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When only the moments (mean, variance or t-th moment) of the underling distribution are known, numerous

max-min optimization models can be interpreted as a zero-sum game, in which the firm chooses actions to

maximize her expected profit while Adverse Nature chooses a distribution subject to the moment conditions

to minimize the firm’s expected profit. We propose a new method to efficiently solve this class of zero-sum

games under moment conditions. By applying the min-max inequality, our method reformulates the zero-

sum game as a robust moral hazard model, in which Adverse Nature chooses both the distribution and

actions to minimize the firm’s expected profit subject to incentive compatibility (IC) constraints. Under

quasi-concavity, these IC constraints are replaced by the first-order conditions, which give rise to additional

moment constraints. We show that in equilibrium, these moment constraints are binding but have zero

Lagrangian multipliers and thus enable us to derive closed-form solutions for several distributionally robust

inventory models with different levels of complexity, including the case with mean and t-th moment, the case

with multiple supply sources, and the case with component commonality.
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1. Introduction

Various practical hurdles could result in ambiguity by preventing decision makers from precisely

knowing the underling distribution that governs the random environment. For example, forecasting

demand for new products is notoriously difficult (see Chapter 5 in Lilien et al. 2017, page 135 to

168). Small and medium-sized enterprises usually lack the resources needed to collect and analyze

data.1 Environmental factors such as a trade embargo or flood also increase the level of ambiguity

experienced by many supply chains. Therefore, ambiguity (which differs from risk) has received

increasing research attention from various disciplines.

Despite ambiguity, many practitioners in supply chains are still able to obtain the mean and

variance (or higher moments) of the random variable that they are interested in (e.g., Natarajan

et al. 2018, Li and Kirshner 2021). To cope with ambiguity, the robust max-min decision rule is

the most popular decision rule in the literature of robust operations management (see page 1931
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in Lu and Shen 2021). While the practical reason is that the worst case is of special interest to risk

managers (Tang 2006), the technical reason is that an ambiguity-based model can be transformed

into a semi-infinite programming (SIP) model using duality, especially when the moments (such as

the mean, variance, or t-th moment) are known. The practical relevance and analytical convenience

make this class of max-min models under moment conditions prevalent in the literature (see Section

2.1.2 of Lu and Shen 2021, and the references therein).

For ease of exposition, hereafter we use the feminine pronoun for the firm. In a typical max-min

optimization problem with known moments, the firm chooses her actions to maximize her worst-

case expected profit based on the available information. In supply chains, managers often make

pricing and production joint decisions, prompting us to use a vector to represent the firm’s actions.

It is also well-known that this max-min problem formulates a zero-sum game, in which the firm

chooses an action while Adverse Nature chooses the realized value subject to the constraints on

moments. In other words, the firm employs a pure strategy, while Adverse Nature employs a mixed

strategy that notably translates into a distribution satisfying the moment conditions. We refer to

this class of models as the zero-sum games under moment conditions.

The traditional method to solve this class of zero-sum games is based on the firm’s perspective

and proceeds in two stages. We first compute the firm’s worst case expected profit for any given

actions and then optimize the actions. When the actions are fixed, the second-stage problem is

reformulated as an SIP model using duality. We label this model as the firm’s SIP model, in which

the second stage SIP model is linear and hence, Karush–Kuhn–Tucker (KKT) conditions are suffi-

cient and necessary. However, the action-dependent SIP model in the second stage often produces

a piece-wise or even implicit objective function, rendering the first-stage problem cumbersome

or intractable. In Section 2, we thoroughly explain the significant challenge that the traditional

method encounters.

We propose a new and efficient method to solve the firm’s equilibrium strategy (which is also

known as her robust optimal solution). The key difference is that the traditional method is based on

the firm’s perspective while our method is based on Adverse Nature’s perspective. The optimization

model of Adverse Nature becomes a min-max problem, in which Adverse Nature chooses a distribu-

tion by anticipating that the firm will choose actions that are optimal for the chosen distribution.

Conceptually, the min-max problem of Adverse Nature is a robust moral hazard model where

Adverse Nature is the principal and the firm is the agent. Adverse Nature jointly chooses the dis-

tribution and actions to minimize the firm’s expected profit subject to the moment constraints and

the firm’s incentive compatibility (IC) constraints. Moral hazard interpretation is crucial because

it not only enables us to apply the tools in the economics literature to simplify IC constraints but
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also broadens our application to moral hazard. With mean-variance (or t-th moment) ambiguity,

the IC constraints become additional moment constraints that can be conveniently incorporated

into Adverse Nature’s SIP model.

These additional moment constraints produce two noteworthy consequences. First, the addi-

tional moment constraints effectively integrate the firm’s first-order conditions (FOCs) into the

min-max version of the zero-sum game, enabling us to obtain closed-form solutions without explic-

itly deriving the firm’s objective function. Notably, we bypass the second-stage problem where the

traditional method encounters significant challenges. Second, zero Lagrangian multipliers facilitate

the characterization of the equilibrium. We assume that the zero-game has an equilibrium (other-

wise, the original max-min problem has no solution). Whenever the zero-game has an equilibrium,

which is a saddle point, equality must hold in the well-known min-max inequality, implying that

the firm’s SIP model and Adverse Nature’s SIP model must produce the same optimal objective

value. By contrasting the two SIP models of the firm and Adverse Nature, we find that the differ-

ence is attributable to the additional moment constraints associated with the firm’s IC constraints.

Thus, if equality holds in the min-max inequality, these additional moment constraints are binding

but the relevant Lagrangian multipliers are zero, enabling us to solve numerous zero-sum games in

closed forms that are unavailable in the extant literature.

Although we can apply the moral hazard approach from the firm’s perspective, the relevant

IC constraints are much more difficult to simplify. The main reason is that the firm employs a

pure strategy while Adverse Nature employs a mixed strategy subject to the moment constraints.

Intuitively, the IC constraints associated with pure strategy are simpler than those associated with

mixed strategy. Occasionally, the SIP model of the min-max version produces multiple solutions,

especially when the first derivative of the ex post payoff function is a step function (implying that

the ex post payoff function is piece-wise linear). In this circumstance, we select an optimal solution

that satisfies the property of zero Lagrangian multipliers.

1.1. Literature Review

Our paper relates to the literature on robust operations management. We refer readers to Lu and

Shen (2021) for an updated literature review. The research on optimal ordering decisions with

limited information about the demand distribution is inspired by Scarf (1958). In this literature

stream, the firm knows only the mean and variance of demand and aims to find an order quantity to

maximize her expected profit against the worst possible distribution. With a single supply source,

the worst-case distribution is a two-point distribution. The robust optimal order quantity and the

resulting profit can be derived in closed form (see Corollary 3 for details). Gallego and Moon (1993)
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provide a more concise proof of Scarf’s result by using the Cauchy-Schwartz inequality. Natarajan

et al. (2018) examine the impact of an asymmetric demand distribution by using second-order

partitioned statistics to measure distributional asymmetry. Das et al. (2021) analyze the impact of

heavy-tailed demand distributions by assuming that the newsvendor firm knows only the mean and

the t-th moment of the demand distribution (where t > 1 is a real number). We refer to this model

as the “1+ t” model. While Das et al. (2021) encounter challenge in deriving the objective function

and are unable to solve the robust inventory level in closed forms, we overcome this challenge.

Minimax regret is another robust decision rule commonly used in the literature. Yue et al. (2006)

define the value of information (VOI) as the difference between knowing and not knowing the

underlying demand distribution, while Perakis and Roels (2008) refer to VOI as regret (which

measures forgone profit in the absence of full information on the underlying demand distribution).

Yue et al. (2006) focus on mean-variance ambiguity, whereas Perakis and Roels (2008) consider a

variety of partial information on the distribution such as its mode, range, mean, and variance.

The robust optimization literature distinguishes between risk aversion and ambiguity aversion. A

risk-averse decision maker prefers an order quantity that avoids profit volatility in addition to the

expected profit, whereas an ambiguity-averse decision maker does not have complete knowledge of

the demand distribution and thus prefers an order quantity that is distributionally robust (Han

et al. 2014). Incorporating the variance of the profit, Han et al. (2014) study a distributionally

robust newsvendor model by combining both risk aversion and ambiguity aversion. Several recent

articles (Yang et al. 2018, Kouvelis et al. 2021, Yang et al. 2021) employ the conditional value at

risk as a measure of risk tolerance. With advances in machine learning, several recent articles have

proposed data-driven methods to determine the robust order quantity. For instance, Chen and

Xie (2021) consider an unknown joint distribution for demand and yield, while He and Lu (2021)

consider a price-setting newsvendor firm that is partially informed about the demand distribution

and has limited data on a few historical prices. It is possible that multiple decision makers could

simultaneously face ambiguity. For instance, Fu et al. (2018) consider an agricultural supply chain

where both the upstream and downstream entities face mean-variance ambiguity. Li and Kirshner

(2021) label this ambiguous environment “two-sided ambiguity” and consider the contracting issue

between the firm and her sales agent.

1.2. Our Contributions

We make the following contributions to the literature.

• We develop a new and efficient method to solve a class of zero-sum games under moment

conditions. By solving the zero-sum games, we solve the corresponding max-min optimization

models, which are popular in the literature of robust operations management.
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• We demonstrate that using min-max inequality and the property of zero Lagrangian multipli-

ers, we can efficiently identify the equilibrium due to the following reasons. First, the IC constraints

associated with pure strategy are much simpler than those associated with mixed strategy. Sec-

ond, our method integrates the firm’s FOCs into the new formulation such that we can solve the

equilibrium without explicitly deriving the firm’s objective function.

• We develop closed-form solutions for three important application examples. In the first exam-

ple (i.e., the 1+ t model), the available information includes the mean and the t-th moment. This

example considers the impact of heavy (when 1< t< 2) or light (when t > 2) tail on inventory plan-

ning. In the second example, the ex post payoff function is piece-wise linear (with n≥ 1 pieces) and

concave. This example prescribes how to use multiple supply sources or option contracts to cope

with random demand and has broad applications in the electronic appliance, energy, and remanu-

facturing industries. In the third example, we consider the impact of component commonality on

inventory planning. By solving these examples in closed forms, we demonstrate the scalability and

efficiency of our method and generate new results that are unavailable in the extant literature.

The remaining sections are organized as follows. Section 2 introduces the new method. Section 3

solves the 1+ t newsvendor model. Section 4 investigates a capacity planning model with multiple

supply sources under mean-variance conditions. Section 5 analyzes the impact of component com-

monality. Section 6 discusses a few technical issues and Section 7 concludes the paper. We present

all the technical proofs in Online Appendix.

2. The New Method

2.1. The Firm’s Perspective

Let θ̃ be a random variable that affects the firm’s ex post payoff. In supply chains, this random

variable θ̃ can represent the random demand or yield. We use θ to indicate the realization and

F (θ) to represent the cumulative distribution function. However, the firm does not know the exact

functional form of F (θ) except the mean and variance. Specifically, let E
(
θ̃
)
= µ> 0 be the mean

and V ar
(
θ̃
)
= σ2 > 0 be the variance of θ̃. We also let ρ= σ

µ
> 0 be the coefficient of variation.

We use σ or ρµ to denote the standard deviation whenever convenient. In Section 3, we generalize

the analysis by replacing variance with the t-th moment, where t > 1. A wide range of max-min

optimization models can be abstracted as the following distributionally robust optimization model:

Z =max
Q≥0

{
inf
F∈Ω

∫ ∞

0

Z (θ|Q)dF (θ)

}
, (2.1)

in which Ω represents the ambiguity set (or the feasible action space of Adverse Nature) and

Z (θ|Q) is the firm’s ex post payoff function when the realized random variable is θ and her action
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vector is Q=(Q1,Q2, ...Qn), implying that the firm can take multiple actions such as choosing

prices or production quantities. The mathematical properties of the ex post payoff function Z (θ|Q)

vary from case to case. On the other hand, the partial information about F (θ) determines the

ambiguity set Ω. With mean and variance, we define the ambiguity set Ω as follows:

Ω=

{
F (θ) |

∫ ∞

0

dF (θ) = 1,

∫ ∞

0

θdF (θ) = µ,

∫ ∞

0

θ2dF (θ) = µ2 +σ2

}
. (2.2)

The theoretical and practical parallels to equation (2.1) are abundant. For example, when Q is

a single variable (rather than a vector) and Z (θ|Q) represents the newsvendor payoff function,

equation (2.1) reduces to the model proposed by Scarf (1958) in his pioneering article that inspires

a large and growing stream of literature on robust inventory management.

The characteristics of the ambiguity set could determine whether the worst-case expected profit

is attained or approached. Observe that the ambiguity set Ω in equation (2.2) includes an infi-

nite number of probability distributions (which can be continuous, discrete or mixed) satisfying

mean-variance constraints. Many of these distributions may not satisfy log-concave, increasing fail-

ure rate, monotonic local likelihood ratio, or convex distribution function conditions, which are

common in the economics and supply chain literature. Including some of these conditions could

have an undesirable consequence by rendering the worst-case expected profit approached rather

than attained. For example, Carroll (2015, page 542) mentions that “the worst-case payoff may be

approached, but not actually attained for any technology. This is why we defined it as an infimum

and not a minimum.” In contrast, we impose only the moment constraints on Ω, enabling us to

broaden the application and attain a minimum.

It is well-known that equation (2.1) formulates a zero-sum game between the firm and Adverse

Nature. While the firm wishes to maximize her expected profit by choosing a vector Q, Adverse

Nature wishes to minimize the firm’s expected profit by choosing a distribution from Ω due to

the mean-variance constraints. Let (Q∗,F ∗) be the equilibrium of the zero-sum game in equation

(2.1). We refer to Q∗ as the firm’s equilibrium strategy (or her robust optimal solution), F ∗ as

Adverse Nature’s equilibrium strategy, and Z (Q∗,F ∗) =Z∗ as the value of the zero-sum game (or

the firm’s optimized worst-case expected profit). An important feature of the zero-sum game in

equation (2.1) is that the firm employs a pure strategy (which occurs in supply chains) but Adverse

Nature employs a mixed strategy. Both the firm and Adverse Nature have infinite feasible actions

while the finite zero-sum game (pioneered by Nash 1951) restricts the number of feasible actions

to be finite.
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To cope with the infinite nature of the zero-sum game, the traditional method applies SIP tools

to reformulate equation (2.1) as follows:

P = max
Q≥0

max
y0,y1,y2

{
y0 + y1µ+ y2

(
µ2 +σ2

)}
s.t. y0 + y1θ+ y2θ

2 ≤Z (θ|Q) ,∀θ≥ 0. (2.3)

For any given Q, the inner maximization problem in equation (2.3) is a linear SIP model, in

which probabilistic resources are being traded. In the literature of linear programming, the notion

of trading resources is commonly used when interpreting a primal-dual relationship. Because our

model involves probabilistic concepts (such as mean), we introduce probabilistic resources. The

three decision variables y0, y1, and y2 are the shadow prices of the total probability, the mean,

and the variance resources, respectively. When Adverse Nature chooses a realization θ, the firm

obtains her ex post payoff Z(θ|Q) and simultaneously purchases 1 unit of the total probability

resource, θ units of the mean resource, and θ2 units of the variance resource from Adverse Nature.

By supplying these probabilistic resources, Adverse Nature generates an ex post income that equals

y0+y1θ+y2θ
2. However, the firm is protected by a limited liability such that the ex post payment

cannot exceed the firm’s ex post payoff, giving rise the SIP constraints in equation (2.3). Observe

that the expected income of Adverse Nature equals E (y0 + y1θ+ y2θ
2) = y0 + y1µ+ y2 (µ

2 +σ2),

which is the objective function in equation (2.3). In the outer maximization problem, while the

firm chooses her action vector Q, Adverse Nature determines the shadow prices to maximize the

expected income subject to the limited liability constraints. The notion of trading probabilistic

resources becomes helpful when we explain our new method in the next subsection.

We use the subscript wst to indicate the worst case. When the firm plays an arbitrary strategyQ,

let Fwst (Q) be the best response of Adverse Nature (or the firm’s most unfavorable distribution).

When the firm plays her equilibrium strategy Q∗, it must hold that Fwst (Q
∗) = F ∗. However, for

any Q ̸=Q∗, Fwst(Q) may not be identical to F ∗. Therefore, Zwst(Q) =Z(Q,Fwst(Q)) formulates

the firm’s objective function, in which the firm anticipates that Adverse Nature plays the best

response Fwst(Q) if she plays Q. The first step of the traditional method is to explicitly derive

Zwst(·) and the second step is to optimize Zwst(·). We briefly describe the first step. For any givenQ,

the inner maximization problem in equation (2.3) is a linear SIP model such that KKT conditions

are sufficient and necessary. If the number of binding constraints in equation (2.3) is finite, we

can obtain the most unfavorable distribution using complementary slackness and generalized finite

sequence. If the number of binding constraints is infinite, we can solve a differential equation to

determine the most unfavorable distribution (Carrasco et al. 2018). Thus, we can guarantee that

the equilibrium (Q∗,F ∗) is attained rather than approached.
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The success of the first step critically depends on the context of the model but inevitably affects

the tractability of the second step. Unfortunately, in a range of circumstances, the objective function

Zwst(·) could be either analytically unavailable or overly complex. For example, Section 3 studies

the 1+ t model, in which Das et al. (2021) apply the traditional method and find that the explicit

form of Zwst(q) is unavailable when q is large. Guo et al. (2022) advance the analysis by deriving

a semi-closed form of Zwst(q) for large q. Whenever the analytical form of the objective function

Zwst(q) is absent, the traditional method is unable to solve the robust solution q∗ in closed form. In

contrast, our new method overcomes this challenge. In Section 4, we develop a capacity planning

model with n≥ 1 option contracts. When n= 1, the model reduces to Scarf’s model where the ex

post payoff function has two pieces. When n= 2, the ex post payoff function has three pieces. In

the context of strangle option contracts, Natarajan and Zhou (2007) apply the traditional method

and complete the first step to obtain the objective function Zwst(q1, q2) for any given pair of

(q1, q2). However, Natarajan and Zhou have not optimized (q1, q2) because their goal is to evaluate

the performance of any given strangle option contract. Figure 2 of Natarajan and Zhou (2007)

illustrates the piece-wise objective function Zwst(q1, q2), which has 4 cases and the boundary of each

case is given by non-trivial quadratic curves. When n increases, the number of cases will grow to

2n, making the objective function Zwst(Q) too complex to be tractable. Without explicitly deriving

Zwst(Q), the traditional method encounter difficulty in analyzing the case with an arbitrary n≥ 1.

