synthetic galaxy in question. For our 
purposes, we normalize I ( C 

∗
g ; T g ) between 0 and 1 such that these 

values represent the absolute worst and best values that a clustering 
algorithm can be expected to hav e, respectiv ely (see below). We 

then also take the average of this normalized value o v er each of 
the synthetic galaxies so that we may compare sets of CLUSTAR- 
ND clusterings to sets of ground truth clusterings. Let S represent 
some feature space combination on which the predicted clusters are 
dependent, then the resultant objective function we use is defined as 

F ( S) = 

1 

N galaxies 

∑ 

g∈ galaxies 

F g ( S) , where 

F g ( S) = 

I ( C 

∗
g ( S); T g ) − E[ I ( R 

∗
g ( S); T g )] 

H ( T g ) − E[ I ( R 

∗
g ( S); T g )] 

. (14) 

Here, H ( T g ) is the entropy of T g (this normalizes the maximum of 
F g ( S) to 1 since I ( T g ; T g ) = H ( T g )) and E[ I ( R 

∗
g ( S); T g )] is the 

expected mutual information that arises when a clustering, R 

∗
g ( S), 

with equal cluster sizes as C 

∗
g ( S) has been created via random 

assignment (this normalizes the minimum of F g ( S) to 0 since no 
clustering algorithm can ever do worse than random assignment). 
Unlike Vinh et al. ( 2009 ) (who relies on a hypergeometric model), 
we calculate E[ I ( R 

∗
g ( S); T g )] empirically by taking the average of 

the mutual information that is found when points have been randomly 
assigned to a mock clustering, R 

∗
g ( S), with the number of clusters and 

number of points within each cluster being equal to those in C 

∗
g ( S). 

This average is calculated using 10 random realizations of R 

∗
g ( S) 

which we find to be sufficient since the variance of I ( R 

∗
g ( S); T g ) is 

small compared to its expectation. 
The normalization adjustments we have made mean that F g ( S) 

can now be interpreted as the proportion of relevant information 
obtained about the true clusters of a galaxy by having observed the 
predicted leaf clusters produced from CLUSTAR-ND when applied to 
that galaxy . Similarly , F ( S) is the average of this proportion across 
the galaxies. We use these mutual-information-based measures of 
clustering power throughout both Sections 6 and 7 as they provide 
the means to compare entire clusterings ( F g ( S)) and sets of entire 
clusterings ( F ( S)). 

While it is possible to construct an objective function with 
a similar purpose from the easy-to-interpret measures of recov- 
ery/purity/Jaccard index, it is non-trivial to reduce these to an ap- 
propriate scalar measure of clustering power as these are designed to 
be used to compare one cluster to another (rather than sets of clusters). 
Most critically, these measures do not account for true-ne gativ e 
predictions and so optimizing the parameters of CLUSTAR-ND (as is 
done throughout Section 6 with F ( S)) by using an objective function 
built from such measures will likely create an artificial incentive for 
CLUSTAR-ND to make fewer predictions on clusters. These measures 
also do not appropriately reward CLUSTAR-ND for having matched 
a true cluster with two predicted clusters – clearly this is not as nice 
as a perfect match, but it is better than a J max ( C ) = 0.5 match for 
e xample. Nev ertheless, maximizing F ( S) does also maximize the 
reco v ery , purity , and Jaccard index that the predicted clusters will 
have – it just does so without promoting fewer predictions. In fact, 
a value of F g ( S) = f is approximately equivalent to having ∼f ×
| T g | true clusters matched perfectly ( J max ( C ) = 1) by CLUSTAR-ND , 
of course, this relation is not one-to-one as F g ( S) = f could also 
occur via a larger number of predicted clusters with smaller J max ( C ) 
values – although, by adjusting F g ( S) for random chance allocation 
we have limited this trade-off to meaningful predictions. 

5.2 Run-time disparity 

We now compare run-times of CLUSTAR-ND and HALO-OPTICS 
using synthetic galaxies from GALAXIA in Fig. 5 . All runs were 
performed using a single core on an Intel i5 vPro processor and 
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Figure 5. The run-times of both CLUSTAR-ND and HALO-OPTICS when 
applied to the 3D spatial dimensions of the synthetic galaxies from GALAXIA . 
The lines of best fit correspond to an O ( n log( n )) time complexity for 
CLUSTAR-ND and an O ( n 2.17 ) time complexity for HALO-OPTICS . We see 
that even when applied to the smallest size galaxy ( ∼2 × 10 5 points) in 
the suite CLUSTAR-ND is 3 orders of magnitude faster than HALO-OPTICS , 
and due to the difference in time complexities, this speed increase balloons 
outwards to nearly 5 orders of magnitude when applied to the largest of these 
galaxies ( ∼2.5 × 10 6 points). While some of this run-time disparity can be 
attributed to changing clustering structure (see Section 5.2 ), the modest run- 
time of CLUSTAR-ND makes it ideally suited for application to large data sets. 

both codes are written using PYTHON3 but do make use of optimized 
numerical packages such as NUMPY (Harris et al. 2020 ), SCIPY 
(Virtanen et al. 2020 ), SCIKIT-LEARN (Pedregosa et al. 2011 ), and 
NUMBA ( CLUSTAR-ND only; Lam, Pitrou & Seibert 2015 ). We see 
in Fig. 5 that for these galaxies the run-times of CLUSTAR-ND are 
at least 3 orders of magnitude faster than those of HALO-OPTICS 
and this disparity grows for larger data sets. CLUSTAR-ND follows an 
O( n log ( n )) time complexity while HALO-OPTICS appears to follow 

a O( n 2 . 17 ) time complexity. This is not the true time complexity of 
HALO-OPTICS and is partially an artefact of the changing clustering 
structuring within the galaxies – a feature that affects both algorithms 
albeit affecting CLUSTAR-ND to a much lesser degree. 

Given two data sets with an equal number of points, the run-time of 
HALO-OPTICS will be larger for the data set that has a larger range 
of densities within the virial radius i.e. is more cusp-like rather than 
core-like. This is because there will be a larger fraction of points 
whose mutual distance is less than or equal to ε. Ordinarily, the 
best-case run-time of HALO-OPTICS is O( n log ( n )), ho we ver as the 
larger synthetic galaxies we use in this paper are more cusp-like, we 
find that the time complexity of HALO-OPTICS approaches O( n 2 ) 
with increasing n . So while it is likely that the run-time of HALO- 
OPTICS applied to each galaxy individually is sub-quadratic, the 
o v erall trend of increasing cupsyness gives rise to a super-quadratic 
time complexity of O( n 2 . 17 ). 

As CLUSTAR-ND does not perform a radial search it does not suffer 
from this same drawback and moreover, the clustering structure does 
not strongly affect the run-time of the k den nearest neighbour search 
and density computation either. In reality the run-time of CLUSTAR- 
ND in Fig. 2 is dominated by the k den nearest neighbour search –

taking up a constant ∼89 per cent of the run-time for this number of 
dimensions and this value of k den . In this implementation, CLUSTAR- 
ND uses SCIPY ’s cKDTree (Bentley 1975 ; Manee wongv atana & 

Mount 1999 ; Virtanen et al. 2020 ) which has an expected build 
and search run-time of O( n log ( n )). Such a run-time complexity is 
theoretically the fastest that can be achieved for this problem and 
hence CLUSTAR-ND ’s o v erall run-time only stands to impro v e by 
some constant factor. Faster run-times can be achieved this way 
by running the k den nearest neighbour search in parallel, by using 
a faster implementation of the kdtree, or by using an approximate 
nearest neighbour algorithm rather than an exact one. 

In the event that these run-time improvements are used and the 
dimensionality of the data set is sufficiently low, it is possible that the 
run-time of k den nearest neighbour search becomes small enough that 
it is no longer the most time consuming component of the algorithm. 
The next most time consuming component of the CLUSTAR-ND 
algorithm is the aggregation and rejection process in Fig. 3 which 
takes up a constant ∼10 per cent of the total run-time for each of 
the runs in Fig. 5 . This run-time is predominantly affected by the 
merging of potential clusters. In the best-case run-time scenario, 
there will be no mergers and the time complexity for this part of 
the algorithm would be O( n ). While technically it is possible for a 
data set to be structured in such a way that gives rise to no mergers 
during the aggregation process, for astrophysical data, it would be 
highly atypical. Most if not all points in the data set will be densely 
connected together during this process. As the mergers are disco v ered 
they are combined in a tree-like structure. By merging the densely 
connected lists in a compact binary-tree structure the aggregation 
process will be performed in an O( n log ( n )) time. This is both the 
expected and worst case time complexity. The time complexity of 
the aggregation process is not only affected by the way in which the 
densely connected lists are merged but also by how many times this 
occurs. The values k den and k link both affect this number and will in- 
crease the run-time by some constant factor the smaller that they are. 

The remaining � 1 per cent of CLUSTAR-ND ’s run-time can be 
attributed to the transformation of the data and general data manip- 
ulation – the former of which has an O( nd 2 + d 3 ) time complexity. 
Overall, the these constituents make the run-time complexity of 
CLUSTAR-ND O( n log ( n )). In Fig. 5 , we do not show the run-time of 
CLUSTAR-ND when adaptive = 0 since this is only slightly different 
( � 1 per cent different as abo v e) from when adaptive = 1. We see that 
when adaptive = 2 the run-time increases by some factor per data 
set. In practice, this factor that is less than the number of levels found 
within the clustering hierarchy. When applied to the galaxies we 
analyse in this paper, the depth of the hierarchy is typically capped 
at 3 or 4 levels. CLUSTAR-ND ’s fast run-time makes it ideal for 
application to large data sets such as the Gaia DR3 catalogue. 

6  PA RAMETER  I NFLUENCE  A N D  

OPTIMIZATI ON  

The CLUSTAR-ND algorithm has 7 parameters. Parameters l x , 
adaptive , and k den may be chosen by the user and are responsible 
for the spatial linking length that finds field haloes, the adaptivity of 
the distance metric, and the number of neighbours used to find the 
density of the points, respectively. A typical choice for l x is 0.2 times 
the interparticle spacing and then whether adaptive is set to 0, 1, or 
2 is decided in consideration of the run-time versus clustering power 
trade-off as well as whether the user wishes to apply a PCA transform 

to the input data. 
The parameter k den has a more loosely constrained range – if it is 

too small then the density fluctuations between neighbouring points 
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can be large and noisy; if it too large then significant differences in 
local density may be smoothed out enough that some structures may 
not be detected by CLUSTAR-ND . Typically, similar parameters to 
k den in other clustering algorithms are chosen with values ranging 
from 20 to 500. It is commonly accepted that k den should increase 
when using data with a larger a feature space – ho we ver, this depends 
on the intended resolution of the density estimate and, in a clustering 
conte xt, the e xpected number of points within the true clusters present 
in the data. A more thorough investigation of the effects of the choice 
of k den is carried out in Sections 6.2 –6.4 . 

Although the remaining 4 parameters in CLUSTAR-ND may be 
chosen by the user, these do have properties that allow for their 
optimal values to be determined. It should be mentioned that these 
parameters do have some co-dependence with regards to the state of 
the output, though this influence is small. Due to the fact that none 
of these parameters act within the same step of the algorithm, we 
are able to isolate their effects in order to find their optimal values. 
Furthermore and since the labels within the synthetic data provide 
a flat clustering without noise, we opt to assess the performance 
of CLUSTAR-ND – and hence the corresponding optimal values of 
some of the cluster extraction parameters ( ρ threshold and S outlier ) – by 
determining how well the leaf clusters of CLUSTAR-ND are able to 
match a single label within the synthetic data sets. 

While the affects of the cluster extraction parameters in CLUSTAR- 
ND are expected to be similar to those in HALO-OPTICS , the lists of 
points that they act upon are generally slightly different. The near- 
optimal values of HALO-OPTICS parameters were determined by 
maximizing the reco v ery and purity fractions of a set of hand-crafted 
3D Gaussian distributions in both Cartesian and spherical coordinate 
systems. While this technique can be used to mimic returning the 
optimal set of astrophysical clusters, it of course is not equi v alent to 
doing so. Furthermore, this investigation did not analyse the effects 
of higher dimensions and/or other subspaces on these parameters. 
We now investigate the effects of these parameters and deduce their 
preferred values. 

6.1 Values for k link 

The parameter k link is the number of neighbours used to aggregate the 
points together in order of decreasing density so that the substructure 
may be found. The consequence of decreasing k link is that the 
clusters will be more complete up until their true boundary density. 
Irrespective of this, however, a practical lower limit exists. During 
the aggregation process, multiple potential clusters will be connected 
together into a new potential parent cluster whenever the current point 
being processed has multiple of its k link nearest neighbours in differ- 
ent potential clusters. This has the consequence that at most k link −
1 potential clusters can be connected together during this step (since 
the point being processed is one of its own neighbours and does not 
yet belong to any potential cluster). The number of potential clusters 
that can be joined depends on the specific arrangement of points –
although with a sufficiently large value of k link , the number of these 
clusters that are observed to be joined together in these steps is most 
commonly 2, occasionally 3, and rarely 4. The is also a subtle depen- 
dency on k den as well, ho we ver, the number of merging clusters only 
starts to increase for small values of this parameter i.e. < 20. Given 
that typically k den ≥ 20, we suggest that for the choice of k link not to 
affect this behaviour, its value needs to be at least as large as 5 or 6. 

Furthermore, we must also consider that certain arrangements of 
points may give arise to the issue whereby the k link nearest neighbours 
of each point is not an e xtensiv e enough neighbourhood for the 
process to be able to seamlessly aggregate most, if not all, points 

together. Densely connecting all points via their neighbourhood in a 
data set is not al w ays feasible. In particular, if all points in the data set 
are contained within dense clusters that are each sparsely distributed 
with respect to each other then connecting all points may require a 
value of k link that approaches the size of the data set itself. 

To manage this issue, we choose practical values for k link by 
ensuring that CLUSTAR-ND is able to densely connect all points 
given that they are from a randomly sampled uniform distribution 
in d -dimensions when it is using a particular value for k den . We 
vary both d consecutively from 1 to 9 and k den within the set 
{ 20, 30, 40, 60, 80, 120, 160, 240, 360, 480 } . For each d - k den com- 
bination we create 300 random samples of 10 5 points from a d - 
dimensional uniform distribution within the unit hypercube. For each 
of these we find the smallest value of k link that will densely connect 
all 10 5 points together by the end of the aggregation process. The 
histograms of these smallest values of k link can be seen in the top 
panel of Fig. 6 for various combinations of d and k den . Within these 
histograms a value of k link = x will contribute to the height of the bar 
in the interval ( x − 1, x ]. 7 

We then fit a skew-normal such that the sum of squared differences 
between the probability within each of the histogram’s intervals and 
the probability of the skew-Gaussian within those same intervals 
is minimized. The skew-normal distribution we fit has the standard 
form of 

f ( k link ) = 

2 

ω 

φ

(
k link − ξ

ω 

)
� 

(
α

k link − ξ

ω 

)
, where 

φ( x) = 

1 √ 

2 π
e −

x 2 
2 , and 

� ( x) = 

∫ x 

−∞ 

φ( y)d y = 

1 

2 

[
1 + erf 

(
x √ 

2 

)]
. (15) 

Here, ξ , ω, and α are the location, shape, and scale parameters, 
respectively. The continuous distributions shown in the bottom panel 
of Fig. 6 depicts the fitted skew-normal distributions for various 
combinations of d and k den . 

We now use the fitted skew-normal distributions to find the 
continuous analogue value for k link that predicts that all 10 5 points 
within each uniform distribution will be densely connected together 
95 per cent of the time. Once found, we then fit a function of the form 

k link, .95 = αd β + γ k den 
δ + ε by minimizing the squared differences 

between these distributional 95th percentile values and the function’s 
output – finding that α ≈ 12.0, β ≈ −2.2, γ ≈ −23.0, δ ≈ −0.6, 
and ε ≈ 9.0. The predicted continuous analogue value of k link, .95 

are shown as dashed vertical lines in the bottom panel of Fig. 6 for 
various combinations of d and k den . We then convert these back to 
the original discrete regime by rounding up to the nearest integer. 
Likewise, the discrete values of k link, .95 are shown as dashed vertical 
lines in the top panel of Fig. 6 for various combinations of d and k den . 

The fitted values of k link, .95 in the continuous analogue do not 
al w ays correspond well to the true 95th percentile of the fitted skew- 
normal distributions, ho we v er, we find that the y do correspond well 
to the empirical 95th percentile of histograms produced o v er each 
combination of d and k den . To be more certain that the automation of 
k link will not artificially break densely connected regions we add 1 to 
these discrete values of the 95th percentile and – to keep the potential 
cluster merging behaviour unaffected as discussed abo v e – al w ays 
ensure that it is larger than 7. To be clear, unless the user specifies a 

7 Constructing the histogram in this way helps to provide a continuous 
analogue of the probability distribution since in such an analogue the value 
of k link = x will have been drawn from this interval. 
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Figure 6. The empirical distributional relationships between the minimum 

k link required to connect all 10 5 points of a d -dimensional uniform distribution 
contained to the unit hypercube given that k den nearest neighbours are used 
to estimate the local density. The value of d is varied from 1 to 9 and the 
value of k den is varied within the set { 20, 30, 40, 60, 80, 120, 160, 240, 360, 
480 } – ho we ver, only specific values of the latter are shown. The histograms 
in the top panel are the binned minimum k link values and are created from 

300 re-samplings of the aforementioned data distribution for each d and k den 

combination. The skew-Gaussian distributions in the bottom panel are the 
fitted continuous analogues of the histograms in the top panel. The dashed 
lines in the lower panel are the 95 th percentile values of the fitted skew- 
Gaussian distributions and the dashed lines in the top panel are the discrete 
analogue of the latter. 

value for k link CLUSTAR-ND calculates it using automatically using 

k link = max { ceil (12 . 0 d −2 . 2 − 23 . 0 k den 
−0 . 6 + 10 . 0) , 7 } . (16) 

Constructing k link this way standardizes the degree with which it 
is possible to connect the points of a data set whilst also ensuring 
maximal cluster completeness and as such these calculated values 
serve as a practical lower limit for k link . The user may choose 
dif ferent v alues for k link , although there are some considerations. 
The value of k link must al w ays be smaller than or equal to that 
of k den – which applies to the user’s choice of k den just as it does 
to that of k link . In the event that k link is chosen automatically by 
CLUSTAR-ND the abo v e optimal v alues are ef fecti vely the lo wer 
limits of k den given the number of dimensions d . The value of k link 

could be chosen to be larger than the automated values for the purpose 
of decreasing the run-time, ho we ver, this comes at the detriment of 
cluster completeness. Other than these considerations, the optimal 

values of k link do not depend on the choice of k den nor any other 
parameter from CLUSTAR-ND as the y hav e been determined via the 
simple criterion that all points in a d -dimensional uniform distribution 
be densely connected. 

6.2 Values for ρthreshold 

The parameter ρ threshold is used to provide the functionality of 
determining which groupings of points are significantly dense with 
respect to their surrounds. More specifically, it is responsible for 
ensuring that the median density of any cluster is at least ρ threshold 

times the density of that cluster’s surrounds – refer to equation ( 4 ). 
For its use in CLUSTAR-ND , we take a closer look at the ρ threshold 

parameter by optimizing it on the synthetic galaxies described in 
Section 4 . Since the labels within these data sets only provide a 
flat clustering of the synthetic galaxies without noise – instead of a 
hierarchical clustering with noise as is the case with CLUSTAR-ND ’s 
output – we only use the leaf clusters found by CLUSTAR-ND in order 
to determine its performance with varying ρ threshold . This approach 
then requires f reject to be sufficiently large – to ensure that the largest 
leaf cluster shares less than f reject of it’s points with the root cluster 
– so that the leaf clusters will be unaffected by the choice of f reject . 
In fact, this poses a practical lower limit to f reject , ho we ver, we re visit 
this with greater detail in Section 6.4 . Here, we set f reject = 1. Since 
the effect of S outlier on the final clusters is only minimal, we simply 
set S outlier = ∞ to remo v e its influence – we take a closer look at 
S outlier in Section 6.3 . The k link parameter is automatically chosen and 
accordingly to the scheme outlined in Section 6.1 . For simplicity, we 
also optimize these parameters using adaptive = 1. 

By setting the abo v e parameters in this way, we are able to find the 
optimal values of ρ threshold as they depend on k den and the number of 
features, d . We vary ρ threshold from 1 to 4.5 in intervals of 0.1 and k den 

again from the set of { 20, 30, 40, 60, 80, 120, 160, 240, 360, 480 } . For 
each combination of ρ threshold and k den , we run CLUSTAR-ND o v er 
each of the various feature subspace combinations out of the spatial 
( x ), kinematic ( v ), and chemical ( m ) subspaces. 8 Then for every 
run, we compare the leaf clusters found by CLUSTAR-ND to the 
ground truth labels from the rele v ant synthetic galaxy. We use the 
mutual-information-based objective function, F ( S), introduced in 
Section 5.1.1 and equation ( 14 ) to assess the clustering power of 
CLUSTAR-ND for each ρ threshold – k den – subspace combination. 

Fig. 7 contains a panel for each feature subspace combination 
whereby F ( S) is plotted against the values of ρ threshold for each value 
of k den (with specific values shown in colour). As is mentioned in 
Section 4 , the spatial and kinematic features ( x and v ) are each d = 3 

8 Note that we do not analyse the clusterings o v er the m -subspace alone as 
typically each data point shares the same values of both [Fe/H] and [ α/Fe] 
with a number of other data points. Producing clusterings o v er the m -subspace 
thereby artificially predicts many thousands of spurious clusters that only exist 
in this context because each point they contain is ef fecti vely a duplicate – this 
dramatically increases the estimation of their local density and the density 
contrast between nearby neighbourhoods. 

It is likely that this will also affect the clusterings in higher dimensional 
feature spaces that contain the m -subspace to some extent. Ho we ver, since the 
number of points per value of the ([Fe/H], [ α/Fe]) tuple is small (compared to 
the total number of points) in each synthetic galaxy, the global Mahalanobis 
metric used in CLUSTAR-ND here is ef fecti vely blind to the fact the data sets in 
higher dimensions are made up many hyperplanes separated along the [Fe/H] 
and [ α/Fe] directions. Specifically, the blindness that CLUSTAR-ND has to 
this bias in higher dimensional settings is a result of the PCA transformation 
where the resultant interpoint spacing within each local hyperplane is on the 
order of the interplane spacing between each hyperplane. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/4/5767/6611698 by guest on 10 August 2022



Hier arc hical clusters in haloes 5779 

MNRAS 514, 5767–5785 (2022) 

Figure 7. The clustering power of CLUSTAR-ND as it depends on the various feature subspaces, k den , and ρthreshold . The objective function used here is defined 
in equation ( 14 ); ho we ver, the plots sho w a Gaussian-smoothed version of this for simplicity. The dashed lines indicate the fitted values of ρthreshold as a function 
the number of features, d , and the value of k den . These fitted values are calculated using equation ( 17 ). 

subspaces and the chemical features ( m ) is a d = 2 subspace. From 

these plots we can clearly see a interdependency between ρ threshold , 
k den , and the number of features, d . As such, we wish to find a function 
that describes the optimal values for ρ threshold such that this function 
is monotonically increasing with d and monotonically decreasing 
with k den . We also need for ρ threshold to al w ays be at least 1 as there is 
no reason for choosing otherwise. 

In light of these factors and ρ threshold ’s coupled dependency on k den 

and d (unlike the interdependency between these variables and k link 

investigated in Section 6.1 ), we choose to fit a function of the form 

ρ threshold ( k den , d ) = 1 + αf ( d )/ g ( k den ) where f and g are monotonically 
increasing and strictly non-zero for positive inputs. We consider each 
power-law/logarithmic form combination for f and g , but ultimately 
find that setting f ( d ) = d β and g ( k den ) = ln( k den ) gives the best overall 
fit. In fitting, we maximize the function’s output on all Gaussian- 
smoothed objective function curves (for all values of k den not just 
those that are coloured) shown in Fig. 7 simultaneously with an 
equal weighting placed on each. Following this, we find that the 
optimal values of ρ threshold are well-described by the function 

ρthreshold ( k den , d) = 1 + 0 . 81 
d 0 . 81 

ln ( k den ) 
. (17) 

Some fitted values produced by equation ( 17 ) are shown in Fig. 7 as 
vertical dashed lines with colours that correspond to the appropriate 
value of k den . While these fitted values are not al w ays at the global 
maxima of the objective function curves, the function does not 
sacrifice much rele v ant information for the added convenience of 
having this parameter be chosen automatically from the user’s choice 
of k den and the number of features, d , in the data set that the user 
wishes to produce a clustering from. 

In addition to being able to justify a set of optimal choices for 
ρ threshold , we can also see from Fig. 7 the difference in information 
content as it depends on the specific feature subspace combination 
present within the input data. Here, we can easily see that including 
e xtra informativ e dimensions will increase clustering power. We can 
also see that smaller k den values produce better clusterings in an 
astrophysical context since they increase the resolution with which 
CLUSTAR-ND can resolve structure. This is particularly pre v alent in 
the larger feature spaces where fine-structure can be separated from 

background noise more easily – ho we ver choosing small values for 
k den comes with diminishing returns as this also increases the effects 
of Poisson noise on the density estimation which can artificially 
introduce spurious structures. We take a closer look at the robustness 
of the CLUSTAR-ND output by comparing reco v ery and purity 
statistics of specific clusters across these same feature subspace 
combinations in Section 7 . 

6.3 Values for S outlier 

The parameter S outlier is used to categorize the points of the input 
data as either local inliers or local outliers depending on whether 
their local-outlier-factor (or rather its density kernel analogue in 
equation ( 8 )) is less than or greater than S outlier . Following the 
aggregation process described in Section 3.5 , a cut-off density is then 
defined for each cluster according to equation ( 9 ). This classification 
is then used to remo v e all points from each cluster whose local density 
is less than the cut-off density, ρcut , of that cluster – i.e. only local 
outliers whose density is less than that of all local inliers are remo v ed. 

To better understand the effect S outlier has on the final cluster- 
ing produced and gauge an optimal value for it from the syn- 
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Figure 8. The clustering power of CLUSTAR-ND as it depends on the various feature subspaces, k den , and S outlier . The objective function used here is defined 
in equation ( 14 ) and is re-normalized between each curv e’s respectiv e minimum and maximum o v er this range for S outlier to better depict the global influence 
of this parameter. As with Fig. 7 , these plots show a Gaussian-smoothed version of the objective function. We see that for small S outlier values the clustering 
power decreases dramatically and for large values the clustering power asymptotically approaches a maximum (values of which are those shown in Fig. 7 at the 
rele v ant ρthreshold v alues for each k den and number of features, d ). The dashed lines indicate the value of S outlier = 2.5 which we set as the standard choice for 
CLUSTAR-ND . This value is both small enough to remo v e distinct outliers from clusters while being large enough to not have the resultant clustering breakdown. 
Ultimately, ho we v er, an y value abo v e about S outlier = 1.5–2 will produce good clustering results – adjusting this further is dependent on how strict the user 
wishes to be on the removal of potential outliers from clusters. 

thetic galaxies discussed in Section 4 , we compute the objective 
function, F ( S), in equation ( 14 ) from the CLUSTAR-ND output 
for various combinations of S outlier , k den , and feature subspace in 
largely the same way as in Section 6.2 . We vary S outlier from 1 
to 4.5 in intervals of 0.1. We similarly vary k den from the set of 
{ 20, 30, 40, 60, 80, 120, 160, 240, 360, 480 } and the feature subspace 
combinations of the spatial ( x ), kinematic ( v ), and chemical ( m ) 
subspaces. Given these combinations of k den and the number of 
features, d , we allow for k link and ρ threshold to be automatically 
chosen according to equations ( 16 ) and ( 17 ), respectively. In our 
investigation of S outlier we again set f reject = 1 and adaptive = 1. 

The relationship between the clustering power of CLUSTAR-ND 
and S outlier is shown in Fig. 8 for each combination of k den and d . 
More simplistic than that between the clustering power and ρ threshold , 
the relationship here is very similar between these combinations and 
suggests that so long as S outlier is large enough the CLUSTAR-ND 
output will be robust. 9 For values larger than about 1.5 or 2, the 

9 The F ( v ) panel of Fig. 8 appears to include a oscillation-like pattern for 
S outlier � 1.5 and k den = 20. This is an artefact of the objective function 
minimum being closer to its maximum for this combination. As such, the 
scale of the noise appears much larger and noticeable compared to the other 
k den and d combinations. The exact reasoning for this noise is that for a given 
change in S outlier the quality of some clusters will increase while others may 
decrease. These competing effects take place for every curve in Fig. 8 but are 

choice of S outlier has a minimal effect and will only serve to remo v e a 
select few or perhaps none of the points from each cluster. Of course 
changing S outlier from 3 and 4 will still have an effect on which points 
are apart of the final clusters, ho we ver, this ef fect is minimal and 
cannot be robustly defined beyond the resultant clustering include 
more potential outliers per cluster than beforehand. In light of this 
ambiguity, we choose to use S outlier = 2.5 as the standard value 
within CLUSTAR-ND as this will provide strong clustering results 
with a moderate level of outlier detection. 

6.4 Values for f reject 

The parameter f reject defines the maximum fraction of points (relative 
to the parent cluster) that can be shared between any of the parent- 
child cluster pairs that exist immediately following the aggregation 
process. A cluster is rejected from a parent-child pair if the child 
shares more than f reject of the parent’s points – according to equa- 
tion ( 6 ) – i.e. CLUSTAR-ND remo v es the smallest cluster of the pair 
that has child clusters of its own, unless it would be a root-level cluster 
in which case the child from the pair is remo v ed. These rules mean 
that f reject is implicitly responsible for determining the size and shape 
of the hierarchy between the terminating clusters of the hierarchy. 

simply more noticeable on this curve due to the imposed scale between the 
minimum and maximum. 
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Table 1. A summary of the minima, medians, means, and maxima of the 
normalized mutual information values ( F g ( S)) for the various feature spaces 
( S) and adaptive settings shown within Fig. 9 . The mean values are equi v alent 
to the objective function defined F ( S) in equation ( 14 ). For completeness, we 
also include these statistics for the clusterings produced with HALO-OPTICS 
using the ( x ) feature space in Section 5 . 

S Adaptive Min Median Mean Max 

( x ) HALO-OPTICS 0 0.027 0.043 0.198 
0 0.001 0.028 0.043 0.197 
1 0.006 0.027 0.043 0.193 
2 0 0.023 0.039 0.193 

( v ) 0 0 0.009 0.029 0.261 
1 0 0.008 0.029 0.266 
2 0 0.006 0.028 0.265 

( x , m ) 1 0.024 0.062 0.079 0.364 
2 0.017 0.066 0.075 0.341 

( v , m ) 1 0 0.063 0.093 0.473 
2 0 0.070 0.102 0.469 

( x , v ) 1 0 0.065 0.089 0.445 
2 0 0.067 0.092 0.443 

( x , v , m ) 1 0 0.077 0.110 0.485 

Refer to Section 3.6 for more details on the rules surrounding the 
f reject parameter. 

Choosing extreme f reject values of 0 and 1 would force CLUSTAR- 
ND to return ( ≤10 ) l and 2( l − 1) clusters per root-level cluster, 
respectively – where l is the number of leaf clusters within that 
root-level cluster. In the same scenarios, the hierarchy returned by 
CLUSTAR-ND would have depths of 1 and somewhere in the range 
of [log 2 ( l − 1), l − 1] per root-level cluster, respectively. To use 
the standard terminology, these values of f reject create hierarchies that 
form perfect ( ≤) l -ary trees and full binary trees, respectively – with 
the exact shape of the latter dependent upon l ’s representation in 
base-2 and the clustering structure within the data set. Varying f reject 

between these values transforms the shape of the hierarchy in a way 
is difficult to predict. 

We should expect that a reasonable lower limit for f reject is 0.5, 
since anything lower would suggest that equally sized groups can 
not be merged into a parent cluster. Ho we ver, further constraining 
this within this paper would be a difficult task since the satellite 
labels within the synthetic data from GALAXIA (Section 4 ) provide 
a flat clustering without noise of each galaxy and this information 
alone does not indicate the optimal hierarchy shape. To properly 
determine the optimal f reject from this data, we would need to assess 
the physics of the galaxies and their constituents – to determine 
how bound each satellite is to each other, and prepare an objective 
function that can be used to infer the most physical sense of what a 
satellite within a satellite should look like in an astrophysical context. 
Specifically, this would require analysis of the mass, orbits of the 
points, backwards integration, and analysis of the star formation 
histories within satellites and how this relates to each other satellite 
within a galaxy . Additionally , we cannot even be certain from the 
outset that we would see a single most-optimal value for f reject that is 
able to consistently provide such a hierarchy because the rules that 
go v ern this may not even be suitable to do so. 

10 The ≤ sign here indicates that the number of leaf clusters found in the 
f reject = 0 case may be less than or equal to the number of leaf clusters found 
in the f reject = 1. The inequality will exist if there is one or more leaf clusters 
whose parent is the root-level cluster. 

In light of these issues – and since we expect the hierarchy 
produced by CLUSTAR-ND to be similar to that of HALO-OPTICS –
we choose to follow the verdicts with respect to the parameter f reject 

in Oliver et al. ( 2020 ). Considering the results from Fig. 6 therein, 
a value of f reject = 0.9 is near-optimal and ensures good quality 
clustering results (high Jaccard index as well as high reco v ery and 
purity fractions) of the hierarchical combinations of hand-crafted 
leaf clusters. From a hierarchy interpret-ability stand point, running 
CLUSTAR-ND with this value of f reject o v er the synthetic galaxies 
discussed in Section 4 creates consistently shaped hierarchies with 
levels L = 1, 2, and 3 + containing ∼70, ∼20, and ∼10 per cent of all 
galactic substructure clusters ( L > 0). Furthermore, these percentages 
do not seem to change more than ∼15 per cent regardless of the value 
of k den , the feature space of the input data, nor the choice synthetic 
galaxy – implying that we should expect the resultant hierarchy shape 
to remain simple to interpret and predictable when CLUSTAR-ND is 
applied to astrophysical data sets. 

