
A Probabilistic Treatment to Point
Cloud Matching and Motion

Estimation

Fahira Afzal Maken

Supervisor: Professor Fabio Ramos
Associate Supervisor: Dr. Lionel Ott

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Computer Science
Faculty of Engineering

The University of Sydney
Australia

2022

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowl-
edge and belief, it contains no material previously published or written by another person
nor material which to a substantial extent has been accepted for the award of any other
degree or diploma of the University or other institute of higher learning, except where
due acknowledgement has been made in the text.

Fahira Afzal Maken

March 2022

ii

Abstract

An autonomous robot requires an accurate representation of the environment to esti-
mate its state and perform other tasks including navigation and grasping. A robot

typically perceives partial views of its surroundings in the form of point clouds through
noisy 3D sensors. Using point cloud registration, these partial views of the surround-
ing are transformed into a unified reference frame to build a model of the environment.
Iterative closest point (ICP) is a commonly used point cloud registration method that
provides a single estimate of the transformation between two point clouds. Being a point
estimate method, ICP does not deal with the uncertainties in the scan alignment process
which may arise due to sensor noise, partial overlap between two point clouds, or exis-
tence of multiple solutions. Further, a point estimate does not quantify the quality of
the transformations. Another challenge for ICP is the high computational cost required
to align two large point clouds which constrains its applicability to small point clouds.
Furthermore, ICP estimates drift over time which can result in misaligned maps or large
pose errors in the mapping and localization task respectively. To overcome this problem,
ICP estimates are often fused with other observations in the state estimation framework
to achieve improved accuracy. Estimation of a dynamical system’s latent state subject to
sensor noise and model inaccuracies remains a critical yet difficult problem in robotics.
While Kalman filters provide the optimal solution in the least squared sense for linear
and Gaussian noise problems, the general nonlinear and non-Gaussian noise case is sig-
nificantly more complicated, typically relying on sampling strategies that are limited to
low-dimensional state spaces.

In this thesis, we address these challenges by leveraging recent advances in optimiza-
tion and probabilistic inference and present our four core contributions. Specifically,
we first address ICP’s run-time issue and propose SGD-ICP as our first contribution.
SGD-ICP employs stochastic gradient descent (SGD) to efficiently solve the optimiza-
tion problem of ICP. Next as our second contribution we propose Bayesian-ICP; a fully
scalable Bayesian solution to the point cloud registration problem. Bayesian-ICP is a
Markov Chain Monte Carlo method that leverages SGD-ICP to obtain a distribution
over transformations using updates given by stochastic gradient Langevin dynamics. To
demonstrate the benefits of Bayesian-ICP for mobile robotic applications, we propose an

iii

iv Abstract

adaptive motion model employing Bayesian-ICP to produce proposal distributions for
Monte Carlo Localization.

With GPUs becoming more available enabling massively parallelized computations for
algorithms, point cloud registration algorithms harnessing GPU parallelism can result in
noteworthy speed gains. To reliably exploit GPU parallelism for probabilistic ICP, we
propose Stein-ICP as our third contribution. We develop a Stein variational inference
framework with gradient based optimization of ICP’s cost function. The method pro-
vides a non-parametric estimate of the transformation, can model complex multi-modal
distributions, and can be effectively parallelized on a GPU.

As our fourth contribution, we devise a general inference procedure for filtering non-
linear, non-Gaussian dynamical systems that exploits the differentiability of both the
update and prediction models to scale to higher dimensional spaces. Our method, Stein
particle filter, can be seen as a deterministic flow of particles, embedded in a reproducing
kernel Hilbert space, from an initial state to the desirable posterior. The set of particles
evolves jointly to conform to a posterior approximation while interacting with each other
through a repulsive force.

Keywords

Iterative closest point (ICP), Point cloud registration, Geometric registration, Opti-
mization, Stochastic gradient descent (SGD), L-BFGS, Probabilistic inference, Bayesian
methods, Markov Chain Monte Carlo, Variational inference, Uncertainty quantification,
State estimation, Particle filters, Localization, Field robotics, Laser rangefinder.

v

Authorship attributes statement

(1) Chapter 3 of this thesis is published as (Afzal Maken et al., 2019, 2020, 2022a).
I derived the method together with my supervisors and conducted all the exper-
iments. Most of the writing was done by myself.

(2) Chapter 4 of this thesis is published as (Afzal Maken et al., 2021). I derived the
method together with my supervisors and conducted all the experiments. Most
of the writing was done by myself.

(3) Chapter 5 of this thesis is published as (Afzal Maken et al., 2022b). I derived the
method together with my supervisors and conducted all the experiments. Most
of the writing was done by myself.

vi

Acknowledgements

I am very grateful to almighty Allah, the creator of all the worlds, for all the uncount-
able blessings and for giving me this PhD. opportunity with very supportive supervisors.

I wish to express my deepest gratitude to my supervisors, Professor Fabio Ramos
and Dr. Lionel Ott, for their invaluable expertise, guidance, professional and personal
support, insightful feedback on my work and thesis, and countless hours of meetings. I
would not be able to make it through my PhD. without your guidance. Thank you Fabio
Ramos for providing research directions and enlightening discussions on many topics in
the field of robotics, machine learning and probabilistic inference. Thank you Lionel
Ott for patiently teaching me the best code practices, proof-reading this thesis, long
discussions, sharing practical knowledge, and guiding me throughout the journey.

I gratefully acknowledge the Australian Government for their financial support through
Research Training Program (RTP) scholarship.

Thank you to Dr. Rafael Dos Santos De Oliveria for interesting discussions on various
topics and taking time to review parts of this thesis. To Anthony Tompkins for proof-
reading this thesis, to Tin Lai for guiding me through setting up remote access to my
university computer, and to Rel Guzmanapaza for helping me every time I lost my remote
connection with my university computer during Covid19 lockdown.

Last but not least, I would like to thank my family for their encouragement to pursue
this PhD. Special thanks to my loving parents for their unconditional support and prayers
throughout my life, to my supportive husband for understanding my commitment to my
work and making things easy for me, to my kids for adjusting with my routine and letting
me work, and to my siblings for cheerful chats over the phone calls when I needed them
the most.

vii

Dedication

To my late mother, my father,
my husband Saad, and

my kids Abdullah and Fatima.

viii

Nomenclature

General
X matrix
X−1 Matrix inverse
x vector
xT transpose of vector x
‖x‖ L2 norm of vector x
N (µ,Σ) normal distribution with mean µ and covariance Σ
α step size
L(x) Objective function
∇L(x) gradient of objective function
x ·y the dot product, i.e. the standard inner product in Euclidean vector

spaces
〈f,g〉F the inner product between f,g ∈ F
|x| the absolute value of x ∈ R
m mini-batch size
η Gaussian noise
H Hilbert space
∅ empty set
E Expected value

Iterative closest point

S source point cloud
R reference point cloud
θ transformation parameter vector
Tθ ∈ R4×4 Homogeneous transformation matrix parametrized by θ
R ∈ R3×3 rotation matrix
u ∈ R3×1 translation vector
c ∈ R3×1 centroid of a point cloud
ni ∈ R3×1 surface normal of a point i

ix

x Nomenclature

Bayes filtering

Xt = {x1:t} Latent states
Zt = {z1:t} Observations
Ut = {u1:t} controls
h non-linear sensor model
ηc normalization constant
wj weight of the particle j

Abbreviations

BFGS Broyden, Fletcher, Goldfarb and Shannon
CAD Computer aided design
CGR Corrective gradient refinement
DARPA. Defense advanced research projects agency
EKF Extended Kalman Filter
ELBO Evidence Lower Bound
GICP Generalized iterative closest point
GPF Gaussian particle filters
GPS Global positioning system
HMC Hamiltonian Monte Carlo
i.i.d Independent and identically distributed
ICP Iterative closest point
IMU Inertial measurement unit
KDE Kernel density estimation
KL Kullback Leibler
KLD Kullback Leibler distance
L-BFGS Limited-memory Broyden, Fletcher, Goldfarb and Shannon
LiDAR Light detection and ranging
LMC Langevin Monte Carlo
MALA Metropolis-adjusted Langevin algorithm
MAP Maximum a posteriori
MAV Micro air vehicle
MCL Monte Carlo Localization
MCMC Markov Chain Monte Carlo
MH Metropolis-Hasting

Nomenclature xi

NASA National Aeronautics and Space Administration
OVL Overlapping coefficient
PF Particle filter
RANSAC RANdom SAmple Consensus
RBF Radial basis function
RBPF Rao-Blackwellised particle filters
RKHS Reproducing kernel Hilbert space
RMSE Root mean square error
RPR Relative pose error
SGD Stochastic gradient descent
SG-HMC Stochastic gradient Hamiltonian Monte Carlo
SGLD Stochastic gradient Langevin dynamics
SG-MCMC Stochastic gradient Markov Chain Monte Carlo
SGT Stochastic gradient thermostat
SLAM Simultaneous localization and mapping
SPF Stein particle filter
SVD Singular Value Decomposition
SVGD Stein variational gradient descent
SVN Stein variational Newton
UKF Unscented Kalman filter
VI Variational Inference
VO Visual odometry

Table of Contents

Declaration . ii

Abstract . iii

Keywords . v

Authorship attributes statement . vi

Acknowledgements . vii

Dedication . viii

Nomenclature . ix
General . ix
Iterative closest point . ix
Bayes filtering . x
Abbreviations . x

Table of Contents . xii

List of Figures . xvi

List of Tables . xix

List of Algorithms . xx

Chapter 1 Introduction . 1
1.1 Motivation . 3
1.2 Problem statement and objectives . 5
1.3 Contributions . 5

1.3.1 Stochastic gradient ICP . 6
1.3.2 Bayesian-ICP . 6
1.3.3 Stein-ICP . 7
1.3.4 Stein particle filter . 8

1.4 Overview of thesis . 8
xii

Table of Contents xiii

Chapter 2 Background . 10
2.1 Point cloud registration . 10

2.1.1 Standard ICP . 12
2.1.2 ICP cost variants . 16

2.1.2.1 Point-to-plane ICP . 16
2.1.2.2 Plane-to-Plane ICP. 17

2.2 Optimization algorithms. 18
2.2.1 Newton’s method . 20
2.2.2 Quasi-Newton method . 21

2.2.2.1 Broyden, Fletcher, Goldfarb and Shanno (BFGS) 23
2.2.2.2 Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm

(L-BFGS) . 25
2.2.3 Stochastic gradient descent . 27

2.3 Bayesian methods . 30
2.3.1 Markov Chain Monte Carlo . 30

2.3.1.1 Properties of a Markov chain . 31
2.3.1.2 Metropolis-Hastings . 32
2.3.1.3 Langevin Monte Carlo . 33
2.3.1.4 Stochastic gradient Langevin dynamics . 35

2.3.2 Variational inference . 36
2.3.2.1 Stein variational gradient descent (SVGD) . 40
2.3.2.2 Stein variational Newton method (SVN) . 43

2.4 Bayes filtering . 44
2.4.1 Kalman filters. 46
2.4.2 Particle filters . 49

2.5 Summary . 52

Chapter 3 Bayesian-ICP for Mobile Robot Localization 54
3.1 Introduction. 54
3.2 Related work . 58

3.2.1 ICP variants . 58
3.2.1.1 Point estimate ICP algorithms: . 58
3.2.1.2 Probabilistic ICP algorithms: . 60

3.2.2 Markov Chain Monte Carlo . 62
3.3 Speeding up ICP algorithm using stochastic gradient descent 62
3.4 Estimating motion uncertainty with Bayesian-ICP . 67
3.5 Bayesian-ICP as a probabilistic motion model in Monte Carlo Localization. . 72

xiv Table of Contents

3.6 Experiments. 73
3.6.1 Analysis of point estimate ICP methods . 73

3.6.1.1 Overview . 73
3.6.1.2 Data-efficiency . 76
3.6.1.3 Solution quality and run-time . 78
3.6.1.4 Impact of error in initial transformation estimate on accuracy. 80
3.6.1.5 Effect of batch size on the solution quality and run-time 81
3.6.1.6 LiDAR data . 83

3.6.2 Analysis of probabilistic ICP algorithms . 85
3.6.2.1 Sample count. 86
3.6.2.2 Burn-in length . 87
3.6.2.3 Trajectory estimation. 88
3.6.2.4 Distribution estimation quality . 90
3.6.2.5 Run-time . 93

3.6.3 Bayesian-ICP in a Monte Carlo Localization algorithm 94
3.7 Summary . 100

Chapter 4 Stein-ICP for Uncertainty Estimation in Point Cloud
Matching .102

4.1 Introduction. 102
4.2 Related work . 105

4.2.1 Point-based ICP algorithms . 106
4.2.2 Uncertainty-based ICP algorithms. 107

4.3 Stein-ICP . 108
4.3.1 Building blocks – SGD-ICP and SVGD. 108
4.3.2 Derivation . 109

4.4 Experiments. 111
4.4.1 Particle count . 113
4.4.2 Distribution quality analysis . 114
4.4.3 Odometry . 117
4.4.4 Impact of distribution estimation on mean pose estimation quality. 119
4.4.5 Run-time comparison . 120
4.4.6 Run-time of Stein-ICP on CPU and GPU . 122

4.5 Summary . 123

Chapter 5 Stein Particle Filter for Nonlinear, Non-Gaussian State
Estimation .125

Table of Contents xv

5.1 Introduction. 125
5.2 Related work . 127
5.3 Stein particle filter . 129

5.3.1 Prediction step . 130
5.3.2 Update step. 130
5.3.3 Stein Quasi-Newton gradient descent . 131

5.4 Experiments. 132
5.4.1 Multi-modal tracking. 133
5.4.2 Solution quality with limited particle count. 137
5.4.3 Localization task . 139

5.4.3.1 Global localization . 139
5.4.3.2 Tracking . 141
5.4.3.3 Run-time analysis . 142

5.5 Summary . 143

Chapter 6 Conclusions and Future Work .144
6.1 Summary of contributions and related chapters . 144

6.1.1 Chapter 3 - Stochastic gradient descent ICP(Afzal Maken et al., 2019,
2022a) . 144

6.1.2 Chapter 3 - Bayesian-ICP (Afzal Maken et al., 2020, 2022a) 145
6.1.3 Chapter 4 - Stein-ICP (Afzal Maken et al., 2021) . 146
6.1.4 Chapter 5 - Stein particle filter (Afzal Maken et al., 2022b) 147
6.1.5 List of Publications . 148

6.2 Future work . 149
6.2.1 Improving robustness of a mini-batch gradient update 149
6.2.2 Improving sampling behaviour and convergence rate of Bayesian-ICP . . 149
6.2.3 Improving convergence rate and parameter space exploration of

Stein-ICP . 150
6.2.4 Exploiting ICP cost’s gradients in learning paradigm 151
6.2.5 Optimization of rotations on SO(3). 151

Bibliography .152

List of Figures

1.1 Autonomous navigation in challenging environments. 1

1.2 Robots operating in uncertain environments . 2

1.3 Probabilistic state estimation in high dimensions . 4

1.4 ICP aligned point clouds . 4

2.1 Two unregistered scans . 11

2.2 Examples of ICP point cloud registration . 12

2.3 Visualization of ICP steps . 15

2.4 Visualization of point-to-plane error in 2D. (Low, 2004). 17

2.5 Comparison of point-to-point and point-to-plane error metric (Glira et al.,
2015). 17

2.6 Trajectory comparison of batch-gradient descent and SGD towards optimum . . 29

2.7 Comparison of convergence of Newton’s method and gradient descent 29

2.8 Illustration of MCMC sample generation and usage . 31

2.9 Illustration of Variational inference . 37

2.10 The optimization process of VI . 38

2.11 Illustration of choice of variational distribution in VI . 39

2.12 Visualization of gradient flow of Stein particles . 43

2.13 Generic state space model . 45

2.14 Steps of a particle filter. 50

2.15 Principle of the low variance resampling procedure. 52

3.1 Visualization of several registered frames of the Challenging dataset (Pomerleau
et al., 2012) and the ETHZ-ASL Kinect Dataset (Pomerleau et al., 2011) 76

3.2 Data efficiency of SGD-ICP . 77

3.3 Accuracy and run-time of ICP methods on ETHZ-ASL Kinect dataset (Pomerleau
et al., 2011) . 79

xvi

List of Figures xvii

3.4 Transformation errors of ICP methods against initial alignment mis-specification 81
3.5 Effect of batch-size on the performance of SGD-ICP . 82
3.6 Solution quality and run-time of ICP methods on the Challenging

dataset (Pomerleau et al., 2012) . 84
3.7 KL divergence of Bayesian-ICP compared to the baseline as a function of the

number of samples. 87
3.8 KL divergence of Bayesian-ICP compared to the baseline as a function of

burn-in samples. 87
3.9 Bayesian-ICP odometry along-with the covariance in comparison to other

methods using the Challenging dataset (Pomerleau et al., 2012). 89
3.10 Quality of the Bayesian-ICP’s estimated pose distribution for symmetrical and

non-symmetrical objects. 90
3.11 Point clouds of symmetrical and non-symmetrical objects. 91
3.12 Break down of the Bayesian-ICP’s run-time (sec) on CPU against mini-batch

size. 93
3.13 Kernel density estimation (KDE) of the Bayesian particles at different locations

of the Newer College dataset (Ramezani et al., 2020) . 95
3.14 Trajectories estimated by Bayesian motion model in comparison to other

methods using the Newer College dataset (Ramezani et al., 2020). 98
3.15 Visualization of uncertainty estimated by different motion models in an

under-constrained corridor environment. 99

4.1 Transformation distributions of Stein-ICP. 103
4.2 Visualization of unstructured and structured environments. 112
4.3 KL Divergence of Stein-ICP against particle count . 113
4.4 Symmetrical and non-symmetrical point clouds . 114
4.5 Kernel density estimates (KDE) of Stein-ICP samples for symmetrical and

non-symmetrical objects. 115
4.6 Trajectory estimation of Stein-ICP in comparison to Bayesian-ICP. 118
4.7 Error distributions of Stein-ICP in comparison to Bayesian-ICP and SGD-ICP.119
4.8 Run-time comparison of Stein-ICP and Bayesian-ICP on GPU. 121
4.9 Run-time of Stein-ICP on both CPU and GPU.. 123

5.1 State estimation of Stein particle filter in comparison to other filtering methods.134

xviii List of Figures

5.2 Mean error of Stein particle filter against iteration count for local and global
state estimation. 136

5.3 Quality of Stein particle filter’s estimated trajectory in comparison to a particle
filter in high dimensions . 137

5.4 Global localization results of Stein particle filter . 141

List of Tables

3.1 Quality of Bayesian-ICP’s estimated distributions for the Challenging
dataset (Pomerleau et al., 2012) . 92

3.2 Localization errors (m) and run-time using different motion models 97

4.1 Quality comparison of the Stein-ICP method against other methods using
KL divergence, overlapping coefficient, and Bhatacharya distance using the
Challenging dataset (Pomerleau et al., 2012). 116

5.1 State estimation errors in high dimensions. 138
5.2 Localization errors of Stein particle filter with variable particle count 142
5.3 Run-time of Stein particle filter . 142

xix

List of Algorithms

1 BFGS Method (Nocedal and Wright, 2006) 23
2 Two-Loop Recursion for Ht∇L(φt) (Nocedal and Wright, 2006) 26
3 L-BFGS Method (Nocedal and Wright, 2006) 27
4 Metropolis-Hastings (Ahn, 2015) . 33
5 Langevin Monte Carlo (Ahn, 2015) . 35
6 Stein Variational gradient Descent (Liu and Wang, 2016) 42
7 Bayes filtering (Thrun et al., 2005) . 46
8 Kalman filter . 48
9 Particle filter . 50
10 Low variance sampler (Thrun et al., 2005) 51

11 SGD-ICP . 66
12 Point Clouds Scaling . 67
13 Bayesian-ICP . 71

14 Stein-ICP . 110

15 One step of Stein particle filter . 133

xx

Chapter 1

Introduction

Autonomous systems are widely used for tasks such as plant inspection (Matsubara

and Nagatani, 2019), maintaining offshore wind turbines, monitoring nuclear reac-

tors, autonomous driving, grasping, and manipulation. An autonomous robot operating

in a dynamical environment needs to estimate its motion and state accurately and effi-

ciently to successfully perform other tasks. A mobile robot faces challenges in the form

of noisy sensors, irregular, muddy, slippery, and rough terrains, variable lightening and

weather conditions, visually degraded conditions such as smoke, dust, and fog, feature-

less environments, occluded sensor measurements, and inaccessibility to global positioning

systems (GPS) signals. Figure 1.1 visualizes some of these challenging conditions. All

these factors tend to result in uncertain motion estimates. The uncertainty in the motion

estimation influences the uncertainty in the state estimation. To be able to handle these

(a) (b) (c) (d)

Figure 1.1. Autonomous navigation in challenging environments. (a) a GPS de-
nied cavern with irregular and rocky terrain (Credits: Evan Ackerman from IEEE
Spectrum). (b) Muddy and slippery symmetrical tunnel (DARPA challenge (DARPA,
2020)). (c) Degenerated perception in a smoky environment (DARPA challenge (DARPA,
2020)). (d) Variable lightening conditions (https://research.csiro.au/robotics/
darpa-subterranean-challenge-cave-circuit-event-concluded/).

1

https://research.csiro.au/robotics/darpa-subterranean-challenge-cave-circuit-event-concluded/
https://research.csiro.au/robotics/darpa-subterranean-challenge-cave-circuit-event-concluded/

2 1 Introduction

(a) (b) (c) (d)

Figure 1.2. Robots with probabilistic software. (a) Kinova Mico, a robotic arm,
interacting with a human (Khandelwal et al., 2017). (b) Minerva, a museum tour
guide (Thrun et al., 2000). (c) The PR2 robot (Cousins, 2010) flipping a pancake (source
https://www.razorrobotics.com/robots/pr2/). (d) BWIBot navigating in a crowded
environment (Sinapov, 2021).

uncertainties, a robot needs to estimate its state and motion probabilistically. Probabilis-

tic inference provides principled methods to quantify uncertainty and is known to attain

high levels of reliability and autonomy. Figure 1.2 presents a few examples of robots that

operate in uncertain environments. A key challenge in exploiting probabilistic inference

methods is their computational costs which often make them challenging to use in real

time robotics applications. With the advances in the computing hardware, there is a

need for the probabilistic methods which can exploit hardware parallelism to attain com-

putational gains. For real time autonomous robotic tasks, a high-level question is how

can we reason with probabilistic inference to efficiently estimate the motion and state of

the robot while exploiting modern parallelizable hardware?

This chapter begins with the motivation for the research presented in this thesis (Sec-

tion 1.1) which includes a high-level introduction of point cloud matching algorithm for

motion estimation, followed by problem statement and objectives in Section 1.2, and a list

of contributions in Section 1.3. It concludes with an overview of the thesis in Section 1.4.

https://www.razorrobotics.com/robots/pr2/

1.1 Motivation 3

1.1 Motivation

A robot deployed in an environment perceives the surrounding via multiple sensors in-

cluding cameras, LiDARs, inertial measurement units, and global positioning systems.

Motion estimation using these sensors is paramount in many robotic applications, in-

cluding navigation, state estimation, position tracking, mapping, and localization. For

ground robots, ego-motion of a robot is usually estimated by dead reckoning which typi-

cally comprises inertial sensors and odometers. Both odometers and inertial sensors tend

to drift, the former due to wheel slippage and uneven terrains, and the latter due to accu-

mulation errors. As a result, dead reckoning can provide accurate motion estimates only

for sufficiently small steps (Martínez et al., 2005). Scan matching (point cloud matching)

is a popular alternative approach which provides ego-motion estimates for state estima-

tion tasks. Estimating motion of a moving robot efficiently using point cloud data is a

challenging task due to the size of point clouds, sensor noise, and uncertainties in the

environment.

Most scan matching algorithms integrate small incremental motion over the time which in-

evitably leads to unbounded drift and uncertainty of the estimated motion in autonomous

navigation tasks such as localization and mapping. This drift can be mitigated by fusing

scan matching estimates with other measurements including (visual) odometry and GPS

using probabilistic state estimation schemes. State estimation is a core capability of a

robotics system with vast applications ranging from manipulators to perform their tasks

precisely, e.g., cutting, grasping, sorting, welding, and grinding, to industrial robots for

transporting goods from one place to another. To estimate its state probabilistically,

a robot typically relies on Bayesian filtering techniques which posit challenges of high

computational complexity for high-dimensional, non-linear, and non-Gaussian state esti-

mation. Figure 1.3 shows examples of non-linear high-dimensional state space.

In this thesis, we present a novel suite of point cloud matching algorithms which can

match point clouds efficiently and probabilistically. Our proposed methods are based

on the iterative closest point method (Besl and McKay, 1992) which is briefly presented

4 1 Introduction

(a) (b) (c)

Figure 1.3. State estimation in high dimensions. (a) The Atlas robot needs to estimate
its state, the state of the parcel and the state of the shelf to perform the pick and place task
(source Boston dynamics). (b) Drill operation involves state estimation of the Valkyrie
robot, the state of the tool, and the state of the hole (source NASA). (c) The robotic
arm requires information about the state of the goal, the state of the object, and its own
state to push the object into the goal region (Wirnshofer et al., 2020).

below. We also propose a probabilistic state estimation method which can efficiently and

robustly estimate the state of a moving robot in a high-dimensional state space. Our

state estimation method is based on Stein variational gradient descent (Liu and Wang,

2016) which is covered in the background section 2.3.2.1.

Figure 1.4. ICP scan alignment. (Left) ICP establishes point correspondences, as
shown in green, between two point clouds shown in different colors. (Right) ICP aligns
the correspondences by minimizing the distance between them.

Iterative closest Point (ICP) (Besl and McKay, 1992) is a popular scan alignment

algorithm which provides a relative estimate of the motion of the robot by aligning two

successive point clouds. Using an initial estimate, ICP minimizes an alignment error

between two point clouds by repeatedly finding a set of closest corresponding point pairs

1.3 Contributions 5

in the two point clouds and using these to estimate a transformation that minimizes

the distance between matching points. Figure 1.4 visualizes ICP alignment process.

Section 2.1.1 provides more detail on ICP.

1.2 Problem statement and objectives

To enable an autonomous system to efficiently and reliably estimate its motion and

state using point cloud data, there are challenges of uncertainty in the perception and

high computational cost associated with the processing of large point clouds and high-

dimensional state spaces. Thus the focus of the research in this thesis is to address the

following overarching research question:

How can modern probabilistic inference and machine learning methods be leveraged to

develop tools that enable an autonomous system to efficiently estimate the distributions

over its motion and state in high-dimensional state spaces using point cloud data?

To this end, this thesis has four objectives. First, is to improve the efficiency and ro-

bustness of ICP algorithm for motion estimation. Our second goal is to incorporate

uncertainty information in ICP using efficient approximate Bayesian inference methods.

Our third goal is to develop a parallelizable probabilistic ICP method which can exploit

GPU parallelism in a principled manner for increased speed. Our fourth aim is to develop

a state estimation framework which can scale efficiently to high-dimensional state spaces.

1.3 Contributions

This thesis presents three contributions to iterative closest point algorithm and one contri-

bution to Bayes filtering in general. We present these contributions in three contributing

chapters of this thesis. In the following, we summarize these contributions.

6 1 Introduction

1.3.1 Stochastic gradient ICP

Sensors producing 3D point clouds such as 3D laser scanners and RGB-D cameras are

widely used in robotics, be it for autonomous driving or manipulation. Aligning point

clouds produced by these sensors is a vital component in such applications to perform

tasks such as model registration, pose estimation, and SLAM. Iterative closest point (ICP)

is the most widely used method for this task, due to its simplicity. However, for large

point clouds ICP is a computationally expensive algorithm which limits its applicability.

In this thesis, we address this challenge in Chapter 3 by leveraging recent advances in

machine learning for large scale datasets. We propose a novel method which solves the

optimization problem posed by ICP using stochastic gradient descent (SGD). Using SGD

allows us to improve the convergence speed of ICP without sacrificing the solution quality.

Experiments using Kinect as well as LiDAR data show that our proposed method is faster

and more robust than existing methods.

1.3.2 Bayesian-ICP

Accurate uncertainty estimation associated with the pose transformation between two 3D

point clouds is critical for autonomous navigation, grasping, and data fusion. Iterative

closest point (ICP) estimates the transformation between point cloud pairs by iteratively

performing data association and motion estimation. Despite its success and popularity,

ICP is effectively a deterministic algorithm, and attempts to reformulate it in a probabilis-

tic manner generally do not capture all sources of uncertainty, such as data association

errors, sensor noise, partial overlap, or the existence of multiple solutions. This leads

to overconfident transformation estimates, potentially compromising the robustness of

systems relying on them.

We address this issue in Chapter 3 where we propose a novel method to estimate pose

uncertainty in ICP with a Markov Chain Monte Carlo (MCMC) algorithm. Our method

leverages SGD-ICP with recent developments in optimization for scalable Bayesian sam-

pling such as stochastic gradient Langevin dynamics (SGLD) to infer a full posterior

1.3 Contributions 7

distribution of the pose transformation between two point clouds. We evaluate our

method, called Bayesian-ICP, in experiments using 3D Kinect data as well as LiDAR

data demonstrating that our method is capable of both quickly and accurately estimat-

ing pose uncertainty while taking into account data association uncertainty as reflected

by the shape of the objects or symmetrical elements of the environment.

To demonstrate the capability of Bayesian-ICP in performing real-time localization task,

we integrate Bayesian-ICP as an adaptive motion model in a particle filter in Chapter 3.

We empirically show that Bayesian-ICP provides transformation uncertainty estimation

which adapts according to the geometry of the environment and does not require Gaussian

noise related parameter tuning as is a common practice with noisy wheel odometry based

motion models.

1.3.3 Stein-ICP

Bayesian-ICP converges to the underlying distribution. However, due to it still being an

MCMC style method it is challenging to effectively parallelize Bayesian-ICP samples. In

Chapter 4, we propose a new probabilistic algorithm, called Stein-ICP, which exploits

modern GPU parallelism in a principled manner.

Stein-ICP is a non-parametric variational inference method which approximates the in-

tractable posterior distribution with a set of independent particles. Stein-ICP optimizes

these particles with a functional stochastic gradient descent that reduces Kullback-Leibler

(KL) divergence between these particles and the intractable distribution. Being indepen-

dent and non-parametric in nature, these particles can capture multi-modal distributions

and can benefit from GPU parallelism. Using 3D kinect and LiDAR data, we empirically

show that Stein-ICP can efficiently approximate high quality transformation distributions

and estimate the long trajectories with quantifiable uncertainty.

8 1 Introduction

1.3.4 Stein particle filter

Scan matching based odometry accumulates errors over long trajectories due to occlusion,

dynamical instances in the environment, and noisy point clouds. To overcome this prob-

lem, it is a common practice to integrate ego-motion estimation into filtering schemes,

such as particle filters, to reliably estimate the state of a robot. A particle filter uses a set

of particles to capture the non-linear, non-Gaussian state distributions. However, particle

filtering is limited to low dimensional state space as the required number of particles grow

exponentially with the dimensionality.

In Chapter 5, we develop a general inference procedure, called Stein particle filter, to

overcome the computational cost of particle filters in high-dimensional state spaces by

exploiting differentiability of both the prediction and update models. Our method called

Stein particle filter employs the Stein variational gradient descent framework to perform

filtering. Instead of assigning weights in the update step, our method transports the

particles from an initial state to a more likely posterior by minimizing Kullback-Leibler

divergence between two states. This transport of particles is embedded in a reproducing

kernel Hilbert space which takes particle interaction into account through a repulsive

force that brings diversity among the particles. We empirically demonstrate the particle

efficiency of our method in a simulated tracking and real world localization tasks.

1.4 Overview of thesis

Chapter 2 provides background material in support of the later chapters. The chapter

begins with the introduction of iterative closest point algorithm, followed by optimiza-

tion methods that includes L-BFGS and stochastic gradient descent. This chapter then

contains a section on Bayesian methods. This section specifically presents approximate

Bayesian methods, i.e., Markov Chain Monte Carlo method including stochastic gradi-

ent Langevin dynamics (SGLD) and variational inference methods, e.g., Stein variational

gradient descent (SVGD). Finally, a review of Bayesian filtering is presented.

1.4 Overview of thesis 9

Chapter 3 presents our first two contributions – SGD-ICP and Bayesian-ICP which

leverage recent advances in machine learning in the optimization of ICP cost function to

align two point clouds efficiently and probabilistically. SGD-ICP improves the efficiency

of ICP by employing mini-batch stochastic gradient descent. Bayesian-ICP is a prob-

abilistic variant which combines SGD-ICP with stochastic gradient Langevin dynamics

to efficiently produce the samples of ICP parameters. Both methods are empirically

evaluated on both Kinect and LiDAR data in terms of quality of transformations, and

run-time. Bayesian-ICP is additionally evaluated for the quality of transformation dis-

tributions, quality of estimated trajectories with associated covariance estimates, and as

an adaptive motion model in the Monte Carlo Localization algorithm.

Chapter 4 presents our third contribution – Stein-ICP. Stein-ICP is also a probabilis-

tic ICP variant which is based on Stein variational gradient descent. In the experi-

ments, Stein-ICP is compared against Bayesian-ICP and other state-of-the-art proba-

bilistic methods in terms of quality of distributions, quality of estimated trajectories and

associated uncertainty estimates, and run-time on GPU using LiDAR data. Additionally

Stein-ICP’s run-time is presented on both CPU and GPU.

Chapter 5 presents our last contribution – Stein particle filter which transports proposal

particles to the target distribution using gradient information. Stein particle filter is

evaluated both on simulated state estimation tasks as well as on a real LiDAR based

localization task in terms of quality of state estimation, ability to scale to higher dimension

with fewer particles, and run-time.

Chapter 6 summarizes the important research findings, lists the published work, and

provides future directions.

Chapter 2

Background

The research presented in this thesis is based on several fields, including robotics,

optimization, and probabilistic inference. The purpose of this chapter is to provide

the reader with an overview of the methods which form the basis of the methods pro-

posed in the subsequent chapters. We present the problem formulation and solution to

point cloud registration using iterative closest point (ICP) in Section 2.1. Next in Section

2.2, we present optimization methods including L-BFGS and stochastic gradient descent

(SGD) to find an optimal solution for a cost function. Section 2.3 reviews approximate

Bayesian methods, specifically, Langevin Monte Carlo method and Stein variational in-

ference methods to model uncertainty for intractable posterior distributions. Section 2.4

covers background on Bayes filtering with a specific focus on particle filters.

2.1 Point cloud registration

Sensors such as 3D LiDARs and RGB-D cameras are widely used perception sensors in

robotics and computer vision which produce 3D point clouds. A point cloud is a set of

K points in space, i.e., P = {p1, p2, p3,, pK}. These points represent the shape of an

object or a scene in 3D. Each point (p) represents at least Cartesian coordinates, i.e., x,

y, and z, of a point sampled from an underlying surface. These point can additionally

store other information, e.g., color, normal, curvature, and intensity.

A 3D sensor cannot capture the full point cloud of a large environment due to the limited

range of a sensor and occlusions caused by objects, walls, or other dynamic elements in the

environment. To capture all areas of a large environment, a 3D sensor may require many

10

2.1 Point cloud registration 11

Figure 2.1. Two unregistered scans, source (pink) and reference (purple), from KITTI
dataset (Geiger et al., 2013).

measurements potentially from different perspectives and locations. Using point cloud

registration methods, these measurements are then transformed into a unified reference

system to obtain a more complete point cloud of the environment.

Point cloud registration, also known as scan matching, is a problem of estimating a relative

transformation, between two point clouds potentially obtained from different viewpoints

by a 3D sensor, that aligns individual point clouds into a common coordinate system to

allow the subsequent processing steps such as segmentation, model reconstruction, and

sensor fusion. Other applications of point cloud registration include pose estimation and

simultaneous localization and mapping (SLAM), computer vision, virtual reality, aug-

ment reality, photogrammetry, surgical guidance, digital archaeology, architecture (Ran-

gaprasad et al., 2018; Li et al., 2021; Pomerleau, 2013) to name a few. Two unregistered

point clouds in different colors are shown in Fig. 2.1.

Point cloud registration can be broadly categorized into rigid and non-rigid registra-

tion (Li et al., 2021). Rigid registration preserves the shape and size of the point clouds

and finds a relative transformation that only consists of translations and rotations. Non-

rigid registration provides affine transformation, for deformable input data, which in-

cludes shear and scale in addition to translations and rotations. A prototypical approach

12 2 Background

(a) Pair of RGB-D cube point clouds before (left) and after ICP alignment (right).

(b) Pair of outdoor Lidar point clouds before (left) and after ICP alignment (right).

Figure 2.2. Examples of ICP point cloud registration. Left: Initial position of source
(pink) and reference (purple) point clouds. Right: ICP aligned (pink) and the reference
point cloud (purple)

for point cloud registration is the iterative closest point (ICP) algorithm (Besl and McKay,

1992) which is described below.

2.1.1 Standard ICP

ICP (Besl and McKay, 1992) takes two point clouds, source and reference, and an initial

estimate of relative transformation as input with the goal of estimating a transforma-

tion (rotation and translation) that minimizes the Euclidean distance between two point

clouds. Using an initial transformation guess, ICP first pairs the closest points in two

point clouds to establish correspondences followed by transformation estimation which

minimizes the Euclidean distance between the correspondences. These steps are repeat-

edly executed until convergence is achieved. Figure 2.2 presents two examples of point

cloud pairs before and after alignment. ICP estimates the transformation solely on the

2.1 Point cloud registration 13

basis of distances between points in two point clouds. This is in contrast to other ap-

proaches which rely on features extracted from the point clouds in order to perform the

data association (corresponding point estimation) step. The simplicity of ICP stems from

the implicit assumption that two point clouds are fully overlapped and the theoretical

requirement that the sampled points do not suffer from discretization errors.

