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Abstract

In this thesis, we first consider single-agent time-inconsistent stopping problems under non-

exponential discounting in discrete time with infinite horizon. We extend the iterative ap-

proach introduced by Huang and Zhou (2017) to time-inhomogeneous setting and establish

the existence of nonstationary subgame perfect Nash equilibria. Under certain continuity

assumptions, we further show the existence of a unique optimal equilibrium which domi-

nates any other equilibria pointwisely. Explicit examples of time-homogeneous model with

time-inhomogeneous equilibria are also constructed. We then apply the single-agent results

to mean field stopping games where each agent plays against other agents as well as against

future selves. We construct a single-agent optimal equilibrium for each fixed mean field inter-

action represented by the proportion of players that have stopped at each time and use this

to show the existence of two-layer equilibria in two examples of mean field time-inconsistent

stopping games.
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Chapter I

Introduction

Consider a classical optimal stopping problem: given the initial condition of a stochastic

process Xt = x, we seek a stopping time τ to maximize the following objective function,

J(t, x, τ) := Et,x[δ(τ − t)f(Xτ )].

Under general conditions, there exists an optimal stopping time τ ∗
t,x for each (t, x) and there

has been abundant and vibrant literature on finding solutions to such problems with the most

important one being the Snell Envelop theory. It is well know that when δ is not exponential,

i.e., δ(i + j) ̸= δ(i)δ(j), the problem is time-inconsistent. That is, stopping strategies that

are optimal today may not be optimal from a future’s perspective. Mathematically, this is

due to the failure of Bellman’s principle of optimality. We refer to [24, Section 2.2] and [7,

Section 1.3] for more details.

Time-inconsistency is known to arise in optimal stopping problems and more generally,

in optimal control. Early studies of time-inconsistency date back to the seminal work by

Robert H. Strotz in 1955 [40]. There are many ways time-inconsistency can be introduced

in optimal stopping problems. An important case is the use of non-exponential discounting

such as the real American option example in [28] and the weighted discounting example in

[41]. Another case is when the objective function contains a nonlinear functional of E[X] as

in the mean-variance portfolio selection problem; see [8] for more details.
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Under time-inconsistency, Strotz [40] identifies three type of agents, the naive, who re-

peatedly solves the stopping problem for each time and therefore the agent’ strategies are

always changing and can be considered myopic; the pre-committed, who commits to a strat-

egy based on the initial preference throughout the planning horizon and understand that

this strategy may no longer be optimal at later stages; the sophisticated, who employs the

strategy of consistent planning which consists of two phases:

(1) Phase I: find all the strategies that the agent has no incentive to deviate from over

time. These are the sophisticated strategies;

(2) Phase II: choose the best plan among the sophisticated strategies.

Among them, only the last two types of agents are aware of time inconsistency and only the

sophisticated agent takes into account time-inconsistency seriously. For explicit examples on

the drawbacks of naive and precommitment strategies in both continuous and discrete time,

we refer to [21, Section 1], [24, Section 2.2] and the original work of Strotz [40].

By formulating as subgame perfect Nash equilibrium of a game between current and future

selves through game theoretic terms, Ekeland and Lazrak [15] gives precise mathematical

definition to sophisticated strategies (control) in continuous-time stochastic control problems.

Their work has led to vibrant research in time-inconsistent stochastic control. This includes

[23, 22, 46, 6, 16] in continuous time and [8] in discrete time. For mean-variance portfolio

selection problem, see e.g. [9, 20, 39, 18, 17, 45, 14]. [30] and [19] propose and compare

different notions of equilibria.

The development of time-inconsistent stopping problem is more recent. Huang and

Nguyen-Huu [24] proposes a general framework for continuous-time models. They char-

acterizes equilibrium stopping regions as fixed-points of an operator and to find equilibria,

fixed-point iterations were carried out. Their fixed-point iterative approach are adopted and

further developed in [28, 29, 25, 26, 27] as well as [31] which studies a time-inconsistent

Dynkin game through an alternating fixed-point iteration. In particular, [28] considers

discrete-time models and shows the existence of an optimal equilibrium which dominates
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any other equilibria anywhere and this is the first time that such dominating subgame per-

fect Nash equilibrium is shown to exist in the literature of time-inconsistency. A different

approach, including [12, 13] is to extend the spike variation technique from [15] in stochastic

control to stopping problems. In [5, 3] different definitions of equilibria along these two

different paths are collected and precise results are established regarding relations between

different notions of equilibria. Let us also mention [4] which studies a mean-standard devia-

tion problem and [41] which studies problems under the so-called the weighted discounting.

Finally, the survey article [21] by He and Zhou provides an excellent and broad review on

the classical literature and recent developments in both time-inconsistent stochastic control

and stopping problems.

In this thesis we study equilibrium strategies of time-inconsistent problems in single-

agent time-inhomogeneous models, as well as mean field stopping games. In Chapter II we

consider a single-agent time-inconsistent stopping problem in discrete time under infinite

horizon where the state process X is a time-inhomogeneous Markov process taking values

in a Polish space X. We assume the discount function is log-subadditive. We first establish

the existence of equilibria by using a fixed-point iterative approach. In particular, if we

start with S := (X,X, · · · ) then the limit of the fixed-point iteration converges and is an

equilibrium. We show that if the intersection of all equilibria, denoted by S∗ is an equilibrium

then it is the unique optimal equilibrium, i.e., an equilibrium that generates higher value

than all other equilibria. Then assuming the semi-continuity of the payoff function and the

Markov transition kernel, we show S∗ is an equilibrium and thus an optimal equilibrium.

Furthermore, we provide examples of time-homogeneous model with time-inhomogeneous

equilibrium.

In Chapter III, we consider mean field stopping games that are time-inconsistent. In

this game, players interact in a mean field structure via the stopped proportion process

µt which represents the proportion of stopped players by time t. Each player chooses a

stopping strategy based on µ. In this way, each player plays against other agents and future
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selves, and thus looks for a two-layer equilibrium. We call such (two-layer) equilibria mean

field equilibria, which is a pair (µ, S) where S is a stopping region such that the law of the

stopping time induced by S coincides with µ. Furthermore, given a mean field equilibrium,

if the stopping region S is optimal with respect to µ, we then call this mean field equilibrium

sharp. Under this setup, we first construct an optimal equilibrium with respect to fixed µ,

denoted by Γµ as in Chapter II. Then, we apply the construction of Γµ to study two examples

of mean field stopping games. The first one is motivated by models of bank run and the

second has a different structure. We then give different methods in finding sharp mean field

equilibria to each of the two examples. In the example of bank run model, we establish the

monotonicity of Γµ in µ and device a monotone iterative approach to find a sharp mean field

equilibrium. More specifically, we start with the zero process µ0 = (0, 0, · · · ) and construct

the optimal equilibrium Γµ0 and denote µ1 the corresponding stopped proportion process

induced by Γµ0 and continue. We show that the iterative approach converges and the limit

(µ∞,Γµ∞) is a sharp mean field equilibrium. In the second example, under appropriate

conditions, we show the continuity of the mapping µ 7→ Γµ. This continuity enable us to

apply the fixed-point theorem and establish the existence of a sharp mean field equilibrium.

This thesis contributes to the literature of time-inconsistent stopping in two ways. First,

we extend the results of [28] from time-homogeneous models to time-inhomogeneous ones.

We also introduce the running payoff in the objective function. We provide an example

where a time-homogeneous model can have time-inhomogeneous equilibrium. Therefore,

under our formulation, we can consider a larger set of equilibria even when the model is

time-homogeneous comparing to [28]. We also show that there must exist an optimal equi-

librium that is time-homogeneous for time-homogeneous models. This justifies the selection

of equilibria among time-homogeneous ones in time-homogeneous models in [28] (see Corol-

lary 3.2.10). The consideration of time-inhomogeneous models also enables us to look at

time-inconsistent mean field games.

Second, we formulate time-inconsistent mean-field stopping problems and propose a (two-
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layer) equilibrium as a pair of the process µ and stopping region S. To the best of our knowl-

edge, this is the first time mean field stopping games are studied under time-inconsistency.

Under appropriate assumptions we show the existence of sharp mean field equilibria for two

models with different structure. In the first example, we are able to find a sharp mean field

equilibrium which generates higher value than any other sharp mean field equilibrium, see

Theorem 3.4.8 for more details. In the second example, we use the continuity of stopping

boundary to establish the existence of equilibria and this approach is novel in the literature

of mean-field stopping games.

1.1 Outline of the Thesis

The rest of the thesis is organized as follows. Section 2.1 formulates our single-agent time-

inconsistent stopping problem with time-inhomogeneous Markov processes and introduces

equilibrium stopping regions and the iterative approach. Section 2.2 provides the existence

of an equilibrium and optimal equilibrium. Section 2.3 gives examples concerning time-

inhomogeneous equilibria for time-homogeneous models. Section 3.1 motivates our study of

mean field time-inconsistent stopping games. Section 3.2 constructs an optimal equilibrium

with respect to each stopped proportion process µ. Section 3.3 provides precise definition

of mean field equilibria. Section 3.4 studies the bank run model and through the iterative

approach, constructs a sharp mean field equilibrium. Section 3.5 shows the existence of

sharp mean field equilibria under a different model structure by using a fixed-point theorem

in infinite dimensional spaces. Appendices A to C contain proofs of lemmas.
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Chapter II

Single-Agent Time-Inconsistent Stopping Problems

In this chapter we develop a general theory for time-inconsistent stopping of time-inhomogeneous

Markov processes under non-exponential discounting. In the seminal work by Huang and

Zhou [28], the following discrete-time time-inconsistent stopping problem,

Ex[δ(τ)f(Xτ )],

was studied under infinite horizon with the assumption that δ is log sub-additive and the

process X is a time-homogeneous Markov process. We shall extend the results established

in [28] to the case where X is time-inhomogeneous and add running payoff to the objective

function. Without the assumed homogeneity of the process X, the problem now depends on

the calendar time t and accordingly our problem turns to,

Et,x[δ(τ − t)f(Xτ )].

2.1 Model Formulation

Consider a probability space (Ω,F ,P) that supports a (time-inhomogeneous) Markov process

X = {Xt}t∈N taking values in some Polish space X. Let B(X) be the family of Borel sets in

X, and κt the transition kernel of X at time t ∈ T := N = {0, 1, 2, 3, ...} (we will sometimes
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use T and N interchangeably). Specifically, for any x ∈ X and B ∈ B(X),

P(Xt+1 ∈ B |Xt = x) =
∫

B
Qt(x, dy) ∀t ∈ T, (2.1.1)

where Qt is the transition kernel at time t and allowed to be different at each different

time. Let F = {Ft}t∈N be the filtration generated by X, and T be the collection of all

F-stopping times. Denote Tt := {τ ∈ T | τ ≥ t}. For each t ∈ T and x ∈ X we denote

Et,x[·] = E[· |Xt = x]. Similarly, we write X t,x to specify its initial condition (t, x) and will

often suppress (t, x) in the superscript when there are no confusions or with the presence of

the associated expectation operator Et,x.

For any t ∈ T, x ∈ X and τ ∈ Tt, the agent considers the following objective function,

J(t, x, τ) := Et,x

[
τ−1∑
s=t

δ(s− t)g(Xs) + δ(τ − t)f(Xτ )
]
. (2.1.2)

In the above objective function, f, g : X 7→ R+ := [0,∞) are interpreted as terminal and

running payoff respectively and are assumed to be nonnegative, bounded and Borel measure-

able. We also have a strictly decreasing discount function δ : T 7→ [0, 1] such that δ(0) = 1,

limt→∞ δ(t) = 0. For any ω ∈ Ω such that τ(ω) = ∞, we set δ(τ)f(X t,x
τ )(ω) := 0 for all

(t, x) ∈ T × X, which is consistent with the fact that f is bounded and limt→∞ δ(t) = 0.

Finally, we assume the discount function δ satisfy the following.

Assumption A.

(A.1) either
∞∑

t=0
δ(t) < ∞ or g ≡ 0;

(A.2) δ is log sub-additive, i.e.,

δ(i)δ(j) ≤ δ(i+ j) ∀i, j = 0, 1, ... . (2.1.3)

Remark 2.1.1. Assumption (A.1) together with the boundness of f and g ensures that for
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each δ and any τ ∈ Tt, there exists a constant C such that

J(t, x, τ) < C ∀(t, x) ∈ T × X.

Remark 2.1.2. Functions satisfying Equation (2.1.3) are said to be log-subadditive and it en-

compasses all discount functions which decay slower than the exponential discount function.

For example,

1. the hyperbolic discounting δ(t) = 1/(1 + βt) with β > 0;

2. the generalized hyperbolic discounting δ(t) = 1/(1 + βt)k with β, k > 0;

3. the psudoexponential discounting δ(t) = λe−ρ1t + (1 − λ)e−ρ2t with λ ∈ (0, 1) and

ρ1, ρ2 ∈ (0, 1);

4. the quasi-hyperbolic discounting defined by δ(0) = 1, δ(i) = βρi with β, ρ ∈ (0, 1);

and of course the exponential discounting.

Remark 2.1.3. In the context of behavioural economics, Equation (2.1.3) also captures de-

creasing impatience. A characterization that individual tends to discount more in the near

comparing to the distant future. This is a well-known and widely acknowledged feature in

the studies of empirical discounting and is substantiated by considerable evidences, see, for

example, a series of studies conducted by and collaborated between renowned economists

Thaler, Loewenstein and Prelec [42, 35, 34, 38], among them, Richard Thaler were awarded

the Nobel Memorial Prize in Economic Sciences for his contributions to behavioral economics

in 2017.

Remark 2.1.4. The hyperbolic discounting does not satisfy (A.1) of Assumption A. Its gen-

eralization δ(t) := 1
(1+βt)k with k > 1 and the quasi-hyperbolic discount function as well as

the pseudoexponential does satisfy the convergence assumption.

2.1.1 Equilibrium and the Iterative Approach. Given the current state x ∈ X and

t ∈ T, an agent intends to maximize Equation (2.1.2) by choosing an appropriate stopping
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time τ ∈ Tt, i.e.,

sup
τ∈Tt

J(t, x, τ). (2.1.4)

A continuous-time version of this stopping problem with a diffusion process was studied by

Huang and Nguyen-Huu [24] by giving precise mathematical definition of Strotz’s consistent

planning of a sophisticated agent through equilibrium stopping policies (in continuous-time)

and the iterative approach. This was then equivalently formulated as equilibrium stopping

regions in [28]. We will take advantage of this reformulation and apply it to the stopping

policy defined in [24] for the time-inhomogeneous case, we reiterate their reasoning.

From Chapter I it is known that the stopping problem Equation (2.1.4) is generally time-

inconsistent given the form of the discount function (Equation (2.1.3)). As such the agent

may re-evaluate and change stopping times at later times. Therefore, the agent’s stopping

strategy is not a specific stopping time τ , but a stopping region given by the following

definition.

Definition 2.1.5. A set S ∈ B(T × X) is called a stopping region.

Given a current state x ∈ X and time t ∈ T, the stopping region S determines whether

the agent should stop, which is the first time X t,x
s enters S with s > t.

Taking into account time-inconsistency and time-inhomogeneity, the agent take S ∈

B(T×X) as the stopping region, in other words S = (S0, S1, S2, · · · ) where (S)i := Si ∈ B(X)

for all i ∈ T. Now, at any time t ∈ T and given the corresponding state of the process x ∈ X,

the agent tries to answer the game-theoretic question:“assuming that all future selves will

follow S ∈ B(T × X), what is my best stopping strategy for today in response to that?”. It

is apparent that the agent has two possible choices: either (i) stop today (at time t) and

obtain the value f(x) immediately, or (ii) continue and follows the predetermined stopping

region S ∈ B(T × X) and stop at time ρ, defined by,

ρ(t, x, S) := inf{s ≥ t+ 1 : X t,x
s ∈ (S)s}. (2.1.5)
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This will lead to the expected payoff J(t, x, ρ(t, x, S)). Therefore, if the agent were to

compare the two payoffs f(x) and J(t, x, ρ(t, x, S)) from the two possible choices, we obtain

the optimal stopping strategy for today in response to S defined by the operator Θ as,

Θ(S) := (S̃0, S̃1, S̃2, · · · ), (2.1.6)

and (Θ(S))t := S̃t := {x ∈ X : f(x) ≥ J(t, x, ρ(t, x, S))}.

Remark 2.1.6. Note that the operator Θ updates S simultaneously, i.e., the agent is playing

a simultaneous game comparing to a sequential game in [12]. Note here, we cannot update

S in a backward manner. This is because we are in an infinite-time horizon and there are

no terminal position for us to start updating.

Definition 2.1.7. We say S ∈ B(T × X) an equilibrium stopping region (or simply equilib-

rium) if Θ(S) = S. We denote the set of all equilibria by E .

Remark 2.1.8. By definition, S = (S0, S1, · · · ) ∈ E if and only if for all t,


f(x) ≥ J(t, x, ρ(t, x, S)), ∀x ∈ (S)t,

f(x) < J(t, x, ρ(t, x, S)), ∀x ∈ X \ (S)t.

