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1. Abstract 

 

Coastal vegetated ecosystems, including wetlands and saltmarsh, have been widely recognised as 

providing a range of environmental, social, and cultural benefits. They have the ability to store more 

carbon than nearly any other vegetated system, making them the target of increasing study due to 

the potential play a role in the mitigation of some effects of climate change. Wetland vegetation have 

been recognised for having a high carbon sequestration rate. But the carbon cycling dynamics 

between vegetation types in Australian saltmarshes is lesser known. Framed within a small wetland 

on the New South Wales South Coast, this research project aimed to monitor greenhouse gas fluxes 

and how environmental variables influence these fluxes. Monitoring was carried out through the 

erection of two eddy covariance flux towers which measure fluxes of CO2 from the wetland surface. 

Soil and water sampling was conducted to analyse salinity, bulk density, carbon content and pH, while 

measuring biomass across vegetation communities.  

Using these measurements, expected differences in fluxes between two vegetation communities 

with differing vegetation structures and compositions were identified. These two communities were 

differentiated by their dominant species, one by Sarcocornia quinqueflora, and the other by Juncus 

kraussii. The comparison of the two communities allowed for potential drivers of CO2 fluxes to be 

identified, based on the sampled environmental variables, and their location within the wider wetland 

itself.  

Fluxes of CO2 differed between the two monitored vegetation communities. This difference 

occurred when comparing both the 24-hour average of half-hourly flux data and the daytime-only 

half-hourly average flux data. The Juncus-dominated community had a stronger negative CO2 flux than 

the Sarcocornia-dominated community, indicating a stronger ability to drawn down more carbon out 

of the atmosphere (-0.078 ± 0.013 and -0.029 ± 0.0063 mg CO2 m-2 s-1 respectively). The possibility of 

a freshwater lens occurring beneath the Juncus community was identified as being a potential driver 

between the differing CO2 fluxes, as this would subsequently control the salinity and productivity of 

the community. Biomass was higher in the Juncus community, with an average biomass of 1.40 kg m2, 

and soil salinity in this community was lower than the Sarcocornia community on both sampling 

occasions.  
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It was also found that the monitored wetland was acting as a net sink for CO2 using the two 

measured vegetation communities. However, it is important to consider that this project only 

measured atmospheric fluxes and is missing information on lateral exchanges of carbon within the 

groundwater. Further sampling and monitoring of fluxes and environmental variables are 

recommended to form a more complete picture of the driving forces of CO2 fluxes in this wetland. It 

is also recommended to monitor methane fluxes from the wetland, as this would allow for a more 

holistic few of the carbon exchanges within the wetland. So, while the Lake Tilba salt marsh site is 

relatively small, monitoring here could provide a starting point for predicting how fluxes of CO2 are 

influenced within wetlands along the NSW South Coast. 
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2. Introduction 

Coastal vegetated ecosystems, like tidal salt marshes, are known to provide varied societal 

benefits - they are places of high biodiversity, and provide habitat for economically valued species and 

protection to coastal communities from storm surge and subsequent erosion (Hyndes et al., 2014; Luo 

et al., 2019; Rosentreter et al., 2021). However, perhaps the most important benefit these ecosystems 

may offer, is their ability to sequester more carbon than nearly any other vegetated ecosystem 

(Saintilan et al., 2013; Abdul‐Aziz et al., 2018; Byrd et al., 2018; Rogers et al., 2019; Rosentreter et al., 

2021). Carbon stored in these coastal ecosystems is referred to as 'blue carbon', and it is this coastal 

nature that allows such high amounts of carbon to be sequestered. Unlike their terrestrial 

counterparts, soils in coastal salt marshes are exposed to anaerobic conditions on a regular basis, 

lowering the ability of microbes in the soil to oxidise organic material and release the carbon back into 

the atmosphere as carbon dioxide (CO2) (Rosentreter et al., 2021). 