Let S = {si}Ni=1 and R = {ri}Mi=1 are two input clouds where S is a source cloud, R

is a reference (or target) point cloud, and si and ri ∈ R3 respectively are N and M

points in 3D space. Given an initial estimate of the transformation parameters θ =

{x,y,z,roll,pitch,yaw}, we want to estimate a 3D rigid transformation Tθ which aligns

the two point clouds, where

Tθ =

Rθ uθ

0 0 0 1

 ∈ R4×4. (2.1)

Tθ is a rigid transformation matrix parametrized by the parameter vector θ. Tθ can be

decomposed into u and R, where u ∈R3×1 is a translation vector comprising of θ1:3 and

R ∈ R3×3 is a rotation matrix parametrized by θ4:6. ICP aligns the two point clouds in

the following two iterative steps:

(1) Establish the pairings between the points in the source and the reference clouds

on the basis of a distance metric using an initial guess θ. The commonly used

point-to-point distance metric to select the corresponding pairs of points is ex-

pressed as follows:

point-to-point(si
′,R) = min

r∈R
‖r− si

′‖ , (2.2)

where si
′ = Tθtsi is a transformed point in the source cloud with the current

transformation Tθt . ||.|| represents the usual norm in the Euclidean space.

(2) Find the transformation which minimizes the cost function between the source

points and the corresponding closest reference points. The cost function captures

the transformation’s alignment quality. If the points in the source point cloud

14 2 Background

find their closest match with the same index in the reference point cloud, the

point-to-point cost function has the following form:

argmin
θ
L(θ) = 1

N

N∑
i=1
||Tθsi− ri||2

= 1
N

N∑
i=1
||(R si+u)− ri||2,

subject to: RTR = I3, det(R) = 1,

(2.3)

where I3 is a 3× 3 identity matrix. These two steps are repeated until a convergence

criteria, such as an error threshold or iteration count, is met.

The transformation in the second step is typically obtained by a closed form solution using

Singular Value Decomposition (SVD) (Horn, 1987) that is based on the cross-covariance

matrix of the two input clouds. The detailed steps of SVD are summarized below:

Let cs and cr be the centroids of the source and reference clouds given by:

cs = 1
N

N∑
i=1

si, and cr = 1
M

M∑
i=1

ri. (2.4)

The cross-covariance matrix for the input point clouds can be expressed as follows:

H = 1
N

N∑
i=1

(si−cs)(ri−cr)T . (2.5)

The SVD decomposition of the cross-covariance matrix is given below:

H = UΣV T , (2.6)

where U , V ∈R3×3 are left and right singular unitary matrices respectively and Σ contains

the singular values of H as diagonal entries arranged in descending order. According to

SVD theorem if rank (H) = 3, the rotation matrix can be computed as follows:

R = V UT . (2.7)

2.1 Point cloud registration 15

Once the rotation matrix is obtained, the translation between the two input clouds can

be calculated as follows:

u = cr−R cs. (2.8)

Figure 2.3. Visualization of ICP steps (Glira et al., 2015). In the final transformation
step, the points in source point cloud are not completely aligned with the points of the
reference point cloud due to the sampling noise.

Modern 3D laser scanners and RGB-D cameras produce large 3D point clouds at a high

frequency. Using all available points to find the closest point correspondences between

two point clouds is computationally very expensive. Therefore the first step in ICP is

usually to select fewer representative points from the source point cloud through sampling

techniques (Rusinkiewicz and Levoy, 2001). The point matching step is affected by sensor

noise, the partial overlap between two point clouds, and other dynamic elements in the

16 2 Background

scans which may lead to erroneous final transformation. ICP eliminates these outliers

(wrong point correspondences) using several strategies including rejecting point pairs on

the basis of distance larger than some specified threshold (Segal et al., 2009) and rejecting

duplicate matching from the reference point cloud. Figure 2.3 visualizes these basic steps

of ICP.

2.1.2 ICP cost variants

A large number of ICP variants have been proposed in the literature, building on the

initial formulation proposed in (Besl and McKay, 1992), to improve the robustness, accu-

racy and efficiency of ICP. These variants employ different techniques in each step of ICP

algorithm presented in Fig. 2.3. Specifically, the variation in ICP methods mostly stems

from the difference in the pre-processing techniques to reduce the point cloud size, point

matching methods, outlier rejection methods, and optimization methods. Section 3.2.1

reviews variants of ICP methods in more detail. This section outlines the ICP vari-

ants that focus on the modification of the cost function, e.g., point-to-plane (Chen and

Medioni, 1991) and plane-to-plane (Segal et al., 2009).

2.1.2.1 Point-to-plane ICP

Point-to-plane ICP (Chen and Medioni, 1991) minimizes the distance between the points

from the source cloud to the tangent plane of the corresponding points in the reference

cloud using the following equation:

argmin
θ
L(θ) = 1

N

N∑
i

(||ni.(R si+u)− ri||)2, (2.9)

where ni ∈R3 is the surface normal at ri. The point-to-plane error is visualized in Fig. 2.4.

A comparison of point-to-point and point-to-plane error metric is presented in Fig. 2.5.

Unlike the point-to-point error metric which has a closed form solution, point-to-plane

error in (2.9) is usually solved using non-linear least square methods, e.g., Levenberg-

Marquardt method (Press et al., 1992), or by linearizing it (Low, 2004).

2.1 Point cloud registration 17

Figure 2.4. Visualization of point-to-plane error in 2D. (Low, 2004).

Figure 2.5. Comparison of point-to-point and point-to-plane error metric (Glira et al.,
2015).

2.1.2.2 Plane-to-Plane ICP

Generalized ICP (GICP) (Segal et al., 2009) unifies point-to-point and point-to-plane

ICP into a single probabilistic framework to solve the minimization problem in (2.3).

GICP can be considered as a plane-to-plane ICP method which models the locally planar

surface structure from both input scans as opposed to just the reference scan.

GICP assumes that the source and the reference scans are generated from an underlying

set of points, Ŝ = {ŝi}Ni=1 and R̂= {r̂i}Mi=1, according to si∼N (ŝi,CSi) and ri∼N (r̂i,CRi)

where CSi and CRi represent the covariance matrices associated with the observed points.

18 2 Background

Given the perfect correspondences and an optimal transformation (T ∗θ), we have:

d
T ∗θ
i = T ∗θ ŝi− r̂i = 0. (2.10)

For an arbitrary rigid transformation, Tθ, dTθ
i = Tθsi−ri is the distance between the sam-

pled corresponding points. Since it is assumed that si and ri are drawn from independent

Gaussian distributions, dT
∗
θ
i can be written as:

dT
∗
θ
i ∼ N (r̂i−T ∗θ ŝi, CRi +T ∗θ C

S
i (T ∗θ)T)

= N (0 , CRi +T ∗θ C
S
i (T ∗θ)T).

(2.11)

GICP uses maximum likelihood estimation (MLE) to iteratively compute Tθ by setting,

Tθ = argmax
Tθ

∏
i

p(dTθ
i) = argmax

Tθ

∑
i

logp(dTθ
i)

= argmin
Tθ

∑
i

d(Tθ)T
i (CRi +Tθ C

S
i)−1d(Tθ)

i .
(2.12)

Equation (2.12) defines the key step of GICP which can be used to represent both point-

to-point and point-to-plane ICP. For example, by setting CRi = 0 and CSi = I, (2.12)

becomes the standard point-to-point ICP cost function (2.3), i.e.,

Tθ = argmin
Tθ

∑
i

d(Tθ)T
i d(Tθ)

i

= argmin
Tθ

∑
i

||d(Tθ)
i ||2.

(2.13)

2.2 Optimization algorithms

Optimization constitutes an important part of machine learning. Optimization problems

are typically expressed in terms of unknowns or variables φ (degrees of freedom), objective

function (or loss L(φ)) to be optimized, and possibly constraints ci(φ) which are scalar

functions of the variables that define certain equations and inequalities that the unknown

variable φ must satisfy. Mathematically speaking, optimization refers to finding the

2.2 Optimization algorithms 19

maximum or minimum of an objective function and can be expressed as follows:

Minimize L(φ)

subject to ci(φ) = E

ci(φ)≤ I,

(2.14)

where E and I are set of indices for equality and inequality constraints respectively. An

unconstrained optimization problem finds the optimum of the objective function with-

out any constraints. The optimization methods can be categorized as continuous (No-

cedal and Wright, 2006) and discrete optimization (Papadimitriou and Steiglitz, 1981),

global (Floudas and Pardalos, 1992) and local optimization, stochastic (Birge and Lou-

veaux, 1997) and deterministic optimization, and gradient-based and gradient-free opti-

mization.

Convexity is a fundamental concept in the optimization problems. Optimization problems

that possess convexity are generally easy to solve. The convexity concept is applicable

to both sets and functions. A set S ∈Rn is a convex set if a line segment connecting any

two points in that set (S) lies entirely inside S. More specifically if S is convex, then for

any two points x ∈ S and y ∈ S, we have ax+(1−a)y ∈ S, for all a ∈ [0,1] (Nocedal and

Wright, 2006). A function L is convex if its domain S is a convex set and if for any two

points x and y in S, the following property is satisfied:

L(ax + (1−a)y)≤ aL(x) + (1−a)L(y) ∀ a ∈ [0,1]. (2.15)

Simple instances of convex functions include the linear function L(x) = cTx +a, for any

constant vector c ∈ Rn and scalar a; and the convex quadratic function L(x) = xTHx,

where H is a symmetric positive semidefinite matrix. An objective function, L, is strictly

convex if the inequality in 2.15 is strict whenever x 6= y and a is in the open interval (0,1).

For convex sets any local minimum of a convex function L on a convex set S is a global

minimum of L on S.

20 2 Background

Optimization algorithms start with an initial guess of the unknown variable (φ) to iter-

atively generate a sequence of improved estimates until they terminate (converge). Dif-

ferent optimization algorithms make use of different strategies to move from one iterate

to the next. Most strategies employ the objective function L, the constraint functions

ci, and possibly first and second order gradients of the objective function. In this sec-

tion, we focus only on unconstrained optimization algorithms that use gradients of the

objective function to find the optimum solution. Particularly we first review Newton’s

and quasi-Newton method; second-order optimization methods which exploit the Hessian

(i.e., curvature information) in the search direction to find the optimum solution, followed

by stochastic gradient descent; a first-order gradient-based optimization algorithm.

2.2.1 Newton’s method

Newton’s method is an unconstrained optimization algorithm which uses both first-order

(gradients) and second-order derivative (Hessian Matrix) of the objective function. New-

ton’s method is derived from a second-order Taylor series expansion of an objective func-

tion about initial value of variables φt, with t= 0.

L(φ)≈ L(φt) +∇L(φt)T (φ−φt) + 1
2(φ−φt)T H(φt)(φ−φt), (2.16)

where H(φt) is the Hessian matrix which contains the second-order derivative of the

objective function. To find the optimum solution, differentiating (2.16) with respect to

φ and setting the results equal to zero according to the Karush-Kuhn-Tucker conditions

results in the following update equation:

φt+1 = φt−H(φt)−1 ∇L(φt). (2.17)

Please note that in this standard form, Newton’s method searches the optimal direction

given byH(φt)−1∇L(φt) using a fixed step size of 1 (Venter, 2010). Newton’s method has

quadratic rate of convergence to obtain the optimum for any positive definite quadratic

function. In practice, a learning rate α is introduced in (2.17) to improve the efficiency

2.2 Optimization algorithms 21

and robustness of the method. The resulting update equation takes the following form:

φt+1 = φt−α H(φt)−1 ∇L(φt). (2.18)

This method can be seen as a dampened variant of Newton’s method (Harker and Pang,

1990).

2.2.2 Quasi-Newton method

Newton’s method requires inverting the Hessian matrix at each update step. The high

computational cost associated with obtaining the Hessian (O(n2)) and inverting it (O(n3))

makes this method impractical for high-dimensional problems. As a result, most gradient-

based methods rely only on the first-order gradient information.

The Quasi-Newton method reduces the computational complexity of Newton’s method

by approximating the Hessian matrix using a positive definite matrix, B, which is based

on the differences of the history of the first-order gradients. The updates make use of the

fact that changes in the gradient provide information about the second derivative of L

along the search direction. The update equation for quasi-Newton method can be written

as:

φt+1 = φt−α B−1
t ∇L(φt), (2.19)

where B−1
t ∇L(φt) defines the search direction for quasi-Newton method, and step size

αt is chosen to satisfy the Wolfe conditions, which is a set of inequalities for inexact line

searches min
αt
L(φt+αt dt) (Raydan, 1997).

The update equation (2.19) is similar to the line search Newton’s method (2.18) with

a difference that an approximate Hessian, Bt, is used as opposed to the true Hessian

H(φt). Quasi-Newton methods achieve fast convergence without requiring the second-

order derivative, which sometimes makes these methods more efficient than Newton’s

method (Nocedal and Wright, 2006).

22 2 Background

The idea behind quasi-Newton method is that two successive updates, φt and φt+1,

together with the gradients, ∇L(φt) and ∇L(φt+1), approximate the curvature informa-

tion, i.e.,

∇L(φt+1)−∇L(φt)≈H(φt+1)(φt+1−φt). (2.20)

Therefore at each update, a positive definite matrix Bt+1 which approximates the Hessian

in a quasi-Newton method must satisfy the following condition, known as the secant

equation (quasi-Newton Condition):

yt =Bt+1 st,

subject to sTt yt > 0,
(2.21)

where
yt =∇L(φt+1)−∇L(φt),

st = φt+1−φt.
(2.22)

Given the displacement, st, and the gradient change, yt, the secant condition imposes

Bt+1 to map st to yt. This is only possible if st and yt satisfy the curvature condition (

sTt yt> 0). When the curvature condition is satisfied, the secant equation in (2.21) admits

an infinite number of solutions for Bt+1. The reason for infinite possible solutions of Bt+1

is that n(n+ 1)/2 the degrees of freedom in a symmetric positive definite matrix exceed

the n conditions imposed by the secant equation making (2.21) underdetermined (Nocedal

and Wright, 2006).

To uniquely determine Bt+1, following additional condition is imposed such that Bt+1 is

closest to the current matrix Bt among all the possible solutions that satisfy the secant

equation (2.21):
min
B
||B−Bt||,

subject to B =BT , Bst = yt,
(2.23)

where st and yt satisfy the curvature condition (sTt yt > 0), and Bt is a positive definite

matrix.

2.2 Optimization algorithms 23

Algorithm 1: BFGS Method (Nocedal and Wright, 2006)
Input : Starting point φ0, convergence tolerance ε > 0 and inverse Hessian

approximation H0
Output: Optimal φ∗

1 t ← 0
2 while ||∇L(φt)> ε|| do

// Compute search direction
3 pt =−Ht∇L(φt)
4 φt+1 = φt+αt pt // where αt is computed from a line search

procedure to satisfy the Wolfe conditions
5 yt =∇L(φt+1)−∇L(φt)
6 st = φt+1−φt
7 ρt = 1

yTt st

8 Ht+1 = (I−ρt st yTt)Ht(I−ρt yt sTt) +ρt st s
T
t ,

9 t← t+ 1
10 end
11 return φ∗

Different matrix norms in (2.23) give rise to different quasi-Newton methods. The most

widely used quasi-Newton method is the Broyden, Fletcher, Goldfarb and Shanno (BFGS)

method (Nocedal and Wright, 2006) which we review below.

2.2.2.1 Broyden, Fletcher, Goldfarb and Shanno (BFGS)

Referring back to the Newton’s method, we can see that the update equation (2.18)

involves the inverse of the Hessian not the Hessian itself. Instead of approximating the

Hessian, H(φt), with Bt and inverting it, BFGS approximates the inverse of the Hessian,

H(φt)−1, with Ht. The update equation for the BFGS method can be written as:

φt+1 = φt−αt Ht ∇L(φt). (2.24)

The updated Hessian inverse approximation, Ht+1, must be symmetric, positive definite,

and must satisfy the secant equation (2.21), now written as:

yt =Ht+1 st. (2.25)

24 2 Background

The conditions of closeness (2.23) can now alternatively be written as:

min
H
||H−Ht||,

subject to H =HT , Hst = yt.
(2.26)

BFGS minimizes the change in Hessian inverse (denoted as Ht) at each update based on

the full history of gradients, subject to the (inverted) quasi-Newton condition. To solve

for Ht+1, the weighted Frobenius norm is used which is just the square root of the sum

of the absolute value squared of the matrix elements given by:

||A||W = ||W 1/2 AW 1/2||F , where

||A||F =
√√√√ n∑
i=0

n∑
j=0
|aij |2.

(2.27)

The weight matrix W can be chosen as any matrix satisfying the relation Wst = yt. The

unique solution to Ht+1 in (2.26) is given by:

Ht+1 = (I−ρt st yTt)Ht(I−ρt yt sTt) +ρt st s
T
t , (2.28)

with

ρt = 1
yTt st

. (2.29)

The BFGS method is presented in Algorithm 1. The BFGS algorithm which works

with Hessian approximation, Bt, rather than Hessian inverse approximation (Ht) can

be obtained by applying Sherman–Morrison–Woodbury formula (Sherman and Morrison,

1950) to (2.28) as follows:

Bt+1 =Bt−
Bt st s

t
t Bt

sTt Bt st
+ yt y

T
t

yTt st
. (2.30)

For n variables, the time complexity of the BFGS method is O(n2). In terms of space,

the BFGS method accumulates all n×n approximations to the Hessian inverse starting

from the initial guess. For high-dimensional problems, storing approximate n×n Hessian

matrices can be very expensive.

2.2 Optimization algorithms 25

2.2.2.2 Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm

(L-BFGS)

The L-BFGS method (Nocedal and Wright, 2006) is an improvement of the BFGS method

for high-dimensional optimization problems. The basic idea of L-BFGS is to store the

vector sequence to approximate the Hessian inverse, instead of storing the complete ma-

trix Ht. More specifically, the L-BFGS method stores m (typically between 3 and 20)

vector pairs {si,yi}t−1
i=t−m from (2.22), and uses them to estimate a search direction with-

out storing or computing the n× n Hessian explicitly which results in linear memory

requirement O(nm).

The product Ht∇L(φt) in (2.24) can be computed by sequence of inner products and

vector summations involving ∇L(φt) and the pairs {si,yi}t−1
i=t−m. Once a new update

is performed, the oldest vector pair in the set of pairs {si,yi}t−1
i=t−m is replaced by the

pair {st,yt} obtained at the current update step, thus keeping the curvature information

from the m most recent updates.

We now present the updating process in a little more detail. At iteration t, the current

update is φt and the set of vector pairs is given by {si,yi}t−1
i=t−m. The L-BFGS method

starts from some initial Hessian inverse approximation H0
t and updates it repeatedly

using (2.28) such that the L-BFGS approximation Ht satisfies the following formula:

Ht = (V >t−1 · · ·V >t−m)H0
t (Vt−m · · ·Vt−1)

+ ρt−m(V >t−1 · · ·V >t−m+1)st−ms>t−m(Vt−m+1 · · ·Vt−1)

+ ρt−m+1(V >t−1 ·V >t−m+2)st−m+1s
>
t−m+1(Vt−m+2 · · ·Vt−1)

+ · · ·

+ ρt−1st−1s
>
t−1,

(2.31)

with

Vt = I−ρt yt s>t , ρt = 1
y>t st

. (2.32)

26 2 Background

Equation (2.31) can be used to derive a recursive procedure to efficiently compute the

product Ht∇L(φt) as outlined in Algorithm 2. Without considering the multiplication

Algorithm 2: Two-Loop Recursion forHt∇L(φt) (Nocedal andWright, 2006)
Input : ∇L(φt), yt, st
Output: Ht∇L(φt)

1 g =∇(L(φt)
2 for i= t−1 to t−m do
3 ai = ρis

>
i g

4 g = g−aiyi
5 end
6 r =H0

t g
7 for i= t−m to t−1 do
8 β = ρiy

>
i r

9 r = r+si(ai−β)
10 end
11 return Ht∇L(φt) = r

H0
t g, the two-loop recursion scheme requires 4mn multiplications; n additional multipli-

cations are needed for diagonal H0
t matrix. Apart from being inexpensive, this recursion

has the advantage that the multiplication by the initial matrix H0
t is isolated from the

rest of the computations, allowing this matrix to be chosen freely and to vary between

iterations.

In practice, H0
t can be effectively chosen by setting H0

t = dtI, where

dt = s>t−1yt−1
y>t−1yt−1

. (2.33)

dt is the scaling factor that attempts to estimate the size of the true Hessian matrix

along the most recent search direction, i.e., dt approximates eig[∇2L(φt)]−1. Algorithm 3

formally states the L-BFGS method.

The strategy of keeping the m most recent correction pairs {si,yi} works well in practice.

During its first m−1 iterations, Algorithm 3 is equivalent to the BFGS algorithm if the

initial matrix H0 is the same in both methods, and if L-BFGS chooses H0
t =H0 at each

iteration (Nocedal and Wright, 2006).

2.2 Optimization algorithms 27

Algorithm 3: L-BFGS Method (Nocedal and Wright, 2006)
Input : Starting point φ0, convergence tolerance ε > 0 and integer m> 0
Output: Optimal φ∗

1 t ← 0
2 g0 =∇L(φ0)
3 y0 = 1
4 s0 = 1
5 while ||∇L(φt)> ε|| do
6 Choose H0

t , for example H0
t = s>t−1yt−1

y>t−1yt−1
I // from (2.33)

7 Compute pt =−Ht∇L(φt) from Algorithm 2
8 Compute φt+1 = φt+αt pt // where αt is computed from a line

search procedure to satisfy the Wolfe conditions
9 if t>m then
10 Discard the vector pair {st−m,yt−m} from storage
11 end
12 Compute yt =∇L(φt+1)−∇L(φt)
13 Compute st = φt+1−φt
14 t← t+ 1
15 end
16 return φ∗

2.2.3 Stochastic gradient descent

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) is an iterative optimization

technique for large scale machine learning problems which minimizes a cost function in

a computationally efficient manner using only first order gradients. In particular, SGD

updates the parameters by using the gradients of a cost function based on a single datum

point or a randomly chosen subset of independent identically distributed (iid) data points,

called a mini-batch. This is in contrast to full-batch gradient descent which uses the entire

dataset to produce a single parameter update. For an additive cost function L(φ), which

can be decomposed as a sum of per-example cost over the dataset, the update rule for

full-batch gradient descent is as follows:

φt+1 = φt−α
1
N

N∑
i=1
∇φtLi(φt), (2.34)

28 2 Background

where φt and φt+1 are the model parameter values φ at the current and next iteration

respectively. The learning rate or step-size α dictates how quickly parameter values

change. 1
N

∑N
i=1∇φtLi(φ) are the average gradients of the cost function with respect to

the individual parameters over an entire dataset of size N .

The computational cost for a single update for full-batch gradient descent is O(N) which

becomes prohibitively expensive for datasets containing millions of examples. Since the

gradient is an expectation and hence can be approximately estimated using a mini-batch

of dataset. Replacing N with a mini-batch of size m << N in (2.34), we obtain the

general SGD update equation:

φt+1 = φt−α
1
m

m∑
i=1
∇φtLi(φt). (2.35)

The stochastic gradient is an unbiased estimate of the real gradient (Robbins and Monro,

1951). Due to the random sampling of a mini-batch, the gradients of SGD are noisy even

when parameter values are close to the optimal solution. To guarantee SGD convergence,

the step size should approach to zero as t→∞ at rates satisfying the following property

(Robbins and Monro, 1951):
∞∑
t=1

α =∞,
∞∑
t=1

α2 <∞. (2.36)

Under the conditions (2.36), the convergence and optimality of SGD can be proved (Bot-

tou et al., 2018) for strong convex problems. In practice the step size significantly affects

a model’s performance. The SGD step-size can be set according to various schedules,

including fixed step size and adaptive schemes such as ADAM (Kingma and Ba, 2015),

RMSprop (Tieleman and Hinton, 2012), and AdaGrad (Duchi et al., 2011).

Updating parameters using a mini-batch makes SGD an efficient optimization algorithm

which optimizes the cost function in a constant time which is independent of the size of the

dataset and can achieve sub-linear convergence speed (Johnson and Zhang, 2013). Over

multiple iterations, the noise in the mini-batch gradients averages out. In addition to the

2.2 Optimization algorithms 29

computational gains we obtain with the mini-batch formulation, the noise in the mini-

batch gradients can help the algorithm escape local minima in non-convex optimization

problems (Ge et al., 2015). Figure 2.6 compares trajectories of full-batch and stochastic

gradient descent towards minimum. Figure 2.7 visualizes the convergence trajectory of

Newton’s method in comparison to gradient descent where Newton’s method reaches the

optimum in fewer steps in a relatively efficient path compared to gradient descent due to

second order gradients.

Figure 2.6. Trajectory visualization of batch and mini-batch gradient descent towards
optimum. Batch gradient descent reaches the optimum by smoothly reducing the cost
function. Single point gradients are noisier compared to mini-batch SGD and require
more iterations to converge.

Figure 2.7. Visualization of gradient descent’s convergence in comparison to the con-
vergence of Newton’s method. Newton’s method converge in fewer steps compared to
gradient descent due to incorporation of curvature information of the cost function in the
optimization.

30 2 Background

2.3 Bayesian methods

A Bayesian method estimates a distribution of the model’s parameters to capture all

forms of uncertainty. In the following, we start by looking at the Bayesian formulation to

reason about what makes Bayesian methods computationally demanding for large scale

problems. Next, we discuss approximate Bayesian methods and modern techniques which

can be used to solve large scale applications.

In a Bayesian approach the distribution of parameters φ, given a set of observations D,

is called the posterior distribution p(φ|D) which can be obtained using Bayes’ rule:

p(φ|D) = p(D|φ) p0(φ)
p(D) , (2.37)

with

p(D) =
∫
p(D|φ)p(φ)d(φ), (2.38)

where p(D|φ) = ∏N
i=1 p(di|φ) is the likelihood function of the observation given φ for

N observations (how probable the data is given φ) using naive Bayes assumption, and

p0(φ) is the prior distribution. The denominator p(D), called the evidence (how probable

is it to observe these particular data?), is computed as p(D) =
∫
p(D|φ)p(φ)d(φ). The

evidence requires the computation of an integral over all the observations in a dataset,

thus making the posterior distribution (2.37) computationally intractable for large scale

problems.

This intractable integral can be avoided by using approximate methods such as Markov

Chain Monte Carlo (MCMC) and Variational Inference (VI).

2.3.1 Markov Chain Monte Carlo

The general idea behind MCMC methods is that if we can approximate the posterior

distribution by generating samples from the posterior distribution using the numerator

of (2.37) alone, the integration in (2.38) can be approximated by using the Monte Carlo

2.3 Bayesian methods 31

method with a finite number of posterior samples (Ahn, 2015). Figure 2.8 illustrates

MCMC sampling process.

Figure 2.8. Illustration of MCMC sample generation and usage (image taken from
https://towardsdatascience.com/
bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29).

MCMC methods first construct a Markov chain whose stationary distribution (π(φ)) is

the posterior distribution (π(φ) = p(φ|D)) (Hastings, 1970; Metropolis and Ulam, 1949;

Geman and Geman, 1984), and then a Monte Carlo method samples from this Markov

chain. A Markov chain is a stochastic system where the probability of a transition to the

next state (sample) is conditioned on the current state alone (not on the past states), i.e.,

p(φt+1|φt, . . . ,φ1) = p(φt+1|φt), where p(φt+1|φt) are transition probabilities. A Monte

Carlo method approximates the expensive posterior distribution as a sum of finite samples

drawn from a target distribution p(φ|D).

2.3.1.1 Properties of a Markov chain

In MCMC, a Markov chain is designed to have a specific invariant distribution for Monte

Carlo estimation. A Markov chain is called homogeneous, time invariant, or stationary

if we have the same transition probabilities for all t, i.e., transition probabilities do not

depend on time. A distribution is invariant over the states of a Markov chain if the tran-

sition probabilities do not change the distribution. For a homogeneous Markov chain,

a distribution p∗(φ) is invariant if p∗(φ′) = ∑
φ p(φ′|φ)p∗(φ). A Markov chain always

has at least one invariant distribution (Neal, 1993). To achieve invariant distribution for

Monte Carlo estimation, one important property of a Markov chain is to be reversible.

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29

32 2 Background

One way to ensure the reversibility of a Markov chain is to design a transition probabil-

ity that satisfies the detailed balance condition defined by p(φ′|φ)p∗(φ) = p(φ|φ′)p∗(φ′).

According to the detailed balance condition, two states, φ and φ′, have the same rate of

flows between them in both directions, i.e., φ→ φ′ and φ′→ φ. The detailed balance is

a sufficient (but not a necessary) condition to result in an invariant distribution (p∗(φ))

of a Markov chain, i.e.,

∑
φ

p(φ′|φ)p∗(φ) =
∑
φ

p(φ|φ′)p∗(φ′) = p∗(φ′)
∑
φ

p(φ|φ′)) = p∗(φ′). (2.39)

Ergodicity is another important property of a Markov chain. A Markov chain is called er-

godic if the output probability distribution gets arbitrarily close to the desired distribution

asymptotically (t→∞), regardless of the choice of the initial state p(φt=0). Ergodicity

ensures that a Markov chain explores the entire parameter space without getting stuck

in any given space. An ergodic Markov chain has only one invariant distribution, called

equilibrium distribution. A Markov chain is ergodic if it is irreducible, aperiodic, and

positive recurrent. A Markov chain is irreducible if it is possible to go from any state to

any other state (not necessary in one step). Aperiodicity means that there does not exist

cyclic state transitions from one state to another (the probability that the next state is

the same as the current state is non-zero). A Markov chain is positive recurrent if the

return time from some state to itself is finite (Roberts and Rosenthal, 2004).

In MCMC every state, except the initial, is dependent on the previous state, resulting

in samples that are not completely independent and identically distributed (iid). An

MCMC method mixes better or is said to have a better mixing rate when the samples of

the MCMC method become more independent on their previous state.

2.3.1.2 Metropolis-Hastings

Metropolis-Hastings (MH) is a widely used MCMC algorithm where a transition from

a current state φt to the next state φt+1 occurs when a proposal sample φ? is drawn

from a specified proposal distribution q(φ?|φt). This proposal sample is then accepted

or rejected on the basis of its probability density relative to that of current state with

2.3 Bayesian methods 33

Algorithm 4: Metropolis-Hastings (Ahn, 2015)
Input : Proposal distribution q(φ∗|φ)

1 Draw initial state φ0 from p(φ0)
2 for t= 1, . . . ,T do
3 Draw a proposal state φ∗ from a proposal distribution q(φt+1|φt)
4 Compute accept-reject probability a(φ?|φt) using (2.40)

// Draw u from a uniform distribution in a range of [0,1]
5 if at > u then
6 Accept: φt+1← φ∗

7 else
8 Reject : φt+1← φt
9 end

10 end
11 end

respect to the posterior probability density for parameters. The acceptance probability

for the new state is computed as:

a(φ?|φt) = min
(

1, q(φt|φ
?)p̃(φ?|D)

q(φ?|φt)p̃(φt|D)

)
, (2.40)

where p̃(φ|D) is the un-normalized probability density. If the proposed sample is ac-

cepted, it becomes the next state of the Markov chain, otherwise the next state is the

same as the current state φ(t). The MH method is formally described in Algorithm 4.

There are many possible choices to design the proposal distribution of the MH algorithm,

e.g., random walk Metropolis (RWM) (Metropolis et al., 1953) which uses a Gaussian

distribution. In RWM the mean is set to the current state and the variance needs to

be tuned by the user to maintain a balance between the acceptance rate and the mixing

rate. Another efficient choice is to use the gradient of the posterior distribution, e.g.,

Langevin Monte Carlo (Grenander and Miller, 1994).

2.3.1.3 Langevin Monte Carlo

Langevin Monte Carlo (LMC) or Metropolis-adjusted Langevin algorithm (MALA) ob-

tains the proposal distribution of the MH algorithm using Langevin dynamics which is

modeled by the following stochastic gradient differential equation (also called Langevin

34 2 Background

equation).

dφt = 1
2∇φt logp(φt|D) +dWt, (2.41)

where Wt is the Brownian motion. Langevin dynamics are ergodic with respect to the

posterior distribution, i.e., the output probability distribution converges asymptotically

to the desired distribution, regardless of the initial state. It has been shown that the

marginal distribution of the Langevin equation converges to the posterior distribution

as t→∞ (Ma et al., 2015). Since digital computers cannot simulate continuous-time

dynamics, the following Euler-Maruyama discretized simulation of the Langevin equation

is used to generate the samples of the posterior distribution:

φt+1 = φt−
α

2
(
−∇φ logp(φt|D)

)
+ηt, (2.42)

where α is a step size, ηt ∼N (0,α) is the injected Gaussian noise, and −∇φt logp(φt|D)

represents the gradient of the negative log of the posterior which is expanded below:

−∇φt logp(φt|D) =−
N∑
i=1
∇φt logp(di|φt)− ∇φt logp0(φt), (2.43)

where −∇φt logp(dt|φt) is the gradient of the negative log likelihood with respect to φ,

and −∇φt logp0(φt) is the gradient of the negative log of the prior with respect to φ.

The computer simulation of (2.41) provides a sampling algorithm for the posterior dis-

tribution. The discretization of the Langevin equation induces errors in the computer

simulation creating a discrepancy between the equilibrium distribution of the simulation

and the target distribution. To correct this discrepancy, LMC performs an MH accept-

reject step using the following proposal distribution:

q(φt+1|φt) =N
(
φt+1|φt+

α

2∇φt logp(φt|D),α
)
. (2.44)

With the step size α→ 0, the discretization error becomes small and the acceptance rate

reaches 1. The pseudo-code of LMC is presented in Algorithm 5.

LMC uses all available data at both proposal and the accept-reject stage resulting in high

computational cost for large scale applications. This means that if the proposal sample

2.3 Bayesian methods 35

Algorithm 5: Langevin Monte Carlo (Ahn, 2015)
Input : φ

1 for t= 1, . . . ,T do
2 ηt ∼N (0,α)
3 φ∗← φt− α

2

(
−∇φ logp(φt|D)

)
+ηt

// Compute accept-reject probability

4 a(φ∗|φt) =
p(φ∗)N

(
φt|φ∗+α

2∇φ logp(φ∗|D),α
)

p(φt)N
(
φ∗|φt+α

2∇φ logp(φt|D),α
)

// Draw u from a uniform distribution in a range of [0,1]
5 if at > u then
6 φt+1← φ∗. // accept
7 else
8 φt+1← φt. // reject
9 end

10 end
11 end

is rejected, the computation in the accept-reject step is wasted. In the following, we

review Stochastic Gradient Langevin Dynamics (Welling and Teh, 2011) which embraces

the idea of stochastic optimization to address the scalability problems of LMC.

2.3.1.4 Stochastic gradient Langevin dynamics

Stochastic gradient Langevin dynamics (SGLD) is a scalable form of LMC which is dif-

ferent to LMC in two aspects: First, SGLD uses stochastic gradients using mini-batches

of size m<<N instead of using exact gradients computed from the full data set. Similar

to SGD, a mini-batch is randomly sampled from the available data at every iteration.

SGLD has the following general form:

φt+1 = φt−
α

2
(
− N
m

m∑
i=1
∇φt logp(dti|φt)−∇φt logp0(φt)

)
+ηt, (2.45)

where α is a step size, ηt ∼ N (0,α) is the injected Gaussian noise, −∇φt logp(dt|φt) is

the gradient of the negative log likelihood with respect to φ, and −∇φt logp0(φt) is the

gradient of the negative log of the prior with respect to φ.

36 2 Background

The second difference of SGLD from LMC is that SGLD accepts all the states obtained

from equation (2.45), ignoring the expensive accept-reject step. It has been shown in

(Welling and Teh, 2011) that the equation (2.45) can produce samples from the posterior

distribution without the accept-reject step if the step size approaches zero as update steps

approach infinity (t→∞) at rates satisfying the properties in (2.36).

The basic idea for the use of SGLD as a posterior sampler can be explained by the two

sources of noises involved in (2.45). The first source of noise is the unbiased stochastic

gradient which can be thought of as a sum of true gradients and a sub-sampling noise.

Stochastic gradients have a variance of (αt/2)2V (φt) where V (φt) is finite variance. The

injected Gaussian noise with a variance αt is the second source. In the initial phase,

the algorithm behaves as a stochastic gradient descent algorithm when stochastic gra-

dient noise dominates. As t→∞, αt→ 0, the injected noise dominates the stochastic

gradient noise, such that the remaining true gradients and the injected noise in (2.45)

simulate the discretized Langevin dynamics (2.42). With a very small step size αt→ 0,

the discretization error becomes negligible and the MH rejection probability approaches

0. Thus, the accept-reject test can be ignored in SGLD (2.45) to generate samples of

posterior distribution.

SGLD maintains a balance between the variance of the injected noise and the step size

to match the variance of the samples to that of the posterior, (Welling and Teh, 2011).

The convergence rate of this process has been explored in detail in (Teh et al., 2016; Sato

and Nakagawa, 2014).

2.3.2 Variational inference

Variational inference (VI) is a deterministic alternative strategy to MCMC sampling to

approximate the intractable posterior distributions for Bayesian models. The main dif-

ference between MCMC and VI is that MCMC approximates the posterior distribution

by sampling a Markov chain, while VI approximates the posterior distribution by solving

an optimization problem. In practice, VI methods often scale better than MCMC (Blei

2.3 Bayesian methods 37

et al., 2017). The key idea of VI is to approximate a complex intractable posterior

distribution with an easy to evaluate variational distribution, parametrized by varia-

tional parameters. The goal of VI is to optimize the variational parameters to minimize

the discrepancy between the true posterior distribution and the variational distribution.

This optimization problem is often solved efficiently using stochastic optimization tech-

niques (Hoffman et al., 2013; Kingma and Welling, 2014). VI is illustrated in Figure 2.9.