(2.1.7)

From Remark 2.1.8, we see that E in fact corresponds to the set of all stopping strategies

that the agent will actually follow over time. This corresponds to Phase I of consistent

planning.

It is apparent from Equation (2.1.6) that Θ is an operator mapping B(T × X) to itself

and by Definition 2.1.7 any equilibrium S ∈ B(T×X) is a fixed point of the operator Θ. We

will show in Section 2.2 that the iterative approach defined by,

S∞ := lim
n→∞

Θn(S), (2.1.8)

is well defined under certain assumptions. In particular, when starts from S := (X,X, · · · )
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the above limit converges and the limit S∞ is an equilibrium. We will also find a candidate

for optimal equilibrium, i.e., an equilibrium that dominates any other equilibrium anywhere

on T × X. This is Phase II of consistent planning.

For any A,B ∈ B(T × X), we write A = (⊆)B if and only if (A)i = (⊆)(B)i for all

i ∈ T, A ̸= B if there exists an i ∈ T such that (A)i ̸= (B)i and similarly A ∩ B =

((A)0 ∩ (B)0, (A)1 ∩ (B)1, · · · ). We use (A)i to denote the i-th component of A (the stopping

region at time i) instead of Ai because there are dependencies of stopping regions on other

parameters later in the thesis and the use of brackets adds clarity.

2.2 Existence of Equilibria and Optimal Equilibria

In this section, we prove the existence of equilibria and introduce the notion of optimal

equilibrium. We then propose a candidate for optimal equilibria by taking the intersection

of all equilibria and give sufficient conditions for which this candidate is in fact an equilibrium

and thus optimal. Theorems 2.2.2, 2.2.9 and 2.2.10 are the main results of this section.

2.2.1 Existence of Equilibria. In this subsection, we will establish the convergence result

for our iterative approach given by Equation (2.1.8). We first show that the operator Θ is

non-increasing when Θ(S) ⊆ S for any S ∈ B(T × X),i.e., Θ2(S) ⊆ Θ(S).

Lemma 2.2.1. Suppose Assumption A holds. For any nonempty set S ∈ B(T × X), if

Θ(S) ⊆ S, then

J(t, x, ρ(t, x, S)) ≤ J(t, x, ρ(t, x,Θ(S))) ∀(t, x) ∈ T × X. (2.2.1)

In particular, this implies Θ2(S) ⊆ Θ(S).

Proof. The proof is postponed to Appendix A.1.

Now, we are in a position to present the main result of this section, which establishes the

convergence for the iterative approach.
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Theorem 2.2.2. Suppose Assumption A holds. For any nonempty set S ∈ B(T × X) such

that Θ(S) ⊆ S,

S∞ :=
∞⋂

n=1
Θn(S) (2.2.2)

is an equilibrium.

Since Θ(X) ⊆ X trivially, we have an immediate corollary to the above theorem.

Corollary 2.2.3. Suppose Assumption A holds. X∞ defined as

X∞ :=
∞⋂

n=1
Θn(X)

is an equilibrium.

Proof of Theorem 2.2.2. By previous discussion, Θ is an operator mapping B(T×X) to itself.

Therefore if S ∈ B(T×X) then Θ(S) ∈ B(T×X), which implies that Θn(S) ∈ B(T×X) for

all n ∈ N. Consequently, we must have S∞ ∈ B(T×X). We claim that for all (t, x) ∈ T×X

and ω ∈ Ω, the following convergence result holds,

ρ(t, x, S∞)(ω) = lim
n→∞

ρ(t, x,Θn(S))(ω). (2.2.3)

Fix (t, x) ∈ T × X and ω ∈ Ω, by Lemma 2.2.1, {Θn(S)}n∈N is a non-increasing sequence of

Borel sets and therefore {ρ(t, x,Θn(S))(ω)}n∈N is a T-valued nondecreasing sequence. As a

result, the limit on the RHS of Equation (2.2.3) is then well-defined, and since S∞ ⊆ Θn(S)

for all n, we have

ρ(t, x, S∞)(ω) ≥ lim
n→∞

ρ(t, x,Θn(S))(ω) =: ζ(ω).

If ζ(ω) = ∞ then it is clear that Equation (2.2.3) holds trivially. On the other hand if ζ(ω) ∈

N < ∞, then there must exist some N ∈ N large enough such that ρ(t, x,Θn(S))(ω) = ζ(ω)

for all n ≥ N . By the definition of ρ(t, x, ·), this implies that,

Xx
ζ (ω) ∈ (Θn(S))ζ(ω), ∀n ≥ N

12



Hence, by the monotone property of {Θn(S)}n∈N, we have,

Xx
ζ (ω) ∈

∞⋂
n=1

(Θn(S))ζ(ω) = (S∞)ζ(ω).

This shows that ρ(t, x, S∞(ω)) ≤ ζ(ω). Combining the two inequalities we prove Equa-

tion (2.2.3).

Fix t ∈ T. For any x ∈ (S∞)t, we have x ∈ (Θn(S))t for all n ∈ N, therefore, by

definition,

f(x) ≥ J(t, x, ρ(t, x,Θn−1(S))), ∀n ∈ N.

Taking n → ∞ on the RHS, we have

f(x) ≥ lim
n→∞

J(t, x, ρ(t, x,Θn−1)) = J(t, x, ρ(t, x, S∞)),

where we applied the dominated convergence theorem to take the limit under the expectation

given by (A.1) of Assumption A. Thus, by Remark 2.1.8, we must have x ∈ (Θ(S∞))t, and

since this is true for any t, we conclude that S∞ ⊆ Θ(S∞). On the other hand, if x /∈ (S∞)t,

then there must exists some N ∈ N such that x /∈ (Θn(S))t for all n ≥ N , again, by the

definition of Θ, this implies that

f(x) < J(t, x, ρ(t, x,Θn−1(S))), ∀n ≥ N.

Consequently,

f(x) < J(t, x, ρ(t, x,Θn−1(S)))

≤ lim
m→∞

J(t, x, ρ(t, x,Θm−1(S)))

= J(t, x, ρ(t, x, S∞)),

where we invoked the dominated convergence theorem again. This implies that x /∈ (Θ(S∞))t

13



and since the above works for all t, we must have Θ(S∞) ⊆ S∞. Combining the two subset

inclusions, we have a fixed point S∞ such that Θ(S∞) = S∞ hence S∞ is an equilibrium.

Theorem 2.2.2 gives us the existence of an equilibrium. However, as demonstrated in

[28] as well as [32, 1], there usually exist multiple equilibria. As we shall see in the next

subsection, under rather general conditions, there exists an unique optimal equilibrium.

2.2.2 Optimal Equilibria and Uniqueness. In this subsection, we shall address the

problem of selecting an optimal equilibrium, an equilibrium that dominates all other equi-

libria on T × X. Then under appropriate continuity assumptions we prove the existence of

an optimal equilibrium. For any S ∈ E , we define the associated value function by,

V (t, x, S) := f(x) ∨ J(t, x, ρ(t, x, S)) ∀(t, x) ∈ T × X. (2.2.4)

Then by Definition 2.1.7 and Remark 2.1.8, we see that,

V (t, x, S) =


f(x) if x ∈ (S)t,

J(t, x, ρ(t, x, S)) if x ∈ X \ (S)t.

(2.2.5)

Therefore, we can express the value function V as,

V (t, x, S) = J(t, x, ρ∗(t, x, S)) with ρ∗(t, x, S) := inf{s ≥ t : X t,x
s ∈ (S)s}. (2.2.6)

Definition 2.2.4 (optimal equilibrium). We say S∗ ∈ E is an optimal equilibrium if for any

S ∈ E ,

V (t, x, S∗) ≥ V (t, x, S) ∀(t, x) ∈ T × X.

Proposition 2.2.5. If S∗ ∈ E is an optimal equilibrium, then S∗ = ⋂
S∈S S.

Proof. It is straightforward to see ⋂
S∈E S ⊆ S∗. To prove the other inclusion, suppose there

exists S ∈ E such that S∗ ̸⊆ S, in other words, there exists (at least one) t ∈ T such
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that (S∗)t ̸⊆ (S)t. Fix such a t, then for any x ∈ (S∗)t \ (S)t, from Equation (2.2.5) and

Remark 2.1.8, we have

V (t, x, S∗) = f(x) < J(t, x, ρ(t, x, S)) = V (t, x, S),

which contradicts the optimality of S∗.

The above Proposition says that should an optimal equilibrium exist, it has to be unique.

Next, we find a way to construct a better equilibrium if we have two or more old equilibria.

The next Lemma says that for any equilibrium S,R ∈ E , Θ(S ∩ R) ⊆ S ∩ R. Then we

can apply Theorem 2.2.2 and get equilibrium ⟨S ∩R⟩∞ := Θ∞(S ∩R) through the iterative

approach. Moreover, this new equilibrium dominates S and T simultaneously everywhere

on T × X, i.e.,

V (t, x, ⟨S ∩R⟩∞) ≥ V (t, x, S) ∨ V (t, x, R) ∀(t, x) ∈ T × X. (2.2.7)

Lemma 2.2.6. Suppose Assumption A holds. For any S,R ∈ E,

J(t, x, ρ(t, x, S ∩R)) ≥ J(t, x, ρ(t, x, S)) ∨ J(t, x, ρ(t, x, R)) ∀(t, x) ∈ T × X. (2.2.8)

In particular, this implies Θ(S ∩R) ⊂ S ∩R.

Proof. The proof is postponed to Appendix A.2.

Using Lemma 2.2.6 we can establish a partial converse to Proposition 2.2.5, we have,

Proposition 2.2.7. Suppose Assumption A holds. If S∗ := ⋂
S∈E S is an equilibrium, then

it is optimal.

Proof. Let Ŝ ∈ E be arbitrary. Then by Lemma 2.2.6 we have,

V (t, x, Ŝ) = f(x) ∨ J(t, x, ρ(t, x, Ŝ))
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≤ f(x) ∨ J(t, x, ρ(t, x, S∗ ∩ Ŝ)) = f(x) ∨ J(t, x, ρ(t, x, S∗)) = V (t, x, S∗)

for all (t, x) ∈ T × X. Hence, S∗ is optimal by the arbitrariness of Ŝ.

Now, assuming under some general continuity conditions, we are in a position to establish

the existence results for the optimal equilibrium. In particular, we show that the candidate

choice S∗ := ⋂
S∈E S discussed in Proposition 2.2.5 is in fact the optimal equilibrium.

Recall that a function f : X → R is said to be upper-semicontinuous (u.s.c) on X if for all

x ∈ X and every {xn}n∈N in X with xn → x, lim sup
n→∞

f(xn) ≤ f(x). It is lower-semicontinuous

(l.s.c) on X if lim inf
n→∞

f(xn) ≥ f(x). It is easy to see that the indicator function of a set B ⊂ X,

1B is l.s.c if and only if B is open and u.s.c if and only if B is closed.

Similarly, we say a transition (Markov) kernel λ (e.g. Equation (2.1.1)) is l.s.c under the

weak* topology if for all x ∈ X and every {xn}n∈N in X with xn → x and any bounded Borel

measurable function φ : X → R, we have,

lim inf
n→∞

∫
X
φ(y)λ(xn, dy) ≥

∫
X
φ(y)λ(x, dy). (2.2.9)

Remark 2.2.8. Suppose λ admits a probability density function, i.e., λ(x, dy) = η(x, y) dy.

We claim that if for each y ∈ X, x 7→ η(x, y) is l.s.c then λ is l.s.c under the weak* topology.

Indeed, recall that for every fix x ∈ X, λ(x, ·) is a probability measure, then by a variation

of Fatou’s lemma we have,

lim inf
n→∞

∫
X
φ(y)η(xn, y) dy ≥

∫
X

lim inf
n→∞

φ(y)η(xn, y) dy ≥
∫

X
φ(y)η(x, y) dy,

for any bounded measurable function φ and {xn}n∈N with xn → x. This shows that,

lim inf
n→∞

∫
X
φ(y)λ(xn, dy) ≥

∫
X
φ(y)λ(x, dy),

that is, λ is l.s.c under the weak* topology.
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Theorem 2.2.9. Suppose Assumption A holds, f is u.s.c and the transition (Markov) kernel

κt in Equation (2.1.1) is l.s.c under the weak* topology for all t ∈ T. Then, S∗ =: ⋂
S∈S S is

the optimal equilibrium.

Proof. For any S ∈ B(T × X), the payoff function J(t, x, ρ(t, x, S)) can be written as,

J(t, x, ρ(t, x, S)) =
∫
X

Φt(y, S)Qt(x, dy),

where

Φt(y, S) := Et,y

ρ∗(t,y,S)∑
s=t

δ(s− t)g(Xs) + δ(ρ∗(t, y, S) + 1)f(Xρ∗(t,y,S))
 .

Therefore, by definition of lower semicontinuity and Equation (2.2.9), we see that x 7→

J(t, x, ρ(t, x, S)) is l.s.c. Since S ∈ E , by the definition of equilibrium and the fact that J is

l.s.c in x and f is u.s.c,

(S)t = (Θ(S))t = {x ∈ X : f(x) ≥ J(t, x, ρ(t, x, S))}

is a closed subset of X for all t ∈ T. As an arbitrary intersection of closed set, (S∗)t =⋂
S∈E(S)t is also closed and therefore Borel measurable for all t ∈ T.

We know that 1(S)t is u.s.c given (S)t is closed for all S ∈ E . By the virtue of [2,

Proposition 4.1] there exists a countable subset {Sn
t }n∈N of E for each t ∈ T such that,

1(S∗)t = inf
S∈E

1(S)t = inf
n∈N

1(Sn
t )t , (2.2.10)

which implies that (S∗)t = ⋂
n∈N(Sn

t )t. By taking the countable union of all such countable

subset ⋃
t∈T{Sn

t }n∈N then we have another countable subset, say {Sn}n∈N of E such that

S∗ = ⋂
n∈N S

n. By proceeding as in the discussion below Proposition 2.2.5, we first let

R1 := S1 and R2 := ⟨R1 ∩ S2⟩∞. Then R2 ∈ E such that R2 ⊆ R1 ∩ S2 ⊆ S1 ∩ S2 and

J(t, x, ρ(t, x, R2)) ≥ J(t, x, ρ(t, x, R1)) for all (t, x) ∈ T × X. Next, let R3 := ⟨R2 ∩ S3⟩∞,

17



then similarly, R3 ∈ E such that R3 ⊆ R2 ∩ S3 ⊆ S1 ∩ S2 ∩ S3 and J(t, x, ρ(t, x, R3)) ≥

J(t, x, ρ(t, x, R2)) for all (t, x) ∈ T × X. Repeating this procedure recursively for all n ∈ N,

we get a sequence {Rn}n∈N in E with Rn ⊆ Rn−1∩Sn ⊆ S1∩· · ·∩Sn and J(t, x, ρ(t, x, Rn)) ≥

J(t, x, ρ(t, x, Rn−1)) for all n ∈ N and (t, x) ∈ T × X. Therefore, we have,

S∗ =
⋂

S∈E
S ⊆

⋂
n∈N

Rn ⊆
⋂

n∈N
Sn = S∗, (2.2.11)

hence S∗ = ⋂
n∈NR

n. By Proposition 2.2.5 it remains to show that S∗ is indeed an equi-

librium, this can be achieved by replacing Θn(S) with Rn in the proof of Theorem 2.2.2.

Therefore S∗ is the optimal equilibrium.

With the help of [2, Proposition 4.1], the existence of optimal equilibrium still stands if

we replace the upper-semicontinuity of f with lower-semicontinuity.

Theorem 2.2.10. Suppose Assumption A holds, f is l.s.c and the transition (Markov) kernel

κt in Equation (2.1.1) is l.s.c under the weak* topology for all t ∈ T. Then, S∗ := ⋂
S∈S S is

the optimal equilibrium.

Proof. As shown before, x 7→ J(t, x, ρ(t, x, S)) is l.s.c for any S ∈ B(T × X) and any t ∈ T.