2.2. Adverse Nature’s Perspective

The innovative feature of our method is that we bypass the obstacles in deriving Zwst(·) and directly

attack the equilibrium (Q∗,F ∗). The crucial difference is that we solve the equilibrium from the

perspective of Adverse Nature as follows:

Z1 = inf
F∈Ω

{
max
Q≥0

∫ ∞

0

Z (θ|Q)dF (θ)

}
. (2.4)

Equation (2.4) formulates a robust moral hazard model, in which Adverse Nature jointly chooses

a distribution and an action vector to minimize the firm’s expected profit subject to the firm’s IC

constraints, which state that the chosen action vector must maximize the firm’s expected profit.

Under the assumption that Z (Q|F ) is quasi-concave with respect to Q, we can simplify the firm’s

IC constraint by using her FOCs:
∫∞
0

∂Z(θ|Q)

∂Qi
dF (θ) = 0, for i= 1,2, ..., n. This first-order approach

is prevalent in economics. We observe that the firm’s FOCs become additional moment constraints

and equation (2.4) changes to:

Z1 = inf
Q≥0,F∈Ω

{∫ ∞

0

Z (θ|Q)dF (θ)

}
,
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s.t.


∫∞
0

dF (θ) = 1,∫∞
0

θdF (θ) = µ,∫∞
0

θ2dF (θ) = µ2 +σ2,∫∞
0

∂Z(θ|Q)

∂Qi
dF (θ) = 0, for i= 1,2, ..., n.

(2.5)

Using duality, we can conveniently reformulate model Z1 as the following SIP model:

P1 = max
y0,y1,y2,Q,a

{
y0 + y1µ+ y2

(
µ2 +σ2

)}
s.t. y0 + y1θ+ y2θ

2 +
n∑

i=1

ai

∂Z (θ|Q)

∂Qi

≤Z (θ|Q) ,∀θ≥ 0, (2.6)

where a= (a1, a2, ..., an) is the vector of Lagrangian multipliers associated with the firm’s FOCs.

We use ∗ to indicate the optimal objective value or optimal solution.

Contrasting model P in equation (2.3) with model P1 in equation (2.6), we find that they both

have the same objective function y0 + y1µ+ y2 (µ
2 +σ2). Any solution that is feasible in model

P is also feasible in model P1 but the opposite is not true unless all ai = 0. Thus, it must hold

that Z∗ ≤ Z∗
1 , which is consistent with the well-known min-max inequality (e.g., Sion 1958). The

equal sign holds if and only if model P1 encompasses an optimal solution satisfying a∗
i = 0 for all

i= 1,2, ..., n. Furthermore, it is well-known that if Z∗ = Z∗
1 , then the zero-sum game in equation

(2.1) has an equilibrium.

Theorem 1 If the zero-sum game in equation (2.1) has an equilibrium, the following results hold:

i) P ∗ = Z∗ = Z∗
1 = P ∗

1 and ii) the SIP model P1 in equation (2.6) must encompass an optimal

solution satisfying the property that a∗
i = 0 for i= 1,2, ..., n.

Theorem 1 describes how to directly attack the equilibrium (Q∗,F ∗) by avoiding the intermediate

step of deriving Zwst(·). The first derivative ∂Z(θ|Q)

∂Qi
(or the marginal payoff), which appears in

equation (2.6), plays a crucial role. The intuition becomes clearer under the notion of trading

probabilistic resources. In the new model Z1 in equation (2.5), we regard
∫∞
0

∂Z(θ|Q)

∂Qi
dF (θ) = 0 as

generalized moment conditions such that n types of new resources are added to the trade. We refer

to the new resource associated with Qi as type-i new resource. When Adverse Nature chooses a

realization θ, in addition to the three existing probabilistic resources, the firm purchases ∂Z(θ|Q)

∂Qi

units of type-i new resource by paying the shadow price ai per unit, giving rise to the summation at

the left-hand-side of equation (2.6). Because the purchasing quantity of type-i new resource equals

the firm’s marginal payoff, the trading of new resources effectively integrates the firm’s FOCs into

the SIP model in equation (2.6). As the gain of the firm is the loss of Adverse Nature, ai = 0 must

hold in equilibrium; otherwise, the summation in equation (2.6) is non-zero and Adverse Nature

cannot break even by supplying the new resources. This observation confirms the property of zero

Lagrangian multipliers that Theorem 1 indicates.
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3. The First and t-th Moment

To assist readers in deepening their understanding of our method and to prepare for the capacity

planning model in Section 4, we consider the following newsvendor model with a single capacity.

The price of the product is p > 0 and the capacity reservation cost is c ≥ 0 per unit. When the

realized demand θ arrives, the firm uses the available capacity to satisfy the demand by incurring

a processing cost r ≥ 0. Any unused capacity expires and the reservation cost is not refunded.

The demand in excess of the available capacity is lost. We find that the ex post payoff function

equals Z (θ|q) = (p− r)min (θ, q) − cq and the first derivative satisfies ∂Z(θ|q)
∂q

= −c if θ < q and
∂Z(θ|q)

∂q
= p−r if θ > q. When θ= q, Z (θ|q) is not differentiable. By default, we let ∂Z(θ|q)

∂q
= (p−r) if

θ= q so that the first derivative and the cumulative distribution function are both right continuous.

We slightly change the ambiguity set in equation (2.2) as follows:

Ω=

{
F (θ) |

∫ ∞

0

dF (θ) = 1,

∫ ∞

0

θdF (θ) = µ,

∫ ∞

0

θtdF (θ) =mt

}
, (3.1)

where mt is known and represents the t-th moment of demand. In other words, we broaden the

analysis to the case in which the mean and the t-th moment of the demand distribution (where

t > 1 is a real number) are known.

Based on Theorem 1, we formulate the following SIP model:

P1 = max
q≥0,y0,y1,y2

{y0 + y1µ+ y2mt}

s.t. y0 + y1θ+ y2θ
t − ac≤ (p− r)θ− cq,∀θ ∈ [0, q),

y0 + y1θ+ y2θ
t + a (p− r− c)≤ (p− r− c) q,∀θ≥ q. (3.2)

Our new method enables us to rapidly solve the robust capacity level q∗. Before characterizing the

equilibrium, we establish the following nonlinear equation:

H (x) =
p− r− c

p− r
xt +

c

p− r

[
x+

p− r

c
(µ−x)

]t
=mt. (3.3)

With t > 1, Jensen’s inequality implies that mt ≥ µt.

Lemma 1 a) If

µt ≤mt ≤
µt(

c
p−r

)t−1 , (3.4)

then equation (3.3) has a root θ1 satisfying 0≤ θ ≤ µ. Let θ2 = θ1 +
(
p−r
c

)
(µ− θ1) and define the

following two-point distribution: Pr
(
θ̃= θ1

)
= p−r−c

p−r
,

Pr
(
θ̃= θ2

)
= c

p−r
.

(3.5)

The distribution in equation (3.5) satisfies the conditions on the mean and t-th moment.
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b) If

mt ≥
µt(

c
p−r

)t−1 (3.6)

then the root of equation (3.3) is negative. We let θh =
(

mt
µ

) 1
t−1

and define the following two-point

distribution: Pr
(
θ̃= 0

)
= 1− µ

θh
,

Pr
(
θ̃= θh

)
= µ

θh
.

, (3.7)

which also satisfies the conditions on the mean and t-th moment.

When the newsvendor ratio is sufficiently high, condition (3.4) holds.

3.1. Robust Inventory Level

The extant literature regards the 1+ t model as notoriously difficult because the objective function

Zwst(q) cannot be explicitly derived by the traditional method. For example, Das et al. (2021,

pages 1097-1098) explain the “implausibility” in deriving Zwst(q). Similarly, Guo et al. (2022,

page 14) suggest that a semi-closed form for Zwst(q) is “probably the best one can hope for”.

When the explicit expression of the objective function Zwst(q) remains analytically unavailable, the

first derivative ∂Zwst(q)

∂q
is unknown, preventing the extant literature from solving the equilibrium

strategy q∗ in closed form. In contrast, our new method overcomes the relevant technical challenge.

Proposition 1 In the 1 + t model formulated in equation (3.2), the equilibrium is one of the

following two cases:

a) If condition (3.4) holds, the firm’s equilibrium strategy q∗ satisfies that

q∗ = θ1 +
θt−1
2 (θ2 − θ1)

θt−1
2 − θt−1

1

− θt2 − θt1
t
(
θt−1
2 − θt−1

1

) , (3.8)

while Adverse Nature’s equilibrium strategy satisfies equation (3.5). Thus, the value of the zero-sum

game equals P ∗
1 = (p− r− c)θ1.

b) If condition (3.6) holds, the firm’s equilibrium strategy satisfies q∗ = 0 while Adverse Nature’s

equilibrium strategy satisfies equation (3.7). Thus, the value of the zero-sum game equals P ∗
1 = 0.

Proposition 1 underscores the key advantage of our method over the extant literature. We can

derive q∗ despite that the objective function Zwst(q) could be analytically unavailable. Proposition 1

also enriches our understanding about the effect of heavy-tail (or light-tail) behaviors on inventory

planning. For example, because H(θ1) =mt and H(·) is decreasing, we observe that the value of

the zero-sum game decreases with respect to mt. Furthermore, we can expand the ambiguity set in
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equation (3.1) by letting
∫∞
0

θtdF (θ)≤mt so that we include regularly heavy-tailed distributions

(Das et al. 2021). When the sign associated with mt changes from “=” to “≤”, the shadow price

y2 must be nonpositive. However, the proof of Proposition 1 confirms that y∗
2 ≤ 0 and hence,

Proposition 1 continues to hold.

Proposition 1 reveals an important property that the firm’s worst-case distribution F ∗ exhibits.

If the ex post profit function is piece-wise linear and has two pieces, then F ∗ must be a two-

point distribution with realizations θ∗1 and θ∗2 (where θ∗1 ≤ θ∗2). This two-point distribution not only

satisfies the moment constraints but also allocates a mass probability to the low realization θ∗1

according to the firm’s newsvendor ratio (i.e., Pr
(
θ̃= θ∗1

)
equals her newsvendor ratio). In general,

to identify a two-point distribution, we need to determine four parameters (i.e., two probability

masses and two realized values). Because the two probability masses are based on the newsvendor

ratio, we only need to determine the two realized values by applying the moment conditions. The

relevant intuition becomes clearer if we examine the equilibrium from the perspective of Adverse

Nature. When the ex post profit function is piece-wise linear and has only two pieces, the marginal

ex post payoff (i.e., the first derivative ∂Z(θ|q)
∂q

) takes only two possible values. To randomize the

demand, the optimal strategy for Adverse Nature must be choosing between two realized values θ1

and θ2 such that θ1 gives the firm a lower marginal ex post payoff and θ2 gives the firm a higher

marginal ex post payoff. This explains why Proposition 1 converges to a two-point distribution.

On the other hand, Adverse Nature anticipates that the firm must play her optimal response,

which follows her newsvendor ratio. Therefore, when determining how frequently to choose the

low realized value θ1, Adverse Nature also follows the firm’s newsvendor ratio, explaining the

equilibrium strategy F ∗ in equation (3.5). When t= 2, Proposition 1 becomes Scarf’s model. We

explain the relevant details in Part A of Online Appendix.

An early criticism of Scarf’s result is that the worst-case distribution is a two-point distribution.

However, a two-point distribution is the most natural response of Adverse Nature because the

marginal payoff takes only two values in the standard newsvendor model. The relevant intuition

can also be generalized to the capacity model in Section 4. Specifically, when the ex post payoff

function is concave piece-wise linear and has (n+1) pieces (suggesting that the marginal payoff

takes (n + 1) values), the equilibrium strategy played by Adverse Nature is characterized by a

(n+1)-point distribution. The probability mass to be allocated to each point depends on the firm’s

best response. Certainly, mean and variance alone are insufficient to specify the relevant (n+1)-

point distribution when n≥ 2. We need to perform additional analysis to derive the closed-form

solution.
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4. Capacity Planning Model

4.1. Industrial Background

Sourcing strategy is critical for many firms to excel in the current volatile business environment.

Despite low administrative costs, single sourcing can expose firms to significant risks caused by

demand or supply uncertainties. To gain a competitive advantage, many firms diversify their supply

chains to enhance their flexibility to cope with uncertainties. For example, Hewlett-Packard is

a pioneer that uses option contracts to manage the supply of memory devices (Fu et al. 2010).

Each option contract specifies the premium (or the reservation fee) and the exercising fee for each

memory device. After observing the realized demand, Hewlett-Packard determines which option

contracts to exercise. Any unexercised option contract expires but the exercising fee is avoided. If

demand exceeds the total quantities that can be satisfied under the purchased option contracts,

the excess demand is lost when the required parts cannot be replaced by the standard parts

from the spot market.2 The second example is E.ON (www.eonenergy.com), one of the leading

energy companies in the United Kingdom. E.ON reserves capacity from fossil fuel generators, wind

farms, and nuclear generators. When electricity demand arrives, E.ON uses the reserved capacity

to generate electricity. There could be additional costs of generating electricity from the use of

reserved generators and the transmission of the generated electricity to external customers. These

additional costs could be source dependent and are incurred only in the fulfillment stage. A minor

difference is that the excess demand for electricity can be satisfied by the spot market rather than

lost. The third example is Xerox Australia, which recycles and remanufactures photocopiers (Kerr

and Ryan 2001). When photocopiers are returned to Xerox after the end of lease contracts, Xerox

inspects their condition and sorts them into four grades: grade 1 (suitable for refurbishment),

grade 2 (suitable for reprocessing), grade 3 (suitable for remanufacturing), and grade 4 (suitable

for asset recovery or disposal). After an order for used photocopiers arrives, Xerox implements a

priority rule that exhausts an alphabetically lower grade (which has a better condition) before using

another grade. Grade 1 and grade 2 are cleaned and repaired. High-frequency-service parts are

replaced regardless of their condition or use. Other parts are replaced depending on their condition

and expected remaining life. Grade 3 and grade 4 photocopiers must undergo a labor-intensive

disassembly process. Good-quality parts are cleaned, tested, and reconditioned. Some photocopiers

are then reassembled, while others are sent without reassembly to a disposal facility. Customers

who purchase used photocopiers are unable to discern the initial grade of the machines. If the

quantity of used photocopiers is insufficient, the demand is lost or the customer is persuaded to

buy other machines.

13
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4.2. The Robust Capacity Planning Model

The operations of Hewlett-Packard, E.On, and Xerox Australia share two common characteristics:

i) the firm can access n≥ 1 supply sources that are substitutes for each other, and ii) the firm makes

the procurement and fulfillment decisions in two stages. Accordingly, we develop the following

inventory model. The firm faces an uncertain demand and procures from n sources, where each

source can represent a different supplier, grade, or option contract. Let θ̃ be a nonnegative random

variable denoting the external demand for the firm’s end product. The cumulative distribution

function of demand θ is F (θ). We make a critical departure from the extant literature (e.g.,

Mart́ınez-de Albéniz and Simchi-Levi 2009, Fu et al. 2010) by assuming that F (θ) is unknown. We

assume that the firm knows only the mean (µ> 0) and the variance (σ2 > 0) associated with demand

θ̃. Without complete knowledge of the demand distribution, the firm applies distributionally robust

approach to creating her capacity plan. Let ρ= σ
µ
be the coefficient of variation of demand.

The sourcing decisions proceed in two stages. In Stage 1 (which we refer to as the procurement

stage before the selling season), the firm reserves qi units of capacity from each source i (i =

1,2, · · · , n) by paying a reservation cost ci per unit. In Stage 2 (which we refer to as the fulfillment

stage), the external demand θ is realized, and the firm uses available capacities to produce the end

products. When using the capacity of source i to produce one unit of end product, the firm incurs

an additional processing cost ri ≥ 0. The end products delivered from each source have the same

quality and functionality so that every external customer regards them as indistinguishable. By

satisfying one unit of demand, the firm receives the same amount of revenue p from each external

customer. If the reserved capacities are insufficient to satisfy all of the external demand, the excess

demand is lost.3 Any unused capacities expire without any salvage value but the processing cost is

also avoided. For expositional simplicity, we define source-(n+1) as an artificial source representing

lost sales such that cn+1 = 0 and rn+1 = p. We use a bold letter to represent a vector. Let q= (qi)

be the capacity vector (where i= 1,2, · · · , n) chosen by the firm in the procurement stage.

We refer to all supply sources as a portfolio. Before introducing the assumptions on cost param-

eters, we define two sequences as follows.