Figure 2.9. Illustration of Variational inference (image taken from
(https://towardsdatascience.com/
bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29).

Formally in VI, we solve an optimization problem over a class of tractable distributions

Q to find a tractable variational distribution q ∈ Q that is most similar to the true

posterior distribution p(φ|D). Using the Kullback-Leibler (KL) divergence to measure

the similarity between the two distributions, VI has the following objective function to

approximate the posterior distribution:

q∗(φ) = argmin
q(φ)∈Q

KL[q(φ) | p(φ|D)], (2.46)

with
KL[q(φ) | p(φ|D)] = Eq

[
log

(
q(φ)
p(φ|D)

)]

= Eq [q(φ)]−Eq [p(φ|D)]

= Eq [q(φ)]−Eq [p(φ,D)] + log(p(D)).

(2.47)

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29

38 2 Background

The KL divergence has the following properties:

KL[q(φ) | p(φ|D)]> 0 ∀q(φ)p(φ|D),

KL[q(φ) | p(φ|D)] = 0 if and only if q(φ) = p(φ|D).
(2.48)

Since the objective (2.46) requires computing the intractable evidence, p(D) using (2.38),

it is not computable. Therefore, VI optimizes an alternative objective function in (2.49)

called the evidence lower bound (ELBO). ELBO is derived by using Jenson’s inequality

on the log probability of the observations (Hoffman et al., 2013). Jensen’s inequality

and the concavity of the logarithm function imply that logE[f(X)]≥ E[logf(X)] for any

random variable X (Hoffman et al., 2013). ELBO is a lower bound on the logarithm of

the marginal probability of the observations, i.e., logp(D)≥ ELBO(q) for any q(φ), and

is equivalent to KL divergence up-to an additive constant.

ELBO(q) =−Eq [q(φ)] +Eq [p(φ,D)] . (2.49)

Equation (2.47) is the negative of ELBO with an additional evidence term of log marginal

Figure 2.10. The optimization process of VI (image taken from
https://towardsdatascience.com/
bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29).

probability of D; which is what ELBO bounds. Since evidence term (logp(D)) in (2.47)

is independent of variational distribution, maximizing the ELBO in (2.49) is equivalent

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29

2.3 Bayesian methods 39

to minimizing the KL divergence between variational and true posterior distribution in

(2.47). The optimization process of VI is shown in Fig. 2.10.

Figure 2.11. Illustration of choice of variational distribution in VI. The choice of
the variational distribution determines both the difficulty of the optimization pro-
cess and the accuracy of the final approximation (https://towardsdatascience.com/
bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29).

The expressivity of the chosen distribution determines the accuracy and computational

cost of VI as illustrated in Fig. 2.11. Flexible approximation sets, such as those used in

the traditional mean field family, make strong independence assumptions to help with

scalability. These assumptions restrict the expressiveness of the variational family (Liu

and Wang, 2016). Further, they can exacerbate issues with local optima of the objective

which results in over-optimistic posterior variances (Blei et al., 2018). On the other hand,

complex variational families are more difficult to optimize. As a result variational infer-

ence methods are often not general purpose but derived on a model-by-model basis. The

requirement of a simple approximation of an intractable posterior distribution restricts

the wide application of variational inference.

Stein variational gradient descent (SVGD) (Liu and Wang, 2016) is a non-parametric

general purpose variational inference algorithm which we review in the following section.

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29

40 2 Background

2.3.2.1 Stein variational gradient descent (SVGD)

Stein variational gradient descent is a deterministic sampling algorithm that combines the

scalability of variational inference with the flexibility of MCMC methods to approximate

the intractable posterior distribution. Similar to VI, SVGD represents a true distribution

by an approximate distribution. However, this approximation is not confined within para-

metric families as is commonly done in VI methods. SVGD constructs an approximate

distribution using a set of non-parametric particles. These particles are then updated

iteratively using gradient-based optimization to minimize the KL divergence within a

functional space.

Given an intractable but differentiable posterior (target) distribution p(φ|D), SVGD

constructs a non-parametric distribution (q(φ) = 1
N

∑N
i=j δ(φ−φj)) represented by a

set of N particles ({φj}Nj=1) to approximate the target distribution. Here δ(·) is the

Dirac delta function. These particles are transported deterministically along the optimal

gradient direction to match the posterior distribution in a series of steps, each minimizing

the KL divergence in a functional space between the true posterior p(φ|D) and the

variational approximation q[αG](φ) as follows:

φjt+1 = φjt +αG∗t (φj), ∀j = 1, . . . ,N, (2.50)

G∗t = argmax
G∈Bt

(
− d

dα
KL(q[αG] || p)|α=0

)
, (2.51)

where α is a small step size, and G∗t :Rd → Rd denotes the optimal transport function

representing the direction to move the approximation within the functional space Bt
closer to the target. q[αG] denotes the distribution of the updated particles, φt+1 =

φt+αGt(φ) which decreases the KL divergence along the steepest direction from q by α.

The iterative transformation in (2.50) yields G∗(φ) = 0 when the KL divergence converges

to a local minimum. At this stage, the final q represents the non-parametric variational

approximation to the target.

To obtain a closed-form solution, SVGD chooses Bt to be in the unit ball of a vector-valued

reproducing kernel Hilbert space (RKHS), Hdt =Ht×·· ·×Ht (a product of d copies of

2.3 Bayesian methods 41

RKHS of scalar-valued functions (Ht)), where Ht is associated with a positive definite

kernel k(φ,φ′), that is, Bt = {G ∈ Hdt : ||G||Hdt≤ 1}. Formally, an RKHS is defined as a

Hilbert space Hd with inner product 〈·, ·〉Hd and norm ||.||Hd satisfying the reproducing

property, ∀f ∈Hd,f(x) = 〈f,k(x, .)〉Hd .

A key observation to solve the objective function (2.51) is that (2.51) can be expressed

as a linear functional of G that connects to the Stein operator AG(φ) (Liu and Wang,

2016) in the following equation,

− d

dα
KL(q[αG] || p)|α=0 = Ep(φ)∼q[trace(AG(φ))], (2.52)

where AG(φ) =G(φ)>∇φ|D logp(φ) +∇φG(φ), (2.53)

that is, the Stein operator transforms the perturbation (G) on the particles to the change

of the KL divergence in (2.52). By Stein’s identity, i.e., Ep(φ)∼q[AG(φ)] = 0, we obtain
d
dαKL(q[αG] || p) = 0 when p= q in (2.52). Following from equation (2.53) ∇φ|D logp(φ)

is the gradient of the log posterior which can be expressed as:

∇φ|D logp(φ) =
M∑
i=1
∇φ logp(di|φ) + ∇φ logp0(φ), (2.54)

where∇ logp(di|φ) and∇ logp0(φ) are the gradient of the log likelihood function, and the

gradient of the log of the prior with respect to φ respectively, for a dataset D= {di}Mi=1 of

M data points. Note that the Stein operator depends on the posterior distribution only

through ∇φ|D logp(φ), which does not require the normalization constant (also known

as marginal likelihood) which is generally intractable. This significantly simplifies the

computation of the posterior and makes SVGD a powerful tool for inference of intractable

distributions (Liu and Wang, 2016).

The SVGD algorithm follows from a closed form solution of (2.51), as shown in (Liu and

Wang, 2016; Chwialkowski et al., 2016; Liu et al., 2016), and is given by:

G∗(·) = Ep(φ)∼q[∇φ logp(φ)k(φ, ·) +∇φk(φ, ·)]. (2.55)

42 2 Background

Algorithm 6: Stein Variational gradient Descent (Liu and Wang, 2016)
Input : A target distribution with density function p(φ), step size α, and a

set of initial particles {φj0}Nj=1.
Output: A set of particles {φj}Nj=1 that approximates the target distribution.

1 for t= 1, . . . ,T do
2 φjt+1← φjt +αtĜ

∗(φjt) where
Ĝ∗(φ) = 1

N

∑N
j=1

[
k(xjt ,x)∇

xjt
logp(xjt) +∇

xjt
k(xjt ,x)

]
.

3 end

In the above, we omit the dependence on the dataD to simplify notation. Equation (2.55)

provides the optimal update direction for the particles within Hdt . In practice, the set of

particles {φj}Nj=1 is initialized randomly according to some prior distribution representing

q. These particles are updated with the approximate steepest direction Ĝ∗(φ) given by:

Ĝ∗(φ) = 1
N

N∑
j=1

[∇φj logp(φj)k(φj ,φ) +∇φjk(φj ,φ)], (2.56)

where k(φ,φ′) is a positive definite kernel. Substituting∇φ logp(φ) from (2.54) into (2.56),

approximate steepest direction takes the following form:

Ĝ∗(φ) = 1
N

N∑
j=1

 1
M

M∑
i=1
∇φj logp(di|φj) + ∇φj logp0(φj)

k(φj ,φ) +∇φjk(φj ,φ)
 .

(2.57)

(2.57) consists of two components. The first component in (2.57) can be interpreted

as a weighted gradient of the log posterior with weights given by the kernel function

evaluated on the set of particles. This pushes the particles towards the modes of the

posterior. The second component is the gradient of the kernel at the particle locations

and corresponds to a repulsive force bringing diversity among the particles. If a particle

is within the vicinity of another particle, the second term will tend to separate them, thus

preventing them from collapsing into a single point. These two components balance each

other so that the resulting particle set can approximate complex multi-modal posterior

distributions. The flow of particles from prior distribution to the multi-modes of target

distribution is illustrated in Fig. 2.12. SVGD algorithm is summarized in Algorithm 6.

2.3 Bayesian methods 43

Figure 2.12. Visualization of gradient flow of Stein particles from a prior distribution to
the multi-modes of target distribution. (Left) Uniform initialization of particles covering
probable regions. (Middle) Particles moving to high probable regions. (Right) Particles
converged to high probable regions.

2.3.2.2 Stein variational Newton method (SVN)

SVGD samples the posterior distribution by leveraging first order gradient information

which makes it slow to converge especially for complex error landscapes of challeng-

ing problems. To efficiently sample the distributions Stein variational Newton (SVN)

method (Detommaso et al., 2018) uses second order information within Stein variational

gradient descent (SVGD) algorithm (Liu and Wang, 2016).

SVN (Detommaso et al., 2018) accelerates the convergence of the SVGD algorithm by

exploiting the second-order information, i.e., Hessian, of the log density. SVN updates

the particles following an approximate Newton’s direction rather than steepest descent

to fit to the true posterior distribution in the following equation:

φjt+1 = φjt +α (H̃j
t)−1G∗(φjt), (2.58)

where

H̃j = Eφ∼q[H(φ)k(φ,φj)2 + (∇φjk(φ,φj)⊗2) ∀j = 1, . . . ,N, (2.59)

where G∗(.) is the standard SVGD gradient, H̃ is an approximate Hessian matrix, H(φ) =

−∇2
φ logp(φ) and a⊗2 := aaT . As in SVGD, particles approximate the expectation in

(2.58).

44 2 Background

2.4 Bayes filtering

The robust estimation of dynamical states is paramount in robotics perception. State

estimation is a problem of estimating state of a system using the history of observations

and inputs. Bayesian filtering is a general framework that relies on Bayes theorem and

Markov assumption and provides a probabilistic solution to (nonlinear) state estimation

problems using noisy observations (Feng et al., 2011). We review the basics of Bayes

filtering as a generic technique for Bayesian inference below.

We consider a discrete-time hidden Markov model with latent states Xt = {x1:t}, ob-

servations Zt = {z1:t}, and controls Ut = {u1:t} indexed by the time sequence 1,2, . . . , t.

The evolution of the state sequence is given by xt = ft(xt−1,ut−1,vt−1) where ft : Rdx×

Rdu ×Rdv → Rdx is potentially a nonlinear function of the state xt−1, control ut−1,

and vt−1 are samples from an independent and identically distributed noise process

p(v1:t) = ∏t
i=1 p(vi). In filtering, we are interested in recursively estimating xt given

measurements (or observations) zt = h(xt,nt), where h : Rdx×Rdn → Rdz can be a non-

linear sensor model with i.i.d measurement noise sequence p(n1:t) = ∏t
i=1 p(ni). The

dimensions for xt, ut, vv, zt and nt are denoted by dx, du, dv, dz and dn respectively.

Within a Bayesian framework, this problem remounts to computing a belief for the cur-

rent state xt, given by bel(xt) = p(xt|z1:t,u1:t), conditioned on the history of observations

Zt and control actions Ut. The Bayes filter is recursive, that is, the belief bel(xt) at

time t is calculated from the belief bel(xt−1) at time t−1. This stochastic filtering prob-

lem is illustrated as a graphical representation of generic state space model in Fig. 2.13.

Assuming an initial state distribution or prior p(x0|z0) = p(x0), and using the Markov

assumption that the prior belief is sufficient to represent the past history of the states, the

posterior can be calculated iteratively following a two step procedure typically referred

to as prediction and update.

The prediction step uses the state transition model p(xt|xt−1,ut) = p(xt|ft(xt−1,ut,vt−1))

and the posterior of p(xt−1|z1:t−1,u1:t−1) obtained in the previous iteration to predict

2.4 Bayes filtering 45

Figure 2.13. A graphical model of generic state space model (Chen, 2003)

p(xt|z1:t−1,u1:t), following the Chapman-Kolmogorov equation:

b̃el(xt) =
∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1. (2.60)

The update step computes the likelihood of an observation (zt) given the state (xt), using

the sensor model p(zt|xt) = p(zt|h(xt,nt)), and updates the belief for the current step

following Bayes’ rule:

bel(xt) = ηcp(zt|xt) b̃el(xt), (2.61)

where ηc is a normalization constant given by

η−1
c = p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1,u1:t−1)dxt (2.62)

Algorithm 7 presents a pseudo-code for recursive Bayes filtering. To summarize, the Bayes

filter computes the posterior over the state xt conditioned on the measurement and control

data up to time t under the assumption that the world is Markov, that is, the current belief

represents a complete summary of the past. In robotics, the Markov assumption is often

violated in state estimation tasks and hence it is usually only an approximation (Thrun

et al., 2005). Further, the integrals in (2.60) and (2.61) are typically not tractable and

require infinite computing resources to evaluate exactly. As such the Bayes filter cannot

46 2 Background

Algorithm 7: Bayes filtering (Thrun et al., 2005)
Input : bel(xt−1), ut, zt
Output: bel(xt)

1 for all xt do
2 b̃el(xt) =

∫
p(xt|xt−1,ut) bel(xt−1) dxt−1

3 bel(xt) = ηcp(zt|xt) b̃el(xt).
4 end
5 return bel(xt)

be implemented on a digital computer. There exists quite a variety of techniques to

approximate Bayes filters. Each of these approximations relies on different assumptions

regarding the measurement and state transition probabilities and the initial belief. For

example histogram filters (Thrun et al., 2005) represent the belief by a histogram, Kalman

filters represent it by a Gaussian, and particle filters represent the belief by a set of

particles. We present the details of the Kalman filters and particle filters in the next two

sections.

2.4.1 Kalman filters

The Kalman filter (Kalman, 1960) alternates between prediction and update step but only

for linear systems. The Kalman filter represents the belief with the first two moments

of the Gaussian distribution, i.e., the mean µt and the covariance Σt. In addition to the

Markov assumption, the derivation of the Kalman filter is based on the following three

assumptions to carry out the integral in the Bayes filter and to ensure that the posterior

is always a Gaussian at any point in time t:

(1) The prediction model (next state probability) p(xt|xt−1,ut) must be a linear

function in its arguments with added Gaussian noise. This is expressed by the

following linear Gaussian equation:

xt = Atxt−1 +Btut+ηt, (2.63)

2.4 Bayes filtering 47

where xt and xt−1 are state vectors of dimension n and ut is the control vector

of dimension m. At and Bt are matrices of sizes n×n and n×m respectively.

By multiplying the state and control vector with the matrices At and Bt, respec-

tively, the state transition function becomes linear in its arguments. Thus, the

Kalman filters assume linear system dynamics.

ηt is the Gaussian noise with a zero mean and Rt covariance at t. This

Gaussian noise models the randomness in the state transition. The dimension of

ηt is n. The state transition probability p(xt|xt−1,ut) is obtained in (2.65) by

plugging (2.63) into the multivariate Gaussian distribution which is given by:

p(x) = det(2πΣ)−
1
2 exp

{
− 1

2(x−µ)TΣ−1(x−µ)
}
. (2.64)

Plugging Atxt−1 +Btut as the mean of the posterior state and Rt as the covari-

ance, the state transition probability can be expressed as:

p(xt|xt−1,ut) = det(2πRt)−
1
2 exp

{
− 1

2(xt−Atxt−1 +Btut)TR−1
t (xt−Atxt−1 +Btut)

}
.

(2.65)

(2) The measurement model p(zt|xt) must also be linear in its arguments with added

Gaussian noise:

zt = Ctxt+δt, (2.66)

where zt is a measurement vector of dimension k, Ct is a matrix of size n× k,

and δt is the measurement noise with a zero mean and covariance Qt. The

measurement probability is thus given by the following multivariate Gaussian

distribution:

p(zt|xt) = det(2πQt)−
1
2 exp

{
− 1

2(zt−Ctxt)TQ−1
t (zt−Ctxt)

}
. (2.67)

(3) The initial belief bel(x0) must also be Gaussian. Using µ0 and Σ0 to denote the

mean and covariance of the initial belief, we have:

bel(x0 = p(x0) = det(2πΣ0)−
1
2 exp

{
− 1

2(x0−µ0)TΣ−1
0 (x0−µ0)

}
. (2.68)

48 2 Background

Algorithm 8: Kalman filter (Thrun et al., 2005)
Input : µt−1, Σt−1 ut, zt
Output: µt, Σt

1 µ̄t = Atµt−1 +Btut
2 Σ̄t = AtΣt−1ATt +Rt
3 Kt = Σ̄tC

T
t (CtΣ̄tC

T
t +Qt)−1

4 µt = µ̄t+Kt(zt−Ctµ̄t)
5 Σt = (I−KtCt)Σ̄t

6 return µt, Σt

The Kalman filter algorithm is presented in Algorithm 8. Line 1 and 2 calculates the

moments (µ̄t and Σ̄t) of the predicted belief by incorporating control ut. Specifically,

line 1 updates the mean using the deterministic version of the prediction function (2.63),

where the mean µt−1 substitutes for the state xt−1. Line 2 updates the covariance by

considering the fact that states depend on previous states through the linear matrix At.

This requires twice multiplication of the matrix into the covariance since the covariance

is a quadratic matrix. Line 3 computes the variable Kt called Kalman gain. It specifies

the degree to which the predictions should be corrected by the measurement on time step

t. Line 4 manipulates the mean, by adjusting it in proportion to the Kalman gain Kt and

the deviation of the actual measurement, zt, and the measurement predicted according

to the measurement probability (2.66). Finally, line 5 calculates the new covariance of

the posterior belief, adjusting for the information gain resulting from the measurement.

The assumptions of linear state transitions and linear measurements with added Gaussian

noise are rarely satisfied in practice. Thus, the applicability of Kalman filter is limited by

the ubiquitous non-linearity and non-Gaussianity of the real world. For mildly nonlinear

and non-Gaussian systems, extended Kalman filters (EKF) (Cole and Newman, May

2006; Barczyk et al., November 2015) are commonly used which linearize the prediction

and update model. The details of EKF can be found in (Thrun et al., 2005; Haykin and

Widrow, 2003; Chen, 1993)

2.4 Bayes filtering 49

2.4.2 Particle filters

The particle filter is an alternative non-parametric implementation of the Bayes filters.

Similar to the Bayes filters, the particle filter algorithm constructs the belief bel(xt)

recursively from the belief bel(xt−1) one time step earlier. However, the particle filters

use a set of particles to approximate this belief. As such, the particles filters construct the

current set of particles Xt = {xj}Nj=1 recursively from Xt−1. Owing to its non-parametric

representation of the states, the particle filters offer great flexibility in representing a

much broader space of distributions than, for example, Gaussians.

The key idea of the particle filters (Gordon et al., 1993) is to approximate the belief us-

ing N weighted particles, bel(xt) = {(xjt ,w
j
t)}Nj=1, generated by Monte Carlo simulation.

The particle filters update the belief in a three step process of prediction, update and

resampling. In the prediction step, the particle filters sample a motion model to move

each particle stochastically in (2.69). In the update step, the update (2.61) is achieved in

(2.70) by assigning weights to each particle using an observation likelihood. In the resam-

pling step, these weighted particles are then resampled proportionally to their weights.

Figure 2.14 provides an illustration of these steps in one iteration.

∀j xjt ∼ p(xjt |x
j
t−1,ut), (2.69)

∀j wjt = p(zt|xjt). (2.70)

Algorithm 9 presents the most basic variant of the particle filter algorithm. The particle

filter algorithm takes a set of particles Xt−1, the most recent control ut and the most

recent measurement zt as inputs. Each particle in the set represents a state hypothesis at

t−1. The algorithm then constructs a temporary empty set of particles X̃t at t in line 1.

Then for each particle in the set, the algorithm performs the prediction and update steps

in lines 3 and 4 and add the resulting weighted particles in X̃t. Once X̃t is updated, the

particle filter algorithm performs a resampling (or importance resampling) step in lines 7

through to 11. In the resampling step, the algorithm draws N particles with replacement

from the temporary set X̃t . The probability of drawing each particle is given by its

50 2 Background

Figure 2.14. Steps of a particle filter. In the first step a number of particles approx-
imate the current belief. Next, update step assigns the weights to these particles on
the basis of likelihood function. Finally, in the resampling step, particles are resampled
proportionally to their weights. The larger size of particles represent multiple instances
of a single particle after resampling.

Algorithm 9: Particle filter algorithm based on importance sampling (Thrun
et al., 2005)

Input : Xt−1, ut, zt
Output: Xt

1 X̃t = Xt = ∅
2 for j = 1, to N do
3 Sample xjt ∼ p(xt|x

j
t−1,ut)

4 wjt = p(zt|xjt)
5 X̃t = X̃t+< xjt ,w

j
t >

6 end
7 for j = 1, to N do
8 draw i with probability ∝ wit
9 add xit to Xt

10 end
11 return (Xt)

importance weight. Resampling transforms a particle set of N particles into another

particle set of the same size. The resampling process changes the particle distribution

from b̃el(xt) to posterior distribution bel(xt) = ηcp(zt|xt) b̃el(xt). The resampling step

refocuses the particle set to the high posterior probability regions in the state space. This

2.4 Bayes filtering 51

Algorithm 10: Low variance sampler (Thrun et al., 2005)
Input : Xt, Wt

Output: X̃t
1 X̃t = ∅
2 r = rand (0, N−1)
3 c= w

[1]
t

4 i= 1
5 for j = 1, to N do
6 v = r+ (j−1)N−1

7 while v > c do
8 i= i+ 1
9 c= c+w

[i]
t

10 end
11 add x[i]

t to X̃t
12 end
13 return (X̃t)

results in the computational resources of the filter algorithm being more focused to the

regions in the state space where they matter the most. An alternative implementation of

the particle filters is the one without a resampling step. Such a particle filter algorithm

would still approximate the posterior, but many of its particles would end up in regions of

low posterior probability. This would result in the particle filter requiring more particles

to accurately represent the posterior distributions.

The resampling step resamples the particles with replacement resulting in many duplicate

particles in the set. Over the time, this repetitive resampling process induces a loss

of diversity in the particle set which decreases the variance of the particle population.

To overcome the variance reduction issue, one solution is to perform the resampling

step at a low frequency and avoid it altogether when the state is static over the time

(xt = xt−1). An alternative strategy for reducing the sampling error is low variance
sampling which is presented in Algorithm 10. The key idea of the low variance sampling

to select the particles through a stochastic sampling process rather than selecting them

independently of each other. Instead of choosing N random numbers and selecting those

particles that correspond to these random numbers, this algorithm computes a single

52 2 Background

Figure 2.15. Principle of the low variance resampling procedure. We choose a random
number r and then select those particles that correspond to v = r+ (j− 1) N−1 where
j = 1 . . .N (Thrun et al., 2005)

.

random number and selects samples according to this number but still with a probability

proportional to the sample weight. This is achieved by drawing a random number r in

the interval [0,N−1], where N is the number of samples to be drawn at time t. The

low variance sampling algorithm then selects particles by repeatedly adding the fixed

amount N−1 to r and by choosing the particle that corresponds to the resulting number.

Any number v in [0;1] points to exactly one particle, namely the particle i for which

i= argmink
∑k
j=1w

[j]
t ≥ v. The while loop in algorithm serves two tasks, it computes the

sum in the right hand side of this equation and additionally checks whether i is the index

of the first particle such that the corresponding sum of weights exceeds v. The selection

is then carried out in line 11. This process is also illustrated in Fig. 2.15. The advantage

of the low variance sampler is that it covers the space of samples in a more systematic

fashion than the independent random sampler. This should be obvious from the fact that

the dependent sampler cycles through all particles systematically, rather than choosing

them independently at random.

2.5 Summary

In this chapter, we presented the concepts that are central to the research presented in

this thesis. In particular, we presented the iterative closest point (ICP) algorithm to solve

the point cloud registration problem and gradient-based optimization methods including

L-BFGS and stochastic gradient descent (SGD) to find the optimal solution for an ob-

jective function. We also presented approximate Bayesian methods including stochastic

2.5 Summary 53

gradient Langevin dynamics (SGLD) and Stein variational inference methods to model

the uncertainty in parameters and Bayesian filtering method to perform state estimation.

In the next chapter, we present our two contributions – SGD-ICP and Bayesian-ICP

to align two point clouds. SGD-ICP employs SGD to optimize the ICP’s cost function

efficiently and Bayesian-ICP is a probabilistic ICP which exploits SGLD framework to

provide uncertainty estimates for the ICP transformation parameters.

In Chapter 4, we employ the Stein variational inference framework to model the uncer-

tainty in the ICP transformation parameters. In Chapter 5, we use L-BFGS to optimize

the particles of the Stein variational inference algorithm in a filtering framework.

Chapter 3

Bayesian-ICP for Mobile Robot Localization

This chapter exploits recent advances in probabilistic inference to improve the effi-

ciency and robustness of iterative closest point (ICP) (Besl and McKay, 1992) and

to efficiently quantify the uncertainty in ICP’s transformation parameters. In particular,

this chapter presents cohesive derivation of our methods – SGD-ICP and Bayesian-ICP for

point cloud registration. SGD-ICP employs stochastic gradient descent (SGD) (Robbins

and Monro, 1951) to solve the optimization problem posed by ICP. Bayesian-ICP lever-

ages SGD-ICP to obtain a distribution over transformations combined with Markov Chain

Monte Carlo method using stochastic gradient Langevin dynamics (SGLD) (Welling and

Teh, 2011) updates. This chapter also presents an extension of Bayesian-ICP in the

context of Monte Carlo Localization (MCL) to perform a localization task robustly in

uncertain simulated and real environments. The material presented in the chapter forms

the basis of two conference papers presented in ICRA (Afzal Maken et al., 2019, 2020)

and a journal paper in IJRR (Afzal Maken et al., 2022a).

3.1 Introduction

Successful execution of most robotic tasks depends on the accurate knowledge of a robot’s

pose. A robot uses different sensors and techniques to accurately determine its pose in a

known environment, e.g., wheel odometry, visual odometry (VO), and global positioning

system (GPS). Wheel odometry is a relative positioning technique which depends on the

movement of the wheels to estimate the location of robot. Similar to wheel odometry,

VO estimates the relative position but uses a stream of images. This is in contrast to

54

3.1 Introduction 55

satellite-based GPS navigation which provides absolute poses but unfortunately cannot

be used in areas with low satellite signal strength. Wheel odometry tends to drift due

to wheel slippage (Fernandez and Price, 2004), VO is effected by illumination conditions

and involves high computational cost to process images (Yu et al., 2011; González et al.,

2013; Aqel et al., 2016; Lim and Bräunl, 2020), and GPS is typically available in outdoor

environments.

Scan matching using the iterative closest point (ICP) algorithm (Besl and McKay, 1992)

is a commonly used method to obtain odometry for localization tasks. ICP is based on

point cloud registration and widely used in many robotics applications such as simul-

taneous localization and mapping (SLAM) (Gutmann and Konolige, 1999; Wang et al.,

2003; D. Hahnel and Thrun, 2003; Durrant-Whyte and Bailey, 2006; Bailey and Durrant-

Whyte, 2006; Mendes et al., 2016), map reconstruction (J. Minguez and Montano, 2004;

L. Montesano and Montano, 2005; Shin and Ho, 2017), people tracking (Schulz et al.,

2001), to name a few.

ICP estimates the transformation between two point clouds iteratively, in a two-step

process. The first step establishes matches between point pairs in the two point clouds

on the basis of minimum Euclidean distance. The second step finds the transformation

by minimizing the Euclidean distance between the matched point pairs. Standard ICP

(Besl and McKay, 1992) utilizes all the available points in both point clouds, at each

iteration of the alignment process. This makes ICP computationally expensive for large

point clouds containing hundreds of thousands of points.

There are several sources of error and uncertainty that come into play during the align-

ment process. For example, inaccurate initial pose estimate, partial overlap between point

clouds, sensor noise, and presence of multiple local minima in the objective function. An-

other form of uncertainty arises due to ambiguities in the point cloud structure such as

featureless long corridors, repetitive structures, or symmetries in objects. Furthermore,

LiDARs provide discrete sampled points of the surrounding. As a result of sampling

process and sensor’s noise, two scans captured at the same location differ from each other

in terms of point location. This results in erroneous data associations which can cause

56 3 Bayesian-ICP for Mobile Robot Localization

significant estimation errors and make the original ICP impractical for localization or

mapping tasks. Knowledge of the uncertainty of the ICP transform is crucial in many

applications, for example fusing ICP estimates with other sensor observations for state

estimation (Bengtsson and Baerveldt, 2003). However, standard ICP methods provide a

point estimate of the relative transform between two point clouds and do not quantify

the estimate’s uncertainty.

Current methods that estimate ICP pose uncertainty are either offline due to their high-

computational cost or produce overconfident uncertainty estimates which can lead to

navigation failure (Bengtsson and Baerveldt, 2003; Censi, 2007; Iversen et al., 2017).

The reason for overconfident estimates stems from the fact that point re-associations are

not taken into account in the uncertainty estimation step.

Motivated by the recent advances in probabilistic inference and optimization for large-

scale problems, we propose stochastic gradient descent ICP (SGD-ICP) to solve the

matching and transformation estimation problems. SGD-ICP exploits stochastic gradient

descent (SGD) (Bottou et al., 2018; Robbins and Monro, 1951) to significantly improve

the run-time of ICP. Instead of using all available data points at once when optimizing the

objective function, as typically done in standard ICP, SGD-ICP uses a randomly chosen

small subset of points, called a mini-batch. SGD-ICP then updates the transformation

with mini-batch gradient steps towards the optimum. This is in contrast to conventional

ICP that uses the analytical squared loss solution to find the global transformation given

a potentially sub-optimal match. The mini-batch formulation makes SGD-ICP signifi-

cantly more efficient without sacrificing the solution quality while converging to the same

result in expectation (Bottou et al., 2018). Additionally, small stochastic gradient steps

usually result in better solutions by reducing the chance of ICP getting stuck in local

minima.

Similar to ICP, SGD-ICP is also a point estimation method. A principled way to incor-

porate uncertainty into the SGD-ICP is to use a Bayesian formulation in which a prior

distribution and a likelihood function are used to obtain a posterior distribution given

observations. The likelihood function measures how likely the observations are given

3.1 Introduction 57

model parameters, while the prior distribution encodes a prior belief about these param-

eters. Unfortunately analytical solutions to such a Bayesian formulation are typically

intractable and approximate methods have to be employed. One such approximation

technique is Markov Chain Monte Carlo (MCMC) which can produce a sample-based

approximation to the posterior. However, traditional MCMC algorithms are still com-

putationally demanding as they need to consider the entire dataset to produce a single

sample (Robert and Casella, 2005).

In order to estimate the transformation’s uncertainty we propose an efficient Bayesian

formulation (Neal, 1996; MacKay, 1992) to the problem. We propose a scalable Markov

Chain Monte Carlo (MCMC) technique derived from stochastic gradient Langevin dy-

namics (SGLD) (Welling and Teh, 2011) which enables any stochastic gradient descent

(SGD) based method to produce samples from the true posterior. Bayesian-ICP leverages

the SGD-ICP formulation with Langevin dynamics MCMC samplers to obtain samples

from the ICP transformation and providing uncertainty quantification.

To demonstrate the applicability and benefits of our method for state estimation tasks,

we integrate our Bayesian-ICP in a Monte Carlo localization (MCL) framework in lieu

of an odometry-based motion model. Since Bayesian-ICP provides samples of the ICP

transformation, it does not require the tuning of noise related parameters for different

environments as required by typical odometry-based motion models. Additionally, the

inherent noise in Bayesian-ICP naturally adapts itself with respect to the environment

structure which creates structure-aware uncertainty in the distribution of the particles.

Implementation of the methods described in this chapter is available online.1

Contributions: The main contributions of this chapter are twofold. First we introduce

stochastic gradient descent ICP (SGD-ICP) which can align two point clouds in a compu-

tationally efficient manner by employing mini-batches of the data and stochastic gradient

steps. Secondly, SGD-ICP is combined with Langevin dynamics MCMC resulting in

Bayesian-ICP, a probabilistic method that can produce high-quality posterior distribu-

tions of the transformation parameters. We demonstrate the application of Bayesian-ICP
1https://bitbucket.org/fafz/bayesian-icp-localizer/

https://bitbucket.org/fafz/bayesian-icp-localizer/

58 3 Bayesian-ICP for Mobile Robot Localization

in a localization task with particle filters. Through experiments we demonstrate that a

motion model constructed from Bayesian-ICP does not require manual tuning of noise

parameters in different environments in contrast to the equivalent solution using odome-

try.

The rest of the chapter is organized as follows: we briefly review literature related to ICP

and MCMC in Section 3.2. In Sections 3.3, and 3.4 we present our proposed methods–

SGD-ICP and Bayesian-ICP respectively. Section 3.5 describes how Bayesian-ICP can

be used for online localization tasks. Finally, experiments are presented in Section 3.6

and summary in Section 3.7.

3.2 Related work

In this section, we briefly review the existing ICP variants, followed by a review of MCMC

which we use to obtain the uncertainty estimation for ICP transformation parameters.

3.2.1 ICP variants

There exists a plethora of ICP algorithms in the literature which are extensively reviewed

in (Pomerleau et al., 2015; Salvi et al., 2007; Rusinkiewicz and Levoy, 2001). ICP variants

can be broadly categorized into variants that provide point estimates and methods that

output probabilistic distributions over the transformation.

3.2.1.1 Point estimate ICP algorithms:

These methods provide a single transform between the two point clouds and mostly

differ in the selection of points, correspondence estimation method, cost function, or

optimization method.

Modern sensors produce large 3D point clouds at a high acquisition rate. As using all

available points in the registration process (Besl and McKay, 1992; Chen and Medioni,

1991) is computationally expensive, several techniques have been proposed to reduce the

3.2 Related work 59

size of the clouds to improve the registration speed. For example, random sampling

(Masuda and Yokoya, 1995), uniform sub-sampling (Turk and Levoy, 1994; Masuda,

2001), or normal sampling (Rusinkiewicz and Levoy, 2001).

After the size of the input clouds is reduced, the next step is to obtain the matching point

pairs between the two clouds which can be done using minimum Euclidean distance (Besl

and McKay, 1992), minimizing the distance between point and planes (Chen and Medioni,

1991), matching signed distance fields (Masuda, 2001, 2002) or including additional infor-

mation such as, color (Weik, 1997), surface normals (Pulli, 1999), or rotational invariant

features (Du et al., 2017) in the distance metric.

Once the correspondences are established, the impact of outliers caused by partial obser-

vations, dynamic elements, and sensor noise can be eliminated by keeping only the point

pairs with the smallest distance in case of multiple matches from source to reference cloud

(Zinsser et al., 2003), rejecting some percentage of worst correspondences (Chetverikov

and Stepanov, 2005; Pulli, 1999), rejecting inconsistent point pairs with respect to their

neighbors (Rusinkiewicz and Levoy, 2001), filtering point pairs on boundaries (Turk and

Levoy, 1994), or rejecting pairs with distance greater than a specified threshold (Masuda

et al., 1996; Segal et al., 2009). The robustness of the algorithm can be further improved

by weighing each point pair on the basis of distance or normal compatibility (Godin et al.,

1994; Du et al., 2017).

The next step in ICP is to choose a cost function for which the widely used choices are

point-to-point (Besl and McKay, 1992; Godin et al., 1994; Pulli, 1999; Kim and Kim,

2010), point-to-plane (Chen and Medioni, 1991), and plane-to-plane (Segal et al., 2009).

The cost function can be optimized using closed form solutions, i.e., Singular Value De-

composition (Arun et al., 1987), and other optimization techniques including non-linear

Levenberg-Marquardt (Press et al., 1992) method used in (Fitzgibbon, 2003), simulated

annealing (Luck et al., 2000), and very fast simulated annealing (Blais and Levine, 1995).

Stochastic optimization methods which do not use vector gradients estimates like sim-

ulated annealing (Kirkpatrick et al., 1983), or Nelder-Mead downhill simplex method

(Nelder and Mead, 1965) are very slow in converging to the solution (Luck et al., 2000).

60 3 Bayesian-ICP for Mobile Robot Localization

Gradient based methods like gradient descent (Cauchy., 2012), Newton’s method (Lipson,

1976), or conjugate gradient (Shewchuk, 1994) are batch optimization methods which pro-

cess entire dataset to produce a single parameter update. This scales badly when aligning

large point clouds.