Since f is assumed to be l.s.c as well, we must have for all x ∈ X and every {xn}n∈N in X

with xn → x,

lim inf
n→∞

V (t, xn, S) = lim inf
n→∞

f(xn) ∨ J(t, xn, ρ(t, xn, S))

≥ lim inf
n→∞

f(xn) ∨ lim inf
n→∞

J(t, xn, ρ(t, xn, S))

≥ f(x) ∨ J(t, x, ρ(t, x, S)),

thus x 7→ V (t, x, S) is also l.s.c for all t ∈ T and any S ∈ B(T × X). Again, by the virtue of

[2, Proposition 4.1], there exists a sequence {Sn}n∈N in E such that,

sup
S∈E

V (t, x, S) = sup
n∈N

V (t, x, Sn) ∀(t, x) ∈ T × X. (2.2.12)
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Now let R0 := X and R1 := S1 and by the same procedure in the previous Theorem we

have, R2 := ⟨R1 ∩ S2⟩∞ is such that R2 ∈ E and R2 ⊆ R1 ∩ S2 with J(t, x, ρ(t, x, R2)) ≥

J(t, x, ρ(t, x, R1)) for all (t, x) ∈ X. Next, we define R3 := ⟨R2 ∩ S3⟩∞, then R3 ∈ E and

R3 ⊆ R2 ∩ S3 with J(t, x, ρ(t, x, R3)) ≥ J(t, x, ρ(t, x, R2)) for all (t, x) ∈ T × X. We repeat

this recursively for all n ∈ N, we get a sequence {Rn}n∈N in E such that Rn ⊆ Rn−1 ∩ Sn

with J(t, x, ρ(t, x, Rn)) ≥ J(t, x, ρ(t, x, Rn−1)) for all n ∈ N. By replacing Θn(S) with

Rn in the proof of Theorem 2.2.2, it is easy to see that R∗ := ⋂
n∈NR

n ∈ E such that

J(t, x, ρ(t, x, R∗)) ≥ J(t, x, ρ(t, x, Rn)) for all n ∈ N and all (t, x) ∈ T × X. By Equa-

tion (2.2.8), we have, for all (t, x) ∈ T × X,

J(t, x, ρ(t, x, R∗)) ≥ J(t, x, ρ(t, x, Rn))

≥ J(t, x, ρ(t, x, Sn)) ∨ J(t, x, ρ(t, x, Rn−1))

≥ J(t, x, ρ(t, x, Sn)),

for all n ∈ N. Therefore, V (t, x, R∗) ≥ V (t, x, Sn) for all n ∈ N and (t, x) ∈ T×X. Combine

this with Equation (2.2.12) we have,

sup
S∈E

V (t, x, S) = V (t, x, R∗) ∀(t, x) ∈ T × X.

Therefore, R∗ is an optimal equilibrium and by uniqueness, R∗ = ⋂
S∈E S = S∗.

2.3 Examples

In this section we analyze two examples with the running payoff g = 0. In particular, we shall

consider some time-homogeneous Markov chains but possibly time-inhomogeneous equilib-

ria. As considered in [28], there exists a unique time-homogeneous optimal equilibrium when

the underlying Markov process is time-homogeneous. Moreover, this optimal equilibrium is

selected from a set of time-homogeneous equilibria. We will construct an explicit example

where there exists a time-inhomogeneous equilibrium for time-homogeneous model and illus-
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trate the fact that using our results, we can consider a larger set of equilibria E even when

the process is time-homogeneous comparing to [28].

2.3.1 General Two-State Markov Chain. We first consider a two state time-homogeneous

Markov Chain given by the below transition diagram with state space X = {1, 2}. We set

f(1) = 1, f(2) = 2 and use the quasi-hyperbolic discounting δ(0) = 1 and δ(i) = βρi for

i ≥ 1 and β, ρ ∈ (0, 1), we will choose the values of β, ρ and α later.

1 2α

1 − α

1

We claim that,

S = ({1, 2}, {2}, {2}, {2}, {2}, · · · ) (2.3.1)

is an equilibrium. Obviously for all t we have f(2) = 2 ≥ 2δ(1) and hence state 2 is always

included in any equilibrium. For t = 0, state 1 must satisfy,

f(1) = 1 ≥ (1 − α)2δ(1) + α(1 − α)2δ(2) + α2(1 − α)2δ(3) + · · ·

= 2(1 − α)
∞∑

i=1
αi−1βρi

= 2(1 − α)βρ
1 − αρ

. (2.3.2)

Similarly, when t ≥ 1, state 1 must also satisfy,

f(1) = 1 ≤ (1 − α)2δ(1) + α(1 − α)2δ(2) + α2(1 − α)2δ(3) + · · ·

= 2(1 − α)
∞∑

i=1
αi−1βρi

= 2(1 − α)βρ
1 − αρ

. (2.3.3)

Choosing α = 0.5, β = 0.75 and ρ = 0.8, Equation (2.3.2) evaluates to f(1) = 1 ≥ 1 and

Equation (2.3.3) evaluates f(1) = 1 ≤ 1. In particular, no strict inequality can be achieved
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for both equations regardless of the choices of the parameters in the hyperbolic discount

function and the transition probabilities. Equation (2.3.1) describes a time-inhomogeneous

equilibrium, in the sense that not all (S)i are identical, in this case (S)0 = {1, 2} ≠ {2} =

(S)n for all n ≥ 1. However, Equation (2.3.1) is somewhat trivial. Ideally, we would like to

have an equilibrium where the set {1, 2} and {2} are alternating, i.e.,

S = ({1, 2}, {2}, {1, 2}, {2}, {1, 2}, {2}, · · · ) (2.3.4)

As we shall see, it is not possible to have Equation (2.3.4) an equilibrium with discount

function δ satisfying (A.2) of Assumption A (Equation (2.1.3)) other than the exponential

discounting function, i.e., δ(i) = ρi for some ρ ∈ (0, 1). Let us consider a general two state

time-homogeneous Markov Chain represented by the following transition diagram,

1 2α

1 − α

β

1 − β

Without degenerating the example we assume f(1) = κ < f(2) = ν and α, β ∈ (0, 1). Under

the current setup, {2} is always an equilibrium and {∅} and {1} can never be equilibria by

themselves, that leave us the possibility of {1, 2}. We claim that {1, 2} cannot appear more

than once under non-exponential discounting. That is, S ∈ B(T × X) of the following form,

S = ({1, 2}, {2}, {2}, · · · , {2}, {2}︸ ︷︷ ︸
sequence of n many {2}

, {1, 2}, {2}, {2}, · · · ), (2.3.5)

is an equilibrium only under the exponential discounting. We prove this by induction on

n = 1, 2, 3, ...

Proposition 2.3.1. Suppose Assumption A holds. If S in Equation (2.3.5) is an equilibrium
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then for any n ≥ 1, δ(i) = ρi for all 0 ≤ i ≤ n+ 1 where

0 < ρ = κ

ακ+ ν − αν
< 1.

Proof. First assume n = 1 in Equation (2.3.5), i.e., we restrict our attention to

S = (S0, S1, S2, · · · ) = ({1, 2}, {2}, {1, 2}, · · · ). (2.3.6)

At t = 1, state 1 must satisfy,

f(1) = κ ≤ (ακ+ ν − αν) · δ(1). (2.3.7)

At t = 0, state 1 must satisfy the following inequality,

f(1) = κ ≥ (1 − α)νδ(1) + α(ακ+ ν − αν)δ(2) (2.3.8)

Now, Equation (2.3.7) gives us that δ(1) ≥ κ/(ακ + ν − αν) and substituting the lower

bound δ(1) = κ/(ακ+ ν − αν) into Equation (2.3.8) and after some algebraic manipulation

we have,

δ(2) ≤
(

κ

ακ+ ν − αν

)2
(2.3.9)

Suppose that δ(1) is chosen such that it is strictly larger than ρ = κ/(ακ + ν − αν) then

the above implies that δ(2) must be strictly smaller than ρ2 which then violates (A.2) of

Assumption A, therefore when n = 1, the only choice for δ is the exponential discounting,

i.e.,

δ(2) = (δ(1))2 =
(

κ

ακ+ ν − αν

)2
.

Next suppose the proposition holds for n−2, i.e., S = ({1, 2}, {2}, {2}, · · · , {2}, {2}︸ ︷︷ ︸
sequence of n − 2 many {2}

, {1, 2}, · · · ),
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is only an equilibrium when

δ(i− 1) = (δ(1))i−1 =
(

κ

ακ+ ν − αν

)i−1
, ∀i ∈ {1, 2, ..., n− 2}. (2.3.10)

We prove the case for n− 1, at t = 1 state 1 must satisfy the following inequality,

f(1) = κ ≥
n−2∑
k=0

αk(1 − α)ν · δ(k + 1) + αn−1(ακ+ ν − αν) · δ(n). (2.3.11)

Substituting Equation (2.3.10) into Equation (2.3.11) we have,

f(1) = κ ≥
n−2∑
k=0

αk(1 − α)ν · δ(k + 1) + αn−1(ακ+ ν − αν) · δ(n)

= κ− αnκ
(

κ

ακ+ ν − αν

)
− (α− 1)αn−1ν

(
κ

ακ+ ν − αν

)n

+ αn−1(ακ+ ν − αν) · δ(n).

Solving the above inequality we have, δ(n) ≤ (κ/(ακ + ν − αν))n. Under (A.2) of As-

sumption A the only possible choice of δ(n) is (κ/(ακ + ν − αν))n. Hence completing the

proof.

Remark 2.3.2. Recall the time-homogeneous example given by Equation (2.3.1) which admits

multiple equilibria including ({2}, {2}, {2}, {2}, {2}, · · · ) and ({1, 2}, {2}, {2}, {2}, {2}, · · · ).

We now modify the process to be time-inhomogeneous so that the only equilibrium is given

by ({1, 2}, {2}, {2}, {2}, {2}, · · · ). Consider the following transition diagram for t = 0,

1 23/4

1/4

1

and when t ≥ 1 the transition diagram is given by

1 21/2

1/2

1
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Similarly, we set f(1) = 1, f(2) = 2 and use the quasi-hyperbolic discounting δ(0) = 1 and

δ(i) = βρi for i ≥ 1 and β, ρ ∈ (0, 1). We claim that

S = ({1, 2}, {2}, {2}, {2}, {2}, · · · ) (2.3.12)

is the only equilibrium. By choosing β = 0.63 and ρ = 0.9. We have at t = 0,

f(1) = 1 > 1
4 · 2δ(1) + 3

4 · 1
2 · 2δ(2) + 3

4 · 1
2 · 1

2 · 2δ(3) + · · ·

= 1
4 · 2δ(1) +

∞∑
i=1

3
4 ·

(1
2

)i

· 2δ(i+ 1) = 0.97936.

When t ≥ 1 we have that

f(1) = 1 < 1
2 · 2δ(1) +

(1
2

)2
· 2δ(2) + · · ·

=
∞∑

i=1

(1
2

)i

· 2δ(i) = 1.03091.

Here strict inequality has been achieved and this implies S = ({1, 2}, {2}, {2}, {2}, {2}, · · · )

is the only equilibrium.

2.3.2 A Four-State Example. We consider a model with a four-state time-homogeneous

Markov chain model, and show that it has a time-inhomogeneous equilibrium. Consider the

following transition diagram,

κ ν

0 2

0.5

1 1

0.4
0.5

0.5

0.1
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We use the linear payoff f(x) = x and set f(κ) = κ, f(ν) = ν, f(0) = 0 and f(2) = 2. We use

the quasi-hyperbolic discount function δ(0) = 1 and δ(i) = βρi for i ≥ 1 with β, ρ ∈ (0, 1).

We will decide the value of κ, ν, β and ρ later. We claim that,

S = ({2}, {ν, 2}, {2}, {ν, 2}, {2}, {ν, 2}, · · · ) (2.3.13)

is an equilibrium. First observe that state 2 is always an equilibrium as f(2) = 2 > 2δ(1)

and state 0 is always excluded in any equilibrium since f(0) = 0. Choose f(κ) = κ <

min{0.5νδ(1), 0.52 · 2δ(2)} then any equilibrium cannot contain κ. To show that Equa-

tion (2.3.13) is an equilibrium we consider separately when t is even and odd. When t is

even, state ν satisfies,

f(ν) = ν ≤ 1
2 · 2δ(1) +

( 1
10 · 1

2

)
· 1

2 · 2δ(3) +
( 1

10 · 1
2

)2
· 1

2 · 2δ(5) + · · ·

=
∞∑

n=0

( 1
20

)n

δ(2n+ 1) = 20βρ
20 − ρ2 . (2.3.14)

When t is odd, state ν satisfies,

f(ν) = ν ≥ 1
2 · 2δ(1) + 1

20 · νδ(2) = βρ+ βρ2

20 · ν. (2.3.15)

To satisfy Equation (2.3.14) and Equation (2.3.15) simultaneously, one possible choice for

the parameters is,

ν = 0.89, β = 0.95, ρ = 0.9,

giving us f(ν) = 0.89 < 0.89109 in Equation (2.3.14) and f(ν) = 0.89 > 0.88924 in Equa-

tion (2.3.15).

Recall the associated value function given by Equation (2.2.4) and define the set,

H := ({2}, {2}, {2}, · · · ).
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We claim that H is an equilibrium such that V (t, x,H) ≥ V (t, x, S) for all (t, x) ∈ T × X.

We need only to consider state κ and state ν. For state ν, we have

V (t, ν,H) = 1
2 · 2δ(1) +

( 1
10 · 1

2

)
· 1

2 · 2δ(3) +
( 1

10 · 1
2

)2
· 1

2 · 2δ(5) + · · ·

=
∞∑

n=0

( 1
20

)n

δ(2n+ 1) = 0.89109.

When t is even, we again have

V (t, ν, S) =
∞∑

n=0

( 1
20

)n

δ(2n+ 1) = 0.89109.

When t is odd, we have

V (t, ν, S) = f(ν) = 0.89.

Hence V (t, ν,H) ≥ V (t, ν, S). Similarly for state κ, when t is even,

V (t, κ, S) = 0.5νδ(1) = 0.38048,

and when t is odd,

V (t, κ, S) = V (t, κ,H)

= 0.5(0.5 · 2)δ(2) + 0.5(0.5 · 0.1)(0.5 · 2)2δ(4) + · · ·

=
∞∑

n=1
0.5(0.5 · 0.1)n−1(0.5 · 2)nδ(2n)

= 0.40099.

Therefore, V (t, κ,H) ≥ V (t, κ, S) and we have shown that H is an equilibrium with a value

function dominating S anywhere on X = {0, κ, ν, 2} and at all times. This is expected,

since for a time-homogeneous Markov chain, it always has an optimal equilibrium that is

time-homogeneous, see Corollary 3.2.10 in the next chapter.
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2.4 References and Remarks

The main reference for this chapter is [28]. The ideas and proofs were borrowed and then

extended to the time-inhomogeneous model. The transition diagram for the four state ex-

ample in Section 2.3.2 is borrowed from [37, Example 5.3], however the computation and the

theory behind the two examples are very different.

There are a number of ways we could extend the model given by Equation (2.1.2). Taking

the advantage that our setup is time-inhomogeneous, both the running payoff and the final

payoff can also depends on time t, i.e., in the form of g(t,Xt) and f(t,Xt) and the results and

proofs should still apply. This was more or less considered in a different form in Section 3.2

of the next chapter.

We conclude this chapter by remarking on the case where X = {Xt}t∈N∪{0} is a non

Markovian process. In some sense, this would complete the study of time-inconsistent

stopping in discrete-time with non-exponential discounting. Consider a probability space

(Ω,F ,P) that supports a path-dependent process X = {Xt}t∈T taking values in some Polish

space X. Let B(X) be the family of Borel sets in X, and Qt the transition kernel of X at

time t ∈ T. Denote Xt the t-fold of X and Xt is a t+ 1-random vector taking values in Xt+1,

i.e., for any ω ∈ Ω, Xt(ω) = xt is a realisation of the path of X starting from 0 and up to

time t. For any xt ∈ Xt+1 and B ∈ B(X),

P(Xt+1 ∈ B | Xt = xt) =
∫

B
Qt(xt, dy) ∀t = 0, 1, ... .

We then consider the objective function,

J(t,xt, τ) := Et,xt

[
τ−1∑
s=t

δ(s− t)g(Xs) + δ(τ − t)f(Xτ )
]
,

subjecting to some appropriate conditions as in Section 2.1. We follow the same reasoning as

in Section 2.1 but the main difference is the form of stopping regions. Let S = (S0, S1, S2, · · · )

be a stopping region. Instead of Sn ∈ B(X) we have Sn ∈ B(Xn+1) for all n ∈ T and then
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the corresponding stopping policy ρ should be

ρ(t,xt, S) := inf{n ≥ t+ 1 : Xn ∈ Sn} ∈ Tt,

which is the first time greater than t such that the random vector Xn enters the stopping

region S. Accordingly, for any stopping region S, the operator Θ is defined by,

Θ(S) := (S̃0, S̃1, S̃2, · · · ),

where (Θ(S))t := S̃t := {xt ∈ Xt : f((xt)t) ≥ J(t,xt, ρ(t,xt, S))}. As it stands, the argu-

ments and results in Section 2.2, mainly the iterative procedure, with obvious corresponding

adjustment, should be able to cover the above path-dependent case.
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Chapter III

Mean Field Time-Inconsistent Stopping Games

In this chapter, we consider mean field time-inconsistent stopping games with a continuum of

players where each player chooses a stopping time to a time-inconsistent stopping problem de-

pending on the stopped proportion process µt. By introducing µt into the objective function

we cannot expect our problem to be time-homogeneous even when X is time-homogeneous

and as such our theory in Chapter II provides a natural foundation for studying this set of

problems.