Definition 1 Let α0 = 0 and αn+1 = 1. Define{
αi = 1− ci−ci+1

ri+1−ri
, for i= 1,2, · · · , n,

βi = αi −αi−1, for i= 1,2, · · · , n+1.
(4.1)

For ease of exposition and given the need to eliminate unattractive supply sources, we assume

that the sequence αi is strictly increasing in i, which is consistent with the extant literature (e.g.,

Mart́ınez-de Albéniz and Simchi-Levi 2009, Fu et al. 2010) and ensures that in the robust optimal
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solution, the order quantity for each supply source is positive. Otherwise, some supply sources will

never be used and can be eliminated from the analysis.

Remark 1 If {αi} is increasing in i, then the following results hold: i) c1 + r1 < c2 + r2 < · · · <

cn + rn < p and ii) r1 < r2 < · · ·< rn and c1 > c2 > · · ·> cn.

We omit the proof of Remark 1 and refer readers to Lemma 1 of Fu et al. (2010). We can visualize

the portfolio by using the reservation cost ci as the vertical coordinate and the processing cost ri

as the horizontal coordinate. Remark 1 implies that the path of the portfolio (which starts from

supply source 1 and connects all sources including the artificial source-(n+1) that represents lost

sales) is convex decreasing. Remark 1 also implies that if the capacity vector is fixed, the firm will

use a priority rule to use the available capacity to satisfy the realized demand. Specifically, source

(i+1) will not be used unless the reserved capacity of source i is exhausted.

Let Qi =
∑i

j=1 qi be the total capacity of the first i sources. By default, we let Q0 = 0 such that

Qi ≥Qi−1, which we refer to as the monotonicity constraints on Qi. The definition of Qi resembles

the echelon inventory level that Veinott (1965) proposes. Because the mapping between vectors

Q = (Qi) and q = (qi) is unique, hereafter, we regard Qi as the decision variables to facilitate

analysis. Let (·)+ =max(0, ·).

Lemma 2 For any given capacity vector Q, the firm’s ex post profit equals

Z (θ|Q) =
n∑

i=1

[(p− ri) (min (Qi, θ)−min(Qi−1, θ))− ci (Qi −Qi−1)] , (4.2)

which is continuous, concave, and increasing in the realized demand θ.

The Z (θ|Q) function in equation (4.2) is piece-wise and has (n+1) different cases, depending

on the value of the realized demand θ. Let δi =
Z(θ|Q)

∂Q1
be the first derivative in these (n+1) cases.

The proof of Lemma 2 shows that the sequence {δi} satisfies the following recursive equation:

δi = ri − r1 − c1, for i= 1,2, · · · , n+1. (4.3)

The two sequences {βi} and {δi} determine the equilibrium. We refer to δi as the marginal impact

and provide the managerial interpretation of δi after we derive the robust capacity plan.

4.3. Adverse Nature’s Model

To apply Theorem 1, we need to simplify the relevant IC constraints. Assume that the demand

distribution F (θ) is known. The firm’s expected profit equals Z (Q) =
∫∞
0

Z (θ|Q)dF (θ). Let Q̃

be the firm’s distribution-dependent optimal capacity plan.
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Lemma 3 In the benchmark without ambiguity, the firm’s expected profit Z (Q) is concave in Q,

and her optimal capacity vector Q̃ satisfies F
(
Q̃i

)
= αi, implying that the firm’s optimal capacity

level for source-i equals

q̃i = F−1 (αi)−F−1 (αi−1) for any i= 1,2, · · · , n, (4.4)

where F−1 is the inverse function of F .

Lemma 3 indicates that the optimal capacity plan can be described by a sequence of percentiles,

explaining why the cumulative probability αi must be increasing in i to ensure that q̃i > 0. In the

proof of Lemma 3 (we refer readers to equation (B-7) in the Appendix), we expand the firm’s

expected profit as the sum of n separate identities. Each of these n identities involves only one Qi

(which is the total quantity of the first i sources) and is concave in Qi. The definition of Qi must

imply that Qi ≥ Qi−1. After relaxing the monotonic constraint on Qi and solving the FOC, we

obtain that F
(
Q̃i

)
= αi. Thus, if αi is monotonic in i, then the candidate solution Q̃i is increasing

in i, making q̃i = Q̃i − Q̃i−1 optimal and positive. If αi ≤ αi−1, then the monotonicity constraint

Qi ≥Qi−1 must be binding, making qi =Qi −Qi−1 = 0 (implying that source i is not used in the

optimal solution). We emphasize that the binding status of the monotonicity constraint Qi ≥Qi−1

depends on the monotonicity of αi rather than on the demand distribution F . Thus, we can apply

the process of elimination to reduce the number of supply sources.

The concavity of Z (Q) shown in Lemma 3 indicates that we can replace the IC constraints with

the FOCs. However, for ease of analysis (i.e., Z(θ|Q)

∂Qi
is rather complex) and the need to involve

the mass probabilities {βi}, we use a different form of FOCs as follows: F (Qi) = αi, where αi

is uniquely determined by exogenous cost parameters according to Definition 1. The constraints

F (Qi) = αi are equivalent to ∫ Qi

Qi−1

dF (θ) = βi, for i= 1,2, · · · , n, (4.5)

which remain to be moment constraints.4 Thus, the SIP model in equation (2.6) becomes:

P1 = max
y0,y1,y2,Q
a1,a2,··· ,an

{
a1β1 + a2β2 + · · ·+ anβn + y0 + y1µ+ y2 (µ

2 +σ2)
}

s.t.

{
ai + y0 + y1θ+ y2θ

2 ≤Z (θ|Q) ,∀θ ∈ [Qi−1,Qi] , i= 1,2, · · · , n,
y0 + y1θ+ y2θ

2 ≤Z (θ|Q) ,∀θ≥Qn.
, (4.6)

where ai is the shadow price for the i-th moment constraint in equation (4.5). Contrasting the

two SIP models in equations (2.3) and (4.6), we observe that Theorem 1 implies that one of the

optimal solutions for model P1 satisfies ai = 0 and gives the same optimal objective value for both

models P and P1.
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4.4. Worst-Case Distribution

To solve the equivalent SIP model in equation (4.6), we first conjecture the binding SIP constraints

and then apply a relaxation method. Figure 1a) visualizes the SIP constraints in equation (4.6) by

showing that the left-hand side of the constraints is quadratic and piece-wise in θ (specifically, there

exist (n+1) pieces with n jumps due to a1, a2, · · · , an). On the other hand, the right-hand side

(RHS) of the constraints is continuous, concave, and piece-wise linear in θ as Lemma 2 suggested.

We conjecture that there exist (n+1) binding constraints at points labeled as θi (i= 1,2, · · · , n+1)

such that the first n points satisfy θi ∈ [Qi−1,Qi] and the last point satisfies θn+1 ≥Qn. The condi-

tion θi ∈ [Qi−1,Qi] is consistent with Proposition 3 and incorporates the monotonicity constraints

on Q. Based on the conjectured binding constraints, we derive the relaxed solution for equation

(4.6). The final step is to verify that the relaxed solution satisfies the omitted constraints and hence

is optimal for equation (4.6).

Figure 1 SIP constraints

(a) When a Nonrobust Q Vector is Used (b) When the Robust Vector Q∗ is Used

Before presenting the major results, we define an important distribution as follows.

Definition 2 Let ∆ be a positive constant satisfying ∆ =
√∑n+1

i=1 βiδ2i , where {βi} is the mass

probability sequence given by Definition 1 and {δi} is the coefficient sequence given by equation

(4.3). Let

θ∗i
def
= µ+ δi

σ

∆
, for i= 1,2, · · · ., n+1 (4.7)

be the i-th possible realization of θ. Using {θ∗i } and {βi}, we define the following distribution:

Pr(θ= θ∗i ) = βi, for i= 1,2, · · · , n+1, (4.8)
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which is a discrete (n+1)-point distribution.

We assume (p− r1 − c1)µ≥∆σ to avoid the uninteresting case in which the firm ceases operations

under mean-variance ambiguity. Because we require demand to be nonnegative, we also assume

that θ∗1 = µ− c1
σ
∆
≥ 0.

Corollary 1 i) It holds that
∑n+1

i=1 βiδi = 0. ii) The (n+1)-point discrete distribution in equation

(4.8) is one of the feasible distributions in the ambiguity set Ω.

The next proposition identifies the firm’s worst-case demand distribution.

Proposition 2 The (n+1)-point distribution in equation (4.8) is the firm’s worst-case demand

distribution F ∗.

Proposition 2 significantly advances our analysis by paving the way toward determining the firm’s

worst-case expected profit. Using the firm’s worst-case demand distribution F ∗, we can compute

the firm’s expected profit Z (Q|F ∗).

Proposition 3 There exist an infinite number of Q vectors that maximize the firm’s expected profit

Z (Q|F ∗). However, the firm’s optimal expected profit under her worst-case demand distribution

F ∗ is unique and equals

Z∗ =max
Q≥0

Z (Q|F ∗) = (p− r1 − c1)µ−∆σ. (4.9)

Proposition 3 shows that the firm’s optimal worst-case expected profit Z∗ has a clean and neat

form. Observe that (p− r1 − c1) is the understock cost of source-1 capacity, which is the firm’s

most profitable source. Equation (4.9) reveals that Z∗ is increasing in the mean of demand and

the understock cost of source-1 capacity and is decreasing in the constant ∆ and the standard

deviation of demand.

4.5. Robust Optimal Capacity Vector

Because optimizing Z (Q|F ∗) does not result in a unique capacity vector, our remaining challenge

is to solve the robust optimal capacity vector Q∗ using Theorem 1.

Proposition 4 The firm’s robust optimal capacity vector satisfies Q∗ = (Q∗
i ) =

(
θ∗i +θ∗i+1

2

)
for i=

1,2, · · · , n, implying that the robust optimal capacity level for source-i capacity equals

q∗i =
θ∗i + θ∗i+1

2
−

θ∗i−1 + θ∗i
2

=
θ∗i+1 − θ∗i−1

2
. (4.10)
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Proposition 4 solves the robust optimal capacities in closed form by demonstrating that in the

robust optimal solution, the total capacities of the first i sources equal the midpoint of the closed

interval
[
θ∗i , θ

∗
i+1

]
.

Corollary 2 The optimal solution for equation (2.3) satisfies y∗
0 = − ∆

2σ
(µ2 +σ2), y∗

1 =

(p− r1 − c1)+∆µ
σ
, y∗

2 =− ∆
2σ
, and Q∗

i =
(

θ∗i +θ∗i+1

2

)
.

Corollary 2 is a direct result of Propositions 2 to 4. With all a∗
i = 0, the left-hand side of the SIP

constraints in equation (2.3) becomes one smooth piece of a quadratic curve (see Figure 1 b) for

an illustration). The discrete distribution in equation (4.8) is critical for unlocking all the results.

Because we can ex ante construct the sequences {βi} and {δi} by using exogenous cost parameters,

the robust optimal capacity vector Q∗ is easy to compute.

Recall that 1) the mass probabilities {βi} are based on the unambiguous solution and exogenous

cost parameters and 2) the marginal impact δi =
Z(θ|Q)

∂Q1
is the first derivative with respect to

Q1 in the i-th case. The cost coefficients {δi} have an interesting managerial interpretation. In

our model, the firm can access n ≥ 1 sources with source 1 being her most preferred source. If

demand is deterministic, the firm can use only source 1 in her capacity plan. However, due to

demand uncertainty, the firm chooses more sources with lower reservation costs even if the sum

of the reservation and processing costs increases. In the i-th case, the realized demand satisfies

that Qi−1 ≤ θ <Qi (where by default Q0 = 0), source-i still has some unused capacity. If the firm

increases the capacity of source-1 from q1 to q1 + ε and keeps all the other qi’s (i≥ 2) unchanged,

then the sales quantity of source-1 increases by ε while that of source-i deceases by ε units (where

ε∈ (0,Qi − θ) is a small positive number). The marginal impact includes two parts: 1) the change

in the sales revenue due to an additional ε units of source-1 capacity and 2) the reservation cost

of an additional ε units of source-1 capacity. The net impact equals

(p− r1)− (p− ri)− c1 = ri − r1 − c1
def
= δi.

In a notable special case where i = (n+1), the firm suffers lost sales when the artificial source

(n+1) is used. With rn+1 = p and cn+1 = 0, we observe that δn+1 = rn+1− r1− c1 = p− r1− c1 > 0.

5. Component Commonality

The risk-pooling effect is an important topic in the supply chain literature. For example, Bimpikis

and Markakis (2016) study the effect of heavy-tailed demands on risk-pooling while Govindarajan

et al. (2021) study a multi-location model with transshipment. The risk-pooling effect must involve
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multi-dimensional random variables rather than the single-dimensional random variable that Sec-

tions 3 and 4 consider. To demonstrate that our method is capable of solving multi-dimensional

problems, we revisit the inventory model that Baker et al. (1986) study.

The firm manufactures two products: product 1 and product 2. Product 1 requires one unit of

product-specific component 1 and one unit of common component 0 while product 2 requires one

unit of product-specific component 2 and one unit of common component 0. The production cost

of component i is ci (i= 0,1,2) and the selling price of product j (j = 1,2) is pj. By operating an

assemble-to-order system, the firm pre-stocks qi (i= 0,1,2) units of component i (where q1+q2 ≥ q0)

and then assembles the final products only after receiving the realized demands (θ1, θ2), where θj is

the realized demand for product j. The production cost of all the inventories equals c1q1+c2q2+c0q0

and is sunk at the assembly stage. When the realized demands are (θ1, θ2), the firm assembles sj

units of product j to maximize her total sales revenue by solving the following linear programming

model:

Z (θ1, θ2|q1, q2, q0) = max
s1,s2≥0

{p1s1 + p2s3}− c1q1 − c2q2 − c0q0

s.t. sj ≤min(θj, qj) and s1 + s2 ≤ q0.

Without loss of generality, we assume that p1 ≥ p2 so that the firm gives product 1 a higher priority

than product 2 when the supply of the common component 0 is insufficient. We obtain the marginal

payoffs in the following Table 1 and illustrate the four regions associated with the realized demands

(θ1, θ2) in Figure 2.

Table 1 The marginal payoff ∂Z(θ1,θ2)
∂qi

Circumstance ∂Z
∂q1

∂Z
∂q2

∂Z
∂q0

Z (θ1, θ2|q1, q2, q0)

a) θ1 ≤ q1, θ2 ≤ q2, θ1 + θ2 ≤ q0 −c1 −c2 −c0
p1θ1 + p2θ2

−c1q1 − c2q2 − c0q0

b) θ1 ≤ q1, θ2 > q2, θ1 + q2 ≤ q0 −c1 p2 − c2 −c0
p1θ1 + p2q2

−c1q1 − c2q2 − c0q0

c) θ1 > q1, θ2 ≤ q2, q1 + θ2 ≤ q0 p1 − c1 −c2 −c0
p1q1 + p2θ2

−c1q1 − c2q2 − c0q0

d) Complementary to cases 1) to 3) p1 − p2 − c1 −c2 p2 − c0
p1q1 + p2 (q0 − q1)
−c1q1 − c2q2 − c0q0

The available information includes: i) µj =E
(
θ̃j

)
, which is the mean of the demand for product

j, ii) σ2
j = V ar

(
θ̃j

)
, which is the variance of the demand for product j, and iii) ρ∈ (−1,1), which

is the correlation coefficient of θ̃1 and θ̃2. When demands are perfectly correlated (i.e., with ρ=−1
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Figure 2 Four Circumstances Related to Table 1
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or ρ=+1), the analysis is reduced to Scarf’s model. Thus, we focus on the non-trivial case with

ρ2 < 1. The dual model of Adverse Nature is the following:

D = inf
F

max
qi≥0

{∫ ∞

0

∫ ∞

0

Z (θ1, θ2|q1, q2, q0)
}

s.t.

∫ ∞

0

∫ ∞

0

dF (θ1, θ2) = 1∫ ∞

0

∫ ∞

0

θjdF (θ1, θ2) = µj∫ ∞

0

∫ ∞

0

θ2jdF (θ1, θ2) = µ2
j +σ2

j∫ ∞

0

∫ ∞

0

θ1θ2dF (θ1, θ2) = ρσ1σ2 +µ1µ2∫ ∞

0

∫ ∞

0

∂Z (θ1, θ2|q1, q2, q0)
∂qi

dF (θ1, θ2) = 0, (5.1)

We formulate the objective function of the corresponding SIP model as follows:

P1 =max
{
y0 + y11µ1 + y12µ2 + y21

(
µ2
1 +σ2

1

)
+ y22

(
µ2
2 +σ2

2

)
+ y3 (ρσ1σ2 +µ1µ2)

}
,

where the decision variables include y0, y11, y12, y21, y22, y3, ai, and qi. When circumstance a)

occurs, the SIP constraints are the following:

y0 + y11θ1 + y12θ2 + y21θ
2
1 + y22θ

2
2 + y3θ1θ2 − a0c0 − a1c1 − a2c2 ≤ p1θ1 + p2θ2 − c1q1 − c2q2 − c0q0.

When circumstance a) occurs, it gives rise to the following SIP constraints:

y0+y11θ1+y12θ2+y21θ
2
1+y22θ

2
2+y3θ1θ2−a0c0−a1c1+a2 (p2 − c2)≤ p1θ1+p2q2−c1q1−c2q2−c0q0.
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When circumstance c) occurs, it gives rise to the following SIP constraints:

y0+y11θ1+y12θ2+y21θ
2
1+y22θ

2
2+y3θ1θ2−a0c0+a1 (p1 − c1)−a2c2 ≤ p1q1+p2θ2−c1q1−c2q2−c0q0.