In this chapter, we propose stochastic gradient descent ICP (SGD-ICP) which uses SGD

based optimization techniques to improve the efficiency of ICP. Using a mini-batch for-

mulation of SGD, our method processes a small fraction of input clouds to give an aligned

pose, thus alleviates the need to perform data reduction step which is prone to loosing

useful data points. Since our method introduces novelty only on the optimization step of

ICP, it can be used with any differentiable cost variant of ICP. Further, the techniques

which improve the robustness of standard ICP are applicable to SGD-ICP as well.

3.2.1.2 Probabilistic ICP algorithms:

Probabilistic ICP algorithms quantify the uncertainty of ICP transformation estimates.

These methods can broadly be categorized into closed-form methods (Biber and Strasser,

2003; Bengtsson and Baerveldt, 2001; Bosse and Zlot, 2008) and sampling-based methods

(Bengtsson and Baerveldt, 2003; Iversen et al., 2017).

Closed-form ICP methods provide online covariance estimates. These methods estimate

uncertainty on the basis of the Hessian of the cost function. If the ICP cost function

can be linearized around the point of convergence, the Hessian matrix can be computed

analytically (Bengtsson and Baerveldt, 2001; Bosse and Zlot, 2008) using linear regression

(Kay, 1993; Wetherill, 1986). Otherwise numerical approximation using sampling (Biber

and Strasser, 2003) is needed. These approaches do not consider uncertainty arising

due to sensor noise as mentioned in (Prakhya et al., 2015). Censi (2007) accounts for

the sensor noise in the covariance estimation. However, this method does not take into

account the possibility of incorrect data associations caused by a poor initial estimate

which makes the method applicable to only point-to-plane variants of ICP (Bonnabel and

Barczyk, 2016).

3.2 Related work 61

Recently, two new methods (Landry et al., 2018; M. Brossard, 2020) have been proposed

which take initial estimate inaccuracy into an account to estimate the transformation

uncertainty. (M. Brossard, 2020) combines a closed-form solution to incorporate sensor

noise with the unscented transform (Julier et al., 2000) to capture other sources of un-

certainty. This combined method however relies on an accurate covariance of the initial

pose uncertainty to produce reliable uncertainty estimation which is not always avail-

able. (M. Brossard, 2020) method is based on Gaussian approximation of the initial

uncertainty, therefore it cannot accurately model non-Gaussian distributions.

Sampling-based transformation uncertainty estimation methods, such as, Monte Carlo

algorithms (Bengtsson and Baerveldt, 2003; Iversen et al., 2017), are accurate but com-

putationally expensive. These methods sample a large number of initial pose estimates,

requiring a complete ICP solution each time, and use the covariance of the ICP solutions

as a measure of uncertainty. If a model of the environment is available, such as a computer

aided design (CAD) drawing, then sensor noise can be taken into account by generating

multiple scans of the environment using a sensor model (Iversen et al., 2017). However,

the need for an environment model to account for sensor noise and high computational

cost are limiting factors for their use in mobile robotics.

Other than ICP, there are other pose estimation methods which rely on the use of dis-

tribution based filtering approaches to model the uncertainty in the pose parameters.

Examples include (Srivatsan et al., 2017; Glover and Popovic, 2013).

In this chapter, we extend our SGD-ICP to a novel Bayesian-ICP variant using stochastic

gradient Langevin dynamics (SGLD) to estimate the transformation uncertainty. In

contrast to the closed form methods, a Hessian is not needed and no assumption is

made about the consistency of the data association. Bayesian-ICP incorporates SGLD

into SGD-ICP with its inherent speed and mini-batch nature, which makes it efficient in

comparison to conventional MCMC methods. We review both conventional and modern

MCMC methods in the following section.

62 3 Bayesian-ICP for Mobile Robot Localization

3.2.2 Markov Chain Monte Carlo

Bayesian methods use Bayes’ rule to estimate the uncertainty of the model parameters by

providing a posterior distribution. Unfortunately, the analytical solutions to the Bayesian

formulations are typically computationally intractable for large scale data handling prob-

lems, hence approximate methods, such as Markov Chain Monte Carlo (MCMC) and

variational inference (VI), are commonly used. Conventional MCMC algorithms, such

as, Metropolis (Metropolis and Ulam, 1949), Metropolis-Hastings (MH) (Hastings, 1970),

Gibbs sampling (Geman and Geman, 1984), Hamiltonian Monte Carlo (HMC) (Duane

et al., 1987) and Langevin Monte Carlo (LMC) (Grenander and Miller, 1994) however

have limited scalability for large scale problems. For instance, MH needs to compute an

accept-reject probability after each iteration using the entire data set. Similarly, LMC

obtains an efficient proposal distribution by using the gradient of the target distribution

using all available data which limits the applicability in real time applications.

Recent works on stochastic gradient Markov Chain Monte Carlo (SG-MCMC) scale these

Bayesian approaches to huge datasets by leveraging the speed of stochastic optimization.

Widely used SG-MCMC methods include stochastic gradient Langevin dynamics (SGLD)

(Welling and Teh, 2011; Li et al., 2016), stochastic gradient Hamiltonian Monte Carlo

(SGHMC) (Chen et al., 2014), and stochastic gradient thermostat (SGT) (Ding et al.,

2014; Li et al., 2016). Instead of using the entire dataset these methods produce high

quality posterior samples using mini-batch gradients, as done in SGD optimization, which

make them scale to problems with large amounts of data.

3.3 Speeding up ICP algorithm using stochastic

gradient descent

ICP is amenable to the stochastic optimization because of the additive nature of the cost

function (2.3). In this chapter, we improve the computational efficiency of ICP by mini-

mizing the ICP cost function (2.3) using stochastic gradient descent (SGD). Combining

3.3 Speeding up ICP algorithm using stochastic gradient descent 63

ICP’s cost function (2.3) with the general SGD equation (2.35), we arrive at the following

SGD-ICP parameter update equation:

θt+1 = θt−α
1
m

m∑
i=1

(∇θtLi(θt))

= θt−α
1
m

m∑
i=1

(∇θt||(R si+u)− ri||2)

= θt−αḡ(θt,Mt),

(3.1)

where L(θt) is ICP’s cost function parameterized by θ= {x,y,z,roll,pitch,yaw}. u∈R3×1

is a translation vector comprising of θ1:3, R ∈R3×3 is a rotation matrix parametrized by

θ4:6, and si and ri ∈ R3 respectively are 3D points from source and reference point

clouds. For rotations, we choose a roll, pitch, and yaw angle representation as a rotation

matrix derived from these angles involves just sine and cosine functions which are easy

to differentiate. For simplicity, we use the notation ḡ(θt,Mt) to represent the average

gradients 1
m

∑m
i=1(∇θt||(R si + u)− ri||2) of a mini-batch M = {s1,s2, ...,sm} to get a

compact form of SGD-ICP update equation.

The computation of the average mini-batch gradients in equation (3.1) involves the partial

derivative of the cost function with respect to the individual transformation parameters.

For the translation components θ1:3 the partial derivatives ∂
∂θ1:3L(θ) are independent

of the rotational components, i.e., ∂R
∂θ1:3 = 0. Similarly, for the rotation components

∂
∂θ4:6L(θ) does not depend on translation parameters, resulting in ∂u

∂θ4:6 = 0. The average

gradients of the cost function with respect to the three translation parameters and the

three rotation parameters are as follows:

ḡ(θ1:3
t ,Mt) = 1

m

m∑
i=1

(
(Rt si+ut)− ri

) ∂ut
∂θ1:3

t
, (3.2)

ḡ(θ4:6
t ,Mt) = 1

m

m∑
i=1

(
(Rt si+ut)− ri

) ∂Rt
∂θ4:6

t
si, (3.3)

64 3 Bayesian-ICP for Mobile Robot Localization

where ∂ut
∂θ1:3 are R3×1 vectors and ∂Rt

∂θ4:6 are R3×3 matrices. The partial derivatives with

respect to the translation parameters take on the following simple form:

∂u
∂x

=
[

1 0 0
]T

(3.4)

∂u
∂y

=
[

0 1 0
]T

(3.5)

∂u
∂z

=
[

0 0 1
]T
. (3.6)

The partial derivatives of the rotational parameters can be derived in a similar fashion,

for example partial derivative of the rotation matrix w.r.t to roll (ϕ) has the following

form:

∂R

∂ϕ
=

∂r11
∂ϕ

∂r12
∂ϕ

∂r13
∂ϕ

∂r21
∂ϕ

∂r22
∂ϕ

∂r23
∂ϕ

∂r31
∂ϕ

∂r32
∂ϕ

∂r33
∂ϕ

=

a b c

d e f

g h i

 . (3.7)

The rotation matrix components in yaw-pitch-roll (ψ-γ-ϕ) order are as follows:

r11 = cos(γ)cos(ψ)

r12 = sin(ϕ)sin(γ)cos(ψ)− cos(ϕ)sin(ψ)

r13 = sin(ϕ)sin(ψ) + cos(ϕ)sin(γ)cos(ψ)

r21 = cos(γ)sin(ψ)

r22 = cos(ϕ)cos(ψ) + sin(ϕ)sin(γ)sin(ψ)

r23 = cos(ϕ)sin(γ)sin(ψ)− sin(ϕ)cos(ψ)

r31 =−sin(γ)

r32 = sin(ϕ)cos(γ)

r33 = cos(ϕ)cos(γ).

(3.8)

The corresponding partial derivatives of the rotation matrix with respect to roll (ϕ) as

expressed in terms of a to i are as follows:

a= 0

3.3 Speeding up ICP algorithm using stochastic gradient descent 65

b= cos(ϕ)sin(γ)cos(ψ) + sin(ϕ)sin(ψ)

c= cos(ϕ)sin(ψ)− sin(ϕ)sin(γ)cos(ψ)

d= 0

e=−sin(ϕ)cos(ψ) + cos(ϕ)sin(γ)sin(ψ) (3.9)

f =−sin(ϕ)sin(γ)sin(ψ)− cos(ϕ)cos(ψ)

g = 0

h= cos(ϕ)cos(γ)

i=−sin(ϕ)cos(γ).

The derivation of ∂R
∂γ and ∂R

∂ψ are similar. With this we have everything needed to for-

mulate the SGD update rule for SGD-ICP. Algorithm 11 outlines the steps performed

by SGD-ICP. First, a mini-batch of size m is randomly sampled from the given source

cloud S in line 3, which is then transformed with the current transformation parameters

in line 4. This is followed by correspondence estimation for the transformed mini-batch

in the reference cloud R in lines 5 to 9. Next, in lines 10 and 11, average gradients with

respect to individual transformation parameters are computed which are used in lines 12

and 13 to update the parameters to be used in the next iteration. This whole process

is repeated until convergence is achieved. Then in line 16, the converged transformation

parameters are returned.

In SGD-ICP the points in each mini-batch are sampled at random without replacement to

avoid bias in the mini-batch selection until all points have been considered, after which

all the points are added back to a sampling pool where they can be re-considered for

sampling.

The robustness of SGD-ICP can be improved by incorporating methods which are de-

veloped for standard ICP. For example, in case of partial overlap unlikely matches can

be rejected using maximum threshold distance (Segal et al., 2009). Similarly, in case of

multiple correspondences between the reference cloud and the source cloud, redundant

66 3 Bayesian-ICP for Mobile Robot Localization

Algorithm 11: SGD-ICP
Input : Two point clouds, source S = {si} and reference R= {ri}

Initial transformation parameters: θ1
Mini-batch size: m
Step size: α

Output: Optimal transformation parameters: θt
1 t ← 1
2 while not converged do
3 Mt ← pick a mini-batch cloud of size m from S
4 Mt

′← transform mini-batch with θt
5 Pairs ←∅
6 for s′i ∈ Mt

′ do
7 ri← closest point in R to s′i
8 Pairs ← Pairs ∪ {s′i,ri}
9 end

// Estimate the mean gradients using equation (3.2) and (3.3)
10 ḡ(θ1:3

t ;Mt)← 1
m

∑
s′i,ri∈Pairs

(
si′− ri

)
∂ut
∂θ1:3
t

11 ḡ(θ4:6
t ;Mt)← 1

m

∑
s′i,ri∈Pairs

(
si′− ri

)
∂Rt
∂θ4:6
t

si
// Update Parameters

12 θ1:3
t+1← θ1:3

t −α
(
ḡ(θ1:3

t ;Mt)
)

13 θ4:6
t+1← θ4:6

t −α
(
ḡ(θ4:6

t ;Mt)
)

14 t ← t+1
15 end
16 return θt

correspondences can be rejected on the basis of distance (Zinsser et al., 2003), or other

criteria mentioned in Section 3.2.1.

In practice, the spatial extent of the point clouds can vary a lot, especially in outdoor

scenes using 3D spinning LiDARs. In order to mitigate the effect of large spatial variations

among points, Algorithm 12 is used to re-scale or normalize each point’s position in both

point clouds to [0,1] in the beginning of the alignment process. Without scaling the point

clouds, especially if they are obtained using LiDARs, gradients will be different in scale

and potentially large for x and y which may lead to overshooting especially for rotations.

This results in mini-batch gradient descent to struggle to converge due to large difference

in gradients in different dimensions and may require careful step size tuning for different

3.4 Estimating motion uncertainty with Bayesian-ICP 67

Algorithm 12: Point Clouds Scaling
Input : Two point clouds, source S = {si}Ni=1 and reference R= {ri}Mi=1
Output: Re-scaled point clouds, and Maximum absolute value (max)

1 max ← maximum value out of absolute values of x,y and z coordinates in
S ∪R

2 for si ∈ S do
3 si← si/max
4 end
5 for ri ∈ R do
6 ri← ri/max
7 end
8 return S,R, and max

pairs of clouds. This problem can be alleviated using pre-conditioners or adaptive step

size schemes, such as ADAM (Kingma and Ba, 2015). A less obvious benefit of ensuring

a controlled value range for the optimization is that good starting parameters for the

optimizer can be used. This ensures that the optimizer does not have to waste time

adjusting step sizes to the particular problem but can start making effective progress

from the beginning.

In Algorithm 12 line 1, maximum value (max) out of absolute values of x, y and z

dimensions of all points from the union of two point cloud is extracted. After that, each

point in both point clouds is divided by max to obtain the re-scaled point clouds in lines

2 to 7. The scaled point clouds and maximum absolute value (max) are returned in line

8. This max is later multiplied with the translation components of SGD-ICP returned

pose to undo the scaling. Scaling the point clouds in such a manner makes the step size

selection independent of the scale of the point clouds.

3.4 Estimating motion uncertainty with

Bayesian-ICP

SGD-ICP is an efficient point cloud alignment algorithm which performs maximum like-

lihood estimation and does not quantify the uncertainty associated with the transform.

68 3 Bayesian-ICP for Mobile Robot Localization

A natural way to obtain an uncertainty estimate is to use a Bayesian formulation. In this

section, we combine the ideas of stochastic optimization (Robbins and Monro, 1951) with

Langevin dynamics (Neal, 2010) using stochastic gradient Langevin dynamics (SGLD)

(Welling and Teh, 2011) to quantify the uncertainty in ICP parameters. Since SGD-ICP

performs stochastic optimization of ICP cost function, we leverage the SGD-ICP formu-

lation to derive the formulation of our proposed method called Bayesian-ICP, which is a

scalable probabilistic ICP variant.

We restate the SGLD (2.45) and SGD-ICP (3.1) update equations for the convenience of

comparison below:

φt+1 = φt−
α

2

(
− N
m

m∑
i=1
∇φt logp(dti|φt)−∇φt logp0(φt)

)
+ηt. ((2.45) revisited)

θt+1 = θt−α
1
m

m∑
i=1

(
∇θt||

(
R si+u

)
− ri||2

)
, ((3.1) revisited)

where − 1
m

∑m
i=1∇φt logp(dti|φt) in (2.45) is the mini-batch gradient of the negative log

likelihood. Since in the optimization theory, the likelihood constitutes the cost function

which is to be minimized (Li et al., 2016), therefore, − 1
m

∑m
i=1∇φt logp(dti|φ) in (2.45)

can be expressed as the mini-batch gradients of ICP cost function (1
m

∑m
i=1(∇θt||(R si+

u)− ri||2)) in (3.1), i.e., − 1
m

∑m
i=1∇φt logp(dti|φ) = 1

m

∑m
i=1(∇θt||(R si+u)− ri||2).

Now comparing (2.45) and (3.1), the only difference between these two equations is

the presence of additional noise term (ηt) and the gradient of negative log of priors

(−∇φt logp0(φt)) in equation (2.45). Since SGD-ICP utilizes SGD to update the param-

eters in equation (3.1), to adapt to SGLD sampling behaviour, we add a noise term into

each iteration of SGD-ICP which will produce a transformation distribution. With the

addition of controlled amount of noise in stochastic optimization, the algorithm explores

the full posterior distribution instead of converging to a maximum a posteriori (MAP)

solution.

Modifying the general SGD-ICP update equation (3.1) by adding a gradient of negative

log of prior along with the introduction of a Gaussian noise (highlighted in blue), we

3.4 Estimating motion uncertainty with Bayesian-ICP 69

arrive at the general form for Bayesian-ICP update equation:

θt+1 = θt−
α

2

(
N

m

m∑
i=1

(
∂

∂θt
||
(
R si+u

)
− ri||2

)
−∇θt logp0(θt)

)
+ηt. (3.10)

In Bayesian-ICP priors are modelled using Gaussian distributions for the translations

and von Mises (VON MISES, 1918) distributions for the rotations. Disregarding the

normalizing constant term, the gradients of the negative log of the Gaussian and von

Mises prior distributions respectively are:

−∇θ logp0(θ1:3) = (θ1:3−µ1:3)/σ1:3, (3.11)

−∇θ logp0(θ4:6) = κ4:6 sin(θ4:6−µ4:6), (3.12)

where µ1:6 represents the mean, while σ1:3 and σ4:6 = 1/κ4:6 represent the variance of

the prior distributions of the translation and rotation components.

Using these priors and translational and rotational gradients expressed in (3.2) and (3.3)

together with the Bayesian-ICP update equation (3.10) we obtain the following Bayesian-

ICP update equation:

θ1:3
t+1 = θ1:3

t −
α

2

[
N

m

m∑
i

(
(Rt si+ut)−ri

) ∂ut
∂θ1:3

t
+(θ1:3

t −µ1:3
t)/σ1:3

t

]
+η1:3

t , (3.13)

for the translation parameters and

θ4:6
t+1 = θ4:6

t −
α

2

[
N

m

m∑
i

(
(Rt si+ut)− ri

) ∂Rt
∂θ4:6

t
si+κ4:6

t sin(θ4:6
t −µ4:6

t)
]

+η4:6
t , (3.14)

for the rotation parameters.

As Bayesian-ICP produces a sample of the transformation’s posterior distribution at each

update, as opposed to a single converged transformation, we can recover the posterior

expectation E[θ] of θ as an average over all T samples, i.e., E[θ] = 1
T

∑T
t=1θt. As it is

common practice in MCMC methods, this expectation is recovered after disregarding

initial burn-in samples to ensure that remaining samples are the true representative of

the underlying distribution.

70 3 Bayesian-ICP for Mobile Robot Localization

Standard SGLD uses a fixed step size to update the parameters. This can lead to a slow

mixing of the distribution if parameters have locally different curvature. Slow mixing of

distribution requires a large burn-in period to ensure that samples are produced from

the true distribution. One potential approach to resolve this is to use preconditioned

SGLD (Li et al., 2016) which constructs a local transform that equalizes the rate of

curvature in all directions, similar to RMSProp (Tieleman and Hinton, 2012). This

gradient preconditioning is incorporated via the pre-conditioner matrix A, which is an

identity matrix in SGLD formulation. The diagonal entries of A are computed using the

current gradient information as follows:

V (θt) = βV (θt−1) + (1−β)ḡ(θt,Mt)ḡ(θt,Mt), (3.15)

A(θt) = 1(
λ1 +

√
V (θt)

) , (3.16)

where λ (typically λ= 10−8) controls the extremes of the curvature in the pre-conditioner

while β ∈ [0,1] balances the weights of the historical and the current gradients.

The preconditioning matrix adjusts the step size making it larger in flatter landscapes

compared to curved landscapes. This is to balance the relatively larger gradients in the

curved areas compared to the flatter ones (Li et al., 2016).

Algorithm 13 shows the steps Bayesian-ICP performs. The difference in Bayesian-ICP in

comparison to SGD-ICP is highlighted in blue. Similar to SGD-ICP, Bayesian-ICP starts

with sampling a mini-batch from the source cloud S in line 2, which is then transformed

with the latest transformation matrix in line 3. Next, correspondences between the

transformed mini-batch and the reference cloud R are established and stored in lines 4

to 8. After that in line 9 mean gradients of individual parameters are computed which

are used in line 10 to obtain V (θ). Using V (θ) in line 11, we compute the elements

of the preconditioning matrix. Please note that these steps may appear different to the

fixed step formulation of SGD-ICP in Algorithm 11, however, SGD-ICP using RMSProp

would require these steps as well. Unlike SGD-ICP, noise is computed in line 12 which

along with the gradients of prior is then used in lines 13 and 14 to update the translation

3.4 Estimating motion uncertainty with Bayesian-ICP 71

Algorithm 13: Bayesian-ICP
Input : Source S = {si} and reference R= {ri} clouds, Initial

transformation parameters: θ1, Source cloud size: N , Mini-batch
size: m, Step size: α, λ= 1×10−8, β = 0.9, V (θ0)← 0

Output: Transformation samples: {θt}t=1:T
1 for t← 1 : T do
2 Mt ← pick a mini-batch cloud of size m from S
3 Mt

′← transform mini-batch with θt
4 Pairs ←∅
5 for s′i ∈ Mt

′ do
6 ri← closest point in R to s′i
7 Pairs ← Pairs ∪ {s′i,ri}
8 end

// Estimate mean gradients

9 ḡ(θt;Mt)← 1
m

∑
s′i,ri∈Pairs(s′i− ri)∂(s′i−ri)

∂θt

// Compute pre-conditioner and noise independently for each
parameter

10 V (θt)← βV (θt−1) + (1−β)ḡ(θt;Mt)ḡ(θt;Mt)
11 A(θt)←

(
1÷

(
λ+

√
V (θt)

))
12 ηt←N (0,αA(θt))

// Update parameters

13 θ1:3
t+1← θ1:3

t −0.5αA(θ1:3
t)

(
Nḡ

(
θ1:3
t ;Mt

)
+
(
θ1:3
t −µ1:3

t

)
/σ1:3

t

)
+η1:3

t

14 θ4:6
t+1← θ4:6

t −0.5αA(θ4:6
t)

(
Nḡ

(
θ4:6
t ;Mt

)
+κ4:6

t sin
(
θ4:6
t −µ4:6

t

))
+η4:6

t

15 end
16 return {θt}t=1:T

and rotation parameters. This whole process is repeated for T iterations after which the

final set of parameter samples are returned in line 16.

In the following section, we provide one of the possible applications of Bayesian-ICP; as

a prediction model in the Monte Carlo Localization (MCL) algorithm.

72 3 Bayesian-ICP for Mobile Robot Localization

3.5 Bayesian-ICP as a probabilistic motion model in

Monte Carlo Localization

Particle filters constitute a family of sequential Bayes (Monte Carlo Localization) algo-

rithms (Thrun, 2002; Fox et al., 2001) which are commonly used to estimate the pose of

a dynamical system (such as a robot) in an environment using sensor measurements. In

a robot localization problem, the particle filter represents the state (pose) of the robot

with a set of weighted samples or particles. At each timestamp the particle filter up-

dates the belief using the current measurements in a motion and observation model. A

motion model provides a prediction of the next state (pose) of robot based on the cur-

rent estimate and an internal control for which odometry is commonly used. Specifically,

this prediction step simulates the effect of stochastic motion commands on the particles.

The accuracy of prediction step is crucial for accurate localization. Next, an observation

model uses sensor measurements and a representation of the environment (e.g., a map)

to assign weights to these particles. These particles are then drawn with a probability

proportional to their weights in a re-sampling step. These re-sampled particles represent

the updated belief about the robot location.

In a particle filter commonly used motion models are based on odometry readings or

velocity estimates. Since odometry reading distribution originates from control inputs

together with the dynamics, this requires an accurate modelling and tuning of differ-

ent noise related parameters for different terrains to attain the best performance. In

this chapter, we propose to use our probabilistic Bayesian-ICP as a replacement to the

odometry-based motion model in the particle filter. Specifically, instead of relying on

wheel odometry readings to predict the relative motion between two poses, our motion

model takes laser observations into account and performs scan alignment between the

two scans, obtained at different timestamps, to provide the relative motion between two

poses. Being probabilistic in nature Bayesian-ICP produces samples which naturally con-

tain uncertainty information in them. These samples are then used to execute motion

commands on each particle. This is in contrast to using standard motion model which

3.6 Experiments 73

assumes deterministic environments and apply Gaussian noise on the measured actions

to propagate stochastic motion to each particle. This has the advantage that when us-

ing Bayesian-ICP as a motion model, there is no need to tune parameters for different

environments, as the probabilistic nature of the particles automatically adapts to the

environment.

3.6 Experiments

In Section 3.6.1, we first analyze the performance of our two proposed methods SGD-

ICP and Bayesian-ICP in comparison to classical ICP methods which produce a point

estimate of the transformation. Next, in the Section 3.6.2, we analyze the quality of

transformation samples returned by Bayesian-ICP. In Section 3.6.3, we demonstrate the

utility of Bayesian-ICP as a probabilistic motion model in the Monte Carlo localization

algorithm.

The experiments are performed on a desktop PC with an Intel Core i7-7700 CPU and 16

GB RAM. The source code implementation is single-threaded and does not employ any

GPU acceleration.

3.6.1 Analysis of point estimate ICP methods

3.6.1.1 Overview

In the experiments, we illustrate the performance of our methods in terms of solution

quality and run-time. We also investigate the effect of different mini-batch sizes on the

accuracy and run-time of SGD-ICP. In figures a horizontal line splits the Y-axis either to

highlight the details of interest in the bottom subplot and the full extent of value range in

the top subplot or just to highlight the details of interest in both top and bottom subplots

with large scale difference. In the following, we provide a short overview of the methods

we compare against, the parameters used for different methods, evaluation metrics, and

the datasets.

74 3 Bayesian-ICP for Mobile Robot Localization

Methods: We provide comparisons of point-to-point and point-to-plane variants of SGD-

ICP (SGD-Point and SGD-Plane) and Bayesian-ICP (Bayesian-Point, Bayesian-Plane)

against standard ICP (Besl and McKay, 1992) and Generalized ICP (GICP)(Segal et al.,

2009), using the PCL (Rusu and Cousins, 2011) implementations, as well as a point-to-

point (LIB-Point) and point-to-plane (LIB-Plane) based ICP variants implemented in

libpointmatcher as described in (Pomerleau et al., 2011). The libpointmatcher methods

use random sub-sampling (Masuda et al., 1996) in order to improve the run-time of the

methods at the expense of some solution quality.

Parameters: In all experiments unless specified otherwise SGD-ICP uses a mini-batch

size of m= 160 points and a fixed step size of α= 1 or adaptive step size (α= 0.01) using

ADAM (Kingma and Ba, 2015). These values work well in practice and no attempt was

made to find the best performing ones. For libpointmatcher based methods, to achieve

good accuracy and speed we use a sub-sampling ratio of 0.5 based on the results of

(Pomerleau et al., 2011). Point-to-plane methods use 50 nearest neighbors to estimate

the normal information.

For Bayesian-ICP, we use a step size of α= 0.008 which was coarsely tuned in a simulated

environment. In all the experiments except in Section 3.6.1.2, Bayesian-ICP produces

1000 samples. The parameter N in equation (2.45), which represents the size of the

dataset, scales the mean gradients and thus impacts the choice of step size α. As the

size of point clouds varies greatly, we divide the initial step size α with the size of the

source cloud to counter balance the impact N has on the gradients. The prior mean and

variance are set 0.0 and 0.125 respectively, however, when deployed on a platform these

values could be obtained from the system’s state estimation.

As the run time of an algorithm depends on a number of factors including cloud size,

convergence criterion, and amount of initial offset between the clouds, all algorithms are

allowed to run until the same fixed convergence threshold or solution quality is achieved

or the algorithm reaches a fixed number of iterations.

3.6 Experiments 75

Evaluation Metrics: To compare different methods, the quality of the transformation

estimates is measured separately for translation and rotation in a similar way as is done

in (Pomerleau et al., 2011). Translational error et is measured as the sum of Euclidean

distance errors between the estimated translational transformation θ1:3 and the ground-

truth translations θ?1:3 while rotational error er is measured as the sum of the absolute

angular differences. The rotational error metric provides distances in a Euclidean space

which can give large rotational errors for a 0 and 2π difference. Therefore we normalize the

angles between −π and π to circumvent this problem. The translational and rotational

error are obtained respectively by the following equations:

et = ||θ1:3−θ?1:3||22 , (3.17)

and

er = |θ4−θ?4|+ |θ5−θ?5|+ |θ6−θ?6|. (3.18)

For Bayesian-ICP, we estimate the errors for each sample which gives us translational

and rotational error distributions whose means are used as the error measures.

Datasets: Experiments are performed using the ETHZ-ASL Kinect Dataset (Pomerleau

et al., 2011) which contains Kinect scans from an indoor scene with varying amount of

clutter. The ground truth for this dataset is obtained by aligning the point clouds with

standard ICP using the transform obtained from the Vicon system as an initial guess. As

we are interested in pairwise transformations rather than tracking, this approach provides

a better ground truth.

Kinect data is dense and produces evenly spaced point clouds with small ranges. In order

to demonstrate the general performance of our methods, we also use the Challenging

registration dataset (Pomerleau et al., 2012). The Challenging dataset contains long

range LiDAR point clouds in different sequences recorded in both indoor and outdoor

environments. Scenes from both datasets are visualized in Fig. 3.1.

76 3 Bayesian-ICP for Mobile Robot Localization

Figure 3.1. The Challenging dataset (left two columns) and the ETHZ-ASL Kinect
Dataset (right column). The first column shows the visualization of several frames (in
different colors) of low constrained Mountain Plain (top), and semi-structure Gazebo
Winter (bottom) point clouds in their respective global frames. The middle column shows
the point clouds of repetitive features of Hauptgebaude (top) and Apartment (bottom)
highlighting the structured features i.e., ceiling, floor etc. The right most column shows
the different cloud pairs in different colors from ETHZ-ASL Kinect Dataset.

3.6.1.2 Data-efficiency

We first evaluate the number of data points different methods need to process to reach

a given level of solution quality using a cloud pair from the ETHZ-ASL Kinect Dataset.

This is done by recording the number of points each method uses in each iteration until

convergence is achieved. For Bayesian-ICP, to aid with convergence and to regulate

SGLD noise, a block decay strategy is used for the step size α which is decreased by a

fixed percentage every 10 iterations towards the end of sampling.

Figure 3.2 shows the number of points processed in log-scale along the X-axis with the

translational error (in meters) along the Y-axis. The starting point of each line indicates

the translational error and number of points used by each algorithm after one iteration.

This plot clearly shows how our methods (SGD-ICP and Bayesian-ICP) require signifi-

cantly fewer points, equivalent to a single pass through the point cloud of 15646 points,

compared to the other methods to converge.

3.6 Experiments 77

Figure 3.2. Comparison of the amount of points from a single point cloud pair needed
by different methods to achieve the same level of performance. The amount of points
processed is shown in log-scale on the X-axis. This plot clearly shows how mini-batch
variants achieve the same result as other methods in roughly a single pass through the
point cloud which contains 15646 points.

Bayesian-ICP methods converge to the solution slightly after SGD-ICP methods. This is

attributed to the addition of noise in each iteration of Bayesian-ICP which reduces the

convergence rate. Since the amount of noise depends on the step size, the block decay

strategy decreases the noise level towards the end of iterations causing the algorithm to

converge before reaching the iteration limit. In general, the number of points Bayesian-

ICP requires to process depends on the desired number of samples.

GICP needs less passes over the cloud compared to other methods, which is explained by

the more informative loss used which is optimized by an expensive optimization algorithm.

However, as we will see this comes at the cost of run time. The other three methods all use

a large amount of points, yet all five methods achieve comparable errors. From Fig. 3.2,

we can additionally see that the libpointmatcher variants are more data efficient than

standard ICP. This stems from the data reduction filter applied by these methods to the

point clouds which randomly sub-samples the original point clouds to reduce the total

amount of points processed in each iteration.

78 3 Bayesian-ICP for Mobile Robot Localization

This example demonstrates that the stochastic gradient estimates of our method are

sufficient to achieve results comparable to other methods while processing a fraction of

the data. In the next section we are going to see how this reduction in data usage of our

methods translates to run-time efficiency and impacts on the solution accuracy.

3.6.1.3 Solution quality and run-time

To evaluate the quality of the solution and run-time of the algorithms, we use 1000 cloud

pairs randomly selected from the medium-medium-fly ETHZ-ASL Kinect dataset. The

alignment error and run-time are shown in Fig. 3.3. The translational and rotational

errors are presented in meters and radians respectively and run-time in seconds.

Looking at the errors we can see that, both SGD-ICP and Bayesian-ICP obtain results

equivalent to those of ICP and libpointmatcher variants. This is expected, as the opti-

mization problem solved by these methods is identical. GICP obtains the solutions with

the lowest error which can be attributed to the more informative error metric.

In the run-time plot, it is clear that SGD-ICP performs the best, being several times

faster than standard ICP while achieving the same error. This shows that the reduction

in the number of points needed by SGD-ICP to converge translates directly into run-time

efficiency. However, the relationship between data efficiency and run-time efficiency of

SGD-ICP in comparison to other methods is not linear. One of the possible reasons is the

overhead of transformation gradient computations in each iteration of SGD-ICP which

is not required by standard ICP. The run-time of Bayesian-ICP depends on the number

of samples Bayesian-ICP obtains. For Bayesian-ICP the recorded run-time is for 1000

samples. This is the reason for the higher run-time values of Bayesian-ICP in comparison

to SGD-ICP. In general, the per iteration time for both methods is the same.

Looking at the LIB-Point and LIB-Plane results, one can see that the random sub-

sampling has a beneficial impact on the run-time. While SGD-ICP and the libpoint-

matcher methods process smaller parts of the original point clouds in each iteration, our

method is faster.

3.6 Experiments 79

Figure 3.3. Accuracy and run-time comparison of SGD-ICP and Bayesian-ICP against
other methods on the Kinect dataset. Our proposed methods achieve the same solution
quality as other methods but are more efficient. The run-time of Bayesian-ICP scales
with the desired number of samples.

Figure 3.3 also reveals that the high quality results of GICP come at the cost of being

≈ 35 times slower than standard ICP. A possible reason for this increase in run-time is

the fact that the computation of normal information can be costly, especially when done

80 3 Bayesian-ICP for Mobile Robot Localization

in combination with a full batch optimizer such as Broyden-Fletcher-Goldfarb-Shanno

(BFGS) (Avriel, 2003) as used by GICP.

3.6.1.4 Impact of error in initial transformation estimate on accuracy

In this experiment, we analyze if the reliance of our proposed methods on stochastic

gradients leads to instabilities and loss of performance at various levels of mis-specification

of the initial transformation guess. We use the medium-medium-translation and medium-

medium-rotation recordings of the ETHZ-ASL Kinect dataset. The possible pairings

between point clouds are grouped into bins, based on the magnitude of ground truth

translation or rotation between them. The maximum translation is 0.675 m and the

maximum rotation is 1.75 rad. These ranges are then split into ten evenly sized bins and

100 point cloud pairs are selected for each of the ten bins. For rotations the last two bins

are excluded, as very few examples exist for these.

Figure 3.4 shows the distribution of errors in translation (top) and rotation (bottom) as

box plots. Along the X-axis the limits of the different error bins are shown while the

Y-axis shows the error. For errors in translation, we can see that all methods perform

without fault until roughly 0.54 m error in translation, at which point all methods start

to degrade in a similar manner. The reason for the failure with this small amount of

translational offset is the small amount of overlap between the input scans which results

in a lack of constraints during the alignment process. For example a single planar surface

with no or few features in the overlap area can cause an incorrect alignment, as shown

in the two examples representing the ground truth alignment of a reference cloud on

the right and source cloud on the left in the right column of Fig. 3.1. The comparison

of the impact of error in the initial rotation (bottom Fig. 3.4) shows the maximum

amount of initial rotational offset along the X-axis. The behaviour here is similar to the

translational case in that, all methods start to degrade at a similar point, roughly at

1.0 rad. Again, similar to the previous test this coincides with a low overlap between

the clouds. Equivalent performance of mini-batch ICP variants to that of other methods

3.6 Experiments 81

Figure 3.4. Comparison of the ability to handle translational errors in meters (top) and
rotational errors in radians (bottom) in the initial transform by different methods. The
X-axis shows the range of error in the initial transform for different bins along the grid
lines. Roughly all methods handle similar amount of initial alignment mis-specification.

shows that the stochastic nature of these methods does not result in a reduced ability to

handle initial miss-specification of the transformations.

3.6.1.5 Effect of batch size on the solution quality and run-time

In this section, we investigate the effect the batch-size has on both the solution quality

and run-time using the same dataset as is used in Section 3.6.1.3.

This experiment is performed with a fixed step-size (fixed-SGD) α = 1 as well as an

adaptive step-size α = 0.01 ADAM (Kingma and Ba, 2015) (Adam-SGD) using SGD-

Point variant.

82 3 Bayesian-ICP for Mobile Robot Localization

Figure 3.5. Effect of batch-size on the performance of SGD-ICP algorithm in terms of
accuracy and run-time using a fixed step-size (fixed-SGD) and ADAM (Adam-SGD). The
mini-batch size does not have a major effect on the solution quality. However, it effects
the run-time significantly. The right Y-axis on the time plot (bottom right) is only for
mini-batch size of 1000 and above due to relatively larger run-time numbers.