7  I N F O R M ATI O N  C O N T E N T  O F  DI FFERENT  

CLUSTERI NG  SCENARI OS  

In the preceding sections, we have presented the CLUSTAR-ND 
algorithm (Section 3 ), showing that it produces comparable clusters 
to HALO-OPTICS in a far more computationally efficient manner 
(Section 5 ), and optimized its parameters for generalized application 
to N -dimensional data sets (Section 6 ). In this section, we will further 
demonstrate the clustering power of CLUSTAR-ND and quantify the 
difference between the clusters that result when CLUSTAR-ND is 
applied to different galactic environments (Section 7.1 ), to different 
feature spaces (Section 7.2 ), and using metric adaptivity settings 
(Section 7.3 ). 

The clustering power of the now-optimized CLUSTAR-ND is 
summarized in Table 1 and Fig. 9 : Fig. 9 illustrates the breakdown 
of the objective function from equation ( 14 ) (i.e. F g ( S)) o v er each 
synthetic galaxy from Section 4 – the measure of normalized mutual 
information is each galaxy’s contribution to the objective function 
prior to having averaged over them; Table 1 displays the minima, 
medians, means, and maxima of the distribution of F g ( S) as it 
depends on the metric adaptivity setting and the feature space. With 
Fig. 9 we can also see how the clustering power differs depending 
on the galactic environment as well. While these values may seem 

low, both Table 1 and Fig. 9 show that CLUSTAR-ND has performed 
well given the circumstances of this data. As a reference point, Fig. 9 
also shows the clustering power of a hypothetical clustering that 
e xclusiv ely and perfectly classifies ( J max = 1) the self-bound satellites 
from within each MW-type galaxy. We see that in comparison, 
CLUSTAR-ND performs well and that the galaxies are composed 
of mostly disrupted tidal debris from previous mergers – which is 
mostly impossible to aggregate together without joining multiple 
unbound groups and ef fecti vely reducing our understanding of the 
catalogue of true satellites. We see that even with CLUSTAR-ND 
only using the positions ( S = ( x )) it will consistently return the self- 
bound satellites and some tidal debris to the effect of having an 
F g ( S) value that is at least a factor of ∼1–2 times larger than for 
just classifying the self-bound satellites. This is unsurprising since 
HALO-OPTICS was shown to be able to do the same thing with only 
positional information (Oliver et al. 2020 ). As the feature space size 
increases CLUSTAR-ND ’s clustering power increases too such that 
when S = ( x , v , m ), F g ( S) is typically at least a factor of ∼3–6 times 
larger than that for self-bound satellites only. 

All clusters analysed in this section have been produced using 
k den = 20 – as this consistently produced the best results in Section 6 . 
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Figure 9. The normalized mutual information F g ( S) from equation ( 14 ) 
of various CLUSTAR-ND clustering scenarios involving different synthetic 
galaxies, feature spaces, and metric adaptivity settings. The F g ( S) values of 
both the HALO-OPTICS clusterings from Section 5 and a hypothetical set 
of clusterings that perfectly classify ( J max = 1) only the self-bound satellites 
within each MW type galaxy are also shown for reference. The vertical axes 
indicate the names of the synthetic galaxies as well as whether they are from 

the original MW-type galaxies of Bullock & Johnston ( 2005 ) or from the 
additional artificial galaxies of Johnston et al. ( 2008 ). It is easy to see that the 
galactic environ, the number and type of informative features, and the metric 
adaptivity all affect the power of the resultant clustering. 

All other parameters are chosen automatically according to the 
analysis in Section 6 unless specified otherwise. We also highlight 
the impact of feature space and adaptivity setting using two satellites, 
shown in Figs 10 and 11 . 

7.1 The effects of galactic environment 

Fig. 9 shows that there are distinct differences in CLUSTAR-ND ’s 
clustering power that are dependent upon the type of galaxy that 

the algorithm is applied to. This is not unexpected, the constituent 
satellites of any particular galaxy will be more/less difficult to classify 
for any clustering algorithm if a large number of these satellites 
are disrupted/intact. In essence, if a large number of a satellite’s 
points’ k link neighbourhoods contain points from multiple satellites 
then CLUSTAR-ND ’s ability to provide a well-matched cluster to 
that satellite diminishes as any matching predicted cluster will also 
contain contamination points from other satellites. Such galactic 
environments will occur if the constituent satellites have experienced 
strong tidal forces throughout their history or if they are sparsely 
distributed at the time of their infall such that they encompass a 
large volume of the feature space. It is for these reasons that we see 
the clustering power of CLUSTAR-ND to be less when applied to 
galaxies created by old satellites, satellites on radial trajectories, and 
low luminosity satellites. 

Contrarily, if most k link neighbourhoods contain only points from 

a single satellite then the aggregation process can likely link together 
many points from a single satellite in sequence before the group 
becomes o v erly contaminated by members of other satellites. Of 
course, CLUSTAR-ND ’s ability to create meaningful clusters from 

these neighbourhoods also depends on the density of the points and 
whether these neighbourhoods are isolated or connected to other like- 
neighbourhoods. Galactic environments that harbour such conditions 
will contain a larger proportion of intact satellites compared to those 
that do not. Accordingly, Fig. 9 shows that galaxies made of young 
and (for some feature spaces) high luminosity satellites are more 
easily categorized into their respective satellites. 

As the MW-type galaxies are essentially a mix of disrupted 
and intact satellites we befittingly see a clustering power that lies 
somewhere in the middle of these e xtremes. Nev ertheless, from these 
observations we can gain some understanding about what to expect if 
CLUSTAR-ND were to be applied to a data set of stars in the galactic 
bulge compared to if it were applied to the stars in the stellar halo. 

7.2 The effects of feature space 

The effects of group-mixing in a data set are not only pre v alent 
between different galactic environments, but are noticeable between 
different feature spaces as well. Generally speaking, Table 1 portrays 
that the CLUSTAR-ND clustering power is greater for larger feature 
spaces. One exception to this is that we find the ( v , m ) feature 
space more informative than the ( x , v ) feature space. Amongst equal- 
sized feature spaces, we see that spatial coordinates are generally 
more informative than kinematic coordinates although the opposite 
is true when chemical abundances are added in amongst these feature 
spaces. 

From Fig. 9 ho we ver, we see that the abo v e observations from 

Table 1 are not consistent across galaxies – i.e. the information 
content of any particular galaxy clustering is coupled to both the 
galactic environment and the underlying feature space of the data. Out 
of the synthetic galaxies we investigate in this paper, the clustering 
scenario that gives the most information content for each galaxy 
is most commonly derived from the largest feature space, ( x , v , m ); 
ho we ver, the title of most informative feature space is also sometimes 
held by the ( x , m ), ( v , m ), or ( x , v ) feature spaces. 

Adding in extra features will often increase clustering power by 
creating some separation between multiple satellites within the extra 
volume that is provided by the additional dimensions. Ho we ver, this 
will not al w ays be the case as it is possible that by adding in extra 
uninformative features the points belonging to multiple satellites will 
be brought closer together (relative to other points) – making it more 
difficult for CLUSTAR-ND to disentangle them from each other and 
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Figure 10. A satellite and the corresponding best-fitting clusters predicted by CLUSTAR-ND when using various feature spaces and metric adaptivity settings. 
The projection shown of the satellite in each panel is of the two spatial PCA components with the largest variances. The feature space used for the satellite’s 
prediction is shown in the top left corner of each panel. The metric adaptivity setting is indicated by colour; where blue and red corresponds to an adaptive value 
of 1 and 2, respectively – the purple indicates their intersection. Large points belong to the satellite, small points are incorrectly associated with the satellite. 
In the top right corner of each panel are the maximum Jaccard index (equation 10 ), reco v ery, and purity (equation 11 ) of the best-fitting clusters from the two 
adaptive values. These panels show the influence of the different feature spaces as well as that of the different metric adaptivity settings. 

their surrounds. These effects are why the clustering of the satellite 
depicted in Fig. 10 is worse for the ( x , v , m ) feature space than it is 
for the ( x , v ) feature space, even though the former feature space is 
more voluminous. The same effect can be also be seen in Fig. 11 , 
not only between these feature spaces but between the ( x ) and ( x , m ) 
feature spaces as well. 

Irrespective of the above, Table 1 does confirm that this effect is 
outweighed by the opposite effect when including additional features 
to cluster o v er – i.e. that including additional features brings together 
k link neighbourhoods made of points from the same satellite while 
separating those that contain points from other satellites. Specifically, 
we can observe this occur in Fig. 10 where the addition of the 
chemical features in the ( x , m ) feature space has dramatically 
impro v ed the best-fitting predicted cluster to the satellite when 
compared to that found using the spatial features alone. The same can 
be said about the ( v , m ) and ( v ) feature spaces, and not only in Fig. 10 
but also in Fig. 11 . Moreo v er, we see that the amalgamation of the 
spatial and kinematic features allows CLUSTAR-ND to produce far 
better clusterings of the respective satellites in both Figs 10 and 11 . 

One method of finding the most informative feature space is by 
comparing the Shannon entropy (Shannon 1948 ) of the available 
feature spaces. The smaller the Shannon entropy of a particular 
feature space the less uniform the distribution of points within 
it and hence more clustered – this does not necessary guarantee 
that the feature space is appropriately clustered but it does hint to 
this possibility. Such a concept is already utilized within clustering 
algorithms such as ENLINK (Sharma & Johnston 2009 ) in order to 
create a meaningful locally adaptive metric and could be utilized 

when using CLUSTAR-ND to narrow the list of possible feature 
spaces before applying the algorithm. 

7.3 The effects of metric adaptivity settings 

Another way to bring like-satellite points together while separating 
dislike-satellite points from each other is via the means of a 
adapti ve metric. CLUSTAR-ND of fers three metric adapti vity settings, 
ho we ver, only the adaptive values of 1 and 2 should be considered 
as adaptive metrics since there is no transformation performed by 
CLUSTAR-ND when adaptive = 0. It is for this reason that the latter 
should only be used if the feature space consists solely of similar 
coordinates such as the ( x ) or ( v ) feature spaces. The adaptive = 

0 setting can also be used on compound feature spaces so long as 
some meaningful transformation of the data has been performed. 
The settings of adaptive = 1 and 2 are implementations of a globally 
adaptive metric and a locally adaptive metric, respectively. 

In Table 1 , we can see that running CLUSTAR-ND with the 
adaptive = 1 setting produces similar results to the adaptive = 0 
in the feature spaces where this setting is applicable. This gives us 
confidence that the adaptive = 1 setting is appropriate for producing a 
globally adaptive metric for the larger compound feature spaces. The 
locally adaptive metric provides a similar clustering power overall to 
the globally adaptive metric. The medians and means of this measure 
appear to be higher for the locally adaptive metric when CLUSTAR- 
ND is applied to compound feature spaces, but it is difficult to say 
whether using it provides a better clustering in general. Ho we ver, 
in Fig. 9 we see that blanket statements about the use of the locally 
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Figure 11. A satellite and the corresponding best-fitting clusters predicted by CLUSTAR-ND when using various feature spaces and metric adaptivity settings. 
This satellite is different to that shown in Fig. 10 ; ho we ver, the description of each panel’s information remains the same here. As with Fig. 10 , these panels 
show the influence of the different feature spaces as well as that of the different metric adaptivity settings – however, the ( v , m ) panel in the lower middle is a 
pronounced case of the clustering difference that can occur between the globally adaptive metric setting ( adaptive = 1) and the locally adaptive metric setting 
( adaptive = 2). 

adaptive metric over the globally adaptive metric are not al w ays true. 
With this it is clear that the optimal value of adaptive has a subtle 
dependency on the galactic environment as well as the feature space. 

Fig. 11 depicts one such case where the use of the adaptive = 

2 setting has caused CLUSTAR-ND to produce a distinctly better 
match to a satellite. We see here that by using the locally adaptive 
metric setting on the ( v , m ) feature space, the best-fitting match to 
the satellite has both an impro v ed reco v ery and purity. Ho we ver, it is 
possible that in other feature spaces, ( x , v ) and ( x , v , m ) for example, 
the lower arm (on the satellite projection) has been found as a sibling 
cluster(s) to the best-fitting cluster(s) shown in those panels. In this 
sense, it is likely that the locally adaptive metric has simply created 
a means to condense the lower density particle bridge between these 
regions. 

Intuitively, the adaptive = 2 setting is only preferable to the 
adaptive = 1 if the most meaningful child cluster (in any parent- 
child cluster pair) is dense with respect to the shape of it’s parent 
cluster. It is not obvious as to whether this will be the case before 
using CLUSTAR-ND on a particular data set. Moreo v er, it is not 
obvious after the clustering has been found whether this technique 
has yielded the a more meaningful clustering o v erall. Without a 
recognizable way of appropriately using the adaptive = 2 setting, 11 

11 Other than perhaps when using the ( v , m ) and ( x , v ) feature spaces since 
it is evident from Fig. 9 that the clustering power of CLUSTAR-ND is either 
similar or increased when using the adaptive = 2 setting compared to the 
adaptive = 1 on these feature spaces. 

we can only expect to see a different clustering by using it over the 
adaptive = 1 setting. 

Given that using CLUSTAR-ND with the locally adaptive metric 
is more computationally demanding and requires a longer run-time 
(by a factor of ∼2) with varied clustering results, it is left to the 
user’s discretion as to whether or not they wish to user it and by 
default the adaptive parameter will be set to 1 ensuring a globally 
adaptive metric. This aspect of the CLUSTAR-ND algorithm can be 
certainly be impro v ed and we will endea v our to include a more 
appropriately determined locally adaptive metric in a future work. 
It is also possible to use CLUSTAR-ND on the adaptive = 0 setting 
in conjunction with other external manifold learning codes such as 
UMAP (McInnes, Healy & Melville 2018 ) – ho we v er, clustering o v er 
these results can be unpredictable and may also require a different 
ρ threshold value than the optimal one we report in this paper. 

8  C O N C L U S I O N S  

We have presented the CLUSTAR-ND algorithm and have shown 
it to be well-suited to the hierarchical classification of stellar 
satellite groups within galaxies. Compared to its predecessor HALO- 
OPTICS , CLUSTAR-ND is not only capable of producing a similarly 
robust clustering output but it does so in an exceptionally efficient 
manner – outperforming the HALO-OPTICS run-times by 3 orders 
of magnitude at a minimum. Importantly, CLUSTAR-ND is readily 
applicable to any point-based astrophysical data set that is defined 
o v er an arbitrary number of features. In optimizing its clustering 
performance, we hav e remo v ed the need for user-defined parameter 
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values such that the most optimal parameter settings will be chosen 
automatically based on the input data (unless the user specifies 
otherwise). 

In this paper we also investigate the capacity of a computationally 
cheap design for producing a locally adaptive metric to improve 
CLUSTAR-ND ’s clustering power. The design iteratively re-applies 
CLUSTAR-ND ’s substructure searching component to each consecu- 
ti ve le vel of the hierarchy in a top-down fashion in order to adaptively 
modify the underlying distance metric and ensure that each level 
of clusters found are dense with respect to their parent cluster in 
the hierarchy. We find that while this approach does produce better 
results in a small number of clustering scenarios (predominantly 
on data defined with a combination of kinematic and chemical 
abundance features), it is mostly inconsistent with regards to the 
resultant clustering power and tends to simply provide a different 
clustering when compared to the globally adaptive metric scheme. 
Since the locally adaptive metric scheme requires more run-time than 
the globally adaptive metric scheme, we leave using it as a situational 
choice for the user to make. 

In a future work, we will develop a more clustering-appropriate 
locally adaptive metric scheme for CLUSTAR-ND to make use of. 
We will also establish a method of producing fuzzy clusterings 
from fuzzy data such that the point-based uncertainties of the data 
may be propagated into cluster-based uncertainties. As of this paper, 
ho we ver, CLUSTAR-ND is ideally suited to large astrophysical data 
sets both synthetic and observational, and hence our further research 
will also include the application of CLUSTAR-ND to observational 
data sets of the MW. 
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Chapter 5

An Entirely Data-Driven Method

Originally, I had planned to apply CluSTAR-ND directly to observational data sets

such as Gaia [360], SDSS [361], PAndAS [362], and GALAH [363]. However, upon

attempting to provide a meaningful clustering of the foreground-background sub-

tracted PAndAS data set I realised that I needed a finer and more intuitive control

of the returned clusters in order to encapsulate all relevant structure. The problem

is that observational data sets will somewhat unavoidably contain contamination

noise within them. As such, the data is not a true sampling of the underlying

density manifold that represents the real astrophysical structure that we are trying

to uncover from the data. With a varying noise level in each data set, the fixed and

pre-determined optimal values found for each of the CluSTAR-ND will typically be

in need of some adjustment. However, cluster extraction process of CluSTAR-ND is

complex – the effect of each parameter is coupled and as such it is difficult to adjust

for varying noise and remain vigilant to the quality of the structure that is returned.

In light of this, I endeavour to strip back the cluster extraction process of

CluSTAR-ND and its 3 parameters and replace it with an extraction process governed

by a single simple-to-interpret parameter that represents the minimum statistical

significance that a cluster must have to be labelled as such. The new algorithm,

CluSTARR-ND, therefore has a parameter, S, that represents the distinction by which

the extracted clusters must have from the noisy local density fluctuations that appear

in the data. In doing this, CluSTARR-ND must keep track of all overdense groups –

including those that will later be classified as noise. Since the smoothing length used

in the kernel density estimate is defined using a fixed number of nearest neighbours,

the noisy density fluctuations do not adhere to those that would arise due to a

Poisson point process. As such, I construct a measure called prominence that is

defined as the logarithm of a signal-to-noise ratio for a given group. By fitting a

distribution to the prominences of all noisy groups I can define which groups are
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outliers from the noise and by how much.

To provide the user with additional information, I also have CluSTARR-ND produce

an ordered-density plot which – analogously to the reachability plot of OPTICS and

Halo-OPTICS – is a visual indication of the clustering structure within the data.

With these changes, I find that CluSTARR-ND is a robust and nearly entirely data

driven that is ideally suited for application to observational data sets. As the final

installation in the series of astrophysical structure finding algorithms featured within

this thesis, CluSTARR-ND is the most readily applicable to any given astrophysical

data set making it the truest version of a generalised astrophysical structure finder.

CluSTARR-ND will reliably find clusters so long as the input data set appropriately

represents the underlying density manifold that describes those clusters. The code

for the CluSTARR-ND can be found in App. B.3.

5.1 Structure Finding with CluSTARR-ND

This section presents the manuscript in preparation:

3. The Hierarchical Structure of Galactic Haloes: Differentiating Clusters from

Non-Poissonian Noise with CluSTARR-ND. W. H. Oliver, P. J. Elahi, & G.

F. Lewis. in preparation.

Given the time constraints surrounding the submission of this thesis, the paper

presented here is a work-in-progress. As such, it is unfinished and may be subject

to further changes throughout. At the time of writing however, Secs. 1, 2, and

3 are draft-complete while Secs. 4, 5, and 6 are not. In these remaining sections

I will; discuss the limitations of algorithm; conduct a comparison between the

outputs of CluSTARR-ND and it’s predecessor CluSTAR-ND as well as show that

CluSTARR-ND remains significantly more robust with varying noise levels; and present

my conclusions about the algorithm, its effectiveness, and the future work that it

can be used within. Although at present the paper does not depict the output of the

algorithm on astrophysical data, Fig. 6.2 illustrates its effectiveness on the PAndAS

data. Ultimately, I expect to have this work submitted for publication within ∼ 2

months of the submission of this thesis.

Author Contributions: I developed the CluSTARR-ND algorithm and have written

the manuscript. Dr. Pascal J. Elahi has made valuable contributions to the concept

of the algorithm. The project has been conducted under the supervision of Prof.

Geraint F. Lewis.
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ABSTRACT
This paper is a part of a series of papers that have sequentially built upon each other in order to produce fast and generalised clus-
tering algorithms that are ideally suited to astrophysical clustering. In this paper, we build upon the hierarchical galaxy/(sub)halo
finding algorithm CluSTAR-ND to make CluSTARR-ND (Clustering Structure via Transformative Aggregation, Regression, and
Rejection in N-Dimensions). We do this by redefining its cluster extraction process to ensure that each resultant cluster is
defined to be statistically distinct from random fluctuations in the estimated density field of the input data. This modification
effectively exchanges the previously 3 cluster extraction parameters from CluSTAR-ND with a single parameter, 𝑆, that is the
lower threshold statistical significance of the extracted clusters. This change not only makes CluSTARR-ND readily applicable to
data of any size and shape but now also to any such data set with an arbitrary level of noise. We show the latter by demonstrating
that CluSTARR-ND produces a more robust clustering of the input data than CluSTAR-ND for a range of background noise
contamination levels. As such, CluSTARR-ND is now suitable for application to synthetic or observational data sets and will not
produce spurious clusters when applied to noisier-than-synthetic data sets.

Key words: galaxies: structure – galaxies: star clusters: general – methods: data analysis – methods: statistical

1 INTRODUCTION

The ability to correctly classify astrophysical structure from obser-
vational data sets plays a particularly significant role in the pursuit of
knowledge about our Universe. Specifically, by revealing the spatial,
kinematic, and/or chemical overdensities within these data sets we
can begin to make predictions about the nature of structure forma-
tion and evolution. Historically, such structures have been discovered
via a direct inspection of the data. Galaxies and clusters of galax-
ies have been found with photographic plates (Abell 1958), or more
recently, galactic substructure has been uncovered through specific
data projections (e.g. Arifyanto & Fuchs 2006; Duffau et al. 2006;
Williams et al. 2011; Helmi, Amina et al. 2017; Belokurov et al.
2018). However, as we continue to gather data about our Universe it
is increasingly important that we approach structure finding from the
data mining perspective as inspection methods will fail to exhaust
such large data sets of their clusters.
Data mining algorithms that find structure are referred to as clus-

tering algorithms. The clustering algorithms built for astrophysical
structure finding within observational data (particularly from those
aimed at uncovering galactic substructure) will typically employ
some physical model in order to classify groups. Commonly, this
model includes some constraint on orbital motion due to the gravita-
tional potential of the parent structure, e.g. StreamFinder (Malhan
& Ibata 2018) and the xGC3 suite (Johnston et al. 1996; Mateu et al.
2011, 2017). These algorithms will also often produce projections or

★ E-mail: william.oliver@sydney.edu.au

transformations of the data so that they may target a specific type of
structure, e.g. StarGO (Yuan et al. 2018), HSS (Pearson et al. 2022),
and Via Machinae (Shih et al. 2021). While these algorithms per-
form well when it comes to exposing the structure they are designed
to target, these restrictions effectively enforce limitations as the al-
gorithms can not uncover a range of structure types – nor the way in
which these multiple structure types are related.
Clustering algorithms built for uncovering galaxies and their sub-

structure from synthetic data – often called galaxy/(sub)halo finders –
will naturally use some proportion of the information availablewithin
the simulation to find structure. As such, modern galaxy/(sub)halo
finders fall into three categories: configuration space finders, phase
space finders, and tracking finders. Configuration space finders – e.g.
SubFind (Springel et al. 2001), AHF (Knollmann & Knebe 2009),
and CompaSO (Hadzhiyska et al. 2021) – use the 3D spatial positions
of particles to find physical overdensities (and then the velocities
of particles are often also used to reduce the groups to self-bound
haloes). Phase space finders – e.g. 6DFOF (Diemand et al. 2006), HSF
(Maciejewski et al. 2009), ROCKSTAR (Behroozi et al. 2012), and VE-
LOCIraptor (Elahi et al. 2019) – use both the 3D spatial positions
and 3D velocities of particles. Accordingly, tracking finders – e.g.
SURV (Tormen et al. 2004; Giocoli et al. 2008) and HBT+ (Han et al.
2017) – use either configuration or phase space to construct haloes
but are assisted by particle tracking in their determination of such
groups at later times.
While simulation-specific astrophysical clustering algorithms have

seen a lot of attention and development over the past few decades,
the core of the vast majority of these algorithms is still based off
of either the Spherical Overdensity (SO; Press & Schechter 1974)

© 2022 The Authors
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or the Friends-Of-Friends (FOF; Davis et al. 1985) algorithms1.
Through their consistent use, the structures found by these algorithms
have effectively become the defining representations of galaxies and
(sub)haloes (at least within synthetic data). This alone is not necessar-
ily a negative point – a structure found by these methods that has also
been subject to an additional unbinding process is a true self-bound
group. Furthermore, a many comparison papers have found that most
modern galaxy/(sub)halo finders (including those built off the SO and
FOF algorithms) strongly agree on the structure they find (Knebe et al.
2011, 2013; Onions et al. 2012, 2013; Elahi et al. 2013; Avila et al.
2014; Lee et al. 2014; Behroozi et al. 2015). However, the SO and FOF
algorithms do not produce hierarchical clusterings and so typically
they are applied iteratively in order to find structures with various
densities/shapes/definitions. As such, modern galaxy/(sub)halo can
struggle to return all relevant structure.
To overcome the downfalls of both observation and simulation

specific astrophysical clustering algorithms whilst maintaining their
advantages, a generalised method is sorely needed. Such a method
needs to be readily applicable to; both observational and synthetic
data sets; data sets with any number of points; and data sets with any
number and type of features.Moreover, a generalised algorithmneeds
to be free of model constraints and provide an adaptive measure of
hierarchical clustering structure so as to support to the discovery of all
structure types definedwith at any degree of overdensity. Generalised
algorithms such as OPTICS (Ankerst et al. 1999) and HDBSCAN
(Campello et al. 2015; McInnes et al. 2017) have seen increased
usage in recent years for astrophysical structure finding – e.g. Costado
et al. (2016); McConnachie et al. (2018); Canovas et al. (2019);
Massaro et al. (2019); Ward et al. (2020); Higgs et al. (2021); Jensen
et al. (2021); Soto et al. (2022) for OPTICS and Ruiz et al. (2018);
Mahajan et al. (2018); Koppelman et al. (2019); Jayasinghe et al.
(2019); Kounkel & Covey (2019); Webb et al. (2020); Kamdar et al.
(2021); Walmsley et al. (2022); Lövdal et al. (2022); Casamiquela
et al. (2022) for HDBSCAN. However, neither OPTICS nor HDBSCAN are
designed with astrophysics specifically in mind – in fact, only a few
codes have been e.g. EnLink (Sharma & Johnston 2009), FOPTICS2

(Fuentes et al. 2017), and (CluSTAR-ND; Oliver et al. 2022).
We develop a novel and almost entirely data driven astrophys-

ical clustering algorithm CluSTARR-ND by improving upon the
CluSTAR-ND algorithm. First, we summarise the CluSTAR-ND al-
gorithm in Sec. 2. We then describe the CluSTARR-ND algorithm
throughout Sec. 3 by; outlining its similarities and differences to
CluSTAR-ND (Sec. 3.1); simplifying its aggregation process (Sec.
3.2); developing a statistical measure for clusteredness (Sec. 3.3);
characterising the distribution of clusteredness among noisy density
fluctuations (Sec. 3.4); establishing a method to detect statistically
significant clusters (Sec. 3.5); and summarising its (short) list of op-
erational parameters (Sec. 3.6). In Sec. 4 we discuss the effective
limitations of this approach. Then in Sec. 5 we show the algorithm in
practice and compare it to its predecessor, CluSTAR-ND. Finally, we

1 As the name suggests, the SO algorithm is used to construct galaxies and
(sub)haloes from synthetic data by finding density peaks and then expanding
spherical surfaces out from these until some pre-specified overdensity is
achieved within the each of the volumes. The FOF algorithm is able to produce
a similar clustering by grouping all particles that can be chained together
through distances less than the linking length (𝑙𝑥 ) – which is typically chosen
to be 0.2𝑙mean (corresponding to Δ ≈ 200 overdensities) where 𝑙mean is the
mean particle separation within the simulation box.
2 Although this algorithm was designed to be used on the position-velocity
phase-space of stars.

make our conclusions and present our ideas for future work in Sec.
6.

2 AN OVERVIEW OF THE CLUSTAR-ND ALGORITHM

The Clustering Structure via Transformative Aggregation and
Rejection in N-Dimensions algorithm (CluSTAR-ND; Oliver et al.
2022) is takes input data of any size and number of features and
produces a hierarchical clustering that represents the galaxies within
that data and their substructures. It does this by either; first finding the
Friends-Of-Friends (FOF; Davis et al. 1985) haloes from the spatial
coordinates of the data; or, by treating the input data as such a halo.
Once a list of galaxies/haloes is obtained, the substructure within
each of them is found via an approach that;

(i) Optionally transforms the 𝑛-dimensional halo data via a PCA
transformation;

(ii) Estimates the 𝑛-dimensional density field from the transformed
data using the set of each point’s 𝑘den nearest neighbours;

(iii) Seeds groups with points that are situated at the local maxima
within this field;

(iv) Aggregates points in order of decreasing density to the group
whose members belong to that point’s neighbourhood;

(v) Joins multiple groups whenever each of these groups have
members that belong to a single next-to-be-aggregated point’s
neighbourhood;

(vi) And concurrently keeps track of whether a group (just prior to
being joined) satisfies the necessary conditions to be labelled
a cluster.

Steps (i) and (ii) reduce the complexity of an arbitrarily scaled 𝑛-
dimensional data set down to the simplicity of the neighbourhood
linkage in order of decreasing density that follows – which allows
CluSTAR-ND to be generalisable to any 𝑛-dimensional data set.While
steps (iii) – (vi) are effectively an algorithmic analogue to the process
outlined in the Halo-OPTICS algorithm (Oliver et al. 2021) and,
given the same input data (Halo-OPTICS has only been designed
for 3-dimensional spatial data sets), will produce a clustering that is
remarkably similar (refer to Sec. 5 and Figs. 4 & 9 of Oliver et al.
(2022)).
Halo-OPTICS uses the OPTICS algorithm (Ankerst et al. 1999) and

wraps it with a physically motivated parameter selection method and
an astrophysically relevant cluster extraction method – since OPTICS
alone only provides a 2-dimensional expression of the clustering
structure within the input data3. OPTICS is itself a hierarchical ex-
tension of the DBSCAN algorithm (Ester et al. 1996) which finds a flat
clustering of points that are clustered with densities above a specified
threshold. Further still, DBSCAN can be thought of as an extension of
the FOF algorithm, taking the point-point based linking scheme and
swapping it for a more robust neighbourhood-neighbourhood linking
scheme.
The clustering hierarchy of CluSTAR-ND (and of Halo-OPTICS)

is modelled to reflect the designs of the cluster extraction processes
of Sander et al. (2003), Zhang et al. (2013), and McConnachie et al.

3 This is called the reachability plot and is a plot of the reachability distance
vs the ordered index. Within this plot, clusters appear as valleys since they are
more dense than their surrounds (smaller distances between points) and are
ordered consecutively (local to each other). For more details on the OPTICS
algorithm, refer to the original paper (Ankerst et al. 1999) (and (Oliver et al.
2021)).
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Input the data and parameters.

Find all field haloes using 3D FOF or treat
input data as if it were a field halo.

For each field halo, search for substructure
within it using the process in Fig. 2.

Output the hierarchy of clusters.

Figure 1. An activity of the outer methods of both the CluSTAR-ND and
CluSTARR-ND algorithms. Before finding the substructure each algorithm
first decides on the root-level clusters - where the option is given to produce
3D FOF field haloes or to treat the input data as if it were a field halo. For
CluSTARR-ND, the cluster search is completed once the process in Fig. 2 is
finished for each field halo.

(2018) that act on the OPTICS reachability plot. Within CluSTAR-
ND, these rules are enacted simultaneously to the aggregation process
(steps (iv) & (v)) following which the final clusters satisfy a range of
conditions, namely;

(i) All clusters must have at least 𝑘link points.
(ii) All clusters must have median densities at least 𝜌threshold times

that at their boundaries.
(iii) The hierarchy must not contain any lone leaf clusters.
(iv) And any parent-child pair of clusters must not share more than

𝑓reject of the parent’s points.

Here, 𝑘link (≤ 𝑘den) is the number of nearest neighbours that are used
to connect points to already aggregated groups and 𝜌threshold is the
overdensity factor that specifies how much denser a cluster must be
than its surrounds. These parameters have been optimised and will
be automatically selected based on the user’s choice of 𝑘den as well
as the dimensionality of the input data. The parameter 𝑓reject is kept
at 0.9 following the analysis performed in Sec. 3.3 in Oliver et al.
(2021).
Following the construction of the hierarchy, CluSTAR-ND also

removes outliers from each cluster such that all remaining points
have a density greater than 𝜌cut ≔ min{𝜌𝑖 | lof (𝜌𝑖) < 𝑆outlier} –
the lof (𝜌𝑖) is defined in Eq. 8 of Oliver et al. (2022) and is a kernel
density analogue of the local-outlier-factor formalised in Breunig
et al. (1999). The parameter 𝑆outlier is optimally set as 2.5 to allow
for amoderate level of outlier removal without adversely affecting the
clustering power of the algorithm. For more details on the CluSTAR-
ND algorithm refer to Oliver et al. (2022).

3 CLUSTARR-ND: BUILDING UPON CLUSTAR-ND

While the CluSTAR-ND algorithm works well in most scenarios,
the rigidity of its cluster extraction process leaves zero room for
interpretation (i.e. a densely aggregated group is either found to be
a cluster or it isn’t). Sometimes the user may wish to relax or tighten
the constraints of what is a cluster – a functionality that is not easy
to control with CluSTAR-ND’s extraction parameters. Furthermore,
the optimal values for its extraction parameters 𝜌threshold, 𝑓reject, and
𝑆outlier may not remain optimal for data sets where a large amount

of noise is present. With many moving parts it can be difficult tuning
this algorithm for the data at hand.
As such, we design CluSTARR-ND to remedy these drawbacks and

extract clusters with a single parameter, 𝑆, rather than the above 3
parameters from it’s predecessor CluSTAR-ND. The parameter 𝑆 is
the lower threshold statistical significance that a cluster must have.
Hence, it allows the user to adjust their criteria of how clustered
clusters need to be while also implicitly adapting to any level of
noise contamination within the input data.

3.1 Algorithmic Similarities and Adjustments

The changes from CluSTAR-ND to CluSTARR-ND effectively only
modify the functionality of step (vi) of CluSTAR-ND, however, this
step is actually interwoven amongst the processes of steps (iii) – (v)
as well. So in the interest of maintaining algorithmic transparency we
again present the CluSTARR-ND equivalents of these steps in Secs.
3.2 – 3.4. For the complete and relevant details on finding root-level
haloes as well as of the equivalent to steps (i) and (ii), we refer
the reader to Secs. 3.1 – 3.3 of Oliver et al. (2022) as these details
will remain largely unchanged – except for a small set of changes
which we outline below. We now briefly outline these details and
differences.