When circumstance d) occurs, it gives rise to the following SIP constraints:

y0 + y11θ1 + y12θ2 + y21θ
2
1 + y22θ

2
2 + y3θ1θ2 + a0 (p− c0)+ a1 (p1 − p2 − c1)− a2c2

≤ p1q1 + p2 (q0 − q1)− c1q1 − c2q2 − c0q0.

Because there exist four different vectors of marginal payoffs, the number of binding constraints

is four. The binding constraints are at point (θ1a, θ2a), point (θ1b, θ2b), point (θ1c, θ2c), and point

(θ1d, θ2d), where point (θ1a, θ2a) satisfies circumstance a), point (θ1b, θ2b) satisfies circumstance b),

point (θ1c, θ2c) satisfies circumstance c), and point (θ1d, θ2d) satisfies circumstance d) of Table 1.

The four binding constraints yield eight tangent conditions (because tangent condition is also two-

dimensional). Excluding ai, the remaining unknown variables include 4 pairs of (θ1, θ2), 3 inventory

levels, and 6 shadow prices. In summary, we encounter 17 decision variables (excluding ai).

Let L be the Lagrangian based on four binding constraints. The FOCs with respect to ai include:

∂L

∂a1

= −c1 (λ1 +λ3 +λ4)+ (p1 − p2)λ4 +(p1 − c1)λ2 = 0,

∂L

∂a2

= −c2 (λ1 +λ2 +λ4)+ (p2 − c2)λ3 = 0,

∂L

∂a0

= −c0 (λ1 +λ2 +λ3)+ (p2 − c0)λ4 = 0.

Using the total probability ( ∂L
∂y0

= 1− λ1 − λ2 − λ3 − λ4 = 0) and the above 3 equations, we can

immediately obtain that λ1 = 1 − c1+c0
p1

− c2
p2
, λ2 =

c1+c0
p1

− c0
p2
, λ3 =

c2
p2
, and λ4 =

c0
p2
. These four

Lagrangian multipliers determine the probability masses of Adverse Nature’s equilibrium strategy

F ∗. It can be verified that there exist 17 equations (i.e., 5 moment conditions because the total

probability is already used, 4 binding constraints and 8 tangent conditions). Solving this non-linear

system with 17 unknowns and 17 equations in closed forms is possible (see the discussions in the

next subsection) but the analytical solution is overly complex.

5.1. Symmetric Case

We consider a special case with the following symmetric data: i) c1 = c2 = c while c0 may not be

identical to c; ii) p1 = p2 = p, µ1 = µ2 = µ, and σ1 = σ2 = σ. Due to symmetry, q1 = q2 = q holds and

the binding constraints are at point (x1, x1), point (x2, x3), point (x3, x2), and point (x4, x4), where

x1 < q, x2 < q0 − q, x3 > q, and x4 > q. We obtain the following probability masses: λ1 = 1− 2c+c0
p

,
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λ2 =
c
p
, λ3 =

c
p
, and λ4 =

c0
p
. Symmetry also makes y11 = y12 = y1 and y21 = y22 = y2, where y1 and

y2 are to be determined. We obtain the following symmetric tangent conditions:
y1 +2y2x1 + y3x1 = p,
y1 +2y2x2 + y3x3 = p,
y1 +2y2x3 + y3x2 = 0,
y1 +2y2x4 + y3x4 = 0.

We regard y1, y2, and y3 as input parameters and xi as unknown variables. We obtain that

x1 =
p− y1
2y2 + y3

, x2 =
2(y1 − p)y2 − y1y3

y2
3 − 4y2

2

,

x3 =
(p− y1)y3 +2y1y2

y2
3 − 4y2

2

, and x4 =
−y1

2y2 + y3
.

The above equations imply that

x1 +x4 = x2 +x3 =
p− 2y1
2y2 + y3

.

The effective moment conditions include:
µ= λ1x1 +λ2x2 +λ3x3 +λ4x4,

µ2 +σ2 = λ1 (x1)
2
+λ2 (x2)

2
+λ3 (x3)

2
+λ4 (x4)

2
,

ρσ2 +µ2 = λ1 (x1)
2
+λ2 (x2x3)+λ3 (x3x2)+λ4 (x4)

2
.

Combining these three effective moment conditions with the symmetric property x1+x4 = x2+x3,

we obtain the following results:

x∗
1 = µ− (c+ c0)σ

√
(1+ ρ)

A
,

x∗
2 = µ+

(p
2
− c− c0

)
σ

√
(1+ ρ)

A
− σ

2

√
(1− ρ)p

c
,

x∗
3 = µ+

(p
2
− c− c0

)
σ

√
(1+ ρ)

A
+

σ

2

√
(1− ρ)p

c
,

x∗
4 = µ+(p− c− c0)σ

√
(1+ ρ)

A
,

where A= p (c+2c0)− 2 (c+ c0)
2
. To ensure that the firm’s robust inventory levels are non-zero,

the values of A, x∗
1 and x∗

2 must be positive.

Lemma 4 With symmetric data and |ρ|< 1, in the zero-sum game formulated in equation (5.1),

the equilibrium strategy of Adverse Nature is the following four-point distribution:

(
θ̃1, θ̃2

)
=


(x∗

1, x
∗
1) with probability 1− 2c+c0

p
,

(x∗
2, x

∗
3) with probability c

p
,

(x∗
3, x

∗
2) with probability c

p
,

(x∗
4, x

∗
4) with probability c0

p
.
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If parameters are asymmetric, we apply the eight tangent conditions to determine four pairs of

coordinates by using the shadow prices as input parameters. Five shadow prices (y11, y12, y21, y22, y3)

are involved but five moment conditions remain. We can solve the nonlinear system to obtain the

shadow prices, which in turn determine the coordinates of the four binding points. This step could

be too complex to be analytically tractable. However, we can easily obtain numerical solutions by

using commercial software such as EXCEL. The symmetric special case gives rise to the symmetric

property x1+x4 = x2+x3, enabling us to explicitly characterize the equilibrium strategy of Adverse

Nature in Lemma 4.

A relevant benchmark is the case without component commonality. The firm manufacturers

product j by incurring a total cost of c+ c0 per unit using an integrated component. Scarf’s rule

implies that the value of the zero-sum game without component commonality equals Znc = 2µ(p−

c− c0)− 2σ
√
(p− c− c0) (c+ c0). Next, we derive the firm’s equilibrium strategy and compute the

value of the zero-sum game with common component.

Proposition 5 With symmetric data and |ρ|< 1, the robust optimal inventory level of the product-

specific component is

q∗ =
x∗
1 +x∗

3

2
= µ+σ

[(p
4
− c− c0

)√1+ ρ

A
+

1

4

√
(1− ρ)p

c

]
. (5.2)

and that of the common component is

q∗0 = x∗
1 +x∗

4 = 2µ+σ(p− 2c− 2c0)

√
1+ ρ

A
. (5.3)

The value of the zero-sum game equals

Z∗ = 2(p− c− c0)µ−
[√

(1+ ρ)A+
√
(1− ρ)pc

]
σ. (5.4)

It holds that Z∗ ≥Znc, where the equal sign holds if σ= 0.

Proposition 5 provides several useful insights. First, we define (p− 2c− 2c0)
√

1+ρ
A

in equation

(5.3) as the safety stock factor for the common component, which is increasing in the correlation

coefficient ρ. Second, equation (5.2) reveals that correlated demands create two opposite effects

on the inventory levels of product-specific components. Specifically, the term
(
p
4
− c− c0

)√
1+ρ
A

in

equation (5.2) captures the increasing effect. When demands are positively correlated, the inventory

levels of the common and product-specific components increase, producing the increasing effect.

However, the firm also benefits from component commonality and the term 1
4

√
(1−ρ)p

c
in equation
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(5.2) captures the decreasing effect. The two opposite effects also influence the value of the zero-

sum game. In equation (5.4), the term
√
(1+ ρ)A quantifies the impact of higher inventory levels of

product-specific components (i.e., the increasing effect); while the term
√

(1− ρ)pc quantifies the

impact of lower inventory level of common component (i.e., the decreasing effect). Third, component

commonality always improves the firm’s equilibrium profit unless demands are deterministic or

perfect positive correlation occurs. When demands are deterministic, the symmetric profit margin

of each product equals (p− c− c0) and the firm’s profit equals 2(p−c−c0)µ, which is the first term

in equation (5.4). Finally, Proposition 5 underscores that the robust inventory levels closely relate

to the binding constraints.

6. Discussions

6.1. Existence of an Equilibrium

Zero-sum games have been extensively studied by various disciplines (e.g., economics, computer

science, and operations research) since Nash (1951) proves that an equilibrium exists in finite

games. By definition, a finite game restricts the action space of each player to be finite and discrete.

The well-known Debreu-Glicksberg-Fan (DGF) Theorem (see Fudenberg and Tirole 1991) extends

the result to infinite games, where players can take an infinite number of actions. Specifically, the

existence of an equilibrium in an infinite game requires three conditions: i) the action space of each

player i is compact and convex; ii) the payoff function of player i is continuous with respect to

other players’ actions; and iii) the payoff function of player i is continuous and quasi-concave with

respect to his own action.

We can extend the analysis to the case with n≥ 1 moments. Example 2.6 of Hettich and Kor-

tanek (1993) indicates that we can first use a generalized finite sequence to construct the so-called

“moment cones”. The convex hull of the moment cones then specifies the corresponding ambiguity

set Ωn (where the subscript n indicates that the first n≥ 1 moments are known). It is well-known

that the convex hull of the moment cones is convex and compact so that condition i) holds in

our examples. In the examples that we consider, the ex post payoff functions are continuous and

quasi-concave and hence, conditions ii) and iii) also hold. A minor issue is that we do require the

ex post payoff function Z (θ|Q) and its first derivative ∂Z(θ|Q)

∂Qi
both be finite for any θ≥ 0 so that

duality holds. We believe that the assumption of a bounded payoff and a bounded marginal payoff

is mild, especially in supply chains.

Discontinuous payoff functions can arise in various circumstances, for example, when the (s,S)

inventory policy is used. On page 1033, Reny (1999) indicates that many discontinuous games

can still have an equilibrium (we refer readers to Reny 2020, for an updated literature review). A
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promising path for future research is to consider discontinuous payoff functions. Notably, Theorem

1 provides an alternative method to determine whether an equilibrium exists when payoff functions

are discontinuous. Specifically, we solve the SIP model of Adverse Nature. If one of the optimal

solutions satisfies ai = 0 for all i, then an equilibrium exists; otherwise, the original zero-sum game

does not have an equilibrium.

If quasi-concavity is not assumed, we either retrospectively verify the firm’s second-order con-

ditions or include them as part of the IC constraints in Adverse Nature’s model. To illustrate, we

use a single-action model as an example. The FOC includes
∫∞
0

∂Z(θ|Q)

∂Q
dF (θ) = 0 and the second-

order condition includes
∫∞
0

∂2Z(θ|Q)

∂Q2 dF (θ)≤ 0. Consequently, the SIP constraints in equation (2.6)

change to the following:

y0 + y1θ+ y2θ
2 + a

∂Z (θ|Q)

∂Q
+ b

∂2Z (θ|Q)

∂Q2
≤Z (θ|Q) ,∀θ≥ 0,

where b is nonpositive. If an equilibrium exists, both a∗ and b∗ are zero.5 Nonetheless, quasi-

concavity not only validates the first-order approach that economists advocate but also ensures

the existence of an equilibrium in the zero-sum games that we study.

6.2. Other Ambiguity Sets

The available information affects the ambiguity set and critically determines the mathematical

properties of the robust solution. For example, Mulvey et al. (1995) propose a scenario-based

model. Ben-Tal and Nemirovski (1999) propose an ellipsoid model to model contaminated data

or parameter uncertainty. Bertsimas and Sim (2004) propose a cardinality-constrained model to

control the level of conservatism. Esfahani and Kuhn (2018) consider Wasserstein balls. To extend

our method to these models, the key step is to develop the IC constraints from the perspective

of Adverse Nature. If the relevant IC constraints have a simple form, we believe that our method

remains effective.

On the other hand, economists have considered several types of ambiguities, including unknown

actions, unknown prior distributions, non-Bayesian beliefs, unknown strategic behaviors, and

unknown interactions among agents (we refer readers to a recent survey done by Carroll 2019).

In supply chains, an unknown prior distribution is the most relevant type of ambiguity for ran-

dom demands or random yields. Again, the key step to apply our method is to simplify the IC

constraints in the min-max version of the model. By following Perakis and Roels (2008), we can

easily incorporate other information such as mode and range into the analysis. In future research,

we plan to examine the ambiguities that economists have considered.
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7. Concluding Remark

This paper proposes a new and efficient method to solve a large class of zero-sum games under

moment conditions. By solving this class of zero-sum games, we solve the corresponding max-min

optimization models, which have abundant theoretical and practical applications. Our method is

based on the min-max inequality and reformulates the zero-sum game as a robust moral hazard

model from the perspective of Adverse Nature. We show that the IC constraints of the moral hazard

model become moment constraints. While the marginal payoff function (i.e., the first derivative

of the ex post payoff function) appears in the SIP constraints, the number of corner points to be

considered declines drastically. The key advantage of our method is that we can solve the robust

solution without explicitly deriving the objective function. For example, both the (1+ t) model and

the n-option model presented in this paper have an overly complex objective function. However,

using the property of zero Lagrangian multipliers, we conveniently determine many equilibriums

that the traditional method is unable to derive in closed forms.

Endnotes

1. According to a global banking survey conducted by the International Finance Corporation (see

page 9 of IFC 2019), an overwhelming majority of small and medium-sized enterprises do not have

formal record-keeping processes.

2. In September 2000, Sony (which also used option contracts) announced that it failed to meet

customer demand for the new PlayStation console due to shortages in capacitors, LCDs, and flash

memory chips (Fu et al. 2010).

3. Instead of lost sales, future research could consider other scenarios. For instance, the firm could

use the spot market or persuade customers to buy alternative products. These extensions will

enhance the application of our model.

4. We emphasize that the right hand side (RHS) of the IC constraints can be non-zero. For

example, the IC constraint for Scarf’s model is
∫ q

0
(−c)dF (θ) +

∫∞
q
(p − c)dF (θ) = 0, which is

equivalent to
∫ q

0
dF (θ) = p−c

p
. Using either version to formulate the SIP model must produce the

same solution. In the n-option model, the second version of the IC constraints to formulate equation

(4.6) is more convenient. To ensure that the solution in model P1 is feasible in model P , the

Lagrangian multipliers of the IC constraints must be zero despite the non-zero RHS of the IC

constraints.

5. With multiple actions, where Q= (Q1,Q2, ...,Qn), the second-order conditions are complex. In

the special case where the cross derivative ∂2Z(θ|Q)

∂Qi∂Qj
is zero for any i ̸= j, the second-order conditions

create a summation of bi
∂2Z(θ|Q)

∂Q2
i

at the left-hand-side of the SIP constraints.
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Online Appendix: Technical Proofs

Part A: Proofs for Sections 2 and 3

Proof of Theorem 1

The first step is to establish strong duality (i.e., P =D and P1 =D1). This step is rather routine

and we omit the details. The second step has been fully explained in the paragraph preceding

Theorem 1. Q.E.D.

Proof of Lemma 1

a) We consider the following nonlinear system:{ p−r−c
p−r

x1 +
c

p−r
x2 = µ,

p−r−c
p−r

xt
1 +

c
p−r

xt
2 =mt.

, (A-1)

which has two unknowns and two equations with the power of t. Using the equation c
p−r

x2 =

µ− p−r−c
p−r

x1, we can rewrite equation (A-1) as the following one-variable equation:

H (x1) =
p− r− c

p− r
xt
1 +

c

p− r

[
x1 +

p− r

c
(µ−x1)

]t
=mt.

It is easy to verify that for x1 ∈ [0, µ], H (x1) is decreasing. When x1 = 0, H (x1) =
µt

( c
p−r )

t−1 and

when x1 = µ,H (µ) = µt. Hence, when condition (3.4) holds,H (x1) =mt has a nonnegative solution

θ1 satisfying 0≤ θ1 ≤ µ. We then obtain that

θ2 = θ1 +

(
p− r

c

)
(µ− θ1)≥ θ1.

Because (θ1, θ2) satisfy the nonlinear system in (A-1), the two-point distribution in equation (3.5)

satisfies the conditions on the mean and t-th moment.

b) It is readily verified that the distribution in equation (3.7) satisfies the conditions on the mean

and t-th moment. Q.E.D.

Proof of Proposition 1

a) We conjecture that binding constraints occur at θ1 and θ2, where θ1 ≤ q ≤ θ2 such that over-

stock (lost sales) occurs when the realized demand is θ1 (θ2). If the conjectured constraints satisfy

θ1 ≤ θ2 ≤ q, then the firm can lower the inventory level to avoid overstocking. If the conjectured

constraints satisfy q ≤ θ1 ≤ θ2, then the firm can increase the inventory level to reduce lost sales.

The Lagrangian equals

L = y0 + y1µ+ y2mt −λ1 [y0 + y1θ1 + y2θ
t
1 − ac− (p− r)θ1 + cq]

−λ2 [y0 + y1θ2 + y2θ
t
2 + a (p− r− c)− (p− r− c) q] .
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The FOCs with respect to y0 and a are the following:

∂L

∂y0
= 1−λ1 −λ2 = 0 and

∂L

∂a
= λ1c−λ2 (p− r− c) = 0.