3.1 Motivation

To motivate our setup, let us first consider the following objective function

Ji(t, x, µ, τ) := Et,x

[
τ−1∑
s=t

δ(s− t)g(X i
s, µs,N) + δ(τ − t)f(X i

τ , µτ,N)
]
,

where i ∈ {1, 2, ..., N} representing N -numbers of players and {X i}i∈{1,2,...,N} a family of

independent and identical Markovian processes. For each i ∈ {1, 2, ..., N}, X i corresponds

to the private state of player-i and is supported on the probability space (ΩN ,FN ,PN)

equipped with the filtration FN . Define τ i the stopping time chosen by player-i. Each player

interacts through the empirical measure µN on T defined by,

µt,N := µN([0, t]) := 1
N

N∑
i=1

δτ i [0, t] = 1
N

N∑
i=1

1[0,t](τ i) ∀t ∈ T
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representing the proportion of players that has stopped by time t. Stochastic games of large

N -players are notoriously intractable both theoretically and numerically and as such mean

field games were introduced to study the limiting case when N → ∞. In the limiting regime,

each player’s decision will have negligible effect on the limit empirical measure µt,∞ which

we call the stopped proportion process and therefore offering great simplification for finding

Nash equilibrium to the problem.

By construction, we see that our N -player game extends to an infinite player game as

N → ∞. As explained in [11], when N is large, the usual heuristic for mean field games (but

without the presence of a common noise in our case), suggests that, the empirical measure

µN should approaches a probability measure µ on T, i.e., µ ∈ P(T). If we can solve the

time-inconsistent stopping problem,

J(t, x, µ, τ) := Et,x

[
τ−1∑
s=t

δ(s− t)g(Xs, µs) + δ(τ − t)f(Xτ , µτ )
]
, (3.1.1)

for each fixed measure µ, we can define a map µ → Law(τ ∗) where τ ∗ is an stopping time

induced by a single-agent equilibrium to Equation (3.1.1). Then the final step is to find a

fixed-point for this map and any such fixed point is then a Nash equilibrium. In Section 3.2,

we first solve Equation (3.1.1) for each fixed µ by constructing an (time-inhomogeneous)

optimal equilibrium with respect to µ. Then in Section 3.3 we take the stopping time induced

by this optimal equilibrium into the above heuristics and make the arguments precise.

3.2 The Optimal Equilibrium Γµ

Consider the probability space (Ω,F ,P) supporting a Markovian process X taking values in

some Borel subset X ⊆ R. Let F = {Ft}t∈T be the filtration generated by X and Tt the set of

F-stopping times τ with τ ≥ t and µ = (µ0, µ1, · · · ) ∈ [0, 1]N a non-decreasing, deterministic

process, fixed throughout this section. Consider the following objective function,

J(t, x, µ, τ) := Et,x

[
τ−1∑
s=t

δ(s− t)g(Xs, µs) + δ(τ − t)f(Xτ , µτ )
]
. (3.2.1)
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Here, we assume f, g and δ all satisfy the same standing assumptions and Assumption A as

in Section 2.1. Given any S ∈ B(T × X), define Θµ : B(T × X) → B(T × X) by

Θµ(S) := (S̃0, S̃1, S̃2, · · · ) (3.2.2)

where

(Θµ(S))t := S̃t = {x ∈ St : f(x, µt) ≥ J(t, x, µ, S)} ∪ {x ∈ X \ St : f(x, µt) > J(t, x, µ, S)}

Definition 3.2.1. We say S ∈ B(T × X) an equilibrium stopping region (or simply equilib-

rium) if Θ(S)µ = S. We denote the set of all equilibria with respect to µ by Eµ.

In particular, S ∈ B(T × X) is said to be an equilibrium under Equation (3.2.2), i.e.,

Θµ(S) = S if and only if for all t ∈ T,


f(x, µt) ≥ J(t, x, µ, ρ(t, x, S)), ∀x ∈ (S)t,

f(x, µt) ≤ J(t, x, µ, ρ(t, x, S)), ∀x ∈ X \ (S)t.

(3.2.3)

Remark 3.2.2. This definition of equilibria is borrowed from [31] and is slightly weaker than

the definition in Chapter II given by Equation (2.1.6). In particular, it considers a larger

set of equilibria and it facilitates our explicit construction of the optimal equilibrium. In the

case f(x, µt) = J(t, x, µ, ρ(t, x, S)), under Equation (3.2.2) the agent will not make changes

as compared to the previous policy.

Remark 3.2.3. If we are to take Equation (3.2.2) as the definition in Chapter II then it is

straightforward to see that all results hold except Theorem 2.2.9 and the uniqueness result

given by Proposition 2.2.5.

We first collect a few lemmas that has appeared in previous sections in a similar form.

The first one states that the stopping time ρ converges under sequence of monotone stopping

region. The proof is exactly the same as in the first part of the proof of Theorem 2.2.2 and
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therefore omitted.

Lemma 3.2.4. Let {Sn}n∈N be a monotone sequence in B(T × X). For any (t, x) ∈ T × X

we have ρ(t, x, Sn)(ω) → ρ(t, x, S∞)(ω) almost surely, where

S∞ :=


⋃

n∈N S
n, if {Sn} is non-decreasing,

⋂
n∈N S

n, if {Sn} is non-increasing.

The next result is similar to Lemma 2.2.1, which says that any stopping region containing

an equilibrium must be dominated by that equilibrium in terms of the payoff function J .

Lemma 3.2.5. Suppose Assumption A holds. For any nonempty set R, S ∈ B(T × X) with

R ⊆ S and R ∈ Eµ,

J(t, x, µ, ρ(t, x, S)) ≤ J(t, x, µ, ρ(t, x, R)) ∀(t, x) ∈ T × X.

Proof. The proof is postponed to Appendix B.1.

Next, we introduce the operator Φµ : B(T × X) → B(T × X) defined by Φµ(S) :=

(S̃0, S̃1, S̃2, · · · ) where

(Φµ(S))t := S̃t = St ∪ {x /∈ St : f(x, µt) > V ∗(t, x, µ, S)} (3.2.4)

for any S ∈ B(T × X) and

V ∗(t, x, µ, S) := sup
t<τ≤ρ(t,x,S)

J(t, x, µ, τ). (3.2.5)

Observe that for any sequences Sn ∈ B(T×X) and any ω ∈ Ω, if ρ(t, x, Sn)(ω) converges to

some limit, say ρ(t, x, S∞)(ω) then the sequence ρ(t, x, Sn)(ω) must be eventually constant

(when Sn is monotone, this statement is given by Lemma 3.2.4). As such, by the form of
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Equation (3.2.5) we expect that V ∗(t, x, µ, Sn) converges as well. This is given by the next

lemma.

Lemma 3.2.6. Let {Sn}n∈N be a nondecreasing sequence in B(T×X). Then, V ∗(t, x, µ, Sn) ↓

V ∗(t, x, µ, S∞) for all (t, x) ∈ T × X, with S∞ := ⋃
n∈N S

n.

Proof. The proof is postponed to Appendix B.2.

Next, we explicitly construct an equilibrium by using the operator Φµ through an iterative

procedure.

Proposition 3.2.7. Let {Sn
µ}n∈N be a nondecreasing sequence in B(T × X) defined by

S0
µ := (∅, ∅, ∅, · · · ) and Sn

µ := Φµ(Sn−1
µ ) for n ≥ 1. (3.2.6)

Then,

Γµ :=
⋃

n∈N
Sn

µ ∈ Eµ. (3.2.7)

Proof. Fix (t, x) ∈ T × X. Let x ∈ (Γµ)t, by the fact that {(Sn
µ)t}n∈N is a non-decreasing

sequence, there exists n ∈ N such that x ∈ (Sn+1
µ )t \ (Sn

µ)t. By the definition of Φµ and

Lemma 3.2.6, we have

f(x, µt) > V ∗(t, x, µ, Sn
µ) ≥ V ∗(t, x, µ,Γµ) ≥ J(t, x, µ, ρ(t, x,Γµ)),

which implies that x ∈ (Θµ(Γµ))t and hence Γµ ⊆ Θµ(Γµ).

Fix (t, x) ∈ T × X such that x /∈ (Γµ)t, we claim that x /∈ (Θµ(Γµ))t, i.e.,

f(x, µt) ≤ J(t, x, µ, ρ(t, x,Γµ)). (3.2.8)

We prove the converse inclusion by contradiction. Assume that Equation (3.2.8) fails, define
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Λ := {Λ0,Λ1,Λ2, ...}, where

Λt := {x /∈ (Γµ)t : f(x, µt) > J(t, x, µ, ρ(t, x,Γµ))}. (3.2.9)

Consider

ν := sup
t∈T,y∈Λt

{f(y, µt) − J(t, y, µ, ρ(t, y,Γµ))} > 0. (3.2.10)

Since δ(1) < δ(0) = 1, we can choose some κ ∈ (Λ)t such that

f(κ, µt) − J(t, κ, µ, ρ(t, κ,Γµ)) > 1 + δ(1)
2 ν. (3.2.11)

Since κ /∈ (Γµ)t, we must have κ /∈ (Sn
µ)t for all n ∈ N, thus f(κ, µ) ≤ V ∗(t, κ, µ, Sn

µ) for all

n ∈ N by Lemma 3.2.6, this implies,

f(κ, µt) ≤ V ∗(t, κ, µ,Γµ). (3.2.12)

Let τ ∗ ∈ Tt with t + 1 ≤ τ ∗ ≤ ρ(t, κ,Γµ) be a
(

1−δ(1)
2 ν

)
-optimizer of V ∗(t, κ, µ,Γµ). Note

that for any ω ∈ Ω if τ ∗(ω) < ρ(t, κ,Γµ)(ω) then X t,κ
τ∗ (ω) /∈ (Γµ)τ∗ . Hence consider the sets

E1 := {ω ∈ Ω : τ ∗(ω) < ρ(t, κ,Γµ), X t,κ
τ∗ ∈ (Λc \ Γµ)τ∗}

E2 := {ω ∈ Ω : τ ∗(ω) < ρ(t, κ,Γµ), X t,κ
τ∗ ∈ (Λ \ Γµ)τ∗}

We have, by Equation (3.2.11) and Equation (3.2.12),

1 + δ(1)
2 ν < f(κ, µt) − J(t, κ, µ, ρ(t, κ,Γµ))

≤ J(t, κ, µ, τ ∗) − J(t, κ, µ, ρ(t, κ,Γµ)) + 1 − δ(1)
2 ν (3.2.13)

Writing ρΓµ = ρ(t, κ,Γµ), by the strong Markov property of X and the same argument as
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Equations (A.1.5) and (A.1.4) in the proof of Lemma 2.2.1, we have

J(t, κ, µ, τ ∗) − J(t, κ, µ, ρΓµ) ≤ Et,κ [(1E1 + 1E2)δ(τ ∗ − t)(f(Xτ∗ , µτ∗) − J(τ ∗, Xτ∗ , µ, ρΓµ))]

≤ Et,κ [1E2δ(τ ∗ − t)(f(Xτ∗ , µτ∗) − J(τ ∗, Xτ∗ , µ, ρΓµ)]

≤ δ(1)ν,

where the second inequality comes from the fact that Xτ∗ /∈ (Λ)τ∗ on E1 and the definition of

Λ and the third equality comes from the fact that Xτ∗ ∈ (Λ)τ∗ on E2 and Equation (3.2.10).

Thus continuing from Equation (3.2.13), we have,

1 + δ(1)
2 ν < δ(1)ν + 1 − δ(1)

2 ν = 1 + δ(1)
2 ν.

The strict inequality above clearly indicates a contradiction, therefore, we conclude Equa-

tion (3.2.8) holds true for all x /∈ (Γµ)t. Hence (Θ(Γµ))t ⊆ (Γµ)t. Then we have Γµ = Θµ(Γµ),

i.e., Γµ ∈ Eµ.

Lemma 3.2.8. Fix T ∈ Eµ, for any S ∈ B(T × X) with S ⊆ T , Φµ(S) ⊆ T .

Proof. Fix t ∈ T, suppose that there exists x ∈ (Φµ(S))t \ (T )t for some S ∈ B(T × X) with

S ⊆ T . Now, since x /∈ (S)t, the definition of Φµ and V ∗ implies that

f(x, µt) > V ∗(t, x, µ, S) ≥ V ∗(t, x, µ, T ) ≥ J(t, x, µ, ρ(t, x, T )).

Therefore, x ∈ (Θµ(T ))t. However, this contradicts the fact that T = Θµ(T ) as x /∈ (T )t and

T ∈ Eµ, thus we conclude Φµ(S) ⊆ T .

The above lemma states that being a subset of an equilibrium is in fact invariant under

Φµ. Now, using this lemma, we can deliver the main theorem of this section. We claim that

the equilibrium Γµ constructed in Proposition 3.2.7 is our optimal equilibrium. Define the
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associated value function V of an equilibrium S ∈ B(T × X) similarly as in Section 2.2,

V (t, x, µ, S) = f(x, µt) ∨ J(t, x, µ, ρ(t, x, S)). (3.2.14)

Theorem 3.2.9. Suppose Assumption A holds. Then Γµ defined in Equation (3.2.7) is an

optimal equilibrium.

Proof. By Proposition 3.2.7, Γµ is an equilibrium. For any T ∈ Eµ, ∅ ∈ T (trivially) and

by Lemma 3.2.8 we have S1
µ := Φµ(∅) ∈ Eµ. Therefore, by applying Lemma 3.2.8 to the

sequence {Sn
µ}n∈N defined recursively in Equation (3.2.6), we have Sn

µ = Φµ(Sn−1
µ ) ∈ T for

all n ∈ N, thus Γµ = ⋃
n∈N S

n
µ ⊆ T . Applying Lemma 3.2.5 we have J(t, x, µ, ρ(t, x,Γµ)) ≥

J(t, x, µ, ρ(t, x, T )) for all (t, x) ∈ T×X and hence V (t, x, µ, ρ(t, x,Γµ)) ≥ V (t, x, µ, ρ(t, x, T ))

for all (t, x) ∈ T×X. Since T is arbitrary we conclude that Γµ is an optimal equilibrium.

As a byproduct of our construction of Γµ we have the following corollary.

Corollary 3.2.10. If X is time-homogeneous then there exists a time-homogeneous optimal

equilibrium to Equation (2.1.2).

Proof. By taking f(x, µ) = f(x) and g(x, µ) = g(x), Γµ is an optimal equilibrium to

Equation (2.1.2). Moreover, by construction (Γµ)i = (Γµ)j for any i ̸= j since X is time-

homogeneous.

3.3 Mean Field Formulation and Objective of Agents

Following the heuristics in Section 3.1, let µ ∈ P(T), we identify each µ as a non-decreasing,

deterministic sequence in [0, 1]N defined by µ = (µ0, µ1, µ2, · · · ) where µt = µ([0, t]). For

each fixed µ ∈ [0, 1]N, we solve the time-inconsistent stopping problem given by objective

function Equation (3.2.1) by constructing an optimal equilibrium Γµ with respect to µ. We

now state formally the objective of each players.

We extend the process {Xt}t∈T backwards in time to t = −1 and without loss of generality

we assume all players start at X−1 = ∆ where ∆ is some fixed constant in X where they are
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not allowed to stop. At t = 0, X transition from ∆ to some initial condition X0 according

to a known initial distribution independent of the family of transition kernels {Qt}t∈T of X

defined by

P(Xt+1 ∈ B |Xt = x) =
∫

B
Qt(x, dy) ∀t ∈ T and ∀B ∈ B(X).

Here T = {0, 1, 2, ...} and does not include t = −1. For this process X, players collectively

seek an equilibrium strategy to Equation (3.2.1) from the initial starting time t = −1 such

that when implemented none of the players has incentive to deviate from. We call such

strategies soft mean field equilibria.

Definition 3.3.1 (Soft MFE). A pair (µ, S) is a soft mean field equilibrium if Θµ(S) = S

and µt = P(ρ(−1,∆, S) ≤ t) for all t ∈ T.

This mean field formulation is different from the single-agent formulation as we need to

take into account a continuum of players where each player play against other agents and

future selves.

Remark 3.3.2. We would like to reiterate again that as we extend X backwards to t = −1,

the set T does not include t = −1 and µ−1 and S−1 are not included in our formulation

either, or we can simply assume µ−1 = 0 and S−1 = ∅.

Given µ ∈ [0, 1]N if (µ, S) is a soft mean field equilibrium such that S is also optimal

w.r.t µ, i.e., for any other equilibria R ∈ Eµ,

V (t, x, µ, S) ≥ V (t, x, µ,R) ∀(t, x) ∈ T × X,

then we say (µ, S) is sharp.

Definition 3.3.3 (Sharp MEF). A pair (µ, S) is a sharp mean field equilibrium if it is a soft

mean field equilibrium and in addition S is optimal w.r.t µ.
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In particular, it is easy to see that any fixed-point to the map µ 7→ {P(ρ(−1,∆,Γµ) ≤

t)}t∈T must be a sharp mean field equilibrium to Equation (3.2.1).

