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We study the propagation of ultrashort pulses in opti-
cal fiber with gain and positive (or normal) quartic dis-
persion by self-similarity analysis of the modified non-
linear Schrödinger equation. We find an exact asymp-
totic solution, corresponding to a triangle-like, T4/3 in-
tensity profile, with a T1/3 chirp, which is confirmed
by numerical simulations. This solution follows dif-
ferent amplitude and width scaling compared to the
conventional case with quadratic dispersion. We also
suggest, and numerically investigate, a fiber laser con-
sisting of components with positive quartic dispersion
which emits quartic self-similar pulses. © 2022 Optical

Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Ultrashort optical pulses have played a central role in many
breakthrough photonics applications [1, 2]. In the normal dis-
persion regime (β2 > 0), bright solitonic pulses do not exist, but
in the presence of gain, input pulses evolve toward pulses with
parabolic intensity profiles [3, 4]. Detailed analysis based on
self-similarity methods showed that these parabolic pulses are
exact asymptotic solutions of the nonlinear Schrödinger equa-
tion (NLSE), and propagate self-similarly in optical amplifiers,
with exponential scaling of the amplitude and temporal width
[5, 6]. This solution displays outstanding robustness against per-
turbations and allows for the generation of high-energy pulses
[7, 8]. These pulses possess a linear chirp which means that they
can be recompressed to generate ultrashort pulses with high
peak powers. These remarkable properties have been at the
basis of a new generation of fiber amplifiers [9] and lasers [10].

So far, studies have focused on waveguides with second-
order dispersion, as it usually is the dominant contribution.
There have been investigations of nonlinear pulse propagation
in the presence of second- and fourth-order dispersion. Most
relevant is the numerical study of Bale et al., who reported the
formation of triangular pulses and of pulses with double-peaked
spectra [11]. In addition to this, recent work shows optical pulses
arising from the interaction of only negative fourth-order disper-

sion (β4 < 0) and the Kerr nonlinearity [12]. These pure-quartic
solitons have novel, interesting properties and have stimulated
theoretical research [13, 14], and the development of laser sys-
tems with dominant quartic dispersion [15, 16]. Given the simi-
lar physics of conventional and pure-quartic solitons, one might
ask whether optical pulses also propagate self-similarly in the
presence of gain and positive quartic dispersion.

In this Letter, we theoretically and numerically study the self-
similar propagation of optical pulses in a medium with positive
fourth-order dispersion (.i.e., β4 > 0) and distributed gain. We
find that the pulses evolve toward a new asymptotic solution
with temporal and spectral profiles that differ significantly from
the quadratic dispersion case. After this we simulate the pulse
evolution in a laser cavity design consisting of components with
positive quartic dispersion. Our results show that, similarly to
parabolic pulses [10, 17] and all-normal dispersion lasers [18],
the addition of a spectral filter to compensate for the accumu-
lated chirp leads to a laser that emits quartic self-similar pulses.
We expect our results to stimulate follow-up investigations of
pulse dynamics in systems with complicated dispersion profiles,
in areas as diverse as laser physics and applied mathematics.

We begin our analysis by considering the propagation of an
optical pulse in a quartic dispersion medium with distributed
gain. In the absence of gain saturation and for pulses with
spectral bandwidths narrower than the amplification bandwidth,
this evolution can be described by the modified NLSE
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where ψ = ψ(z, T) is the slowly varying amplitude of the pulse’s
envelope with respect to a carrier frequency ω0, z is the prop-
agation coordinate, β4 is the fourth-order dispersion, T is the
pulse local time, γ is the nonlinear parameter and g is the dis-
tributed gain coefficient. The evolution of the pulse energy
Ep(z) =

∫ ∞
−∞ |ψ(z, T)|2dT in the amplifier must satisfy the con-

servation integral
Ep(z) = Ep(0)egz. (2)

In the presence of quadratic dispersion, the width of self-similar
pusles increases as egz/3, whereas their power scales as e2gz/3,
consistent with Eq. (2).
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To find a self-similar solution in the presence of quartic dis-
persion, we look for a solution with a positive definite amplitude
and phase of the form ψ(z, T) = A(z, T)eiϕ(z,T). By substituting
this into Eq. (1) we find a complex equation, the real and imag-
inary parts of which can be written separately. Each of these
equations has many terms stemming from the fourth partial time
derivative. As discussed later, the asymptotic terms, the terms
that dominate as z→ ∞, are those with the highest powers of ϕ
and its time derivatives, giving