Figure 3.5 shows the number of points in a mini-batch along the X-axis and translational

and rotational error in meters (m) and radians (rad) respectively, run-time in seconds

(sec), and number of iterations along the Y-axis. The right Y-axis on the time plot

(bottom right) is for mini-batch size of 1000 and above due to the scale difference. Figure

3.5 shows that using mini-batches containing 3 or more points results in solutions of

identical quality. However, a mini-batch of size 3 takes significantly more iterations to

converge which means the algorithm finds hundreds of local minima before converging to

the final solution. While Fig. 3.5 shows the lowest run-time and equivalent performance

with a mini-batch of 3 points compared to larger mini-batch sizes, the fact that point

clouds can be noisy, using 3 points in a mini-batch can result in unreliable transformations

especially for partially overlapping outdoor point clouds which lack structured features.

Figure 3.5 also shows that a bigger mini-batch containing 300 or more points needs more

time to converge. This increase in run-time can be attributed to the increase in time

spent in the data-association and gradient computation phase for larger mini-batches in

each iteration.

3.6 Experiments 83

Comparing fixed-SGD against Adam-SGD indicates that both perform equally well in

terms of the solution quality. Adam-SGD is superior to fixed-SGD in terms of run-time

efficiency for larger mini-batch sizes as it converges in fewer iterations and thus takes

less time. The reason for the superior performance of Adam-SGD is likely the smarter

step-size which considers an exponentially decaying average of both past gradients and

squared gradients in each dimension independently, resulting in quicker convergence.

3.6.1.6 LiDAR data

So far all experiments used data gathered with a Kinect. In this experiment, we use the

Challenging dataset (Pomerleau et al., 2012). The goal of this experiment is to see how

the performance of the algorithms is affected when moving between data from different

sensors and different environments. Our methods use a mini-batch size of 300 points.

Figure 3.6 shows the translation errors (meters), rotation errors (radians), and run-time

(sec) along the Y-axis for all the methods using the Challenging dataset. The upper

Y-axis in the time plot is for GICP, showing the time in minutes. A detailed run-time

analysis for Bayesian-ICP is performed in the Section 3.6.2.5.

Looking at the accuracy plots, similar to Fig. 3.3, GICP outperforms the other methods

because of the same reasons mentioned before. All other methods have a comparable

performance on all the sequences of the Challenging dataset, except that ICP and lib-

pointmatcher variants fail to register scans from Hauptgebaude sequence. One potential

reason for the failure of these methods is the presence of multiple local minima owing to

the repetitive pillars in Hauptgebaude. Our methods have the potential to escape local

minima thanks to the noisy small gradient steps of SGD-ICP and the inherent random-

ness of Bayesian-ICP which forces the exploration of the solution space thus avoiding

local minima. Another sequence where our methods perform better compared to the

others is Mountain Plain. Mountain Plain is an un-structured environment which is

mainly composed of dried vegetation and lacks vertical structures which means there are

few features that constrain the alignment process. These characteristics make Mountain

84 3 Bayesian-ICP for Mobile Robot Localization

Figure 3.6. Solution quality and run-time comparison of SGD-ICP and Bayesian-ICP
against other methods using the Challenging dataset. Overall, GICP performs the best
with the exception of Mountain plain. All other methods give similar accuracy on all the
sequences with the exception of Hauptgebaude and Mountain Plain, where our methods
perform better. Hauptgebaude contains several local minima due to the presence of repet-
itive features. The noisy gradients of SGD-ICP and additive noise in Bayesian-ICP help
our methods to escape the local minima. In terms of run-time, our methods provide the
most efficient ICP solutions.

Plain a challenging environment for ICP methods, offer multiple local ICP solutions due

to false point matches causing the deterministic point estimate ICP methods to fail.

3.6 Experiments 85

Turning our attention to the run-time plot, we can see that again SGD-ICP converges

in a constant time obtaining the best performance. Despite the data reduction being

performed by libpointmatcher variants, run-time of standard ICP is better on certain

sequences. This is due to an earlier convergence of standard ICP on those sequences.

3.6.2 Analysis of probabilistic ICP algorithms

In the following, we investigate the performance of Bayesian-ICP as a probabilistic scan

alignment algorithm in terms of the estimated transformation distribution quality. Specif-

ically, we first analyze how the transformation distribution quality is affected by the

number of samples and burn-in length. To demonstrate the usability of Bayesian-ICP in

online applications we also perform a detailed run-time analysis. In all the experiments,

Bayesian-ICP uses a mini-batch size of 300 points.

For sample count, burn-in length, and run-time analysis we perform experiments on a

collection of 100 point cloud pairs from different sequences of the Challenging dataset.

The distribution quality analysis experiment is performed on all the sequences of the

Challenging dataset used in Section 3.6.1.6.

We also provide a qualitative evaluation of the distribution estimated by Bayesian-ICP

on three examples from the RGB-D Scenes Dataset (Lai et al., May 2014) which contains

both partially occluded as well as complete scans of household objects. The objects used

from the dataset fall into two categories: under constrained and constrained. Under

constrained objects have one or more symmetries, such as soda cans and bowls, while

constrained objects have no symmetries, e.g., a coffee mug or a table. All of these objects

are transformed to a known offset which is used as a ground truth pose. This dataset is

selected as we expect obvious uncertainty, along the symmetry, for the under constrained

objects and none for the constrained objects.

In order to properly evaluate the quality of the estimated transformation distribution, we

need a base-line method for which we perform Monte Carlo sampling. To obtain these

86 3 Bayesian-ICP for Mobile Robot Localization

Monte Carlo samples in a timely manner, we use SGD-ICP. We obtain 1000 transforma-

tions by running SGD-ICP to completion, each time with a different initial transforma-

tion parameters drawn from ±1 m and ±0.17 rad for translation and rotation respectively.

The resulting collection of SGD-ICP transformations acts as our baseline ground truth

transformation distribution.

We additionally provide comparisons against a widely used closed-form method (Censi,

2007) Closed-form ICP and the state-of-the-art method Cov-3D (M. Brossard, 2020).

Both of these methods use point-to-plane SGD-ICP estimated transformation to compute

the covariance matrix using the default parameter setting of the author’s implementation.

To quantify the quality of the distributions we use the Kullback-Leibler (KL) divergence

between the baseline distribution and the comparison method. For two discrete probabil-

ity distributions P and Q of a random variable X ′, the KL divergence can be computed

with the following equation:

DKL(P||Q) =
∑
x′∈X ′

P(x′) log
(
P(x′)
Q(x′)

)
(3.19)

3.6.2.1 Sample count

We begin by evaluating the effect the number of samples has on the quality of the trans-

formation distribution estimated by Bayesian-ICP. We allow Bayesian-ICP to collect 6000

samples. Figure 3.7 shows the evolution of the mean and standard deviation of the KL

divergence as the number of samples increases. The Y axis shows the KL divergence

compared to the baseline. Overall, increasing the sample size improves the quality of the

distribution as both mean and standard deviation shrink. Though after a certain number

of samples the iteration to iteration gains decrease. Based on these plots 1000 to 1500

samples provide almost optimal results, and going forward we use 1000 samples in all

other experiments.

3.6 Experiments 87

Figure 3.7. KL divergence of Bayesian-ICP compared to the baseline as a function of
the number of samples. The majority of the improvements occur during the first 1000
samples.

Figure 3.8. KL divergence of Bayesian-ICP compared to the baseline as a function of
burn-in samples.

3.6.2.2 Burn-in length

Burn-in, which discards samples from the beginning of a sampling sequence, is common

in MCMC methods and ensures that the samples produced by the scheme come from the

true underlying distribution. To analyze the impact the amount of points discarded by

the burn-in process has on the final distribution quality, we use the samples collected in

the previous section. However, we remove a variable number of initial points and then

use the subsequent 1000 points to obtain a distribution estimate. In Fig. 3.8 we show

88 3 Bayesian-ICP for Mobile Robot Localization

the resulting KL divergence when computed against the baseline distribution. As we can

see, the burn-in amount does not have a significant impact on the distribution quality.

There is only minor improvements in the distribution quality if we discard 80 samples

during burn-in. In general, the amount of burn-in depends on the initial offset between

the clouds as well as the total number of samples used for representing the transformation

distribution.

3.6.2.3 Trajectory estimation

Estimation of odometry trajectories along-with the uncertainty quantification is critical

in many robotic tasks such as autonomous navigation and SLAM. In this section, we use

Bayesian-ICP to compute odometry estimates for the Hauptgebaude and Mountain Plain

sequences of the Challenging dataset. In comparison we also provide the visualization of

the uncertainty estimated by Cov-3D and Closed-form methods.

To obtain a global pose estimate, the frame-to-frame expectation of the Bayesian-ICP

transformation distributions is propagated. For example, for a sequence of l scans the

individual ICP transformation estimates are combined as TE = T 1
0 T

2
1T

l
l−1. Where T ll−1

is a 4×4 homogeneous transformation matrix that captures the mean rotation and trans-

lation between scan l and l−1. A 4th order approximation (Barfoot and Furgale, 2014)

is used to combine the individual scan-to-scan covariances. The resulting Bayesian-ICP

trajectories for Hauptgebaude (top-left) and Mountain Plain (top-right) are overlaid onto

the ground plane to visualize the estimated trajectories in Fig. 3.9. The middle and the

bottom rows visualize the Closed-form covariances and Cov-3D covariances respectively.

The lines display the trajectories and the ellipses show the 3− sigma (95%) confidence

sets for uncertainty estimation of Bayesian-ICP and the comparison methods.

Figure 3.9 shows that the mean trajectory of Bayesian-ICP tracks the ground truth tra-

jectory well. The uncertainty estimates accurately capture the amount of drift. This

makes Bayesian-ICP suitable for tasks which require uncertainty quantification of trans-

formation estimates. In contrast Closed-form method under-estimates the uncertainty as

3.6 Experiments 89

Figure 3.9. (Top) Bayesian-ICP odometry overlaid on the ground truth trajectory for
Hauptgebaude (left) and Mountain Plain (right). Visualization of corresponding covari-
ances of Closed-form (middle) and Cov-3d (bottom). The ellipses represent the 95 %
confidence set of the compound covariance at each step of odometry. This plot shows
that covariance estimated by our method is consistent with the amount of drift in the
trajectory. (Middle) Closed-form under-estimates while Cov-3D (bottom) over-estimates
the uncertainty as indicated by very small and very large ellipses respectively.

indicated by very small ellipses and Cov-3D over-estimates the uncertainty shown in very

large ellipses. Both methods show the similar behaviour on Mountain Plain.

90 3 Bayesian-ICP for Mobile Robot Localization

Figure 3.10. Visualization of the pose distribution estimated by a kernel density esti-
mator (KDE) for the baseline (left) and Bayesian-ICP (right). Both bowl (top) and soda
can (middle) are rotationally symmetric around their yaw axis which is captured by the
broad yaw distribution. This is in contrast to the mug with handle (bottom) which has
no symmetries, resulting in all distributions being peaked.

3.6.2.4 Distribution estimation quality

First we provide a qualitative evaluation of the distribution estimated by Bayesian-ICP

for symmetrical and non-symmetrical objects in Fig. 3.10. Figure 3.10 shows a com-

parison of kernel density estimation (KDE) models of the baseline distribution (left)

and the proposed Bayesian-ICP method (right) on three objects. The X axis shows the

transformation parameter values while the Y axis shows the density. In Fig. 3.11 the

corresponding source scan (pink), reference scan (purple) and Bayesian-ICP aligned scans

3.6 Experiments 91

(a) Bowl (b) Soda can (c) Mug with handle

Figure 3.11. Point clouds of objects used in the experiments, (pink) source, (purple)
reference, and (blue) solution. Both (a) and (b) are under-constrained as they are sym-
metric around their yaw axis, while (c) has no symmetries.

(blue) are shown, highlighting the geometry of each object and the accuracy of the final

pose. In every instance all parameters except for yaw converge close to the mean of the

ground truth pose. For yaw the ground truth value is not obtained for under-constrained

objects, as these are symmetric in yaw and as such all values result in the same solution.

While the distribution in yaw is to some extent visually different between the baseline and

Bayesian-ICP solution both capture the overall picture of uncertainty. For constrained

objects, which have no symmetries, the distributions show a single peak near the ground

truth value for all parameters.

Next in Table 3.1, we perform a numerical comparison between our proposed method

(Bayesian-ICP), Closed-form, and Cov-3D on the Challenging dataset. All methods use

point-to-plane error metric to compute transformations over all consecutive pairs of each

sequence of the Challenging dataset. KL divergence between the baseline distribution

and the distribution estimated by the three methods is then reported independently for

translation and rotation in Table 3.1. The table shows the median KL divergence with

a 10th and a 90th percentile of KL divergence in the brackets, where a lower KL value

indicates a closer match with the baseline distribution.

We can see that overall our proposed method outperforms the other two methods. The

large KL divergence values for COV-3D and Closed-form ICP indicate that these methods

92 3 Bayesian-ICP for Mobile Robot Localization

Table 3.1. Quality comparison of the Bayesian-ICP against other
methods using median KL Divergence over consecutive pairs of entire
sequences, with a 10th and a 90th quantiles of the KL divergence written
in the brackets.

Sequence Method KL Divergence
Translational Rotational

Apartment

Bayesian-ICP 2.1 [0.5,49.5] 1.5 [0.4,35.7]
COV-3D ICP 35.7 [4.0,2e3] 2e3 [1e2,5e5]
Closed-form ICP 2e2 [15.1,1e5] 2e4 [1e3,2e6]

Gazebo Winter

Bayesian-ICP 1.5 [0.1,1e2] 1.0 [0.3,97.0]
COV-3D ICP 5.0 [3.3,23.5] 2e4 [9e2,5e6]
Closed-form ICP 1e2 [23.8,3e4] 6e6 [4e5,7e8]

Hauptgebaude

Bayesian-ICP 0.4 [0.2,0.6] 1.0 [0.5,11.3]
COV-3D ICP 6.6 [4.3,12.8] 1e4 [3e3,1e5]
Closed-form ICP 54.9 [37.5,81.5] 2e6 [7e5,1e7]

Mountain Plain

Bayesian-ICP 2.9 [0.7,17.6] 26.6 [1.8,91.5]
COV-3D ICP 5.7 [4.9,7.3] 3e3 [1e3,6e4]
Closed-form ICP 2e2 [37.4,2e3] 1e7 [1e6,6e7]

Stairs

Bayesian-ICP 0.5 [0.1,3.0] 1.3 [0.5,2.2]
COV-3D ICP 5.5 [4.2,7.9] 3e2 [28.5,1e4]
Closed-form ICP 28.1 [5.8,79.5] 1e4 [1e3,4e5]

Wood Autumn

Bayesian-ICP 0.7 [0.3,2.5] 0.2 [0.2,0.9]
COV-3D ICP 3.9 [2.9,5.1] 8.5 [0.6,1e2]
Closed-form ICP 92.6 [37.5,2e2] 9e5 [5e5,2e6]

fail to provide correct uncertainty estimates. Closed-form ICP tends to always predict an

extremely peaked covariance matrix with values on the order of 10−7. The Closed-form

ICP method can only handle those uncertain situations where sensor noise is the only

source for uncertainty (M. Brossard, 2020), which is not the case in many of the scenes in

the Challenging dataset. The COV-3D method relies on the correctness of given initial

transformation uncertainty to estimate the covariance. When such an initial estimate is

either inexact or not available, COV-3D tends to provide wrong covariance estimates.

3.6 Experiments 93

Figure 3.12. Break down of the run-time (sec) on CPU against mini-batch size along
the X-axis for 1000 samples. The components are mini-batch sampling time (top left),
cloud transform time (top middle), matching-time (top right), gradient time (bottom
left), and update time (bottom middle). Bottom right shows the total time. Overall,
matching and gradient computation make the most time-consuming steps of Bayesian-
ICP.

3.6.2.5 Run-time

A common concern with MCMC based methods is their run-time and as such we provide

an evaluation of our proposed method’s run-time. Specifically, we present a break-down

of the run-time of Bayesian-ICP into individual components in Fig. 3.12 against variable

mini-batch sizes. We run Bayesian-ICP to collect 1000 samples using mini-batch of sizes

of 50, 100, 150, 200, and 300.

In Fig. 3.12, computation is broken down into mini-batch sampling, transforming point

cloud with the current transform, point pairs matching between the clouds, gradient

computation using point pairs, and updating the parameters steps. We can see that all

steps have a linear relation with the mini-batch size. Point-matching is the most time

consuming step of Bayesian-ICP followed by the gradient computation. An important

94 3 Bayesian-ICP for Mobile Robot Localization

observation is that Bayesian-ICP with a mini-batch size of 50 roughly takes 1 s to produce

1000 samples which makes it suitable to be used as an online transformation sampling

method. We can see from Fig. 3.5 that the quality of the SGD-ICP transformation is

not significantly effected by the mini-batch size. Since Bayesian-ICP is just an extension

of SGD-ICP the effect of mini-batch size on the sample quality is the same. In the next

section, we integrate Bayesian-ICP with a mini-batch size of 50 points into a Monte Carlo

localizer (MCL), called Bayesian-ICP MCL, to perform a localization task.

3.6.3 Bayesian-ICP in a Monte Carlo Localization algorithm

In this section, we analyze the localization accuracy of Bayesian-ICP MCL; a particle filter

which employs Bayesian-ICP as the motion model to predict the motion between subse-

quent observations. Through experiments we demonstrate the efficacy of Bayesian-ICP

MCL in performing a localization task accurately with reliable transformation uncertainty

estimates in both simulated and real environments.

We first perform a quantitative analysis of Bayesian-ICP MCL using the Newer College

dataset (Ramezani et al., 2020). The Newer College dataset covers a variety of environ-

ments from paved paths of the built environments of the college campus to the gravel

and muddy paths of vegetated areas. The Newer College dataset makes a perfect use

case to demonstrate the behaviour of Bayesian-ICP as a motion model as this dataset

does not provide wheel odometry information. Figure 3.13 visualizes the ground truth

trajectory overlaid on an octomap (Hornung et al., 2013) representation of the Newer

College dataset (middle). The side figures show scans from different locations of the

map highlighting the variability of the environment. For example, locations A and B

are structured areas, while location C is near dense foliage and location D covers the

vegetated border. Due to the difference in the environments we expect different levels

of uncertainty in different locations, e.g., we expect more uncertainty in natural environ-

ments (due to lack of features and uncertain laser returns due to vegetation) compared

to the structured areas.

3.6 Experiments 95

(a) Scan from
location A.

(b) Scan from
location B.

(c) Ground truth trajectory overlayed on the
octomap. The complete trajectory is shown at

the bottom.

(d) Scan from
location C.

(e) Scan from
location D.

(f) KDE at location A. (g) KDE at location B. (h) KDE at location C. (i) KDE at location D.

Figure 3.13. Visualization of the Newer College dataset showing scans from structured
(a), and (b) and un-structured (d), and (e) areas. Kernel density estimation (KDE) of the
Bayesian particles at the corresponding locations is shown in (f) to (i). As expected we
can see relatively more uncertainty as indicated by relatively flatter KDEs at locations
C and D among the vegetation areas compared to the structured areas.

For comparison, we use two additional motion models, ICP-simple and ICP-AMCL (Fern

and Rodr, 2020). Both of these comparison motion models perform SGD-ICP scan align-

ment to predict the relative motion between two poses and add Gaussian noise to the

aligned transformation to produce stochastic motion for each particle. ICP-AMCL, in-

spired by (Perez-Grau et al., 2017), considers the holonomic motion and applies the

96 3 Bayesian-ICP for Mobile Robot Localization

following equations to evolve each particle’s motion:

xt+1 = xt+ ∆xcos(ψt)−∆y sin(ψt),

yt+1 = yt+ ∆xsin(ψt) + ∆y cos(ψt),

zt+1 = zt+ ∆z,

ψt+1 = ψt+ ∆ψ,

(3.20)

where ∆x, ∆y, ∆z, and ∆ψ are increments in x, y, z, and yaw (ψ) respectively. The

noise related parameters for ICP-simple are carefully tuned and set to 0.5 for translations

and 0.01 for rotations. ICP-AMCL is 3D version of standard motion model (Thrun et al.,

2005) with a difference that the translational noise in ICP-AMCL is set to be variable

with respect to the motion increment ranging between 0.1 and 0.5. This is done to see

the relative benefits of Bayesian-ICP samples, in propagating motion to each particle, in

comparison to an adaptive motion model whose noise parameters are tuned differently

for variable motion increments. To aid quick convergence to the true state with just

100 particles, we initialize the particles in the starting area of the Newer College dataset

(courtyard containing A and B shown in Fig. 3.13 (c)). The observation model used

is a likelihood field model which depends on a 3D-distance map generated from a 0.2 m

resolution octomap representation of the environment. For ICP-AMCL and ICP-Simple

MCL, SGD-ICP is run for 150 iterations with a mini-batch size of 300 to ensure accurate

motion estimates. In Bayesian-ICP MCL, Bayesian-ICP uses a mini-batch size of 50

with a burn-in period of 40 iterations. We quantify the accuracy of the estimated pose

using root mean square error (RMSE) for translations alone. We do not evaluate the

rotational errors since they show up as translational errors when a robot moves in wrong

direction(Sturm et al., 2012). To compute the RMSE, we first evaluate the Euclidean

distance between each estimated location (θ′1:3) and the ground truth location θ?′1:3

at the corresponding timestamp. From these distances evaluated for K locations, we

compute the RMSE in the following equation:

RMSE =
(

1
K

K∑
i=1

(
||θ′i

1:3−θ?′i
1:3||22

)) 1
2
. (3.21)

3.6 Experiments 97

Table 3.2. Localization errors (m) and run-time using different mo-
tion models

Motion Model RMSE Median Quantiles Time
[10th, 90th] (milli-sec)

Bayesian-ICP 0.319±0.163 0.241 [0.118,0.461] 127±34
ICP-simple 0.368±0.154 0.315 [0.152,0.544] 131±36
ICP-AMCL 0.366±0.148 0.317 [0.160,0.529] 127±33

Table 3.2 presents the accuracy of Bayesian-ICP MCL in comparison to the other meth-

ods using RMSE. Table 3.2 also presents the statistical summary of the localization errors

in terms of median, 10th, and 90th quantiles of the errors as well as mean time to produce

a single localization update. We can see that all methods obtain equivalent performance

in the same amount of time. The corresponding trajectories are shown in Fig. 3.14.

We can see in Fig. 3.14 that the trajectories estimated by the comparison methods are

relatively smooth for the structured environment compared to the vegetation area. Con-

versely, Bayesian-ICP MCL’s estimated trajectory is smoother and consistent throughout

compared to the other methods. To demonstrate the benefit of using Bayesian-ICP as a

motion model we analyze the uncertainty estimated by Bayesian-ICP at different parts

of the Newer College dataset marked on the octomap in Fig. 3.13 (c). Figure 3.13 (f to i)

shows the corresponding kernel density estimates (KDE) of the Bayesian-ICP samples at

locations A, B, C, and D. This figure shows that the uncertainty estimated by Bayesian-

ICP is higher, i.e., broader KDE distribution, in vegetation area (C, and D) compared

to the structured areas (A, and B); which agrees with our intuition about uncertainty

in different environments. The inherent noise in Bayesian-ICP naturally adapts itself

according the environment structure, thus results in different uncertainty estimates at

different locations. This is in contrast to the uncertainty generated by the fixed Gaussian

noise used by the other two methods which cannot adapt to the environment’s structure.

We will demonstrate this difference next, in a simulated corridor environment.

To gain additional insight into the Bayesian-ICP uncertainty estimation in an under-

constrained environment we explore the behaviour of Bayesian-ICP motion model in a

98 3 Bayesian-ICP for Mobile Robot Localization

(a) Bayesian-ICP MCL estimated trajectory. (b) ICP-simple MCL estimated trajectory.

(c) ICP-AMCL estimated trajectory.

Figure 3.14. Trajectories estimated by Bayesian motion model (top-left), ICP-simple
motion model (top-right) and ICP-AMCL motion model (bottom). Overall, the inherent
randomness of Bayesian motion model adapts naturally with respect to the structure of
the environment resulting in better trajectory estimation.

corridor environment and compare it to ICP-AMCL. A long and featureless corridor

constitutes an under-constrained environment which lacks information needed for correct

registration (Pomerleau et al., 2013). This is particularly the case with the middle part

of a corridor where both ends of the corridor are unobserved and LiDAR sensor receives

similar measurements along the length of the corridor resulting in zero motion from an

ICP scan alignment based odometry system. We create a simulated corridor of 50 m

length as shown in Fig. 3.15 (a). To create an under-constrained scenario, we limit the

range of a simulated Velodyne scanner to 15 m so that when the sensor is 15 m away from

either end both ends of the corridor are unobservable.

3.6 Experiments 99

(a) Spread of Bayesian-ICP particles along the
length of a corridor when an input scan does not
contain the ends of the corridor as shown in (c).

Bayesian-ICP ICP-AMCL

(b) Particles in a constrained scene, i.e.,
at the end of the corridor when one of the
ends of the corridor is visible. Particles are
confident about their respective locations
as marked by a compact spread for both
motion models.

Bayesian-ICP ICP-AMCL

(c) Particles in an under-constrained
scene, i.e., in the middle of the corri-
dor when the both ends are out of range.
Bayesian particles tend to spread show-
ing uncertainty while ICP-AMCL parti-
cles still stay confident.

Figure 3.15. Visualization of uncertainty estimated by Bayesian-ICP motion model in
comparison to ICP-AMCL motion model at the end of the corridor (b) and in the middle
of the corridor (c).

Figure 3.15 (b) and (c) respectively show the prediction of Bayesian-ICP MCL particles

(left) in comparison to ICP-AMCL particles (right) at a closed end (top) and in the

middle of the corridor (bottom). As expected ICP-AMCL predicts motion with similar

uncertainty both at the beginning and in the middle of the corridor. Since ICP does not

handle uncertainties in the scan alignment and provides zero motion in a corridor when

both ends are unobserved, adding artificial Gaussian noise makes ICP produce similar

proposal distributions at all parts of the corridor.

100 3 Bayesian-ICP for Mobile Robot Localization

In contrast, the samples in Bayesian-ICP motion model produced by the probabilistic

scan matching process captures the uncertainty induced by the environment’s geometry.

For example, at the end of the corridor Bayesian-ICP MCL provides a single peaked

pose as characterized by a compact group of particles which indicates small uncertainty

in the estimated pose. In an under-constrained situation Bayesian-ICP MCL provides

high uncertainty by spreading the particles along the length of the corridor, indicating

uncertainty along this part of the environment. The high variance along the length of the

corridor stems from the unreliable ICP transformation estimates. This experiment high-

lights the advantage of using Bayesian-ICP motion model in a challenging environment

in comparison to using Gaussian noise based stochastic motion models.

3.7 Summary

ICP is a popular scan alignment algorithm that provides a single transformation estimate

between two poses but does not quantify the resulting transformation’s uncertainty. It

also incurs a high computational cost when aligning large point clouds. In this chapter,

we exploited recent advances in optimization and statistical inference to address these

challenges. Specifically, we used stochastic gradient descent to develop SGD-ICP, which

efficiently solves the ICP minimization problem in a fraction of the time a standard algo-

rithm requires. In order to obtain an uncertainty estimate of the ICP transformation, we

developed Bayesian-ICP, which leverages the stochastic nature of SGD-ICP in conjunc-

tion with Langevin dynamics to produce samples of the posterior ICP transformation.

We also integrated Bayesian-ICP into a Monte Carlo localization (MCL) framework to

demonstrate the capability of Bayesian-ICP in performing localization tasks in real-time.

Specifically, we demonstrated that Bayesian-ICP can be a replacement to the standard

motion model in MCL.

Experiments show that SGD-ICP achieves the same solution quality as standard ICP

while being more computationally efficient. Bayesian-ICP produces high-quality trans-

formation distributions while being more computationally efficient than standard MCMC

3.7 Summary 101

methods. In the localization task, Bayesian-ICP achieves better localization accuracy

compared to fixed Gaussian-noise-based stochastic motion models. The inherent noise

in Bayesian-ICP naturally adapts itself according to the environment and thus does not

require manual tuning of noise-related parameters for different terrains as required by

other motion models.

Bayesian-ICP is a stochastic MCMC method that produces a series of sequential samples.

The sequential nature of these samples poses challenges to running multiple independent

chains of MCMC in parallel (Wilkinson, 2005). In the next chapter, we present our

novel parallelizable deterministic ICP method which employs Stein variational gradient

descent (Liu and Wang, 2016) to model the uncertainty in the transformation parame-

ters.

Chapter 4

Stein-ICP for Uncertainty Estimation in Point Cloud Matching

The preceding chapter focuses on improving the efficiency and robustness of both

point-estimate and probabilistic ICP algorithms by leveraging gradient-based op-

timization and modern probabilistic inference tools. In this chapter, we present another

probabilistic ICP – Stein-ICP which models complex multi-modal transformation distri-

butions while exploiting GPU parallelism. Stein-ICP combines the Stein variational infer-

ence framework (Liu and Wang, 2016) with the gradient based optimization of ICP’s cost

function. The work presented in this chapter forms the basis of our paper (Afzal Maken

et al., 2021). Section 4.4.6 presents run-time of Stein-ICP on both CPU and GPU and

is not a part of (Afzal Maken et al., 2021).

4.1 Introduction

Point cloud registration plays a fundamental role in many robotics and computer vision

tasks such as localization and mapping (et al., 2011), autonomous navigation (Shi et al.,

2017), pose estimation (Park et al., 2010), surgical guidance (Ma and Ellis, 2004), and

augmented reality (Ming-Long, 2018) to name a few. Iterative closest point (ICP) (Besl

and McKay, 1992) is the gold standard registration algorithm which estimates a relative

transformation between two point clouds. Given an initial estimate, ICP minimizes the

Euclidean distance between pairs of matching points from both point clouds in an iterative

manner.

The ICP pose alignment process is adversely affected by different sources of error and

uncertainty. These include initial pose uncertainty, sensor noise, partial overlap, multiple

102

4.1 Introduction 103

Figure 4.1. Our method estimates ICP pose distributions (right) for the solution (blue)
when a source cloud (pink) is aligned to a reference cloud (purple). Flat yaw distribution
(top right) characterizes the rotational ambiguity of the shape. For the bottom figure,
our method estimates two possible modes for x as shown in the corresponding kernel
density estimate on the right which a deterministic ICP algorithm cannot capture.

local minima of the cost function, and under-constrained or ill-posed cases, e.g., long

featureless corridors or rotational symmetric objects such as bottles that admit infinite

solutions. In the alignment of an under-constrained object where there is ambiguity in

the matching, uncertainty relates to the geometry of the object. This type of uncertainty

is intrinsic to the problem and known as epistemic. For example, in Fig. 4.1 (top), the

broad yaw distribution captures the rotational symmetry of the bottle. For a rectangular

building block (bottom left), source cloud (pink) can match to any of the two sides of the

reference cloud (purple), thus giving bi-modal x distribution (right) which a deterministic

ICP algorithm cannot capture.

The quantification of the transformation uncertainty is crucial for many other tasks,

especially those requiring robust pose estimates of an autonomous vehicle in an urban

environment. In order to accurately localize a vehicle, a single source of pose information

104 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

is usually not enough. Pose information from different sensors are usually probabilisti-

cally fused together (Caglioti et al., 1994; Tur, 2007) in a state estimation framework

such as simultaneous localization and mapping (SLAM) (Barczyk and Bonnabel, 2017).

In such a framework, ICP pose estimates are fused with odometry measurements or GPS

observations using Extended Kalman Filter (EKF) (Cole and Newman, May 2006; Bar-

czyk et al., November 2015), particle filter (Röwekämper et al., 2012) or GraphSLAM

(Borrmann et al., 2008) which require information about the uncertainty of pose param-

eters. This uncertainty estimate encompasses information of the reliability of sensory

data and aids in improving the estimates of the pose parameters. In the localization and

mapping tasks, this uncertainty information can improve loop closure detection and yield

better maps. In the task of scene reconstruction, the amount of uncertainty in the trans-

formation parameters can indicate a tangential drift that may occur in the registration

of two plane objects.

Bayesian methods (Neal, 1996) can be used to incorporate uncertainty into ICP pose

estimates. These methods provide a probabilistic framework in which Bayes’ rule is

used to obtain a posterior distribution given a prior distribution and a likelihood func-

tion. However, Bayesian methods tend to be computationally intractable for complicated

likelihood functions and high-dimensional problems. To address the tractability issue,

modern Bayesian methods rely on approximate techniques such as Markov Chain Monte

Carlo (MCMC) (Neal, 2010) and variational inference (VI) (Zhang et al., 2019) which

can scale to large problems using stochastic gradient descent (SGD) (Robbins and Monro,

1951).

MCMC methods approximate the intractable posterior distribution by drawing samples

from the prior and likelihood functions. In contrast, VI transforms the problem into

an optimization process that reduces the Kullback-Leibler (KL) divergence between the

intractable posterior distribution and an analytically tractable variational distribution.

MCMC converges to the underlying distribution but can be slow in practice. VI on the

other hand is typically faster but the expressiveness of the variational distribution is

restricted and may not capture the complexity of the true posterior distribution.

4.2 Related work 105

In this chapter, we formulate a Stein variational gradient descent (SVGD) (Liu and Wang,

2016) method to approximate the posterior distribution of ICP pose parameters. SVGD

combines the accuracy and flexibility of MCMC with the speed of VI using gradient de-

scent. SVGD approximates the intractable posterior distribution with a non-parametric

representation given by a set of particles. These particles are optimized with a func-

tional gradient descent of KL divergence and provide a reliable uncertainty estimation

by incorporating a repulsive term that prevents particles from clustering together. These

particles can be updated jointly and benefit from GPU parallelization.

Contribution: The main contribution of this chapter is a non-parametric point cloud

registration method based on Stein variational gradient descent to estimate ICP’s pose

uncertainty. Our method exploits GPU-computation for increased speed and captures

both epistemic and aleatory uncertainty (Kiureghian and Ditlevsen, 2009) intrinsic in

the matching problems. A python implementation of the method is publicly available.1

The remainder of this chapter is structured as follows. First, we present a review of

ICP algorithms related to our work in Section 4.2. These ICP algorithms include both

point-estimate and probabilistic point cloud matching methods. Next in Section 4.3, we

present our proposed method – Stein-ICP. Experiments are then presented in Section 4.4.

Finally, Section 4.5 provides the summary of the chapter.

4.2 Related work

There exists a large number of point cloud registration methods as reviewed in (Pomer-

leau et al., 2015; Rusinkiewicz and Levoy, 2001). They can be broadly categorized as

algorithms that provide point estimates and probabilistic outputs.
1https://bitbucket.org/fafz/stein-icp/src/master/

https://bitbucket.org/fafz/stein-icp/src/master/

106 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

4.2.1 Point-based ICP algorithms

Point estimate registration algorithms produce a single estimate of the transformation

between two point clouds. These algorithms mostly vary in how they select points to

perform data association, which error metric they use, and what optimization technique

they employ for their cost function (Rusinkiewicz and Levoy, 2001).

ICP algorithms which vary in the selection of points include those using random sampling

(Masuda and Yokoya, 1995) and uniform sub-sampling (Masuda, 2001). Other ICP meth-

ods have different cost functions. Notable choices are point-to-point (Besl and McKay,

1992) point-to-plane (Chen and Medioni, 1991) and plane-to-plane (Segal et al., 2009).

The ICP cost function can be optimized using either closed form solutions e.g., singular

value decomposition (SVD) (Arun et al., 1987), and quaternions (Horn, 1987) or other

methods e.g., Levenberg-Marquardt (Fitzgibbon, 2003), simulated annealing (Luck et al.,

2000), and stochastic gradient descent (Afzal Maken et al., 2019).

Another line of research deals with eliminating outliers due to partial overlap, sensor

noise and other complexities. This includes the use of a trimmed square cost function to

estimate the optimal transformation (Chetverikov et al., 2002), and rejecting pairs with

distance larger than a certain threshold (Segal et al., 2009; Masuda and Yokoya, 1995).

An alternative class of registration techniques reformulate ICP as an alignment of two

Gaussian mixtures where a statistical discrepancy measure is minimized between the

two mixtures (Jian and Vemuri, 2011; Eckart et al., 2018). In this case, Expectation

Maximization (Dempster et al., 1977) can be used to provide robust solutions i.e., (Horaud

et al., 2011; Gao and Tedrake, 2019; Evangelidis et al., 2014). Learning-based point cloud

registration methods employ neural networks to provide transformation (Hertz et al.,

2020; Aoki et al., 2019; Wang and Solomon, 2019). These methods rely on the data used

during training and may not necessarily generalize well to an unseen dataset.

4.2 Related work 107

4.2.2 Uncertainty-based ICP algorithms

This class of ICP provides uncertainty estimates for the transformation parameters. The

uncertainty of the transformation can be estimated using closed form solutions (Biber

and Strasser, 2003; Bengtsson and Baerveldt, 2003; Bosse and Zlot, 2008; Censi, 2007),

and sampling-based approaches (Bengtsson and Baerveldt, 2003; Iversen et al., 2017;

Afzal Maken et al., 2020). Closed form solutions require the Hessian of the cost func-

tion. Among closed form solutions such as in (Biber and Strasser, 2003; Bengtsson and

Baerveldt, 2003; Bosse and Zlot, 2008), errors due to sensor noise are not properly cap-

tured as pointed out in (Censi, 2007; Prakhya et al., 2015). (Censi, 2007) considers the

effect of sensor noise in the covariance structure but (M. Brossard, 2020; Mendes et al.,

2016) indicate that it is overoptimistic and hence not suitable for sensor fusion. Closed-

form solutions are efficient but do not capture the uncertainty of the data association

into account in the covariance estimation.

Sampling based approaches such as (Bengtsson and Baerveldt, 2003; Iversen et al., 2017)

provide high quality samples of pose parameters but are computationally expensive. Our

proposed scalable probabilistic ICP method, Bayesian-ICP (Afzal Maken et al., 2020),

employs stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011) to pro-

vide samples of the posterior distribution in an online manner. However, due to it still

being an MCMC style method it suffers from the inherent limitations and challenges of

parallelizing any MCMC method.