3.1.1 Root-level Haloes

In finding root-level haloes – just as is done in CluSTAR-ND –
CluSTARR-ND can optionally find 3D FOF haloes via the FOF al-
gorithm (Davis et al. 1985). If provided with a spatial linking length,
𝑙𝑥 , CluSTARR-ND will apply the FOF algorithm with this length and
the first 3 features of the input data as its input and find the corre-
sponding haloes accordingly4. In simulation data, a typical choice for
the linking length is 𝑙𝑥 = 0.2𝐿box/𝑁 – where 𝐿box is the side length
of the simulation box and 𝑁 is the total number of particles within
it. Such a linking length corresponds well to field halo overdensities
≥ 100�̄� (Elahi et al. 2019). If the user does not provide a value for
𝑙𝑥 , then it is effectively set to 𝑙𝑥 = ∞ and instead the input data is
treated as if it were a field halo for the purposes of the remainder of
the algorithm. This step is shown in Fig. 1.

3.1.2 Data Transformation

Once a list of field haloes have been obtained (or if 𝑙𝑥 = ∞, then this
list will simply contain the input data) then if 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 1 a data
transformation is applied to each before a search for substructure is
conducted within them. This can be used to remove any unwanted
clustering over-dependencies upon a subset of the features which can
occur if some features are effectively weighted more heavily with
respect to the others. As in CluSTAR-ND, we use a Principle Compo-
nent Analysis (PCA) transform and re-scale the output so that each
component has a unit variance. By calculating Euclidean distances
on the transformed data we are effectively calculating Mahalanobis
distances (Mahalanobis 1936) on the input data – which guarantees
that the substructure found will be dense with respect to the field halo
shape.
In CluSTAR-ND the setting that controls the data transforma-

tion is governed by the value of the 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 parameter – where;
𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 0 incurs no transformation; 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 1 incurs the

4 In this case, the first 3 features must be the Cartesian spatial coordinates of
the points.
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Input field halo data (𝑃) and parameters.

if 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 1

Take a PCA transformation of the data and
then rescale each component to unit variance.

Find the 𝑘den nearest neighbours (𝑁𝑘den )
for each point from the transformed data.

Find the scaled log-densities (log �̂�) of
each point using Eqs. 1 & 2.

Find the ordered list (𝑂) and the field halo subgroups (𝐺)
using the process in Fig. 3.

For each 𝑔 ∈ 𝐺 satisfying |𝑔 | ≥ 𝑘link,
find its prominence (P𝑔) using Eq. 3.

Characterise the groupings of Poisson noise and
classify clusters as ≥ 𝑆𝜎 outliers from the distribution of P.

Apply the hierarchy correction detailed in Sec. 3.5.2.

Output the hierarchy of substructure.

Figure 2. An activity chart of the methods concerned with the set up for
finding substructure. A transformation of the data is (optionally) taken, the
nearest neighbour lists are found, and then from them the scaled log-density
of each point is calculated. This generalises the approach to clustering the
substructure. Following this, the ordered list and the field halo’s subgroups
are found via the process outlined in Fig. 3. The set of prominences is found
for each subgroup using Eq. 3 to which a distribution is then fit. The hierarchy
of substructure is then determined by those subgroups whose prominences
are ≥ 𝑆𝜎 outliers to this fitted distribution.

PCA transformation described above; and 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 2 incurs the
use of a recursive PCA transformation to every subsequent level of
substructure. The latter setting could be used to effectively update
the governing distance metric for each level of substructure, however
this was not shown to provide a consistent boost in clustering power
due to the hierarchy being too coarse grained. As such (and due to the
separation of the aggregation and cluster extraction processes), we
remove this functionality from CluSTARR-ND and leave it’s 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒
parameter with two settings – 0 and 1 – whose functionalities are as
described above. This step is shown in Fig. 2.

3.1.3 Density Estimation

The technique of density estimation will remain mostly unchanged
in CluSTARR-ND. First a set of 𝑘den nearest neighbours, 𝑁𝑘den , will
be found for each point within each field halo. Using these sets

in conjunction with the use of a multivariate Epanechnikov kernel
(Epanechnikov 1969) inside a balloon estimator (Sain 2002) the
density is estimated such that;

𝜌𝑖 ∝
1
ℎ𝑑𝑖

∑︁
𝑗∈𝑁𝑘den

𝐾

(
𝑠(𝑥𝑖 , 𝑥 𝑗 )
ℎ𝑖

)
where

ℎ𝑖 = max{𝑠(𝑥𝑖 , 𝑥 𝑗 ) | 𝑗 ∈ 𝑁𝑘den },
𝐾 (𝑢) ∝ (1 − 𝑢2), (1)

𝑑 is the dimensionality of the feature space, and 𝑠(𝑥𝑖 , 𝑥 𝑗 ) is the
Euclidean (Mahalanobis) distance between points 𝑖 and 𝑗 in the
transformed (input) data space. Note that 𝐾 (𝑢) ≔ 0 for 𝑢 > 1.
In CluSTAR-ND this estimate of the density was used directly, how-

ever in CluSTARR-ND we take its logarithm and re-scale it between
0 and 1 such that

log �̂�𝑖 ≔
log(𝜌𝑖/𝜌min)

log(𝜌max/𝜌min)
. (2)

For simplicity, we now refer to the set of these scaled log-density
values for all points as log �̂�. The transform not only renders all
noisy fluctuations on the same scale regardless of their real density
but it also allow us to see how large the affect of these fluctuations
are compared to the range of densities within the data. This step is
shown in Fig. 2.

3.1.4 Connectivity during the Aggregation Process

During the aggregation processes of both CluSTAR-ND (refer to Sec.
3.5 of Oliver et al. (2022)) and CluSTARR-ND (detailed in Sec. 3.2)
the points of the input data are connected via a neighbourhood linkage
scheme – i.e. two points will eventually be merged into a single group
so long as an unbroken path can be taken through a series ofmutually-
shared and inter-connectable nearest neighbours. The parameter that
is responsible how connectable the set of points will be is 𝑘link.
If 𝑘link is large enough then any two points of the data will be

connectable via neighbourhood linkage. However, if it is too large
then the resolution of clusters can decrease and the quality of the
clustering can be reduced. In Oliver et al. (2022) the optimal value
of 𝑘link was determined by ensuring that a 105-point data set that
had been sampled from a uniform distribution on the unit hypercube
would be entirely inter-connectable 95% of the time. This optimal
value has a dependency upon both the dimensionality of the data set
(𝑑) and the value of 𝑘den – since this is implicitly responsible for the
number of seeds that are used to begin the aggregation process (refer
to Sec. 6.1 of Oliver et al. (2022) for details on this).
It was found that an optimal value for 𝑘link could be chosen using

𝑘link = max{ceil(12.0𝑑−2.2 − 23.0𝑘den
−0.6 + 10.0), 7}, which en-

sures the inter-connectability conditions above were satisfied whilst
also maximising the resolution of the resultant clusters. The role of
the 𝑘link parameter remains the same in CluSTARR-ND as is does in
CluSTAR-ND and hence its optimal value can be chosen automati-
cally dependent on 𝑑 and 𝑘den as above (unless the user chooses it
otherwise).

3.2 Simplifying the Aggregation Process

In CluSTAR-ND, the aggregation process is performed alongside
much of the assessment about whether a group qualifies as a clus-
ter or not. For CluSTARR-ND to be adaptable to any level of noise
contamination, this assessment must come after the aggregation pro-
cess so that it may gauge which of the groups are more noise-like and
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Input the points (𝑃), the 𝑘den nearest
neighbours (𝑁𝑘den ), and the scaled log-densities (log �̂�).

Find 𝑝𝑖 ’s 𝑘link nearest neighbours (𝑁𝑘link ,𝑖 ⊆ 𝑁𝑘den ,𝑖) ∀𝑝𝑖 ∈ 𝑃.
Find the set of local density maxima (𝑀) from 𝑁𝑘link .

Seed the lists of densely connected points with 𝑀 such
that 𝐺 = {{𝑝} | ∀𝑝 ∈ 𝑀 }. Mark each 𝑔 ∈ 𝐺 as active.

Initialise the set of unprocessed points 𝑈 = 𝑃 \ 𝑀.

Retrieve the next point, 𝑝𝑖 , where
𝑖 = arg max𝑖 {log �̂�𝑖 ∈ log �̂� | 𝑝𝑖 ∈ 𝑈 }.

Find the set of active neighbourly connections,
𝑇 = {𝑔 ∈ 𝐺 | ∃𝑝 𝑗 ∈ 𝑁𝑘link ,𝑖 \𝑈, 𝑝 𝑗 ∈ 𝑔, 𝑔 is active}.

Remove 𝑝𝑖 from 𝑈.

if |𝑇 | > 1

Append 𝑝𝑖 to 𝑔 ∈ 𝐺,
where 𝑔 ∈ 𝑇.

Remove the largest
𝑔 ∈ 𝑇 and call it 𝑔′.

Append
⋃

𝑇 ∪ {𝑝𝑖 }
to 𝑔′ ∈ 𝐺.

Mark each 𝑔 ∈ 𝑇

as inactive.

W
h
il
e
𝑈

≠
∅

Remove the largest
𝑔 ∈ 𝐺 and call it 𝑂.

Append any active
𝑔 ∈ 𝐺 to 𝑂.

Output the ordered list (𝑂) and the subgroups of 𝑃 (𝐺).

Figure 3. The activity chart for the CluSTARR-ND simplified aggregation
process that constructs a hierarchy of subgroups whilst also ordering points
in a manner that is similar to OPTICS. The nearest neighbour lists are then
reduced and from them the local density maxima (𝑀) are found. The lists of
densely connected points (𝐺) are then seeded with these local maxima and
are marked as being active. In order of decreasing local density, the points
are then either appended to an existing list of densely connected points or are
used to merge ≥ 1 subgroups into a main connecting group (𝑔′). Following
this inner loop, the ordered list (𝑂) is retrieved from 𝐺 and if not all points
were appended to this, then the remaining connected lists are appended as
well. The function that composes the set of scaled log-densities with the
ordered list ( 𝑓 (𝑖) = log �̂�𝑖 , ∀𝑖 ∈ 𝑂) is then the CluSTARR-ND equivalent of
the reachability plot produced from OPTICS (examples of which can be seen
in Fig. 4). The hierarchy of 𝑃’s subgroups is then given by the remaining
densely connected groups in 𝐺 and the merger tree that they form (indicated
for the same example in Fig. 5).

Figure 4. An example of how the ordered-density plots from CluSTARR-ND

are an indicator of clustering structure. The top panel depicts three 1000-point
data sets each consisting of two 1-dimensional standard normal distributions
whosemeans a separated by 2, 4, and 6 units respectivelywhere the probability
density distributions are plotted over histograms of the sampled data. We
have applied CluSTARR-ND to each of these data sets using 𝑘den = 20,
𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 0, and 𝑘link = auto (which results is 𝑘link = 18 for this scenario).
The bottom panel shows the corresponding ordered-density plot for each of
these data sets.We can see that as the separation between the two distributions
grows, the easier it becomes to visually distinguish the two clusters as separate
contiguous groups in the ordered-density plot.

which are more cluster-like (refer to Secs. 3.3 & 3.4 for these details),
given the state of all the aggregated groups. To do this, we simplify
the aggregation as is shown in Fig. 3 so that it is only responsible for
building the ordered list of points (𝑂) and finding the hierarchy of
subgroups (𝐺) through a merger tree.

3.2.1 The Ordered-Density Plot

The ordered list can be used to construct the CluSTARR-ND analogue
to the OPTICS reachability plot (which we’ll call the ordered-density
plot), which is an easy way to visualise the clustering structure as
it reduces the complexity of the 𝑛-dimensional feature space down
to the simplicity of a 2-dimensional dendrogram. To construct the
ordered-density plot, we need to compose the set of scaled log-
densities with the ordered list which gives a function such that 𝑓 (𝑖) =
log �̂�𝑖 , ∀𝑖 ∈ 𝑂. Fig. 4 depicts the ordered-density plot that follows
the aggregation process for an input data set consisting of two 1-
dimensional standard normal distributions at various separations.
The ordered-density plot consists of groups of points that have

been contiguously ordered in terms of decreasing density and joined
on the basis of having shared a common nearest neighbour. As such,
overdensities will appear as peaks in the plot since they are both
denser than their surrounds and ordered consecutively due to be-
ing locally connected to each other. In Fig. 4 we can see that the
ordered-density plot reveals two main peaks that become increas-
ingly prominent as the separation between the distributions grows.
Within these peaks are a series of smaller peaks that arise due to the
Poisson noise that arises due to the random sampled of the distri-
butions. However, these become much less prominent than the two
main peaks which indicates that a set of meaningful clusters should
be retrievable using the ordered-density plot.

3.2.2 The Merger Tree

Created alongside the ordered-density plot is a hierarchy of sub-
groups whose relation to each other is determined by the aggregation
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Figure 5. An illustration of the CluSTARR-ND merger tree and how it relates
to the ordered-density plot. The merger tree and ordered-density plot used
here are taken from the 1-dimensional data set with the largest separation seen
in Fig. 4. Marked in grey are all subgroups with at least 𝑘link = 18 points. It
is these groups that are subsequently used to find the distribution of subgroup
prominences – as indicated in Fig. 2 and as detailed in Sec. 3.3.

process and the order with which they merge. By definition, this
merger tree is unbalanced, as for every merger that occurs the largest
list of densely connected points is not marked as a subgroup. This
tree has a similar structure to the hierarchy that forms during the
SUBFIND (Springel et al. 2001) and EnLink (Sharma & Johnston
2009) algorithms. Fig. 5 displays the merger tree for all subgroups
with ≥ 𝑘link (= 18) points.
There are clustering scenarios where this hierarchy design is use-

ful. For instance, when clustering over a data set of a galaxy it may
be beneficial to only retrieve clusters from these subgroups as the
larger group in every merger will often represent the galactic halo (or
some contiguously connected dense region of it). However, by only
considering clusters that can be retrieved directly from this hierar-
chy CluSTARR-ND can not retrieve any of the larger subgroups that
complement every node (except the root node) at every level of the
tree. We could simply adjust the aggregation process to also record
the largest group in every merger although this slows the aggregation
and makes the noisy groups more difficult to characterise (refer to
Sec. 3.4.3 for details on this).
In reality it is obvious from Fig. 5 that without considering the

major group in every merger, CluSTARR-ND could not provide an
appropriate clustering over data sets where the characterisation of the
larger merger is necessary. As such, we have CluSTARR-ND perform
a hierarchy correction as its final step. Refer to Sec. 3.5.2 for details
on this.

3.3 A Statistical Measure to Identify Overdensities

Following the aggregation process, CluSTARR-ND has produced an
ordering of the points within each root-level cluster that allows us
to create the ordered-density plot (Fig. 4 for examples). The process
has also produced a hierarchical merger tree consisting of a series of
subgroups – some number of which may be considered as clusters.
Before a subgroup can be considered a cluster or not, we need to
assign each of them a measure of how clustered they are.

3.3.1 Problems with using a Boolean Overdensity Condition to
Classify Clusters

In CluSTAR-ND the role of deciding whether a group was sufficiently
clustered or not is given to the 𝜌threshold parameter – whereby if the
median density of the group was at least 𝜌threshold times the density
at its boundary then the group would be considered a potential cluster
(before then being subjected to other cleaning processes). This is a
simplistic definition,which can be beneficial and is easily optimisable
(refer to Sec. 6.2 of Oliver et al. (2022) for details), but this does not
take into account the full density profile of the group nor does it
allow for an intuitively adjustable measure of how clustered a group
is.
By describing clusterswith an expression that does not consider the

density profile, some true clusters may be missed – simply because
their density profiles are not well-modelled by this rule. Likewise, it
is possible that some more spurious clusters may be included in the
final list of clusters if they happen to satisfy this condition.

3.3.2 The Prominence of a Group

Fortunately, the ordered-density plot contains all the relevant infor-
mation that is needed to determine how clustered a group is. Even
by looking at the plot we can see whether a group is more clustered
than another. We construct a statistical measure – which we call the
prominence – that captures both the visual and physical elements of
what it means to be more clustered.
Using the same notation as in Figs. 2 & 3, we find the prominence

for each group 𝑔 ∈ 𝐺 with |𝑔 | ≥ 𝑘link by first taking the maximum
scaled log-density of points within the group (log �̂�max,𝑔) and sub-
tracting the scaled log-density at the group boundary (log �̂�boundary,𝑔
– which is the scaled log-density of the point that merged the group
with a larger one). As it appears on the ordered-density plot, this
is the maximum height difference with which a group stands out
from the ordered-density continuum of its parent group. Physically,
this is the scaled log-density ratio of the maximum density of the
group to the density at the saddle point of its surrounds – i.e.
log �̂�max,𝑔 − log �̂�boundary,𝑔 ∝ log(𝜌max,𝑔/𝜌boundary,𝑔). However
this alone does account for the density profile of the group and hence
does not adjust for the magnitude of the density fluctuations within
the group either.

3.3.3 Accounting for Noise

We adjust for the adverse effects of a fluctuating density profile by
comparing the estimated density profile to an ideal one where no
noise exists. As such, when calculating the prominence of a group
we also subtract a weighted average difference of the scaled log-
densities between these two profiles (log �̂�noise,g). An ideal density
profile should be strictly monotonically decreasing on the ordered-
density plot. We can predict what this might look like for each group
by taking the estimated scaled log-densities of the group and then
sorting them into an order of decreasing density. The weightings are
calculated from the index-distance between the sorted and unsorted
densities i.e. 𝑤𝑔 = |argsort(log �̂�𝑔)𝑖 − 𝑖 |, ∀𝑝𝑖 ∈ 𝑔.
By accounting for noise in this way we encapsulate the amount by

which a group would need to change in order to have an ideal density
profile. CluSTARR-ND can then accordingly penalise the log �̂�max,𝑔−
log �̂�boundary,𝑔 value in the case that a group has proportionally large
density fluctuations within it. Hence, the prominence of a group is
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Figure 6. An example of how the calculation of the prominence (P) relates
to the ordered-density plot for the largest subgroup featured in Fig. 5. The
1-dimensional Gaussian distribution that this subgroup represents only has
small density fluctuations within it and as such is not penalised heavily by
the log �̂�noise,𝑔 term. Refer to Sec. 3.3 and Eq. 3 for more details on this
calculation.

Figure 7.The distribution of prominences from the subgroups shown in Fig. 5.
Here the histogram has been binned according to the Freedman–Diaconis rule
(Freedman & Diaconis 1981). We can see that the one objectively clustered
subgroup (whose prominence calculation is shown visually in Fig. 6) is a
clear outlier from the rest of the prominence distribution.

given by

P𝑔 = log �̂�max,𝑔 − log �̂�boundary,𝑔 − log �̂�noise,g

= max{log �̂�𝑖 | ∀𝑝𝑖 ∈ 𝑔}
− max{log �̂� 𝑗 | 𝑝 𝑗 ∈ 𝑁𝑘link ,𝑖 ∩ 𝑔, ∀𝑝𝑖 ∈ 𝑔}
− sum{𝑤𝑔 | log �̂�𝑔 − (log �̂�𝑔)desc |}/|𝑤𝑔 |, (3)

where (log �̂�𝑔)desc is the set log �̂�𝑔 = {log �̂�𝑖 | ∀𝑝𝑖 ∈ 𝑔} that has
been sorted into descending order and |𝑤𝑔 | is the 1-norm of the
weightings 𝑤𝑔. Fig. 6 shows a visualisation of the calculation of P𝑔

for the largest subgroup shown in Fig. 5.

3.4 Adaptively Characterising Noise

Once the prominences (P𝑔) for each subgroup (𝑔) have been found,
CluSTARR-ND then uses the distribution that these measures to dis-
tinguish between real clusters and noise. Since there are typically
many more noisy subgroups than clustered ones (refer to Sec. 4 for
cases where this is not true), we wish to fit an appropriate distribution
to P that is descriptive of the noisy subgroups in the input data set
and/or field halo root cluster. Shown in Fig. 7 is an example of the
binned distribution of P from the subgroups shown in Fig. 5 where
we can see that the clustered subgroup is distinct from the noisy ones.

3.4.1 Systematic Model Fitting

In fitting a probability model (𝑀) to the distribution of subgroup
prominences P, we have CluSTARR-ND maximise the likelihood
function L(𝑀; P) =

∏𝑁
𝑖=1 𝑓 (P𝑖 ;𝑀) (although in reality it min-

imises the negative of the logarithm of the likelihood function for
improved numeric stability). However, since the P distribution will
(typically) include prominences from both noisy and clustered sub-
groups we need to provide 𝑀 with the capacity to be descriptive of
both – otherwise the distribution that CluSTARR-ND uses to describe
the noisy subgroups would become heavily skewed with the presence
of clusters in the data.
For this fitting technique to still yield a description of the noisy

subgroups, we construct 𝑀 using a linear combination of two prob-
ability distributions – one for noisy subgroups and one for clustered
subgroups such that 𝑀 = 𝑎𝑀noise + (1 − 𝑎)𝑀clusters (for 𝑎 ∈ [0, 1]).
This way, we can easily identify the clustered subgroups from the
noisy ones by treating as outliers to the distribution of noisy promi-
nences.

3.4.2 Choosing an Appropriate Model for Subgroup Prominences

So that themodel remains unassuming of what clustersmay be found,
we simply use a continuous uniform distribution on the unit interval –
since the prominence distribution is defined there. Setting𝑀clusters =
𝑈 (0, 1) implies that clusters can exist with prominences less than
that of noisy subgroups. Such clusters would be indistinguishable
from noise however this statement is true since we could artificially
construct a data set consisting of only noise and insert a cluster whose
overdensity gives it an arbitrarily small prominence.
For the noisy subgroups however, we know that it is lower-bounded

at 0, uni-modal and positively skewed based on the nature of Poisson
noise5. Since the upper bound of the prominence distribution is
artificial due to the scaling of log �̂� performed in Eq. 2, we should
expect that any uni-modal distribution with positive skew supported
on the open interval (0, 𝑎) for 𝑎 ∈ [1,∞)might be suitable.We assess
to suitability of the following 5 such distributions for describing the
noisy subgroups.

(i) Log-Normal:
ln(𝑋) ∼ N (`, 𝜎2) with 𝑥, 𝜎 ∈ (0,∞) and ` ∈ (−∞,∞).
𝑓𝑋 (𝑥; `, 𝜎) = 1

𝑥𝜎
√

2𝜋
exp

(
− (ln(𝑥)−`)2

2𝜎2

)
(ii) Inverse Gaussian:

𝑋 ∼ 𝐼𝐺 (`, _) with 𝑥, `, _ ∈ (0,∞).
𝑓𝑋 (𝑥; `, _) =

√︃
_

2𝜋𝑥3 exp
(
−_(𝑥−`)2

2`2𝑥

)
(iii) Gamma:

𝑋 ∼ Γ(𝑘, \) with 𝑥, 𝑘, \ ∈ (0,∞).
𝑓𝑋 (𝑥; 𝑘, \) = 1

Γ (𝑘) \𝑘 𝑥
𝑘−1 exp

(− 𝑥
\

)
(iv) Beta:

𝑋 ∼ 𝛽(𝑎, 𝑏) with 𝑥 ∈ (0, 1) and 𝑎, 𝑏 ∈ (0,∞).
𝑓𝑋 (𝑥; 𝑎, 𝑏) = 1

𝐵(𝑎,𝑏) 𝑥
𝑎−1 (1 − 𝑥)𝑏−1

5 If we instead designed CluSTARR-ND’s aggregation process to return all
merging subgroups – regardless of the number of points within them – then
the prominence distribution would resemble an exponential distribution. In
this case however, the peak of the prominence distribution is suppressed
compared to a true exponential distribution. This is due to CluSTARR-ND

having seeded the initial subgroups with the points situated at local density
maxima –which are defined using their 𝑘link nearest neighbours leading to the
under-representation of subgroups with less than 𝑘link points. As such, using
an exponential distribution to describe the prominences of noisy subgroups
is not practical for the purpose of finding clusters.
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Figure 8. Example distributions of subgroup prominences that CluSTARR-
ND produces (when 𝑘den = 20 and 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 0) from various 𝑛-point 𝑑-
dimensional data sets that have each been sampled from a uniform distribution
defined over the volume of the unit hypercube. The different distribution
models (a linear combination of the distributions (i) – (v) and a uniform
distribution) are shown fitted to this data in the way described in Sec. 3.4.1.
Visually, each noise model could be considered a reasonable choice and as
such it is not immediately obvious which is best.

(v) Beta-Prime:
𝑋 ∼ 𝛽′(𝑎, 𝑏) with 𝑥, 𝑎, 𝑏 ∈ (0,∞).
𝑓𝑋 (𝑥; 𝑎, 𝑏) = 1

𝐵(𝑎,𝑏) 𝑥
𝑎−1 (1 + 𝑥)−𝑎−𝑏

Fig. 8 shows how the compound model 𝑀 fits to various promi-
nence distributions when 𝑀noise is defined with the probability den-
sity functions (i) – (v). Here the prominences have been produced
by CluSTARR-ND using 𝑛-point 𝑑-dimensional uniform distributions
defined over the unit hypercube as the input data. Each model has the
three parameters

Figure 9. The distributions of the relative likelihoods of the models outlined
in Sec. 3.4.2. The relative likelihoods have been found for various 𝑛-point
𝑑-dimensional data sets of uniform distributions. Each distribution has a peak
at ∼ 0 (indicating the frequency with which the model is the most suitable
choice, or at least very nearly the most suitable choice) and a long negatively
skewed tail. We see here that the model defined by a linear combination of the
beta and uniform distributions is most likely to be the most suitable of these
models for the purpose of describing the prominences of noisy subgroups.

using the different probability density functions (i) – (v) for𝑀noise.
Here 𝑀 has been fit to various sets of subgroup prominences pro-
duced from various data sets sampled from uniform distributions. In
doing so, we first create 100 𝑛-point data sets that are each randomly
sampled from a 𝑑-dimensional uniform distribution defined over the
volume of the unit hypercube. We do this for each 𝑛-𝑑 combination
with 𝑛 ∈ {104, 105, 106} and 𝑑 ∈ {1, 2, 3, 4, 5, 6}. Then, we apply
CluSTARR-ND (with 𝑘den = 20, 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 0, and 𝑘link = 𝑎𝑢𝑡𝑜)
to each of these data sets to get the subgroup prominences. We then
use these to calculate the relative likelihood of each model to the
best-fitting model on a per data set basis6.
Fig. 9 indicates thatmost suitablemodel is that of the Beta distribu-

tion – (iv) – which is closely followed by the Log-Normal distribution
– (i). From simple observational tests it would also appear that the
Log-Normal distribution is more easily skewed by the presence of
clusters in the data than the Beta distribution is. So in the interest
of good fitting results, we implement the Beta distribution within
CluSTARR-ND as the model that systematically characterises the
prominence distribution of noisy subgroups and allows CluSTARR-
ND to separate cluster from noise (refer to Sec. 3.5 for more on this).

3.4.3 The Reason for Using an Unbalanced Merger Tree

Having now shown that the CluSTARR-ND regression technique (Sec.
3.4.1 and prominence distribution model Sec. 3.4.2 is a reasonable
approach to classifying noisy subgroups, it is now sensible to explain
to the reader why the merger tree constructed from the aggregation

6 We did also test the suitability of the generalised gamma (3 parameters) and
generalised beta-prime (4 parameters) distributions by comparing both the
second-order correction estimate of the Akaike information criterion (AIC
& AICc; Akaike 1974; Hurvich & Tsai 1989) and the Bayesian information
criterion (BIC; Schwarz 1978). We did not include these tests in our final
results as these models were consistently more difficult to fit to the data with
the method described in Sec. 3.4.1 whilst still not providing a better fitting
to the data than the Log-Normal and Beta distributions. Nevertheless, the
relative likelihood that is derived from both the AICc and the BIC reduces to
a simple ratio of likelihoods when considering models with the same number
of parameters.
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Figure 10. A hypothetical example of a complete merger tree and the corre-
sponding prominence distribution that would occur when clustering over the
same input data as is used in Figs. 5& 7.We can see here that if CluSTARR-ND
were made to keep track of the largest group in every merger, the prominence
distribution would become comparatively heavier in its tails and make the
detection of clusters more difficult given that they would then present as less
significant outliers in this distribution. Even though the clusters would still
be detectable as outliers in the prominence distribution shown here, for other
highly structured data sets this will not always be the case.

process does not keep track of the largest group within each merger
(described in Sec. 3.2.2). The most pressing reason for this (apart
from decreasing the computational costs) is that by maintaining a
more balanced merger tree – whereby every connected group that is
a part of the merging process is recorded as a subgroup – the promi-
nence distribution becomes difficult to fit a characterising model to.
Primarily, this is because such amerger tree would then be a record

of many cascading subgroups that may share a large portion of their
points. As such, it is difficult to construct a measure of prominence
that appropriately penalises this attribute for some of these groups
while indicating exactly which of these is the most reasonable choice
for being labelled a cluster – and certainly the measure we use in Eq.
3 does not help to distinguish the correct group from a series of very
similar cascading groups. The top panel of Fig. 10 depicts what such
a merger tree would look like in the context of the example given in
Fig. 5.
Also in Fig. 10, the bottom panel depicts the corresponding binned

prominence distribution of the hypothetical merger tree that is shown
in the top panel. We can see here that the notion of detecting clusters
as outliers in this distribution becomes less robust since there are
now a series of subgroups whose prominences effectively extend the
tail of this distribution. This is an unwanted effect since these are
mostly neither clusters nor noise – instead they (mostly) represent a
contiguously ordered conglomerate of the majority of points whose
boundary density is larger than a particular value (defined at the
saddle point of each merger).
Not all such cascading subgroups are necessarily irrelevant when

constructing a hierarchy of clusters though. Fig. 5 shows that 1 of
the existing Gaussian distributions can not be recovered in the same
sense as the other, whereas this subgroup is possible to retrieve from
the altered merger tree shown in Fig. 10. CluSTAR-ND extracts these

clusters via the 𝑓reject parameter – which whilst doing a reasonable
job, is a difficult parameter to optimise given its complex (and some-
what nonphysical) functionality. In CluSTARR-ND, we implement a
new strategy to extract these relevant clusters which we detail in Sec.
3.5.2.

3.5 Extracting Clusters from the Data

CluSTARR-ND differentiates clusters in the data by distinguishing
them from noise. Having now created a measure of a group’s promi-
nence (Eq. 3) and a way of characterising the distribution of this
measure for all the noisy subgroups (Sec. 3.4), we can begin to
extract clusters from the data.

3.5.1 The Statistical Significance of Clusters

To label groups as clusters we now simply identify all subgroups that
have a prominence-based statistical significance (S) that is greater
than 𝑆𝜎noise. To be clear, any subgroup (𝑔) will be labelled a cluster
if its prominence (P𝑔) satisfies

S𝑔 = 𝐹N(0,1) −1 [
𝐹𝛽 (𝑎,𝑏) (P𝑔)

] ≥ 𝑆, (4)

where 𝐹N(0,1) and 𝐹𝛽 (𝑎,𝑏) are the cumulative distribution functions
of the standard normal and the beta distribution respectively, and
the parameters 𝑎 and 𝑏 are derived by fitting to the prominence
distribution in the way described in Sec. 3.4.1.
In this sense, we transform the measure of prominence to one

of significance such that the distribution of subgroup significances
is akin to a standard normal with a long positive tail that contains
the significances of increasingly more clustered subgroups. The 𝑆
parameter is then a measure of how clustered – compared to the
noise present within the data – the user wishes the resultant clusters
to be. As such, there is no correct or optimised value for 𝑆. However
in Sec. XX, we do show how the clustering power of CluSTARR-ND
varies with 𝑆 for a series of synthetic galaxies which we then use to
suggest a range of reasonable values that suffice in most use cases.

3.5.2 Correcting the Hierarchy

By simply classifying clusters as the subgroups of the CluSTARR-ND
merger tree that satisfy the condition in Eq. 4, CluSTARR-ND creates
a hierarchy that is similar to SUBFIND and EnLink (as is mentioned
in Sec. 3.2.2) and can be used if desired or if the user will apply
some other disentangling method to reduce the hierarchy. In order
to construct a hierarchy that is instead similar to its predecessor
CluSTAR-ND, we must make a correction following the initial iden-
tification of these clusters. In CluSTAR-ND clusters are first created
created in pairs and then the hierarchy is cleaned. We implement
a similar design within CluSTARR-ND although we do so without
the need for any additional parameters. This hierarchy style is op-
tional within CluSTARR-ND and will only be created if the ℎ_𝑠𝑡𝑦𝑙𝑒
parameter is set as 𝑇𝑟𝑢𝑒.
We first find the clustering hierarchy using the process described in

Sec. 3.5.1. Then for each of the extracted clusters that have a parent
cluster, CluSTARR-ND takes the contiguously ordered points that
precede them in the ordered list and that are contained within their
parent clusters – we call these complementary subgroups. Using the
set of complementary subgroups, CluSTARR-ND calculates each of
their prominences and keeps only the newly constructed groups that
satisfy Eq. 4 – i.e. now the only remaining complementary subgroups

MNRAS 000, 1–12 (2022)
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Figure 11. An example clustering the toy example data set from Fig. 4.
The top panel depicts the 1-dimensional scatter (with random vertical spread
for visual clarity), the histogram, and the combined Gaussian distributions
from which the data was sampled from. The bottom panel shows the ordered-
density plot, the final hierarchy tree, the cluster significances, and plotted over
the ordered-density plot is a colour key that matches the points attributed to
the cluster (shown in the top panel). By applying CluSTARR-ND to this data
with 𝑘den = 20, 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 0, 𝑘link = 𝑎𝑢𝑡𝑜, ℎ_𝑠𝑡 𝑦𝑙𝑒 = 1, and 𝑆 = 5
(although in this case it could be chosen from 𝑆 ∈ (∼ 1.3, ∼ 9.8) to achieve
the same clustering result) it has differentiated the two Gaussian distributions
from the noisy density fluctuations within them with a statistical significance
of 10.9𝜎noise and 9.9𝜎noise respectively.

are significantly clustered compared to the noisy fluctuations of the
input data7.
Each of these could be potential clusters however to avoid a series

of cascading clusters, we again remove all such complementary sub-
groups that have a child complementary subgroups – this now leaves
only the smallest complementary subgroups within each branch of
the hierarchy. These are added to the hierarchy of clusters and as
an additional cleaning step, CluSTARR-ND also removes the parent
clusters of these if their prominence is smaller than that of their corre-
sponding newly added complementary cluster. This last step ensures
that a parent-child pair of clusters is not too similar. Specifically,
it ensures that a parent cluster (with a complementary cluster as at
least 1 of its child clusters) is not less distinguishable from the noise
within it than its newly born complementary child cluster is.
This process yields a hierarchy of clusters that is similarly styled to

CluSTAR-ND, however now each cluster has a more meaningful and
statistically interpretable significance. Using the same running toy
example from Figs. 4 – 7& 10, Fig. 11 now depicts the final hierarchy
of extracted clusters from the data set. We can see that CluSTARR-
ND has picked out the over-dense segments of the two Gaussian
distributions nicely and – contingent upon the use of locally adaptive
metrics and differing density estimators/kernels – this is essentially
the highest recovery that a density-based algorithm could hope to
achieve without some further process that assigns points to each of
these clusters. Similar depictions for synthetic galaxy data can be
seen in Figs. XX.