These two equations yield that λ1 =
p−r−c
p−r

and λ2 =
c

p−r
. Observe that the multiplier λ1 =

p−r−c
p−r

corresponds to the newsvendor ratio. The FOCs with respect to y1 and y2 are the following:

∂L

∂y1
= µ−λ1θ1 −λ2θ2 = 0 and

∂L

∂y2
=mt −λ1θ

t
1 −λ2θ

t
2 = 0.

Because λ1 =
p−r−c
p−r

and λ2 =
c

p−r
are known, the above two equations yield the following nonlinear

system: { p−r−c
p−r

θ1 +
c

p−r
θ2 = µ,

p−r−c
p−r

θt1 +
c

p−r
θt2 =mt.

, (A-2)

which involves two equations and two unknowns. Lemma 1a) solves this nonlinear system and

identifies the two-point distribution in equation (3.5). We label this two-point distribution as F ∗,

which is independent of q and is the strategy that Adverse Nature plays in the equilibrium.

Without the shadow prices, the analysis remains incomplete. To solve for the shadow prices, we

use the binding constraints and the tangent conditions as follows:

y0 + y1θ1 + y2θ
t
1 − ac− (p− r)θ1 + cq= 0,

y0 + y1θ2 + y2θ
t
2 + a (p− r− c)− (p− r) q+ cq= 0,

y1 + ty2θ
t−1
1 = p− r and y1 + ty2θ

t−1
2 = 0.

We emphasize that in model P1, the tangent condition satisfies that y1+ ty2θ
t−1+a∂2Z(θ|q)

∂q∂θ
= ∂Z(θ|q)

∂θ

while in (the traditional) model P , the tangent condition satisfies that y1 + ty2θ
t−1 = ∂Z(θ|q)

∂θ
. Due

to the characteristics of the newsvendor model (in which the ex post profit function is piece-wise

linear), the cross derivative ∂2Z(θ|q)
∂q∂θ

is zero.

Solving this system of 4 unknowns and 4 equations, we obtain that

a= q− θ1 −
θt−1
2 (θ2 − θ1)

θt−1
2 − θt−1

1

+
θt2 − θt1

t
(
θt−1
2 − θt−1

1

) .
According to Theorem 1, we let a= 0 to obtain the firm’s equilibrium strategy q∗, which is shown

in equation (3.8).

The shadow prices y1 and y2 are the following:

y1 = θt−1
2

(
p− r

θ2 − θ1

)
and y2 =− p− r

t
(
θt−1
2 − θt−1

1

) ,
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and the fourth shadow price y0 equals

y0 = −y1θ1 − y2θ
t
1 + ac+(p− r)θ1 − cq

= −θt−1
2 θ1

(
p− r

θ2 − θ1

)
+

p− r

t
(
θt−1
2 − θt−1

1

)θt1 + c

(
q− θ1 −

θt−1
2 (θ2 − θ1)

θt−1
2 − θt−1

1

+
θt2 − θt1

t
(
θt−1
2 − θt−1

1

))
+ (p− r)θ1 − cq

= (p− r)

[
θ1 +

θt1
t
(
θt−1
2 − θt−1

1

) − θt−1
2 θ1

θ2 − θ1

]
− c

(
θ1 +

θt−1
2 (θ2 − θ1)

θt−1
2 − θt−1

1

− θt2 − θt1
t
(
θt−1
2 − θt−1

1

)) .

There are two alternatives to compute P ∗
1 , which is the value of the zero-sum game. The first

alternative is to compute P ∗
1 from the firm’s perspective. When Adverse Nature plays the two-point

distribution in equation (3.5), we can easily verify that for any q ∈ [θ1, θ2],

Z (q,F ∗) = Pr(θ̃= θ1)Z(θ1|q)+Pr(θ̃= θ2)Z(θ2|q) =
p− r− c

p− r
[(p− r)θ1] +

c

p− r
[(p− r)q]− cq

= (p− r− c)θ1 + cq− cq= (p− r− c)θ1.

The second alternative is to substitute the optimal shadow prices that we have developed into the

objective function of model P1. Note that (θ1, θ2) satisfy the nonlinear system in equation (A-2).

We find that

P ∗
1 = y0 + y1µ+ y2mt = y0 + y1

(
p− r− c

p− r
θ1 +

c

p− r
θ2

)
+ y2

(
p− r− c

p− r
θt1 +

c

p− r
θt2

)
=

p− r− c

p− r
(y0 + y1θ1 + y2θ

t
1)+

c

p− r
(y0 + y1θ2 + y2θ

t
2) .

The binding SIP constraints imply that y0+y1θ1+y2θ
t
1 = ac+(p− r)θ1− cq and y0+y1θ2+y2θ

t
2 =

−a (p− r− c)+ (p− r) q− cq. Thus, we obtain that

P ∗
1 =

p− r− c

p− r
[ac+(p− r)θ1 − cq] +

c

p− r
[−a (p− r− c)+ (p− r) q− cq]

= a

[
(p− r− c) c

p− r
− c (p− r− c)

p− r

]
+(p− r− c)θ1 + cq− cq= (p− r− c)θ1.

Both alternatives lead to the same conclusion. Note that the values of θ1 and θ2 satisfy Lemma

1a) and condition (3.4) ensures that θ1 is positive.

b) Suppose that condition (3.6) holds and Adverse Nature chooses the distribution in equation

(3.7) as the equilibrium strategy. We can easily verify that the firm’s expected profit is decreasing

with respect to q. Hence, the firm’s best response is q∗ = 0, which results in zero profit. Because

Adverse Nature’s objective is to minimize the value of the zero-sum game, P1 ≥ 0 must hold.

Because the distribution in equation (3.7) makes P1 = 0, we conclude that q∗ = 0 is the firm’s

equilibrium strategy and the distribution in equation (3.7) is Adverse Nature’s equilibrium strategy.

Q.E.D.
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Scarf’s Model

In a special case where t= 2 (such that m2 = µ2 + σ2), the analysis reduces to Scarf’s model and

condition (3.4) requires that µ2 ≥ c
p−r

(µ2 +σ2), which is equivalent to (p− r− c)≥ cρ2. It is well-

known that when (p− r− c)< cρ2, the firm’s robust optimal solution is q∗ = 0. Based on Lemma

1, we re-write the nonlinear equation of (3.3) as follows:

H (x) =
p− r− c

p− r
x2 +

c

p− r

[
x+

p− r

c
(µ−x)

]2
= µ2 +σ2,

which readily yields that θ1 = µ − σ
√

c
p−r−c

and θ2 = µ + σ
√

p−r−c
c

. As a result, we obtain the

following distribution: 
Pr

(
θ̃= µ−σ

√
c

p−r−c

def
= θ∗1

)
= p−r−c

p−r
,

Pr
(
θ̃= µ+σ

√
p−r−c

c

def
= θ∗2

)
= c

p−r
.

(A-3)

Corollary 3 In Scarf ’s model, when (p− r− c)≥ cρ2 holds, the equilibrium strategy F ∗ chosen by

Adverse Nature is the two-point distribution shown in equation (A-3). The SIP model in equation

(3.2) encompasses multiple solutions satisfying
a= q− θ∗1+θ∗2

2
,

y0 =− ∆
2σ

(µ2 +σ2) ,
y1 = (p− r− c)+∆µ

σ
,

y2 =− ∆
2σ
,

(A-4)

where q ∈ [θ∗1, θ
∗
2] and ∆=

√
(p− r− c) c such that the value of the zero-sum game equals

P ∗
1 = (p− r− c)θ∗1 = (p− r− c)µ−∆σ.

Proof. Let ∆=
√
(p− r− c) c. Based on the proof of Proposition 1, we obtain that

a= q− θ1 −
θ2 (θ2 − θ1)

θ2 − θ1
+

θ22 − θ21
2 (θ2 − θ1)

= q− θ1 + θ2
2

.

On the other hand, the remaining shadow prices include: y0 =− ∆
2σ

(µ2 +σ2), y1 = (p− r− c)+∆µ
σ
,

y2 =
−(p−r)

2(θ2−θ1)
=− ∆

2σ
, confirming the results in equation (A-4). Notice that when q is fixed, the SIP

model P1 is also linear with respect to decision variables yi and a, making KKT conditions sufficient

and necessary. Using Theorem 1, we let a∗ = 0 to obtain q∗ = θ1+θ2
2

. Q.E.D.

From the firm’s perspective, if the distribution in equation (A-3) arises, any q ∈ [θ∗1, θ
∗
2] gives her

the same expected profit, which equals P ∗
1 = (p− r− c)θ∗1. Although any q ∈ [θ∗1 , θ

∗
2] does not affect

the optimal value of model P1, the firm cannot arbitrarily choose any q from the interval [θ∗1, θ
∗
2 ].
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To construct a solution that is feasible for both models P and P1, Theorem 1 suggests that we let

a= 0 such that

q∗ =
1

2
(θ∗1 + θ∗2) = µ+

1

2
σ

(√
p− r− c

c
−
√

c

p− r− c

)
,

which is the well-known Scarf’s rule and happens to be the midpoint of the closed interval [θ∗1, θ
∗
2 ].

A few useful observations can be made.

• When a nonrobust solution is used, the shadow price a associated with the IC constraint is

non-zero. The shadow price a could be positive or negative depending on which direction that the

nonrobust q deviates from the equilibrium. Whenever a ̸= 0, the solution (a, yi, q), which is feasible

for model P1, cannot be implemented in model P , making P <P1 and q a nonrobust solution.

• In terms of computational complexity, we bypass the middle step of solving the inner SIP

model in equation (2.3) and directly attack the robust solution. Because the first derivative is a

step function, we encounter multiple solutions in model P1. We then apply Theorem 1 to solve the

robust solution.

• If the firm deviates from the equilibrium, it is well-known that Adverse Nature plays the

following strategy: ∫ q

0

dF (θ|q) = 1

2
+

q−µ

2
√
(q−µ)

2
+σ2

,

which represents a credible threat to the firm such that she has no incentive to deviate from her

equilibrium strategy. Interestingly, by letting q = 1
2
(θ∗1 + θ∗2) in the above equation, we obtain the

two-point distribution equation (A-3), which is labeled as F ∗. If distribution F ∗ realizes, the firm’s

expected profit is monotonically increasing in q if q < θ∗1 and is monotonically decreasing in q if

q > θ∗2. We can conclude that the firm never plays a q outside of the closed interval [θ∗1, θ
∗
2]. In other

words, to satisfy the IC constraints in Adverse Nature’s model, the capacity level must come from

the interval [θ∗1, θ
∗
2 ].

• Let k = p−r−c
p−c

. In a special case with k = 0.5, equation (A-3) yields that θ∗1 = µ − σ and

θ∗2 = µ+ σ, which are the theoretical bounds on the median. The bounds on the median are well-

known in statistics. However, equation (A-3) generalizes the bounds to any k× 100% percentile,

where 0< k < 1. Specifically, the upper bound on the k× 100% percentile is µ+ σ
√

k
1−k

and the

lower bound is µ− σ
√

1−k
k
. In relation to supply chains, if the newsvendor ratio is known to be

k, the firm should not order less than µ− σ
√

1−k
k

or order more than µ+ σ
√

k
1−k

; otherwise, she

behaves off the equilibrium. Certainly, using Lemma 1, we can generalize the bounds on percentile

by using the mean and the t-th moment.
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Part B: Proofs for Section 4

Proof of Lemma 2:

In the fulfillment stage, the capacity vector q is already chosen. After observing the realized demand

θ, the firm solves the following linear programming model to maximize her ex post profit:

Z (θ|q) =−
n∑

i=1

ciqi +max
xi≥0

{
n∑

i=1

(p− ri)xi

}
, (B-1)

subject to the capacity availability constraints:

xi ≤ qi, ∀i∈ {1,2, · · · , n} , (B-2)

and the total demand constraint:

x1 +x2 + · · ·+xn ≤ θ. (B-3)

The nonnegative decision variable xi represents the quantity of the end products delivered by

source-i. The capacity availability constraints (B-2) ensure that the quantity of the end products

delivered by source-i does not exceed the available capacity qi, and the total demand constraint

(B-3) ensures that the total delivered quantities do not exceed the realized demand θ. In equation

(B-1), the total cost
∑n

i=1 ciqi is sunk, and the coefficient (p−ri) is decreasing in i due to Definition

1. Hence, the firm must prefer source i to source (i+1), implying that the firm’s optimal fulfillment

plan follows a priority rule such that source (i+1) is not used unless the reserved capacity of source

i is exhausted.

In equation (B-1), the coefficient of decision variable xi equals (p− ri), which is decreasing in i.

The firm must exhaust all of source-i capacities before using any source-(i+1) capacity. Thus, it

holds that

x∗
i =min

qi,

(
θ−

i−1∑
j=1

qi

)+
 ,

which is optimal for equation (B-1). Using the definition of Qi, we obtain that

x∗
i =min

(
Qi −Qi−1, (θ−Qi−1)

+
)
=min(Qi, θ)−min(Qi−1, θ) ,

indicating that the sales quantity contributed by source-i capacity equals the sales of the first i

sources minus the sales of the first (i− 1) sources. Thus, we obtain that

Z (θ|q) = Z (θ|Q) =−
n∑

i=1

ci (Qi −Qi−1)+
n∑

i=1

(p− ri)x
∗
i

=
n∑

i=1

[(p− ri) (min (Qi, θ)−min(Qi−1, θ))− ci (Qi −Qi−1)] ,
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which yields equation (4.2). It is easy to verify that Z (θ|Q) is continuous in θ.

To understand the concave and increasing properties of Z (θ|Q), we expand equation (4.2) into

(n+1) cases. i) When θ ∈ [0,Q1]:

Z (θ|Q) = (p− r1)θ−
n∑

i=1

ciqi, (B-4)

in which ∂Z(θ|Q)

∂θ
= p− r1 and ∂Z(θ|Q)

∂q1
=−c1. ii) When θ ∈ [Q1,Q2]:

Z (θ|Q) = (p− r2) (θ− q1)+ (p− r1) q1 −
n∑

i=1

ciqi = (p− r2)θ+(r2 − r1 − c1) q1 −
n∑

j=2

cjqj,

in which ∂Z(θ|Q)

∂θ
= p−r2 and

∂Z(θ|Q)

∂q1
= r2−r1−c1. iii) In general, when θ ∈ [Qi−1,Qi] and 2≤ i≤ n:

Z (θ|Q) = (p− ri)θ+
i−1∑
j=1

(ri − rj − cj) qj −
n∑

j=i

cjqj, (B-5)

in which ∂Z(θ|Q)

∂θ
= p− ri and

∂Z(θ|Q)

∂q1
= ri − r1 − c1. iv) Finally, when θ≥Qn:

Z (θ|Q) =
n∑

i=1

(p− ri − ci) qi, (B-6)

in which ∂Z(θ|Q)

∂θ
= 0 and ∂Z(θ|Q)

∂q1
= p− r1 − c1.

The first derivative ∂Z(θ|Q)

∂θ
is nonnegative and decreasing in θ, making Z (θ|Q) concave and

increasing in θ. The first derivative ∂Z(θ|Q)

∂q1
= δi represents the marginal impact of source-i.

Q.E.D.

Proof of Lemma 3:

Using equation (4.2), we obtain that the firm’s expected profit equals:

Z (Q) =
n∑

i=1

(p− ri) [Emin(Qi, θ)−Emin(Qi−1, θ)]− ci (Qi −Qi−1)

=
n−1∑
i=1

{[(p− ri)− (p− ri+1)]E [min (Qi, θ)]− (ci − ci+1)Qi}

+(p− rn)Emin(Qn, θ)− cnQn

=
n−1∑
i=1

{(ri+1 − ri)E [min (Qi, θ)]− (ci − ci+1)Qi}

+(rn+1 − rn)Emin(Qn, θ)− cnQn. (B-7)

In equation (B-7), we regard Qi as the decision variable. Based on the assumptions on

the cost parameters, we observe that (ri+1 − ri) ≥ 0 and (ci − ci+1) ≥ 0. The expected

37



sales quantity E [min (Qi, θ)] is continuous and concave with respect to Qi. Thus, the term

(ri+1 − ri)E [min (Qi, θ)]− (ci − ci+1)Qi is concave in Qi. The last term of equation (B-7) is also

concave because (rn+1 − rn)> 0. We conclude that equation (B-7) is concave in Qi.

By relaxing the monotonicity constraints Qi ≥ Qi−1, we can separately optimize each term in

equation (B-7). Observe that ∂
∂Qi

E [min (Qi, θ)] = 1−F (Qi). The FOC yields a candidate solution

Q̃i satisfying

F
(
Q̃i

)
= 1− ci − ci+1

ri+1 − ri
= αi,

for i= 1,2, · · · , n− 1. For i= n, the FOC yields that

F
(
Q̃n

)
= 1− cn − cn+1

rn+1 − rn
= 1− cn

p− cn
= αn.

Because αi is increasing in i, the candidate solution Q̃i satisfies the monotonicity constraints and

hence is optimal. We obtain that

q̃i = F−1
(
Q̃i

)
−F−1

(
Q̃i−1

)
= F−1 (αi)−F−1 (αi−1)≥ 0,

where F−1 is the inverse function of F . Q.E.D.

Proof of Corollary 1:

i) Equation (4.3) indicates that δi = ri − r1 − c1 for i= 1,2, · · ·n+1.

n+1∑
i=1

βiδi =

(
n+1∑
i=1

βiri

)
−

(
n+1∑
i=1

βi (r1 + c1)

)
=

(
n+1∑
i=1

βiri

)
− c1 − r1.