Remark 3.3.4. We would also like to stress that the purpose of this chapter is to present

methods in showing the existence of fixed-point to the limiting game rather than a detailed

study concerning the mean field game setup and its asymptotic behaviour as in [11]. However,

one thing to note is that even without the sophisticated framework of mean field game we

still have the convergence of the empirical measure µt = limN→∞ µt,N = E[1[0,t](τ ∗)] simply

by the law of large number and the extension to the limiting game is readily justified. For a

probabilistic treatment of mean field games, we refer the readers to the excellent two volume

textbook/monograph [10] by Carmona and Delarue and the references therein.

3.4 A Bank Run Model

In this section, we analyze an example motivated by bank run which describes the situation

where a large number of depositors of a financial institution withdraw their holdings and

thus triggering liquidation. Consider the following objective function,

J(t, x, µ, τ) := Et,x [δ(τ − t)f(Xτ , µτ )]

:= Et,x
[
δ(τ − t){F (Xτ )1{τ<θµ} + ξ · 1{τ≥θµ}}

]
:= Et,x

[
δ(τ − t){F (Xτ )1{µτ ≤ζ} + ξ · 1{µτ >ζ}}

]
, (3.4.1)

where F : X → R+ is strictly positive and θµ := inf{t : µt > ζ} with ζ ∈ [0, 1] a predeter-

mined constant and is interpreted as the bank’s asset to liability ratio. Let ξ be a constant

such that 0 < ξ ≤ inf f representing the recovery payoff in the case of bank liquidation.

Remark 3.4.1. The particular form of the bank run time θµ defined above is motivated by

[11]. Here for simplicity we do not require ζ to be random as in [11].

Lemma 3.4.2. Let S, T ∈ B(T × X) such that T ⊆ S then

µt := P(ρ(−1,∆, S) ≤ t) ≥ P(ρ(−1,∆, T ) < t) =: νt, ∀t ∈ T.
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Lemma 3.4.3. For any (non-decreasing) ν, µ ∈ [0, 1]N such that ν ≤ µ,

J(t, x, µ, τ) ≤ J(t, x, ν, τ), ∀(t, x) ∈ T × X, τ ∈ Tt. (3.4.2)

Hence V ∗(t, x, µ, S) ≤ V ∗(t, x, ν, S) for all x ∈ X, t ∈ T and S ∈ B(T × X). Moreover, we

have

Φν(T ) ⊆ Φµ(S)

for all S, T ∈ B(T × X) with T ⊆ S.

Proof. By definition, if ν ≤ µ then θµ ≤ θν we have,

Et,x[δ(τ − t)f(Xτ , ντ ) − δ(τ − t)f(Xτ , µτ )]

= Et,x[δ(τ − t)(f(Xτ , ντ )) − f(Xτ , µτ )]

≥ Et,x[δ(τ − t) · 0] = 0,

where the last inequality comes from the fact θµ occurs before θν and ξ ≤ inf F . Therefore,

we have J(t, x, µ, τ) ≤ J(t, x, ν, τ) for all (t, x) ∈ T × X and τ ∈ Tt, and hence

V ∗(t, x, µ, S) ≤ V ∗(t, x, ν, S) ∀S ∈ B(T × X) (3.4.3)

Next, fix S, T ∈ B(T × X) with T ⊆ S. Take x ∈ (Φν(T ))t \ (T )t. If x ∈ (S)t then

x ∈ (Φµ(S))t by definition of Φµ (Equation (3.2.4)). Now, assume x /∈ (S)t. Consider

t < θµ ≤ θν . With x ∈ (Φν(T ))t \ (T )t, Equations (3.2.4) and (3.4.3) give,

f(x, µt) = f(x, νt) = F (x) > V ∗(t, x, ν, T ) ≥ V ∗(t, x, ν, S) ≥ V ∗(t, x, µ, S). (3.4.4)

This together with x /∈ (S)t yields that x ∈ (Φµ(S))t for any t < θµ. If t ≥ θµ then by
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Equation (3.2.4) again,

J(t, x, µ, t) = f(x, µt) = ξ > V ∗(t, x, µ, S) = δ(1) · ξ ∀x ∈ X.

Hence Φν(T ) ⊆ X = Φµ(S). In either case, we have Φν(T ) ⊆ Φµ(S)

Using the above lemma we show that the mapping µ → Γµ is monotone under our

model setup. This monotonicity will play a crucial role in the iterative procedure defined in

Theorem 3.4.5.

Corollary 3.4.4. For any (non-decreasing) ν, µ ∈ [0, 1]N such that ν ≤ µ, we have Γν ⊆ Γµ.

Proof. We have ∅ ⊆ ∅ therefore by Lemma 3.4.3 and definition of Sn
µ (Equation (3.2.6)),

(Sν
0 )t ⊆ (Sµ

0 )t for any t ∈ T hence Sν
0 ⊆ Sµ

0 . Applying this procedure for all n ∈ N, we

have Sν
n ⊆ Sµ

n for any n ∈ N. Therefore, by definition of Γµ (Equation (3.2.7)), we have

Γν ⊆ Γµ.

Next, we design an iterative procedure for µ which leads to a sharp mean field equi-

librium. To this end, we start with µ0 := (0, 0, 0, · · · ). We construct a stopping region

induced by the optimal equilibrium w.r.t µ0 given by Γµ0 . From Γµ0 we derive the sequence

{P(ρ(−1,∆,Γµ0) ≤ t)}t∈T := µ1, by definition, we must have µ1 ≥ µ0. Then Corollary 3.4.4

tells us that Γµ1 ⊇ Γµ0 where Γµ1 is the stopping region constructed w.r.t µ1. Next, we

derive µ2 := {P(ρ(−1,∆,Γµ1) ≤ t)}t∈T and by Lemma 3.4.2, µ2 ≥ µ1. We apply this iter-

ative procedure for all n ∈ N, then by the fact that µn is non-decreasing and bounded it

must converges to some limit in [0, 1]N. We show that the limit gives a shape mean field

equilibrium.

Theorem 3.4.5. Let (Sn, µn) be a sequence defined by µ0 := (0, 0, 0, · · · ),

Sn := Γµn and µn+1 := {P(ρ(−1,∆, Sn) ≤ t)}t∈T. (3.4.5)
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Then Sn and µn is non-decreasing. By taking S∞ := ∪∞
n S

n and µ∞ = limn→∞ µn we have

Θµ∞(S∞) = S∞, S∞ = Γµ∞ and µ∞ = {P(ρ(−1,∆, S∞) ≤ t)}t∈T. (3.4.6)

Proof. The first statement is obvious by the above argument. As Sn is non-decreasing S∞ is

well-defined and as for each t, µn
t is bounded and monotone, then the limit µn

t → µ∞
t exists

and µn converges to some limit in [0, 1]N, denoted by µ∞.

Next, we show that Θµ∞(S∞) = S∞. Fix t and x ∈ (S∞)t = ⋃
n(Sn)t. There exists

N ∈ N such that x ∈ (Sn+1)t = (Γµn)t for all n > N . By the fact that Γµn ∈ Eµn , we have,

J(t, x, µn, t) = f(x, µn
t ) ≥ J(t, x, µn, ρ(t, x, Sn)), ∀n ≥ N.

Letting n → ∞, by each iteration of Equation (3.4.5) µn is increasing in n and by definition

(Equation (3.4.1)) the function f(x, ·) has left limits, therefore we have convergence on

the LHS of the above inequality. Again, using this fact and since f is bounded we apply

dominated convergence theorem to the RHS then,

f(x, µ∞
t ) ≥ J(t, x, µ∞, ρ(t, x, S∞)),

which implies x ∈ Θµ∞(S∞). Hence S∞ ⊆ Θµ∞(S∞). To see the other inclusion, for any x /∈

S∞ = ⋃
n S

n, x /∈ Sn+1 = Γµn for all n ∈ N. Again due to the fact Γµn ∈ Eµn , x /∈ Γµn implies

that f(x, µn
t ) ≤ J(t, x, µn, ρ(t, x, Sn)). Take n → ∞, f(x, µ∞

t ) ≤ J(t, x, µ∞, ρ(t, x, S∞)),

which implies that x /∈ Θµ∞(S∞). Hence (S∞)c ⊆ (Θµn(S∞))c, or Θµ∞ ⊆ S∞. We therefore

conclude that Θµ∞(S∞) = S∞, i.e., S∞ ∈ Eµ∞ .

Fix t and by Corollary 3.4.4, we have (Γµ∞)t ⊇ (Γµn)t for all n, thus Sn = Γµn ⊆ Γµ∞

for all n and thus S∞ ⊆ Γµ∞ . On the other have, since S∞ ∈ Eµ∞ , this together with

Lemma 3.2.8 implies that Γµ∞ ⊆ S∞ and we conclude that Γµ∞ = S∞. Finally, fix t and as
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Sn is non-decreasing, the event {ρ(−1,∆, Sn) ≤ t} is also monotone in n, hence

P(ρ(−1,∆, S∞) ≤ t) = lim
n→∞

P(ρ(−1,∆, Sn) ≤ t) = lim
n→∞

µn = µ∞.

By Equation (3.4.6), we have found a fixed-point to the map µ 7→ {P(ρ(−1,∆,Γµ) ≤

t)}t∈T given by µ∞ through the iterative procedure. This gives us the existence of a nontrivial

sharp mean field equilibrium. Since our iterative procedure outlined in Theorem 3.4.5 starts

from µ0 = (0, 0, 0, · · · ), it is easy to see that the sharp MFE (µ∞,Γµ∞) must be the smallest

among all sharp MFEs. That is, we have the following result.

Corollary 3.4.6. Let (µ̃,Γµ̃) be a sharp MFE. Then µ∞ ≤ µ̃ and Γµ∞ ⊆ Γµ̃ where µ∞ is

given by Theorem 3.4.5.

Proof. By definition µ0 = (0, 0, 0, · · · ) ≤ µ̃ therefore Γµ0 ⊆ Γµ̃ by Corollary 3.4.4. Using

the fact that (µ̃,Γµ̃) is a sharp MFE and Lemma 3.4.2 we have µ1 ≤ µ̃. Continuing this

procedure we see that µn ≤ µ̃ for all n ∈ N hence µ∞ ≤ µ̃ and Γµ∞ ⊆ Γµ̃.

Remark 3.4.7. Our model, similar as other game theoretic papers on bank runs also exhibit

the complementarity property. Informally, this means that early withdrawal of depositors

increase the probability of liquidation of the bank which encourages withdrawal of more

depositors. Games with this property is called supermodular games (see [44, 36]) and in

our model there exists a trivial sharp mean field equilibrium given by µ̃ = (1, 1, 1, · · · ) and

Γµ̃ = (X,X,X, · · · ). However, this is the worst sharp mean field equilibrium and any other

sharp mean field equilibrium such as our construction in Theorem 3.4.5 must be bounded

below by this in terms of the value function V .

Recall the associated value function defined by Equation (3.2.14) which gives us the

payoff for the agent at time t under fixed S ∈ B(T × X) and µ ∈ [0, 1]N.
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Theorem 3.4.8. If (µ,Γµ) and (ν,Γν) are sharp MFEs such that ν ≤ µ then V (t, x, ν,Γν) ≥

V (t, x, µ,Γµ). In particular, (µ∞,Γµ∞) is an optimal sharp MFE, i.e., for any sharp MFE

(µ̃,Γµ̃) we have V (t, x, µ∞,Γµ∞) ≥ V (t, x, µ̃,Γµ̃) for all (t, x) ∈ T × X.

Proof. By Corollary 3.4.4 if ν ≤ µ we have Γν ⊆ Γµ. Since Γν ∈ Eν and Γν ⊆ Γµ, by

Lemma 3.2.5 we have that,

J(t, x, ν, ρ(t, x,Γµ)) ≤ J(t, x, ν, ρ(t, x,Γν)).

Moreover, as ν 7→ J(t, x, ν, τ) is decreasing,

J(t, x, µ, ρ(t, x,Γµ)) ≤ J(t, x, ν, ρ(t, x,Γµ)).

Hence, we have

J(t, x, µ, ρ(t, x,Γµ)) ≤ J(t, x, ν, ρ(t, x,Γν)). (3.4.7)

Similarly, as ν 7→ f(x, ν) is decreasing we also have f(x, µt) ≤ f(x, νt), combining with

Equation (3.4.7),

f(x, µ) ∨ J(t, x, µ, ρ(t, x,Γµ)) ≤ f(x, ν) ∨ J(t, x, ν, ρ(t, x,Γν)), (3.4.8)

that is, V (t, x, µ,Γµ) ≤ V (t, x, ν,Γν). Consequently, by Corollary 3.4.6, the pair (µ∞,Γµ∞)

is an optimal sharp mean field equilibrium.

3.5 A General Model

In this section, let us consider the following objective function,

J(t, x, µ, τ) := Et,x

[
τ−1∑
k=t

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ )
]
. (3.5.1)
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In the above objective function, we make the following assumptions,

Assumption B.

(B.1) g : [0, 1] → [0, J ] is bounded and uniformly continuous;

(B.2) f : R × [0, 1] → [0, K] is bounded and uniformly continuous in both variables and

strictly increasing in the first variable;

(B.3) the discount function δ satisfies ∑∞
t=0 δ(t) < ∞ and Equation (2.1.3).

In order for some of our proofs to work, we shall further assume the following,

Assumption C.

(C.1) for each t ∈ T, given Xt = x, Xt+1 = h(Xt, ξt) = h(x, ξt), where h : R2 → R

is continuous and strictly increasing in the first variable and {ξt}t∈T is a family of

independent random variables. Without loss of generality we assume {ξt}t∈T generates

the filtration F in this section.

(C.2) given Xt = x the process Xx
k has a probability density function fXx

k
for all k > t.

Remark 3.5.1. The process X t,x
s continuously depends on x for any s ≥ t and is strictly

increasing in x. Indeed for any xn → x, X t,xn
t → X t,x

t by (C.1) of Assumption C and

consequently X t,xn
t+1 = h(X t,xn

t , ξt) → h(X t,x
t , ξt) = X t,x

t+1, we then apply this recursively for all

s > t. Therefore, coupled with (B.2) of Assumption B, we see that f and J is also strictly

increasing and continuous in x.

Let us define the topology for the space [0, 1]N. For any real-valued sequence v, define

the weighted ℓ1 norm by,

∥v∥δ
1 =

∞∑
n=1

δ(n)|vn|, (3.5.2)

where δ is our choice of discount function. We denote ℓδ
1 the space of real-valued sequences
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having finite ∥·∥δ
1 norm, i.e.,

ℓδ
1 :=

{
v ∈ RN :

∞∑
n=1

δ(n)|vn| < ∞
}
. (3.5.3)

equipped with the topology induced by ∥·∥δ
1. By (B.3) of Assumption B, for any µ ∈ [0, 1]N,

we have ∥µ∥δ
1 ≤ ∑∞

n=0 δ(n) < ∞. Hence, [0, 1]N is a subset of the normed vector space ℓδ
1.

Moreover, [0, 1]N is convex and compact. Finally, for any sequence {µn}n∈N ∈ [0, 1]N,

µn → µ if and only if ∥µn − µ∥δ
1 =

∞∑
k=0

δ(k)
∣∣∣µn

k − µk

∣∣∣ → 0, (3.5.4)

or equivalently µn converges to µ if and only if µn
k converges to µk for each k ∈ N.

Remark 3.5.2. At this stage, we do not require each µ ∈ [0, 1]N to be non-decreasing. Later

we will find µ as a fixed-point for some iteration where non-decreasing is automatically

implied.

For T = (T0, T1, · · · ) ∈ B(T × X), µ ∈ [0, 1]N and (t, x) ∈ T × X, let us recall the

function V ∗(t, x, µ, T ), the operator Φµ(T ) and the non-decreasing sequence {Sn
µ}n∈N defined

in Section 3.2 given by Equations (3.2.4) to (3.2.6) respectively. We first establish the strict

monotonicity of V ∗ in x.

Lemma 3.5.3. Assume Assumptions B and C hold. Suppose T ∈ B(T × X) is such that

(T )n := (−∞, Cn) ∩ X for some constant Cn, if x2 > x1 then ρ(t, x2, T ) ≥ ρ(t, x1, T ) and

V ∗(t, x2, µ, T ) > V ∗(t, x1, µ, T ) for any t ∈ T and any µ ∈ [0, 1]N.

Proof. The proof is postponed to Appendix C.1.

For any sequence {Tn}n∈N in B(T×X) such that (Tn)k := (−∞, Cn
k )∩X for some constant

Cn
k , we say,

Tn → T := (−∞, C) ∩ X if and only if
∣∣∣Cn

k − Ck

∣∣∣ → 0 ∀k ∈ T. (3.5.5)
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In this section we shall only consider stopping regions in the above form, the reason for

this will be made clear later (Proposition 3.5.10). In the next two lemmas, we establish the

continuity of V ∗ in the stopping region T ∈ B(T × X) and µ ∈ [0, 1]N.

Lemma 3.5.4. Assume Assumptions B and C hold. Suppose Tn → T in the sense of

Equation (3.5.5). Then ρ(t, x, Tn) → ρ(t, x, T ) almost surely. This implies that for any fixed

µ ∈ [0, 1]N, V ∗(t, x, µ, Tn) → V ∗(t, x, µ, T ) for all (t, x) ∈ T × X.