3.6 Summary of Parameters

We have now completely described the inner workings of the
CluSTARR-ND algorithm. It takes any (refer to Sec. 4.1 for a set of

7 At this stage, if the initial set of clusters were found using 𝑆 = −∞ –
i.e. letting all subgroups be clusters – then the resultant merger tree would
effectively be constructed in the same fashion as that that is shown in Fig. 10.

conditions that the input data should satisfy) 𝑛-point 𝑑-dimensional
data set and produces a clustering that is contingent on a small num-
ber of intuitive, or otherwise pre-optimised, parameters. In doing
this, CluSTARR-ND is able to; first find galaxies using the FOF algo-
rithm; apply a transformation to the intra-galaxy data; calculate an
estimate of the local density of all points with each galaxy; aggregate
the set of a galaxy’s points in a manner that reveals the clustering
structure; determine the prominence of each densely connected sub-
group; use these to extract cluster significant clusters; and produce a
meaningful hierarchy. Tab. 1 outlines the parameters responsible for
these functionalities, the valid values they can take as well as their
default values, and provides a comment on the behaviour they con-
trol. Unless stated otherwise, the parameters will be set using their
default setting throughout the remainder of the paper.

4 LIMITATIONS OF THE APPROACH

4.1 Conditions Imposed on the Input Data

While the CluSTARR-ND algorithm is generally applicable to most
data sets, there are two main restrictions that must be taken into
account. The first of these is simple and obvious – the number of
points in the input data must be larger than 𝑘den. However for the
new cluster extraction method implemented within CluSTARR-ND to
work, there must be a sufficiently large number of noisy subgroups
found within aggregation process. This is a critical must-have for
CluSTARR-ND to be able to extract clusters from the data since with-
out enough noisy subgroups, clusters can not be deemed outliers to
the noisy prominence distribution. The inability to classify clusters
as outliers in the prominence distribution can occur in two scenarios;
if the input data does not contain enough points; or if the number
of truly clustered subgroups significantly outweighs the number of
noisy subgroups. We now provide examples of when these scenarios
can occur in Secs 4.1.1 & 4.1.2 respectively.

4.1.1 Effective Lower Limits on Data Set Size

To probe the data set size lower limit of extracting clusters with
CluSTARR-ND, we find the number of bins in the prominence his-
togram that is used to fit the beta distribution that CluSTARR-ND uses
to describe the noisy subgroups. If this distribution can not be reliably
fit to this histogram, then clusters can not be dependably extracted
using the method described in Sec. 3.5.1. Since there are effectively
4 free parameters in the fitting model (2 in the beta distribution, 1
scaling parameter, and an additional free parameter due to assuming
the conditions needed for least squares fitting), the lower limit should
be the number of points in the data set that is expected to give at least
5 bins in the prominence distribution.
We record the number of prominence bins (|𝐻 |) for various num-

bers of points (𝑛 from 102 to 104 in steps of 100) and dimension-
alities (𝑑 ∈ {1, 2, 3, 4, 5, 6}) of a randomly sampled uniform dis-
tribution data set. For each combination we also vary the value of
𝑘den ∈ {20, 40, 80} (while using 𝑘link = 𝑎𝑢𝑡𝑜). Since |𝐻 | is a proba-
bilistic measure, we do this for 50 re-samplings in each combination
and take the average to represent expected number of bins given the
input data and the value of 𝑘den.
Note that the effective lower limit may vary with other distribu-

tions, however the lower limit we depict here should serve as a guide
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Table 1. A short summary of the CluSTARR-ND parameters that are relevant to its clustering behaviour. CluSTARR-ND has a total of 6 parameters, as opposed to
the 7 parameters of its predecessor CluSTAR-ND, and for most clustering purposes it is only the choice of 𝑙𝑥 , 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒, 𝑘den, and 𝑆 that need to be considered.
However, deciding their value is mostly a simple task. 𝑙𝑥 should only be set to a value other than∞ when the user wishes for the root-level clusters to be defined
by 3D FOF groups – a common definition for galaxies in cosmological simulation. 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 should only be set to 0 when the features of the data have the
same units or when a meaningful transform has been applied to the data prior to its input to CluSTARR-ND. 𝑘den should be chosen according to the resolution of
structure that the user wishes to find – although a small value such as 𝑘den was shown to produce the best clustering results in Oliver et al. (2022). 𝑆 should be
chosen to represent the strictness of confidence in the resulting clusters – the clustering power over synthetic galaxies is shown as a function of 𝑆 in Fig. XX.

Parameter Default Value Valid Values Functionality

𝑙𝑥 ∞ R>0 The 3D FOF linking length used to find field haloes. Refer to Sec. 3.1.1 for more details.

𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 1 {0, 1} A flag to apply a PCA transformation to field halo data. Refer to Sec. 3.1.2 for more details.

𝑘den 20 N≥𝑘link The number of nearest neighbours used to estimate local density. Refer to Sec. 3.1.3 for more details.

𝑘link 𝑎𝑢𝑡𝑜 N≥2∧≤𝑘den The number of nearest neighbours used to densely connect points. Refer to Sec. 3.1.4 for more details.

𝑆 5 R The minimum statistical significance of extracted clusters. Refer to Sec. 3.5.1 for more details.

ℎ_𝑠𝑡 𝑦𝑙𝑒 1 {0, 1} A flag denoting the style of the extracted hierarchy. Refer to Sec. 3.5.2 for more details.

4.1.2 Effective Upper Limits on Data Set Clusteredness

4.2 Restrictions on Recoverable Clusters

5 A COMPARISON TO CLUSTAR-ND

5.1 Synthetic Data

5.2 Method

5.3 Results

6 CONCLUSIONS
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Chapter 6

Conclusions

In this thesis, I have developed a series of novel generalised astrophysical clustering

algorithms that are distinct from the algorithm families of current simulation and

observation specific structure finders. With a particular focus on revealing the

hierarchical structure of galactic haloes, I have shown that these algorithms produce

robust classifications of astrophysical structure and are ideally suitable for application

to both simulated and observational data sets of galactic haloes.

In Chapter 2, I discuss the many prevailing aspects of common use clustering

algorithms (such as similarity measurement, cluster models, computational methods,

and statistical evaluation) as well as of those that are specifically designed and used

for the analysis and discovery of astrophysical structures such as galaxies, haloes,

subhaloes, and tidal debris. With this I determine that, while individually the

simulation and observation specific structure finders are powerful and useful methods

of uncovering specific structure types within their respective contexts, there exists

a division between the two algorithm types. With this in mind, I assert that a

generalised structure finding algorithm that does not reduce the available clustering

information and is robust to noise is sorely needed.

In Chapter 3, I develop the configuration space based astrophysical clustering

structure finder Halo-OPTICS by using the general-purpose density-based clustering

algorithm OPTICS. After having designed and optimised the algorithm, I then compare

its output to the state-of-the-art galaxy/(sub)halo finder VELOCIraptor. Even

though VELOCIraptor is a phase-space finder and therefore also uses velocities to

find structures where Halo-OPTICS, I find excellent agreement between the two

codes with Halo-OPTICS even being to uncover kinematically coherent tidal streams.

Hence displaying the power of using an adaptive density clustering algorithm over

static density clustering algorithm such as FOF (the base algorithm of VELOCIraptor.

In Chapter 4, I build upon Halo-OPTICS to create the generalised astrophysical
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structure finder CluSTAR-ND. I find that by reducing the Halo-OPTICS radial search

to a simple k nearest neighbours search, CluSTAR-ND can achieve a ≥ 3 orders of

magnitude run-time reduction over Halo-OPTICS while boasting greater sensitivity

to clustering structure. I also find that a global PCA transform is typically sufficient

for producing near optimal clustering results over multidimensional data with various

units among its features, and that an iterative PCA constructs a locally adaptive

metric that produces mixed results. In applying CluSTAR-ND in various clustering

scenarios to semi-analytic simulated galaxies, I find that it is able to classify a large

portion of the tidal debris associated with disrupted satellite mergers and that this

portion increases with an increase to the feature space complexity provided.

In Chapter 5 I present CluSTARR-ND – a work in progress. CluSTARR-ND re-

places the complex 3 parameter cluster extraction process used in Halo-OPTICS and

CluSTAR-ND for a much simpler, single-parameter, statistical-significance-motivated

procedure. As a result, CluSTARR-ND is able to extract clusters from data sets with

varied levels of noise without the need for adjusting the controlling parameters.

CluSTARR-ND is also produces an ordered-density plot – analogous to the reachability

plot of OPTICS – that allows for the user to visualise the clustering structure in its

entirety without the loss of structural information.

As the culmination of the sequential algorithmic development conducted throughout

this thesis, the CluSTARR-ND algorithm is an almost entirely data-driven and adaptive

clustering algorithm – effectively only requiring the user to define the number of

nearest neighbours used to estimate the local density about each data point and the

threshold level of statistical significance that each extracted cluster must have. It is

blind to cluster size and shape, is more sensitive to fine structure variations than

current methods, and is applicable to any size and dimensionality data set with any

level of noise contamination. As such, the CluSTARR-ND algorithm is ideally suited

for generalised astrophysical structure finding in the contexts of both synthetic and

observational data sets.

6.1 Future Outlook

With a series of high performance astrophysical clustering algorithms in-hand, I

now set out to apply them to various large-scale observational data sets. For this

I will re-write these algorithms in a low-level coding language such as C++ and

utilise parallel computations to improve their performance. In their application, some

additional approaches can be incorporated to improve the recovery of some cluster

types. These approaches and the data sets I intend on applying these techniques
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and methods to are now outlined in the following subsections.

6.1.1 Additional Machine Learning Approaches

To further improve the efficacy of these algorithms, during this project I will initially

develop two additional techniques for providing cluster existence/membership proba-

bilities as well as for enhancing the returned clustering results and providing greater

recovery of tidal streams/diffuse features.

Producing Fuzzy Clusters from Fuzzy Data

Very few astrophysical clustering algorithms can extract a set of fuzzy clusters

from an input of fuzzy data i.e. clusters of a probabilistic nature from data of the

same nature. The StreamFinder algorithm [354] incorporates data uncertainties

in this way and just recently a statistical procedure was coupled with the use of

the EnLink algorithm to do the same [374]. However, these approaches come with

their own pitfalls. The clustering results of the StreamFinder algorithm are heavily

dependent upon the mass distribution model of the MW (and hence it has only

been used in the case of substructure finding within the MW) and is also only

capable of detecting dynamically cold (stream-like) substructures. Furthermore, the

StreamFinder algorithm only considers the values and uncertainties of a fixed set of

measured quantities in the data and not how these change or project into different

feature spaces. The statistical approach used by Malhan et al. [374] (described in Sec.

4.1 – 4.3 therein) does not suffer from the latter, however, it is not feasibly scalable

to data sets with a large number of data points as it relies on the clustering being

non-hierarchical, which is not the case in many astrophysical clustering scenarios.

I will create a fuzzy clustering method that builds upon the concepts of these

methods whilst overcoming their pitfalls and simultaneously being completely general-

isable and equally prolific when applied to any data set. The CluSTARR-ND algorithm

currently provides a hard clustering – i.e. the data points are either contained within

a cluster or they are not. This novel method will involve the comparison of N

such hard clusterings each produced from a random sample of the data set. From

this comparison, the resultant cluster existence and membership probabilities will

be found by considering how the inherent conditional statistical significances that

CluSTARR-ND provides propagate in a Bayesian inference driven manner. Such a

method will prove exceedingly useful in its application across a wide range of data

sets as current methods of predicting cluster existence/membership probabilities

typically fall short of encapsulating all probable clusters. This is due to current
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techniques often relying on a post-process analysis of a single clustering realisation,

rather than the intra-process analysis of many clustering realisations.

Figure 6.1: Estimated manifold projections from UMAP and t-SNE of both uniform
and clustered data sets in 2 dimensions. Data points are coloured by density.
These algorithms can increase clustering power at the cost of additional noise and
the loss of global structure.

Improving Cluster Separability with Riemannian Manifold Estimation

Most density-based clustering algorithms use a globally constant metric to extract

clusters, such that for any two points in the feature space domain, the distance

between them remains invariant under translation (and rotation for the case of

Euclidean metrics). While this works well if the in-situ clusters are easily separable
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as overdensities under this global metric, the approach begins to break down when

attempting to find highly anisotropic clusters. In large data sets where not all physical

features are known about an object, this can result in some clusters not being detected

or not being separated from other nearby overdensities (a good example of this can

be seen in Fig. 6.2). I will use transformation-invariant quantities and concepts from

fuzzy topology to produce a robust locally-adaptive-metric algorithm that preserves

the relevant (sub)structure.

Of the few unsupervised codes to attempt this, the functional assumption is that all

points within the data set are uniformly distributed over some intrinsic Riemannian

manifold and that the manifold is Euclidean only locally – e.g. EnBid [256], UMAP

[257], and t-SNE [258]. A comparison of the UMAP and t-SNE outputs is shown in Fig.

6.1 for uniform and clustered data sets. These algorithms can have mixed results

and are extremely computationally expensive.

Following suit, I will formulate our locally-adaptive-metric algorithm to quickly

transform the empirical cumulative distribution along each dimension of the in-

put data set into a pseudo-random uniform-like cumulative distribution – thereby

constructing a suitable map between the underlying Riemannian manifold and the

data. The effect of embedding the data within such a manifold (in an astrophysical

context) is that the distances between data points within the same structure are

contracted, increasing their density, in turn resolving the structure more clearly in

contrast to the surrounding structures. The preliminary algorithm that achieves this

has already been created and while operational improvements can still yet be made,

this will prove simple to implement and will greatly improve clustering results from

the CluSTARR-ND algorithm.

6.1.2 Applications to Observational Data Sets

With a suite of purpose built and unsupervised state-of-the-art machine learning

techniques in-hand, I will then perform a series of robust clustering analyses of the

MW and the surrounding Local Group revealing the in-situ clustering structure of

the local Universe. Since each of these algorithms have/will be built explicitly for

generalised applicability, I need not perform extensive pre-process data reduction

steps or remove any of the available information to ensure that our methods produce

high quality results. Typically, the only reduction step that will need to be performed

will be the removal of background/foreground contamination so that the input data

is representative of the environment that I wish to probe for clustering structure.

The following sub-subsections contain the details of various data sets to which I

intend on applying our methods and the insights that finding the clustering structure
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Figure 6.2: A clustering of the foreground-subtracted PAndAS data set produced
by CluSTARR-ND. The regions containing M31 and M33 have been masked out to
reduce the numerical artefacts that occur due to the competing effects of high
spatial density and the limiting resolution of the survey. The input data includes
the two spatial dimensions and the photometric metallicity, [Fe/H]. Each cluster
is shown in a different colour. Clusters shown here have a statistical significance
of at least 3σnoise.

is expected to reveal.

The Pan-Andromeda Archaeological Survey

The Pan-Andromeda Archaeological Survey (PAndAS; [362]) is a large-scale panoramic

astronomical survey conducted over the surrounds of our nearest galactic neighbour,

the Andromeda galaxy (M31), and extends to include the Triangulum galaxy (M33).

The positions on the sky are reported for all stars in this survey as well as a mea-

sure of the metallicity (photometric [Fe/H]). Analysis of the clustering structure

within the M31 – M33 system was performed by McConnachie et al. [138] using the

foreground-subtracted data of stellar positions. However, this was done using the
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general purpose clustering algorithm, OPTICS.

The Halo-OPTICS clustering algorithm is an improvement on OPTICS (for as-

trophysical data sets) and likewise CluSTAR-ND and CluSTARR-ND are also both

significant improvements to it, with the latter being superior to each of the others

– particularly in the context of astrophysical clustering with oservational data. By

applying CluSTARR-ND and the algorithms described in Sec. 6.1.1 to the PAndAS

data (which I have in-hand), I will robustly improve upon the clustering structure

found by McConnachie et al. [138] by producing a clustering with; a higher sensitivity

to small-scale structure variations; a more robust and deterministic estimate of local

density; and a more statistically relevant framework. Furthermore, where OPTICS

was only applied to the on-the-sky positions of stars, I will find a clustering that

incorporates the metallicity of these stars too – effectively increasing the feature

space (and hence available clustering information) by a factor of ∼ 50%.

As an example of how readily achievable this is, Fig. 6.2 is a preliminary clustering

of the ‘foreground-subtracted’ (refer to [138] for details on this) PAndAS data set

with M31 and M33 both masked to reduce the compound effects of increased spatial

density and the limiting resolution of the survey. The input data features the

positions on the sky and the photometric metallicity, [Fe/H]. Some extra care could

be taken to reduce the noise and better prepare this data set for clustering, however, I

see already that the clustering produced from this depicts many known substructures

including dwarf galaxies and stellar substructures in the M31-M33 system. It also

hints at a possible newfound stream-like substructure to the North-East of M33 that

has not been completely separated from the M33 halo – the first detection of this

substructure.

It is this lack of separability that the locally-adaptive-metric algorithm discussed in

Sec. 6.1.1 will improve. The algorithm will also improve the recovery of the obvious

streams situated close to M31 that have only been partially recovered as a result of

them not being separable from the galactic halo by a saddle-point in the density field.

Specifically, an appropriate locally-adaptive-metric will improve these clustering

results by artificially creating a preference for connecting data points together along

the length of the streams. The algorithm will do this by re-shaping the surface of

equal distance surrounding each data point within the streams. Currently, these

streams could be better resolved simply by adjusting the global metric, however, this

would come at the cost of resolving other substructures that are not well defined

by the adjusted metric. The ill-defined and jagged edges of these substructures will

also be improved by this, however, these will also benefit from the fuzzy clustering

method discussed in Sec. 6.1.1 – assuming this is due to noise effects.
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The Gaia Data Release 3

The third regular data release from the Gaia mission (Gaia DR3; [360]) has been

recently released and boasts an enormous sampling of stars from the MW galaxy.

Among the features included are those of the full astrometric solution (i.e. positions

on-the-sky, parallaxes, and proper motions) for ∼ 1.46 billion stars. Many attempts

at finding clusters in Gaia data have been made on earlier data releases, most notably

with the StreamFinder algorithm on the Gaia DR2 and EDR3 catalogues [139].

While this application has unveiled much about the tidal stream structure of the

MW, the algorithm is highly dependent upon the model of the MW mass distribution

as well as upon the numerous user-tuned input parameters that are needed for its

effective operation. Other clusterings have also been found from these data, however,

the algorithms responsible for constructing these are not capable of targeting all

substructure types simultaneously. Specifically, current clustering algorithms are

not able to completely encapsulate both self-bound and unbound substructures as

well as those with highly anisotropic and arbitrary shapes concurrently. Hence, the

clusters returned from these algorithms are not entirely descriptive of the intimate

link between a satellite, its tidally disrupted debris, and its host galaxy.

By applying CluSTARR-ND and the techniques described in Sec. 6.1.1, I will achieve

the latter as these methods are/will be less restrictive and unbiased towards cluster

shapes and sizes. With such an extensive data set and a higher sensitivity to the finer

clustering structure than has been possible with previous attempts, I will not only

provide independent predictions of known substructures but will also uncover as yet

unknown substructures, greatly expanding the catalogue of coherent substructures

within the MW – a huge step towards a greater understanding of the evolution of

our own galaxy.

The Galactic Archaeology with HERMES Survey

The GALactic Archaeology with HERMES survey (GALAH; [363]) is a spectroscopic

stellar survey which has its third data release available publicly. The release extends

the Gaia catalogue by providing the line-of-sight velocity, additional stellar parame-

ters, and up to 30 elemental abundances for each star. A previous GALAH catalogue

has been used for chemical tagging [389], which requires an initial clustering analysis

(using the astrometric solution from Gaia) followed by a comparison to the known

spectra of each cluster’s members.

For the reasons discussed throughout this thesis and in Sec. 6.1.1, our techniques

will provide improved insight into the chemical evolution of the MW’s merger history

found with Gaia DR3 when chemically tagged with the spectra from GALAH.
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Furthermore, I will apply CluSTARR-ND and the algorithms from Sec. 6.1.1 directly

to the catalogue of stellar spectra within GALAH DR3. A clustering over GALAH’s

high dimensional set of elemental abundances has not yet been successfully attempted,

however, with a much higher sensitivity to clustering structure I will uncover local

variations in chemical evolution that have not yet been studied.

The Sloan Digital Sky Survey

The Sloan Digital Sky Survey is a large scale survey whose fifth generation (SDSS-V;

[361]) is expected to release it first data release later this year. SDSS-V is to be the

first all-sky time-domain spectroscopic survey boasting the near infra-red and/or

optical spectra of more than 4 million stars situated throughout the MW and Local

Group. The stellar parameters and elemental abundances derived from these data

will enable a unique global map of the MW’s fossil records that survive in its stars

and interstellar material. The SDSS-V survey will make use of the BOSS and

APOGEE spectrographs to provide a high resolution chemo-dynamical map of the

region surrounding the Sun. With such fine detail and a large feature space, the

SDSS-V data will be ideally suited to extract clusters from.

By applying our clustering methods to this data I will extract new substructures

defined by their high dimensional chemo-dynamical coherence – which is a feature

space that is currently challenging to obtain substructures from. The identification

of these anisotropic substructures will prove invaluable for studying the chemo-

dynamical evolution of the MW and the Local Group.
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Contributing Publications

Chapters 3, 4, and 5 are assembled from research papers where I am lead author,

and as such, make up the core of my thesis. Here in this appendix, I present the

publications that I have contributed to as a co-author but whose research is not

predominantly my own. These publications are provided as a complete record of my

research activities during my PhD tenure.

A.1 The Asymmetric Dwarf Galaxy Distribution

around Andromeda

This section presents the published journal article:

A1. On the Origin of the Asymmetric Dwarf Galaxy Distribution around Andromeda.

Z. Wan, W. H. Oliver, G. F. Lewis, J. I. Read, & M. L. M. Collins. MNRAS

492, 456, 2020. [arXiv:1912.02393].

I contributed to this paper by assisting in the design of the analysis and by

interpreting the results that were produced therefrom. I also contributed by co-

writing the manuscript with the lead author Dr. Zhen Wan.
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ABSTRACT
The dwarf galaxy distribution surrounding M31 is significantly anisotropic in nature. Of the 30
dwarf galaxies in this distribution, 15 form a disc-like structure and 23 are contained within the
hemisphere facing the Milky Way. Using a realistic local potential, we analyse the conditions
required to produce and maintain these asymmetries. We find that some dwarf galaxies are
required to have highly eccentric orbits in order to preserve the presence of the hemispherical
asymmetry with an appropriately large radial dispersion. Under the assumption that the dwarf
galaxies originate from a single association or accretion event, we find that the initial size and
specific energy of that association must both be relatively large in order to produce the observed
hemispherical asymmetry. However if the association was large in physical size, the very high-
energy required would enable several dwarf galaxies to escape from the M31 and be captured
by the Milky Way. Furthermore, we find that associations that result in this structure have total
specific energies concentrated around E = V 2

esc − V 2
init ∼ 2002 – 3002 km2 s−2, implying that

the initial velocity and initial position needed to produce the structure are strongly correlated.
The overlap of initial conditions required to produce the radial dispersion, angular dispersion,
and the planar structure is small and suggests that either they did not originate from a single
accretion event, or that these asymmetric structures are short-lived.

Key words: galaxies: evolution – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

Early evidence of structures in the distributions of dwarf galaxies
dates back several decades when Lynden-Bell (1976) discovered
that several globular clusters and dwarf galaxies surrounding the
Milky Way (MW) lay in streams of high-velocity clouds that were
thought to form a planar structure (Lynden-Bell & Lynden-Bell
1995). The suspicion that a great disc of MW dwarf galaxies existed
was independently confirmed through follow-up studies (Kroupa,
Theis & Boily 2005; Metz, Kroupa & Jerjen 2007; Metz, Kroupa &
Libeskind 2008; Pawlowski, Pflamm-Altenburg & Kroupa 2012).
This then raised the question of the origin of such structures, since
the likelihood that they would assemble from a previously isotropic
distribution is extremely small. However, studies have suggested
that the structure may not rotate coherently (Cautun et al. 2015a;
Phillips et al. 2015) and also that the statistical relevance of disc
configurations is heavily influenced by detection bias (Cautun et al.
2015b; Buck, Dutton & Macciò 2016; Maji et al. 2017). More recent
papers have created further tension with these findings claiming that

� E-mail: zwan3791@uni.sydney.edu.au

the MW satellites as a whole do not lie in a thin plane, although
there is strong evidence that their distribution is anisotropic (Gaia
Collaboration et al. 2018; Simon 2018).

Such an anisotropic distribution of dwarf galaxies has been
seen in M31, with the Pan-Andromeda Archaeological Survey
(McConnachie et al. 2009), claiming that 15 of the 27 observed
dwarf galaxies constitute a great disc, all with same sense of rotation
about M31 (Conn et al. 2013; Ibata et al. 2013). The size of this
disc is at least 400 kpc in diameter with perpendicular scatter of
less than ∼14 kpc. Adding to the complexity, Conn et al. (2012,
2013) have found that the dwarf galaxies surrounding M31 possess
a significant hemispherical anisotropy, with 21 of the 27 dwarf
galaxies are contained within the same hemisphere. However, the
radial distribution of those dwarf galaxies is less special than the
directional distribution, with the distances of the dwarf galaxies to
the M31 ranging from 40 to 400 kpc.

The origin of these anisotropic structures has been the subject of
much debate. The nature of the cosmic web imposes some coherence
on the accretion of neighbouring galactic structures (Zentner et al.
2005; Libeskind et al. 2011, 2015), and consequently, galaxies often
fall into larger structures as part of a group (D’Onghia & Lake 2008;
Read et al. 2008; Li & Helmi 2009). In principal, these effects

C© 2019 The Author(s)
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could be responsible for manifesting dwarf galaxy disc structures
that surround larger host galaxies within the � cold dark matter
(�CDM) model of cosmology (e.g. Lovell et al. 2011; Goerdt,
Burkert & Ceverino 2013; Wang, Frenk & Cooper 2013; Bahl &
Baumgardt 2014; Buck, Macciò & Dutton 2015; Gillet et al. 2015).
However, some studies have suggested that the discrepancy between
the anisotropy in observation and simulation is significant and is
not easily explained with �CDM cosmologies (Kroupa et al. 2005;
Pawlowski et al. 2012; Pawlowski & Kroupa 2013; Ibata et al.
2014; Forero-Romero & Arias 2018; Pawlowski et al. 2019). Other
studies advocate that 10 (Cautun et al. 2015b), or even 20 per cent
(Shao et al. 2016) of �CDM haloes have even more prominent
planes than those present in the Local Group. It has been proposed
that pairs of large galaxies similar to those in the Local Group
can impose a shape alignment of satellite galaxies (Wang et al.
2019). Furthermore, Libeskind et al. (2016) and Gong et al. (2019)
have suggested that it is statistically likely for satellite distributions
surrounding pairs of galaxies – such as the M31–MW system –
to be lopsided, though these satellites are primarily on their first
infall. Inferring the whereabouts of dwarf galaxies in the past can
be challenging, particularly if a dwarf’s position is to be tracked
over more than a full orbit of its host, due to many dwarfs falling in
as part of associations (Lux, Read & Lake 2010).

Other attempts to explain disc-like structures of dwarf galaxies
from a smaller scale perspective have also been made. Pasetto &
Chiosi (2009) have tested the feasibility of disc structures in
the Local Group as a result of tidal effects, finding that these
could account for the planar structure excluding those tightly
bound dwarf galaxies. Bowden, Evans & Belokurov (2013) show
that in a triaxial Navarro–Frenk–White (NFW; Navarro, Frenk &
White 1996) potential, it is possible for a thin-disc structure to
persist over cosmological time-scales if and only if it lies in the
planes perpendicular to the long or short axis of a triaxial halo,
else it will double in thickness within ∼5 Gyr. Later Bowden,
Evans & Belokurov (2014) calculated the life-times of inward
falling associations in various potentials and found that asymmetric
structures could survive longer than the current age of the universe
in the outer regions of nearly spherical potentials.

Given this groundwork, our investigation aims to numerically
investigate how a more realistic dynamic potential configuration
contributes to the formation of these asymmetric structures. We
construct the M31–MW system potential by considering the disc,
bulge, and halo components of these galaxies in Section 2. Then
in Section 3.1 we place all observed dwarf galaxies surrounding
M31 into this potential at their current positions and integrate
backwards with various tangential velocities so as to obtain the
orbital properties of each dwarf galaxy. In Section 3.2, we also
integrate the orbits of numerous dwarf galaxy associations forwards
in time to identify the set of initial conditions required to assemble
the currently observed structures surrounding M31 from a single
association of dwarf galaxies. Finally, we discuss our findings in
Section 4.

2 ME T H O D

2.1 Potential

To appropriately consider the dynamic behaviour of the dwarf
galaxies surrounding M31, a superposition of both the M31 and
the MW gravitational potentials are modelled. For the MW, we use
the MW POTENTIAL 2014 in galpy (Bovy 2015), which is composed
of equations (1)–(3).

We use a spherically symmetric power-law potential with an
exponential cut-off for the bulge. This is derived from the mass–
density model,

ρ(r) = ρ0r
−α exp((−r/rc)2), (1)

for which we use a power-law index of α = 1.8, and a cut-off radius
of rc = 1.9 kpc.

The disc is modelled using the axisymmetric Miyamoto–Nagai
potential,

�(R, z) = − �0√
R2 + (a + √

z2 + b2)2

, (2)

where R =
√

x2 + y2 in galactocentric coordinates. Here, we use
potential parameters a = 3 kpc and b = 0.28 kpc.

To model the effect of the dark-matter halo, we use the NFW
potential with the density profile,

ρ(r) = ρ0

(r/h)(1 + r/h)2
, (3)

and characteristic radius h = 16 kpc.
This potential is scaled so that the circular velocity at r = 8 kpc

away from the galactic centre in the disc (z = 0 kpc) is set to
220 km s−1. In addition, the potential parameters are also tuned
to match multiple data sets that include observations of the veloc-
ity dispersion, vertical force, terminal-velocity, mid-plane density
profile slope, and total mass (Clemens 1985; Dehnen & Binney
1998; Holmberg & Flynn 2000; McClure-Griffiths & Dickey 2007;
Binney & Tremaine 2008; Xue et al. 2008; Bovy et al. 2012; Bovy &
Rix 2013; Zhang et al. 2013). The corresponding virial mass of this
potential is 0.8 × 1012 M� that agrees well with the virial mass
from dynamical analyses (e.g. Xue et al. 2008; Deason et al. 2012;
Kafle et al. 2012, 2014), and at the low end of a massive Milky
Way (e.g. Li & White 2008; Watkins, Evans & An 2010; Sohn et al.
2018; Posti & Helmi 2019).

For M31, we use the same potential form as for the MW; however,
we set a = 5.09 kpc, b = 0.28 kpc in equation (1), and h = 20 kpc
in equation (3) (Seigar, Barth & Bullock 2008), and the total mass
of M31 is 1.5 times of the MW total mass. In the integration, we
also examine the effects of the oblate and prolate NFW profiles
using the TRIAXIAL NFW POTENTIAL with the equi-density radius
defined as r =

√
x2 + y2 + (0.5z)2 and r =

√
x2 + y2 + (1.5z)2,

respectively, for the M31 potential. This increases the asymmetricity
of the potential (e.g. Dubinski 1994; Debattista et al. 2008) and
might lead to the anisotropic distribution of the dwarf galaxies
(Hayashi & Chiba 2014). To focus on the shape, we set all the
dark halo profiles to have same mass. The mass of the M31–MW
system (∼2 × 1012 M�) we have constructed is consistent with
recent timing argument constraints (Penarrubia et al. 2015). The
MW halo is assumed to be spherically symmetric, since the shape
of the MW potential should be less significant due to the distance
between the MW and M31. Furthermore, within ∼50 kpc, the MW
halo appears to be rather round (e.g. Ibata et al. 1998; Read 2014;
Wegg, Gerhard & Bieth 2019).

The left-hand panel of Fig. 1 depicts the galactic potential contour
in X–Z plane within 10 kpc of which M31 is at the centre. Then
by adopting the M31 configuration as position angle θ = 39.8◦

and inclination i = 77.5◦ (de Vaucouleurs 1958; McConnachie &
Irwin 2006), we place another galactic potential at the position of
the MW as seen from M31 with the corresponding configuration
to include the effect of the MW. The right-hand panel of Fig. 1
portrays an overview of the M31–MW system potential we use
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Figure 1. Left: Contour lines of equi-potential in X–Z plane. This potential includes a bulge, a disc, and a halo, where the bulge and halo are spherical
symmetric and the disc is axisymmetric. Here, the X–Y plane lies in the disc plane. Right: The potential of the M31–MW system in the X–Z plane, which is
centred on the galactic centre of M31. Here, the X–Y plane coincides with the M31 disc plane. The MW lies to the right of the figure and due to its presence, a
slight deformation of the M31 potential is visible at ∼400 kpc (see the Fig. A1 for the demonstration of the prolate/oblate profiles).

in our calculations. Here, it is clear that the contours deform at
∼400 kpc from each galaxy’s centre.

2.2 Integration

To calculate the orbits of the dwarf galaxies within the potential we
build, we use the SOLVE IVP function from the scipy package with
an adaptive step-size (Jones et al. 2001) to solve the differential
equation of motion numerically. Here, we set the relative tolerance
to be 10−11. Prior to integration, we calculate the current MW
velocity based on the M31 line-of-sight velocity from McConnachie
(2012) and the solar reflex motion as (11.1, 232.24, 7.25) km s−1

(Schönrich, Binney & Dehnen 2010; Bovy 2015). We then use this
relative motion to calculate the position of the MW for all times
during the past 10 Gyr. This then realistically ensures that the effect
of the potential from the MW will change dynamically throughout
any integration we perform. Given the position and velocity of a
dwarf galaxy, we are then able to integrate its orbit both forwards
and backwards within the M31–MW potential. In this paper, we
ignore the interaction between dwarf galaxies so that the orbits of
the dwarf galaxies only depend on the system potential. The results
then reflect how the M31–MW potential contributes to the observed
anisotropic distribution of the dwarf galaxies surrounding M31.