Observe that
n+1∑
i=1

βiri =

(
1− c1 − c2

r2 − r1

)
r1 +

(
c1 − c2
r2 − r1

− c2 − c3
r3 − r2

)
r2 + · · ·+

(
cn−1 − cn
rn − rn−1

− cn
p− rn

)
rn +

pcn
p− rn

= r1 −
c1 − c2
r2 − r1

r1 +
c1 − c2
r2 − r1

r2 −
c2 − c3
r3 − r2

r2 + · · ·+ cn−1 − cn
rn − rn−1

rn −
cnrn
p− rn

+
pcn

p− rn

= r1 +
c1 − c2
r2 − r1

(r2 − r1)+ · · ·+ cn−1 − cn
rn − rn−1

(rn − rn−1)−
cnrn
p− rn

+
pcn

p− rn

= r1 + c1 − c2 + · · ·+ cn−1 − cn −
cnrn
p− rn

+
pcn

p− rn
= r1 + c1 − c2 + · · ·+ cn−1 − cn + cn = r1 + c1.

Thus, we conclude that
∑n+1

i=1 βiδi = 0.

ii) We shall verify that the discrete distribution shown in equation (4.8) satisfies the mean and

variance constraints. Equation (4.7) indicates that θ∗i is a linear transformation of δi. Thus, we

immediately obtain that

n+1∑
i=1

βiθ
∗
i =

n+1∑
i=1

βi

(
µ+

σ

∆
δi

)
= µ+

σ

∆

n+1∑
i=1

βiδi = µ
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and
n+1∑
i=1

βi (θ
∗
i −µ)

2
=

n+1∑
i=1

βi

( σ
∆
δi

)2

=
σ2

∆2

n+1∑
i=1

βiδ
2
i =

σ2

∆2
∆2 = σ2,

where the third equality is based on the definition of ∆. We conclude that the discrete distribution

shown in equation (4.8) satisfies the mean and variance constraints, becoming an element of the

ambiguity set Ω. Q.E.D.

Proof of Proposition 2:

Step 1): Conjecture binding constraints. We conjecture that the SIP model in equation (4.6) has

(n+1) binding constraints at points θi (where i= 1,2, · · · , n+1) such that θi ∈ [Qi−1,Qi]. At the

first segment with θ ∈ [0,Q1], using equation (B-4), we find that the SIP constraint is

a1 + y0 + y1θ+ y2θ
2 ≤ (p− r1)θ−

n∑
i=1

ciqi.

By assuming that θ= θ1 is the binding constraint at the first segment, we obtain

a1 + y0 + y1θ1 + y2θ
2
1 = (p− r1)θ1 −

n∑
i=1

ciqi =Z (θ1|Q) .

The above condition alone is insufficient to ensure that θ1 is a locally binding constraint for the

first segment. Similar to in Scarf (1958), the tangent condition y1 +2y2θ1 = p− r1 must also hold.

By repeating the same procedure on equations (B-5) and (B-6), we obtain all of the binding and

tangent conditions. We summarize the (n+1) binding conditions as follows:

a1 + y0 + y1θ1 + y2θ
2
1 =Z (θ1|Q)

...
ai + y0 + y1θi + y2θ

2
i =Z (θi|Q)

...
an + y0 + y1θn + y2θ

2
n =Z (θn|Q)

y0 + y1θn+1 + y2θ
2
n+1 =Z (θn+1|Q)

(B-8)

and (n+1) tangent conditions as follows:

y1 +2y2θ1 = p− r1
...
y1 +2y2θi = p− ri
...
y1 +2y2θn = p− rn
y1 +2y2θn+1 = p− rn+1 = 0

(B-9)

Step 2: Solve the KKT conditions. The Lagrangian of equation (4.6) equals:

L = a1β1 + a2β2 + ...+ anβn + y0 + y1µ+ y2
(
µ2 +σ2

)
−

n∑
i=1

λi

[
ai + y0 + y1θi + y2θ

2
i −Z (θi|Q)

]
−λn+1

[
y0 + y1θn+1 + y2θ

2
n+1 −Z (θn+1|Q)

]
,
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where λi ≥ 0 is the Lagrangian multiplier.

After solving the FOC with respect to ai, we obtain that ∂L
∂ai

= βi−λi = 0, implying that the first

n Lagrangian multipliers satisfy that λi = βi for i= 1,2, · · · , n. Solving the FOC with respect to y0,

we obtain that 1 =
∑n+1

i=1 λi. Because we have just shown that λi = βi for i= 1,2, · · · , n, we obtain

that λn+1 = 1−
∑n

i=1 βi = βn+1. We conclude that the mass probabilities βi shown in Definition 1

happen to be the Lagrangian multipliers.

We derive the conjectured binding points θi. We solve the FOCs with respect to y1 and y2 to

obtain

µ=
n+1∑
i=1

βiθi and µ2 +σ2 =
n+1∑
i=1

βiθ
2
i . (B-10)

Equations (B-9) and (B-10) form a system with (n+3) unknown variables (i.e., θi, y1, y2) and

(n+3) equations. To streamline the expressions, let xi = θi−µ for i= 1,2, · · · , n+1. We also define

{vi} and {hi} for i= 1,2, · · · , n in Table 2 below.

Table 2 The {vi} and {hi} sequences and their relationship to sequences {βi} and {αi}.

i vi hi βi αi

1 c1 − c2 r2 − r1 1− v1
h1

1− v1
h1

2 c2 − c3 r3 − r2
v1
h1

− v2
h2

1− v2
h2

...
...

...
...

...
n− 1 cn−1 − cn rn − rn−1

vi−1

hi−1
− vi

hi
1− vi−1

hi−1

n cn p− rn
vn−1

hn−1
− vn

hn
1− cn

p−rn

n+1 N/A N/A cn
p−rn

1

Using the sequences {vi} and {hi} given in Table 2, we rewrite the mean condition shown in

equation (B-10) as:(
1− v1

h1

)
x1 + · · ·+

(
vi−1

hi−1

− vi
h2

)
xi + · · ·+

(
vn−1

hn−1

− vn
hn

)
xn +

vn
hn

xn+1 = 0.

We also simplify the tangent conditions (B-9) to obtain that 2y2(xi −xi+1) = hi for i= 1,2, · · · , n.

After substituting the recursive equation 2y2(xi−xi+1) = hi into the mean condition and performing

some algebra, we obtain that
x1 =

∑n
j=1 vj

2y2
= c1

2y2
,

xi =
∑i

k=1 vk−
∑i−1

k=1
hk

2y2
= c1+r1−ri

2y2
, for i= 2, ..., n,

xn+1 =
∑n

i=1 vi−
∑n

i=1 hi

2y2
= c1+r1−p

2y2
.
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We can simplify xi by using equation (4.3) to obtain xi =− δi
2y2

, where y2 is the remaining unknown

variable. Substituting xi =− δi
2y2

into the variance condition, we obtain that

σ2 =
n+1∑
i=1

βix
2
i =

n+1∑
i=1

βi

(
− δi
2y2

)2

=
1

(2y2)
2

n+1∑
i=1

βiδ
2
i =

1

(2y2)
2∆

2,

where the last equality follows the definition of ∆ in Definition 2. We obtain that (y2)
2
=
(

∆
2σ

)2
.

Recall that for θ≥Qn, the SIP constraints of equation (4.6) include:

y0 + y1θ+ y2θ
2 ≤

n∑
i=1

(p− ri − ci) qi,

where the RHS is a positive constant, indicating that y2 ≤ 0 (otherwise, the constraint cannot hold

when θ→∞). We obtain that y∗
2 =− ∆

2σ
. We find that each conjecture binding point θi satisfies

θi = xi +µ=− δi
2y∗

2

+µ=− δi
−∆

σ

+µ= µ+ δi
σ

∆
= θ∗i .

Complementary slackness indicates that the discrete distribution satisfying Pr (θ= θi) = λi (for

i= 1,2, · · · , n+1) represents the firm’s worst-case distribution. Because we have demonstrated that

the Lagrangian multipliers satisfy λi = βi and the conjectured binding points satisfy θi = θ∗i , we

conclude that the discrete distribution shown in equation (4.8) is the firm’s worst-case distribution.

Step 3: We derive the remaining shadow prices. The final tangent condition in equation (B-9)

indicates that:

y∗
1 =−2y∗

2θ
∗
n+1 =

∆

σ

[
µ+

σ

∆
(p− r1 − c1)

]
= (p− r1 − c1)+∆

µ

σ
.

With y∗
1 and y∗

2 being known, the number of unknown variables in equation (B-8) decreases from

(n+3) to (n+1). By solving the remaining (n+1) equations in (B-8), we obtain



y∗
0 = y∗

2

(
θ∗n+1

)2
+Z

(
θ∗n+1|Q

)
a∗
n =−y∗

0 − y∗
1θ

∗
n − y∗

2 (θ
∗
n)

2
+Z (θ∗n|Q)

...

a∗
2 =−y∗

0 − y∗
1θ

∗
2 − y∗

2 (θ
∗
2)

2
+Z (θ∗2 |Q)

a∗
1 =−y∗

0 − y∗
1θ

∗
1 − y∗

2 (θ
∗
1)

2
+Z (θ∗1 |Q)

. (B-11)

Because we shall apply Theorem 1, it is unimportant to simplify equation (B-11) at this stage.

With y∗
2 < 0, we can verify that the proposed shadow prices satisfy all of the SIP constraints in

equation (4.6) because the tangent conditions (B-9) are the FOCs and y2 < 0 is the second-order

condition for guaranteeing a locally binding constraint. Q.E.D.

41



Proof of Proposition 3:

As the proof of Proposition 1 indicated, we can compute the value of the zero-sum game from the

perspective of the firm or Adverse Nature. When both players play their equilibrium strategy, either

perspective will lead to the same value of the zero-sum game. Because we defer the characterization

of the firm’s equilibrium strategy in the subsequent Proposition 4, we compute the value of the

zero-sum game from the firm’s perspective. Suppose that the firm’s worst-case distribution F ∗

given by equation (4.8) is realized. For simplicity of exposition, we suppress the superscript ∗ in

θ∗i (i.e., we write θ∗i in equation (4.8) as θi in this proof) but retain the superscript ∗ in F ∗. Let Q

be a capacity vector satisfying Qi ∈ [θi, θi+1].

Recall that rn+1 = p and hence, in Table 2, hn = rn+1−rn = p−rn. Using ri for all i= 1,2, · · · , n+

1, we find that equation (B-5) becomes valid for all i for all i= 1,2, · · · , n+1. We obtain that when

the realized demand is θ= θi, the ex post profit equals

Z (θi|Q) = (p− ri)θi +
i−1∑
j=1

(ri − rj − cj) qj −
n∑

j=i

cjqj = (p− ri)θi +
i−1∑
j=1

(ri − rj) qj −
n∑

j=1

cjqj,

where
∑n

j=1 cjqj =C is the total cost associated with the given capacity vector Q. Thus, the firm’s

expected profit equals:

Z (Q|F ∗) =
n+1∑
i=1

βiZ (θi|Q) =
n+1∑
i=1

βi (p− ri)θi +
n+1∑
i=1

βi

(
i−1∑
j=1

(ri − rj) qj

)
−

n+1∑
i=1

βiC

=
n+1∑
i=1

βi (p− ri)θi +
n+1∑
i=1

βi

(
i−1∑
j=1

(ri − rj) qj

)
−C. (B-12)

We simplify equation (B-12) in the next two steps.

First, we find that the first summation in equation (B-12) equals

n+1∑
i=1

βi(p− ri)θi = p
n+1∑
i=1

βiθi −
n+1∑
i=1

βiθiri. (B-13)

According to Corollary 1, the first term in equation (B-13) is pµ. Using equation (4.3), we find

that for i= 1,2, · · · , n+1, δi − ri =−r1 − c1, implying that

θiri =
(
µ+ δi

σ

∆

)
(δi + r1 + c1) = µδi +µ (r1 + c1)+ δ2i

σ

∆
+(r1 + c1) δi

σ

∆
.

Applying Corollary 1, we simplify the second term in equation (B-13) as:

n+1∑
i=1

βiθiri =
n+1∑
i=1

βi

[
µδi +µ (r1 + c1)+ δ2i

σ

∆
+(r1 + c1) δi

σ

∆

]
= 0 ·µ+µ (r1 + c1)+∆2 σ

∆
+(r1 + c1)

σ

∆
· 0 = µ (r1 + c1)+∆σ.
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Thus, equation (B-13) becomes

n+1∑
i=1

βi(p− ri)θi = (p− c1 − r1)µ−∆σ.

Next, we find that the second summation in equation (B-12) equals

S =
n+1∑
i=1

βi

(
i−1∑
j=1

(ri − rj) qj

)
= β1 · 0+β2 [(r2 − r1) q1] +β3 [(r2 − r1)q1 +(r3 − r2)(q1 + q2)]

+β4 [(r2 − r1)q1 +(r3 − r2)(q1 + q2)+ (r4 − r3)(q1 + q2 + q3)]

+ · · ·+βn

[
(r2 − r1)q1 +(r3 − r2)(q1 + q2)
+ · · ·+(rn − rn−1)(q1 + q2 + · · ·+ qn−1)

]

+βn+1

 (r2 − r1)q1 +(r3 − r2)(q1 + q2)
+ · · ·+(rn − rn−1)(q1 + q2 + · · ·+ qn−1)
+(rn+1 − rn)

∑n

i=1 qi

 .
By reorganizing the terms, we obtain

S = (β2 +β3 + · · ·+βn+1) (r2 − r1)q1 +(β3 + · · ·+βn+1)(r3 − r2)(q1 + q2)

+ · · ·+(βn +βn+1) (rn − rn−1)

(
n−1∑
i=1

qi

)
+βn+1(rn+1 − rn)

(
n∑

i=1

qi

)
= (1−α1) (r2 − r1)q1 +(1−α2) (r3 − r2)(q1 + q2)

+ · · ·+(1−αn−1) (rn − rn−1)

(
n−1∑
i=1

qi

)
+(1−αn) (rn+1 − rn)

(
n∑

i=1

qi

)

=

(
c1 − c2
r2 − r1

)
(r2 − r1)q1 +

(
c2 − c3
r3 − r2

)
(r3 − r2)(q1 + q2)

+ · · ·+
(
cn−1 − cn
rn − rn−1

)
(rn − rn−1)

(
n−1∑
i=1

qi

)
+

(
cn

rn+1 − rn

)
(rn+1 − rn)

(
n∑

i=1

qi

)
= (c1 − c2)q1 +(c2 − c3)(q1 + q2)+ · · ·+(cn−1 − cn)(q1 + q2 + · · ·+ qn−1)

+cn(q1 + q2 + · · ·+ qn)

= q1(c1 − c2 + c2 − c3 + · · ·+ cn−1 − cn + cn)+ q2 (c2 − c3 + c3 − c4 + · · ·+ cn−1 − cn + cn)

+ · · ·+ qn−1 (cn−1 − cn + cn)+ cnqn =
n∑

i=1

ciqi =C.

Hence, equation (B-12) becomes Z (Q|F ∗) = (p− r1 − c1)µ−∆σ, which is a constant whenever

θi ∈ [Qi−1,Qi] holds. We conclude that under the firm’s worst-case distribution F ∗, the firm is

indifferent among an infinite number of capacity vectors, and her optimal expected profit is a

constant that equals (p− r1 − c1)µ−∆σ. Q.E.D.

Proof of Proposition 4:

For simplicity of exposition, we suppress the superscript ∗ (i.e., we write θ∗i and y∗
i as θi and yi

in this proof). In the proof of Proposition 2, we find that the shadow prices satisfy y2 = − ∆
2σ
,
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y1 = (p− r1 − c1)+∆µ
σ
, and the remaining shadow prices y0 and ai in equations (B-11). By forcing

ai = 0 for all i= 1,2, · · ·n, we can solve the firm’s optimal capacity levels. Note that we never force

y0 = 0. To illustrate the recursive procedure, we consider an = 0. Equations (B-11) show that{
y0 = y2 (θn+1)

2
+Z (θn+1|Q)

an =−y0 − y1θn − y2 (θn)
2
+Z (θn|Q) = 0

We obtain that

y2 (θn+1)
2
+Z (θn+1|Q) =−y1θn − y2 (θn)

2
+Z (θn|Q) .

Using the tangent condition y1 =−2y2θn+1, we can rewrite the above equation as:

Z (θn+1|Q)−Z (θn|Q) = 2y2θn+1θn − y2 (θn)
2 − y2 (θn+1)

2
=−y2 (θn+1 − θn)

2
. (B-14)

Because the total cost is sunk, by using equation (4.2), we find that:

Z (θn+1|Q)−Z (θn|Q) = (p− rn) (Qn − θn) .

Applying the two tangent conditions related to i= n and i= n+1, we obtain that y1+2y2θn = p−rn

and y1 =−2y2θn+1. We find that 2y2 (θn+1 − θn) =− (p− rn) and equation (B-14) becomes:

(p− rn) (Qn − θn) =
1

2
(p− rn) (θn+1 − θn) ,

which results in Qn =
1
2
(θn+1 + θn).

Applying the same method, we can generalize equation (B-14) for any i = 1,2, · · · , n − 1 by

establishing that:

Z (θi+1|Q)−Z (θi|Q) = (ri+1 − ri) (Qi − θi) =−y2 (θi+1 − θi)
2
=

1

2
(ri+1 − ri) (θi+1 − θi) ,

resulting in Qi =
1
2
(θi+1 + θi). Q.E.D.