Proof. The proof is postponed to Appendix C.2.

Remark 3.5.5. It is evident from first part of the proof of Lemma 3.5.4 above that ρ(−1,∆, Tn) →

ρ(−1,∆, T ) as Tn → T .

Lemma 3.5.6. Suppose Assumption B holds. Let µn → µ. Then for any (t, x) ∈ T×X and

ε > 0 there exists N such that

sup
T ∈B(T×X)

|V ∗(t, x, µn, T ) − V ∗(t, x, µ, T )| ≤ ε

for all n ≥ N .

Proof. The proof is postponed to Appendix C.3.

Next, we combine the previous two lemmas and show the continuity of V ∗ in T ∈ B(T×X)

and µ ∈ [0, 1]N which will play a crucial role in our main result.

Lemma 3.5.7. Suppose Assumptions B and C hold. Let µn → µ and T n → T in the sense

of Equation (3.5.5). Then V ∗(t, x, µn, T n) → V ∗(t, x, µ, T ) for all (t, x) ∈ T × X.

Proof. We have

∣∣∣V ∗(t, x, µ, T ) − V ∗(t, x, µn, T n)
∣∣∣

≤
∣∣∣V ∗(t, x, µ, T ) − V ∗(t, x, µ, T n)

∣∣∣ +
∣∣∣V ∗(t, x, µ, T n) − V ∗(t, x, µn, T n)

∣∣∣.
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The convergence in the first term is by Lemma 3.5.4 and the convergence in the second term

is by Lemma 3.5.6. Therefore,

lim
n→∞

∣∣∣V ∗(t, x, µ, T ) − V ∗(t, x, µn, T n)
∣∣∣ = 0.

In a similar fashion as Lemma 3.5.4 we also establish the continuity of V ∗ in x.

Lemma 3.5.8. Suppose Assumptions B and C hold. For any x ∈ X and T ∈ B(T×X) such

that (T )k = (−∞, Ck) for some constant Ck, if xn → x then ρ(t, xn, T ) → ρ(t, x, T ) almost

surely.

Proof. For any ω ∈ Ω, let ζ(ω) := ρ(t, x, T )(ω). By Remark 3.5.1, as xn → x we have

Xxn
ζ (ω) converges to Xx

ζ (ω) and the rest follows an identical argument as in the proof of the

first part of Lemma 3.5.4.

Lemma 3.5.9. Suppose Assumptions B and C hold. For any T ∈ B(T×X), if xn → x then

V ∗(t, xn, µ, T ) → V ∗(t, x, µ, T ) for all t ∈ T and µ ∈ [0, 1]N.

Proof. The proof is postponed to Appendix C.4.

The next proposition justifies our consideration of stopping regions satisfying Equa-

tion (3.5.5).

Proposition 3.5.10. Suppose Assumptions B and C hold. For any µ ∈ [0, 1]N and t ∈ T,

we have for all n ∈ N, (Sn
µ)t given by Equation (3.2.6) is of the form (−∞, Cn

t ) ∩X for some

constant Cn
t ∈ [−∞,∞].

Proof. Consider the case n = 0, then (S0
µ)t = (Φµ(∅))t = {x ∈ X : g(µt) > V ∗(t, x, µ, ∅)} =

{x ∈ R : g(µt) > V ∗(t, x, µ, ∅)} ∩ X. Let α := sup{x ∈ R : g(µt) > V ∗(t, x, µ, ∅)}. Now for

any y < α, by Lemma 3.5.3, V ∗(t, y, µ, ∅) < V ∗(t, α, µ, ∅) therefore (S0
µ)t = (−∞, C0

t )∩X with

C0
t = α where the openness at C0

t is the by the strict inequality in the definition of Φµ and
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the continuity of V ∗(t, x, µ, T ) in x by Lemma 3.5.9. If {x ∈ R : g(µt) > V ∗(t, x, µ, ∅)} = R

we take C0
t to be ∞ and if {x ∈ R : g(µt) > V ∗(t, x, µ, ∅)} = ∅ we then take C0

t = −∞.

Now assume (Sn
µ)t = (−∞, Cn

t ) ∩ X for some constant Cn
t . Then

(Sn+1
µ )t = (Φ(Sn

µ))t = (Sn
µ)t ∪ {x /∈ (Sn

µ)t : g(µ) > V ∗(t, x, µ, Sn
µ)}

= (Sn
µ)t ∪ {x ∈ [Cn

t ,∞) : g(µ) > V ∗(t, x, µ, Sn
µ)} ∩ X.

Let β > Cn such that β := sup{x ∈ R : g(µt) > V ∗(t, x, µ, Sn
µ)}. If β > Cn

t then by

Lemma 3.5.3 (Sn+1
µ )t = (−∞, Cn+1

t )∩X with β = Cn+1
t otherwise (Sn+1

µ )t = (−∞, Cn
t )∩X =

(Sn
µ)t. This concludes the proof.

To prove our main theorem, we need another auxiliary result.

Lemma 3.5.11. Let H = H(x, y) : R2 → R be continuous in both and decreasing in the first

argument. For any yn ∈ R define φn := sup{x ∈ R : H(x, yn) > 0}. Then if yn → y ∈ R we

have φn → φ := sup{x ∈ R : H(x, y) > 0}.

Proof. The proof is postponed to Appendix C.5.

Using the above auxiliary lemma, we can now prove a key result of this section, which

says that Sn
µ defined by Equation (3.2.6) is continuous in µ for all n ∈ N.

Theorem 3.5.12. Suppose Assumptions B and C hold. For any µn, µ ∈ [0, 1]N such that

µn → µ, we have Sk
µn → Sk

µ for all k ∈ N.

Proof. Fix (t, x) ∈ T×X, by Proposition 3.5.10, each (Φµn(∅))t is in the form of (−∞, φn)∩X

for some constant φn where φn := sup{x ∈ R : g(µn
t ) > V ∗(t, x, µn, ∅)}. By Lemma 3.5.6, the

function g(µn
t ) − V ∗(t, x, µn, ∅) converges to g(µt) − V ∗(t, x, µ, ∅) and it is strictly monotone

and continuous in x by Lemmas 3.5.3 and 3.5.9. Therefore by Lemma 3.5.11, φn = sup{x ∈

R : g(µn
t ) > V ∗(t, x, µn, ∅)} converges to φ = sup{x ∈ R : g(µt) > V ∗(t, x, µ, ∅)}. Hence

(S0
µn)t := (Φµn(∅))t = (−∞, φn) ∩X converges to (S0

µ)t := (Φµ(∅))t = (−∞, φ) ∩X and since

this is true for all t and x we have S0
µn → S0

µ.

48



Next,

(S1
µn)t := (S0

µn)t ∪ {x /∈ (S0
µn)t : g(µn

t ) > V ∗(t, x, µn, (S0
µn)t)}

= (S0
µn)t ∪ {x ∈ R : g(µn

t ) > V ∗(t, x, µn, (S0
µn)t)} ∩ X.

Here the last equality comes from the fact (S0
µn)t = (−∞, φn) ∩ X and the set {x ∈ R :

g(µn
t ) > V ∗(t, x, µn, (S0

µ)t)} is also in the form of (−∞, ψn) where ψn = sup{x ∈ R : g(µn
t ) >

V ∗(t, x, µn, (S0
µn)t)} as shown in the proof of Proposition 3.5.10. As µn → µ, by previous

step we have (S0
µn)t → (S0

µ)t and by Lemma 3.5.7, V ∗(t, x, µn, S0
µn) → V ∗(t, x, µ, S0

µ). Again

by Lemma 3.5.11 we have ψn → ψ and thus S1
µn → S1

µ. Applying this procedure for all

k ∈ N, we have Sk
µn → Sk

µ as µn → µ.

Recall the optimal stopping region constructed by Φ w.r.t µ by,

Γµ :=
⋃

n∈N
Sn

µ , (3.5.6)

which is an optimal equilibrium with respect to µ. If Γµ is also continuous in µ and then

we can employ Tikhonov fixed-point theorem to find a fixed-point to the mapping µ 7→

{P(ρ(−1,∆,Γµ)) ≤ t}t∈T.

Theorem 3.5.13. In addition to Theorem 3.5.12, if Γµn → Γµ as µn → µ then there exists

µ∗ ∈ [0, 1]N such that P(ρ(−1,∆,Γµ∗) ≤ t) = µ∗
t for all t ∈ T. In particular, (Γµ∗

, µ∗) is a

sharp mean field equilibrium.

Proof. As Γµn → Γµ, Remark 3.5.5 implies that ρ(−1,∆,Γµn) → ρ(−1,∆,Γµ) almost surly,

hence P(ρ(−1,∆,Γµn) ≤ t)} → P(ρ(−1,∆,Γµ) ≤ t)} for all t ∈ T. Therefore the mapping

F (µ) := {P(ρ(−1,∆,Γµ) ≤ t)}t∈T is continuous since it is continuous in each component

and clearly F : [0, 1]N → [0, 1]N. As [0, 1]N is a nonempty, convex and compact subset of ℓδ
1,

a locally convex topological vector space then by Tikhonov fixed-point theorem ([43]), we

have the existence of a fixed-point µ∗.
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Remark 3.5.14. Under the current assumptions, although Sk
µn → Sk

µ for each k ∈ N, we

cannot conclude that Γµn = ⋃
k S

k
µn converges to Γµ = ⋃

k S
k
µ. To see this, consider the

following example. We consider the stopping regions at time t = 0 and suppose,

(
Sk

µn

)
0

=


(−∞, 0) ∩ X, ∀k ≤ n

(−∞, 1) ∩ X, ∀k > n,

and
(
Sk

µ

)
0

= (−∞, 0) ∩ X for all k ∈ N. Then as µn → µ, we have (for each fixed k ∈ N)

(Sk
µn)0 →

(
Sk

µ

)
0

while (Γµn)0 = (−∞, 1) ∩ X ̸→ (Γµ)0 = (−∞, 0) ∩ X.

3.5.1 A Case where Γµn → Γµ. In this subsection, we impose a set of conditions on top

of Assumption B and Assumption C such that the convergence Γµn → Γµ is verified for any

µn → µ. For any (t, x) ∈ T × X, µ ∈ [0, 1]N and τ ∈ Tt, define the following auxiliary

function U , which has appeared in similar forms in the proofs of Proposition 3.5.10 and

Theorem 3.5.12,

U(t, x, µ, τ) = Et,x

[
τ−1∑
k=t

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ )
]

− g(µt). (3.5.7)

Assumption D.

(D.1) Xt+1 = Xt + ξt where ξt are i.i.d for each t ∈ T with a probability density function

bounded by some constant L;

(D.2) ∑∞
t=0 tδ(t) < ∞;

(D.3) there exists a, b ∈ R with a < b such that

(i) for all µ ∈ [0, 1]N and t ∈ T

sup
τ≥t+1

U(t, a, µ, τ) < 0,

and infν∈[0,1] f(a, ν) > 0;

50



(ii) for all µ ∈ [0, 1]N and t ∈ T we have

f(b, µt+1) + δ(1)g(µt+1) > g(µt).

(iii) there exists α > 0 such that for all x ∈ [a, b], µ ∈ [0, 1] and ∆x > 0, we have,

f(x+ ∆x, µ)
f(x, µ) ≥ 1 + α∆x.

Remark 3.5.15. An example for (D.3) of Assumption D is given by

(1) f(x, µ) = F (x)G(µ) where F (x) → 0 as x → −∞, inf G > 0 and supG < ∞;

(2) g is decreasing, inf g > 0 and sup g < ∞;

(3) limx→∞ F (x) · inf G > sup g, F ′ exists on [a, b] and satisfies infx∈[a,b] F
′(x) > 0.

It is straightforward to see that (2) and (3) implies (ii), and (3) also implies (iii). To see that

(1) and (2) implies (i) we first observe that supτ≥t+1 Et,x[δ(τ − t)g(µτ )] − g(µt) < 0 since

sup
τ≥t+1

Et,x[δ(τ − t)g(µτ )] − g(µt) ≤ δ(1)g(µt+1) − g(µt) ≤ (δ(1) − 1)g(1) < 0,

µ is decreasing and inf g > 0. Denote γ := −(δ(1) − 1)g(1) > 0 which is independent of t.

Next, we can separate the finite sum involving f as in the proof of Lemma 3.5.6,

sup
τ≥t+1

Et,x

[
τ−1∑
k=t

δ(k − t)f(Xk, µk)
]

≤ supG · Ex

[ ∞∑
k=0

δ(k)F (Xk)
]

≤ supG ·
[
Ex

[
N−1∑
k=0

δ(k)F (Xk)
]

+ supF
∞∑

k=N

δ(k)
]
.

Here we remove the dependency on t in the first line as F (Xk) is now time-homogeneous by

(D.1). Choose N large enough so that the second term is smaller than γ
4 sup G

. By the fact

that limx→−∞ F (x) = 0 and for each k ∈ {0, 1, ..., N − 1}, F (Xx
k ) continuously depends on

x so we can choose x = a small enough such that the first term is also smaller than γ
4 sup G
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and hence,

sup
τ≥t+1

U(t, a, µ, τ) ≤ sup
τ≥t+1

Et,a

[
τ−1∑
k=t

δ(k − t)f(Xk, µk)
]

+ sup
τ≥t+1

Et[δ(τ − t)g(µτ )] − g(µt)

≤ γ

2 + (δ(1) − 1)g(1) = −γ/2 < 0.

By Proposition 3.5.10, for each fixed µ ∈ [0, 1]N there exists some constant Cn
t such that

(Sn
µ)t = (−∞, Cn

t ) for each t ∈ T where Sn
µ is defined by Equation (3.2.6). We find a bounded

interval for these constants.

Lemma 3.5.16. Suppose Assumption D holds. We have Cn
t ∈ [a, b] for all n ∈ N and t ∈ T

where a and b are given in (D.3) of Assumption D.

Proof. This is a direct consequence of (D.3) of Assumption D.

Denote ∆Cn
t := Cn+1

t − Cn
t ≤ b− a and ∆Cn = supt∈T ∆Cn

t ≤ b− a.

Lemma 3.5.17. Suppose Assumption D holds. There exists β ∈ (0, 1) independent of µ ∈

[0, 1]N such that ∆Cn+1
t ≤ β∆Cn. Hence ∆Cn

t ≤ βn(b− a).

Proof. The proof is postponed to Appendix C.6.

The previous lemma says that the change in the stopping region after each iteration of Φµ

decrease exponentially and uniformly in µ. This gives us the main result of this subsection.

Proposition 3.5.18. Suppose Assumption D holds. If µn → µ then Γµn → Γµ.

Proof. Fix t ∈ T and ε > 0. By Lemma 3.5.17, we have

∞∑
k=0

∆Ck
t ≤

∞∑
k=0

βk(b− a) = (b− a)
∞∑

k=0
βk < ∞,

as a (convergent) geometric series. Hence there exists N1 large enough such that for all

k ≥ N1, (Γµn)t can be approximated by (Sk
µn)t within ε/3 (i.e., (Γµn)t = (−∞, Cn

t ) and

Sk
µn = (−∞, Cn,k

t ) where |Cn
t −Cn,k

t | ≤ ε/3 for all k ≥ N1). Note that this is independent of
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the choice of µn ∈ [0, 1]N and therefore for the same reason, (Γµ)t can be approximated by

(Sk
µ)t within ε/3 for all k ≥ N1. By Theorem 3.5.12, there exists N2 large enough such that

(Sk
µn)t can be approximated by (Sk

µ)t within ε/3 for all n ≥ N2. Combining this together we

have for all ε > 0 there exists N large enough such that for all n ≥ N , |Cn
t − Ct| ≤ ε where

(Γµn)t = (−∞, Cn
t ) and (Γµ)t = (−∞, Ct), i.e., (Γµ)t can be approximated by (Γµn)t within

ε for all n ≥ N thus completing the proof.

3.6 References and Remarks

The explicit construction of the optimal equilibrium Γµ in Section 3.2 is borrowed from [31,

Section 3] and the references therein. The formulation of the bank run model is partially

inspired by [11] and the iterative procedure for finding a sharp mean field equilibrium is

partially borrowed from [31, Section 4].

One generalization of our model is to incorporate heterogeneous players. Where the

choice of f, g and the discount function δ depends on the preference of each player, see, e.g.

[33]. This may work in both examples.