3 R ESULTS

3.1 Backward integration of orbits

The position and line-of-sight velocities of the dwarf galaxies
surrounding M31 are adopted from McConnachie (2012), and the
distances to each dwarf galaxy are taken from Conn et al. (2012).
We consider these parameters as a current snapshot. Fig. 2 displays
the Aitoff projection of these dwarf galaxies in the M31-centred
coordinate system. This figure also indicates the angular asymmetry

(Conn et al. 2013) as well as the disc structure (Conn et al. 2013;
Ibata et al. 2013).

This data set however does not provide the tangential components
of the velocities of these dwarf galaxies. Without knowledge of
these proper motions, we simulate a range of current conditions
for each dwarf galaxy. We sample the magnitude of the tangential
velocities in 30 km s−1 steps from the interval 30–240 km s−1. For
each magnitude, the angular direction is also sampled at a resolution
of 0.02 rad over a full 2π range. This step size ensures a high
resolution as well as an affordable calculation time. In total, 2520
current tangential velocities are sampled for each dwarf galaxy. For
each current condition, the dwarf galaxy’s orbit is integrated into
the past for 10 Gyr. Note that during this integration, the MW will
move away from M31.

As a measure of orbital frequency, we count the number of times
that each dwarf galaxy passes through a pericentre along each
orbit integration. Since the current three-dimensional position and
line-of-sight velocity of each dwarf galaxy are fixed, an individual
dwarf galaxy’s pericentre number is only dependent on the current
tangential velocity we assign. The pericentre number tends to be
larger for a dwarf galaxy that is currently closer to the centre of
M31. It is these same dwarf galaxies whose pericentre number
for a particular orbit is more strongly affected by the choice of
that orbit’s current tangential velocity. Dwarf galaxies closer to
the centre of M31 will therefore show a larger range of possible
pericentre numbers when compared with dwarf galaxies currently
far from the centre of M31. Furthermore, any particular dwarf
galaxy’s pericentre number will decrease with increasing tangential
velocity magnitude. That is until the total velocity reaches the upper
limit for bounded orbits of that dwarf galaxy (above which the dwarf
galaxy will never pass through a pericentre).

In Fig. 3, we show the possible range of each dwarf galaxy’s
pericentre number by considering their orbits for all sampled current
tangential velocities. The transparency of each bar represents the
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Figure 2. An Aitoff projection of the positions of the dwarf galaxies in the M31-centred coordinate system. The positions are taken from McConnachie (2012)
and Conn et al. (2012). The red line indicates the great plane of 15 dwarf galaxies (Ibata et al. 2013), and the blue line separates the hemispheres of largest
asymmetry where one side includes the 21 dwarf galaxies in Conn et al. (2013). We also include a Cartesian projection of the dwarf galaxies in Fig. A2.

Figure 3. The number of times each dwarf galaxy passes through a pericentre during 10 Gyr of backwards integration with different tangential velocities.
Here the red bars indicate those 15 dwarf galaxies that belong to the great plane structure (Andromeda XII is considered to be a part of this structure as well).
The point markers represent the current radius from M31 of each dwarf galaxy (right axis). It is possible that some dwarf galaxies that are close to the centre
of M31 with low line-of-sight velocity could be in low-energy orbit. These dwarf galaxies are closely bound to M31 and will conclude more than 20 passes of
M31 during 10 Gyr. Other dwarf galaxies that are far from M31 may only exist on high-energy orbits and consequentially only be able to pass M31 up to a
few times.

frequency of that particular number of pericentre passings over all
sampled conditions for that dwarf galaxy. Those that are coloured
in red (as well as Andromeda XII) are the 15 dwarf galaxies that lie
in the great circle (Ibata et al. 2013). Dwarf galaxies whose current
position places them far from the centre of M31 are only able to

finish their first several cycles through a pericentre regardless of the
tangential velocity we assume. Whereas other dwarf galaxies (e.g.
Andromeda I, Andromeda IX) that are close to the M31 centre, are
likely to pass through a pericentre far more frequently than those far
away from the centre, given that they are in a low-energy orbit. These
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Figure 4. The direction of angular momentum of one possible low-energy
orbit of Andromeda I over 10 Gyr backwards integration. The orientation of
the orbit plane changes substantially throughout the integration due to the
precession of the angular momentum. This implies that a dwarf galaxy in
this orbit is not able to stay within one plane during a 10 Gyr time-scale.

closer dwarf galaxies will hence explore much more of the phase
space and mix their dynamic information. Furthermore, due to the
asymmetric nature of the potential, the angular momentum of those
dwarf galaxies will not be conserved. For the spherical potential,
the asymmetric nature of the potential comes from the disc, hence
the effect is more significant when a dwarf galaxy orbits close to the
M31 centre. Naturally, this asymmetry is the reason that the prolate
and oblate potentials shift the angular momentum even faster. For
example, Fig. 4 shows variation of the angular momentum direction
of a single Andromeda I orbit during 10 Gyr backwards integration
throughout the spherical NFW profile. This particular dwarf galaxy
will deviate from its plane of origin quickly due to the precession
of its orbit. This effect dictates that it is unlikely that dwarf galaxies
with high angular velocity and those with low angular velocity can
remain contained within one stable asymmetric structure.

In consideration of this, we can determine that the 15 dwarf
galaxies within the great plane are unlikely to be coherent or that
this structure is much younger than 10 Gyr if some of its members
have high angular velocity. A similar phenomenon happens to the
asymmetric structure of the 23 dwarf galaxies that lie in the same
hemisphere. Even though the dwarf galaxies far from M31 will stay
in this hemisphere for a long time, dwarf galaxies close to M31 will
leave it within a much shorter time-scale. One possible solution to
satisfy the longevity of this structure over larger time-scales occurs
if the dwarf galaxies close to M31 are in highly eccentric orbits with
large tangential velocities. This would increase the orbit energy and
decrease the angular velocities of those galaxies. As Fig. 3 shows,
the dwarf galaxies could always have low angular velocity as long
as we assume that they have large enough tangential velocity.

The different positions of each dwarf galaxy within the potential
require varying escape velocities. In our potential, both Andromeda
XII and Andromeda XXVII do not exhibit any pericentre passings
since they have very low escape velocities at their current position.
Chapman et al. (2007) suggested that due to its large line-of-sight

velocity relative to that of M31, Andromeda XII must be on its
first infall into the system. Andromeda XXVII, is unbounded to
the M31 in our model, which implies that it will never be a part
of any long-term structure associated with the system. However,
there is evidence that it is actually closer to us (and M31) (e.g.
Richardson et al. 2011; Conn et al. 2012; and Preston et al. 2019)
than the distance proposed in Conn et al. (2012). This would allow
its lowest possible energy to be lower so that it becomes bound to
the M31. In this work though, these two dwarf galaxies will always
be in long period orbits regardless of the tangential velocity we
assign.

3.2 Forward integration of orbits

We attempt to construct the asymmetric distribution of dwarf
galaxies around M31 by considering various associations of dwarf
galaxies with different initial conditions and allow them to evolve
for 10 Gyr. For each association, we place a dwarf galaxy at all
six vertices of a regular octahedron and another dwarf galaxy at the
centre of this group as a primary reference. We use the distance
between the vertex dwarf galaxies and the central dwarf galaxy to
represent the size of the association. The initial association sizes we
take can be as large as 50 kpc, with which we find the effect of a
large association size is already clear. Then, under the condition that
the central reference dwarf galaxy of each association is bound to
the M31–MW system, we place these associations randomly within
our potential and initialize them with a random velocity. Note that
the seven dwarf galaxies in each association (1 at the centre and 6
at the vertices) all possess the same initial velocity. We integrate
each of the dwarf’s orbits by setting the M31 halo potential to
spherical, oblate, and prolate separately to investigate the effect of
a non-spherical NFW profile as described in Section 2.

During each 10 Gyr integration, the associations will deform
from their initial octahedral configuration to a more distorted shape.
This change occurs due to the difference in potential energy across
the association, since each dwarf galaxy within an association is
initialized with the same velocity. The potential difference within
each association is dependent upon the size of the association and the
potential gradient surrounding it. The dispersion of the association
is an effect of time-evolution that arises from the difference of
this potential gradient. Based on the gravitational potential model
(equations 1–3), this difference is largest around the centre of M31.
In the case where the association starts close to the centre of M31
with a low velocity, the dwarf galaxies in the association will be
moving on low-energy orbits with a large gravitational potential
and will complete a higher number of revolutions. Throughout
a 10 Gyr integration of a dwarf galaxy association of this kind,
the accumulative effect of the dispersion will be largely due to
the considerable potential gradient in this region. Contrarily, an
association that starts from a large radius and is moving on a
high-energy orbit will exhibit a smaller dispersive effect since the
potential gradient is shallower along this orbit.

From these analyses, we take the initial size and the total energy
(the addition of the potential energy and the dynamic energy such
that the total specific energy ≥ 0 km2/s2 represents an unbounded
orbit) as characteristics of the associations. We then consider the
time-scale it takes for the association to dissipate to the extent that
half of the galaxies in the association are at least 90◦ away from the
central reference in angular distance. The relationship between the
size, energy, and dissipation time is presented in Fig. 5. Associations
that are moving on low-energy orbits with large sizes will be easily
disrupted within shorter time-scales. The oblate and prolate NFW

MNRAS 492, 456–467 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/1/456/5674121 by U
niversity of Sydney user on 28 January 2022
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Figure 5. The time that associations with different initial sizes and specific energies need to dissipate to the extent that half of the dwarf galaxies within it are
at least 90◦ away from the association centre in angular distance. This plot is a Gaussian smoothed bin-map of our simulation results where each pixel spans
3200 km2 s−2 in specific energy and 2 kpc in size, with a Gaussian kernel σ = 3 pixels. A high-energy orbit is necessary for the association to be long-lived.

profiles have similar effects. For each case, it is clear from this
figure that for an association to remain compact after a 10 Gyr
integration, it initially needs to be on a high-energy orbit with a
preference towards having a small association size. The top panel
of Fig. 6 similarly shows that to have most of the dwarf galaxies
in one hemisphere after 10 Gyr, as are the observed M31 dwarf
galaxies, the association is required to be compact.

However, if the initial size is too small or the starting radius
too large, the association will be unlikely to end up with a large
difference in radius between its members. The middle panel of
Fig. 6 shows the radial dispersion of the associations within the
three potentials at the 10 Gyr snapshot given varying initial sizes
and energies. For an association to obtain a large radial dispersion, it
needs to initially exhibit both a high-energy and a large size that will
not typically complete many revolutions of M31 within a 10 Gyr
time-scale. We note that on the other hand, this energy cannot be
too large otherwise most of the dwarf galaxies in the association
will easily escape to ≥1 Mpc away from the M31 within 10 Gyr.

We select associations that have final radial dispersion larger
than 90 kpc and a final median angular separation smaller than 60◦.
The initial position and velocity distribution of these associations
are shown in Fig. 7. We use orange crosses to indicate the escape
velocity of each dwarf galaxy (indicated as Vesc) and green crosses
to indicate

√
V 2

esc − V 2
init of each association, a quantity which is the

square root of the (negative) total specific energy of the association
(note that for bounded orbits, this quantity is always positive). For all
potentials, the selected association parameters typically occupy the
high-energy region where the total specific energy E = V 2

esc−V 2
init

is roughly concentrated around 2002−3002 km2 s−2 .1

The left-hand panel of Fig. 8 depicts the orbits of the members
of one such association that has been placed 110 kpc away from
the M31 centre with an initial velocity of 262.75 km s−1 and an
initial size parameter of 41.9 kpc. Some of the dwarf galaxies
within this association are in a position of higher potential, and after
10 Gyr, 5 out of 7 dwarf galaxies in this association have acquired

1Note that the quantity 1
2 (V 2

esc − V 2
init) indicates the negative total specific

energy.

enough energy to escape to large radii and remain in the North
hemisphere. The other two dwarf galaxies remain closely bound,
within 100 kpc from the M31 centre. All of the dwarf galaxies
in this association are in eccentric orbits. In fact, to construct the
asymmetric distribution observed around M31 with a model that
ignores dwarf–dwarf interaction such as this, a highly eccentric
orbit is preferred so that some of the dwarf galaxies are close to
the M31 centre while others are far away. Those associations with
eccentric orbits either start close to the M31 centre with large initial
velocities or far from the M31 centre with small velocities. Under
both conditions, the associations will pass close to the M31 centre
where the potential gradient is steep enough to radially separate the
dwarf galaxies.

Since there is no dwarf–dwarf interaction in our model, the
precession of the angular momentum of each dwarf galaxy is
due to the asymmetric nature of the potentials. We show the final
angular momentum directional dispersion of the associations in the
bottom panel of Fig. 6. Both the prolate and oblate NFW potentials
lead to a significantly larger dispersion than when compared to
the spherical potential. The low-energy associations have larger
angular velocities and revolve many times around the M31 during
integration, so the accumulative effect is significant. For initial
positions further from the M31 centre, and larger initial specific
energies, the associations will have smaller angular velocities.
Typically, the potential field is weaker along the orbits of these dwarf
galaxies, and hence the angular momentum directional dispersion is
smaller than that of associations moving on low-energy orbits. Some
of these high-energy associations with large initial sizes, however,
can acquire enough energy to escape the M31 potential and be
captured by the MW. The right-hand panel of the Fig. 8 shows one
of these kinds of associations, where some dwarf galaxies in this
association are captured by the MW and change the direction of their
velocity. This significantly changes the direction of their angular
momentum. For an association to have a smaller final dispersion, a
high initial energy and a small size are preferred because

(i) We give the same initial velocity to each dwarf galaxy in
an association. So a larger initial size will result in a larger initial
angular momentum dispersion.
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462 Z. Wan et al.

Figure 6. Top: The median angular distance of each dwarf galaxy to the centre of its association after 10 Gyr integration, sampled over associations varying in
initial sizes and specific energies. Middle: The radial dispersion of associations after the 10 Gyr integration, sampled over associations varying in initial sizes
and specific energies. A substantial radial dispersion occurs within an association after 10 Gyr if its initial size and energy are large. Bottom: The final angular
momentum directional dispersion of all associations. For associations with initial sizes and energies that allow for the observed asymmetrical distributions
(visualized in Figs 5 and 6), the dispersion of the angular momentum direction is generally small. Note that we give the same velocity for each dwarf galaxy
in an association, so this angular momentum dispersion is entirely dependent on the initial size of an association and the asymmetrical nature of the potential
along its orbital path.
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Dynamics of M31 dwarf galaxies 463

Figure 7. The initial radius (Rinit) and initial velocity (Vinit) of the selected associations that have final radial dispersion larger than 90 kpc and median
angular separation smaller than 60◦ (blue dots). The radial dispersion of association scales with the asymmetricity of the potential, and an association’s angular
separation is dependent on the steepness of the potential gradient. The orange crosses indicate the escape velocity (Vesc) of each association. The green crosses

are the quantity
√

V 2
esc − V 2

init, which indicates the specific energy needed for the association to escape the potential well. This quantity also roughly indicates
how far the association could reach from the M31 centre.

Figure 8. Left: Traced orbits of the members of an example association with an initial specific energy of −28 081 km2 s−2 and an initial size of 41.9 kpc.
The starting points of each dwarf galaxy are marked with crosses. This association is initially close to the M31 centre with a high velocity of 262.75 km s−1.
Some members of the association acquire enough energy to escape to a large radius with highly eccentric orbits, while others remain closely bound to M31.
Right: Another example association with an initial specific energy of −19 381 km2 s−2 and an initial size of 33.8 kpc. Some of the dwarf galaxies escape from
M31 and fall towards the MW (the grey dashed line indicates the orbit of the MW) due to their high initial energy, which increases the angular momentum
directional dispersion of these kinds of associations.

(ii) For a spherical NFW profile, high-energy orbits will be
far away from the centre where the asymmetricity of the disc
component of the potential is small. We find that associations
that result in an angular momentum distribution with a pre-
ferred direction are in high-energy orbits. However, if their
energy is too high, some dwarf galaxies will be captured by
the MW and significantly change the direction of their angular
momentum.

Similarly, we integrated the association orbits with the Hernquist
potential (Hernquist 1990) as the form of the underlying dark halo,
where the profile follows:

ρ(r) = ρ0

(r/a)(1 + r/a)3
. (4)

This profile is scaled so that the total mass of the halo is 1 ×
1012 M� and that the circular velocity at (x, y, z) = (8, 0, 0) kpc
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of the potential is 220 km s−1. The angular momentum directional
dispersions are comparable to the spherical NFW profile. However,
the resultant dissipation time-scale is much shorter, the median
angular separation is more pronounced at higher specific energies,
and the dwarf associations can conform to similar radial dispersions
to the NFW profiles, though typically at larger energies too. This
is expected since the Hernquist profile has a steeper gradient than
compared to that of the spherical NFW potential. The initial size
and specific energy parameter space that would allow for long-
lasting coherent structures is extremely small if not non-existent
and as such the Hernquist profile will destroy these structures within
shorter-time scales.

4 D ISCUSSION

The observed distribution of the 30 dwarf galaxies surrounding
M31 is noticeably distinct, where 23 dwarf galaxies reside in one
hemisphere and 15 dwarf galaxies are contained within a planar
structure surrounding M31. The radial distribution of these dwarf
galaxies, which ranges from 40 to 400 kpc, is less special. The
asymmetric nature of this distribution raises the question of its
origin. In previous sections, we explored the possible orbits of the
dwarf galaxies around M31 in an attempt to examine the longevity
of these structures as well as the possibility that these dwarf galaxies
come from a single association.

In our simulations, we include the gravitational potential of the
MW that deforms the otherwise axisymmetric potential of M31 as
in Fig. 1, though its effect within 300 kpc is small. The integration
results (e.g. Fig. 8) indicate that the MW potential will have some
significant influence on the dwarf galaxy orbits from those high-
energy associations with a large initial size.

The data we use for our analysis includes the sky position,
distance, and line-of-sight velocity of each dwarf galaxy (as well
as M31), giving us a three-dimensional map and one component of
the velocity of their distribution. Using this distribution as a current
snapshot of the dwarf galaxies, we performed numerous integrations
into the past for each dwarf galaxy’s orbit by sampling over various
tangential velocities. Through this method we find that there are
only a limited number of possible bound orbits for those dwarf
galaxies that are either far away from the M31 centre, or that have
a high line-of-sight velocity. Lower energy orbits will be closer to
the M31 centre with a higher angular velocity. From Fig. 3, we see
that some dwarf galaxies could possibly revolve the M31 centre in
excess of 20 times within 10 Gyr corresponding to less than 500 Myr
per revolution. In comparison, a few other dwarf galaxies could only
complete up to two revolutions. Under the condition that these dwarf
galaxies have come from a single large association where some
members have been drawn into low-energy orbits and others into
high-energy orbits, we find that the observed asymmetric structure
will be short-lived (the lifetime may be as short as ∼500 Myr during
which some of the dwarf galaxies can complete one revolution of the
M31). For this scenario to resemble the current snapshot of dwarf
galaxies, the tangential velocity of those dwarf galaxies on lower
energy orbits must be large. This is because there is little room to
adjust the tangential velocities of those dwarf galaxies whose orbital
energies have a high lower limit without making them unbound to
the system. An increase in the magnitude of the tangential velocities
of these low orbital energy dwarf galaxies is necessary to result in
their orbits becoming highly eccentric with long periods. If the
23 dwarf galaxies that are in the same hemisphere are co-rotating
around the M31, then their angular velocity (or the pericentre num-
ber in Fig. 3) should be roughly same as each other. By assuming all

of the dwarf galaxies in the same hemisphere have the same specific
energy as the Andromeda XXVIII (which has the largest specific
energy without considering proper motion), we may calculate a
rough estimation of the upper limit of the proper motion of the dwarf
galaxies. As such, most of these dwarf galaxies will have a tangential
velocity of ∼150–350 km s−1 that corresponds to a magnitude of
proper motion ∼45–110 μas yr−1, which agrees with a recent proper
motion estimation based on the planer structure (Hodkinson &
Scholtz 2019). Under these conditions Andromeda XVII, which is
currently the closest dwarf to M31, would need to have a tangential
velocity of ∼382 km s−1. Note that these estimations only take into
account the dwarfs’ motion relative to the M31 and as such, the
actual proper motion we observe would differ from this and would
include the effects of both the magnitude and direction of the proper
motion of M31 (e.g. van der Marel et al. 2019). These values are
the contribution of the proper motion from the dwarfs motion with
respect to the M31. Given the magnitude of these proper motions,
this may be detectable within the next generation of telescopes.

Having established that the observed asymmetries are likely
short lived, we explored whether they could have formed from
the recent infall of a single association. To do this, we sampled
associations with different initial conditions, placed them in the
M31–MW potential, and integrated their orbits forwards for 10 Gyr.
Here, we use the initial size and specific energy to characterize
each association. We find that, for an association to result in the
observed small angular dispersion after integration, it requires a
high initial energy, and that the observed large radial dispersion
requires a high initial energy and a large initial size. We also
find that the orbital energies of the associations that result in the
same hemisphere structure are concentrated where the total specific
energy E = V 2

esc − V 2
init ∼ 2002–3002 km2 s−2. This energy is high

enough that the dwarf galaxies could reach further than 500 kpc
from the centre, but still be bound to M31. Compared to lower
energies, this high-energy keeps the angular momentum directional
dispersion small so that the disc structure can also survive. Because
we give the same velocity to all dwarf galaxies in an association,
the initial angular momentum differences are due to the size of
the association as well as its position within our potential model.
Then the precession of the dwarf galaxy orbits originates from the
asymmetricity of the potential as well as the comparative initial
size of the association relative to its initial distance from the M31
centre – which magnifies the differential apsidal precession within
the group. Far from the centre of M31 (with the spherical NFW
potential), the potential is approximately spherically symmetric and
the initial size of the association contributes less to the differential
apsidal precession. As such, the precession of those high-energy
orbits is relatively small. However, both the prolate and oblate NFW
potentials will significantly destroy the planar structure by changing
the direction of the angular momentum of the dwarf galaxies with
their asymmetric shape.

In Fig. 8, we show one example association orbit that shows
angular asymmetry. Here, five of the seven dwarf galaxies of that
association end up in the Northern hemisphere and some dwarf
galaxies remain within 200 kpc from the M31 centre, while others
are far away. The high-energy initial condition is necessary from two
aspects. First, some of the dwarf galaxies in this association need
to end up far from the M31 centre by the end of the integration;
and secondly, the angular velocity of the association cannot be so
large that the dwarf galaxies become well mixed. From both the
forward and backward integrations, we find that for a long-living
asymmetric structure to exist, the association likely needs to have
recently completed or currently be in its first revolution of M31.
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In reality, it seems unlikely that a structure with a size of ∼40 kpc
has formed 110 kpc away from the M31 centre with a velocity of
∼260 km s−1. One possible case is that such an association has
formed earlier and subsequently fallen inwards to the M31 centre
from large radius. In this scenario, the structure of the association
would become disturbed by the M31 potential and may be capable
of developing into the initial condition of the association modelled
in Fig. 8. The infalling orbit would need to be eccentric to a large
enough degree that the association could approach close to the
M31 centre. This way the stronger tidal forces would cause some
dwarf galaxies to become more bound to M31. Additionally, the
size of this association could not be too small to ensure that enough
dwarf galaxies are still able to escape to large radii and resemble
the currently observed large radial dispersion. In conclusion, the
intersection of initial condition regions required by the observed
radial dispersion, angular asymmetry and planar structure is small.
The asymmetric structures – especially the planar structure, which
will be easily destroyed by both the prolate and oblate potentials –
are less likely to have come from a single association than not, or
they are short-lived.

We note that these results and subsequent discussion are based on
the assumption that this asymmetric structure has originated from
a single association that has been able to last for up to 10 Gyr. The
initial conditions may be utterly distinct from these assumptions if
this is a young structure, or if this asymmetric structure is merely
a coincidence. Another premise of the simulation results presented
here is that the dwarf galaxies are non-interacting throughout the
course of their orbits. Our results demonstrate how the M31–
MW potential alone could contribute to the observed asymmetric
distribution under the assumptions previously discussed. However,
the interaction between each dwarf galaxy may establish more self-
bounded associations than those that appear in our analysis. This
interaction could also provide a means of transferring energy and
angular momentum between the dwarf galaxies of an association so
that a large radial dispersion can evolve. The interaction may also
provide a mechanism for a longer-lasting distributional asymmetric-
ity of the dwarfs. An association with sufficient self-gravity could be
held together during its first infall so that it may exhibit a condition
similar to the initial conditions that we have shown could result in
the observed distribution of dwarf galaxies. A possible candidate for
the progenitor of such an association is NGC3190 (Bellazzini et al.
2013), as it is large and currently far from M31. It is possible that the
observed distribution of dwarf galaxies could have resulted from an
association centred on a younger NGC3190 that had passed close
enough to M31 to be tidally disrupted. We leave this concept and the
inclusion of dwarf-dwarf interaction in our model for future work.
In addition, the M33 could have a significant contribution to the
potential as well, similar to the effect of Large Magellanic Cloud on
the MW. A more detailed model of this system with M33 could also
be investigated in the future and would complement the research
we present here. We leave other dynamical effects such as the time
dependence of the potential components and the incorporation of
an appropriate cosmological setting for future work as well. Thus,
the research we present here, whilst based on simple assumptions,
is a map for future works from which we may compare the effects
of these various factors.
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APPENDIX: MORE FI GURES

See Figs A1 and A2.

Figure A1. Equipotential contours for the oblate NFW profile (left) and the prolate NFW profile (right).
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Figure A2. The Cartesian projection of the dwarf galaxies in the M31. The points centred on the lime circles are the 15 dwarf galaxies contained within the
thin disc, and the blue dots are the 23 dwarf galaxies that are within the same hemisphere.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 492, 456–467 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/1/456/5674121 by U
niversity of Sydney user on 28 January 2022



A.2. THE DYNAMICS OF NGC3201 112

A.2 The Dynamics of NGC3201
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ABSTRACT
As part of a chemodynamical survey of five nearby globular clusters with 2dF/AAOmega on the Anglo-Australian Telescope
(AAT), we have obtained kinematic information for the globular cluster NGC 3201. Our new observations confirm the presence
of a significant velocity gradient across the cluster which can almost entirely be explained by the high proper motion of the
cluster (∼9 mas yr−1). After subtracting the contribution of this perspective rotation, we found a remaining rotation signal
with an amplitude of ∼1 km s−1 around a different axis to what we expect from the tidal tails and the potential escapers,
suggesting that this rotation is internal and can be a remnant of its formation process. At the outer part, we found a rotational
signal that is likely a result from potential escapers. The proper motion dispersion at large radii reported by Bianchini et al.
(3.5 ± 0.9 km s−1) has previously been attributed to dark matter. Here, we show that the LOS dispersion between 0.5 and 1
Jacobi radius is lower (2.01 ± 0.18 km s−1), yet above the predictions from an N-body model of NGC 3201 that we ran for this
study (1.48 ± 0.14 km s−1). Based on the simulation, we find that potential escapers cannot fully explain the observed velocity
dispersion. We also estimate the effect on the velocity dispersion of different amounts of stellar-mass black holes and unbound
stars from the tidal tails with varying escape rates and find that these effects cannot explain the difference between the LOS
dispersion and the N-body model. Given the recent discovery of tidal tail stars at large distances from the cluster, a dark matter
halo is an unlikely explanation. We show that the effect of binary stars, which is not included in the N-body model, is important
and can explain part of the difference in dispersion. We speculate that the remaining difference must be the result of effects not
included in the N-body model, such as initial cluster rotation, velocity anisotropy, and Galactic substructure.

Key words: stars: kinematics and dynamics – globular clusters: individual: NGC 3201 – dark matter.

1 IN T RO D U C T I O N

The formation and evolution of globular clusters (GCs) remain an
open question in astrophysics. Clues from dynamical signatures have
proven to be useful to unravelling this, with structures in GC phase-
space, such as tidal arms and velocity gradients along the length of
these arms (e.g. Chun et al. 2010; Jordi & Grebel 2010; Sollima et al.
2011; Hansen et al. 2020) representing evidence of the interaction
between GCs and their host galaxies. Similarly, internal dynamical
features including rotation (e.g. Bellazzini et al. 2012; Bianchini et al.
2018; Ferraro et al. 2018; Kamann et al. 2018; Gaia Collaboration
et al. 2018c; Sollima, Baumgardt & Hilker 2019; Vasiliev 2019b;
Lanzoni et al. 2018a, b), stellar envelopes (Marino et al. 2014;
Kuzma, Da Costa & Mackey 2018; de Boer et al. 2019), and the

� E-mail: zwan3791@uni.sydney.edu.au

velocity dispersion profile (e.g. Scarpa, Marconi & Gilmozzi 2003;
Scarpa et al. 2007; Küpper et al. 2010; Baumgardt & Hilker 2018;
Baumgardt et al. 2019) are thought to trace both the formation and
evolution of GCs.

However, in answering questions surrounding whether GCs are
born in situ or ex situ, key information such as a GC’s formation
environment, or the time taken for a GC to be accreted into its
galactic host, still remain unclear. In particular, whether or not
GCs are born within dark matter mini-haloes is still under debate,
although given their extreme age, theoretical models have suggested
that GC formation occurs within a dark matter mini-halo of a mass
of ∼108 M� (Peebles 1984; Trenti, Padoan & Jimenez 2015). The
presence of stellar envelopes surrounding some GCs – where stars
are confined to the GC over a long time- period – is in agreement
with this theory (Carballo-Bello et al. 2012; Peñarrubia et al. 2017;
Kuzma et al. 2018), whereas the presence of tidal features (e.g.
Odenkirchen et al. 2001) is not (Moore 1996), and the absence

C© 2021 The Author(s)
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of tidal tails in some GCs can in some cases be explained by the
preferential loss of low-mass stars due to mass segregation (Balbinot
& Gieles 2018). Furthermore, whilst the comparison between the
dynamics and stellar luminosity in the inner parts of GCs suggests
that it is not necessary to include non-baryonic dark matter (e.g.
Conroy, Loeb & Spergel 2011; Kimmig et al. 2015; Watkins et al.
2015; Baumgardt 2017; Gieles et al. 2018), this is not evidence of
the absence of dark matter in the outer regions of GCs; collisional
relaxation can push the dark matter to the periphery where tidal
interaction with the Milky Way (MW) is effective in stripping the
entire dark matter content (Mashchenko & Sills 2005a,b; Baumgardt
& Mieske 2008).

The dynamics at the periphery of GCs is where different models
can be distinguished since the presence of dark matter inevitably
inflates the velocity dispersion here. The existence of ‘potential
escapers’ within this region creates some difficulty when testing these
models. These stars are located within the Jacobi radius, but have
energies above the critical energy for escape (Fukushige & Heggie
2000; Baumgardt 2001; Claydon, Gieles & Zocchi 2017; Daniel,
Heggie & Varri 2017). As a result, the outer density profiles of GCs
can be very similar to the dark matter prediction (Küpper et al. 2010),
though finding the retrograde rotation of potential escapers (Tiongco,
Vesperini & Varri 2016) would strongly support the scenario where
GCs do not possess dark matter, at least not at present.

Direct imaging of stars in many GCs out to large radii is available
(e.g. Simioni et al. 2018), although spectroscopic observations are
still lacking for many stars beyond half the Jacobi radius (Claydon
et al. 2017). This results from target selection based solely on
colour–magnitude diagrams (CMDs) where MW stars significantly
outnumber the cluster members in the low-density outskirts of GCs,
resulting in a low efficiency when allocating spectroscopic fibres.
However, this changed with the arrival of Gaia Data Release 2
(Gaia Collaboration et al. 2018a, b), which includes the precise
proper motion measurements of distant halo stars, allowing the
isolation of GC members using both their photometry and their
astrometry. Using this catalogue, we have selected a sample of GC
members and performed a spectroscopic survey of five nearby GCs
– NGC 3201, NGC 1904, NGC 1851, NGC 1261, and NGC 4590 –
with 2dF/AAOmega on the 3.9-m Anglo-Australian Telescope. We
direct our efforts towards stars situated beyond half the Jacobi radius
with the aim of understanding the dynamics of these GCs with the
resulting moderate-resolution spectra of their members.

In this paper, we present a brief summary of our survey, and with
the longest exposure time, we present the first scientific results on
NGC 3201. This cluster is an interesting GC with its retrograde orbit,
which is assigned as accreted in the Gaia-Enceladus/Sequoia event
by Massari, Koppelman & Helmi (2019). We discuss the details of
the survey in Section 2, including the target selection, observations
and data reduction. To interpret the observations of NGC 3201, we
compare our data to an N-body simulation in Section 2.4. We discuss
our first results on NGC 3201 as well as the effects from binary stars
and black holes (BHs) in Section 3 and present our conclusions in
Section 4. We note that results on the remainder of the survey GCs
will be published in later contributions.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

2.1 Target selection

The selection of targets for spectroscopic follow-up is based on the
samples of GC members using data from Gaia DR2 produced by
de Boer et al. (2019). The GC samples are extracted through the

application of a ‘matched-filter’ algorithm to the CMDs, using an
isochrone from the Padova library (Marigo et al. 2017), as queried
from http://stev.oapd.inaf.it/cmd. The GC metallicity ([Fe/H] =
−1.59) and distance (4.9 kpc) are taken from Harris (2010), with the
age (11.5 Gyr) taken from Marı́n-Franch et al. (2009), VandenBerg
et al. (2013). For a more secure membership selection, we consider
only stars in a region around the isochrone with |(GBP − GRP) −
(GBP − GRP)0| < 2 × δ(GBP − GRP) at each G magnitude, with a
minimum colour error of 0.03. Here, the GBP and GRP represent the
magnitude in the Gaia GP and RP bands, and the δ(GBP − GRP) is
the colour error.