Az −
g
2

A =
β4
12

(
2AT(ϕT)

3 + 3A(ϕT)
2 ϕTT

)
, (3)

ϕz =
β4
24

(ϕT)
4 − γA2, (4)

where the subscripts indicate partial derivatives.
Equations (3) and (4) can be solved in closed form provided

that γβ4 > 0, and give
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where Ein is the input pulse energy. Solution (5) is valid for
|T| 6 T0(z); for |T| > T0(z), A(z, T) = 0. The temporal phase is

ϕ(z, T) = ϕ0 −
3
2

(
9g

28β4

)1/3
T4/3 +

7
4g

γA2
0 e4gz/7, (8)

with ϕ0 an arbitrary constant. This corresponds to an instanta-
neous frequency δω(T) = −∂ϕ(z, T)/∂T = 2(9g/28β4)

1/3T1/3.
Equations (5)-(8) show that in the asymptotic regime the pulse

maintains its shape, with the intensity having a (1− (T/T0))
4/3

dependence, and the instantaneous frequency having a T1/3

chirp. They further show that both the width and the intensity
grow exponentially, with a fraction 3/7 of the total gain used
to increase the pulse width and a fraction 4/7 used to increase
the pulse intensity. Hence the total pulse energy increases as
exp(gz) consistent with Eq. (2) [8].

The time dependence of the self-similar pulses can be under-
stood using an extension of the argument of Anderson et al. [3].
When a pulse propagates through a Kerr nonlinear medium,
it generates new frequency components, that are shifted by an
amount proportional to δωNL ∝ −∂I/∂t [19], so red-shifted fre-
quencies appear on the pulse’s leading edge and blue-shifted fre-
quencies appear on its trailing edge. For the self-similar pulses,
Eq. (5) shows that δωNL ∝ T1/3, and so the nonlinearly gener-
ated frequencies align with the instantaneous frequency that
also varies as T1/3. This consistency has the following conse-
quence: in the presence of quartic dispersion the group velocity
varies approximately as (∆ω)3 about ω0. The T1/3 instanta-
neous frequency, implies that T ∝ (∆ω)3, so the local group
velocity depends linearly on T. The effect of this is that the
pulse maintains the T1/3 instantaneous frequency, and grows
uniformly without wave breaking [3]. At a more general level,
this argument shows that the essence of the self-similar pulse is
its chirp, and that the intensity adjusts to maintain this chirp.

To confirm these theoretical predictions, we performed a set
of numerical simulations of Eq. (1) using a standard split-step
Fourier method [19]. We used Gaussian input pulses with pulse
durations (FWHM) ranging from 250 fs− 1 ps but with fixed
input energy Ein = 15 pJ, in a 7 m long fiber amplifier. The
fiber parameters are: quartic dispersion β4 = +1 ps4/km; g =
1.9 m−1; γ = 5.8 W−1km−1. The values of g and γ are typical
for single-mode Yb-doped fibers [5, 6], For a pulse duration
T0 = 200 fs, the quadratic dispersion coefficient in Ref. [5] (β2 =
+25 ps2/km) leads to a dispersion length LD = T2

0 /β2 = 1.6 m.
To use a similar metric, we chose a quartic dispersion coefficient
leading to the same dispersion length so that β4 = T4

0 /LD =

+1 ps4/km. The quadratic and cubic dispersion coefficients are
set to zero in our simulations.

Results of these simulations are summarized in Fig. 1(a),
which shows intensity and instantaneous frequency versus time
on a linear scale. The inset shows the intensity on a logarithmic
scale. Note the excellent agreement between simulations and
the asymptotic analytic results Eq. (5)-Eq. (8).
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Fig. 1. (a) Simulated output temporal intensity (red circles,
left axis) and chirp (blue circles, right axis) for a 15 pJ, 250 fs
FWHM Gaussian input pulse, compared to the asymptotic
intensity and instantaneous phase following from Eqs (5)-(8)
(solid curves). Inset: intensity profile and asymptotic solution
on logarithmic scale. (b) Corresponding simulated (red circles)
and asymptotic (solid red line) spectra.