We can also incorporate the common noise say Yt and the process Xt is treated as an

idiosyncratic noise unique to each player. As such µ is now a P(T)-valued random variable,

i.e., a random measure depending on the value of Y . With some effort, we should be able

to extend the bank run model in this direction.
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Appendix A

Proof of Lemmas in Section 2.2

A.1 Proof of Lemma 2.2.1

Proof. We prove by contradiction. Suppose that Equation (2.2.1) does not hold, in other

words, there exists some nonnegative constant

ν := sup
(t,x)∈(T×X)

(J(t, x, ρ(t, x, S)) − J(t, x, ρ(t, x,Θ(S))) > 0. (A.1.1)

We can choose some (t, y) ∈ (T × X) such that

J(t, y, ρ(t, y, S)) − J(t, y, ρ(t, y,Θ(S))) > δ(1)ν. (A.1.2)

Next, fix S ∈ B(T × X) nonempty and consider the event E := E1 ∩ E2, where

E1 := {ω ∈ Ω : ρ(t, y, S)(ω) < ∞} and E2 :=
{
ω ∈ Ω : X t,y

ρ(t,y,S)(ω) ∈ (S \ Θ(S))ρ(t,y,S)
}
.

First consider the complement event (E1)c, Θ(S) ⊆ S implies that ρ(t, y,Θ(S)) ≥ ρ(t, y, S) =

∞. By the boundness of f we must have δ(ρ(t, y, S)−t)f(Xρ(t,y,S)) = δ(ρ(t, y,Θ(S))−t) = 0.

On the other hand, on the event E1 ∩ (E2)c, we have ρ(t, y, S) < ∞ and (Θ(S))ρ(t,y,s) ⊆

(S)ρ(t,y,s) implying that Xy
ρ(t,y,S) ∈ (Θ(S))ρ(t,y,s). Which further implies that ρ(t, y,Θ(S)) =
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ρ(t, y, S) and therefore we have

ρ(t,y,S)−1∑
s=t

δ(s− t)g(Xs) + δ(ρ(t, y, S) − t)f(Xρ(t,y,S))

=
ρ(t,y,Θ(s))−1∑

s=t

δ(s− t)g(Xs) + δ(ρ(t, y,Θ(s)) − t)f(Xρ(t,y,Θ(s)))

almost surely on (E1)c and E1 ∩ (E2)c. Consequently,

J(t, y, ρ(t, y, S)) − J(t, y, ρ(t, y,Θ(S)))

= Et,y

1E


ρ(t,y,S)−1∑

s=t

δ(s− t)g(Xs) + δ(ρ(t, y, S) − t)f(Xρ(t,y,S))

−
ρ(t,y,Θ(S))−1∑

s=t

δ(s− t)g(Xs) − δ(ρ(t, y,Θ(S)) − t)f(Xρ(t,y,Θ(S)))




To simplify the notation we write:

1. τ1 := ρ(t, y, S);

2. κ1 := ρ(t, y,Θ(S)) and κ2 := ρ(τ1, X
t,y
τ1 ,Θ(S)).

Now,

J(t, y, τ1) − J(t, y, κ1)

= Et,y

[
1E

{
τ1−1∑
s=t

δ(s− t)g(Xs) + δ(τ1 − t)f(Xτ1) −
κ1−1∑
s=t

δ(s− t)g(Xs) − δ(κ1 − t)f(Xκ1)
}]

= Et,y

[
1E

{
−

κ1−1∑
s=τ1

δ(s− t)g(Xs) + δ(τ1 − t)f(Xτ1) − δ(κ1 − t)f(Xκ1)
}]

= Et,y

[
1Eδ(τ1 − t)Et,y

[
f(Xτ1) −

κ1−1∑
s=τ1

δ(s− t)
δ(τ1 − t)g(Xs) − δ(κ1 − t)

δ(τ1 − t) f(Xκ1)
∣∣∣∣∣ Fτ1

]]
, (A.1.3)

55



where the last equality comes from the tower property of conditional expectation. Using

(A.2) of Assumption A we have,

δ(κ1 − t)
δ(τ1 − t) ≥ δ(κ1 − τ1) and

κ1−1∑
s=τ1

δ(s− t)
δ(τ1 − t)g(Xs) ≥

κ1−1∑
s=τ1

δ(s− τ1)g(Xs). (A.1.4)

Substituting Equation (A.1.4) into Equation (A.1.3) we have,

J(t, y, τ1) − J(t, y, κ1) ≤ Et,y

[
1Eδ(τ1 − t)

{
f(Xτ1) − Et,y

[{
κ1−1∑
s=τ1

δ(s− τ1)g(Xs)

+ δ(κ1 − τ1)f(Xκ1)
} ∣∣∣∣∣ Fτ1

]}]
(A.1.5)

Next, by the strong Markov property of X, it holds a.s. that,

Et,y

[
κ1−1∑
s=τ1

δ(s− τ1)g(Xs) + δ(κ1 − τ1)f(Xκ1)
∣∣∣∣∣ Fτ1

]
1E

= Eτ1,Xt,y
τ1

[
κ2−1∑
s=τ1

δ(s− τ1)g(Xs) + δ(κ2 − τ1)f(Xκ2)
]
1E

= J(τ1, Xτ1 , κ2)1E.

Taking the above equation into Equation (A.1.5), we have,

J(t, y, ρ(t, y, s)) − J(t, y, ρ(t, y,Θ(S)))

≤ Et,y [1Eδ(τ1 − t)) {f(Xτ1) − J(τ1, Xτ1 , ρ(τ1, Xτ1 ,Θ(S))}]

≤ Et,y [1Eδ(τ1 − t) {J(τ1, Xτ1 , ρ(τ1, Xτ1 , S)) − J(τ1, Xτ1 , ρ(τ1, Xτ1 ,Θ(S))}]

≤ Et,y [1Eδ(τ1 − t)ν]

≤ δ(1)ν.

The second inequality in the above equations is by the definition of Θ, f(x) < J(t, x, ρ(t, x, S))

for all x /∈ (Θ(S))t. The last inequality comes from Equation (A.1.1). Therefore we have a

contradiction and thus establishing Equation (2.2.1).
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Fix t ∈ T. For any x /∈ (Θ(S))t, using the definition of Θ and what we just proved, we

have,

f(x) < J(t, x, ρ(t, x, S)) ≤ J(t, x, ρ(t, x,Θ(S))),

and therefore x /∈ (Θ2(S))t which then implies (Θ2(S))t ⊆ (Θ(S))t. Since the previous

argument works for all t ∈ T, we have Θ(S) ⊆ S.

A.2 Proof of Lemma 2.2.6

Proof. Fix some arbitrary initial condition (t, x) ∈ T × X. We shall define, for simplicity,

the following notation for all n = 0, 1, 2, ...,

1. y0 := x, y2n+1 := Xτ2n,y2n

ρ(τ2n,y2n,R), y2n+2 := X
τ2n+1,y2n+1
ρ(τ2n+1,y2n+1,S);

2. τ0 := t, τ2n+1 := ρ(τ2n, y2n, R), τ2n+2 := ρ(τ2n+1, y2n+1, S);

3. En := {ω ∈ Ω : τn(ω) < ∞ and yn(ω) /∈ S ∩R};

4. En(Y ) := Eτn−1,yn−1 [1Enδ(τn − τn−1)Y ] for any random variable Y : Ω 7→ R;

5. J(t, x, Ŝ) := J(t, x, ρ(t, x, Ŝ)) for any Ŝ ∈ B(T × X).

6. κ2n+1 := ρ(τ2n, y2n, S ∩R) and κ2n+2 := ρ(τ2n+1, y2n+1, S ∩R)

By the definition of E1, we have,

J(t, x, S ∩R) − J(t, x, R)

= Eτ0,y0

[
1E1

{
κ1−1∑
s=t

δ(s− t)g(Xs) + δ(κ1 − t)f(Xκ1)

−
τ1−1∑
s=t

δ(s− t)g(Xs) − δ(τ1 − t)f(y1)
}]

= Eτ0,y0

[
1E1

{
κ1−1∑
s=τ1

δ(s− t)g(Xs) + δ(κ1 − t)f(Xκ1)

− δ(τ1 − t)f(y1)
}]
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= Eτ0,y0

[
1E1δ(τ1 − t)Eτ0,y0

[
κ1−1∑
s=τ1

δ(s− t)
δ(τ1 − t)g(Xs)

+δ(κ1 − t)
δ(τ1 − t) f(Xκ1) − f(y1)

∣∣∣∣∣ Fτ1

]]

≥ Eτ0,y0

[
1E1δ(τ1 − t)

{
Eτ0,y0

[
κ1−1∑
s=τ1

δ(s− τ1)g(Xs)

+ δ(κ1 − τ1)f(Xκ1)
∣∣∣∣∣ Fτ1

]
− f(y1)

}]
,

(A.2.1)

where we use the tower property of conditional expectation and invoke (A.2) of Assumption A

similarly as in the proof of Lemma 2.2.1. Again, by the strong Markov property of X we

obtain,

Eτ0,y0

[
κ1−1∑
s=τ1

δ(s− τ1)g(Xs) + δ(κ1 − τ1)f(Xκ1)
∣∣∣∣∣ Fτ1

]
1E1

= Eτ1,y1

[
κ2−1∑
s=t

δ(s− τ1)g(Xs) + δ(κ2 − τ1)f(Xκ2)
]
1E1

= J(τ1, y1, S ∩R)1E1 . (A.2.2)

Moreover, notice that on the event E1, we have y1 ∈ (R)τ1 but y1 /∈ (S ∩ R)τ1 this means

that y1 /∈ (S)τ1 . Thus by the discussion of Remark 2.1.8 we have,

f(y1) < J(τ1, y1, S). (A.2.3)

Together Equations (A.2.1), (A.2.2) and (A.2.3) give

J(t, x, S ∩R) − J(t, x, R) ≥ Eτ0,y0 [1E1δ(τ1 − τ0) (J(τ1, y1, S ∩R) − J(τ1, y1, S))]

= E1 (J(τ1, y1, S ∩R) − J(τ1, y1, S)) . (A.2.4)
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Now, we will apply the above argument in a recursive manner. First, repeat the previous

procedure for J(τ1, y1, S ∩R) − J(τ1, y1, S), instead of J(t, x, S ∩R) − J(t, x, R) gives us,

J(τ1, y1, S ∩R) − J(τ1, y1, S) ≥ E2(J(τ2, y2, S ∩R) − J(τ2, y2, R))

Combining this with Equation (A.2.4), we have,

J(t, x, S ∩R) − J(t, x, R) ≥ E1 ◦ E2(J(τ2, y2, S ∩R) − J(τ2, y2, R)). (A.2.5)

Next, applying the above procedure to J(τ2, y2, S ∩ R) − J(τ2, y2, R), instead of J(t, x, S ∩

R) − J(t, x, R) and continuing this procedure for 2n number of times, we have

J(t, x, S ∩R) − J(t, x, R)

≥ E1 ◦ · · · ◦ E2n(J(τ2n, y2n, S ∩R) − J(τ2n, y2n, R)), ∀n ∈ N. (A.2.6)

By Assumption A, there exists a constant C > 0 such that |J(s, y, Ŝ)| ≤ C for all (s, y) ∈

T × X and Ŝ ∈ B(T × X). Then,

|E1 ◦ · · ·E2n(J(τ2n, y2n, S ∩R) − J(τ2n, y2n, R))|

≤ E1 ◦ · · · ◦ E2n(|J(τ2n, y2n, S ∩R) − J(τ2n, y2n, R)|) ≤ δ(1)2n · 2C → 0 as n → ∞,

as δ(1) < 1. Then by Equation (A.2.6) and the fact that the choice of (t, x) is arbitrary,

J(t, x, S ∩R) − J(t, x, R) ≥ 0 ∀(t, x) ∈ T × X. (A.2.7)

Similarly, interchanging the role of S and R, we conclude,

J(t, x, S ∩R) − J(t, x, S) ≥ 0 ∀(t, x) ∈ T × X. (A.2.8)
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Combining Equations (A.2.7) and (A.2.8) this completes the proof of Equation (2.2.8). Fix

t ∈ T, for any x /∈ (S ∩ R)t, if x /∈ (S)t, then by definition and Equation (2.2.8) f(x) <

J(t, x, S) ≤ J(t, x, S ∩ R), which implies x /∈ (Θ(S ∩ R))t. Similarly, if x /∈ (R)t, we have

x /∈ (Θ(S ∩R))t. Since the above works for all t, we can conclude Θ(S ∩R) ⊆ S ∩R.
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Appendix B

Proof of Lemmas in Section 3.2

B.1 Proof of Lemma 3.2.5

Proof. Consider the event E := E1 ∩ E2, where,

E1 := {ω ∈ Ω : ρ(t, y, S)(ω) < ∞} and E2 :=
{
ω ∈ Ω : X t,x

ρ(t,x,S)(ω) ∈ (S \R)ρ(t,x,S)
}
.

For the same argument as in Lemma 2.2.1,

ρ(t,y,S)−1∑
s=t

δ(s− t)g(Xs, µs) + δ(ρ(t, y, S) − t)f(Xρ(t,y,S), µρ(t,y,S))

=
ρ(t,y,R)−1∑

s=t

δ(s− t)g(Xs, µs) + δ(ρ(t, y, R) − t)f(Xρ(t,y,R), µρ(t,y,R))

almost surely on the event Ec. To simplify the notation we write:

1. τ1 := ρ(t, x, S) and τ2 := ρ(t, x, R);

2. κ1 := ρ(τ1, X
t,x
τ1 , R).

We have,

J(t, x, µ, ρ(t, x, R)) − J(t, x, µ, ρ(t, x, S))

= Et,x

[
1E

{
τ2−1∑
s=τ1

δ(s− t)g(Xs, µs) + δ(τ2 − t)f(Xτ2 , µτ2) − δ(τ1 − t)f(Xτ1 , µτ1)
}]

= Et,x

[
1Eδ(τ1 − t)Et,x

[
τ2−1∑
s=τ1

δ(s− t)
δ(τ1 − t)g(Xs, µs) + δ(τ2 − t)

δ(τ1 − t)f(Xτ2 , µτ2) − f(Xτ1 , µτ1)
∣∣∣∣∣ Fτ1

]]
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≥ Et,x

[
1Eδ(τ1 − t)

{
Et,x

[
τ2−1∑
s=τ1

δ(s− τ1)g(Xs, µs) + δ(τ2 − τ1)f(Xτ2 , µτ2)
∣∣∣∣∣ Fτ1

]
− f(Xτ1 , µτ1)

}]

= Et,x

[
1Eδ(τ1 − t)

{
Eτ1,Xt,x

τ1

[
κ1−1∑
s=τ1

δ(s− τ1)g(Xs, µs) + δ(κ1 − τ1)f(Xκ1 , µκ1)
]

− f(Xτ1 , µτ1)
}]

= Et,x [1Eδ(τ1 − t) {J(τ1, Xτ1 , µ, R) − f(Xτ1 , µτ1)}] ≥ 0.

Here we use (A.2) of Assumption A in the third line and apply the strong Markov property

to the inner expectation in deriving the fourth line. Finally, under the event E and by

Equation (3.2.3) we have f(x, µt) ≤ J(t, x, µ,R) for all x ∈ X \ (R)t, thus the term inside

the expectation in the last line must be non-negative and hence establishing the desired

result.

B.2 Proof of Lemma 3.2.6

Proof. Fix (t, x) ∈ X. Since Sn ⊆ S∞, we have ρ(t, x, Sn) ≥ ρ(t, x, S∞), thus by the

definition of V ∗, V ∗(t, x, µ, Sn) ≥ V ∗(t, x, µ, S∞) for all n and

lim
n→∞

V ∗(t, x, µ, Sn) ≥ V ∗(t, x, µ, S∞). (B.2.1)

To prove the other inequality, let τn ∈ Tt with t+ 1 ≤ τn ≤ ρ(t, x, µ, Sn) be a 1
n
-optimizer of

V ∗(t, x, µ, Sn) for each n ∈ N. Then, writing ρ∞ := ρ(t, x, S∞) and ρn := ρ(t, x, Sn),

V ∗(t, x, µ, Sn) − V ∗(t, x, µ, S∞)

≤ J(t, x, µ, τn) + 1
n

− J(t, x, µ, τn ∧ ρ∞)

≤ Et,x

 τn∑
s=τn∧ρ∞

δ(s− t)g(Xs, µs) + (δ(τn − t)f(Xτn , µτn)

− δ((τn ∧ ρ∞) − t)f(Xτn∧ρ∞ , µτn∧ρ∞)
]

+ 1
n

(B.2.2)

Now, for any ω ∈ Ω, we have, by definition, τn(ω) ≤ ρn(ω) and by Lemma 3.2.4 we also

have ρn(ω) → ρ∞(ω). If ρ∞(ω) < ∞, this implies there exists N large enough such that
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τn(ω) = (τn ∧ρ∞)(ω) for all such n ≥ N . If ρ∞(ω) = ∞ then τn(ω) = (τn ∧ρ∞)(ω) holds with

triviality. Thus, taking limit on both sides of Equation (B.2.2) and applying the dominated

convergence theorem we then have,

lim
n→∞

V ∗(t, x, µ, Sn) ≤ V ∗(t, x, µ, S∞),

proving the other inequality.
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Appendix C

Proof of Lemmas in Section 3.5

C.1 Proof of Lemma 3.5.3

Proof. For any ω ∈ Ω, by Remark 3.5.1, Xx2(ω) > Xx1(ω) therefore, by the form of the stop-

ping region T , we must have ρ(t, x2, T )(ω) ≥ ρ(t, x1, T )(ω). Hence, ρ(t, x2, T ) ≥ ρ(t, x1, T )

almost surely. Consequently, as J is also strictly increasing in x for any τ ≥ t,

V ∗(t, x1, µ, T ) = sup
t<τ≤ρ(t,x1,T )

J(t, x1, µ, τ)

< sup
t<τ≤ρ(t,x1,T )

J(t, x2, µ, τ)

≤ sup
t<τ≤ρ(t,x2,T )

J(t, x2, µ, τ)

= V ∗(t, x2, µ, T ),

where the strict inequality comes from (B.2) of Assumption B that f is strictly increasing

in x. Indeed if x1 < x2 then

V ∗(t, x1, µ, T ) = sup
t<τ≤ρ(t,x1,T )

Et,x1

[
τ−1∑
k=t

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ )
]

= f(X t,x1
t , µt) + sup

t<τ≤ρ(t,x1,T )
Et,x1

 τ−1∑
k=t+1

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ )


< f(X t,x2
t , µt) + sup

t<τ≤ρ(t,x1,T )
Et,x2

 τ−1∑
k=t+1

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ )

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≤ f(X t,x2
t , µt) + sup

t<τ≤ρ(t,x2,T )
Et,x2

 τ−1∑
k=t+1

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ )


= V ∗(t, x2, µ, T ),

since f(X t,x1
t , µt) < f(X t,x2

t , µt) by (B.2) of Assumption B.