Proof of Corollary 2:

We reintroduce the superscript ∗ in y∗
i . While Proposition 4 solves for the robust optimal capacity

vector, the proof of Proposition 2 shows that y∗
2 =− ∆

2σ
and y∗

1 = (p− r1 − c1) +∆µ
σ
, leaving y∗

0 as

the only unknown variable. Using the equivalence P ∗ = P ∗
1 = (p− r1 − c1)µ−σ∆, we obtain that

y∗
0 + y∗

1µ+ y∗
2

(
µ2 +σ2

)
= (p− r1 − c1)µ−σ∆.

By reorganizing the terms in the above equation, we obtain

y∗
0 = (p− r1 − c1)µ−σ∆−

[
(p− r1 − c1)+∆

µ

σ

]
µ+

∆

2σ

(
µ2 +σ2

)
=−∆

2σ

(
µ2 +σ2

)
.
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The final remark is that equation (B-11) is more complex than the counterpart equation (A-4),

prompting us to derive q∗i by forcing ai = 0. Readers might concern that this step could weakly

reduce the value of P ∗
1 . Because we compute the value of the zero-sum game based on Adverse

Nature’s equilibrium strategy F ∗ in the proof of Proposition 3 and find that the solution in Corollary

2 yields the same value of the zero-sum game, we conclude that the optimal solution shown in

Corollary solves P1 and satisfies Theorem 1. Thus, the robust capacity vector in Proposition 4 is

the firm’s equilibrium strategy. Q.E.D.

Part C: Proofs for Section 5

Proof of Lemma 4

Notice that when ρ=±1, there exist only two binding constraints and we cannot apply the same

set of λi to determine the probability masses. When ρ∈ (−1,1), it is readily verified that x∗
i shown

in Lemma 4 satisfies the moment conditions and the symmetric condition. Q.E.D.

Proof of Proposition 5

For exposition simplicity, we omit the superscript ∗ when involving x∗
i . Using the first and fourth

tangent conditions shown in Section 5, we obtain that

(y1 +2y2x1 + y3x1)x4 − (y1 +2y2x4 + y3x4)x1 = px4 − 0 ·x1,

which yields that y1 =
px4

x4−x1
. With ai = 0, we simplify the binding constraints as follows:

y0 + y1x1 + y1x1 + y2 (x1)
2
+ y2 (x1)

2
+ y3x1x1 = p (x1 +x1)− 2cq− c0q0

y0 + y1x2 + y1x3 + y2 (x2)
2
+ y2 (x3)

2
+ y3x2x3 = p (q+x2)− 2cq− c0q0

y0 + y1x3 + y1x2 + y2 (x3)
2
+ y2 (x2)

2
+ y3x3x2 = p (x2 + q)− 2cq− c0q0

y0 + y1x4 + y1x4 + y2 (x4)
2
+ y2 (x4)

2
+ y3x4x4 = pq0 − 2cq− c0q0

Using the first and fourth binding constraints, we obtain

p (q0 −x1 −x1) = 2y1 (x4 −x1)+ 2y2
(
x2
4 −x2

1

)
+ y3

(
x2
4 −x2

1

)
= y1 (x4 −x1)− px1 =

px4

x4 −x1

(x4 −x1)− px1 = p (x4 −x1) ,

which yields that q∗0 = x1 +x4, which proves equation (5.3).

The sum of the first and fourth binding constraints minus that of the second and third binding

constraints yields that

p (q0 − 2q− 2x2 +2x1) = 2y2
(
x2
1 +x2

4 −x2
2 −x2

3

)
+ y3

(
x2
1 +x2

4 − 2x2x3

)
.
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Using tangent conditions, we obtain

y1x1 +2y2x
2
1 + y3x

2
1 = px1

y1x2 +2y2x
2
2 + y3x2x3 = px2

y1x3 +2y2x
2
3 + y3x2x3 = 0

y1x4 +2y2x
2
4 + y3x

2
4 = 0.

Hence, we find that

px1 − px2 = y1 (x1 +x4 −x2 −x3)+ 2y2
(
x2
1 +x2

4 −x2
2 −x2

3

)
+ y3

(
x2
1 +x2

4 − 2x2x3

)
= 2y2

(
x2
1 +x2

4 −x2
2 −x2

3

)
+ y3

(
x2
1 +x2

4 − 2x2x3

)
.

We find that p (q0 − 2q− 2x2 +2x1) = p (x1 −x2), which is equivalent to

q∗ =
q0 −x2 +x1

2
=

x1 +x4 −x2 +x1

2
=

x2 +x3 −x2 +x1

2
=

x1 +x3

2
,

which proves equation (5.2).

Under the robust optimal production plan, the total cost equals

TC = 2cq∗ + c0q
∗
0 = c (x1 +x3)+ c0 (x1 +x4)

= 2(c+ c0)µ+σ

[
A− 1

2
p(c+2c0)

]√
1+ ρ

A
+

σ

2

√
(1− ρ)pc.

The value of the zero-sum game equals

Z∗ =

(
1− 2c+ c0

p

)
· 2px1 +

c

p
· 2p (x2 + q)+

c0
p
· p (x1 +x4)−TC

=

(
1− 2c+ c0

p

)
2px1 + c (2x2 +x1 +x3)+ c0 (x1 +x4)− c (x1 +x3)− c0 (x1 +x4)

= 2 [(p− 2c− c0)x1 + cx2] = 2(p− c− c0)µ−
[√

(1+ ρ)A+
√

(1− ρ)pc
]
σ.

We obtain that the deference between Z∗ with Znc equals

Z∗ −Znc = σ
[
2
√
(p− c− c0) (c+ c0)−

√
(1+ ρ)A−

√
(1− ρ)pc

]
.

Observe that

A+ pc= p (c+2c0)− 2 (c+ c0)
2
+ pc= 2(p− c− c0) (c+ c0) .

We find that

Z∗ −Znc = σ
[√

2A+2pc−
√
(1+ ρ)A−

√
(1− ρ)pc

]
.
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We can verify that

2A+2pc−
(√

(1+ ρ)A+
√

(1− ρ)pc
)2

= 2A+2pc− (1+ ρ)A− (1− ρ)pc− 2
√

(1+ ρ)A(1− ρ)pc

= (1− ρ)A+(1+ ρ)pc− 2
√

(1+ ρ)A(1− ρ)pc≥ 0,

where the last inequality is due to the well-known geometric inequality. Thus, Z∗ ≥Znc. Q.E.D.

Part D: Asymmetric Distribution

In the newsvendor model that Natarajan et al. (2018) study, the asymmetric demand θ̃ gives rise

to the following moment constraint:∫ µ

0

− (θ−µ)
2
dF (θ)+

∫ ∞

µ

(θ−µ)
2
dF (θ) = sσ2, (D-1)

where s is a known constant satisfying σ2−µ2

σ2+µ2 ≤ s < 1. The selling price of the product is p and the

procurement cost is c (where p > c). We formulate Adverse Nature’s model as follows:

Z1 = inf
q≥0,F∈Ω

{∫ ∞

0

[pmin(θ, q)− cq]dF (θ)

}
,

s.t.



∫∞
0

dF (θ) = 1,∫∞
0

θdF (θ) = µ,∫∞
0

θ2dF (θ) = µ2 +σ2,∫ µ

0
− (θ−µ)

2
dF (θ)+

∫∞
µ

(θ−µ)
2
dF (θ) = sσ2,∫ q

0
(−c)dF (θ)+

∫∞
q
(p− c)dF (θ) = 0.

(D-2)

Let b= 1− (1−s)σ2

2µ2 be a useful constant.

Corollary 4 (Natarajan et al. 2018) In the zero-sum game formulated in equation (D-2), DM’s

equilibrium strategy q∗ is one of the following four cases:

a) If b≤ c
p
, then q∗ = 0.

b) If 1
2
(1− s)≤ c

p
< b, then q∗ = µ− σ

2

√
p(1−s)

2(p−c)
.

c) If 1
2

(1−s)2σ2

(1+s)µ2 ≤ c
p
< 1

2
(1− s), then q∗ = µ+ σ

2

√
p(1+s)

2c
.

d) If c
p
< 1

2

(1−s)2σ2

(1+s)µ2 , then q∗ = µ
b
+ (pb−2c)

2b

√
bσ2−(1−b)µ2

c(pb−c)
.

The advantages of our new method include the following. First, we bypass the intermediate step

of deriving the objective function Zwst (q) because the FOCs are integrated into the new SIP model.

Second, the number or corner points to be considered drastically decreases. Specifically, we consider

only three candidate corner points while Natarajan et al. (2018) consider six candidate corner

points to derive the objective function Zwst (q). We demonstrate the close connection between the

robust inventory level and binding constraints.
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Proof of Corollary 4:

Because the pair of (q,µ) affects the SIP constraints, we first consider case i) q ≤ µ. Based on

Theorem 1, we formulate the SIP model as follows:

P1 =max
q,yi,a

{
y0 + y1µ+ y2

(
µ2 +σ2

)
+ y3sσ

2
}

s.t. y0 + y1θ+ y2θ
2 − y3 (θ−µ)

2 − ac≤ pθ− cq,∀θ ∈ [0, q] ,

y0 + y1θ+ y2θ
2 − y3 (θ−µ)

2
+ a (p− c)≤ (p− c) q,∀θ ∈ [q,µ] ,

y0 + y1θ+ y2θ
2 + y3 (θ−µ)

2
+ a(p− c)≤ (p− c)q,∀θ≥ µ. (D-3)

The conjectured binding constraints include: θ1 < q, and θ ≥ µ (implying that there exist an infi-

nite number of binding constraints). Figure 3a) illustrates the circumstance using the following

parameters p= 1, c= 0.6, µ= 0.51, σ= 0.2, and s=−0.1.

Figure 3 SIP constraints for the Asymmetric Model
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(b) Case c) of Corollary 4

If for any θ≥ µ, y0 + y1θ+ y2θ
2 + y3 (θ−µ)

2
+ a(p− c) = (p− c)q holds, then we find that

y0 +(y1 − 2y3µ)θ+(y2 + y3)θ
2 + y3µ

2 + a(p− c) = (p− c)q,

indicating that y1 = 2y3µ, y2 =−y3, and y0 + y3µ
2 = (p− c) (q− a). Using these three intermediate

identities, we simplify the the objective function in equation (D-3) as follows:

y0 + y1µ+ y2
(
µ2 +σ2

)
+ y3sσ

2

= (p− c) (q− a)− y3µ
2 +2y3µ ·µ− y3

(
µ2 +σ2

)
+ y3sσ

2 = (p− c) (q− a)− y3σ
2 (1− s) .
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Similarly, when θ ∈ [0, q], the SIP constraints in equation (D-3) are simplified as follows:

y0 + y1θ+ y2θ
2 − y3 (θ−µ)

2 − ac

= (p− c) (q− a)− y3µ
2 +2y3µθ− y3θ

2 − y3 (θ−µ)
2 − ac

= (p− c) (q− a)− 2y3 (θ−µ)
2 − ac≤ pθ− cq.

When θ ∈ [q,µ], the SIP constraints in equation (D-3) are simplified as follows:

y0 + y1θ+ y2θ
2 − y3 (θ−µ)

2
+ a (p− c)

= (p− c) (q− a)− y3µ
2 +2y3µθ− y3θ

2 − y3 (θ−µ)
2
+ a (p− c)

= (p− c) (q− a)− 2y3 (θ−µ)
2
+ a (p− c) = (p− c)q− 2y3 (θ−µ)

2 ≤ (p− c) q,

which is equivalent to y3 ≥ 0. When θ ≥ q, the SIP constraints are replaced by y0 + y3µ
2 = (p−

c) (q− a).

Therefore, the simplified SIP model is the following:

P1 = max
q≥0,y3≥0,a

{
(p− c) (q− a)− y3σ

2 (1− s)
}

s.t. (p− c) (q− a)− 2y3 (θ−µ)
2 − ac≤ pθ− cq,∀θ ∈ [0, q] . (D-4)

The Lagrangian becomes

L= (p− c) (q− a)− y3σ
2 (1− s)−λ1

(
(p− c) (q− a)− 2y3 (θ1 −µ)

2 − ac− pθ1 + cq
)
.

The FOCs include:

∂L

∂q
= p− c−λ1 (p− c+ c) = 0 and

∂L

∂a
=−(p− c)−λ1 (− (p− c)− c) = 0,

yielding λ1 =
p−c
p

(which is the newsvendor ratio). Additionally,

∂L

∂y3
=−σ2 (1− s)+ 2λ1 (θ1 −µ)

2
= 0,

which yields that θ1 = µ− σ
√

p(1−s)

2(p−c)
, which is the binding constraint. The tangent and binding

conditions for the point θ= θ1 include:

(p− c) (q− a)− 2y3 (θ1 −µ)
2 − ac= pθ1 − cq and − 4y3 (θ1 −µ) = p.

We obtain

y3 =
p

4
√

pσ2(1−s)

2(p−c)

=

√
p (p− c)

8 (1− s)σ2
and a= q− 1

2
(θ1 +µ) .
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Using Theorem 1, we let a= 0 to obtain that

q∗ =
1

2
(θ1 +µ) = µ− σ

2

√
p (1− s)

2 (p− c)
,

which is case b) of Corollary 4. The value of the zero-sum game equals

P ∗
1 = (p− c) (q− a)− y3σ

2 (1− s) = (p− c)
1

2
(θ1 +µ)−

√
p (p− c)

8 (1− s)σ2
σ2 (1− s)

= (p− c)θ1 = (p− c)µ− σ

2

√
2p (p− c) (1− s) =Z∗

1 ,

which is consistent with Theorem 2.2 of Natarajan et al. (2018). It must hold that θ1 = µ −

σ
√

p(1−s)

2(p−c)
> 0, which yields that p−c

p
> (1−s)σ2

2µ2 = 1− b (equivalent to b > c
p
). Otherwise, if b ≤ c

p
,

θ1 ≤ 0 and hence, q∗ = 0, which proves case a) of Corollary 4.

Next, we consider case ii) q≥ µ. Based on Theorem 1, we formulate the SIP model as follows:

P1 =max
q,yi,a

{
y0 + y1µ+ y2

(
µ2 +σ2

)
+ y3sσ

2
}

s.t. y0 + y1θ+ y2θ
2 − y3 (θ−µ)

2 − ac≤ pθ− cq,∀θ ∈ [0, µ] ,

y0 + y1θ+ y2θ
2 + y3 (θ−µ)

2 − ac≤ pθ− cq,∀θ ∈ [µ, q] ,

y0 + y1θ+ y2θ
2 + y3 (θ−µ)

2
+ a(p− c)≤ (p− c)q,∀θ≥ q.

The main difference occurs when θ ∈ [µ, q].

Case ii-A) The conjectured binding constraints include any θ ∈ [0, µ] and θ1 > q > µ. Figure

3b) illustrates the circumstance using the same parameters except c = 0.2. To ensure that the

constraints are binding for any θ ∈ [0, µ], it must hold that

y0 + y1θ+ y2θ
2 − y3 (θ−µ)

2 − ac= pθ− cq,∀θ ∈ [0, µ] .

We obtain that y1 + 2y3µ = p, y2 = y3, and y0 = y3µ
2 + c (a− q). Using these three intermediate

identities, we obtain the following equation:

y0 + y1µ+ y2
(
µ2 +σ2

)
+ y3sσ

2 = c (a− q)+ y3µ
2 +(p− 2y3µ)µ+ y3

(
µ2 +σ2

)
+ y3sσ

2

= c(a− q)+ y3 (1+ s)σ2 + pµ.

The constraints for θ ∈ [µ, q] become 2y3 (θ−µ)
2 ≤ 0, and those for θ≥ q become

y3µ
2 + c (a− q)+ (p− 2y3µ)θ+ y3θ

2 + y3 (θ−µ)
2
+ a(p− c)

= 2y3 (θ−µ)
2
+ pθ+ ap− cq≤ pq− cq.
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As such, we simplify the SIP model as follows:

P1 = max
q≥0,y3≤0,a

{
c (a− q)+ y3 (1+ s)σ2 + pµ

}
s.t. 2y3 (θ−µ)

2
+ pθ+ ap≤ pq,∀θ≥ q.

The Lagrangian equals

L= c (a− q)+ y3 (1+ s)σ2 + pµ−λ1

(
2y3 (θ−µ)

2
+ pθ+ ap− pq

)
.

The FOCs include:

∂L

∂q
=−c+λ1p= 0,

∂L

∂a
= c−λ1p= 0, and

∂L

∂y3
= σ2 (1+ s)− 2λ1 (θ1 −µ)

2
= 0.

We obtain that λ1 =
c
p
(which also relates to the newsvendor ratio) and θ1 = µ+σ

√
p(1+s)

2c
(which

is the binding constraint). The tangent and binding conditions for the point θ= θ1 include:

2y3 (θ1 −µ)
2
+ pθ1 + ap− pq= 0 and 4y3 (θ1 −µ)+ p= 0.

We obtain

y3 =− p

4
√

pσ2(1+s)

2c

=−
√

pc

8 (1+ s)σ2
and a= q− 1

2
(θ1 +µ) .

Using Theorem 1, we let a= 0 to obtain that

q∗ =
1

2
(θ1 +µ) = µ+

σ

2

√
p (1+ s)

2c
.

The value of the zero-sum game equals

P ∗
1 = Z∗

1 = c (a− q)+ y3 (1+ s)σ2 + pµ

= − c

2
(θ1 +µ)−

√
pc

8 (1+ s)σ2
(1+ s)σ2 + pµ= (p− c)µ− σ

2

√
2pc (1+ s),

which proves case c) of Corollary 4.