Using the method of stationary phase it is possible to find
an approximate analytical expression for the pulse spectrum
[3, 8, 20]. It is also self-similar, and takes the form

|F(ω)|2 ∝ A2
0

(
ω2e4gz/7 − Kω6

)
, (9)

where K = β4/(24γA2
0), and negative values of the right-hand

side are to be taken to be zero. Thus the spectrum is double-
peaked, with a total width equal to 2K1/4egz/7, and a peak ampli-
tude that scales with e6gz/7, so that the total energy scales as egz,
as required. In contrast, in the presence of quadratic dispersion
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the spectrum is parabolic with the gain distributed 1/3 : 2/3
between the spectral width and peak intensity, respectively.

Associated simulation results in Fig. 1(b) are in excellent
agreement with Eq. (9). Considering the entire Fig. 1, we under-
stand the double-peaked spectrum. The strong temporal chirp
at T = 0 (Fig. 1(a)), causes the pulse’s leading and trailing halves
to have different frequencies. Because the dispersion is posi-
tive, the front half of the pulse corresponds to the low-frequency
lobe, whereas the back half of the pulse corresponds to the high-
frequency lobe. This is confirmed in Fig. 2 which shows the
temporal intensities of the spectrally filtered simulated pulse
(see inset). We note that the time and spectral shapes in Figs 1
are reminiscent of the results of Bale et al [11].
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Fig. 2. Filtered temporal intensity profiles corresponding to
the low-frequency (orange) and high-frequency (blue) lobes.
Inset shows the corresponding filtered spectra.

One of the implications of Eq. (6) is that the asymptotic pulse
evolution only depends on the energy of the initial pulse and not
on its shape or duration, consistent with the case of quadratic
dispersion [5, 8]. In order to test this, and to examine how pulses
evolve throughout the fiber, we refer to Fig. 3 in which we com-
pare the evolution of (a) the amplitude, and, (b), the pulse width
with the analytic prediction for A(z, T) and T0(z, T) in Eq. (6)
and Eq. (7), respectively. In all cases the simulations converge
to the same asymptotic solution. For a given input pulse, the
asymptotic limit is reached in a shorter propagation distance
as the fiber gain is increased, consistent with observations for
quadratic dispersion [5]. We carried out additional simulations
(not shown here) to confirm that our conclusions do not depend
on the fiber parameters.

From the full pulse evolution in Fig. 3 we note that for the
longer pulses, the pulse width is initially approximately constant.
This is because these pulse are too weak for significant nonlinear
effects, and the dispersion-induced chirp is not sufficiently large
to lead to pulse broadening. Hence, at this early stage the pulse’s
power grows as egz, but its intensity is otherwise unchanged.
This evolution then enters a more complicated phase where both
the dispersion and the nonlinearity act, until, in the asymptotic
regime, the evolution again simplifies and only the terms in
Eq. (3) and Eq. (4) contribute significantly.

Having investigated the self-similar solutions in an ideal lon-
gitudinally invariant environment, we consider the generation
of such pulses in a fiber laser. A conceptual model for this laser
is shown in Fig. 4(a). It is similar to the geometry considered by
Ilday et al. [10], except that the fibre in the cavity has (positive)
quartic dispersion. The laser contains a 7 m segment of passive
quartic fiber (PQF) and 1 m of doped quartic fiber. Both fibers
are considered to be single-mode with dispersion and nonlinear
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Fig. 3. Evolution of (a) the amplitude; and (b) the width ver-
sus propagation distance for 15 pJ Gaussian pulses with three
different pulse widths: 0.25 ps (green), 0.5 ps (red), and 1 ps
(blue). The prediction from the asymptotic solution is indi-
cated by the dashed black line.

parameters similar to the simulations described above. The gain
in the doped-fiber is calculated using g = g0/(1 + E(z)/Esat),
where g0 is the small-signal gain corresponding to 30 dB, E(z)
is the pulse energy and Esat is the saturation energy [10]. The
mode-locking element is a saturable absorber (SA) modelled by
a transfer function T = 1− q0/(1 + P(T)/Psat), where q0 = 0.7
is the unsaturated loss, P(T) is the instantaneous pulse power
and Psat is the saturation power [10]. An output coupler (OC) is
located after the SA which extracts 50% of the intracavity power.
At the end of each roundtrip, a bandpass spectral filter (15 nm
bandwidth) clips the pulse to compensate for the accumulated
chirp and to reset the electric field before the next roundtrip.