Other recently proposed methods such as (M. Brossard, 2020; Landry et al., 2018) take

initial pose estimates into account in the pose uncertainty prediction. (M. Brossard,

2020) combines an analytical solution with the unscented transform (Julier et al., 2000)

to capture the sensor noise and other sources of uncertainty. The accuracy of this method

relies on the availability of an accurate covariance of the initial pose uncertainty which is

not always available.

Our method can take prior information into account to estimate the posterior distribu-

tion over transformation parameters. When a prior is available, our method leverages

108 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

this information to achieve faster and more accurate convergence. In comparison to

Bayesian-ICP which uses MCMC sampling, our method employs Stein particles that can

be propagated in parallel through Stein’s gradients, directly modeling the interactions

between the particles and promoting diversity in the solution. This is particularly im-

portant in multi-modal problems as we demonstrate in a few examples. Additionally, our

method is directly amenable to parallelization, therefore suitable to GPU computation.

4.3 Stein-ICP

Our proposed method, Stein-ICP, makes a connection between the gradient-based sto-

chastic optimization of ICP cost function and Stein variational inference. Specifically,

Stein-ICP utilizes the SGD-ICP gradients (presented in Section 3.3) within the Stein

variational gradient descent (SVGD) framework (Liu and Wang, 2016) (Section 2.3.2.1).

In the following, we briefly review SGD-ICP and SVGD to conveniently derive Stein-ICP.

4.3.1 Building blocks – SGD-ICP and SVGD

SGD-ICP optimizes the ICP cost function (2.3) using mini-batch stochastic gradient

descent (SGD) (Robbins and Monro, 1951). SGD-ICP computes gradients of the cost

function (2.3) to update the transformation parameters θ with the following update rule:

θt+1 = θt−αḡ(θt,Mt), ((3.1) revisited)

where ḡ(θt,Mt) = 1
m

∑m
i=1(∇θt||(R si+ u)− ri||2)) are the average mini-batch gradients

of the transformation parameters which are computed in (3.2) and (3.3) for translation

and rotation components respectively.

ḡ(θ1:3
t ,Mt) = 1

m

m∑
i=1

(
(Rt si+ut)− ri

) ∂ut
∂θ1:3

t
, ((3.2) revisited)

ḡ(θ4:6
t ,Mt) = 1

m

m∑
i=1

(
(Rt si+ut)− ri

) ∂Rt
∂θ4:6

t
si. ((3.3) revisited)

4.3 Stein-ICP 109

SVGD is a general-purpose variational inference algorithm which approximates an in-

tractable but differentiable posterior distribution p(φ) by constructing a non-parametric

variational distribution represented by a set of K particles {φj}Kj=0. These particles are

updated iteratively by an update rule of the following form:

φjt+1 = φjt +αĜ∗t (φj), ∀j = 1, . . . ,K, ((2.50) revisited)

where

Ĝ∗(φ) = 1
K

K∑
j=1

[(
∇φj logp(D|φj) + ∇φj logp0(φj)

)
k(φj ,φ) +∇φjk(φj ,φ)

]
.

((2.57) revisited)

In SGD-ICP, gradients of negative log likelihood (−∇φ logp(D|φ)) are expressed as the

gradients of the cost function in (3.2) and (3.3). ∇φ logp0(φ) represents the gradients of

the log of Gaussian priors for translations and von Mises priors for rotations:

∇θ logp0(θ1:3) =−(θ1:3−µ1:3)/σ1:3, ((3.11) revisited)

∇θ logp0(θ4:6) =−κ4:6 sin(θ4:6−µ4:6), ((3.12) revisited)

where µ1:6 represents the mean while σ1:3, and σ4:6 = 1/κ4:6 represent the variance of

the prior distributions of the translation and rotation components respectively.

4.3.2 Derivation

To derive our probabilistic Stein-ICP, we replace the gradients in (2.57) with the mini-

batch gradients of the ICP cost function shown in (3.2) and (3.3), along with the gradients

of priors expressed in (3.11) and (3.12). By doing this, Stein variational gradients are

independently obtained for translations (θ1:3) and rotations (θ4:6), for all the particles in

(4.1), which are then updated using (2.50) .

Ĝ∗(θ) =
K∑
j=1

[
−
(
Nḡ(θ

j

,M) +∇θ logp0(θ
j

)
)
k(θ

j

,θ) +∇θk(θ
j

,θ)
]
. (4.1)

In SVGD the kernel (k(θ,θ′)) plays a critical role in weighing the gradients and dis-

persing the particles. In Stein-ICP, for translation parameters we use an RBF kernel

110 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

k(θ1:3,θ′1:3) = exp(− 1
h ||θ

1:3−θ′1:3||22), where h is the bandwidth of the kernel. For the

rotational parameters, we use a modified version of the RBF kernel as the Euclidean

distance is not directly applicable to angles. In particular, we use the following modi-

fied RBF kernel for rotations, where function arctan2 gets the correct angular difference

between two values and ensures that angles are wrapped around such that −π ≤ θ ≤ π.

k(θ4:6,θ′
4:6) = exp

[
− 1
h

(
arctan2

(
sin(θ4:6−θ′4:6),cos(θ4:6−θ′4:6)

))2]
. (4.2)

Algorithm 14: Stein-ICP
Input : Source S = {si}Ni=1 and reference R= {ri}Mi=1 clouds, Mini-batch

size: m, Step size: α,
Output: Transformation samples: ΘT = {θjT}Kj=1 that approximate the target

distribution
1 Initialize a set of K particles Θ0 = {θj0}Kj=1
2 for t← 0 : T do
3 Mt ← pick a mini-batch cloud of size m from S
4 for j← 0 :K do
5 Mt

′← transform mini-batch with θjt
6 Pairs ←∅
7 for s′i ∈ Mt

′ do
8 ri← closest point in R to s′i
9 Pairs ← Pairs ∪ {s′i,ri}

10 end
// Estimate mean gradients

11 ḡ(θjt ;Mt)← 1
m

∑
s′i,ri∈Pairs(s′i− ri)∂(s′i−ri)

∂θjt
// Obtain the Stein variational gradients

12 Ĝ∗(θ1:3
t) =∑K

j=1
[
−
(
Nḡ(θj

1:3

t ,Mt) + (θj
1:3

t −µ1:3
t)/σ1:3

t

)
k(θj

1:3

t ,θ1:3
t) +

∇
θj

1:3
t

k(θj
1:3

t ,θj
1:3

t)
]

13 Ĝ∗(θj
4:6

t) =∑K
j=1

[
−
(
Nḡ(θj

4:6

t ,Mt) +κ4:6
t sin(θj

4:6

t −µ4:6
t)

)
k(θj

4:6

t ,θ4:6
t)+

∇
θj

4:6
t

k(θj
4:6

t ,θj
4:6

t)
]

// Update parameters
14 θjt ← θjt +αĜ∗(θjt)
15 end
16 end
17 return {θjT}Kj=1

4.4 Experiments 111

Stein-ICP is summarized in Algorithm 14. Given a source S and a reference R cloud,

Stein-ICP begins by initializing a set of K particles randomly in line 1. In general the

implementation of Stein variational inference does not depend on the initial distribution

(Liu and Wang, 2016). In practice, the particles can be initialized using prior knowledge,

e.g., readings from an inertial measurement unit or from a previous solution. Next a mini-

batch is sampled from the source cloud in line 3 which is then transformed by a particle

in line 5. Each particle represents the transformation of a mini-batch sampled from a

source cloud S to a reference cloud R, producing K transformed mini-batches. Next for

all points in each transformed mini-batch, corresponding closest points from a reference

cloud are sought and stored in pairs using (2.2) in lines 6 to 10. Then in line 11 mean

gradients are estimated for all the matching pairs belonging to each of the K particles

using (3.2) and (3.3). Next, Stein variational gradients are obtained independently for

translations and rotations using (4.1) in lines 12 and 13 which are then used to update

each particle with (2.50) in line 14. This procedure is repeated for T iterations producing

K particles representing the posterior distribution.

4.4 Experiments

In the experiments, we demonstrate the ability of Stein-ICP to obtain high quality pose

distributions while its formulation leads to significant computational gains when using a

GPU.

To gain an intuitive insight into the behaviour of Stein-ICP, we use objects with obvious

distributions from an RGB-D dataset (Lai et al., 2011). For the quantitative evaluations

we use a challenging point cloud alignment dataset (Pomerleau et al., 2012) which contains

different sequences recorded in both structured and unstructured environments. Two

scenes from this dataset are visualized in Fig. 4.2. We provide comparisons with three

other uncertainty aware ICP methods, namely Bayesian-ICP (Afzal Maken et al., 2020),

Cov-3D ICP (M. Brossard, 2020), and Closed-form ICP (Censi, 2007).

112 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

Figure 4.2. Visualization of several frames (in different colors) of un-structured Wood
Autumn (left) and structured Stairs (right).

As there is no ground truth distribution available for the point cloud alignment we com-

pute this ground truth information using Monte Carlo sampling. To obtain these Monte

Carlo samples in a timely manner, we use SGD-ICP, which produces solutions equivalent

to standard ICP methods in quality but much more quickly (Afzal Maken et al., 2019).

We run 1000 instances of SGD-ICP with initial transformation estimates sampled from

±1 m and ±0.1745 rad for translations and rotations respectively. The resulting samples

form the ground truth distribution.

As a measure of the quality of the distribution estimated by a method, we compute

the Kullback-Leibler (KL) divergence for the multivariate Gaussian distribution (Duchi,

2016), overlapping coefficient (OV L) (Inman and Jr, 1989), and Bhatacharya distance

for the multivariate Gaussian distribution (Db) between the obtained distribution and

the ground truth distribution. For both KL divergence and Db, a lower value indicates

a closer match with the baseline distribution. For OV L a value of 0 and 1 indicates

no-overlap and full overlap between the two probability distributions respectively. KL

divergence for the multivariate Gaussian distribution can be expressed as follows:

KL= 1
2
(

log detΣ2
detΣ1

−d+ trace(Σ−1
2 Σ1) + (µ2−µ1)TΣ−1

2 (µ2−µ1)
)
, (4.3)

where d is the dimensionality of the Gaussian distributions, Σ, µ are the covariance and

mean of the corresponding distributions respectively. The expression for Bhatacharya

4.4 Experiments 113

Figure 4.3. KL Divergence against particle count. The right Y-axis is for Apart-
ment only because of relatively large KL divergence values. Overall, best performance
is achieved with 100 particles, however, there is little improvement in KL divergence
between 40 and 100 particles.

distance for the multivariate Gaussian distribution is given below:

Db = 1
8(µ1−µ2)TΣ−1

2 (µ1−µ2) + 1
2 ln

(
detΣ√
Σ1 + Σ2

)
, (4.4)

with Σ = (Σ1 + Σ2)/2.

In all experiments, Stein-ICP uses Adam (Kingma and Ba, 2015) as the optimizer with

a step size of 0.03 and a batch size of 150 for the RGB-D data and a step size of 0.01

and a batch size of 300 for the Challenging dataset. The bandwidth parameter required

by SVGD is chosen using the median heuristic as described in (Liu and Wang, 2016).

Furthermore, uniform priors are assumed as no prior knowledge is available. Bayesian-

ICP generates 1000 samples and uses a step size of 0.008. Cov-3D and Closed-form ICP

use point-to-plane SGD-ICP estimated pose to compute the covariance matrix using the

default parameter setting of the author’s implementation (M. Brossard, 2020).

4.4.1 Particle count

We begin by evaluating the effect the number of particles has on the pose distribution

quality on the Challenging dataset. Figure 4.3 shows the KL divergence between the

Stein-ICP and ground truth distribution using the point-to-point error metric as a func-

tion of the particle count. The right Y-axis is for the Apartment sequence only due to the

114 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

Figure 4.4. Source (pink), reference (purple) and aligned cloud (blue) of the bowl (left)
and the mug (right). The bowl is rotationally symmetric around yaw, while the handle
of the mug constrains the yaw estimate.

difference of the scale. Overall the KL divergence improves with increasing the number

of particles. However, the improvement in KL divergence between 40 and 100 particles

is minor compared to the change from 10 to 40 particles. In the subsequent experiments,

we will use 100 particles as this reliably achieves high quality results.

4.4.2 Distribution quality analysis

We start with a qualitative evaluation of the distribution estimated by Stein-ICP on two

examples from the RGB-D dataset. In Fig. 4.4 we show the source (pink), reference

(purple), and aligned (blue) clouds for a bowl (left) and a mug (right). The kernel

density estimates (KDE) of both the ground truth samples (left) and Stein-ICP samples

(right) are shown in Fig. 4.5. We can see how for the bowl (top), which has a rotational

symmetry around yaw, the estimates are peaked with the exception of yaw which spans

the full [−π,π] range, both in the ground truth distribution and Stein-ICP. By contrast

the distributions for the mug (bottom) are peaked for all parameters. As the handle

of the mug clearly identifies the single correct solution, this uni-modal distribution is

what we would expect. These results demonstrate that the distributions recovered by

Stein-ICP match the ground truth distributions and that both distributions agree with

our intuitions about object alignment ambiguity and uniqueness.

4.4 Experiments 115

Figure 4.5. Visualization of the pose distribution estimated by a kernel density estima-
tor (KDE) for the ground truth and Stein-ICP samples. The X-axis shows the parameters’
values and the Y-axis shows the density. The broad yaw distribution correctly captures
the rotational symmetry of the round bowl (top). This is in contrast to the peaked yaw
distribution of the mug (bottom) which has no symmetries.

Next, we perform a quantitative comparison between our method and the state-of-the-art

probabilistic ICP methods namely Bayesian-ICP (Afzal Maken et al., 2020), a multi-

chain Bayesian-ICP–denoted by Bayesian-multi (this is the result of running 10 chains

of Bayesian-ICP and compounding the results), COV-3D ICP (M. Brossard, 2020), and

a popular benchmark Closed-form ICP (Censi, 2007) on the Challenging dataset. The

results are summarized in Table 4.1 which shows the median of the KL divergence, OVL

and Db as well as the corresponding 10th and 90th quantiles in the brackets. The diver-

gence, OV L, and Db are computed over all consecutive pairs in each sequence with all

methods using the point-to-plane error metric.

From those numbers, we can see that our method outperforms both COV-3D and Closed-

form ICP on all of the sequences. The large values of KL divergence and Db as well as

small values of OV L for COV-3D and Closed-form ICP indicate that these methods

116 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

Table 4.1. Quality comparison of the Stein-ICP against other methods using me-
dian KL divergence, overlapping coefficient, and Bhatacharya distance over consecu-
tive pairs of entire sequences, with a 10th and a 90th quantile written in the brackets.

Sequence Method KL Div. OVL Db

Apartment

Ours 5.7 [1.2,4e2] 0.7 [0.4,0.9] 1.1 [0.3,2.8]
Bayesian-multi 4.2 [0.8,1e2] 0.7 [0.3,0.9] 1.3 [0.2,8.6]
Bayesian-ICP 4.6 [1.6,2e2] 0.7 [0.4,0.8] 1.6 [0.4,3.4]
COV-3D ICP 2e2 [17.2,2e4] 0.3 [0.1,0.5] 4.9 [3.2,6.4]
Closed-form ICP 1e4 [8e2,9e6] 0.0 [0.0,0.0] 9.8 [6.4,16.1]

Gazebo Winter

Ours 1.1 [0.5,3e2] 0.9 [0.4,0.9] 0.3 [0.1,2.5]
Bayesian-multi 2.9 [1.0,4e2] 0.8 [0.4,0.9] 0.6 [0.3,4.1]
Bayesian-ICP 3.0 [1.2,3e2] 0.8 [0.4,0.9] 0.6 [0.3,2.7]
COV-3D ICP 42.4 [7.7,1e3] 0.3 [0.1,0.4] 13.0 [11.2,17.7]
Closed-form ICP 1e5 [4e4,1e7] 0.0 [0.0,0.0] 3.0 [2.3,4.0]

Hauptgebaude

Ours 0.6 [0.3,17.6] 0.9 [0.8,0.9] 0.2 [0.1,0.7]
Bayesian-multi 1.9 [1.3,13.2] 0.8 [0.7,0.8] 0.6 [0.3,0.9]
Bayesian-ICP 1.8 [1.3,15.7] 0.8 [0.7,0.8] 0.6 [0.3,1.0]
COV-3D ICP 2e2 [55.5,8e2] 0.2 [0.1,0.3] 4.1 [3.2,5.0]
Closed-form ICP 4e4 [1e4,1e5] 0.0 [0.0,0.0] 12.1 [10.2,14.4]

Mountain Plain

Ours 2.1 [1.6,12.7] 0.7 [0.6,0.9] 0.7 [0.5,2.1]
Bayesian-multi 62.0 [1.9,5e2] 0.5 [0.3,0.8] 1.6 [0.5,10.4]
Bayesian-ICP 88.9 [4.3,3e2] 0.5 [0.3,0.7] 1.7 [1.2,7.5]
COV-3D ICP 16.1 [6.4,69.4] 0.3 [0.2,0.5] 3.0 [2.1,4.6]
Closed-form ICP 4e4 [1e4,1e5] 0.0 [0.0,0.0] 11.7 [9.0,16.3]

Stairs

Ours 2.6 [0.9,3.7] 0.7 [0.5,0.8] 1.0 [0.3,1.6]
Bayesian-multi 1.9 [1.0,5.7] 0.8 [0.5,0.9] 0.6 [0.3,1.7]
Bayesian-ICP 2.1 [0.9,4.9] 0.7 [0.5,0.9] 0.7 [0.3,1.9]
COV-3D ICP 16.1 [11.3,1e2] 0.3 [0.2,0.4] 5.3 [3.6,6.1]
Closed-form ICP 4e3 [6e2,8e4] 0.0 [0.0,0.0] 8.9 [6.1,11.7]

Wood Autumn

Ours 0.6 [0.4,1.7] 0.9 [0.8,0.9] 0.1 [0.1,0.3]
Bayesian-multi 1.2 [0.8,2.5] 0.9 [0.8,0.9] 0.2 [0.2,0.8]
Bayesian-ICP 1.2 [0.7,3.2] 0.9 [0.6,0.9] 0.3 [0.2,1.4]
COV-3D ICP 8.1 [7.1,9.4] 0.4 [0.3,0.5] 3.4 [2.8,4.0]
Closed-form ICP 4e4 [2e4,1e5] 0.0 [0.0,0.0] 12.7 [11.3,14.1]

fail to provide correct uncertainty estimates. The Closed-form ICP method only pro-

vides reliable estimates in situations where uncertainty arises solely due to sensor noise

(M. Brossard, 2020), which is not the case in many of the scenes in the Challenging

4.4 Experiments 117

dataset. The COV-3D method relies on the accurate initial pose uncertainty estimation

to provide a correct pose covariance. This causes the algorithm to fail when the initial

covariance estimate is either inexact or not available.

When comparing Stein-ICP with Bayesian-ICP and Bayesian-multi we can see that in

most scenes Stein-ICP performs better. The only exception is Stairs where Bayesian-

ICP performs better. As the KL divergence is computed based on the covariance of the

samples, the fact that Stein-ICP only produces 100 samples while Bayesian-ICP produces

1000 samples can have an impact on the KL divergence. However, overall both methods

produce the results of comparable quality. Similar results can be observed for the OV L

measure and Db where Stein-ICP performs better overall.

4.4.3 Odometry

In this section, we use Stein-ICP to compute odometry estimates by propagating the

frame-to-frame expectations of the ICP transformation distributions to obtain a global

pose estimate. These results are compared with the odometry estimate obtained by

Bayesian-ICP. As our method provides samples of the transformation parameters and

can capture multi-modal distributions, the overall expectation and covariance may not

represent the underlying correct pose.

For a sequence of l scans the individual ICP pose estimates are combined as TE =

T 1
0 T

2
1T

l
l−1. Where T ll−1 is a 4×4 homogeneous transformation matrix that captures the

mean rotation and translation between scan l and l−1. A 4th order approximation (Bar-

foot and Furgale, 2014) is used to combine the individual scan-to-scan covariances. The

resulting trajectories for Gazebo Winter, Stairs and Newer College dataset (Ramezani

et al., 2020) are overlaid onto the ground plane to visualize the estimated trajectories in

Fig. 4.6. The lines display the trajectories and the ellipses show the 3− sigma (95%)

confidence sets for uncertainty estimation of Stein-ICP and Bayesian-ICP. The plots in

Fig. 4.6 show that the mean trajectory obtained from Stein-ICP and Bayesian-ICP esti-

mates are similar and consistent with the ground truth trajectory. The covariance ellipses

118 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

Figure 4.6. Stein-ICP and Bayesian-ICP odometry overlaid on the ground truth tra-
jectory for Gazebo Winter and Stairs, and Newer College dataset (Ramezani et al., 2020).
The ellipses represent the 95% confidence set of the compound covariance at the last pose
of odometry for each method for sequences and along the entire trajectory for the Newer
College dataset (Ramezani et al., 2020)

.

estimated using Bayesian-ICP are larger and less certain than those of Stein-ICP. As the

odometry estimates are obtained by accumulating transformations (both translation and

rotations) small differences in errors can add up over the trajectory, amplifying the small

differences between Stein-ICP and Bayesian-ICP reported in Table 4.1. Overall both

methods provide good odometry trajectories and covariance estimates. The ability to

estimate odometry trajectories including uncertainty is crucial in many robotic applica-

tions such as autonomous navigation and SLAM. More generally any method reliant on

pose estimation can use the uncertainty provided by these methods for decision making.

4.4 Experiments 119

Figure 4.7. Translational (top) and rotational (bottom) error distributions over entire
trajectories of Stein-ICP in comparison to Bayesian-ICP and SGD-ICP method on the
Challenging dataset. Overall, Stein-ICP gives equivalent performance to that of SGD-ICP
indicating that Stein-ICP does not suffer from a reduction in quality despite providing
uncertainty estimates.

4.4.4 Impact of distribution estimation on mean pose

estimation quality

Estimating the full distribution over pose parameters is useful. However, if a single solu-

tion exists what, if any, is the price in pose estimation accuracy being paid in comparison

to a standard point estimation method? To answer this question we examine the tra-

jectory estimation errors for Stein-ICP, Bayesian-ICP, and SGD-ICP all using both the

point-to-point and the point-to-plane error metric. To measure the local accuracy of the

trajectory estimation we compute the relative pose error (Sturm et al., 2012) (RPE) for

the SGD-ICP solution and each sample of the distributions produced by Stein-ICP and

Bayesian-ICP. The RPE is defined as follows:

E = (T̂−1
i T̂i+∆)−1(T−1

i Ti+∆), (4.5)

120 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

where (T̂−1
i T̂i+∆) is the ground truth transformation and (T−1

i Ti+∆) is the ICP trans-

formation between scan i and i+ ∆, with ∆ = 1 here.

The translational error is computed using the Euclidean distance of the translation com-

ponents of E while the rotational errors are computed using absolute angular differences

between the orientation of the ground truth and the estimated pose. For sample based

methods we obtain a single error by averaging together the per sample errors. In Fig. 4.7

we show the translational (top) and rotational (bottom) error distributions over all the

consecutive scan pairs of each used sequence independently.

From this we can see that the estimates of the distribution based methods are not any

worse than those of a point estimation method. The choice of error metric has a bigger

impact on the results than whether or not a distribution is estimated. This means that

we do no give up any accuracy as far as transformation estimation goes with Stein-ICP.

4.4.5 Run-time comparison

Next, we compare the run-time of Stein-ICP, Bayesian-ICP and Bayesian-multi. Tradi-

tionally, obtaining uncertainty estimates for ICP methods was computationally expen-

sive, especially if accurate but slow Markov Chain Monte Carlo based methods were used.

Run-time efficiency is one of the main advantages of Stein-ICP due to its parallelism and

leverage of GPUs.

In the following, we present a break down of the run-time by the individual components

of Stein-ICP compared to Bayesian-ICP. To this end, we use the Gazebo Winter dataset

and run Stein-ICP for 100 iterations using 100 particles. In Bayesian-ICP, each iteration

provides us with a sample. However we need to run the method over a certain number

of iterations before the Markov chain becomes stable; a process known as burn-in. To

this end, we run Bayesian-ICP for 1100 iterations to collect 1000 sequential samples after

discarding initial 100 burn-in samples. We also run 10 parallel chains of Bayesian-multi

where each chain collects 100 samples to produce a distribution of equivalent quality.

4.4 Experiments 121

Figure 4.8. Break-down of the run-time (sec) of Stein-ICP in comparison to Bayesian-
ICP and parallelized multi-chain Bayesian-ICP on GPU. The components are mini-batch
sampling time (top left), transforming point cloud with the updated transformation time
(top middle), matching time (top right), gradient time (bottom right), and update time
(bottom middle). Bottom right shows the total time. For Stein-ICP, gradients time
includes the kernel estimation and force computation time. These results demonstrate
that Stein-ICP is more efficient than both versions of Bayesian-ICP.

with a burn-in period of 100 iterations. All computations are performed on a desktop

computer with an NVidia Titan-V GPU.

Figure 4.8 presents the run-time of the various components along the Y-Axis. The com-

putation is broken down into the following five steps: mini-batch sampling, transforming

the point cloud, matching of point pairs between clouds, computation of the error metric

gradient, and updating the transformation parameters. Even though Stein-ICP is run

with 100 particles, which is roughly equivalent to running 100 independent SGD-ICP in-

stances, Stein-ICP takes 1
8th of the time Bayesian-ICP requires for each ICP component.

This is because Stein-ICP’s particles can trivially be parallelized on a GPU. In contrast,

Bayesian-ICP produces samples under the Markov assumption, i.e., every sample depends

on the previous one, therefore it cannot reliably exploit GPU parallelism to generate sam-

ples. Even parallel Bayesian-ICP (if run for efficiency) consumes relatively more time.

122 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

This is due to the burn-in period necessary for each parallel chain of Bayesian-ICP to

ensure convergence to the true distribution. Stein-ICP ability to perform computations

in parallel on a per particle basis means that the GPU implementation can do more work

for 100 particles in roughly the same time as required by a single particle. This results

in over 5 times speedup compared to Bayesian-ICP.

Both Cov-3D and Closed-form methods require at least solving a point-to-plane ICP first

(2.62±0.19 sec on the GPU) in addition to the time required to compute the covariances.

In addition, Cov-3D requires 12 registration steps for the unscented transform.

4.4.6 Run-time of Stein-ICP on CPU and GPU

Finally, we present a break down of the run-time into the individual components of Stein-

ICP both on CPU and GPU against variable particle count. The CPU experiments are

performed on a desktop PC with an Intel Core i7−7700 CPU and 16 GB RAM with a

single-threaded implementation. To this end we use the Gazebo Winter dataset and run

Stein-ICP for 100 iterations using 10, 20, 30, 40, 50, 70, and 100 particles.

Figure 4.9 presents the run-time of the various components, with the CPU run-time on

the left Y-Axis and GPU run-time along the right Y-Axis. The computation is broken

down into the following five steps: mini-batch sampling, matching of point pairs between

clouds, computation of the error metric gradient, computing the kernel, and updating the

transformation parameters. This run-time does not include point cloud transfer time to

GPU which is insignificant compared to total run-time of Stein-ICP on GPU. We can see

that on the CPU most of these actions take time linear in the number of particles, which

is due to the limited ability of the CPU to execute identical work in parallel. The GPU on

the other hand takes constant time independent of the number of particles. This is due

to the number of particles not exceeding the compute units of the used GPU. From the

total run-time numbers we can see how CPU and GPU run-times are heavily dominated

by the gradient computations and matching times respectively. Even though the CPU

has more efficient algorithms, which at times are faster than their GPU counterparts,

4.5 Summary 123

Figure 4.9. Break down of the run-time (sec) on CPU (purple along the left Y-axis)
and GPU (grey along the right Y-axis) against particle count along the X-axis. The
components are mini-batch sampling time (top left), matching-time (top middle), gradi-
ent time (top right), kernel computation time (bottom left), and update time (bottom
middle). Bottom right shows the total time. This run-time does not include point cloud
transfer time to GPU which is insignificant compared to the total run-time of Stein-ICP
on GPU. Figure shows that gradient computation on CPU and matching point on GPU
make the most expensive steps.

the ability to perform computations in parallel on a per particle basis means that the

GPU implementation can do more work in the same time in comparison to the CPU.

Thus the design choices of Stein-ICP, which make it amenable to exploit modern GPU

hardware, allow it to provide high quality ICP solutions with uncertainty information in

a few seconds of computation as opposed to tens of seconds.

4.5 Summary

In this chapter, we devised Stein-ICP, a probabilistic generalization of the popular ICP

that provides accurate posterior pose distributions. Stein-ICP exploits the stochastic

optimization nature of SGD-ICP combining it with the recent Stein variational gradient

124 4 Stein-ICP for Uncertainty Estimation in Point Cloud Matching

descent (SVGD) algorithm to approximate the posterior distributions of transformation

parameters between two point clouds using particles. The independent nature of these

particles makes Stein-ICP suitable for GPU parallelization. Extensive experiments using

both RGB-D as well as LiDAR data demonstrate the capability of our method in provid-

ing high-quality pose parameter distributions in only a few seconds of computation. In

contrast to Markov chain Monte Carlo solutions to probabilistic point-cloud matching,

Stein-ICP propagates gradients of particles in parallel, connecting gradient descent on

the objective function with a repulsive term that ensures particles are aligned and cap-

ture the tail of the underlying distribution. This opens up new possibilities to leverage

calibrated uncertainty estimation in applications requiring robust point cloud matching

such as simultaneous localization and mapping or 3D reconstruction. Another exciting

direction on using the uncertainty provided by the method is for grasping unknown ob-

jects based on a list of known objects with associated grasping positions. The uncertainty

can be used to indicate which of the known objects is a better match and which direction

(with less uncertainty) to grasp the unknown object. In the next chapter, we utilize

gradient-based SVGD update into a filtering framework to efficiently perform the state

estimation task in high-dimensional state spaces.

Chapter 5

Stein Particle Filter for Nonlinear, Non-Gaussian State

Estimation

In the previous chapter, we developed a non-parametric variational inference framework

to capture the uncertainty in transformation parameters. In this chapter, we develop

a particle filter framework based on this non-parametric variational inference method (Liu

and Wang, 2016) to perform state estimation task efficiently in high-dimensional spaces.

The work presented in this chapter has been published in RA-L (Afzal Maken et al.,

2022b).

5.1 Introduction

State estimation is a core component of many robotic systems and is used in applications

ranging from self-driving vehicles for tasks such as ego-vehicle state estimation and dy-

namic object tracking, to grasping and manipulation for precise object pose estimation.

The most widely employed type of state estimation filters are Bayesian filters such as

Kalman filters and non-parametric alternatives such as particle filters. A Bayesian filter

determines the state of a system based on an a-priori specified process model and an

update model. The posterior estimate over the system’s state is computed via Bayes’

rule combining a prior distribution over the system state and a likelihood function which

captures the relation between the system state and observations.

The Kalman filter (Kalman, 1960) is optimal for linear systems with Gaussian noise

while extensions to it such as the extended Kalman filter (EKF) (Gelb and Corporation,

125

126 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

1974) relax the linearity assumption by computing local linearizations to handle nonlin-

ear systems. These approaches are widely used due to their computational efficiency and

simplicity. However, the assumptions of a parametric representation limit their applica-

bility in complex and multi-modal scenarios. In those scenarios a non-parametric particle

filter (Doucet et al., 2001), which represents the state using a collection of particles, or

samples, rather than a parametric distribution, is often employed. The trade-off for this

increased expressiveness comes in the form of computational complexity making parti-

cle filters challenging to use in high-dimensional problem domains due to the number of

particles required growing exponentially.

In this chapter, we propose a novel filter method based on a Quasi-Newton extension

of Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016) to address the

scalability issues of particle filters while remaining flexible to accommodate multi-modal

posteriors. Similar to particle filters, SVGD approximates the posterior distribution using

a set of particles. However, unlike a particle filter which resamples the particles based on

their weight, in SVGD particles are transported towards the posterior distribution along

the update model’s gradients. This optimization is embedded in a reproducing kernel

Hilbert space (RKHS) which provides a closed-form expression of the posterior distri-

bution’s gradient. To ensure the full distribution is recovered as opposed to only the

most likely mode, the interaction between particles is taken into account via a smoothing

kernel. The net result of this is that fewer particles are required to obtain a good approx-

imation. Additionally, since SVGD transports particles towards the posterior without

any resampling the issues arising from particle deprivation in standard particle filters are

not present.

Contribution: The main contribution of this chapter is a gradient-based particle filter-

ing algorithm that incorporates second-order information to scale the method to high-

dimensional problems. The proposed method exploits the differentiability of the update

and process models together with the flexibility of SVGD to model complex dynamical

systems. We incorporate second-order information with L-BFGS optimization (Nocedal

and Wright, 2006) into the gradient flow of particles to alleviate the problems faced by

5.2 Related work 127

non-parametric filtering methods in high-dimensional problems. Experiments for general

state estimation and localization applications demonstrate the practical properties of the

method. A Python implementation of the proposed method is publicly available.1

The remainder of this chapter is organized as follows. Section 5.2 reviews the related

work to state estimation methods. In Section 5.3, we present our proposed method –

Stein-particle filter. Stein-particle filter is empirically evaluated in Section 5.4. Finally,

this chapter is concluded in Section 5.5.

5.2 Related work

Filtering has long been used in robotics and other fields for a wide range of applications

which needed to estimate parameters of some system based on observations. For many

state estimation systems the Kalman filter (Kalman, 1960) or extensions to it such as the

extended Kalman filter (Gelb and Corporation, 1974) and unscented Kalman filter (Julier

and Uhlmann, 1997) are used. This includes real-time MAV state estimation (Weiss et al.,

2012), self-driving vehicles (Thrun et al., 2006), and NASA’s Ingenuity Mars helicopter

(Grip et al., 2019). Despite their widespread use in robotics and elsewhere their restrictive

assumptions of a uni-modality and Gaussian noise make them a bad fit for a variety of

challenging tasks. This includes WiFi-based indoor localization (Kothari et al., 2012)

and complex sensor fusion setups (Thomas et al., 2007) where multi-modality and non-

Gaussianity are expected to occur.

Despite the more expressive nature of the particle filters when compared to the Kalman

filters they have a major drawback, namely computational complexity. To ensure proper

behaviour of the particle filter a sufficient number of particles has to be used which in-

creases with the dimensionality of the problem. For a planar 3 DoF localization problem it

is not uncommon to use 1000 particles or more to ensure good performance. Consequently,

there is a wide range of methods that attempt to alleviate this challenge of the particle

filters, including methods such as Hybrid Monte Carlo (HMC) filters (Duane et al., 1987;
1https://bitbucket.org/fafz/stein_particle_filter

https://bitbucket.org/fafz/stein_particle_filter

128 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

Choo and Fleet, 2001), corrective gradient refinement filter (CGR) (Biswas et al., 2011),

Rao-Blackwellised particle filters (RBPF) (Doucet et al., 2000), and Gaussian particle

filters (GPF) (Kotecha and Djuric, 2003). HMC filters use a set of Markov chains to

generate a fixed number of samples and explore the state space. This is combined with

more advanced Markov Chain Monte Carlo (MCMC) techniques such as Hamiltonian

dynamics and Metropolis rejection test to improve sample efficiency. Nonetheless, even

if the number of particles is reduced the overall number of samples remains large in part

due to the burn-in required by MCMC. CGR adds a refinement and acceptance step into

the standard filter loop with the goal to redistribute samples to better capture uncer-

tainty. To this end CGR uses the gradient of the update model to correct estimates of

particles that disagree with the observation model. In contrast to our method, which also

uses the gradient of the update model, CGR performs a resampling step. RBPF require

structural knowledge of the posterior distribution and increases the particle efficiency by

marginalizing out the tractable substructure of the filter from the posterior distribution.

In RBPF each particle is equipped with a Kalman filter or a hidden Markov model filter,

to perform marginalization, which needs to be updated in each iteration making RBPF

computationally more expensive than a particle filter. GPF approximate the posterior

distribution by a single Gaussian and are sensitive to the linearization errors.

Particle filters also suffer from particle impoverishment (Arulampalam et al., 2002) which

causes all the particles to collapse to a small subset of particles in the resampling step

and thus reducing the diversity. Different methods have been proposed to address this

problem by either keeping track of hypothesis or redistribution particles. Clustered par-

ticle filters (Milstein et al., 2002) for example preserve the particles for multiple likely

hypotheses. KLD adaptive sampling (Fox, 2001) adapts the number of particles based on

the uncertainty in the belief potentially maintaining the diversity. To overcome particle

degeneracy issues, (Merwe et al., 2001) runs an individual UKF for each particle. Sensor

resetting (Lenser and Eloso, 2000) is an approach that initializes the particles based on

hypothesis from the observations when the state estimate is uncertain. However, sensor

resetting depends on the likelihood of the current observations given the current state,

5.3 Stein particle filter 129

which makes it sensitive to noise in the observations (Coltin and Veloso, 2011). Our pro-

posed method does not suffer from this problem as SVGD naturally prevents all particles

from collapsing onto each other and forces distribution over the full posterior via the

gradient information of the update model.

An emerging class of filtering methods attempt to combine the correctness of Monte Carlo

(MC) sampling with the speed of variational inference (VI). The mapping particle filter

(MPF) (Pulido and van Leeuwen, 2019) uses first order gradient information to represent

the posterior distribution in the SVGD (Liu and Wang, 2016) framework, and hence

can be slow to converge (Zhu et al., 2020). Moreover, MPF uses an isotropic kernel to

weight and disperse the particles which can be problematic in capturing the structure of

the posterior distribution. Our method generalizes MPF by incorporating second order

information into the gradient flow as well as in transforming the kernel to distribute

particles to high-probability regions. This results in an improved convergence rate for

high-dimensional problems.