The sample is further cleaned using Gaia DR2 proper motions
to compute the membership probability of each star. The proper
motions are fit using a Gaussian mixture model consisting of
a cluster distribution and an MW foreground distribution. Initial
guesses for the cluster Gaussian centres are taken from Helmi
et al. (2018), before distributions are fit using the emcee python
MCMC package (Foreman-Mackey et al. 2013). The parameters
of the symmetric 2D Gaussian for NGC 3201 are [μra, μdec, σ ] =
[8.37 ± 0.12, –1.96 ± 0.12, 0.47 ± 0.15] mas yr−1. The final member
samples are then selected by adopting a cut of 0.5 for the proper
motion membership probability. To assess the importance of the
various selection cuts, we note that the initial sample of 623583 stars
is reduced to 79480 following the colour cuts and reduced further
to 9913 given the proper motion selection. Therefore, applying the
Gaia DR2 proper motion cuts is instrumental in obtaining a robust
sample of high-probability members that can reasonably be followed
up with spectroscopic facilities.

The resulting samples of members cover the entire spatial extent of
the GCs, we intend to study, with proper motion errors of 0.6 mas yr−1

at Gaia G = 19 mag. For this survey, we focus on the Ca II triplet
(CaT) at 8498.02, 8542.09, and 8662.14 Å (Edlén & Risberg 1956),
hence all targets were selected from the red giant branch in each GC.

For our sample of NGC 3201 members, we find that there are
≈10 000 member stars available within 2dF’s 2o field of view with
1944 members beyond 0.25rJacobi. This ensures that enough fibres
can be allocated outside of the densely crowded central regions of
the GCs. The radii probed by 2dF are well outside the range of
currently available data (within 15 arcmin from the GC centre) and
contain sufficient numbers of cluster members to measure a possible
bulk cluster rotation that is retrograde with respect to the orbit of the
GC (due to potential escapers).

2.2 Observations with AAT and 2dF/AAOmega

The AAT is a 3.9-m optical telescope located at Siding Spring
Observatory near Coonabarabran, New South Wales, Australia. For
this study, we used 2dF/AAOmega, which is a fibre positioner with
a field of view of 2o coupled to a dual-arm spectrograph. We use the
580V grating for the blue arm and the 1700D grating for the red arm,
corresponding to resolutions of ∼1300 and ∼10000, and wavelength
ranges of 3800–5800 and 8400–8820 Å, respectively. The red arm
setting enables the coverage of the target CaT lines, and, given the
pixel resolution, results in velocity uncertainties of ∼1 km s−1 with
a signal-to-noise ratio (S/N) of 10.

We use CONFIGURE (Miszalski et al. 2006) to produce the configu-
ration file for 2dF for each target list, and acquire sufficient biases and
calibrations for the data reduction during observing nights. The total
integration time per field pointing was 2 h, split into four individual
exposures of 30 min to mitigate the effects of cosmic rays.

When possible, to mitigate the effects of binaries, we split the
observations into multiple epochs with a separation of about a month

MNRAS 502, 4513–4525 (2021)
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Table 1. The observational details of our GC survey, demonstrating multiepoch observations for three of our GC targets. Stars were observed at multiple times
across different epochs so as to mitigate the effect of binaries. During the third epoch, due to scheduling constraints, we split the targets of NGC 3201 into two
exposures.

Target name Epochs Exposure time Ntarget Ngoodstar MJD

NGC 3201 3 7200 s/ 7200 s/ 9000 s + 3600 s 248/ 252/ 321 + 147 207/ 213/ 320 + 146 58452.63/ 58479.63/ 58875.59
NGC 1904 2 7800 s/ 7200 s 188/ 77 121/ 45 58452.53/ 58875.49
NGC 1851 2 7200 s/ 1800 s 126/74 95/58 58479.54/ 58876.53
NGC 1261 1 7800 s 138 78 58452.42
NGC 4590 1 8400 s 92 76 58876.62

or more. More specifically, observations were performed in three
blocks: 2018 November 29–30, 2018 December 27–30, and 2020
January 27–28. Overall, we obtained ∼4 nights-worth of useful
observing time, during which the seeing ranged from 1.7–∼3 arcsec.
We obtained a single epoch for each of NGC 1261, and NGC 4590,
and multiple epochs for NGC 3201, NGC 1904, and NGC 1851. The
observational epochs and exposure information are summarized in
Table 1, and the survey footprint across NGC 3201 is presented in
Fig. 1.

2.3 Data reduction

The raw data are primarily reduced with the 2DFDR1 pipeline (AAO
Software Team 2015) default setting aaomega1700D provided by
the AAT, which automatically subtracts the bias, calibrates the pixel-
to-pixel sensitivity using the fibre flats, and calculates wavelengths
with the arc lines. In addition, the 2DFDR pipeline removes the sky
spectrum, which is significant in the 1700D region.

The chemodynamical information, including radial velocity, are
extracted using the CaT absorption lines. For this, we model each
spectrum as consisting of the CaT lines and a continuum. The
continuum is fit by means of a sixth-order polynomial with major
spectral lines being masked out. We then normalize the flux of each
spectrum to the best-fitting continuum. Then, we represent each line
with a pseudo-Voigt profile (the summation of a Gaussian and a
Lorentzian profile) as following:

F (λ) = A0G(λ, λ0, σg) + A1L(λ, λ0, σl),

G(λ, λ0, σg) = 1√
2πσg

e−(λ−λ0)2/(2σ 2
g ),

L(λ, λ0, σl) = σl

π((λ − λ0)2 + σ 2
l )

,

λ0 = λLAB × (1 + z). (1)

where z is the redshift, which is related to the velocity in the low-
velocity regime through z = v/c. The A0 and A1 parameters are the
strength of the Gaussian and Lorentzian profiles, respectively; λ is
the wavelength, and λ0 is the spectral-line centre; σ g and σ l indicate
the linewidth from the Gaussian and Lorentzian profiles, respectively.
The spectral template is constructed with three pseudo-Voigt profiles,
whose line centres are correlated by the redshift.

We fit each spectrum with the CaT profile above. The data
uncertainties come from the variance from 2DFDR, which are taken
into account by convolving with the spectrum profile parameters’
probability distribution. The best-fitting line profile parameters and
their uncertainties (defined as the mean and the 1σ quantiles) were
derived by MCMC sampling of the posterior using EMCEE (Foreman-
Mackey et al. 2013). The systematic uncertainties are derived from

1https://www.aao.gov.au/science/software/2dfdr

Figure 1. The top panel shows the footprint of our survey of NGC 3201,
where different epochs are marked in different coloured and sized circles;
some stars have multiepoch observations so that we can analyse the impact of
binaries. The bottom panel presents the velocity difference between the first
and second epochs, where some binaries deviate significantly from the zero
line.

the comparison between multiple epoch observations. The S/N are
defined as the ratio of the absorption-line strength to the residual
surrounding the absorption lines (±5 Å). Here we define a good star
when

S/N > 3 and

σvlos < 3 km s−1. (2)

As for stars with multiple observations, those with a velocity
difference larger than 5 km s−1 are clearly binaries and are excluded
from the sample, otherwise we only adopt the velocity information
from the spectrum that has the highest S/N. The equivalent width
(EW) of each of the lines is calculated by integrating ±20 Å over the
line centre and the uncertainties of the EW are derived by repeating
the integration 100 times with random noise. Fig. 2 presents one
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Figure 2. An example of a spectrum with a high S/N. The top panel shows the spectra in blue as well as the best-fitting CaT profile in orange. The bottom three
panels are zoomed-in views of the three absorption lines.

example of a high-S/N star and a zoomed-in view of the three lines as
well as the best-fitting model. Table 1 lists the number of targets and
good stars for each GC along with other observational information.

2.4 N-body simulations

In order to interpret the observation and estimate the influence of
the external tidal field of the MW on the outer dynamical profile
of NGC 3201, we performed a series of direct N-body simulations,
which were made with the direct N-body code NBODY7 (Nitadori &
Aarseth 2012) on the OzSTAR GPU cluster of Swinburne University
and the GPU cluster of the University of Queensland. We have
implemented the MW potential of Irrgang et al. (2013) as an
additional option for an external tidal field in NBODY7, in order
to model the influence of the MW on NGC 3201.

For our simulations, we first integrated the orbit of NGC 3201
backwards in time for 4 Gyr in the MW potential of Irrgang et al.
(2013) using a fourth-order Runge–Kutta integrator, with the initial
phase-space parameters from Baumgardt et al. (2019). We then set
up an N-body model of NGC 3201 that is non-rotating in an inertial
reference frame and integrated the orbit of NGC 3201 forward in
time to the present-day position using NBODY7. The initial N-body
model was created based on the grid of N-body models described
in Baumgardt & Hilker (2018), where the initial number of stars
in the models of Baumgardt & Hilker (2018) was 100 000 and do
not contain primordial binaries. These models started from King
(1962) density profiles with varying concentration parameters c.
The models of Baumgardt & Hilker (2018) followed a range of
initial mass functions, starting with those from Kroupa (2001) and
extending towards those that are more strongly depleted in low-mass
stars. The initial cluster models of Baumgardt & Hilker (2018) were
unsegregated, however, mass segregation developed dynamically
over time, so the simulations presented here started from already
mass segregated models. This mass segregation increased further
during the 4 Gyr duration of the simulations and developed into a
cluster that is segregated in the same way as seen for NGC 3201.
Since NGC 3201 loses about 5 per cent of its stars due to interaction
with the tidal field of the MW during the 4 Gyr of the simulation and

Figure 3. The number density profile of bright stars from the simulation
(blue, solid line) compared to the observed surface brightness profile of
NGC 3201 from Trager, King & Djorgovski (1995) (orange error bars). The
simulation agrees excellently with the observed surface density profile.

also shrinks its core size by about 20 per cent due to the two-body
relaxation driven evolution towards core collapse, we varied both
the initial cluster mass and density profile slightly until we found
the best match to the present-day observations of NGC 3201. Fig. 3
compares the surface density of bright stars in the simulation and the
estimation based on the surface brightness from Trager et al. (1995).
Also, comparing to a 2 Gyr simulation, we obtain similar results
in terms of the final cluster size and the final velocity dispersion
profile; hence, we expect that an even longer simulation time will not
change our final results. After the simulation finished, we extracted
the particle data from the simulation, projected the cluster on to the
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The dynamics of NGC 3201 4517

Figure 4. The Gaia CMD of the NGC 3201 targets. The red dots are the
good star targets (see the definition in the text). The targets of the third epoch
are brighter than 17.5 mag, and most of the good star targets are brighter than
18 mag.

sky and analysed the observations in the same way in which we
analysed the observational data.

3 R ESU LTS A N D DI S CU S SION

As a result of the above observations and analysis for NGC 3201,
we successfully extracted 886 good stellar spectra for 694 stars,
and we excluded 11 clear binaries. Among the final sample, we
have multiple epoch observations for 170 stars, and 94 stars (51 of
them have multiple epoch observations) located beyond one half of
the Jacobi radius, enabling us to characterize the dynamics out to
a large distance from the cluster centre. Fig. 4 presents the CMD
of the cluster, where the good stars are colour-coded in red. At
V = 18 mag, the number of good stars decreases significantly. The
mean LOS velocity of NGC 3201 is 496.47 ± 0.11 km s−1 based
on the observations. A summary of these results is presented in
Fig. 5, which shows the LOS velocity distribution for the target
stars, including their individual values as a function of cluster-centric
radius. With this, we address several key scientific questions about
NGC 3201.

3.1 Is NGC 3201 rotating?

One of the most prominent dynamical signatures would be rotation,
which is a record of the cumulative effects from the birth of the GC,
two-body relaxation and interaction with the tidal field of the host
galaxy. A good understanding of the rotation is also important for
determining the velocity dispersion (e.g. Cote et al. 1995; Bellazzini
et al. 2012; Ferraro et al. 2018; Sollima et al. 2019). With precise LOS
velocity measurements, internal rotation has been found in different
clusters (e.g. Kamann et al. (e.g. Bianchini et al. 2018; Kamann et al.
2018; Sollima et al. 2019, and references therein) and is typically
measured using the LOS velocity difference on both sides of a central
axis. The left panel of Fig. 6 shows the tangent plane projection of
stars in NGC 3201 coloured by the measured LOS velocities (with

the mean LOS velocity subtracted), where the inner and outer dashed
circles indicate the King tidal radius (36.1 pc or 1520 arcsec, Harris
1996) and an estimation of the Jacobi radius (83.46 pc, or 3513
arcsec, Balbinot & Gieles 2018), respectively. Similarly, the right-
hand panel shows the best-fitting simulation, colour-coded with the
LOS velocity.

The velocity variation of member stars in NGC 3201 can be
reproduced by the best-fitting simulation. As shown in Fig. 6, there
is an obvious rotation signal with amplitude of ∼5 km s−1, with
stars in the east (positive �RA) are moving away from the observer
(relative to the cluster centre), while stars in the west (negative �RA)
are moving towards us (relative to the cluster centre). This signal is
mostly due to perspective rotation, which is important for objects with
a large angular diameter that have a high systemic proper motion.
For the distance, systemic proper motion, and diameter of NGC 3201
(∼5 kpc, ∼10 mas yr−1, ∼100 arcmin, respectively) the magnitude
of this effect is a velocity difference of ∼7 km s−1 (van de Ven et al.
2006). Perspective rotation is therefore important and responsible for
most of the signal seen in Fig. 6.

In addition to the perspective rotation effects, several other
scenarios can also lead to rotation. For example, as the GC evolves
within the MW potential the LOS velocity varies along the GC orbit,
which will be most obvious for the unbound stars in the tidal tails.
Furthermore, potential escapers at large radii can contribute to the
rotation signal. Finally, internal rotation from the formation of the
GC could naturally lead to an observable rotation.

To calculate the perspective rotation effect on the observed LOS
velocities of NGC 3201, we assume that NGC 3201 is centred on
(RA, Dec.) = (154.◦40, -46.◦41) at a heliocentric distance of 4.9 kpc
(Harris 2010), with a systemic LOS velocity of 496.47 km s−1 and
proper motion of (μα, μδ) = (8.37, −1.96) mas yr−1. We calculate
the systemic velocity of the simulation by taking the mean of the
stars within 0.◦5 around the GC centre. The perspective rotation effect
can then be calculated for each star from the systemic velocity using
equation (6) of van de Ven et al. (2006). To adjust for this effect
in the observed and simulated stars, it is then subtracted from each
star’s corresponding observed LOS velocity. Fig. 7 shows the LOS
velocity of the simulation and the observation after having adjusted
for the perspective rotation effect.

A simple relation that includes a rotation component

vlos,0 = Arot sin(φ − φ0) + vsys,

p(vlos) = 1√
2πσvlos

exp
− (vlos−vlos,0)2

2σ2
vlos , (3)

is fitted to the residual velocity within radial bins for both observation
and simulation including the velocity errors in quadrature. Here, Arot

is the amplitude of the velocity difference; φ is the directional angle
from the rotation axis increasing from the north to the east and φ0 is
the reference positional angle (PA); vsys is the systemic velocity along
the line of sight and σvlos is the intrinsic LOS velocity dispersion. The
posterior parameters space is sampled with an MCMC approach, and
the best-fitting parameters and 1σ uncertainties are summarized in
Table 2. In the inner part of the cluster (for stars within ∼900 arcsec
around the GC centre), we found a signal of rotation with amplitude
of around 1 km s−1 (see Table 2 for detailed profile). The amplitude of
the rotation becomes weaker at larger radius. For stars beyond 900-
arcsec radius, the amplitude decreases to Arot ≈ 0.35+0.32

−0.24 km s−1.
The PA of the rotation axis in the inner part is ∼133◦–170◦, which
is significantly different from the simulation (PA = 30.3◦+62.6◦

−68.1◦ with
a very weak amplitude Arot = 0.13+0.11

−0.09 km s−1 for stars with radius
between 300 and 900 arcsec, and PA = 22.5◦+27.6◦

−30.7◦ with an amplitude
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4518 Z. Wan et al.

Figure 5. The LOS velocity of target stars, where the blue stars are those targets with S/N larger than 3, and grey dots are low S/N stars. Given the high radial
velocity, the members of NGC 3201 are well separated from the contaminating MW halo stars. The right panel is the velocity distribution of all targets in the
observation, which peaks at 496.4 km s−1. The two horizontal dashed lines indicate the 5σ range of the vlos, and the two vertical red dashed lines indicate the
King tidal radius (Harris 1996) and the Jacobi radius (Balbinot & Gieles 2018) correspondingly.

Figure 6. The projection on the sky of the observations (left-hand panel) and the best-fitting simulation (right panel) colour-coded by their LOS velocities.
The inner and outer dashed circles in both panels indicate the King tidal radius (Harris 1996) and Jacobi radius (Balbinot & Gieles 2018), respectively. The
simulation exhibits a similar apparent rotational velocity pattern to the observed data, which is due to the effect of perspective view effect.

Arot = 0.64+0.33
−0.32 km s−1 for stars between the King tidal radius and

the Jacobi radius). At the outer part of the GC, where the radius
r > 2000 arcsec, we found an opposite rotational signal compared
to the rotation at the inner part, with Arot = 0.80+0.49

−0.47 km s−1 and
PA = 0.6◦+45.8◦

−49.2◦ , which agrees with the rotational direction of the
simulation. This counterrotation at the outermost region relative to
the inner one is in good agreement with the prediction of a tidally
perturbed, rotating stellar cluster from Tiongco, Vesperini & Varri
(2018). The visualization of the results is presented in Fig. 7.

The rotation could be characterized by angular momentum relative
to the GC centre. Though we do not have the full phase-space
information for the observation data, we can explore the dynamical

features of the simulation. Hence, we calculated the present-day
angular momentum of the stars in the simulation with respect to
the GC centre. Here, we use the coordinate system that has the
z-axis perpendicular the orbital plane, and the x-axis aligned with
the systemic velocity of the GC, but the frame is inertial, i.e. non-
rotating. Fig. 8 presents the angular momentum of stars – with
r < 2000 arcsec and 2000 < r < 3600 arcsec around the GC centre.
For all stars at the inner part, the mean and dispersion of each compo-
nents of the specific angular momentum are (Lx, Ly, Lz) = (0.00 ±
0.02, 0.00 ± 0.02, 0.00 ± 0.02) kpc km s−1; for stars at the outer
part, we find (Lx,Ly, Lz) = (0.01 ± 0.06, −0.01 ± 0.06, 0.04 ±
0.06) kpc km s−1. The results at the inner part indicate that the GC
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The dynamics of NGC 3201 4519

Figure 7. The comparison of LOS velocity with the perspective rotation effect subtracted between the observation (left-hand panel) and simulation (right-hand
panel). The orange arrows (left) show the best-fitting PA for the stars with radius 433.2 < r < 956.7 arcsec and r > 2000 arcsec (see the values in the Table 2)
in the observations, and the grey region shows the 1 σ range. Correspondingly, the green arrows (right) show the best-fitting PA for the stars in simulation,
where the results from inner part (within King tidal radius) and outer part (beyond King tidal radius) are shown separately, and the grey regions again show the
1 σ range. The black arrows in both panels indicate the expected rotational axis for the potential escapers (PA = 26.◦3). Within the inner part, the disagreement
between the simulation and observation suggests that this velocity variation comes from the internal rotation. At the outer part, there is some signal of unbounded
stars that present the rotational direction aligned with the potential escapers.

Table 2. The estimated velocity dispersion profile. The first and second
columns show the range in radius; the third column give the mean radius
in each bin; the fourth column shows the estimated dispersion and 1σ

uncertainties; and the last column gives the number of stars within each bin.
The last two rows present the fitting results of the rotational signal from the
inner and outer parts of the GC, respectively.

Rlow Rhigh <R> Arot φ0 σ los N
(arcsec) (arcsec) (arcsec) (km s−1) ◦ (km s−1)

166.6 433.2 312.5 0.39+0.37
−0.27 89.9+64.8

−73.4 3.21+0.22
−0.20 136

433.2 669.3 544.8 0.88+0.41
−0.42 169.8+26.9

−24.4 2.90+0.22
−0.19 136

669.3 956.7 804.0 1.09+0.37
−0.37 132.4+18.5

−16.6 2.54+0.19
−0.17 135

956.7 1434.6 1181.0 0.35+0.32
−0.24 49.3+50.6

−80.8 2.48+0.19
−0.16 136

1435.6 3273.8 2019.0 0.51+0.35
−0.32 312.1+35.6

−33.4 2.01+0.18
−0.16 136

433.2 956.7 665.3 0.96+0.26
−0.26 149.8+15.5

−14.3 2.70+0.14
−0.13 272

2000 3600 2468 0.80+0.49
−0.47 0.6+45.8

−49.3 2.40+0.33
−0.29 54

has no internal rotation after 4 Gyr evolution, and the clear bias from
zero at the outer part is due to the potential escapers. We can compare
these values to what is expected from potential escapers. For circular
orbits, in a reference frame that co-rotates with the orbit, prograde
stars are preferentially lost, resulting in a net retrograde solid-body
rotation of potential escapers (Claydon et al. 2017; Daniel et al.
2017). Tiongco et al. (2016) showed the average angular frequency of
the potential escapers is 〈	PE〉 = −0.5	orb, where 	orb is the angular
frequency of the orbit. In a non-rotating frame 〈	PE〉 = +0.5	orb. We
can approximate the eccentric orbit of NGC 3201 by a circular orbit
at Galactocentric radius Rp(1 + e) 
 13 kpc (Baumgardt & Makino
2003; Cai et al. 2016), where Rp 
 9 kpc is the pericentre distance and
e 
 0.5 the eccentricity (Gaia Collaboration et al. 2018c). Assuming

Figure 8. The components of the angular momentum of stars of the
simulation with r < 2000 arcsec (orange-red) and 2000 < r < 3600 arcsec
(green) from the GC centre. The inner part shows no significant angular
momentum signal, suggesting that the GC does not have internal rotation. At
the outer part, the angular momentum bias comes from the potential escapers.

a flat rotation curve of 220 km s–1, 	orb 
 0.017 Myr–1, and thus 	PE


 8.7 × 10−3 Myr–1. The average orbital velocity at 0.75rJacobi 

63 pc is then 0.55 km s–1, and in the non-rotating frame the average
angular momentum is 〈Lz〉 
 0.035 kpc km s−1, i.e. as we find in the
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4520 Z. Wan et al.

N-body model, suggesting that the rotation we see in the outskirts of
the N-body model is due to potential escapers.

The rotation axis of the potential escapers is aligned with the
angular momentum vector of the Galactic orbit, which is well
constrained by the systemic proper motion, distance and line-of-
sight velocity of NGC 3201. In Fig. 7 we show in both panels with
a black arrow the projection of the angular momentum vector of
the Galactic orbit. As Fig. 7 shows, the direction of the rotational
axes in the inner part of the observation indicates that the rotational
signal within r < 900 arcsec (the orange arrow) is different from
what is expected from potential escapers (the black arrow). Hence
this signal at the inner part of NGC 3201 is likely to be the internal
rotation of the GC. At the outer part (r > 2000 arcsec), we found
that the direction of the rotational signal is aligned with the potential
escapers, which suggests that those stars at the outskirt are likely
energetically unbound, yet associated to the cluster (Henon 1970).
As far as we are aware, this is the first detection of this predicted
signal of potential escapers in a star cluster. In the N-body simulation,
the rotation in both inner and outer regions aligns with the potential
escaper prediction. This is because the model started without rotation,
so all the rotational signal is imposes by the tides.

3.2 Velocity dispersion

For a pressure-supported system in dynamical equilibrium, the
dispersion is directly relates to the average internal kinetic energy.
This is then related to gravitational potential energy as based upon
the virial theorem. Hence, the mass profile of the stars, as well
as any dark content, can in principle be estimated by measuring
the dispersion profile. A typical way of interpreting the result is to
compare the measured profile to a model (e.g. Bianchini, Ibata &
Famaey 2019; Hénault-Brunet et al. 2019; Vasiliev 2019a). In this
section, we present our estimate of the dispersion profile with a higher
precision and discuss the effects of the MW potential, binaries and
the escape rate (extratidal stars, considering the effect of stellar-mass
BHs).

As noted in the previous section, NGC 3201 presents a pattern
where the LOS velocities are larger on the east side than on the
west side. This systematic variation of velocity has to be taken into
consideration when estimating the dispersion. Here, the dispersion
was included in the rotation model (equation 3), and the best-fitting
intrinsic dispersions are listed in Table 2. As a consistency check and
to demonstrate the dispersion profile in the inner part of the GC, we
also included previously published vlos data (Baumgardt & Hilker
2018; Giesers et al. 2019), and the proper motion dispersion profiles
from Bianchini et al. (2019) and Vasiliev (2019a). Meanwhile, we fit
the same relation to the N-body simulation described in Section 2.4,
and include the dispersion profiles from the LIMEPY models (Gieles
& Zocchi 2015) and SPES models (Claydon et al. 2019) from de Boer
et al. (2019) as comparisons.

Fig. 10 shows the velocity dispersion profile from the observations
and simulation, where the top panel shows the dispersion in LOS, and
the bottom panel shows the dispersion in the tangent plane. The two
dashed lines in both panels indicate the King tidal radius and Jacobi
radius, respectively. The velocity dispersion within ∼500 arcsec from
the GC centre can be well reproduced by the simulation, and our
observations agree with the data from the literature. However, the
simulation is significantly lower than the observations at larger
radius. At radii beyond 2000 arcsec, we find that the LOS velocity
dispersion is ∼2.01 ± 0.18 km s−1, and tends to flatten outwards,
whereas the dispersion of the simulation decrease faster with radius
and is about 1.48 ± 0.14 km s−1, i.e. ∼2 σ lower. The dispersion

profiles of the LIMEPY and SPES models are presented as red and blue
regions respectively. Compared to King (1966) models, the LIMEPY

models have an additional degree of freedom that describes the
‘sharpness’ of the energy truncation, and these models are therefore
more flexible in describing the outer density profiles. The SPES model
includes a prescription for potential escapers.

The model parameters are taken from de Boer et al. (2019). The
cluster mass is 27 per cent smaller than the mass from Baumgardt
et al. (2019), so that the models have the best fit to the inner part data
from Baumgardt & Hilker (2018), Giesers et al. (2019). We note that
the N-body models from Baumgardt et al. (2019) are multimass,
where the massive stars move a bit slower due to equipartition,
which allows for a larger mass than the LIMEPY and SPES models.
The dispersion profiles from these two models agree with the N-
body simulation. However, both models underestimate the dispersion
of the GC at the outer part. As for the dispersion in the tangent
plane, the dispersion profile from Vasiliev (2019a) agrees with
the tangential dispersion profile from Bianchini et al. (2019). The
tangential dispersion is lower than the radial dispersion profile, which
is expected if the cluster has radially biased velocity anisotropy. Our
results agree well with the observations in the inner part of the
GC, especially, the dispersion profile from Vasiliev (2019a) and the
tangential dispersion profile from Bianchini et al. (2019). In the
outer part of the GC, the observed proper motion dispersion in the
tangent plane is significantly larger than the simulation. Similarly,
Bianchini et al. (2019) compare the proper motion dispersion profiles
to the model for the dispersion of potential escapers from Claydon
et al. (2017), finding that the observed dispersion out to the Jacobi
radius is approximately half the model prediction of Claydon et al.
(2017). This is perhaps not too surprising, because the potential
escaper model of Claydon et al. (2017) was derived for circular
orbits, and NGC 3201 is near pericentre, where the dispersion of
potential escapers is about twice as high as near apocentre for an
eccentricity of 0.5 (see fig. 10 in Claydon et al. 2019). However,
the potential escapers are present in the N-body simulation and
their effects are included in the dispersion profile of the simulation.
Hence, the potential escapers are unlikely to cause the observed large
dispersion.

Several scenarios could potentially explain the discrepancy be-
tween observations and simulations. The large dispersion might
relate to the interaction with the galactic potential. The heating
when the GC crosses the galactic disc might also increase the
dispersion (e.g. ω Cen, Da Costa 2012). However, compared to ω

Cen, NGC 3201 has a much larger peri-galacticon radius (Baumgardt
et al. 2019), where the disc heating is insignificant. In addition, the
N-body model, we adopted includes the influence from the MW (as
well as the disc). We conclude that the excess dispersion is unlikely
to be a result of the interaction between the GC and the potential
field of the MW.

In the following sections, we will discuss two additional mech-
anisms that might lead to the flattened dispersion profile in the
outer parts of NGC 3201, and our estimation of their effects on
the observations.

3.3 The effect of binaries

The observed velocity of a binary can be significantly different from
the systemic velocity of the GC due to its internal orbital velocity.
Some binaries with a large velocity deviation from the GC velocity or
with a short period would be easily identified (see Figs 1 and 5), while
some long-period binaries are difficult to detect. The presence of
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The dynamics of NGC 3201 4521

undetected binaries would inevitably influence the measured velocity
and hence the estimated dispersion.

The velocity of a star in a binary system varies periodically,
and with our multiepoch observation, short-period binaries with a
significant velocity difference at different epochs are easily identified
as binaries. Fig. 1 shows the velocity difference between epochs,
where some binaries deviate significantly from zero. Long-period
binaries, however, are difficult to identify. We also note that a fraction
of our targets were only observed for a single epoch, and binaries
(even short-period) within that sub-sample cannot be identified.
Hence, a proper estimation of the effect of binaries is necessary
for the dynamical analysis.

To estimate the effect of binaries, we first randomly sampled
binaries with VELBIN (Cottaar, Meyer & Parker 2012; Cottaar &
Hénault-Brunet 2014) from distributions of period, mass ratio and
eccentricities appropriate for solar-type binaries (Raghavan et al.
2010). Given that our target stars are either near the main-sequence
turnoff or RGB stars, we assume a mass of 0.8 M� for the primary
star in the binary systems. Since softer binaries would be disrupted
in a cluster environment, we retained only hard binaries. Giesers
et al. (2019) found that all the binaries for which they secured orbital
solutions in NGC 3201 have energies a factor of ∼5 or more above
the hard-soft boundary. We therefore kept only hard binaries with an
orbital velocity larger than three times the current central velocity
dispersion of the cluster. This translates into a higher minimum period
for the binaries, and accounts for the possibility that binaries with
an energy just above the present-day hard-soft boundary have been
destroyed in the past when the cluster was more massive and more
compact.

Based on the binary sample, we constructed mock radial velocity
data sets with time baselines, radial velocity uncertainties, and
numbers of epochs that mimic our observed cluster member stars in
the two outer bins shown in Fig. 10. The cluster velocity dispersion is
initialized to be 1.5 km s−1, comparable to the velocity dispersion of
the best-fitting simulation in the outermost radial bins. We adopted
different binary fractions and just like in the real observations
we excluded from the final data sets the stars that would have
been identified as binaries, as well as stars that would have not
been retained as likely cluster members based on a significantly
discrepant single-epoch measurement of vlos. We calculated the
resultant dispersion and repeated the experiment for a large number
of random samples and mock data sets. We kept track of the rate of
radial velocity variables that would have been detected. For realistic
binary fractions and orbital parameter distributions, this should be
consistent with the observed rate of variables observed in our sample
of cluster members (∼2.5 per cent in the radial region of the two
outermost bins in the top panel of Fig. 10).

Fig. 11 shows the probability distribution of the final dispersion for
different binary fractions. Different binary fractions result in different
measured velocity dispersion differences. With the initial cluster
dispersion of 1.5 km s−1, the probability of producing a dispersion
larger than ∼2 km s−1 is 1.6 per cent given a 5 per cent binary
fraction, 23 per cent given a 10 per cent binary fraction, and a
velocity dispersion of 2 km s−1 or more is easily obtained for a
binary fraction higher than 20 per cent. The probability of producing
a dispersion larger than 2.5 km s−1 (as observed at a projected
radius of ∼1000 arcsec; Fig. 10) is 0 per cent given a 5 per cent
binary fraction, 0.04 per cent given a 10 per cent binary fraction,
and 12.4 per cent given a 20 per cent binary fraction. However,
Giesers et al. (2019) show the core binary fraction in NGC 3201
is 6.75 per cent ± 0.72 per cent, which decreases outwards (Milone
et al. 2016) with radius. In addition, with deep field observations

Figure 9. An all-sky Aitoff projection of the output of the simulation of
NGC 3201, colour-coded with respect to the LOS velocity. The cross indicates
the location of the GC. The plot shows that the change of the LOS velocity
is not a local effect, but extends continually along the tidal arms around the
MW. The LOS velocity of the GC is close to the maximum, and decreases
significantly along the stream. At distances larger than 5o from the centre of
NGC 3201, the LOS velocity is smaller than 480 km s−1.

out to 8 arcmin (Simioni et al. 2018), the tight main-sequence
track argues against a high binary fraction. The observed rate of
radial velocity variables (2.5 per cent) in our sample of cluster
members in the two outer radial bins of Fig. 10 also argues against
a binary fraction significantly larger than 10 per cent. Adopting a
binary fraction of 20 per cent or higher in our mock radial velocity
experiments yields a typical rate of detected radial velocity variables
in excess of 4 per cent. A binary fraction large enough to significantly
inflate the velocity dispersion would also overpopulate the wings
of the velocity distribution compared to the observed sample. For
example, with a 20 per cent binary fraction, we would expect in
excess of 15 stars outside the 5σ range shown in Fig. 5 at radii
beyond 1000 arcsec even before considering non-members, which is
already more than we observe.

Hence, although we cannot exclude that undetected binaries
contribute to inflating the observed velocity dispersion, we conclude
that the underestimation of the dispersion in the outer parts of the
GC is unlikely to be purely due to the effect of undetected binaries
given that the binary fraction is likely to be smaller than 10 per cent.

3.4 The effect of different escape rates

As we can see from Fig. 9, interacting with the MW produces the
tidal tails from the escaped stars. The unbound stars in the tidal tails
might increase the measured LOS velocity dispersion depending on
the viewing angle. The escape rate, which describes the efficiency
with which stars escape from the GC, will determine the number of
stars inside the tidal tails, and thus might change the dispersion.

Stellar-mass BHs are believed to be able to shape the core profiles
of GCs and increase the escape rate of stars. The GCs in the MW
possess a clear separation in the distribution of core radii into ‘core
collapsed’ and ‘non core collapsed’ clusters, defined by small and
large core radii, respectively. With strong gravitational interaction,
the BHs effectively deposit energy into the GC bulk population,
leading to a ‘puffier’ core (e.g. Merritt et al. 2004; Mackey et al.
2007, 2008; Peuten et al. 2016). In the outer parts, BHs can increase
the escape rate of the cluster by close interaction with other stars
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4522 Z. Wan et al.