The propagation in the PQF and in the doped fiber is simu-
lated with the split-step Fourier method as above, and the initial
field is Gaussian random noise multiplied by a sech shape in the
time domain. The temporal intensity, instantaneous frequency
and the spectrum of a typical output pulse for β4L = 0.008 ps4,
Psat = 1 kW, and Esat = 30 nJ are shown in Fig. 4(b) and (c).
The temporal intensity of the pulse at the laser output (red solid
curve), which has a pulse energy of 7 nJ, matches Eq. (5) quite
well (dashed blue curve), except at low intensity levels. The
instantaneous frequency (solid green curve) similarly matches
the analytic result (dashed dark red curve) Eq. (8). Figure 4(c)
shows the associated spectrum. The result of the laser simula-
tion again matches analytic result Eq. (9) well. The agreement in
this case is not as good as in Figs. 1 because the laser, consisting
of lumped elements, is a non-ideal environment. In particular, in
this configuration, the OC is located after the SA which follows
a power-dependent transmission function, modifying slightly
the shape of the spectrum. Nonetheless, overall the laser output
matches the analytic results well.

Now that we ascertained that the asymptotic solutions match
the numerical results, we discuss why the time-derivative terms
in Eq. (3) and Eq. (4) are the asymptotic ones. The terms that
were dropped contain lower powers of ϕ, but involve higher
time derivatives. Since δω ∝ T1/3, high time derivatives vanish
when |T| is sufficiently large, with the highest derivatives van-
ishing fastest. Therefore, sufficiently far from the centre of the
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Fig. 4. (a) Schematic of the simulated laser cavity. PQF: pas-
sive quartic fiber; SA: saturable absorber; OC: output coupler;
SP: Spectral filter. Black diamonds indicate the evolution of the
pulse’s FWHM over a cavity round trip. (b) Emitted temporal
intensity (red curve, left axis) and instantaneous frequency
(green curve, right axis). (c) Corresponding output spectrum.
Dashed curve indicates asymptotic fit calculated from Eqs. (5),
(8) and (9).

pulse, these terms are negligible. In practice, these terms only
contribute for |T| . (β4/g)1/4 ≈ 100 fs for our parameters, and
thus they are increasingly irrelevant as the pulse propagates.

We have considered the gain to be dispersionless, even
though the bandwidth in Fig. 1(b) is approximately 20 THz,
corresponding to 70 nm at λ ≈ 1 µm. This is less than in previ-
ous work for quadratic dispersion, in which experiments and
theory matched well [5]. However, gain dispersion eventually
causes discrepancies requiring a more complete model [21].

Potential applications of the self-similar pulses investigated
here stem from their temporal and spectral shapes. The
strong chirp causes the double-peaked spectrum, which may
have applications in two-color spectroscopy or for generating
wavelength-multiplexing structures [22]. These pulses could
also be used for terahertz or far-infrared generation via differ-
ence frequency mixing [23]. The pulses have a T1/3 instanta-
neous frequency, which is more difficult to compensate than
the linear instantaneous frequency (linear chirp) that arises for
self-similar pulses in a quadratically dispersive medium.

As a final comment, note that analytic expressions (5) and (9)
imply finite support in both time and frequency, which contra-
dicts the Amrein-Berthier theorem [24]. However since these
expressions are approximate there is no contradiction–when
exact numerical solutions are considered it is found that the
theorem is not violated.

In conclusion, we have studied theoretically and numerically
the self-similar propagation of optical pulses in the presence
of positive quartic dispersion, Kerr nonlinearity and gain. We
found an exact asymptotic solution, corresponding to a pulse
with a T4/3 temporal intensity profile, and a T1/3 chirp. This

large, steep chirp gives rise to a double-peaked spectrum. We
also showed that by using a laser architecture similar to a posi-
tive dispersion cavity [10, 17] to compensate for the large accu-
mulated chirp, fiber lasers emitting quartic self-similar pulses
can be achieved. As optical fibers with dominant positive quartic
dispersion are not currently available, an alternative approach
based on the tailoring of the net-cavity dispersion could be used
to generate these new self-similar pulses [16].
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