C.2 Proof of Lemma 3.5.4

Proof. Fix any ω ∈ Ω. Let ζ(ω) := ρ(t, x, T )(ω) and assume X t,x
ζ (ω) ∈ (T )ζ(ω). Then by

the openness of (T )ζ(ω) there exists N large enough such that Xζ(ω) ∈ (Tn)ζ(ω) for all n ≥ N

hence we have,

lim sup
n→∞

ρ(t, x, Tn) ≤ ρ(t, x, T ) a.s. (C.2.1)

Next, by (C.2) of Assumption C, the process X t,x
k has a density therefore the probability that

X t,x
k sits on the boundary Ck is 0 and X t,x

k ∈ (Ck,∞) with probability 1. Hence, consider

ω ∈ A := {ω : X t,x
k (ω) ̸= Ck ∀ k ≥ t} with P(A) = 1 and suppose there exists k such that

t < k < ζ(ω) with X t,x
k (ω) ∈ (Tn)k for some n but X t,x

k (ω) /∈ (T )k = (−∞, Ck) ∩ X. Then,

for a.e. ω ∈ Ω there exists another N such that X t,x
k (ω) /∈ (Tn)k for all n ≥ N and all such

k. Therefore,

lim inf
n

ρ(t, x, Tn) ≥ ρ(t, x, T ) a.s. (C.2.2)

Note that if ρ(t, x, T ) = ∞ then the first inequality holds trivially and since P(∪kX
t,x
k =

Ck) = 0 as a countable union of sets with probability zero the second inequality also holds.

Combining Equations (C.2.1) and (C.2.2), we have for all (t, x) ∈ T × X

lim
n→∞

ρ(t, x, Tn) = ρ(t, x, T ) a.s. (C.2.3)
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For (t, x) ∈ T × X and µ ∈ [0, 1]N denote

G(µ, τ) =
τ−1∑
k=t

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ ).

Let τn such that t < τn ≤ ρ(t, x, Tn) be a 1
n
-optimizer of V ∗(t, x, µ, Tn) for n ∈ N. Then

lim sup
n→∞

[V ∗(t, x, µ, Tn) − V ∗(t, x, µ, T )]

≤ lim sup
n→∞

[
Et,x[G(µ, τn)] + 1

n
− Et,x[G(µ, τn ∧ ρ(t, x, T ))]

]
= lim sup

n→∞

[
Et,x[G(µ, τn) −G(µ, τn ∧ ρ(t, x, T ))] + 1

n

]
= 0 (C.2.4)

By first part of this proof, for a.e. ω ∈ Ω, if ρ(t, x, T )(ω) < ∞ there exists N such that

τn(ω) ≤ ρ(t, x, Tn)(ω) = ρ(t, x, T )(ω) for all n ≥ N . Otherwise, if ρ(t, x, T )(ω) = ∞ then the

equality τn(ω) ≤ ρ(t, x, Tn)(ω) = ρ(t, x, T )(ω) holds trivially. Hence, taking limit on both

sides and applying the dominated convergence theorem we have the convergence to 0.

On the other hand, let τn such that t < τn ≤ ρ(t, x, T ) be a 1
n
-optimizer of V ∗(t, x, µ, T )

for all n ∈ N instead. Then similarly, for each ω ∈ Ω, if ρ(t, x, T )(ω) < ∞ then there exists

N such that τn(ω) ≤ ρ(t, x, T )(ω) = ρ(t, x, Tn)(ω) for all n ≥ N . If ρ := ρ(t, x, T )(ω) = ∞

we denote τn := τn(ω), ρn := ρ(t, x, Tn)(ω) for simplicity, then

G(µ, τn) −G(µ, τn ∧ ρ(t, x, Tn))

≤
τn−1∑

k=τn∧ρn

δ(k − t)f(Xk, µk) + δ(τn)g(µτn) − δ(τn ∧ ρn)g(µτn∧ρn)

≤ K
τn−1∑

k=τn∧ρn

δ(k − t) + J · [δ(τn) − δ(τn ∧ ρn)]

=

K
τn−1∑
k=ρn

δ(k − t) + J · [δ(τn) − δ(τn ∧ ρn)]

 · 1{τn>ρn} → 0.

As ρn → ρ = ∞, the first sum converges to 0 and the second term also converges to zero as

τn ∧ ρn → τn. Therefore, by dominated convergence theorem, we can take the limit under
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the expectation and hence

lim sup
n→∞

[V ∗(t, x, µ, T ) − V ∗(t, x, µ, Tn)]

≤ lim sup
n→∞

[
Et,x[G(µ, τn) −G(µ, τn ∧ ρ(t, x, Tn))] + 1

n

]
= 0. (C.2.5)

Combining Equations (C.2.4) and (C.2.5), we have,

lim
n→∞

∣∣∣V ∗(t, x, µ, Tn) − V ∗(t, x, µ, T )
∣∣∣ = 0,

whenever, Tn → T in the sense of Equation (3.5.5).

C.3 Proof of Lemma 3.5.6

Proof. Fix any µ ∈ [0, 1]N and let {µn}n∈N converges to µ. By (B.3) of Assumption B, for

every ε2 > 0 there exists N † such that ∑∞
k=N† δ(k − t) < ε2. and there exists δ1 and δ2

such that whenever |µn
i − µi| < δ1 and |µn

i − µi| < δ2 we have |f(x, µi) − f(x, µn
i )| < ε1 and

|g(µi) − g(µn
i )| < ε1, let δ := min{δ1, δ2}. We consider the first N † terms of each n of the

sequence µn and the limit µ. We can find N∗ = max{N1, N2, ..., NN†} where Ni is such that

for all n ≥ Ni, |µn
i − µi| ≤ δ then for all n ≥ N †, |µn

i − µi| ≤ maxl≤N† |µn
l − µl| ≤ δ for each

i ≤ N †. Hence, for all n ≥ N∗,

|V ∗(t, x, µ, T ) − V ∗(t, x, µn, T )|

≤ sup
t<τ≤ρ(t,x,T )

Et,x

[∣∣∣ τ−1∑
k=t

δ(k − t)(f(Xk, µk) − f(Xk, µ
n
k)) + δ(τ − t)(g(µτ ) − g(µn

τ ))
∣∣∣]

≤ sup
t<τ≤∞

Et,x

[ ∞∑
k=t

δ(k − t)
∣∣∣f(Xk, µk) − f(Xk, µ

n
k)

∣∣∣ + δ(τ − t)
∣∣∣g(µτ ) − g(µn

τ )
∣∣∣]

≤ Et,x

N†−1∑
k=t

δ(k − t)
∣∣∣f(Xk, µk) − f(Xk, µ

n
k)

∣∣∣ +
∞∑

k=N†

δ(k − t)
∣∣∣f(Xk, µk) − f(Xk, µ

n
k)

∣∣∣


+ sup
t<τ≤∞

Et,x
[
δ(τ − t)

∣∣∣g(µτ ) − g(µn
τ )

∣∣∣1{τ<N†} + δ(τ − t)
∣∣∣g(µτ ) − g(µn

τ )
∣∣∣1{τ≥N†}

]
≤ Mε1 +Kε2 + ε1 + Jε2 = (M + 1)ε1 + (K + J)ε2 =: ε.
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Here J,K,M is by (B.1), (B.2) and (B.3) of Assumption B, respectively. Since this is true

for all T ∈ B(T × X) the lemma is then established.

C.4 Proof of Lemma 3.5.9

Proof. Let ρn = ρ(t, xn, T ) and ρ = ρ(t, x, T ) then,

∣∣∣V ∗(t, x, µ, T ) − V ∗(t, xn, µ, T )
∣∣∣ =

∣∣∣∣∣ sup
t<τ≤ρ

J(t, x, µ, τ) − sup
t<τ≤ρn

J(t, xn, µ, τ)
∣∣∣∣∣

≤
∣∣∣∣∣ sup

t<τ≤ρ
J(t, x, µ, τ) − sup

t<τ≤ρ
J(t, xn, µ, τ)

∣∣∣∣∣ +
∣∣∣∣∣ sup

t<τ≤ρ
J(t, xn, µ, τ) − sup

t<τ≤ρn

J(t, xn, µ, τ)
∣∣∣∣∣.

By Remark 3.5.1 Xx
k is continuous in x for each k > t, we can control the convergence of the

first N † terms of Xxn
k as in the proof of Lemma 3.5.6, where N † is such that ∑∞

t=N† δ(t) ≤ ε2

for some ε2 > 0, therefore, there exists N∗ > 0 such that for all n ≥ N∗,

∣∣∣∣∣ sup
t<τ≤ρ

J(t, x, µ, τ) − sup
t<τ≤ρ

J(t, xn, µ, τ)
∣∣∣∣∣

≤ sup
t<τ≤ρ

∣∣∣J(t, x, µ, τ) − J(t, xn, µ, τ)
∣∣∣

≤ sup
t<τ≤ρ

Et

[
τ−1∑
k=t

δ(k − t)
∣∣∣f(Xx

k , µk) − f(Xxn
k , µk)

∣∣∣]

≤ Et

[ ∞∑
k=t

δ(k − t)
∣∣∣f(Xx

k , µk) − f(Xxn
k , µk)

∣∣∣]

≤ Et

N†−1∑
k=t

δ(k − t)
∣∣∣f(Xx

k , µk) − f(Xxn
k , µk)

∣∣∣


+ Et

 ∞∑
k=N†

δ(k − t)
∣∣∣f(Xx

k , µk) − f(Xxn
k , µk)

∣∣∣


≤ Mε1 +Kε2,

where K and M is given by (B.2) and (B.3) of Assumption B respectively. Therefore, we

have the convergence of the first term. To see the convergence of the second term, using

Lemma 3.5.8 we employ the same argument as in the second part of the proof of Lemma 3.5.4.
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We can show that,

lim
n→∞

∣∣∣∣∣ sup
t<τ≤ρ(t,x,T )

J(t, x, µ, τ) − sup
t<τ≤ρ(t,xn,T )

J(t, xn, µ, τ)
∣∣∣∣∣ = 0.

Therefore, collecting the convergence of the two terms, we have the desired results.

C.5 Proof of Lemma 3.5.11

Proof. Indeed as H is continuous and strictly decreasing φn = sup{x ∈ R : H(x, yn) > 0} =

{x ∈ R : H(x, yn) = 0} := {x ∈ R : hn(x) = 0} and is unique. By continuity in the second

argument we have hn → h := H(·, y). As h is continuous and strictly decreasing, for any

ε > 0 there exists δ > 0 such that, h(φ− ε) > δ and h(φ+ ε) < −δ. Therefore by continuity,

there exists N large enough such that for all n ≥ N , hn(φ− ε) > δ/2 and hn(φ + ε) < δ/2.

Hence φn ∈ (φ− ε, φ+ ε) and φn → φ.

Let us denote sup ∅ = −∞. If sup{x ∈ R : H(x, y) > 0} is empty then φ = −∞ and for

any M > 0 we have h(−M) < −δ for some δ > 0 and again by continuity there exists N

large enough such that hn(−M) < −δ/2 for all n ≥ N . Since M is arbitrary this completes

the proof.

C.6 Proof of Lemma 3.5.17

Proof. Let τ ∈ Tt be a stopping and denote τ̃ the shifted version of τ : if under τ , X stops

when X ≤ x̃ then under τ̃ , X stops if X ≤ x̃+ (1 − η)∆Cn where η ∈ (0, 1) is some constant

to be determined. Denote (Sn+1
µ )t = (−∞, Cn+1

t ) and (Ŝn+1
µ ) = (−∞, Cn

t + ∆Cn) ⊃ (Sn+1
µ )t

for all t ∈ T. Throughout the proof we fix t ∈ T and n ∈ N, for simplicity let us also define,

1. c = Cn+1
t + (1 − η)∆Cn,

2. τ̃ the shifted version of τ with t+ 1 ≤ τ ≤ ρ(t, Ct+1
n , Sn

µ),

3. τ̂ = τ̃ ∧ ρ(t, c, Ŝn+1
µ ).
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We wish to show that the following inequalities holds,

sup
t+1≤σ≤ρ(t,c,Sn+1

µ )
U(t, Cn+1

t + (1 − η)∆Cn, µ, σ)

≥ sup
t+1≤σ≤ρ(t,c,Ŝn+1

µ )
U(t, Cn+1

t + (1 − η)∆Cn, µ, σ)

≥ sup
t+1≤σ≤ρ(t,Cn+1

t ,Sn
µ )
U(t, Cn+1

t , µ, σ) = 0.

If this holds true for any t ∈ T then we have Cn+2
t ≤ Cn+1

t + (1 − η)∆Cn, i.e., ∆Cn+1
t ≤

(1 − η)∆Cn and therefore ∆Cn
t ≤ βn(b − a) for all t ∈ T where β := 1 − η. In the above

inequalities, the second line is straightforward as ρ(t, c, Sn+1
µ ) ≥ ρ(t, c, Ŝn+1

µ ). We now show

that for any τ with t + 1 ≤ τ ≤ ρ(t, Ct+1
n , Sn

µ) we can construct another stopping time τ̂

given by 3 above satisfying t+ 1 ≤ τ̂ ≤ ρ(t, c, Sn+1
µ ) such that,

U(t, Cn+1
t + (1 − η)∆Cn, µ, τ̂) ≥ U(t, Cn+1

t , µ, τ), (C.6.1)

this would establish the third line and complete the proof. We have,

I := |U(t, c, µ, τ̃) − U(t, c, µ, τ̂)|

=

∣∣∣∣∣∣Et,c

1{τ̂<τ̃}

∞∑
N=t+1

1{τ̂=N}


 τ̃−1∑

k=N

δ(k − t)f(Xk, µk)
 + δ(τ̃ − t)g(µτ̃ ) − δ(N − t)g(µN)


∣∣∣∣∣∣

≤ Et,c

 ∞∑
k=t+1

(k − t)δ(k − t) |f(Xk, µk)|1{τ̂<τ̃ ,τ̂=k}


+ Et,c

 ∞∑
k=t+1

|δ(τ̃ − t)g(µτ̃ ) − δ(k − t)g(µk)|1{τ̂<τ̃ ,τ̂=k}


≤ K

∞∑
k=t+1

(k − t)δ(k − t)P(τ̂ < τ̃ , τ̂ = k) + 2J
∞∑

k=t+1
δ(k − t)P(τ̂ < τ̃ , τ̂ = k)

Note that by (D.1) of Assumption D and definition of τ̂ and τ̃ ,

P(τ̂ < τ̃ , τ̂ = k) ≤ P
(
X t,c

k ∈ (Cn+1
k + (1 − η)∆Cn, Cn+1

k + ∆Cn)
)

≤ Lη∆Cn.
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Then by (D.2) of Assumption D we have,

I ≤ MLη∆Cn,

for some constant M . Then by (D.3) of Assumption D again, we have

U(t, c, µ, τ̂) ≥ U(t, c, µ, τ̃) −MLη∆Cn

≥ Et,c

[
τ−1∑
k=t

δ(k − t)f(Xk, µk) + δ(τ − t)g(µτ )
]

− g(µt) + α(1 − η)∆Cnf(Cn+1
t , µt) −MLη∆Cn

≥ U(t, Cn+1
t , µ, τ) + α(1 − η)∆Cnf(a, µt) −MLη∆Cn.

By (D.3) of Assumption D, infν∈[0,1] f(a, ν) > 0 therefore choosing η ∈ (0, 1) such that

α(1 − η)f(a, µt) −MLη > 0

for all µt ∈ [0, 1], note that η is independent of µ and n (iterations). This establishes

Equation (C.6.1) and the proof is complete.
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