Figure 10. The top panel depicts the dispersion in the LOS from the N-body model (blue), from the AAT 2dF/AAOmega observations (red), and from the
previously published data (orange). The LIMEPY and SPES models with 1σ uncertainties from de Boer et al. (2019) (blue and red regions) are also presented,
where the mass of NGC 3201 is 27 per cent smaller than the mass from Baumgardt et al. (2019), which leads to a best fit to the previously published data
(Baumgardt & Hilker 2018; Giesers et al. 2019). The red dash lines at the bottom indicate the radial range of each bin and the number above them are the number
of stars in each bin. The error bars indicate the 1σ uncertainty. The bottom panel depicts the dispersion in the tangent plane from the N-body model, and from
Vasiliev (2019b, hereafter V19) and Bianchini et al. (2019, hereafter B19) [including the radial (grey) and tangential (grey hatched) components, where the
regions indicate the 1σ ranges, respectively]. In both panels, the left and right dark vertical dashed lines mark the King tidal radius and Jacobi radius, respectively.
Within r = 500 arcsec, the simulation agrees well with observation, however, the observed dispersion is significantly larger than that in the simulation at large
radii.
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The dynamics of NGC 3201 4523

Figure 11. The effect of binaries on the velocity dispersion profile. With the
initial dispersion set to be 1.5 km s−1, this figure shows the distribution of the
final dispersion. Given a reasonable binary fraction of less than 15 per cent,
the presence of binaries cannot significantly change the estimated dispersion.

(Giersz et al. 2019; Wang 2020), resulting in a larger number of
stars in the tidal tails. NGC 3201 is known to host stellar mass BHs
from radial velocity measurements (Giesers et al. 2018), and the
luminosity profile of the core region (Askar, Arca Sedda & Giersz
2018; Kremer et al. 2019). However, the effect on the LOS dispersion
from the BHs at large radii is unknown.

To explore the effects from BHs, we included extra BHs in the
N-body simulation, but kept all the other parameters the same as the
best-fitting model. Following 4 Gyr of evolution of the simulations
with varying BH numbers, the 5 per cent Lagrangian radius (the
radius which contains 5 per cent of the bound mass of the cluster)
of the GC differs significantly, whereby the core of the GC with
100 BHs is 3 per cent larger than that of the GC without BHs.
Correspondingly, the surface density profile in the inner part of the
GC with BHs is slightly lower than the GC without BHs. However,
Fig. 12 shows that the GCs with 30 and 60 BHs still fit the data
reasonably well within the core region.

Compared to the cluster without BHs, the escape rate is about
1.3 per cent higher for the cluster with 30 BHs, and is about
2.6 per cent higher for the cluster with 60 BHs. However, the effects
on the dispersion profile are insignificant. As Fig. 13 shows, the
clusters with 30 and 60 BHs have slightly lower dispersion, whereas
the cluster with 100 BHs has a higher dispersion, suggesting that the
effects from BHs are less significant than the systematic uncertainties
on the dispersion profile. In the more extreme simulation with 150
BHs, we found that the cluster core is strongly heated, where the
5 per cent Lagrangian radius is about 0.22 pc after 4 Gyr of evolution.
However, the escape rate is not significantly different to the other
simulations. Hence, we conclude that BHs are not able to produce
the observed dispersion.

We also estimated the effect of a large escape rate directly with
a mock tidal tail model. We adopt a Lagrange Stripping technique
(Fardal, Huang & Weinberg 2015; Küpper et al. 2015) to produce
an oversampled tidal tail model. The progenitor was assumed to
have a mass of 1.5 × 105 M� and used the same initial conditions
as the N-body model. The tails were evolved for 200 Myr, releasing
particles every 0.005 Myr in the MWPotential2014 (Bovy 2015),
which is nearly identical to the Irrgang potential in the inner MW
and matches the N-body simulations quite well. The simulation was

Figure 12. The comparison of the surface density from the simulations with
different numbers of BHs. The inner part of the surface density decreases
with the number of BHs. However, the effects are insignificant as the GCs
with 30 and 60 BHs, respectively still fit the data reasonably well.

Figure 13. The dispersion profiles of simulated clusters with varying
numbers of stellar-mass BHs. Compared to a cluster without BHs, the effects
of BHs on the dispersion profile are small. None of the simulated GCs is
able to reproduce the large observed velocity dispersion in the outer cluster
region.

performed using the dynamics package gala (Price-Whelan 2017).
However, we found that with a significantly larger escape rate, the
final dispersion is still about 1.5 km s−1, which is roughly consistent
with the N-body model, but still lower than the observations. In the
tail model, we find 405 tail stars projected within rJacobi. Because the
escape rate in this model is a factor of 10–30 too high, and only a small
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fraction of the escaping stars are bright enough for our observations,
we conclude that tail stars have a negligible contribution to the
kinematics within rJacobi.

4 C O N C L U S I O N S

In this paper, we described our GC survey with 2dF/AAOmega and
the first results for the GC NGC 3201. Aiming at constraining their
evolutionary history, we acquired spectra of stars in the outer part
of five GCs (see Table 1). Those observations are designed to be
divided into different blocks separated by at least one month so that
we could detect short-period binaries.

We select stars near the turn-off, sub-giant branch and in the
RGB phase as our targets, as those stars have three strong calcium
absorption lines (CaT) at near-infrared wavelengths. Templates based
on the three lines are fitted to the spectrum to extract information
from our observations, from which we can determine the redshift and
stellar parameters, and hence the LOS velocity and stellar properties
like metallicity. The detailed study and comparison of the five GCs
will be presented in future work.

As the first result of the survey, we discussed the dynamics
of NGC 3201 from our observations. A dark matter free N-body
simulation, that includes the effect from the MW potential, is built
and compared with the observations. We confirm the LOS velocity
gradient observed in the GC comes mainly from perspective rotation
effects. In addition, we found a weak rotational signal in the inner
part of the GC with amplitude of ∼1 km s−1. The PA of this signal is
different to the tidal tails and the potential escapers, which suggests
that it comes from the internal rotation of the GC. Besides, we
found a rotational signal at the outer part of the GC that has the same
rotational direction compared to the tidal tails and potential escapers.
However, within the field of view, the contribution from tidal tails are
limited, suggesting that the stars at the outskirt are likely potential
escapers.

We also discussed the dispersion profile of the GC. Compared
to the simulation, the observed dispersion profile is lower beyond
the King tidal radius. We discussed the potential source of this
discrepancy. Effects due to the interaction of the cluster with the MW
potential and potential escapers are included in the N-body model;
hence, we conclude that both the MW potential and potential escapers
cannot solve the discrepancy. With the simulations that include BHs,
we found adding BHs in simulation can increase the escape rate of
the cluster, but the change in dispersion is insignificant. Mock tidal
tails produced with large escape rates also have a small dispersion
compared to the data, consistent with the N-body model. In addition,
we performed an analysis of the effect of binaries with multiepoch
observations, finding that they should be taken into account, but are
unlikely to fully explain the difference in dispersion.

Since the dispersion relates to the dynamical mass, the presence of
dark matter (e.g. Peebles 1984; Trenti et al. 2015) at larger radii would
naturally lead to a flattened dispersion. B19 discuss the possibility
that NGC 3201 is embedded in a dark matter halo. Although this
can naturally explain an increased dispersion, there is still no direct
evidence for the existence of dark matter in GCs. In addition, the
signal of unbounded stars at the outer part of the GC, as well as
the evidence of tidal streams associated with NGC 3201 (Chen &
Chen 2010; Kunder et al. 2014; Anguiano et al. 2016; Ibata et al.
2020; Palau & Miralda-Escudé 2020), argue against the presence of
dark matter. Hence the existence of the dark matter needs further
confirmation. One could argue that we see the final phases of the
stripping of the dark matter halo, e.g. if NGC 3201 was in the nuclear
cluster of the dwarf galaxy, which could explain why the stars are also

affected by tides. However, NGC 3201 is association with the Gaia–
Enceladus/Sequoia accretion (Massari et al. 2019; Myeong et al.
2019), which suggests that this cluster was accreted � 9 Gyr ago
as part of a dwarf galaxy with multiple-star clusters, among which
ω Centauri. The high mass, and multiple metallicities of ω Centauri
make this cluster a much more plausible ‘former nuclear cluster’
compared to NGC 3201. We note that there are some additional
effects that can potentially influence the dispersion. The orbital phase
of this cluster is less constrained due the uncertainties in proper
motion, distance and the galactic potential, even though the position
of the NGC 3201 on the sky is well known. Also, an initially rotating
cluster in the simulation might result in a different dispersion profile.
Finally, interactions with sub-structure in the MW – either baryonic
or non-baryonic – may have heated the stars in the cluster and in
the tails (e.g. Erkal, Koposov & Belokurov 2017). This discrepancy
suggests that there is more we can learn from the dynamics of the
outer part of the GC on its evolutionary history. Analyses of the dark
matter content/distribution, as well as the unexplored effects on the
velocity gradient, dispersion and tidal tails, will be presented in our
future work.
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Palau C. G., Miralda-Escudé J., 2020, MNRAS, preprint (arXiv:2010.14381)
Peebles P. J. E., 1984, ApJ, 277, 470
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Appendix B

Supplementary Codes

Each of the papers reproduced in Chapters 3, 4, and 5 present a novel astrophysical

clustering algorithm. In this appendix I provide the python3 code for these algorithms.

The line wrapping has been artificially altered within each of these codes in order

to maintain the readability and indentations. As such, some reformatting will be

needed in order to reproduce them as working algorithms.

B.1 The Halo-OPTICS algorithm

Featured in paper 1, the Halo-OPTICS algorithm contains three classes; Point,

Cluster, and Halo OPTICS. While the code is far from the most succinct way to

write this algorithm, the core of the algorithm – the process of ordering points and

constructing the reachability plot – is highly efficient for a python3 implementation.

Running this code first requires creating a list of Point classes containing the

attributes of each point within the input data. The values of eps and minpts (Nmin)

must then also be chosen. The method for finding eps so that FOF haloes are

produced is not provided, although this is discussed in detail within Sec. 3.1 of paper

1. Once these three inputs are constructed, the Halo-OPTICS algorithm may be run

with default settings by calling the following lines:

1 hoptics = Halo_OPTICS(list_of_point_objects , eps , minpts)

2 hoptics.run()

Once finished, the reachability plot can be created by plotting the rd attribute of

each Point against the index of each Point within the hoptics.ordered list. The

clusters can also be obtained using the list of Cluster objects hoptics.clusters.

The hierarchy can be understood by viewing the id attribute of each cluster i.e. ’1’,

’2’ etc. are root level clusters and ’1-1’, ’1-2’, ’2-1’, ’2-1-1’ etc. are their child (and

grandchild) clusters.

126
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1 import numpy as np

2 from sklearn.utils import gen_batches , get_chunk_n_rows

3 from sklearn.neighbors import NearestNeighbors

4 from sklearn.metrics import pairwise_distances

5 from scipy.signal import find_peaks

6

7 class Point:

8 """

9 Point objects given to Halo_OPTICS.

10

11 Parameters

12 ----------

13 x, y, z: float

14 Cartesian coordinates of the 3D spatial positions of

15 simulation particles.

16

17 Attributes

18 ----------

19 idx: int >= 0 or None

20 Index within the ordered list from Halo_OPTICS.

21 rd: float > 0 or None

22 This point ’s reachability distance.

23 processed: bool

24 A flag indicating the processing status of this point.

25 clusterid: str or None

26 The id of the cluster this point belongs to.

27 """

28

29 def __init__(self , x, y, z):

30 # Initialise object

31 self.x = x

32 self.y = y

33 self.z = z

34 self.idx = None

35 self.rd = None

36 self.processed = False

37 self.clusterid = None

38

39 def coords(self):

40 # Returns list of Cartesian coordinates

41 return [self.x, self.y, self.z]

42

43

44

45



B.1. THE HALO-OPTICS ALGORITHM 128

46 class Cluster:

47 """

48 Cluster objects created by OPTICS.

49

50 Parameters

51 ----------

52 id: str

53 Identification of Cluster object and its relation to

54 the cluster hierarchy , i.e. id = ’1’ indicates the

55 first root -level cluster and id = ’1-1’ indicates its

56 first child cluster.

57 points: list of Point objects

58 The points that belong to this cluster.

59

60 Attributes

61 ----------

62 parentid: str or None

63 Id of the parent cluster of this cluster. Used to

64 construct the hierarchy of clusters.

65 minIdx: int > 0 or None

66 Lower bound of cluster in the ordered list.

67 maxIdx: int > 0 or None

68 Upper bound of cluster in the ordered list.

69 lone: bool or None

70 Flag indicating whether this cluster has no parent

71 or child clusters associated with it.

72 """

73

74 def __init__(self , id , points):

75 # Initialise object

76 self.id = id

77 self.points = points

78 if ’-’ not in self.id: self.parentid = None

79 else: self.parentid = ’-’.join(self.id.split(’-’)[:-1])

80 self.minIdx = None

81 self.maxIdx = None

82 self.lone = None

83

84 def _index_bounds(self):

85 # Find and return index bounds

86 if self.maxIdx is None or self.minIdx is None:

87 i = [p.idx for p in self.points]

88 self.minIdx , self.maxIdx = min(i), max(i)

89 return [self.minIdx , self.maxIdx]

90
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91 class Halo_OPTICS:

92 """

93 Astrophysical clustering algorithm based on the

94 ’Ordering Points To Identify Clustering Structure ’ algorithm.

95

96 Parameters

97 ----------

98 points: list of Point objects

99 The input data to be clustered.

100 eps: float > 0

101 Search radius and maximum reachability distance.

102 minpts: int > 1

103 Size of core neighbourhoods and the minimum number of

104 points in a cluster.

105 rho_threshold: float >= 1, default = 2

106 The minimum overdensity that clusters can have.

107 f_reject: float between 0 and 1, default = 0.9

108 The maximum fraction of points that a child cluster can

109 share with its parent.

110 s_outlier: float , default = 2

111 The maximum local -outlier -factor that points in

112 clusters can have.

113

114 Attributes

115 ----------

116 n_samples: int > 0

117 Number of points in the input data.

118 processed: ndarray of shape (n_samples ,) and dtype bool

119 Flags indicating which points have been processed.

120 ordering: ndarray of shape (n_samples ,) and dtype int

121 Index of points in the ordered list.

122 reachability_: ndarray of shape (n_samples ,) and dtype float

123 Reachability distances of points.

124 cds_: ndarray of shape (n_samples ,) and dtype float

125 Core distances of points.

126 nbrs: NearestNeighbors object

127 Used to construct a kd-tree and find the nearest

128 neighbours of points in the input data.

129 clusters: list of Cluster objects

130 The predicted clusters.

131 ordered: list of Point objects

132 The ordered list of points.

133 """

134

135



B.1. THE HALO-OPTICS ALGORITHM 130

136 def __init__(self , points , eps , minpts , rho_threshold = 2,

137 f_reject = 0.9, s_outlier = 2):

138 # Initialise object

139 self.points = points

140 self.eps = eps

141 self.minpts = minpts

142 self.rho_threshold = rho_threshold

143 self.f_reject = f_reject

144 self.s_outlier = s_outlier

145 self.n_samples = len(self.points)

146 self.processed = np.zeros(self.n_samples , dtype = bool)

147 self.ordering = np.zeros(self.n_samples , dtype = int)

148 self.reachability_ = np.full(self.n_samples , np.inf)

149 self.cds_ = np.full(self.n_samples , np.nan)

150 self.nbrs = NearestNeighbors(n_neighbors = self.minpts)

151 self.clusters = []

152 self.ordered = []

153

154 def run(self , detectClusters = True):

155 # Run Halo -OPTICS.

156 self._compute_core_distances ()

157 self._compute_ordered_list ()

158 self._save_ordered_list ()

159 if detectClusters: self.detect_clusters ()

160

161 def _compute_core_distances(self):

162 # Find core distances.

163 self.X = np.array([p.coords () for p in self.points ])

164 self.nbrs.fit(self.X)

165 chunks = get_chunk_n_rows(row_bytes = 16* self.minpts ,

166 max_n_rows = self.n_samples)

167 for sl in gen_batches(self.n_samples , chunks):

168 d, i = self.nbrs.kneighbors(self.X[sl], self.minpts)

169 self.cds_[sl] = d[:, -1]

170 not_core = self.cds_ > self.eps

171 self.cds_[not_core] = np.inf

172

173 def _compute_ordered_list(self):

174 # Find ordered list.

175 for ordering_idx in range(self.n_samples):

176 idx = np.where(self.processed == 0)[0]

177 self.point = idx[np.argmin(self.reachability_[idx])]

178 self.processed[self.point] = True

179 self.ordering[ordering_idx] = self.point

180 if self.cds_[self.point] != np.inf: self._set_rd ()
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181

182 def _set_rd(self):

183 # Update reachability distance.

184 P = self.X[self.point:self.point + 1]

185 i = self.nbrs.radius_neighbors(P, radius = self.eps ,

186 return_distance = False)[0]

187 unproc = np.compress (~np.take(self.processed , i), i)

188 if not unproc.size: return

189 unproc_X = np.take(self.X, unproc , axis = 0)

190 dists = pairwise_distances(P, unproc_X).ravel ()

191 rdists = np.maximum(dists , self.cds_[self.point])

192 unproc_rd = np.take(self.reachability_ , unproc)

193 improved = np.where(rdists < unproc_rd)

194 self.reachability_[unproc[improved ]] = rdists[improved]

195

196 def _save_ordered_list(self):

197 # Recreate ordered list as a list of point objects.

198 if self.ordered: self.ordered = []

199 for i, idx in enumerate(self.ordering):

200 self.ordered.append(self.points[idx])

201 self.points[idx].idx = i

202 if self.reachability_[idx] <= self.eps:

203 self.points[idx].rd = self.reachability_[idx]

204 else:

205 self.points[idx].rd = None

206 self._progress(i, self.n_samples)

207

208 def detect_clusters(self):

209 # Finds clusters from reachability plot.

210 if self.clusters: self.clusters = []

211 rd = np.array([ point.rd for point in self.ordered ])

212 # Altrd is used to invoke find_peaks since this

213 # cannot compare Nonetype and Float.

214 altrd = np.array([d if d is not None else self.eps

215 for d in rd])

216 maxima = [0] + list(find_peaks(altrd)[0])

217 bounds = []

218 totalMaxima = len(maxima)

219 for i, max in enumerate(maxima):

220 self._progress(i, totalMaxima)

221 if rd[max] is None:

222 lower = next((max + j + 1 for j, v in

223 enumerate(rd[max + 1:])

224 if v is not None), None)

225 if lower is not None:
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226 upper = next((lower + j for j, v in

227 enumerate(rd[lower + 1:])

228 if v is None), len(rd) - 1)

229 sigChk = self._significant_cluster(i, maxima ,

230 lower , upper , altrd)

231 if upper - lower + 1 > self.minpts and sigChk:

232 bounds.append ([lower , upper])

233 else:

234 lower = next((max + j + 1 for j, v in

235 enumerate(altrd[max + 1:])

236 if v < rd[max]), len(rd) - 1)

237 upper = next((lower + j for j, v in

238 enumerate(altrd[lower + 1:])

239 if v >= rd[max]), len(rd) - 1)

240 sigChk = self._significant_cluster(i, maxima ,

241 lower , upper , altrd)

242 if upper - lower + 1 > self.minpts and sigChk:

243 bounds.append ([lower , upper])

244 upper = next((max - j - 1 for j, v in

245 enumerate(altrd [:max ][:: -1])

246 if v < rd[max]), len(rd) - 1)

247 lower = next((upper - j for j, v in

248 enumerate(altrd [:upper ][:: -1])

249 if v >= rd[max]), 0)

250 j = next((i - j - 1 for j, v in

251 enumerate(maxima[i - 1:: -1])

252 if altrd[v] >= altrd[max]), 0)

253 sigChk = self._significant_cluster(j, maxima ,

254 lower , upper , altrd)

255 if upper - lower + 1 > self.minpts and sigChk:

256 bounds.append ([lower , upper])

257 self._cluster(bounds)

258 self._single_child ()

259 self._particle_similarity ()

260 self._outlier_factors ()

261 self._bounds_exceeded ()

262 self._weakly_enclosed ()

263 self._rename_cluster_point_ids ()

264

265 def _significant_cluster(self , i, maxima , lower , upper , altrd):

266 # Assesses the significance of a potential cluster.

267 outerrd = min(altrd[maxima[i]],

268 altrd[next((v for i, v in

269 enumerate(maxima[i:])

270 if v >= upper), -1)])
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271 innerrd = np.median(altrd[lower: upper + 1])

272 if (outerrd/innerrd)**3 > self.rho_threshold: return True

273 else: return False

274

275 def _cluster(self , separators):

276 # Creates the clustering hierarchy of cluster objects.

277 separators.sort(key = lambda pair: [pair[0], -pair [1]])

278 ids = []

279 children = []

280 for i, sep in enumerate(separators):

281 children.append (0)

282 parent = next((-j - 1 for j, v in

283 enumerate(separators [:i][:: -1])

284 if sep [0] < v[1] and sep [1] <= v[1]),

285 None)

286 if parent is not None:

287 children[parent] += 1

288 ids.append(f"{ids[parent ]}-{ children[parent ]}")

289 elif len(ids) > 0:

290 ids.append(str(max([int(id.split(’-’)[0])

291 for id in ids]) + 1))

292 else:

293 ids.append(’1’)

294 self.clusters.append(Cluster(ids[i],

295 self.ordered[sep [0]: sep [1] + 1]))

296

297 def _single_child(self):

298 # Removes single child clusters.

299 ids = [clst.id for clst in self.clusters]

300 delete = [i + 1 for i, v in enumerate(self.clusters)

301 if i != len(self.clusters) - 1 and

302 v.id + ’-1’ in ids and v.id + ’-2’ not in ids]

303 self.clusters = [v for i, v in enumerate(self.clusters)

304 if i not in delete]

305 self._new_ids ()

306

307 def _new_ids(self):

308 # Updates clustering hierarchy.

309 self.clusters.sort(key = lambda c:

310 list(np.multiply(c._index_bounds (),

311 [1, -1])))

312 separators = [cluster._index_bounds ()

313 for cluster in self.clusters]

314 ids = []

315 children = []
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316 for i, sep in enumerate(separators):

317 children.append (0)

318 parent = next((-j - 1 for j, v in

319 enumerate(separators [:i][:: -1])

320 if sep [0] < v[1] and sep [1] <= v[1]),

321 None)

322 if parent is not None:

323 children[parent] += 1

324 ids.append(f"{ids[parent ]}-{ children[parent ]}")

325 elif len(ids) > 0:

326 ids.append(str(max([int(id.split(’-’)[0])

327 for id in ids]) + 1))

328 else: ids.append(’1’)

329 self.clusters[i].id = ids[i]

330

331 def _particle_similarity(self):

332 # Assesses the similarity of potential clusters.

333 self.clusters.sort(key = lambda c:

334 list(np.multiply(c._index_bounds (),

335 [1, -1])))

336 bounds = [clst._index_bounds () for clst in self.clusters]

337 condition1 = lambda j: next((True for v in

338 self.clusters[j + 1:] if

339 v.id.startswith(self.clusters[j].id + ’-’)),

340 False)

341 condition2 = lambda i: ’-’ in self.clusters[i].id

342 delete = []

343 for i, b1 in enumerate(bounds):

344 for j, b2 in enumerate(bounds[i + 1:]):

345 if b2[0] > b1[1]: break

346 f_shared = (b2[1] - b2[0] + 1)/(b1[1] - b1[0] + 1)

347 if f_shared > self.f_reject:

348 if condition1(j + i + 1):

349 delete.append(j + i + 1)

350 elif condition2(i):

351 delete.append(i)

352 break

353 self.clusters = [v for i, v in enumerate(self.clusters)

354 if i not in delete]

355 self._new_ids ()

356

357 def _outlier_factors(self):

358 # Removes local outliers from clusters.

359 def _get_lofs(points):

360 X = np.array([p.coords () for p in points ])
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361 c_nbrs = NearestNeighbors(n_neighbors = self.minpts)

362 c_nbrs.fit(X)

363 d, i = c_nbrs.kneighbors(X, self.minpts)

364 cds = d[i, self.minpts - 1]

365 rds = np.maximum(d, cds)

366 lrds = 1/np.mean(rds , axis = 1)

367 return np.mean(lrds[i]/lrds[:, np.newaxis], axis = 1)

368

369 numClusters = len(self.clusters)

370 removed = 0

371 clusterdelete = []

372 for index , cluster in enumerate(self.clusters [:: -1]):

373 self._progress(index , numClusters)

374 cluster.lone = (’-’ not in cluster.id and

375 next(( False for v in

376 self.clusters[numClusters - index:]

377 if v.id.startswith(cluster.id + ’-’) and

378 len(v.points) >= self.minpts), True))

379 if ’-’ in cluster.id or cluster.lone:

380 lofs = _get_lofs(cluster.points)

381 pointsdelete = np.compress(lofs > self.s_outlier ,

382 np.array(range(len(cluster.points))))

383 cluster.points = [point for i, point in

384 enumerate(cluster.points)

385 if i not in pointsdelete]

386 removed += pointsdelete.shape [0]

387 if len(cluster.points) < self.minpts:

388 clusterdelete.append(numClusters - index)

389 self.clusters = [cluster for i, cluster in

390 enumerate(self.clusters)

391 if i not in clusterdelete]

392 self._new_ids ()

393

394 def _bounds_exceeded(self):

395 # Checks that parent clusters completely envelope

396 # their child clusters.

397 self.clusters.sort(key = lambda c:

398 list(np.multiply(c._index_bounds (),

399 [1, -1])))

400 bounds = [clst._index_bounds () for clst in self.clusters]

401 delete = []

402 for i, b1 in enumerate(bounds):

403 for j, b2 in enumerate(bounds[i + 1:]):

404 if b2[0] > b1[1]: break

405 if b2[1] > b1[1]:
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406 if b1[1] - b1[0] > b2[1] - b2[0]:

407 delete.append(i)

408 else:

409 delete.append(j + i + 1)

410 self.clusters = [v for i, v in enumerate(self.clusters)

411 if i not in delete]

412 self._new_ids ()

413

414 def _weakly_enclosed(self):

415 # Checks that a cluster does not contain a point

416 # that is less dense that its surrounds.

417 delete = []

418 for i, v in enumerate(self.clusters):

419 if ’-’ in v.id:

420 bounds = v._index_bounds ()

421 maxInternal = max([p.rd for p in

422 self.ordered[bounds [0]: bounds [1] + 1]])

423 maxBoundary = max([self.ordered[bounds [0]].rd,

424 self.ordered[bounds [1]].rd])

425 if maxInternal > maxBoundary:

426 hasChild = next((True for clst in

427 self.clusters[i + 1:] if

428 clst.id.startswith(v.id + ’-’)),

429 False)

430 if hasChild:

431 delete.append(i)

432 else:

433 maxima = np.argmax ([p.rd for p in

434 self.ordered[bounds [0]: bounds [1] + 1]])

435 if maxima < self.minpts:

436 v.points = [p for p in v.points

437 if p.idx > bounds [0] + maxima]

438 else:

439 v.points = [p for p in v.points

440 if p.idx < bounds [0] + maxima]

441 self.clusters = [v for i, v in enumerate(self.clusters)

442 if i not in delete]

443 self._new_ids ()

444

445 def _rename_cluster_point_ids(self):

446 # Updates clusterid attributes within Point objects.

447 for cluster in self.clusters:

448 for point in cluster.points:

449 point.clusterid = cluster.id
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B.2 The CluSTAR-ND algorithm

The CluSTAR-ND algorithm is the focus of paper 2. In order to run this algorithm,

a np.ndarray of floating point values (P) with shape (n, d) must be created to

represent the n points of the input data and each of their d features. A choice also

needs to made about whether the user wishes to find 3D FOF field haloes within the

data or not – if so the value of the linking length (l x) must be chosen accordingly.

The values of k den and adaptive should also be considered, however the default

values of 20 and 1 were shown to provide consistent and robust results regardless of

the size or dimensionality of the input data. Running the algorithm with its default

settings can be achieved by calling the following lines:

1 cstar = CluSTAR_ND(P)

2 cstar.run()

After the algorithm has finished running, the clusters can be created using the

arrays cstar.clusters and cstar.ids. The cstar.clusters array indicates for

each point the index of the child-most cluster id within the cstar.ids array that

it belongs to. Using these arrays, the catalogue of the complete clusters can be

constructed by calling the following lines:

1 # Find the descendants of each cluster.

2 ids_rs = cstar.ids.reshape(1, -1)

3 descArr = np.char.startswith(ids_rs , np.char.add(ids_rs.T, ’-’))

4 # Add the cluster itself to the record of each of its own

5 # descendants.

6 rng = np.arange(cstar.ids.size)

7 descArr[rng , rng] = True

8 # Create the list of arrays containing the index of each point

9 # (as it appears in cstar.P) belonging to each cluster.

10 clst_catalogue = []

11 for idx in rng:

12 which_idxs = np.where(descArr[idx])[0]

13 clst = np.where(np.isin(cstar.clusters , which_idxs))[0]

14 clst_catalogue.append(clst)

Now clst catalogue, although a list of arrays and not a list of Cluster objects,

provides the same format of the returned clustering as with Halo-OPTICS. The

cstar.ids also provides the same format for the cluster ids (’1’, ’1-1’, ’1-1-1’, ’1-2’,

etc.) as can be retrieved from each Cluster object through the id attribute when

using Halo-OPTICS.
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1 import numpy as np

2 import pyfof

3 from sklearn.decomposition import PCA

4 from scipy.spatial import cKDTree

5 from sklearn.utils import gen_batches , get_chunk_n_rows

6 from scipy.spatial.distance import cdist

7 from numba import njit

8

9 class CluSTAR_ND:

10 """

11 The CluSTAR -ND algorithm.

12

13 Parameters

14 ----------

15 P: ndarray of shape (n_samples , features) and dtype float

16 The input data to be clustered over.

17 l_x: float > 0, default = np.inf

18 The linking length used to find 3D-FOF field haloes.

19 k_den: int >= 7, default = 20

20 The number of nearest neighbours used to estimate

21 the local density at each point in P.

22 adaptive: int in [0, 1, 2], default = 1

23 The setting controlling the adaptivity of the metric.

24 0 specifies no transformation , 1 specifies a single

25 global PCA transformation , 2 specifies an iterative

26 PCA transformation.

27 k_link: int >= 7 (for reliable behaviour), default = ’auto’

28 The number of nearest neighbours used to densely

29 connect the points in P.

30 rho_threshold: float >= 1, default = ’auto’

31 The minimum overdensity that clusters can have.

32 f_reject: float between 0 and 1, default = 0.85

33 The maximum fraction of points that a child cluster can

34 share with its parent.

35 s_outlier: float , default = 2.5

36 Used to define the cut -off density for each cluster

37 such that all points within any given cluster with a

38 density less than the cut -off density of that cluster

39 are removed from that cluster. The cut -off density is

40 the minimum density of points that are not local

41 outliers. A local outlier is any point with a

42 local -outlier -factor greater than s_outlier. Decreasing

43 s_outlier has the effect of shedding the outer layers

44 off the cluster.

45 workers: int <= number of cpus , default = -1 (uses all cpus)
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46 The number of core processing units used to perform

47 some parallelised calculations.

48

49 Attributes

50 ----------

51 n_samples: int > 0

52 The number of points in P, i.e. n_samples = P.shape [0].

53 features: int > 0

54 The number of features/dimensions of P,

55 i.e. features = P.shape [1].

56 transform: PCA object

57 The PCA transformation object. Initialising this now

58 saves computation time that would otherwise be incurred

59 from repeated initialising.

60 origin_for_cdist: ndarray of shape (1, k_den) and dtype float

61 Allows the use of cdist to compute the sum of squared

62 distances instead of numpy (which is slower).

63 clusters: ndarray of shape (n_samples ,) and dtype int

64 The index of each point indicating the smallest cluster

65 it belongs to. A index of -1 implies that the point is

66 not clustered and is instead treated as noise.

67 ids: ndarray of shape (np.unique(clusters).size ,) and

68 dtype <UX

69 Contains the cluster identification string and its

70 relation to the cluster hierarchy , i.e. id = ’1’

71 indicates the first root -level cluster and id = ’1-1’

72 indicates its first child cluster.

73 """

74

75 def __init__(self , P, l_x = np.inf , k_den = 20, adaptive = 1,

76 k_link = ’auto’, rho_threshold = ’auto’,

77 f_reject = 0.85, s_outlier = 2.5, workers = -1):

78 # Initialise

79 self.P = P

80 self.n_samples , self.features = self.P.shape

81 self.l_x = l_x

82 self.k_den = k_den

83 self.adaptive = adaptive

84 if k_link == ’auto’:

85 contin_klink = 11.97* self.features **( -2.23)\

86 - 22.97* self.k_den **( -0.57)\

87 + 10.03

88 self.k_link = max(int(np.ceil(contin_klink)), 7)

89 else: self.k_link = k_link

90 if rho_threshold == ’auto’:
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91 nmrtr = 0.8076*( self.features **0.8099)

92 self.rho_threshold = nmrtr/np.log(self.k_den) + 1

93 else: self.rho_threshold = rho_threshold

94 self.f_reject = f_reject

95 self.s_outlier = s_outlier

96 self.workers = workers

97 self.transform = PCA(whiten = True)

98 self.origin_for_cdist = np.zeros((1, self.k_den))

99

100 def run(self):

101 # Find 3D-FOF root -level haloes.

102 if np.isfinite(self.l_x):

103 groups = pyfof.friends_of_friends(self.P[:, :3],

104 self.l_x)

105 else: groups = [range(self.n_samples)]

106 # Find substructure.

107 self.clusters = -np.ones(self.n_samples , dtype = np.int64)

108 self.ids = []

109 for i, g in enumerate(groups):

110 clstIdx = np.array(g)

111 clusters[clstIdx] = len(self.ids)

112 nextID = f"{i}"

113 self.ids.append(nextID)

114 self._find_substructure(clstIdx , parentID = nextID)

115 self.ids = np.array(self.ids)

116

117 def _find_substructure(self , node , parentID):

118 if node.size >= self.k_den:

119 # Transform the data.

120 if self.adaptive:

121 transNode = np.ascontiguousarray(

122 self.transform.fit_transform(self.P[node]))

123 else: transNode = self.P[node]

124

125 # Compute density and nearest neighbours.