5.3 Stein particle filter

In this section, we describe the prediction and update steps of a novel filtering technique

which is based on Stein variational gradient descent (SVGD) (Liu and Wang, 2016).

Similar to particle filters, Stein variational gradient descent (SVGD) approximates an

intractable but differentiable posterior (target) distribution p(x|z) with a non-parametric

distribution represented by a set of N particles {xj}Nj=1. In contrast to particle filters,

SVGD particles follow an optimal gradient direction to match to the posterior distribution

while minimizing the KL divergence between the true posterior p(x|z) and the variational

approximation q[αG](x). The update equation for Stein particles is revisited below.

xjl+1 = xjl +αĜ∗l (xj), ∀j = 1, . . . ,N, ((2.50) revisited)

130 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

where

Ĝ∗(x) = 1
N

N∑
j=1

[(
∇xj logp(D|xj) + ∇xj logp0(xj)

)
k(xj ,x) +∇φjk(xj ,x)

]
,

((2.57) revisited)

SVGD uses first order gradients to sample the posterior distribution and solves the op-

timization problem in (2.50) using mini-batch stochastic gradient descent (SGD). For

non-convex problems, however, gradients based methods can be slow in convergence (Zhu

et al., 2020). This is the motivation to include second order curvature information in our

proposed method which we describe below. Please refer to Sections 2.3.2 and 2.4 which

cover necessary background on SVGD and Bayes filtering respectively.

As both accuracy and speed are critical in filtering problems, we leverage second-order

(curvature) information and propose a Stein Quasi-Newton Gradient Descent algorithm

based on L-BFGS (Nocedal and Wright, 2006) (presented in Section 2.2.2.2).

5.3.1 Prediction step

We first describe how the filtering equations are solved as part of our framework. In the

prediction step, we need to marginalize over the previous step’s posterior multiplied by

the transition model. As with particle filters, the previous posterior is represented by

a set of particles {xjt−1}Nj=1 which allows us to simply apply the transition function to

propagate the particles to obtain the predictive distribution at time t:

p(xt|z1:t−1,u1:t)≈
1
N

N∑
j=1

p(xt|xjt−1,ut). (5.1)

5.3.2 Update step

In the update step, we update the current belief with new observations as per Eq. (2.61).

The logarithm of the posterior is given by,

logp(xt|z1:t) = logηc+ logp(zt|xt) + logp(xt|z1:t−1,u1:t), (5.2)

5.3 Stein particle filter 131

which is used in equation (2.57) to propagate the particles in equation (5.7) and include

the new sensor observation. We run a few iterations of equation (5.7) (typically between

10 and 50) to converge to an accurate posterior. Note that logηc does not depend on x

hence its derivative is zero and does not incur in extra computational cost. Finally, we

can rewrite the posterior expression as,

p(xt|z1:t,u1:t)∝ p(zt|xt)p(xt|z1:t−1,u1:t), (5.3)

where p(xt|z1:t−1,u1:t) is the predictive distribution given by equation (5.1).

5.3.3 Stein Quasi-Newton gradient descent

We incorporate second-order information into the standard SVGD algorithm in two ways,

in kernel scaling and gradient flow, without a substantial change in its main properties.

First, we use curvature information represented by the Hessian of the logarithm of the tar-

get density to specify an anisotropic kernel that better captures the geometry of the target

density. This idea has been used in the Stein variational newton (SVN) method (Detom-

maso et al., 2018) within a full Newton extension of SVGD. The Hessian scaled RBF

kernel used in our method is defined as, k(x,x′) = exp
(
−1
d(x−x′)>M(x−x′)

)
, where

d is the dimensionality of x and M approximates the expected curvature. Using A(x)

to denote the local approximation of the Hessian of the negative log-target density at a

particle location, A(x) ≈ −∇2
x logp(x), we can define M := 1

N

∑N
i=1A(xi). The effect of

using curvature information to compute the kernel is to deform the space in the direc-

tions of higher variations, making the particles flow more evenly to better capture higher

probability regions.

We also add curvature information to scale the gradient update in equation (2.50) by

a positive definite preconditioner derived from the Hessian. This accelerates the con-

vergence rate in the direction of the curvature. As for high-dimensional problems, the

Hessian can be very expensive to compute, we adopt a quasi-Newton solution based on

132 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

L-BFGS that iteratively approximates the inverse Hessian as,

Hl+1 = (I−ρlslyTl)Hl(I−ρlylsTl) +ρlslsTl (5.4)

sl = xl+1−xl (5.5)

yl =∇xl+1 logp(xl+1)−∇xl logp(xl). (5.6)

In the above, I is the identity matrix, ρk = 1
yTl sl

, and the initial solution is usually set to

be a diagonal approximation to the inverse Hessian. The updated equation for the Stein

particle flow is then,

xjl+1← xjl + εHlĜ
∗(xjl), (5.7)

Note that to update the prediction particles, Stein particle filter (SPF) uses a quasi-

Newton approximation to the inverse Hessian of the cost function which acts as a pre-

conditioner to the gradient update. The approximated Hessian incorporates the history

of gradients which accounts for the curvature of the log posterior. This significantly im-

proves the convergence rate of the method compared to standard SVGD. The particle

update is performed in L iterations of the L-BFGS algorithm which allows the estimate

of the Hessian of the observation likelihood to iteratively correct the prediction distri-

bution based on new observations. Similar to particle filters, particles are initialized

uniformally for global state estimation problems. Then for each next time step, particles

utilize the previous updated state as a prior distribution. In contrast to particle filters,

SPF estimates the posterior distribution with equal weight particles and does not re-

quire a resampling step, thus eliminating the potential particle impoverishment problem

commonly observed in particle filters. The core steps of SPF are outlined in Algorithm

15.

5.4 Experiments

In the experiments, we demonstrate the ability of the proposed Stein particle filter (SPF)

method to provide accurate state estimation while requiring significantly fewer particles

5.4 Experiments 133

Algorithm 15: One step of Stein particle filter
Input: Xt−1, ut, zt

1 xjt ∼ p(xjt |z
j
1:t−1,u1:t) ∀j = 1, . . . ,N // Prediction step using (5.1)

2 for l = 1,2, . . . ,L do
3 xjl+1← xjl +αHlĜ

∗(xjl) ∀j = 1, . . . ,N // Update with L-BFGS (5.7)
4 end
5 return Xt

compared to a conventional particle filter (PF) which uses low variance sampling (Thrun

et al., 2005). In Section 5.4.1, we first demonstrate the efficiency and accuracy of our

proposed method on a synthetic task and provide comparisons to a PF. To showcase

the improved convergence rate of our method and the relative benefit of adding second-

order information and L-BFGS compared to other gradient-based methods, we employ

SVGD (Liu and Wang, 2016) and SVN (Detommaso et al., 2018) within the particle fil-

ter framework to obtain SVGDPF and SVNPF respectively and use Adam (Kingma and

Ba, 2015) as their optimizer. SVN accelerates the convergence of the SVGD algorithm

by exploiting the second-order information in Stein variational framework. SVGDPF is

our MPF (Pulido and van Leeuwen, 2019) implementation and can be seen as a partic-

ular case of SPF, i.e., SVGDPF is SPF with no second order information and Adam as

the optimizer. In Section 5.4.2, we demonstrate the ability of SPF to scale to higher-

dimensional problems with limited particle count. Finally, in Section 5.4.3, we evaluate

our method in a challenging 3D localization task. All experiments were performed on a

desktop PC with an Intel Core i7-7700 CPU and 16 GB RAM.

5.4.1 Multi-modal tracking

In this experiment, we demonstrate the capability of SPF to track the robot accurately

in multi-modal occluded scenes and its ability to recover the correct mode upon receiving

new observations. Through this experiment we also validate the better convergence rates

of SPF in comparison to SVGDPF and SVNPF. In this experiment a simulated moving

robot, shown in Fig. 5.1a, needs to be tracked over time. The scene is observed by a static

laser scanner which provides observations to the filter to track the state of the robot. As

134 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

the robot reaches the first obstacle it follows one of two possible paths. Upon reaching

the second obstacle to the laser scanner, robot changes its heading in occlusion.

(a)

(b)

(c) (d)

Figure 5.1. State estimation in a simulated 2D environment with 50 particles. (a)
simulated environment with two obstacles. (b) Trajectory estimates overlaid on the
ground truth. When robot looses the true trajectory in occlusion, only gradient based
methods recover the true state immediately upon receiving the laser readings, while PF
continues on in the wrong direction. (c) Corresponding mean error across different parts
of the trajectory showing earlier convergence of SPF. Top subplot shows poor performance
of PF with 50 particles. The bottom subplot shows improved performance of PF with
300 particles. PF still requires few time steps to converge owing to its overoptimistic
particle distribution shown in 5.1d.

5.4 Experiments 135

To track the state of the moving robot, all methods use a simple constant velocity motion

model. The likelihood function of the update model in this experiment is the Euclidean

distance between the laser measurements and the proposal distribution. The gradients

are then sought from this optimization problem by minimizing the distance between the

state obtained with the observation and the proposal distribution. By following the

gradients, gradient-based methods update the state of the robot at the update step in

fixed 35 iterations. Each method is evaluated 10 times using 50 particles and the error

bars over these runs are shown across the entire trajectory in Fig. 5.1c. Blank spaces

show the occluded motion where we do not compute the errors for simplicity.

Figure 5.1b shows the quality of estimated trajectories overlaid on the ground truth tra-

jectory and Fig. 5.1d shows the corresponding particle distributions at a specific time

step after all methods have converged. This figure shows that the particles’ spread in

PF state estimation is more condensed, which is due to resampling of the particles, com-

pared to gradient-based methods where the repulsive force among the particles induces

a reasonable spread. The PF particles represent an over-optimistic estimation of the

posterior which tends to cause slow convergence to the true state distribution even with

300 particles as shown at the bottom subplot of 5.1c.

Fig. 5.1c shows an earlier convergence of SPF to the true state compared to other meth-

ods when run for a fixed number of iterations as indicated by the lowest error from the

very initial time steps. The approximate curvature information exploited by SPF when

optimizing the objective function scales the gradient direction by constructing a positive

definite matrix resulting in faster convergence. SVNPF also uses second order informa-

tion in constructing the steepest direction and achieves earlier convergence compared to

SVGDPF. The convergence of PF purely relies on the chance of particles being close

to the true state in the global initialization after which it requires a few time steps to

converge. PF performs poorly with 50 particles in this environment as shown in Fig. 5.1c

(top) and achieves roughly equivalent performance to that of gradient based methods

with 300 particles shown in the Fig. 5.1c (bottom).

136 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

Figure 5.2. Mean error of gradient-based methods against number of iterations for the
first time step (top) and 15th time step when all methods have converged to the true
state (bottom). SPF converges earlier to the correct state while other methods take
much longer. The bottom subplot shows the performance in tracking mode indicating
instant convergence requiring a few iterations.

Figs. 5.1b and 5.1c demonstrate the ability of gradient based methods to recover the true

state after a long sequence of update steps with no observations due to the change in the

robot’s heading while occluded by an obstacle.

In these types of occluded scenarios, a filter typically predicts the motion in a straight

line following a constant velocity motion model. Once laser measurements become avail-

able, gradient-based methods are able recover the true trajectory while PF does not, as

indicated by the corresponding large error in Fig. 5.1c.

Figure 5.2 presents detailed convergence analysis of gradient-based methods by recording

the error over 10 evaluations, each run for 90 iterations. The recordings are shown for the

first (top) and the fifteenth (bottom) time step to highlight the difference in convergence

behaviour for the global state estimation and tracking tasks respectively. This figure

shows that all gradient based methods take considerably longer time to perform global

state estimation, as indicated by large errors before convergence (top), compared to

performing the tracking tasks (bottom) where a few iterations suffice. However, among

these methods, SPF again achieves much earlier convergence followed by SVNPF. This

5.4 Experiments 137

Figure 5.3. Each plot of a sin curve shows the results for five dimensions for the 10
sin functions. (Top): Quality of SPF’s estimated trajectory using 50 particles. (Middle):
PF fails to estimate the correct trajectory using 50 particles. (Bottom): PF’s improved
trajectory using 10,000 particles.

experiment validates the benefits of exploiting curvature information in the estimation

process compared to first order gradient information.

5.4.2 Solution quality with limited particle count

In this experiment, we showcase the SPF’s ability to scale to higher-dimensions while

being limited in particle count where PF does not work. The task is to track the phase

shift and amplitude of a sin wave of the form g(t) = Asin(k(t+φ)), where A, k, and φ
k

are amplitude, period, and horizontal phase shift respectively.

We start with two sin functions and increase the dimensionality up-to 10 functions using

50 particles and compare the quality of SPF and PF estimates. Each sin function is

represented by a two dimensional state space comprised of phase shift and amplitude

138 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

giving us 20 dimensional state space for 10 sin functions. The filters receive the noisy

observations of the true function value which are used in the update model in constructing

the likelihood function as a Euclidean distance between the prediction distribution and

the observations. SPF computes the gradients of amplitude and phase shift from the

likelihood function to update the SPF estimate of the function. Table 5.1 presents the

comparison of SPF and PF in estimating the sin wave function over time using root

mean squared error (RMSE). Table 5.1 demonstrates the ability of SPF to scale to 20

dimensions with just 50 particles.

This experiment shows that SPF can scale to higher-dimensions with a limited number of

particles by exploiting gradients of the likelihood function. Using the gradient information

allows the update model to correct the predicted state, thus improving the quality of

state estimate. In contrast, the computational complexity of PF, in terms of required

number of particles, increases with the increase in the state dimension. As shown by

high RMSE in the Table 5.1, PF is not able to estimate the state using 50 particles and

requires thousands of particles to estimate the state reasonably. The last column of the

Table shows the improved state estimation of PF with 10,000 particles. The quality of

estimated trajectories is presented in the Fig. 5.3.

The top figure shows the quality of SPF’s estimated trajectory for a subset of five di-

mension of the ten sin functions. The middle figure shows that PF does not estimate the

correct state using only 50 particles. The bottom figure shows the quality of PF using

10,000 particles.

Table 5.1. State estimation errors in high dimensions.

Dimensionality SPF PF PF with more particles
RMSE with 50 particles RMSE with 10k particles

4 0.82±0.63 105.05±47.83 8.29±6.44
8 1.04±0.62 265.63±62.33 27.03±11.69
12 1.39±1.02 319.71±42.99 63.08±29.81
16 1.14±0.69 366.62±37.28 89.65±27.48
20 1.14±0.44 407.12±32.66 123.89±29.98

5.4 Experiments 139

5.4.3 Localization task

In this experiment, we showcase the particle count efficiency of SPF in two case studies:

i) a global localization task and ii) a tracking task, both using the 3D LiDAR data

of the Newer College dataset (Ramezani et al., 2020). We compare the localization

accuracy of SPF and PF using the root mean squared error (RMSE) in Section 5.4.3.2

and present a run-time comparison in Section 5.4.3.3. The localization experiments were

performed with a C++ implementation. In the prediction step, both methods propagate

the particles towards the proposal distribution using an ICP-based motion model. In

the update step, each particle uses an observation likelihood model of the following form:

∀j p(zt|xjt , map) = 1
K

∑K
i=1

d2
ij

σ2 , where map is represented by an octomap (Hornung et al.,

2013) with a 0.2 m resolution, K is the total number of beams in the point cloud, σ is

the standard deviation of the distance measurements of a single beam. Finally,

d2
ij = ||Txjbi−y||2= ||Txjbi−NN(Txjbi)||2, (5.8)

is the Euclidean distance between the end of the ith beam bi ∈R3 and its nearest neighbor

y =NN(Txjbi)∈R3, when projected into the map using the particle’s predicted state xj

as transformation Txj ∈R4×4. This captures how well the particle’s pose estimate explains

the observations of the environment and ideally is zero. To compute the gradients, the

rigid body transformation Txj is decomposed into six terms corresponding to the three

translation and three rotation components of the state of the robot.

5.4.3.1 Global localization

We constrain the 6D localization problem to a 4D one by limiting roll and pitch within 2◦

and perform the global localization using just 50 particles. Particles are spread uniformly

over the entire map with the elevation z being restricted to 10 m height. This is done

to confine the particles to the map boundaries even in areas with vegetation which lack

tall wall structures. To ensure that particles are distributed uniformly, yaw values are

constrained to increments of 30◦. These steps ensure that particles roughly cover the

entire state space while being limited in number.

140 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

Non-convex error landscapes with multiple local minimas can potentially slow down the

SPF’s convergence to the true state. In order to obtain a single or a few likely modes

without performing a resampling step, we propose to perform a re-projection step which

guides particles in unlikely locations towards states of more likely particles. To this end

we compute a new gradient by using the state of the more likely particle xk in the nearest

neighbor search of (5.8). This results in a gradient that pulls the particle towards xk while

still allowing variation in the convergence. To ensure that the observation model can find

a solution we make use a representation proposed in (Du et al., 2017) which augments

the 3D points of the scan with a fourth dimension that represents the Euclidean distance

of each point to the centroid of the scan. This rotational invariant information aids in

finding good point correspondences.

Allowing particles to follow the new gradient direction gives them a chance to converge

to a state closer to the more likely particles’ state while being able to choose different

state during the particle interaction in the RKHS. This is in contrast to performing a

resampling step which replaces the less likely particles with the more likely ones.

Particles for which no observation exists in the map at a given state, acquire the matched

observation pairs of other particles which have a larger number of matching point pairs.

This can happen when a particle is propagated outside the map boundaries at which

stage the observation model can no longer match to the closest observation in the map.

Once particles are initialized uniformly, SPF is run for a few time steps to allow the

particles to converge to possibly several local modes. Ambiguous or noisy observations

can result in multiple-hypothesis during the localization process which are corrected using

the re-projection step.

Figure 5.4 shows the initial local modes SPF recovers in the global localization task. We

can see that the SPF converged mode after re-projection step (shown in pink circle) is

far from the true state. Since SPF corrects the predicted state during the update step

by exploiting the gradients of the observation likelihood model, these particles ultimately

converge to the correct mode as shown in blue circle.

5.4 Experiments 141

Figure 5.4. Global localization results of SPF. Re-projection step brings the locally
converged particles closer to the true closest obstacle in the map where gradients correct
their state in the update step. SPF trajectory is overlaid on the ground truth showing
high quality of the estimated states.

When SPF converges multiple modes, only one of them survives over the time. Others

either die out by crossing the map boundaries or converging to the correct mode. In

this task, PF, with 50 particles, in all 20 runs converged to a wrong state at different

spots in the Parkland. In this experiment, PF requires roughly 1000 particles to reli-

ably converge to the correct mode. SPF with 50 particles and PF with 1000 particles

successfully converge to the true state for 9 and 6 times respectively out of 10 runs high-

lighting the improved performance of SPF even with significantly fewer particles. This

experiment confirms the benefit of avoiding the resampling step to overcome the particle

impoverishment problem and highlights the particle efficiency of SPF in comparison to

PF.

5.4.3.2 Tracking

In this task, both filters start with the correct state to track the Newer College dataset

trajectory using 5, 20, and 50 particles. Table 5.2 shows the RMSE of the localization

error for both SPF and PF in meters, both mean and standard deviation as well as the

142 5 Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation

Table 5.2. Localization Errors (m) with 10th and 90th quantiles in a
tracking setup for SPF and PF with 5, 20, and 50 particles.

Methd. 5 20 50
SPF RMSE 1.19±0.74 1.02±0.64 0.62±0.37

Quantiles 0.31,1.76 0.28,1.41 0.18,0.88
PF RMSE 106.19±73.24 1.75±1.36 0.72±0.51

Quantiles 1.38,194.54 0.21,2.82 0.17,0.91

Table 5.3. Run-time (milliseconds) with 5, 20, and 50 particles.

Method 5 20 50
PF 40.28±10.03 82.40±15.13 108.20±29.85
SPF 42.88±10.04 89.80±15.20 143±30.14
SPF’s extra 0.13±0.01 0.37±0.7 1.74±0.29
cost/iteration

10% and 90% quantiles are reported. While for both 20 and 50 particles both methods

achieve comparable results, SPF always achieves lower variance results. When using only

5 particles the PF diverges where as the SPF still achieves acceptable results. This show-

cases how even in scenarios where a PF works as expected there is benefits in robustness

and number of particles required for our proposed SPF.

5.4.3.3 Run-time analysis

Compared to PF, for each time step SPF incurs an extra cost of 10 to 20 iterations for

tracking and 10 to 60 iterations for global localization task. The PF’s run-time for each

time step and the extra per iteration cost of SPF is shown in Table 5.3. This table shows

that SPF bears only minor overhead of few milli-seconds for each iteration resulting in a

computationally efficient filtering method.

5.5 Summary 143

5.5 Summary

In this chapter, we introduced a novel particle filter which exploits the Stein variational

framework. Our proposed filter transports proposal particles to the target distribution

using gradient information. This flow of particles is embedded in a reproducing kernel

Hilbert space where particles’ interaction is taken into account to bring diversity among

the particles, and moving them harmoniously even when in areas with low or zero proba-

bility mass. As a result our proposed method requires fewer particles to approximate the

posterior while being able to scale to high-dimensions. Our method does not require the

resampling step which tends to lead to particle impoverishment problem. Experiments on

simulated as well as real datasets demonstrate that our method is more particle efficient

as well as able to recover the posterior distribution in multi-modal occluded scenes.

Chapter 6

Conclusions and Future Work

In this thesis, we used state-of-the-art machine learning tools to address the problems

of uncertainty in the perception and high computational cost associated with point

cloud based motion and state estimation. In particular, we developed tools that can

(i) match two point clouds efficiently for motion estimation, (ii) sample transformation

distributions quickly for uncertainty quantification, and (iii) perform state estimation

efficiently in high-dimensional state spaces. This chapter concludes the thesis with a

summary of the key contributions and an outline of future research in Sections 6.1 and 6.2

respectively.

6.1 Summary of contributions and related chapters

The contributions of this thesis are three novel iterative closest point (ICP) (Besl and

McKay, 1992) methods and a computationally efficient filtering technique. A summary

of these contributions and associated thesis chapters is presented below. At the end of

this Section, a list of publications from this work is also presented.

6.1.1 Chapter 3 - Stochastic gradient descent ICP(Afzal Maken

et al., 2019, 2022a)

Point cloud based motion estimation typically depends on a scan matching method for

which ICP (Besl and McKay, 1992) is commonly used. ICP aligns a pair of point clouds,

144

6.1 Summary of contributions and related chapters 145

called source and reference, in two iterative steps. In the first step, correspondence be-

tween pairs of points in the source and reference point clouds are established on the basis

of Euclidean distance. In the second step, a transformation which minimizes the point-

to-point Euclidean distance between the corresponding points is calculated. Standard

ICP uses all available data points in every iteration when computing the transforma-

tion between the two point clouds. The large size of point clouds imposes tremendous

computational challenge in the point cloud processing and matching.

In Chapter 3 we presented an efficient and accurate ICP variant, called SGD-ICP(Afzal Maken

et al., 2019, 2022a), which employs stochastic gradient descent (SGD) (Robbins and

Monro, 1951; Bottou et al., 2018) to solve the optimization problem at the core of ICP.

Solving the optimization using stochastic gradient updates results in significantly faster

run-time without any loss of the quality of the final transformation estimate. Compar-

isons with other commonly used methods show that our proposed method is faster, as

accurate as standard ICP and other popular ICP variants, and easily applicable to point

clouds from different sources without additional step size tuning.

6.1.2 Chapter 3 - Bayesian-ICP (Afzal Maken et al., 2020,

2022a)

ICP is a point estimate method which provides a single estimate of transformation be-

tween two point clouds. However, for safety critical problems such as autonomous driving,

a point estimate of the pose transformation is not sufficient as it does not provide infor-

mation about the multiple solutions or other ambiguities in the environment. Current

probabilistic ICP methods usually do not capture all sources of uncertainty and may

provide unreliable transformation estimates which can have a detrimental effect in state

estimation or decision making tasks that use this information.

In Chapter 3, we also presented a novel ICP method, called Bayesian-ICP (Afzal Maken

et al., 2020, 2022a), which computes not only the expected transformation between two

point clouds but also estimates the full transformation distribution. This is achieved by

146 6 Conclusions and Future Work

leveraging the stochastic nature of SGD-ICP which is combined with stochastic gradient

Langevin dynamics (Welling and Teh, 2011), an efficient MCMC method. The resulting

algorithm is capable of producing high-quality samples of the posterior distributions

in a few seconds compared to hours, that a standard MCMC approach would require.

Extensive experiments evaluate the impact of parameter choices and showcase the ability

of our method to produce accurate posterior estimates as well as expectations of the

transformation.

Chapter 3 also exploited the sampling nature of Bayesian-ICP in a Monte Carlo localiza-

tion task to predict the motion of a mobile robot between two locations. Employed as an

adaptive motion model in a particle filter, Bayesian-ICP propagates its samples to pro-

duce different motion commands for each particle. This is in contrast to using standard

motion models which assume deterministic environments and apply Gaussian noise on

the measured actions to propagate stochastic motion to each particle. Using Bayesian-

ICP samples to produce motion command’s for each particle has the advantage that it

can capture uncertainty arising due to geometry of the environment. This is particularly

advantageous in symmetrical environment, e.g. long corridors, where errors in ICP data

association leads to wrong motion estimation. Bayesian-ICP samples capture the geom-

etry of symmetrical environment and indicate the unreliable transformation with a large

variability among the samples.

6.1.3 Chapter 4 - Stein-ICP (Afzal Maken et al., 2021)

Bayesian-ICP is an MCMC sampling method which produces a sequential series of sam-

ples. The sequential nature of these MCMC samples makes them challenging to exploit

hardware parallelism (Wilkinson, 2005; Murray, 2010; Neiswanger et al., 2014). While

sampling based nature and i.i.d. assumption of MCMC suggest that samples from many

parallel independent Markov chains can be pooled, the poor mixing of the resulting chains

poses challenges to this approach (Murray, 2010). Furthermore the speed gains from these

parallel chains are limited by the initial portion of each chain to be discarded as burn-in.

6.1 Summary of contributions and related chapters 147

Burn-in is a period from simulation to equilibrium, required to produce true samples from

a posterior distribution.

In Chapter 4, we presented Stein-ICP (Afzal Maken et al., 2021) which combines gradient

based optimization of ICP cost function with a form of functional gradient descent (Liu

and Wang, 2016). Stein-ICP approximates the posterior distribution of the transfor-

mation parameters with a non-parametric variational distribution; comprised of a set of

independent particles which are dispersed with a calibrated repulsive force. The indepen-

dent nature of particles allows Stein-ICP to benefit from GPU parallelization. Extensive

experiments using both LiDAR and RGB-D point clouds demonstrate that Stein-ICP can

capture multi-modal distributions in a few seconds of computation. These experimental

results also show the ability of Stein-ICP in providing high quality uncertainty estimates

of the transformation parameters which capture the correct amount of drift in trajectory

estimation.

6.1.4 Chapter 5 - Stein particle filter (Afzal Maken et al.,

2022b)

Motion estimation accuracy is crucial for autonomous navigation tasks such as localization

and mapping. For example, a small drift in the motion estimation can lead to misaligned

distorted map in a mapping task or large pose errors in a localization task. Integration

of motion estimation accumulates small incremental errors over the time which leads

to unbounded growth of drift and transformation uncertainty during navigation. As a

result, motion estimation using ICP (or other odometry source) is integrated into a state

estimation method such as particle filters and Kalman filters. Kalman filters provide

optimal solution for linear problems under Gaussian noise assumption, and particle filters

are commonly used for non-linear and non-Gaussian state estimation problems. While

particle filters can capture complex multi-modal state distributions using a collection of

weighted particles, they are limited to low dimensional state space due to their increased

computational complexity for high-dimensional problems.

148 6 Conclusions and Future Work

In Chapter 5, we presented Stein particle filter (Afzal Maken et al., 2022b) which employs

the Stein variational inference framework (Liu and Wang, 2016) to alleviate the compu-

tational complexity of standard particle filters. Stein particle filters exploit gradients of

both prediction and update step which allow a limited number of particles to estimate

the state of a robot in a high-dimensional state space. Our method has been validated

both on simulated as well as on real data. The results demonstrate that Stein particle

filter can recover the posterior distribution in multi-modal occluded scenes. These results

also show the ability of Stein-ICP to scale to high-dimensional state space with a limited

number of particles where a standard particle filter does not work.

6.1.5 List of Publications

(1) Afzal Maken F, Ramos F and Ott L (2019) Speeding up iterative closest point

using stochastic gradient descent. IEEE International Conference on Robotics

and Automation.

(2) Afzal Maken F, Ramos F and Ott L (2020) Estimating motion uncertainty with

Bayesian icp. IEEE International Conference on Robotics and Automation.

(3) Afzal Maken F, Ramos F and Ott L (2021) Stein icp for uncertainty estimation

in point cloud matching. IEEE Robotics and Automation Letters.

(4) Afzal Maken F, Ramos F and Ott L (2022) Stein particle filter for nonlinear,

non Gaussian state estimation. IEEE Robotics and Automation Letters.

(5) Afzal Maken F, Ramos F and Ott L (2022) Bayesian ICP for mobile robot

localization. International Journal of Robotics Research.

6.2 Future work 149

6.2 Future work

6.2.1 Improving robustness of a mini-batch gradient update

SGD-ICP optimizes the ICP cost function efficiently by computing mini-batch gradients.

The current research does not explore the potential of mini-batch gradients to give prob-

abilistic output or to quantify the quality of the transformation. This research also does

not deal with exploiting mini-batch gradients to reject wrong point associations resulting

especially from partial observability between two point clouds. This is an interesting

research direction that will potentially result in efficient and robust (probabilistic) ICP

methods. Incorrect point associations due to partial observability between two point

clouds, sensor noise, and large rotational offset between point clouds can result in the lo-

cal optimum of SGD-ICP. Future research includes analysing consistency and directional

analysis, similar to (Lee et al., 2018), of gradients of all points in a mini-batch to reject

outliers in a mini-batch and to find overlapping point pairs between two point clouds.

Additionally, curvature, normal information, and a distance metric can be used to weigh

each point in a mini-batch to compute weighted mean mini-batch gradients or to weigh

a mini-batch gradient overall. This will allow us to quantify the quality of a mini-batch

gradients and update the parameters proportionally to the mini-batch weight or reject

the update all together if a mini-batch is weighted under some threshold. Furthermore,

gradients of different mini-batches can be used to give probabilistic output. For example,

many mini-batches can be run in parallel to give parallel transformation updates. The

variance among theses parallel updates can be exploited to quantify uncertainty efficiently

or to assign confidence margin on the final result.

6.2.2 Improving sampling behaviour and convergence rate of

Bayesian-ICP

Bayesian-ICP explores the error landscape with the help of Gaussian noise and provides

samples of transformation parameters. This results in a similar sampling behaviour of

150 6 Conclusions and Future Work

Bayesian-ICP in different error landscapes, e.g., noise has the same sampling behaviour on

flat surfaces, saddle points, or pathological curvature. Future research includes devising

schemes to adapt Bayesian noise parameters for different error landscapes by exploiting

normal and curvature information or by introducing a bias term similar to (Kim et al.,

2022). Additionally, different step size schemes, particularly cyclic step size (Zhang et al.,

2020) where a large step size is used to explore new modes and a small step is used to char-

acterize each mode, can be used to improve the convergence of the method. Furthermore,

a straightforward extension to No-U-Turn-sampler (NUTS) (Homan and Gelman, 2014),

which is an optimized extension of Hamiltonian Monte Carlo (HMC) (Neal, 2010), is an

interesting future direction to attain quick convergence compared to SGLD. A NUTS ex-

tension of Bayesian-ICP does not require hyper-parameter tuning which is the bottleneck

on the use of efficient HMC method.

6.2.3 Improving convergence rate and parameter space

exploration of Stein-ICP

Stein-ICP estimates the uncertainty in the ICP pose parameters using Stein variational

gradient descent (SVGD) framework. Similar to (Liu and Wang, 2016), the current

method exploits only first order gradients in the optimization and uses an RBF ker-

nel which does not capture the underlying geometry of the posterior distribution. The

use of first order gradients in the optimization of a cost function can be slow especially

for complex error landscapes which potentially have multiple local optima. Moreover,

the lack of geometric information of the posterior distribution in the kernel can further

slow down the convergence of the method. Future work includes extending Stein-ICP

to include second order gradients in optimization, similar to the ideas presented in (Zhu

et al., 2020), and devising techniques which can scale the kernel using geometry of the

error landscape as described in (Detommaso et al., 2018; Wang et al., 2019). Incorpo-

rating second order curvature in optimization will potentially result in fast convergence

of Stein-ICP while kernel scaling with curvature information (Detommaso et al., 2018)

6.2 Future work 151

or incorporating preconditioning in SVGD (Wang et al., 2019) will allow the method to

explore the high probability regions of parameter space efficiently.

6.2.4 Exploiting ICP cost’s gradients in learning paradigm

Current research exploits the gradients of ICP cost function in an optimization setting

and does not address the challenges of partial observability in point cloud alignment.

Future work includes exploiting ICP parameter gradients in a neural network to learn

the point cloud registration task especially for partially occluded point cloud pairs. This

can be achieved by combining ideas from attention networks, e.g., (Guo et al., 2021),

to learn features from the overlapping regions between two point clouds with a clever

loss function, such as a triplet loss (Hoffer and Ailon, 2014), to optimize the detection

of similar (overlapped) regions between two point clouds. PointNetVlad (Uy and Lee,

2018) is another promising network which can be employed to find similar regions from

a reference point cloud for a query consisting of points from source point cloud.

6.2.5 Optimization of rotations on SO(3)

SGD-ICP, Bayesian-ICP, and Stein-ICP have been derived using Euler angle representa-

tion of rotation matrix with complicated gradient computation. Euler angles potentially

suffer from singularities, that cause gimbal lock, when there is a large rotational offset

between two point clouds. Future work includes derivation of these methods by directly

optimizing on special orthogonal (SO(3)) Lie group which will simplify the rotational

gradients and overcome the singularity problem. To begin with, a formulation of opti-

mizing rotations directly on SO(3) is present in (Sharma et al., 2020). Further (Ma et al.,

2003; Strasdat, 2012; Solà et al., 2018; Eade, 2017; Blanco, 2012) provide a good overview

of Lie group, associated Lie algebra, and other related concepts.

Bibliography

Afzal Maken F, Ramos F and Ott L (2019) Speeding up iterative closest point using

stochastic gradient descent. In: IEEE International Conference on Robotics and Au-

tomation. vi, xv, 54, 106, 112, 144, 145

Afzal Maken F, Ramos F and Ott L (2020) Estimating motion uncertainty with Bayesian

ICP. IEEE International Conference on Robotics and Automation (ICRA) : 8602–8608.

vi, xv, 54, 107, 111, 115, 145

Afzal Maken F, Ramos F and Ott L (2021) Stein ICP for uncertainty estimation in point

cloud matching. IEEE Robotics and Automation Letters . vi, xv, 102, 146, 147

Afzal Maken F, Ramos F and Ott L (2022a) Bayesian ICP for mobile robot localization.

International Journal of Robotics Research . vi, xv, 54, 144, 145

Afzal Maken F, Ramos F and Ott L (2022b) Stein particle filter for nonlinear, non-

gaussian state estimation. IEEE Robotics and Automation Letters . vi, xv, 125, 147,

148

Ahn S (2015) Stochastic gradient mcmc: Algorithms and applications. xx, 31, 33, 35

Aoki Y, Goforth H, Srivatsan R and Lucey S (2019) Pointnetlk: Robust and efficient

point cloud registration using pointnet. 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) : 7156–7165. 106

Aqel MOA, Marhaban MH, Saripan MI and Ismail N (2016) Review of visual odometry:

types, approaches, challenges, and applications. SpringerPlus 5. 55

Arulampalam M, Maskell S, Gordon N and Clapp T (2002) A tutorial on particle filters

for online nonlinear/non-gaussian Bayesian tracking. IEEE Transactions on Signal

Processing 50(2): 174–188. 128

Arun K, Huang T and Blostein S (1987) Least-squares fitting of two 3-D point sets. IEEE

Transactions on Pattern Analysis and Machine Intelligence PAMI-9(5): 698–700. 59,

106

152

Bibliography 153

Avriel M (2003) Nonlinear Programming: Analysis and Methods. Courier Corporation.