Case ii-B) While cases b) and c) of Corollary 4 involve mixed distributions (not mixed strategy)

as the equilibrium strategy of Adverse Mature, the remaining case d) of Corollary 4 involves a

three-point distribution. The conjectured binding constraints include: θ = 0, θ = θ2 ∈ [µ, q], and

θ= θ3 > q. The Lagrangian equals

L = y0 + y1µ+ y2
(
µ2 +σ2

)
+ y3sσ

2 −λ1

(
y0 − y3µ

2 − ac+ cq
)

−λ2

(
y0 + y1θ2 + y2θ

2
2 + y3 (θ2 −µ)

2 − ac− pθ2 + cq
)

−λ3

(
y0 + y1θ3 + y2θ

2
3 + y3 (θ3 −µ)

2
+ a(p− c)− (p− c)q

)
.
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The FOCs include: 

∂L
∂a

= λ1c+λ2c+λ3 (p− c) = 0
∂L
∂y0

= 1−λ1 −λ2 −λ3 = 0
∂L
∂y1

= µ−λ2θ2 −λ3θ3 = 0
∂L
∂y2

= (µ2 +σ2)−λ2θ
2
2 −λ3θ

2
3 = 0

∂L
∂y3

= sσ2 +λ1µ
2 −λ2 (θ2 −µ)

2 −λ3 (θ3 −µ)
2
.

Solving this system with 5 unknowns and 5 equations, we obtain that λ1 =
(1−s)σ2

2µ2 , λ2 = 1− c
p
−

(1−s)σ2

2µ2 , λ3 =
c
p
, θ2 =

µ
b
−

√
c(pb−c)(bσ2−(1−b)µ2)

b(pb−c)
, and θ3 =

µ
b
+

√
c(pb−c)(bσ2−(1−b)µ2)

bc
. Case d) of Corollary

4 requires that the binding point satisfies θ2 >µ, which implies that c
p
< 1

2

(1−s)2σ2

(1+s)µ2 .

The binding and tangent conditions include:
y0 − y3µ

2 − ac+ cq= 0,

y0 + y1θ2 + y2θ
2
2 + y3 (θ2 −µ)

2 − ac− pθ2 + cq= 0,

y0 + y1θ3 + y2θ
2
3 + y3 (θ3 −µ)

2
+ a(p− c)− (p− c)q= 0,

y1 +2y2θ2 +2y3 (θ2 −µ) = p,
y1 +2y2θ3 +2y3 (θ3 −µ) = 0.

Solving the above system of equations, we obtain the following results:

a = q− 1

2
(θ2 + θ3)

y3 =
cθ2[µ

2 +σ2 −µθ3]

4µ2(bσ2 − (1− b)µ2)

y2 = −y3 −
p

2(θ3 − θ2)

y1 =
p

2
− (y2 + y3)(θ2 + θ3)+ 2y3µ

y0 = y3µ
2 − cq

Setting a= 0, we obtain

q∗ =
1

2
(θ2 + θ3) =

µ

b
+

1

2

(√
c(pb− c)(bσ2 − (1− b)µ2)

bc
−
√

c(pb− c)(bσ2 − (1− b)µ2)

b(pb− c)

)

=
µ

b
+

(pb− 2c)

2b

√
bσ2 − (1− b)µ2

c (pb− c)
.

To reconcile with Theorem 2.2 in Natarajan et al. (2018), we apply the identity 1− b= (1−s)σ2

2µ2 to

show that

bσ2 − (1− b)µ2

c (pb− c)
=

2bσ2 − 2(1− b)µ2 +2(1− b)2µ2 − 2(1− b)2µ2

2c (pb− c)

=
2bσ2 − (1− s)σ2 +(1− b) (1− s)σ2 − 2(1− b)2µ2

2c (pb− c)
=

(1+ s)bσ2 − 2(1− b)2µ2

2c (pb− c)
.
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Hence,

q∗ =
µ

b
+

(pb− 2c)

2b

√
bσ2 − (1− b)µ2

c (pb− c)
=

µ

b
+

(pb− 2c)

2b

√
(1+ s)bσ2 − 2(1− b)2µ2

2c (pb− c)
.

Using the shadow prices, we can compute the value of the zero-sum game case d) of Corollary 4.

Q.E.D.

Adverse Nature’s Strategy for Cases b) and c) of Corollary 4

The proof of Corollary 4 solves DM’s equilibrium strategy q∗ without deriving Zwst (q). The remain-

ing task is to determine when cases b) or c) could occur. Because case a) occurs when b≤ c
p
and

case d) occurs when c
p
< 1

2

(1−s)2σ2

(1+s)µ2 , we assume that b > c
p
≥ 1

2

(1−s)2σ2

(1+s)µ2 .

When case b) occurs, we show that the SIP constraints are binding at point θ1 (where θ1 < q∗ <

µ) and any point θ ≥ µ. We conclude that Adverse Nature’s equilibrium strategy F ∗ is a mixed

distribution. The mixed distribution F ∗ exhibits the following characteristics:

• It allocates a probability mass that λ1 =
p−c
p

at the point θ= θ1 = µ−
√

pσ2(1−s)

2(p−c)
.

• It allocates nonnegative density for any θ≥ µ.

• It allocates zero density for point θ ∈ [0, θ1)∪ (θ1, µ).

• It satisfies the moment conditions on the mean, variance, and asymmetry.

Based on the above characteristics of F ∗, we find that

0 =

∫ µ

0

(θ−µ)dF (θ)+

∫ ∞

µ

(θ−µ)dF (θ) = λ1(θ1 −µ)+

∫ ∞

µ

(θ−µ)dF (θ),

which implies that the upper semi-mean equals∫ ∞

µ

(θ−µ)dF (θ) = λ1(µ− θ1) = σ

√
(1− s) (p− c)

2p
.

Before verifying whether the moment constraint (D-1) can hold, we develop the following interme-

diate result.

Lemma 5 Suppose that a random variable θ̃ satisfies that
∫∞
µ

dF (θ) = c
p
< 1,

∫∞
µ

(θ−µ)dF (θ) =

σ
√

(1−s)(p−c)

2p
. It holds that

∫∞
µ

(θ−µ)
2
dF (θ)≥ (1−s)(p−c)σ2

2c
.

Proof. Let ε = θ − µ as a transformed variable. Using duality, we formulate the following SIP

model:

P = max
y0,y1

{
y0

c

p
+ y1σ

√
(1− s) (p− c)

2p

}
s.t. y0 + y1ε≤ ε2,∀ε≥ 0.
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It is readily verified that the optimal solution satisfies y∗
0 =−σ2(p−c)p

2c
and y∗

1 =
σ
c

√
2p (1− s) (p− c)

(with a unique binding constraint at point ε1 =
σ
c

√
p(1−s)(p−c)

2
). Hence,

P ∗ =−σ2 (p− c)p

2c

c

p
+

σ

c

√
2p (1− s) (p− c)σ

√
(1− s) (p− c)

2p
=

(1− s) (p− c)σ2

2c
.

We obtain that
∫∞
µ

(θ−µ)
2
dF (θ)≥ (1−s)(p−c)σ2

2c
.

Notice that the moment constraint (D-1) requires that

sσ2 = −
∫ µ

0

(θ−µ)2dF (θ)+

∫ ∞

µ

(θ−µ)2dF (θ) =−λ1(θ1 −µ)2 +

∫ ∞

µ

(θ−µ)2dF (θ)

= −(p− c)

p

pσ2 (1− s)

2 (p− c)
+

∫ ∞

µ

(θ−µ)2dF (θ) =−(1− s)σ2

2
+

∫ ∞

µ

(θ−µ)2dF (θ).

We obtain that the upper semi-variance equals
∫∞
µ
(θ − µ)2dF (θ) = (1+s)σ2

2
. However, Lemma 5

indicates that ∫ ∞

µ

(θ−µ)2dF (θ)≥ (1− s) (p− c)σ2

2c
.

To avoid a contraction between the moment constraint (D-1) with Lemma 5, it must hold that

(1+ s)σ2

2
≥ (1− s) (p− c)σ2

2c
,

which implies that c
p
≥ 1

2
(1− s). We conclude that case b) of Corollary 4 occurs when 1

2
(1− s)≤

c
p
< b. When 1

2
(1− s) = c

p
, Lemma 5 implies that Adverse Nature’s strategy F ∗ is the following

two-point distribution: 
Pr

(
θ̃= µ−σ

√
1−s
1+s

= µ−σ
√

c
p−c

)
= p−c

p
= 1+s

2
,

Pr
(
θ̃= µ+σ

√
1+s
1−s

= µ+σ
√

p−c
c

)
= c

p
= 1−s

2
.

However, Adverse Nature’s equilibrium strategy is not unique when 1
2
(1− s)< c

p
< b. Because the

remaining space on cost parameters is 1
2

(1−s)2σ2

(1+s)µ2 ≤ c
p
< 1

2
(1− s), case c) of Corollary 4 must occur

and Adverse Nature’s equilibrium strategy F ∗ is also a mixed distribution.

Part E: Robust Adverse Selection

Robust adverse selection has been studied by Pınar and Kızılkale (2017), Carrasco et al. (2018),

and Carrasco et al. (2019) in the context of selling a single unit of good to a buyer whose valuation

of the good is private. The seller knows only the mean or variance of the buyer’s private valuation

but not the exact distribution. Koçyiğit et al. (2020) study a circumstance where the auctioneer

sells one unit of a good to multiple buyers. Unlike the case with a single buyer, the auctioneer faces
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a challenge in inducing a truth-revealing equilibrium with multiple buyers. The IC constraints can

follow the notion of ex post incentive compatibility or dominating strategy incentive compatibility.

Bayesian incentive compatibility (which must involve a prior distribution) cannot be used because

the joint distribution is unknown to all players.

To demonstrate our method, we choose the mean-only model that Carrasco et al. (2018, 2019)

study but make some minor modifications as follows. DM knows that the buyer’s private value

of the good is a random variable θ̃ satisfying the mean condition E
(
θ̃
)
= µ and the boundary

condition 0≤ θ ≤ r, where r > 0 is a known constant representing the buyer’s highest valuation.

By applying the revelation principle (Baron and Myerson 1982), it suffices to focus on the class

of direct and incentive compatible mechanisms. Let (R(·), q(·)) be DM’s mechanism where R(·)
represents the payment function and q(·) characterizes the allocation policy. To induce a truth-

revealing equilibrium, the following IC constraints must hold:

θq (θ)−R (θ)≥ θq (m)−R (m) , for ∀θ ∈ [0, r], ∀m∈ [0, r], and θ ̸=m.

First, consider the following two IC constraints associated with type θ and m (where θ ̸=m):{
θq (θ)−R (θ)≥ θq (m)−R (m)
mq (m)−R (m)≥mq (θ)−R (θ)

.

By summing these two constraints, we find that

θq (θ)− θq (m)+mq (m)−mq (θ) = (θ−m) (q (θ)− q (m))≥ 0,

indicating that q (θ) is weakly increasing in θ. Additionally, DM has only 1 unit of the good and

hence, 0≤ q (θ)≤ 1 for any θ ∈ [0, r]. It must also hold that q(r) = 1 (i.e., no distortion at the top

such that the buyer with the highest valuation always receives the good). Second, we apply the

envelope theorem to simplify the IC constraints to obtain the following equation:

R (θ) = θq (θ)−
∫ θ

0

q (t)dt. (E-1)

The second step is a variable reduction process, in which the payment function R (θ) is represented

by the allocation policy q (θ). We omit the relevant details on deriving equation (E-1) because

this procedure is now a textbook procedure. We emphasize that equation (E-1) is distribution-

free, meaning that any non-decreasing function q (θ) satisfying 0≤ q (θ)≤ 1 would be feasible even

under ambiguity. This observation explains why the issue of infeasibility does not arise in adverse

selection. Thus, DM’s task is to determine the allocation policy q (θ) to maximize her expected

sales revenue, which equals:

Z =

∫ r

0

R (θ)dF (θ) =

∫ r

0

[
θq (θ)−

∫ θ

0

q (t)dt

]
dF (θ) =

∫ r

0

(
θ− 1−F (θ)

f (θ)

)
q (θ)dF (θ) ,
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where the term θ − 1−F (θ)

f(θ)
is the so-called the virtual valuation, which is weakly increasing in θ

if the log-concave property holds. However, we do not impose any assumption on F (θ). Without

knowing the underline distribution, we cannot determine the virtual value. We obtain that the ex

post payoff function equals

Z (θ|q (θ)) = θq (θ)−
∫ θ

0

q (t)dt=

(
θ− 1−F (θ)

f (θ)

)
q (θ) .

Because θ ∈ [0, r], we observe that the allocation policy q (θ) is a function (or an infinite vector as

opposed to the case with a finite vector). The first derivative with respect to q (θ) then equals

∂Z (θ|q (θ))
∂q (θ)

=

(
θ− 1−F (θ)

f (θ)

)
.

We formulate the min-max version of the model as follows:

Z1 = inf
F∈Ω

max
q(·)

∫ r

0

(
θ− 1−F (θ)

f (θ)

)
q (θ)dF (θ)

s.t. θ− 1−F (θ)

f (θ)
= 0, for θ ∈ [0, r) and q (r) = 1, (E-2)

where the boundary condition q (r) = 1 is due to the classic result of no distortion at the top.

Corollary 5 Let h∗ be the solution satisfying the following equation:

µ= h∗ +h∗ ln
( r

h∗

)
. (E-3)

Additionally let

y∗
1 =

1

ln
(

r
h∗

) .
DM’s robust optimal allocation policy satisfies the following equation:

q∗ (θ) =

{
0 if 0≤ θ≤ h∗,
1− y∗

1 ln
(
r
θ

)
if h∗ ≤ θ≤ r,

(E-4)

On the other hand, DM’s worst-case distribution satisfies

F ∗ (θ) =


0 if 0≤ θ≤ h∗,

1− h∗

θ
if h∗ ≤ θ < r,

1 if θ= r.
(E-5)

DM’s worst-case expected profit is Z∗ = h∗.

Both q∗ (θ) and F ∗ (θ) in Corollary 5 are consistent with Carrasco et al. (2019) but our method

is quicker. There are several noteworthy observations.
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• The worst-case distribution F ∗(θ) in equation (E-5) is a mixed distribution with a jump at

point θ= r. The intuition is that the buyer with the highest valuation always obtains the good with

probability 1 and always secures a positive information rent. In terms of reducing DM’s expected

payoff, the buyer with the highest valuation is more important than any other buyers, making

Adverse Nature allocate a positive mass probability to the point θ= r.

• Under the worst-case distribution F ∗(θ), the virtual value is negative for any θ < h∗, is zero

for any θ ∈ [h∗, r), and is positive only when θ= r, due to the jump in the cumulative distribution

function. It can be easily verified that every feasible mechanism yields the same expected profit

under distribution F ∗. However, when the worst-case distribution does not realize, only the robust

mechanism in equation (E-3) can guarantee a weakly higher expected profit, while any nonrobust

mechanism could experience a lower expected profit. Therefore, the robust mechanism can serve as

a useful benchmark for practitioners and researchers to evaluate the performance of their proposed

mechanism.

• Let σ2
0 be the variance of the extreme distribution in equation (E-5). Suppose that the variance

is also known to be σ2. Bhatia and Davis (2000) state that 0≤ σ2 ≤ µ(r− µ). We can claim that

when σ > σ1, the optimal shadow price y∗
2 for the variance resource in the mean-variance model

is strictly positive. In addition, the point θ = 0 could have a positive probability mass (i.e., the

worst-case distribution has two jumps at θ = 0 and θ = r) when σ2 approaches µ(r − µ). When

σ > σ0, y
∗
2 < 0; and when σ = σ0, y

∗
2 = 0. The information about the variance strictly improves

DM’s worst-case expected profit unless σ= σ0.

Proof of Corollary 5

The IC constraint in equation (E-2) immediately yields the following mixed distribution:

F (θ|h) =

 0 if θ ∈ [0, h],
1− h

θ
if h≤ θ < r,

1 if θ= r.

which has a jump at θ = r and characterizes the best response of Adverse Nature. Using the

condition on the mean, we obtain that

µ=

∫ r

h

θd

(
1− h

θ

)
+Pr

(
θ̃= r

)
r=

∫ r

h

θ
h

θ2
dθ+

(
1− 1+

h

r

)
r= h+h ln

( r
h

)
.

which has only one unknown variable h and yields equation (E-3). We also find that the equilibrium

payoff of DM (or the value of the zero-sum game) is Z∗ = h∗ and the worst-case distribution is

F ∗(θ) = F (θ|h∗), confirming equation (E-5). We observe that our new method quickly identifies

the value of the zero-sum game and the best response of Adverse Nature.
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The final task is to determine the robust procurement policy. We consider the SIP model

P1 = max{y0 + y1µ}

s.t. y0 + y1θ ≤ θq (θ)−
∫ θ

0

q (t)dt,∀θ ∈ [0, r] .

This SIP model is binding for θ ∈ [h∗, r] because Adverse Nature allocates positive density over

this interval. We obtain that y0 + y1θ= θq (θ)−
∫ θ

0
q (t)dt. Taking the first derivative with respect

to θ, we obtain that

y1 = q (θ)− θq′ (θ)− q (θ) =−θq′ (θ) .

The above differential equation characterizes DM’s allocation policy as

q (θ|y1) =
{
0 if θ ∈ [0, h∗],
1− y1 ln

(
r
θ

)
if h∗ ≤ θ≤ r.

Because we already know that h∗ from equation (E-3), we can then determine y∗
1 by solving

q (h∗|y1) = 1− y1 ln
( r

h∗

)
= 0.

We find that 1
y∗1

= ln
(

r
h∗

)
based on q (h∗) = 0, confirming equation (E-4). Q.E.D.
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