126 indices = np.empty((node.size , self.k_den),

127 dtype = np.int64)

128 density = np.empty(node.size)

129 nbrs = cKDTree(transNode)

130 chunks = get_chunk_n_rows(row_bytes = 16* self.k_den ,

131 max_n_rows = node.size)

132 for sl in gen_batches(node.size , chunks):

133 dist , indices[sl] = nbrs.query(transNode[sl],

134 k = self.k_den , workers = self.workers)

135 coreDist = dist[:, -1]
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136 kernal = self.k_den - cdist(self.origin_for_cdist ,

137 dist , ’sqeuclidean ’).ravel()/coreDist **2

138 density[sl] = kernal/coreDist **( self.features)

139

140 # Densely connect points separated by saddle points

141 # in the density field and extract relevant clusters.

142 ind = indices[:, :self.k_link]

143 clusters , ids = self._densely_aggregate(density , ind ,

144 density[ind]. argmax(axis = 1) == 0, indices ,

145 self.rho_threshold , self.f_reject ,

146 self.s_outlier , self.adaptive , self.features)

147

148 # Save clusters to list and if adaptive == 2 then

149 # search within them.

150 if clusters:

151 sortedClstID = sorted(zip(clusters , ids),

152 key = lambda c_id: c_id [1])

153 for clst , id in sortedClstId:

154 nextCluster = node[clst]

155 self.clusters[nextCluster] = len(self.ids)

156 childNum = ’-’.join([str(i) for i in id])

157 nextID = f"{parentID}-{childNum}"

158 self.ids.append(nextID)

159 if self.adaptive == 2:

160 self._find_substructure(nextCluster ,

161 nextID)

162

163 @staticmethod

164 @njit(fastmath = True)

165 def _densely_aggregate(density , indices , localMaxima ,

166 indices_full , rho_threshold , f_reject ,

167 s_outlier , adaptive , features):

168 # Preparation.

169 procOrder = density.argsort ()[::-1]

170 procOrder = procOrder[np.invert(localMaxima[procOrder ])]

171 n_samples , k_link = indices.shape

172 localMaxima = np.where(localMaxima)[0]

173 densityConnect = [[ locMax] for locMax in localMaxima]

174 whichDC = np.empty(n_samples , dtype = np.int64)

175 whichDC[localMaxima] = np.arange(localMaxima.size)

176 sizesDC = [1]* localMaxima.size

177 emptIntList = [0 for i in range (0)]

178 children = [emptIntList [:] for i in

179 range(localMaxima.size)]

180 emptIntArr = np.empty(0, dtype = np.int64)
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181 clusters = [emptIntArr for i in range (0)]

182 lenClsts = 0

183 parents = emptIntList [:]

184

185 # Densley connect into significant hierarchy.

186 zippedIdx = zip(procOrder , indices[procOrder],

187 density[procOrder ])

188 for idx , currNN , currDensity in zippedIdx:

189 unproc = density[currNN] > currDensity

190 connections = set(whichDC[currNN[unproc ]])

191 lenCnct = len(connections)

192 if lenCnct == 1: # Connect to existing group.

193 cnct = connections.pop()

194 densityConnect[cnct]. append(idx)

195 sizesDC[cnct] += 1

196 whichDC[idx] = cnct

197 else: # Join multiple groups and append idx.

198 srtdCncts = sorted(zip([ sizesDC[cnct]

199 for cnct in connections],

200 connections))

201 bigSizeDC , bigCnct = srtdCncts [-1]

202 addSize = 1

203 newClsts = [emptIntArr for i in range (0)]

204 significant = emptIntList [:]

205 sigCount = 0

206 for i, (sizeDC , cnct) in enumerate(srtdCncts):

207 if i != lenCnct - 1:

208 extDC = densityConnect[cnct]

209 densityConnect[cnct] = emptIntList

210 densityConnect[bigCnct ]. extend(extDC)

211 addSize += sizeDC

212 if children[cnct]:

213 clst = np.array(extDC)

214 newClsts.append(clst)

215 significant.append(cnct)

216 sigCount += 1

217 whichDC[clst] = bigCnct

218 elif sizeDC >= k_link:

219 # Groups must be larger than k_link.

220 clst = np.array(extDC)

221 # Density ratio condition.

222 medThr = rho_threshold*currDensity

223 if np.median(density[clst]) > medThr:

224 newClsts.append(clst)

225 significant.append(cnct)
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226 sigCount += 1

227 whichDC[clst] = bigCnct

228 else:

229 for j in extDC:

230 whichDC[j] = bigCnct

231 # Check largest group last to save time.

232 if sigCount > 0:

233 # Has child clusters.

234 if children[bigCnct ]:

235 cLst = densityConnect[bigCnct ][: bigSizeDC]

236 cArr = np.array(cLst)

237 newClsts.append(cArr)

238 significant.append(bigCnct)

239 sigCount += 1

240 elif bigSizeDC >= k_link:

241 # Groups must be larger than k_link.

242 cLst = densityConnect[bigCnct ][: bigSizeDC]

243 cArr = np.array(cLst)

244 # Density ratio condition.

245 medThr = rho_threshold*currDensity

246 if np.median(density[clst]) > medThr:

247 newClsts.append(clst)

248 significant.append(bigCnct)

249 sigCount += 1

250 # If more than one significant group exists

251 # create new clusters.

252 if sigCount > 1:

253 clusters.extend(newClsts)

254 for i, cnct in enumerate(significant):

255 for child in children[cnct]:

256 parents[child] = lenClsts + i

257 children[cnct] = [lenClsts + i]

258 parents.append (-1)

259 lenClsts += sigCount

260 densityConnect[bigCnct ]. append(idx)

261 whichDC[idx] = bigCnct

262 sizesDC[bigCnct] += addSize

263 for cnct in connections:

264 if cnct != bigCnct:

265 children[bigCnct ]. extend(children[cnct])

266 connectionsArr = np.unique(whichDC)

267 # If points were not all aggregated together check

268 # if remaining groups are significant

269 if connectionsArr.size > 1:

270 significantList = [sizesDC[cnct] >= k_link
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271 for cnct in connectionsArr]

272 if significantList.count(True) > 1:

273 for i, cnct in enumerate(connectionsArr):

274 if significantList[i]:

275 cArr = np.array(densityConnect[cnct])

276 clusters.append(cArr)

277 for child in children[cnct]:

278 parents[child] = lenClsts

279 parents.append (-1)

280 lenClsts += 1

281

282 # Check similarity between parent -child pairs

283 keep = [True]* lenClsts

284 remove = 0

285 for i, (clst , parent) in enumerate(zip(clusters , parents)):

286 if parent != -1:

287 similarity = clst.size/clusters[parent ].size

288 else: similarity = clst.size/n_samples

289 if similarity > f_reject:

290 if parent == -1 or i in parents [:i]:

291 if keep[i]:

292 keep[i] = False

293 remove += 1

294 else:

295 keep[parent] = False

296 remove += 1

297

298 if lenClsts - remove > 1:

299 # Remove outliers

300 if s_outlier < np.inf:

301 invDensity = density **(-1/ features)

302 lrds = np.empty_like(density)

303 for i in range(n_samples):

304 kdenInvDensity = invDensity[indices_full[i]]

305 lrds[i] = np.maximum(kdenInvDensity ,

306 invDensity[i]).sum()

307 lrds = 1/lrds

308 lofs = np.empty_like(density)

309 for i in range(n_samples):

310 lofs[i] = lrds[indices_full[i]]. mean()

311 lofs = lofs/lrds

312 inliers = lofs < s_outlier

313 for i, clst in enumerate(clusters):

314 if keep[i]:

315 cutOff = inliers[clst]
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316 if cutOff.sum() >= k_link:

317 clstDensity = density[clst]

318 cutoffDnsty = clstDnsty[cutOff ].min()

319 inlierBool = clstDnsty >= cutoffDnsty

320 if inlierBool.sum() < k_link:

321 keep[i] = False

322 remove += 1

323 else: clusters[i] = clst[inlierBool]

324 else:

325 keep[i] = False

326 remove += 1

327 if lenClsts - remove > 1:

328 # Assign correct parents

329 for i, parent in enumerate(parents):

330 if keep[i]:

331 while not (keep[parent] or parent == -1):

332 parent = parents[parent]

333 parents[i] = parent

334 # Assign correct ids

335 ids = [emptIntList ]* lenClsts

336 activeParents = [-1]

337 for pIdx in activeParents:

338 j = 1

339 for child , p_iter in enumerate(parents):

340 if p_iter == pIdx and keep[child]:

341 ids[child] = ids[pIdx] + [j]

342 j += 1

343 activeParents.append(child)

344 # Remove insignificant clusters

345 finalClsts = []

346 finalIDs = []

347 for i, (clst , id) in enumerate(zip(clusters , ids)):

348 if keep[i]:

349 if adaptive == 2:

350 if len(id) == 1:

351 finalClsts.append(clst)

352 finalIDs.append(id)

353 else:

354 finalClsts.append(clst)

355 finalIDs.append(id)

356 return finalClsts , finalIDs

357 finalClsts = [emptIntArr for i in range (0)]

358 finalIDs = [[1] for i in range (0)]

359 return finalClsts , finalIDs
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B.3 The CluSTARR-ND algorithm

As described in paper 3, this section presents the CluSTARR-ND algorithm. Simi-

larly to CluSTAR-ND, to run the algorithm the user first needs to construct P, the

np.ndarray of shape (n, d) that represents the n points and each of their d features

that exist within the data-to-be-clustered. The functionality of producing 3D FOF

field haloes is not yet written into this code – however, this will appear at a later

date. The values of k den and adaptive should again also be considered, however

as with CluSTAR-ND, the default values of 20 and 1 work well in nearly all cases.

Unlike CluSTAR-ND and owing to the distinct cluster extraction method within

CluSTARR-ND, the values of S and h style should be considered. Strictly speaking,

there is no one best value for either of these parameters – although their default

values will give good quality clusterings but may classify groups too many or too few

clusters for the user’s needs. The algorithm can be applied to the input data with

its default settings by running the following lines:

1 cstarr = CluSTARR_ND(P)

2 cstarr.run()

Then the CluSTARR-ND equivalent of the OPTICS reachability plot, the ordered-

density plot, can be constructed by plotting the following y vs x:

1 y = cstarr.logRho[cstarr.ordering]

2 x = np.arange(cstarr.n_samples)

Each cluster that has been found can be retrieved by running the following:

1 clst_catalogue = []

2 for start , end in cstarr.clusters:

3 clst = cstarr.ordering[start:end]

4 clst_catalogue.append(clst)

In a similar format to both Halo-OPTICS and CluSTAR-ND, clst catalogue is

now a list of arrays that each represent the indices of the points (with respect to

cstarr.P) that belong to each cluster.
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1 import numpy as np

2 from scipy.spatial import cKDTree

3 from scipy.spatial ,distance import cdist

4 from scipy.stats import norm , beta

5 from scipy.optimize import minimize

6 from sklearn.decomposition import PCA

7 from sklearn.utils import gen_batches , get_chunk_n_rows

8 from numba import njit , prange

9

10 class CluSTARR_ND:

11 """

12 The CluSTARR -ND algorithm.

13

14 Parameters

15 ----------

16 P: ndarray of shape (n_samples , features) and dtype float

17 The input data to be clustered over.

18 l_x: float > 0, default = np.inf

19 The linking length used to find 3D-FOF field haloes.

20 k_den: int >= 7, default = 20

21 The number of nearest neighbours used to estimate

22 the local density at each point in P.

23 adaptive: int in [0, 1], default = 1

24 The setting controlling the adaptivity of the metric.

25 0 specifies no transformation and 1 specifies a single

26 global PCA transformation.

27 S: float , default = 5

28 The statistical significance that clusters must have

29 when compared to noisy density fluctuations.

30 k_link: int >= 7 (for reliable behaviour), default = ’auto’

31 The number of nearest neighbours used to densely

32 connect the points in P.

33 h_style: int = 0 or 1

34 A flag indicating the style of hierarchy that is returned.

35 A value of 1 is closer to the Halo -OPTICS and CluSTAR -ND

36 style of hierarchy.

37 workers: int <= num_cpus , default = -1

38 The number of core processing units (cpus) used to perform

39 some parallelised calculations. A value of -1 uses all

40 available cpus.

41

42 Attributes

43 ----------

44 n_samples: int > 0

45 The number of points in P, i.e. n_samples = P.shape [0].
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46 features: int > 0

47 The number of features/dimensions of P,

48 i.e. features = P.shape [1].

49 transform: PCA object

50 The PCA transformation object. Initialising this now

51 saves computation time that would otherwise be incurred

52 from repeated initialising.

53 origin_for_cdist: ndarray of shape (1, k_den) and dtype float

54 Allows the use of cdist to compute the sum of squared

55 distances instead of numpy (which is slower).

56 ordering: ndarray of shape (n_samples ,) and dtype float

57 The ordered list that can be used to create the

58 ordered -density plot (an analogue of the reachability

59 plot that OPTICS produces).

60 logRho: ndarray of shape (n_samples ,) and dtype float

61 The logarithm of the local density (scaled between 0 and

62 1) of each point in P.

63 groups: ndarray of shape (num_groups , 2) and dtype int

64 The start and end positions of each aggregated group

65 within the ordered list.

66 prominences: ndarray of shape (num_groups ,) and dtype float

67 The prominences of each aggregated group.

68 significances: ndarray of shape (num_clusters ,) and

69 dtype float

70 The statistical significances of each returned cluster.

71 clusters: ndarray of shape (n_samples ,) and dtype int

72 The index of each point indicating the smallest cluster

73 it belongs to. A index of -1 implies that the point is

74 not clustered and is instead treated as noise.

75 ids: ndarray of shape (num_clusters ,) and dtype <UX (X is

76 twice the max level of the hierarchy + 1)

77 Contains the cluster identification string and its

78 relation to the cluster hierarchy , i.e. id = ’1’

79 indicates the first root -level cluster and id = ’1-1’

80 indicates its first child cluster.

81 """

82

83 def __init__(self , P, k_den = 20, adaptive = 1, S = 5,

84 k_link = ’auto’, h_style = 1, workers = -1):

85 # Initialise.

86 self.P = P

87 self.n_samples , self.features = self.P.shape

88 self.k_den = k_den

89 self.adaptive = adaptive

90 self.S = S
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91 if k_link == ’auto’:

92 contin_klink = 11.97* self.features **( -2.23)\

93 - 22.97* self.k_den **( -0.57)\

94 + 10.03

95 self.k_link = max(int(np.ceil(contin_klink)), 7)

96 else: self.k_link = k_link

97 self.h_style = h_style

98 self.workers = workers

99 self.transform = PCA(whiten = True)

100 self.origin_for_cdist = np.zeros((1, self.k_den))

101

102 def run(self):

103 self._find_substructure(np.arange(self.n_samples), ’1’)

104

105 def _find_substructure(self , node , parentID):

106 # Find the substructure of each field halo.

107 node = self._transform_data(node)

108 indices , self.logRho = self._find_rho_and_kNN(node)

109 del node

110 # Order points and find groups.

111 localMaxima = self.logRho[indices ]. argmax(axis = 1) == 0

112 self.ordering , self.groups , self.prominences ,

113 childCheck , self.blrs = self._aggregate(self.logRho ,

114 indices , localMaxima)

115

116 self.prominences = self._adjust_prominences(

117 self.logRho[self.ordering], self.groups ,

118 self.prominences , childCheck)

119 self._find_significances ()

120 self.find_clusters(parentID)

121

122 def _transform_data(self , node):

123 # Transform the data.

124 if self.adaptive:

125 return np.ascontiguousarray(

126 self.transform.fit_transform(self.P[node]))

127 else: return self.P[node]

128

129 def _find_rho_and_kNN(self , transNode):

130 # Compute density and nearest neighbours.

131 d = np.empty (( transNode.shape [0], self.k_den))

132 i = np.empty (( transNode.shape [0], self.k_den),

133 dtype = np.int64)

134 nbrs = cKDTree(transNode)

135 chunks = get_chunk_n_rows(row_bytes = 16* self.k_den ,
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136 max_n_rows = transNode.shape [0])

137 for sl in gen_batches(transNode.shape[0], chunks):

138 d[sl], i[sl] = nbrs.query(transNode[sl],

139 k = self.k_den , workers = self.workers)

140 coreDist = dist[:, -1]

141 uSqr = cdist(self.origin_for_cdist , d,

142 ’sqeuclidean ’).ravel()

143 kernal = self.k_den - uSqr/coreDist **2

144 logRho = np.log(kernal) - self.features*np.log(coreDist)

145 minVal , maxVal = self._find_minmax(logRho)

146 scaledLogRho = (logRho - minVal)/( maxVal - minVal)

147 return i[:, :self.k_link], scaledLogRho

148

149 @staticmethod

150 @njit(fastmath = True)

151 def _find_minmax(x):

152 # Find min and max of x quickly.

153 minVal = x[0]

154 maxVal = x[0]

155 for xi in x[1:]:

156 if xi < minVal: minVal = xi

157 elif xi > maxVal: maxVal = xi

158 return minVal , maxVal

159

160 @staticmethod

161 @njit(fastmath = True)

162 def _aggregate(logRho , indices , localMaxima):

163 # Preparation.

164 procOrder = logRho.argsort ()[::-1]

165 procOrder = procOrder[np.invert(localMaxima[procOrder ])]

166 n_samples , k_link = indices.shape

167 localMaxima = np.where(localMaxima)[0]

168 aggregations = [[ locMax] for locMax in localMaxima]

169 whichAgg = np.empty(n_samples , dtype = np.int64)

170 whichAgg[localMaxima] = np.arange(localMaxima.size)

171 sizesAgg = np.ones(localMaxima.size , dtype = np.int64)

172 prominences = logRho[localMaxima]

173 blrs = np.zeros(localMaxima.size)

174 groupStarts = np.zeros(localMaxima.size , dtype = np.int64)

175 emptIntList = [0 for i in range (0)]

176 children = [[0 for i in range (0)] for i in

177 range(localMaxima.size)]

178

179 # Connect densely into significant hierarchy.

180 zippedIdx = zip(procOrder , indices[procOrder],
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181 logRho[procOrder ])

182 for idx , currNN , currLogRho in zippedIdx:

183 unproc = logRho[currNN] > currLogRho

184 connections = set(whichAgg[currNN[unproc ]])

185 # Connect to existing group iff one connection exists.

186 if len(connections) == 1:

187 mainConnect = connections.pop()

188 addSize = 1

189 else: # Otherwise join multiple groups and append idx.

190 addSize = 0

191 sortedConnects = sorted(zip([ sizesAgg[connect]

192 for connect in connections],

193 connections))

194 mainSizeAgg , mainConnect = sortedConnects [-1]

195 for sizeAgg , connect in sortedConnects [ -2::-1]:

196 extendAgg = aggregations[connect]

197 aggregations[mainConnect ]. extend(extendAgg)

198 aggregations[connect] = emptIntList

199 for jdx in extendAgg:

200 whichAgg[jdx] = mainConnect

201 prominences[mainConnect] = np.maximum(

202 prominences[mainConnect],

203 prominences[connect ])

204 if sizeAgg >= k_link:

205 prominences[connect] -= currLogRho

206 blrs[connect] = currLogRho

207 groupStarts[connect] = mainSizeAgg +\

208 addSize

209 children[mainConnect ]. append(connect)

210 addSize += sizeAgg

211 addSize += 1

212 aggregations[mainConnect ]. append(idx)

213 whichAgg[idx] = mainConnect

214 sizesAgg[mainConnect] += addSize

215

216 connectionsArr = np.unique(whichAgg)

217 # If not all points were aggregated together , make it so.

218 if connectionsArr.size == 1:

219 mainConnect = connectionsArr [0]

220 else:

221 addSize = 0

222 sortedConnects = sorted(zip([ sizesAgg[connect]

223 for connect in connectionsArr],

224 connectionsArr))

225 mainSizeAgg , mainConnect = sortedConnects [-1]
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226 for sizeAgg , connect in sortedConnects [ -2::-1]:

227 extendAgg = aggregations[connect]

228 aggregations[connect] = emptIntList

229 aggregations[mainConnect ]. extend(extendAgg)

230 prominences[mainConnect] = np.maximum(

231 prominences[mainConnect],

232 prominences[connect ])

233 if sizeAgg >= k_link:

234 prominences[connect] -= currLogRho

235 blrs[connect] = currLogRho

236 groupStarts[connect] = mainSizeAgg + addSize

237 children[mainConnect ]. append(connect)

238 addSize += sizeAgg

239

240 # Finalise ordering.

241 ordering = np.array(aggregations[mainConnect ])

242

243 # Finalise groups.

244 childCheck = np.zeros(localMaxima.size , dtype = np.bool_)

245 activeGroups = [childConnect for childConnect in

246 children[mainConnect ]]

247 while activeGroups:

248 connect = activeGroups.pop()

249 startAdjust = groupStarts[connect]

250 childConnects = children[connect]

251 if childConnects:

252 for childConnect in childConnects:

253 groupStarts[childConnect] += startAdjust

254 activeGroups.extend(childConnects)

255 childCheck[connect] = True

256 keepCheck = sizesAgg >= k_link

257 keepCheck[mainConnect] = False

258 groups = np.concatenate (( groupStarts.reshape(-1, 1),

259 sizesAgg.reshape(-1, 1)),

260 axis = 1)[keepCheck]

261 groups[:, 1] += groups[:, 0]

262 prominences = prominences[keepCheck]

263 childCheck = childCheck[keepCheck]

264 blrs = blrs[keepCheck]

265 reorder = groups[:, 0]. argsort ()

266

267 # Reorder according to ordered list.

268 groups = groups[reorder]

269 prominences = prominences[reorder]

270 childCheck = childCheck[reorder]
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271 blrs = blrs[reorder]

272 return ordering , groups , prominences , childCheck , blrs

273

274 @staticmethod

275 @njit(fastmath = True , parallel = True)

276 def _adjust_prominences(lrOrdIdx , grps , proms , chldChk):

277 # Adjust group prominences for noise.

278 for i in prange(grps.shape [0]):

279 if chldChk[i]:

280 start , end = grps[i]

281 grpLR = lrOrdIdx[start:end]

282 ord = grpLR.argsort ()[::-1]

283 idx_diff_1 = ord - np.arange(ord.size)

284 w = np.abs(idx_diff_1).astype(np.float64)

285 if np.any(w != 0):

286 w /= w.sum()

287 idx_diff_2 = np.abs(grpLR[ord] - grpLR)

288 proms[i] -= np.sum(w*idx_diff_2)

289 return proms

290

291 def _find_significances(self):

292 # Fit beta distribution to prominences and return

293 # group significance.

294 if self.prominences.size > 1:

295 # Model pdf.

296 def model_pdf(p):

297 return p[0]* beta.pdf(self.prominences ,

298 p[1], p[2]) + 1 - p[0]

299 # Negative log -likelihood.

300 def negLL(p):

301 return -np.sum(np.log(np.maximum(

302 model_pdf(p), 10**( -323.6))))

303 # Boundary restrictions.

304 bnds = ((0, 1), (1e-15, None), (1e-15, None))

305 # Initial guess.

306 mu = self.prominences.mean()

307 var = self.prominences.var()

308 p = [1, mu*(mu*(1 - mu)/var - 1),

309 (1 - mu)*(mu*(1 - mu)/var - 1)]

310 # Fitting.

311 sol = minimize(negLL , p, jac = ’3-point’,

312 bounds = bnds)

313 if sol.success: self.pFit = sol.x

314 else: self.pFit = p

315 self.group_sigs = norm.isf(beta.sf(self.prominences ,



B.3. THE CLUSTARR-ND ALGORITHM 154

316 self.pFit[1], self.pFit [2]))

317 else:

318 self.pFit = [1, 1, 1]

319 self.group_sigs = np.full(self.prominences.size ,

320 np.nan)

321

322 def find_clusters(self , parentID = ’1’):

323 # Classify clusters as significant groups.

324 sl = self.group_sigs >= self.S

325 self.significances = self.group_sigs[sl]

326 self.clusters = self.groups[sl]

327 clst_blrs = self.blrs[sl]

328

329 # Add on root -level cluster.

330 self.significances = np.concatenate ((np.array([np.inf]),

331 self.significances))

332 self.clusters = np.concatenate ((

333 np.array ([[0, self.n_samples ]]),

334 self.clusters), axis = 0)

335 clst_blrs = np.concatenate ((np.array ([0.0]) , clst_blrs))

336

337 # Label clusters according to their hierarchy.

338 self.ids = []

339 children = []

340 for i, clst in enumerate(self.clusters):

341 children.append (0)

342 parent = next((-j - 1 for j, v in

343 enumerate(self.clusters [:i][:: -1])

344 if clst [0] < v[1] and clst [1] <= v[1]),

345 None)

346 if parent is not None: # Child cluster of parent.

347 children[parent] += 1

348 nextID = f"{self.ids[parent ]}-{ children[parent ]}"

349 self.ids.append(nextID)

350 elif len(self.ids) > 0: # Multiple root clusters.

351 self.ids.append(str(max([int(id.split(’-’)[0])

352 for id in self.ids]) + 1))

353 else: # First root cluster.

354 self.ids.append(parentID)

355 self.ids = np.array(self.ids)

356

357 # Optionally reduce hierarchy.

358 if self.h_style and self.ids.size > 1:

359 # Find children.

360 hLevel = np.char.count(self.ids , ’-’)
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361 oneLevelSep = hLevel.reshape(1, -1) == \

362 hLevel.reshape(-1, 1) + 1

363 subClst = np.char.startswith(self.ids.reshape(1, -1),

364 np.char.add(self.ids , ’-’).reshape(-1, 1))

365 children_bool = np.logical_and(subClst , oneLevelSep)

366 # Hierarchy correction.

367 compC , compP , pTrack = self._hierarchy_correction(

368 self.clusters , children_bool , clst_blrs ,

369 self.logRho[self.ordering],

370 beta.isf(norm.sf(self.S), self.pFit[1],

371 self.pFit [2]))

372 compS = norm.isf(beta.sf(compP ,

373 self.pFit[1], self.pFit [2]))

374 keep = np.ones(self.ids.size , dtype = np.bool_)

375 compS_bool = compS >= self.significances[pTrack]

376 keep[pTrack ][ compS_bool] = False

377 keep [0] = True

378 self.significances = np.concatenate ((

379 self.significances[keep], compS))

380 self.clusters = np.concatenate ((self.clusters[keep],

381 compC), axis = 0)

382

383 # Reorder the list of clusters according increasing

384 # start and decreasing end indices.

385 reorder = sorted(np.arange(self.clusters.shape [0]),

386 key = lambda i:

387 [self.clusters[i, 0], -self.clusters[i, 1]])

388 self.significances = self.significances[reorder]

389 self.clusters = self.clusters[reorder]

390

391 # Re -label clusters.

392 self.ids = []

393 children = []

394 for i, clst in enumerate(self.clusters):

395 children.append (0)

396 parent = next((-j - 1 for j, v in

397 enumerate(self.clusters [:i][:: -1])

398 if clst [0] < v[1] and clst [1] <= v[1]),

399 None)

400 if parent is not None: # Child cluster of parent.

401 children[parent] += 1

402 nextID = f"{self.ids[parent ]}-\

403 {children[parent ]}"

404 self.ids.append(nextID)

405 elif len(self.ids) > 0: # Multiple root clusters.
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406 self.ids.append(str(max([int(id.split(’-’)[0])

407 for id in self.ids]) + 1))

408 else: # First root cluster

409 self.ids.append(parentID)

410 self.ids = np.array(self.ids)

411

412 @staticmethod

413 @njit(fastmath = True)

414 def _hierarchy_correction(clusters , children_bool , blrs ,

415 lrOrdIdx , cutOff):

416 compC = [[0 for j in range (0)] for i in range (0)]

417 compP = [0.0 for i in range (0)]

418 pTrack = [0 for i in range (0)]

419 # Cycle through each parent with children.

420 for p in range(clusters.shape [0]):

421 if children_bool[p].any():

422 newClst = [clusters[p, 0], 0]

423 blr_catch = 1.0

424 # Check each child for adjoining complementary

425 # clusters.

426 for c in np.where(children_bool[p])[0]:

427 newClst [1] = clusters[c, 0]

428 if blrs[c] != blr_catch:

429 blr_catch = blrs[c]

430 # Find prominence.

431 grpLR = lrOrdIdx[newClst [0]: newClst [1]]

432 ord = grpLR.argsort ()[::-1]

433 grpLROrd = grpLR[ord]

434 newProm = grpLROrd [0] - blrs[c]

435 if newProm >= cutOff:

436 # Adjust for noise.

437 w = np.abs(ord - np.arange(ord.size)

438 ).astype(np.float64)

439 if np.any(w != 0.0):

440 w /= w.sum()

441 idx_diff_2 = np.abs(grpLROrd -\

442 grpLR)

443 newProm -= np.sum(w*idx_diff_2)

444 if newProm >= cutOff:

445 compC.append(newClst)

446 compP.append(newProm)

447 pTrack.append(p)

448 break

449 return np.array(compC), np.array(compP), np.array(pTrack)
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P. M. Marrese, J. M. Mart́ın-Fleitas et al., “Gaia Data Release 2”, A&A,

2018, 616.

(96) Gaia Collaboration, Babusiaux, C., van Leeuwen, F., Barstow, M. A., Jordi,

C., Vallenari, A., Bossini, D., Bressan, A., Cantat-Gaudin, T., van Leeuwen,

M., Brown, A. G. A., Prusti, T., de Bruijne, J. H. J., Bailer-Jones, C.

A. L., Biermann, M., Evans, D. W., Eyer, L., Jansen, F., Klioner, S. A.,

Lammers, U., Lindegren, L., Luri, X., Mignard, F., Panem, C., Pourbaix,

D., Randich, S., Sartoretti, P., Siddiqui, H. I., Soubiran, C., Walton, N. A.,



BIBLIOGRAPHY 168

Arenou, F., Bastian, U., Cropper, M., Drimmel, R., Katz, D., Lattanzi, M.
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L., Silva, A. F., Smart, R. L., Smith, K. W., Solano, E., Solitro, F., Sordo,

R., Soria Nieto, S., Souchay, J., Spagna, A., Spoto, F., Stampa, U., Steele, I.

A., Steidelmüller, H., Stephenson, C. A., Stoev, H., Suess, F. F., Surdej, J.,

Szabados, L., Szegedi-Elek, E., Tapiador, D., Taris, F., Tauran, G., Taylor,

M. B., Teixeira, R., Terrett, D., Teyssandier, P., Thuillot, W., Titarenko,

A., Torra Clotet, F., Turon, C., Ulla, A., Utrilla, E., Uzzi, S., Vaillant, M.,

Valentini, G., Valette, V., van Elteren, A., Van Hemelryck, E., Vaschetto, M.,

Vecchiato, A., Veljanoski, J., Viala, Y., Vicente, D., Vogt, S., von Essen, C.,



BIBLIOGRAPHY 170

Voss, H., Votruba, V., Voutsinas, S., Walmsley, G., Weiler, M., Wertz, O.,

Wevers, T., Wyrzykowski, L., Yoldas, A., Zerjal, M., Ziaeepour, H., Zorec,

J., Zschocke, S., Zucker, S., Zurbach, C. and Zwitter, and T., “Gaia Data

Release 2 - Observational Hertzsprung-Russell diagrams”, A&A, 2018, 616,

A10.

(97) R. Gratton, A. Bragaglia, E. Carretta, V. D’Orazi, S. Lucatello and A. Sollima,

“What is a globular cluster? An observational perspective”, Astronomy and

Astrophysics Review, 2019, 27, 8.

(98) K. Ashman and S. Zepf, Globular Cluster Systems, Cambridge University

Press, 1998.

(99) H. Shapley and H. B. Sawyer, Harvard Observatory Bulletin, 1927, 848.

(100) H. Shapley and H. B. Sawyer, Harvard Observatory Bulletin, 1927, 849.

(101) H. Shapley and H. B. Sawyer, Harvard Observatory Bulletin, 1927, 852.

(102) H. Shapley and H. B. Sawyer, Harvard Observatory Bulletin, 1929, 869.

(103) H. S. Hogg, “Harlow Shapley and Globular Clusters”, Publications of the

Astronomical Society of the Pacific, 1965, 77, 336.

(104) C. Firmani and V. Avila-Reese, Revista Mexicana de Astronomia y Astrofisica

Conference Series, ed. V. Avila-Reese, C. Firmani, C. S. Frenk and C. Allen,

2003, vol. 17, pp. 107–120.

(105) P. Guhathakurta, J. Tyson and S. Majewski, “A redshift limit for the faint blue

galaxy population from deep U band imaging”, The Astrophysical Journal,

1990, 357, L9–L12.

(106) R. J. Bouwens, P. A. Oesch, G. D. Illingworth, I. Labbé, P. G. van Dokkum,
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M. Ouchi, R. Pelló, C.-E. Rydberg, I. Shimizu, Y. Taniguchi, H. Umehata

and N. Yoshida, “The onset of star formation 250 million years after the Big

Bang”, Nature, 2018, 557, 392–395.

(110) Y. Harikane, A. K. Inoue, K. Mawatari, T. Hashimoto, S. Yamanaka, Y.

Fudamoto, H. Matsuo, Y. Tamura, P. Dayal, L. Y. A. Yung, A. Hutter,

F. Pacucci, Y. Sugahara and A. M. Koekemoer, “A Search for H-Dropout

Lyman Break Galaxies at z ∼ 12–16”, The Astrophysical Journal, 2022, 929,

1.

(111) E. Hubble, “No. 324. Extra-galactic nebulae.”, Contributions from the Mount

Wilson Observatory / Carnegie Institution of Washington, 1926, 324, 1–49.

(112) E. Hubble, “Realm of the Nebulae, ed”, Hubble, EP, 1936, 2.

(113) A. W. Graham, in Planets, Stars and Stellar Systems. Volume 6: Extragalactic

Astronomy and Cosmology, ed. T. D. Oswalt and W. C. Keel, 2013, vol. 6,

pp. 91–140.

(114) M. H. Liller, “The Distribution of Intensity in Elliptical Galaxies of the Virgo

Cluster. II”, The Astrophysical Journal, 1966, 146, 28.

(115) A. W. Graham, M. M. Colless, G. Busarello, S. Zaggia and G. Longo, “Ex-

tended stellar kinematics of elliptical galaxies in the Fornax cluster”, Astron-

omy and Astrophysics Supplement, 1998, 133, 325–336.

(116) E. Emsellem, M. Cappellari, D. Krajnović, K. Alatalo, L. Blitz, M. Bois,
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nent”, CR Acad. Sci. Paris, 1984, 525–528.
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