80

Bailey T and Durrant-Whyte H (2006) Simultaneous localization and mapping (SLAM):

part ii. IEEE Robotics Automation Magazine 13(3): 108–117. 55

Barczyk M and Bonnabel S (2017) Towards realistic covariance estimation of ICP-based

Kinect V1 scan matching: The 1D case. Proceedings of the American Control Confer-

ence . 104

Barczyk M, Bonnabel S, Deschaud J and Goulette F (November 2015) Invariant EKF

design for scan matching-aided localization. IEEE Transactions on Control Systems

Technology 23, no. 6: 2440–2448. 48, 104

Barfoot TD and Furgale PT (2014) Associating uncertainty with three-dimensional poses

for use in estimation problems. IEEE Transactions on Robotics 30(3): 679–693. 88,

117

Bengtsson O and Baerveldt AJ (2001) Localization in changing environments - estimation

of a covariance matrix for the idc algorithm. Proceedings 2001 IEEE/RSJ International

Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics

in the the Next Millennium (Cat. No.01CH37180) 4: 1931–1937 vol.4. 60

Bengtsson O and Baerveldt AJ (2003) Robot localization based on scan-matching - esti-

mating the covariance matrix for the IDC algorithm. Robotics and Autonomous Systems

. 56, 60, 61, 107

Besl P and McKay N (1992) Method for registration of 3-D shapes. In: Sensor Fusion

IV: Control Paradigms and Data Structures. 3, 4, 12, 16, 54, 55, 58, 59, 74, 102, 106,

144

Biber P and Strasser W (2003) The normal distributions transform: a new approach to

laser scan matching. In: IROS. 60, 107

Birge JR and Louveaux F (1997) Introduction to Stochastic Programming. Springer Series

in Operations Research and Financial Engineering. Springer. ISBN 0387982175. 19

Biswas J, Coltin B and Veloso M (2011) Corrective gradient refinement for mobile ro-

bot localization. In: IEEE/RSJ International Conference on Intelligent Robots and

Systems. 128

154 Bibliography

Blais G and Levine M (1995) Registering multi-view range data to create 3D computer

objects. IEEE Transactions on Pattern Analysis and Machine Intelligence . 59

Blanco JL (2012) A tutorial on se(3) transformation parameterizations and on-manifold

optimization. 151

Blei DM, Kucukelbir A and McAuliffe JD (2017) Variational inference: A review for

statisticians. Journal of the American Statistical Association 112(518): 859–877. 36

Blei DM, Kucukelbir A and McAuliffe JD (2018) Variational inference: A review for

statisticians . 39

Bonnabel S and Barczyk F Mand Goulette (2016) On the covariance of ICP-based scan-

matching techniques. Proceedings of the American Control Conference . 60

Borrmann D, Elseberg J, Lingemann K, Nüchter A and Hertzberg J (2008) Globally

consistent 3D mapping with scan matching. Robotics and Autonomous Systems 56(2):

130 – 142. 104

Bosse M and Zlot R (2008) Map matching and data association for large-scale two-

dimensional laser scan-based SLAM. I. J. Robotic Res. . 60, 107

Bottou L, Curtis F and Nocedal J (2018) Optimization methods for large-scale machine

learning. SIAM Review . 28, 56, 145

Caglioti V, Mainardi F, Pilu M and Sorrenti D (1994) Improving pose estimation using

image, sensor and model uncertainty. In: BMVC. 104

Cauchy A (2012) Cauchy and the gradient method. 60

Censi A (2007) An accurate closed-form estimate of ICP’s covariance. In IEEE Interna-

tional Conference on Robotics and Automation . 56, 60, 86, 107, 111, 115

Chen G (1993) Approximate Kalman filtering. 48

Chen T, Fox EB and Guestrin C (2014) Stochastic gradient Hamiltonian Monte Carlo.

In: ICML, 2014. 62

Chen Y and Medioni G (1991) Object modeling by registration of multiple range images.

In Proceedings of IEEE International Conference on Robotics and Automation . 16,

58, 59, 106

Chen Z (2003) Bayesian filtering: From Kalman filters to particle filters, and beyond.

Statistics 182. 45

Bibliography 155

Chetverikov D and Stepanov D (2005) Robust Euclidean alignment of 3D point sets:

Trimmed iterative closest point algorithm. Image and vision Computing . 59

Chetverikov D, Svirko D, Stepanov D and Krsek P (2002) The trimmed iterative closest

point algorithm. International Conference on Pattern Recognition . 106

Choo K and Fleet D (2001) People tracking using hybrid Monte Carlo filtering. In: IEEE

International Conference on Computer Vision. 128

Chwialkowski K, Strathmann H and Gretton A (2016) A kernel test of goodness of fit.

In: Proceedings of the 33rd International Conference on International Conference on

Machine Learning - Volume 48, ICML’16. JMLR.org, p. 2606–2615. 41

Cole DM and Newman PM (May 2006) Using laser range data for 3D SLAM in outdoor

environments. In: Proceedings of the 2006 IEEE Inter- national Conference on Robotics

and Automation, Orlando, Florida, USA. p. 1556–1563. 48, 104

Coltin B and Veloso M (2011) Multi-observation sensor resetting localization with am-

biguous landmarks. Proceedings of the AAAI Conference on Artificial Intelligence

25(1). 129

Cousins S (2010) Ros on the PR2 [ros topics]. IEEE Robotics Automation Magazine

17(3): 23–25. 2

D Hahnel DF W Burgard and Thrun S (2003) An efficient fastSLAM algorithm for gen-

erating maps of large-scale cyclic environments from raw laser range measurements.

Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS 2003) (Cat. No.03CH37453) 1: 206–211. 55

DARPA (2020) Subterranean challenge. URL https://www.subtchallenge.com. 1

Dempster AP, Laird NM and Rubin DB (1977) Maximum likelihood from incomplete

data via the em algorithm. Journal of the royal statistical society, series B 39(1):

1–38. 106

Detommaso G, Cui T, Spantini A, Marzouk Y and Scheichl R (2018) A Stein variational

Newton method. In: Proceedings of the International Conference on Neural Informa-

tion Processing Systems. 43, 131, 133, 150

Ding N, Fang Y, Babbush R, Chen C, Skeel RD and Neven H (2014) Bayesian sam-

pling using stochastic gradient thermostats. In: Ghahramani Z, Welling M, Cortes C,

https://www.subtchallenge.com

156 Bibliography

Lawrence ND and Weinberger KQ (eds.) Advances in Neural Information Processing

Systems 27. Curran Associates, Inc., pp. 3203–3211. 62

Doucet A, De Freitas N and Gordon N (2001) An introduction to sequential Monte Carlo

methods. In: Sequential Monte Carlo methods in practice. Springer. 126

Doucet A, Freitas Nd, Murphy KP and Russell SJ (2000) Rao-Blackwellised particle filter-

ing for dynamic Bayesian networks. In: Proceedings of the 16th Conference on Uncer-

tainty in Artificial Intelligence, UAI ’00. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., p. 176–183. 128

Du S, Xu Y, Wan T, Hu H, Zhang S, Xu G and Zhang X (2017) Robust iterative closest

point algorithm based on global reference point for rotation invariant registration. PLoS

ONE 12(11): 1–14. 59, 140

Duane S, Kennedy AD, Pendleton BJ and Roweth D (1987) Hybrid Monte Carlo. Physics

Letters B 195(2): 216 – 222. 62, 127

Duchi JC (2016) Derivations for linear algebra and optimization. 112

Duchi JC, Hazan E and Singer Y (2011) Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res. 12: 2121–2159. 28

Durrant-Whyte H and Bailey T (2006) Simultaneous localization and mapping: part i.

IEEE Robotics Automation Magazine 13(2): 99–110. 55

Eade E (2017) Lie groups for 2D and 3D transformations. 151

Eckart B, Kim K and Kautz J (2018) Hgmr: Hierarchical gaussian mixtures for adaptive

3D registration. In: ECCV. 106

et al SIDKOHDMRNPKJSSHDFAD (2011) Kinectfusion: real-time 3D reconstruction

and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM

symposium on User interface software and technology. p. 559–568. 102

Evangelidis G, K-Bastian D, Horaud R and Psarakis E (2014) A generative model for the

joint registration of multiple point sets. In: Fleet D, Pajdla T, Schiele B and Tuytelaars

T (eds.) Computer Vision – ECCV 2014. Springer International Publishing, pp. 109–

122. 106

Feng Z, Wen-fang X and Xi L (2011) Overview of nonlinear Bayesian filtering algorithm.

Procedia Engineering 15: 489–495. 44

Bibliography 157

Fern PC and Rodr FC (2020) Amcl3D. https://github.com/fada-catec/amcl3d/

blob/kinetic/amcl3d/src/ParticleFilter.cpp. Accessed: 18-12-2020. 95

Fernandez D and Price A (2004) Visual odometry for an outdoor mobile robot. IEEE

Conference on Robotics, Automation and Mechatronics, 2004. 2: 816–821. 55

Fitzgibbon A (2003) Robust registration of 2D and 3D point sets. Image and Vision

Computing . 59, 106

Floudas CA and Pardalos PM (eds.) (1992) Recent Advances in Global Optimization.

USA: Princeton University Press. ISBN 0691025274. 19

Fox D (2001) Kld-sampling: Adaptive particle filters. In: Proceedings of the 14th Interna-

tional Conference on Neural Information Processing Systems: Natural and Synthetic,

NIPS’01. Cambridge, MA, USA: MIT Press, p. 713–720. 128

Fox D, Thrun S, Burgard W and Dellaert F (2001) Particle filters for mobile robot

localization. In: Sequential Monte Carlo Methods in Practice. 72

Gao W and Tedrake R (2019) Filterreg: Robust and efficient probabilistic point-set reg-

istration using gaussian filter and twist parameterization. In: IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). pp. 11087–11096. 106

Ge R, Huang F, Jin C and Yuan Y (2015) Escaping from saddle points - online stochastic

gradient for tensor decomposition. In: Proceedings of The 28th Conference on Learning

Theory (COLT), PMLR. pp. 797–832. 29

Geiger A, Lenz P, Stiller C and Urtasun R (2013) Vision meets robotics: The kitti dataset.

International Journal of Robotics Research (IJRR) . 11

Gelb A and Corporation TAS (1974) Applied Optimal Estimation. The MIT Press. ISBN

0262570483. 125, 127

Geman S and Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence

PAMI-6(6): 721–741. 31, 62

Glira P, Pfeifer N, Briese C and Ressl C (2015) A correspondence framework for als strip

adjustments based on variants of the ICP algorithm. Photogrammetrie - Fernerkundung

- Geoinformation 2015. xvi, 15, 17

https://github.com/fada-catec/amcl3d/blob/kinetic/amcl3d/src/ParticleFilter.cpp
https://github.com/fada-catec/amcl3d/blob/kinetic/amcl3d/src/ParticleFilter.cpp

158 Bibliography

Glover J and Popovic S (2013) Bingham procrustean alignment for object detection in

clutter. IEEE International Conference on Intelligent Robots and Systems . 61

Godin G, Rioux M and Baribeau R (1994) Three-dimensional registration using range

and intensity information. In: Other Conferences. 59

González R, Rodríguez F, Guzmán J, Pradalier C and Siegwart R (2013) Control of off-

road mobile robots using visual odometry and slip compensation. Advanced Robotics

27: 893 – 906. 55

Gordon N, Salmond D and Smith A (1993) Novel approach to nonlinear/non-gaussian

Bayesian state estimation. In: IEEE proceedings of Radar and Signal Processing). 49

Grenander U and Miller MI (1994) Representations of knowledge in complex systems.

Journal of the Royal Statistical Society. Series B (Methodological) 56(4): 549–603. 33,

62

Grip H, Lam J, Bayard D, Conway D, Singh G, Brockers R, Delaune JH, Matthies L,

Malpica C, Brown T, Jain A, San Martin M and Merewether G (2019) Flight control

system for nasa’s mars helicopter. In: AIAA Scitech. 127

Guo MH, Cai J, Liu ZN, Mu TJ, Martin RR and Hu S (2021) Pct: Point cloud trans-

former. Comput. Vis. Media 7: 187–199. 151

Gutmann JS and Konolige K (1999) Incremental mapping of large cyclic environments.

In: Proceedings 1999 IEEE International Symposium on Computational Intelligence in

Robotics and Automation. CIRA’99 (Cat. No.99EX375). pp. 318–325. 55

Harker P and Pang JS (1990) A damped-Newton method for the linear complementarity

problem, volume 26. pp. 265–284. 21

Hastings W (1970) Monte Carlo sampling methods using Markov Chains and their ap-

plications. Biometrika 57: 97–109. 31, 62

Haykin S and Widrow B (2003) Least-mean-square adaptive filters. Newyork, Wiley . 48

Hertz A, Hanocka R, Giryes R and CohenOr D (2020) PointGMM: A neural GMM net-

work for point clouds. 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) : 12051–12060. 106

Hoffer E and Ailon N (2014) Deep metric learning using triplet network. 151

Bibliography 159

Hoffman MD, Blei DM, Wang C and Paisley J (2013) Stochastic variational inference. J.

Mach. Learn. Res. 14(1): 1303–1347. 37, 38

Homan MD and Gelman A (2014) The No-U-Turn Sampler: Adaptively setting path

lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1): 1593–1623. 150

Horaud R, Forbes F, Yguel M, Dewaele G and Zhang J (2011) Rigid and articulated

point registration with expectation conditional maximization. IEEE Transactions on

Pattern Analysis and Machine Intelligence 33(3): 587–602. 106

Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions.

Journal of the Optical Society of America A 4: 629–642. 14, 106

Hornung A, Wurm KM, Bennewitz M, Stachniss C and Burgard W (2013) OctoMap: An

efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots

Software available at http://octomap.github.com. 94, 139

Inman HF and Jr ELB (1989) The overlapping coefficient as a measure of agreement

between probability distributions and point estimation of the overlap of two normal

densities. Communications in Statistics - Theory and Methods 18(10): 3851–3874. 112

Iversen TM, Buch AG and Kraft D (2017) Prediction of ICP pose uncertainties using

Monte Carlo simulation with synthetic depth images. IEEE International Conference

on Intelligent Robots and Systems . 56, 60, 61, 107

J Minguez LM and Montano L (2004) An architecture for sensor-based navigation in

realistic dynamic and troublesome scenarios. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, 2004 3:

2750–2756. 55

Jian B and Vemuri BC (2011) Robust point set registration using gaussian mixture mod-

els. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8): 1633–

1645. 106

Johnson R and Zhang T (2013) Accelerating stochastic gradient descent using predictive

variance reduction. In: Proceedings of the 26th International Conference on Neural

Information Processing Systems - Volume 1, NIPS’13. Red Hook, NY, USA: Curran

Associates Inc., p. 315–323. 28

http://octomap.github.com

160 Bibliography

Julier S, Uhlmann J and Durrant-Whyte HF (2000) A new method for the nonlinear

transformation of means and covariances in filters and estimators. IEEE Transactions

on Automatic Control 45(3): 477–482. 61, 107

Julier SJ and Uhlmann JK (1997) New extension of the Kalman filter to nonlinear sys-

tems. In: Defense, Security, and Sensing. 127

Kalman RE (1960) A New Approach to Linear Filtering and Prediction Problems. Journal

of Basic Engineering . 46, 125, 127

Kay SM (1993) Fundamentals of Statistical Signal Processing: Estimation Theory. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc. 60

Khandelwal P, Zhang S, Sinapov J, Leonetti M, Thomason J, Yang F, Gori I, Svetlik

M, Khante P, Lifschitz V, Aggarwal J, Mooney R and Stone P (2017) BWIBots: A

platform for bridging the gap between AI and human–robot interaction research. The

International Journal of Robotics Research 36. 2

Kim D and Kim D (2010) A fast ICP algorithm for 3-D human body motion tracking.

IEEE Signal Processing Letters 17: 402–405. 59

Kim S, Song Q and Liang F (2022) Stochastic gradient Langevin dynamics with adaptive

drifts. Journal of Statistical Computation and Simulation 92(2): 318–336. 150

Kingma DP and Ba J (2015) Adam: A method for stochastic optimization. In: Bengio Y

and LeCun Y (eds.) 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 28, 67, 74,

81, 113, 133

Kingma DP and Welling M (2014) Auto-encoding variational bayes. In Proceedings of

the International Conference on Learning Representations (ICLR) abs/1312.6114. 37

Kirkpatrick S, Gelatt CD and Vecchi MP (1983) Optimization by simulated annealing.

Science 220(4598): 671–680. 59

Kiureghian AD and Ditlevsen O (2009) Aleatory or epistemic? does it matter? Structural

Safety 31(2): 105–112. Risk Acceptance and Risk Communication. 105

Kotecha J and Djuric P (2003) Gaussian particle filtering. IEEE Transactions on Signal

Processing 51(10): 2592–2601. 128

Bibliography 161

Kothari N, Kannan B, Glasgwow E and Dias M (2012) Robust indoor localization on a

commercial smart phone. Procedia Computer Science . 127

L Montesano JM and Montano L (2005) Modeling the static and the dynamic parts of the

environment to improve sensor-based navigation. In: Proceedings of IEEE International

Conference on Robotics and Automation, Barcelona, Spain. pp. 4556–4562. 55

Lai K, Bo L and Fox D (May 2014) Unsupervised feature learning for 3D scene labeling.

In: IEEE International Conference on Robotics and Automation (ICRA). 85

Lai K, Bo L, Ren X and Fox D (2011) A large-scale hierarchical multi-view RGB-D

object dataset. In: 2011 IEEE International Conference on Robotics and Automation.

pp. 1817–1824. 111

Landry D, Pomerleau F and Giguère P (2018) CELLO-3D: Estimating the covariance

of ICP in the real world. In: International Conference on Robotics and Automation

(ICRA). pp. 8190–8196. 61, 107

Lee C, Cho K and Kang W (2018) Directional analysis of stochastic gradient descent via

von mises-fisher distributions in deep learning. ArXiv abs/1810.00150. 149

Lenser S and Eloso M (2000) Sensor resetting localization for poorly modelled mobile

robots. 128

Li C, Chen C, Carlson D and Carin L (2016) Preconditioned stochastic gradient Langevin

dynamics for deep neural networks. In: Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence. 62, 68, 70

Li L, Wang R and Zhang X (2021) A tutorial review on point cloud registrations: Prin-

ciple, classification, comparison, and technology challenges. Mathematical Problems in

Engineering . 11

Lim KL and Bräunl T (2020) A review of visual odometry methods and its applications

for autonomous driving. 55

Lipson JD (1976) Newton’s method: A great algebraic algorithm. In: Proceedings of the

Third ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ’76. New

York, NY, USA: Association for Computing Machinery, p. 260–270. 60

Liu Q, Lee J and Jordan M (2016) A kernelized Stein discrepancy for goodness-of-fit tests.

In: Proceedings of the 33rd International Conference on International Conference on

162 Bibliography

Machine Learning - Volume 48, ICML’16. JMLR.org, p. 276–284. 41

Liu Q and Wang D (2016) Stein variational gradient descent: A general purpose Bayesian

inference algorithm. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I and Garnett R

(eds.) Advances in Neural Information Processing Systems 29. Curran Associates, Inc.,

pp. 2378–2386. xx, 4, 39, 41, 42, 43, 101, 102, 105, 108, 111, 113, 125, 126, 129, 133,

147, 148, 150

Low KL (2004) Linear least-squares optimization for point-to-plane ICP surface registra-

tion. In: Technical ReportTR04-004, Department of Computer Science, Universityof

North Carolina at Chapel Hill. xvi, 16, 17

Luck J, Little C and Hoff W (2000) Registration of range data using a hybrid simulated

annealing and iterative closest point algorithm. In: IEEE International Conference on

Robotics and Automation. 59, 106

M Brossard AB S Bonnabel (2020) A new approach to 3D ICP covariance estimation.

IEEE Robotics and Automation Letters 5: 744–751. 61, 86, 92, 107, 111, 113, 115, 116

Ma B and Ellis R (2004) Surface-based registration with a particle filter. In: Interna-

tional Conference on Medical Image Computing and Computer-Assisted Intervention.

p. 566–573. 102

Ma Y, Ma YA, Chen T and Fox EB (2015) A complete recipe for stochastic gradient

mcmc. In: NIPS. 34

Ma Y, Soatto S, Kosecka J and Sastry SS (2003) An invitation to 3-D Vision: From

Images to Geometric Models, Chapter 2. SpringerVerlag. 151

MacKay DJC (1992) A practical Bayesian framework for backpropagation networks. Neu-

ral Computation 4(3): 448–472. 57

Martínez JL, González J, Morales J, Mandow A and García-Cerezo AJ (2005) Genetic

and ICP laser point matching for 2 d mobile robot motion estimation. 3

Masuda T (2001) Generation of geometric model by registration and integration of mul-

tiple range images. Proceedings of International Conference on 3-D Digital Imaging

and Modeling, 3DIM 2001-Janua: 254–261. 59, 106

Masuda T (2002) Object shape modelling from multiple range images by matching signed

distance fields. Proceedings - 1st International Symposium on 3D Data Processing

Bibliography 163

Visualization and Transmission, 3DPVT 2002 65: 439–448. 59

Masuda T, Sakaue K and Yokoya N (1996) Registration and integration of multiple

range images for 3-D model construction. In: Proceedings of the 1996 International

Conference on Pattern Recognition (ICPR ’96) Volume I - Volume 7270, ICPR ’96.

USA: IEEE Computer Society, p. 879. 59, 74

Masuda T and Yokoya N (1995) A Robust Method for Registration and Segmentation of

Multiple Range Images. Computer Vision and Image Understanding . 59, 106

Matsubara K and Nagatani K (2019) Improvement in measurement area of three-

dimensional LiDAR using mirrors mounted on mobile robots. 1

Mendes E, Koch P and Lacroix S (2016) ICP-based pose-graph SLAM. In: 2016 IEEE

International Symposium on Safety, Security, and Rescue Robotics (SSRR). pp. 195–

200. 55

Mendes E, Koch P and Lacroix S (2016) ICP-based pose-graph SLAM. IEEE Interna-

tional Symposium on Safety, Security, and Rescue Robotics (SSRR) . 107

Merwe R, Doucet A, Freitas N and Wan E (2001) The unscented particle filter. NIPS

13. 128

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH and Teller E (1953) Equation

of state calculations by fast computing machines. Journal of Chemical Physics 21:

1087–1092. 33

Metropolis N and Ulam S (1949) The Monte Carlo method. Journal of the American

Statistical Association 44(247): 335–341. 31, 62

Milstein A, Sánchez JN and Williamson ET (2002) Robust global localization using clus-

tered particle filtering. In: Eighteenth National Conference on Artificial Intelligence.

USA: American Association for Artificial Intelligence, p. 581–586. 128

Ming-Long W (2018) An augmented reality system using improved-iterative closest point

algorithm for on-patient medical image visualization. Sensors (Basel, Switzerland) .

102

Murray L (2010) Distributed Markov Chain Monte Carlo. LCCC: NIPS workshop on

learning on cores, clusters and clouds . 146

164 Bibliography

Neal RM (1993) Probabilistic inference using Markov Chain Monte Carlo Methods. Tech-

nical report. 31

Neal RM (1996) Bayesian learning for neural networks. Berlin, Heidelberg: Springer-

Verlag. 57, 104

Neal RM (2010) MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte

Carlo . 68, 104, 150

Neiswanger W, Wang C and Xing EP (2014) Asymptotically exact, embarrassingly par-

allel mcmc. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial

Intelligence, UAI’14. Arlington, Virginia, USA: AUAI Press, p. 623–632. 146

Nelder J and Mead R (1965) A simplex method for function minimization. Comput. J.

7: 308–313. 59

Nocedal J and Wright S (2006) Numerical Optimization. Springer Science & Business

Media. xx, 19, 21, 22, 23, 25, 26, 27, 126, 130

Papadimitriou CH and Steiglitz K (1981) Combinatorial optimization: Algorithms and

complexity. 19

Park I, Germann M, Breitenstein MD and HPfister (2010) Fast and automatic object

pose estimation for range images on the GPU. Machine Vision and Applications 21:

749–766. 102

Perez-Grau FJ, Caballero F, Viguria A and Ollero A (2017) Multi-sensor three-

dimensional Monte Carlo localization for long-term aerial robot navigation. Inter-

national Journal of Advanced Robotic Systems 14. 95

Pomerleau F (2013) Applied registration for robotics: Methodology and tools for ICP-like

algorithms. 11

Pomerleau F, Colas F and Siegwart R (2015) A review of point cloud registration algo-

rithms for mobile robotics. Foundations and Trends in Robotics . 58, 105

Pomerleau F, Colas F, Siegwart R and Magnenat S (2013) Comparing ICP Variants on

Real-World Data Sets. Autonomous Robots . 98

Pomerleau F, Liu M, Colas F and Siegwart R (2012) Challenging data sets for point

cloud registration algorithms. The International Journal of Robotics Research 31(14):

1705–1711. xvi, xvii, xix, 75, 83, 111

Bibliography 165

Pomerleau F, Magnenat S, Colas F, Liu M and Siegwart R (2011) Tracking a depth cam-

era: Parameter exploration for fast ICP. IEEE International Conference on Intelligent

Robots and Systems . xvi, 74, 75

Prakhya SM, Bingbing L, Rui Y and Lin W (2015) Covariance of ICP algorithm a closed-

form estimate of 3D ICP covariance. In: Preceedings of 14th IAPR International

Conference on Machine Vision Applications (MVA). 60, 107

Press W, Teukolsky S, Vetterling W and Flannery B (1992) Numerical Recipes in C: The

Art of Scientific Computing. 2nd edition. Cambridge University Press. 16, 59

Pulido M and van Leeuwen PJ (2019) Sequential Monte Carlo with kernel embedded

mappings: The mapping particle filter. Journal of Computational Physics 396: 400–

415. 129, 133

Pulli K (1999) Multiview registration for large data sets. 3-D Digital Imaging and Mod-

eling, 1999. Proceedings. Second International Conference on : 160–168. 59

Ramezani M, Wang Y, Camurri M, Wisth D, Mattamala M and Fallon M (2020) The

newer college dataset: Handheld LiDAR, inertial and vision with ground truth. In:

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

xvii, 94, 117, 118, 139

Rangaprasad AS, Choset H, Kaess M, Lucey S, Taylor R and Simaan N (2018) Proba-

bilistic Approaches for Pose Estimation. PhD Thesis. 11

Raydan M (1997) The barzilai and borwein gradient method for the large scale uncon-

strained minimization problem. SIAM Journal on Optimization 7. 21

Robbins H and Monro S (1951) A stochastic approximation method. Ann. Math. Statist.

22(3): 400–407. 27, 28, 54, 56, 68, 104, 108, 145

Robert CP and Casella G (2005) Monte Carlo Statistical Methods (Springer Texts in

Statistics). Berlin, Heidelberg: Springer-Verlag. ISBN 0387212396. 57

Roberts GO and Rosenthal JS (2004) General state space Markov Chains and MCMC

algorithms. Probability Surveys 1(none): 20 – 71. 32

Röwekämper J, Sprunk C, Tipaldi GD, Stachniss C, Pfaff P and Burgard W (2012) On

the position accuracy of mobile robot localization based on particle filters combined

with scan matching. In: IEEE/RSJ International Conference on Intelligent Robots

166 Bibliography

and Systems. pp. 3158–3164. 104

Rusinkiewicz S and Levoy M (2001) Efficient variants of the ICP algorithm. Proceedings

of the International Conference on 3-D Digital Imaging and Modeling . 15, 58, 59, 105,

106

Rusu R and Cousins S (2011) 3D is here: Point Cloud Library (PCL). In: IEEE Inter-

national Conference on Robotics and Automation. 74

Salvi J, Matabosch C, Fofi D and Forest J (2007) A review of recent range image regis-

tration methods with accuracy evaluation. Image and Vision Computing . 58

Sato I and Nakagawa H (2014) Approximation analysis of stochastic gradient Langevin

dynamics by using Fokker-Planck equation and Itô process. In: Proceedings of the 31st

International Conference on International Conference on Machine Learning - Volume

32. pp. 982–990. 36

Schulz D, BurgardW, Fox D and Cremers A (2001) Tracking multiple moving objects with

a mobile robot using particle filters and statistical data association. In: International

Conference on Robotics and Automation. 55

Segal A, Haehnel D and Thrun S (2009) Generalized-ICP. In: Robotics: Science and

Systems. 16, 17, 59, 65, 74, 106

Sharma H, Lee T, Patil M and Woolsey C (2020) Symplectic accelerated optimization on

so(3) with lie group variational integrators. pp. 2826–2831. 151

Sherman J and Morrison WJ (1950) Adjustment of an inverse matrix corresponding to a

change in one element of a given matrix. Annals of Mathematical Statistics 21: 124–127.

24

Shewchuk JR (1994) An introduction to the conjugate gradient method without the

agonizing pain. Technical report, USA. 60

Shi S, You Z, Zhao K, Wang Z, Ouyang C and Cao Y (2017) A 6-DOF navigation method

based on iterative closest imaging point algorithm. Scientific Reports 7. 102

Shin DW and Ho Y (2017) 3D scene reconstruction using colorimetric and geometric

constraints on iterative closest point method. Multimedia Tools and Applications 77:

14381–14406. 55

Bibliography 167

Sinapov J (2021) COMP 152: Probabilistic robotics for human-robot interaction. URL

http://www.eecs.tufts.edu/~jsinapov/teaching/comp152_PR. 2

Solà J, Deray J and Atchuthan D (2018) A micro lie theory for state estimation in

robotics. 151

Srivatsan RA, Xu M, Zevallos N and Choset H (2017) Bingham distribution-based linear

filter for online pose estimation. In: Robotics: Science and Systems. 61

Strasdat H (2012) Local accuracy and global consistency for efficient visual SLAM (Oc-

tober): 213. 151

Sturm J, Engelhard N, Endres F, Burgard W and Cremers D (2012) A benchmark for the

evaluation of RGB-D SLAM systems. IEEE International Conference on Intelligent

Robots and Systems : 573–580. 96, 119

Teh YW, Thiery AH and Vollmer SJ (2016) Consistency and fluctuations for stochastic

gradient Langevin dynamics. J. Mach. Learn. Res. . 36

Thomas U, Molkenstruck S, Iser R and Wahl F (2007) Multi sensor fusion in robot

assembly using particle filters. In: IEEE International Conference on Robotics and

Automation. 127

Thrun S (2002) Particle filters in robotics. In: Proceedings of the Eighteenth Conference

on Uncertainty in Artificial Intelligence. San Francisco, CA, USA, p. 511–518. 72

Thrun S, Beetz M, Bennewitz M, Burgard W, Cremers A, Dellaert F, Fox D, Hähnel D,

Rosenberg C, Roy N, Schulte J and Schulz D (2000) Probabilistic algorithms and the

interactive museum tour-guide robot minerva. The International Journal of Robotics

Research 19: 972–999. 2

Thrun S, Burgard W and Fox D (2005) Probabilistic Robotics (Intelligent Robotics and

Autonomous Agents). The MIT Press. xx, 45, 46, 48, 50, 51, 52, 96, 133

Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J,

Halpenny M, Hoffmann G, Lau K, Oakley C, Palatucci M, Pratt V and Stang P (2006)

Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics .

127

Tieleman T and Hinton G (2012) Coursera: Neural netwroks for machine learning (lecture

6.5 - rmsprop). 28, 70

http://www.eecs.tufts.edu/~jsinapov/teaching/comp152_PR

168 Bibliography

Tur JM (2007) Onto computing the uncertainty for the odometry pose estimate of a

mobile robot. IEEE Conference on Emerging Technologies and Factory Automation

(EFTA) : 1340–1345. 104

Turk G and Levoy M (1994) Zippered polygon meshes from range images. In: SIGGRAPH

’94. 59

Uy MA and Lee GH (2018) Pointnetvlad: Deep point cloud based retrieval for large-

scale place recognition. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 151

Venter G (2010) Review of Optimization Techniques. ISBN 9780470686652. 20

VON MISES R (1918) Uber die "ganzzahligkeit" der atomgewicht und verwandte fragen.

Physikalische Z . 69

Wang CC, Thorpe CE and Thrun S (2003) Online simultaneous localization and mapping

with detection and tracking of moving objects: theory and results from a ground

vehicle in crowded urban areas. 2003 IEEE International Conference on Robotics and

Automation (Cat. No.03CH37422) 1: 842–849 vol.1. 55

Wang D, Tang Z, Bajaj C and Liu Q (2019) Stein variational gradient descent with matrix-

valued kernels. In: Advances in neural information processing systems, volume 32. p.

7834–7844. 150, 151

Wang Y and Solomon J (2019) Deep closest point: Learning representations for point

cloud registration. 2019 IEEE/CVF International Conference on Computer Vision

(ICCV) : 3522–3531. 106

Weik S (1997) Registration of 3-D partial surface models using luminance and depth

information. Proceedings. International Conference on Recent Advances in 3-D Digital

Imaging and Modeling (Cat. No.97TB100134) : 93–100. 59

Weiss S, Achtelik M, Lynen S, Chli M and Siegwart R (2012) Real-time onboard visual-

inertial state estimation and self-calibration of mavs in unknown environments. In:

IEEE International Conference on Robotics and Automation. 127

Welling M and Teh YW (2011) Bayesian learning via stochastic gradient Langevin dynam-

ics. In: Proceedings of the 28th International Conference on International Conference

on Machine Learning. 35, 36, 54, 57, 62, 68, 107, 146

Bibliography 169

Wetherill GB (1986) Regression analysis with applications. London: Chapman and Hall,

cop. 60

Wilkinson D (2005) Parallel Bayesian Computation. pp. 477–508. 101, 146

Wirnshofer F, Schmitt P, von Wichert G and Burgard W (2020) Controlling contact-rich

manipulation under partial observability. 4

Yu Y, Pradalier C and Zong G (2011) Appearance-based monocular visual odometry for

ground vehicles. 2011 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics (AIM) : 862–867. 55

Zhang C, Butepage J, Kjellstrom H and Mandt S (2019) Advances in variational inference.

IEEE Transactions on Pattern Analysis and Machine Intelligence 41(08): 2008–2026.

104

Zhang R, Li C, Zhang J, Chen C and Wilson AG (2020) Cyclical stochastic gradient mcmc

for Bayesian deep learning. International Conference on Learning Representations . 150

Zhu M, Liu C and Zhu J (2020) Variance reduction and Quasi-Newton for particle-based

variational inference. In: III HD and Singh A (eds.) Proceedings of the 37th Interna-

tional Conference on Machine Learning, Proceedings of Machine Learning Research,

volume 119. PMLR, pp. 11576–11587. 129, 130, 150

Zinsser T, Schmidt J and Niemann H (2003) A refined ICP algorithm for robust 3-

D correspondence estimation. Proceedings of the International Conference on Image

Processing . 59, 66

	Declaration
	Abstract
	Keywords
	Authorship attributes statement
	Acknowledgements
	Dedication
	Nomenclature
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Problem statement and objectives
	1.3. Contributions
	1.3.1. Stochastic gradient ICP
	1.3.2. Bayesian-ICP
	1.3.3. Stein-ICP
	1.3.4. Stein particle filter

	1.4. Overview of thesis

	Chapter 2. Background
	2.1. Point cloud registration
	2.1.1. Standard ICP
	2.1.2. ICP cost variants
	2.1.2.1. Point-to-plane ICP
	2.1.2.2. Plane-to-Plane ICP

	2.2. Optimization algorithms
	2.2.1. Newton's method
	2.2.2. Quasi-Newton method
	2.2.2.1. Broyden, Fletcher, Goldfarb and Shanno (BFGS)
	2.2.2.2. Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS)

	2.2.3. Stochastic gradient descent

	2.3. Bayesian methods
	2.3.1. Markov Chain Monte Carlo
	2.3.1.1. Properties of a Markov chain
	2.3.1.2. Metropolis-Hastings
	2.3.1.3. Langevin Monte Carlo
	2.3.1.4. Stochastic gradient Langevin dynamics

	2.3.2. Variational inference
	2.3.2.1. Stein variational gradient descent (SVGD)
	2.3.2.2. Stein variational Newton method (SVN)

	2.4. Bayes filtering
	2.4.1. Kalman filters
	2.4.2. Particle filters

	2.5. Summary

	Chapter 3. Bayesian-ICP for Mobile Robot Localization
	3.1. Introduction
	3.2. Related work
	3.2.1. ICP variants
	3.2.1.1. Point estimate ICP algorithms:
	3.2.1.2. Probabilistic ICP algorithms:

	3.2.2. Markov Chain Monte Carlo

	3.3. Speeding up ICP algorithm using stochastic gradient descent
	3.4. Estimating motion uncertainty with Bayesian-ICP
	3.5. Bayesian-ICP as a probabilistic motion model in Monte Carlo Localization
	3.6. Experiments
	3.6.1. Analysis of point estimate ICP methods
	3.6.1.1. Overview
	3.6.1.2. Data-efficiency
	3.6.1.3. Solution quality and run-time
	3.6.1.4. Impact of error in initial transformation estimate on accuracy
	3.6.1.5. Effect of batch size on the solution quality and run-time
	3.6.1.6. LiDAR data

	3.6.2. Analysis of probabilistic ICP algorithms
	3.6.2.1. Sample count
	3.6.2.2. Burn-in length
	3.6.2.3. Trajectory estimation
	3.6.2.4. Distribution estimation quality
	3.6.2.5. Run-time

	3.6.3. Bayesian-ICP in a Monte Carlo Localization algorithm

	3.7. Summary

	Chapter 4. Stein-ICP for Uncertainty Estimation in Point Cloud Matching
	4.1. Introduction
	4.2. Related work
	4.2.1. Point-based ICP algorithms
	4.2.2. Uncertainty-based ICP algorithms

	4.3. Stein-ICP
	4.3.1. Building blocks – SGD-ICP and SVGD
	4.3.2. Derivation

	4.4. Experiments
	4.4.1. Particle count
	4.4.2. Distribution quality analysis
	4.4.3. Odometry
	4.4.4. Impact of distribution estimation on mean pose estimation quality
	4.4.5. Run-time comparison
	4.4.6. Run-time of Stein-ICP on CPU and GPU

	4.5. Summary

	Chapter 5. Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation
	5.1. Introduction
	5.2. Related work
	5.3. Stein particle filter
	5.3.1. Prediction step
	5.3.2. Update step
	5.3.3. Stein Quasi-Newton gradient descent

	5.4. Experiments
	5.4.1. Multi-modal tracking
	5.4.2. Solution quality with limited particle count
	5.4.3. Localization task
	5.4.3.1. Global localization
	5.4.3.2. Tracking
	5.4.3.3. Run-time analysis

	5.5. Summary

	Chapter 6. Conclusions and Future Work
	6.1. Summary of contributions and related chapters
	6.1.1. Chapter 3 - Stochastic gradient descent ICPfahira2018,our_ijrr
	6.1.2. Chapter 3 - Bayesian-ICP Maken2020EstimatingMU,our_ijrr
	6.1.3. Chapter 4 - Stein-ICP our_icp_ral
	6.1.4. Chapter 5 - Stein particle filter our_ral_pf
	6.1.5. List of Publications

	6.2. Future work
	6.2.1. Improving robustness of a mini-batch gradient update
	6.2.2. Improving sampling behaviour and convergence rate of Bayesian-ICP
	6.2.3. Improving convergence rate and parameter space exploration of Stein-ICP
	6.2.4. Exploiting ICP cost's gradients in learning paradigm
	6.2.5. Optimization of rotations on SO(3)

	Bibliography