The ability to sequester carbon makes coastal vegetated ecosystems the target of increasing 

study, as they have the potential to remove CO2 from the atmosphere and store it in sediments, acting 

in a way that has the potential to mitigate some effects of climate change. Thus, these ecosystems 

also provide opportunities for governments to include their carbon sequestration capacities in 

National Determined Contributions under the Paris Agreement (Rosentreter et al., 2021). Two 

avenues are then opened-up for policy, one that focuses on preservation of existing coastal 

ecosystems, less existing carbon stores be released back into the atmosphere as CO2, and secondly, 

restoration of depleted or degraded coastal ecosystems (Rosentreter et al., 2021). The importance 

offered to both government policy and the international fight against climate change means that these 

coastal ecosystems and how they interact with their surrounding environments must be better 

understood. The research undertaken within this project aims to delineate interactions between 

hydrology, salinity, soil properties and vegetation, and how these affect the variation of blue carbon 

within an ecosystem, and the subsequent influence on greenhouse gas fluxes.   
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The research will be framed within a coastal wetland at Tilba Tilba Lake on the South Coast of New 

South Wales, Australia, and was conducted from February to October 2021. The overarching aims of 

the research are as follows: 

• Firstly, to monitor greenhouse gas fluxes from the wetland surface – which includes 

vegetation – to determine if there is a difference between vegetation communities. 

• Secondly, to assess how the particular environmental parameters mentioned above influence 

gas fluxes, and 

• Finally, to examine how these environmental parameters, including soil carbon vary across 

the wetland. 

 It is hypothesised that: 

• There will be a significant different between the CO2 fluxes of the Sarcocornia and Juncus 

vegetation communities, and 

• Differences in CO2 fluxes between communities may be driven by biomass, salinity or 

inundation regimes. 
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3. Literature Review: 

 Coastal Wetlands in Australia 

Saltmarshes cover over 13000 square kilometres of Australia’s coastline (Department of the 

Environment and Energy, 2016). This coverage is after an estimated 25 percent decline in overall 

saltmarsh throughout Australian estuaries since 1950. Some estuaries have been estimated to have 

lost up to 80 percent of their saltmarsh coverage, which has led to saltmarsh communities being listed 

as a vulnerable community under the Australian Commonwealth Environment Protection and 

Biodiversity Conservation Act 1999 (Department of the Environment and Energy, 2016). Additionally, 

in New South Wales, coastal saltmarsh is listed as an Endangered Ecological Community under the 

NSW Biodiversity Conservation Act 2016. (NSW Government, 2021). Saltmarsh presence provides a 

range of social, cultural and environmental benefits. They support a diverse range of species, from 

economically and recreationally important fish and invertebrates, insects and molluscs to migratory 

birds. These ecosystems can be vegetation-dense, working to reduce water flow velocities through 

the wetland, acting to absorb wave energy during storm events, minimising the effects of storm surges 

on coastal areas and reducing the severity of erosion that can occur during these events (Spalding et 

al., 2014; Department of the Environment and Energy, 2016). As climate change brings about 

increased storm severity, increased risk of erosion and rising sea levels, the importance of coastal 

wetlands is also likely to increase (Spalding et al., 2014). The dense vegetation and reduced flow 

velocities encourage sedimentation and accretion of both organic and inorganic material within 

wetlands, working to increase the total elevation of associated coastal zones, which in some areas, 

may ‘keep pace’ with the 4 – 9 millimetre per year rate (lower threshold) of sea-level rise (SLR) 

predicted by the Intergovernmental Panel on Climate Change (IPCC) (Spalding et al., 2014; 

Oppenheimer et al., 2019).  

3.1.1. Ecosystem Services 

The benefits offered by wetlands, referred to as ecosystem services, are however, subject to 

variation with changing or degrading wetland ecosystems, and many coastal habitats are being lost at 

a rate that is up to four times faster than terrestrial forests (Spalding et al., 2014). Threats arise from 

both direct and indirect sources. Direct sources include anthropogenic loss and fragmentation due to 

land claim, aquaculture, and mangrove harvest and overfishing, all of which can modify the ecosystem 

structure and function (Crooks et al., 2011; Donato et al., 2011; Spalding et al., 2014). Indirect threats 

come from upland or upriver and include agricultural and other land-use-based run-off of excess 

nutrients, sediment or pollutants, which can also cause changes to the ecosystem function, both in 

the soil and in the water (Doroski, Helton and Vadas, 2019). Upstream damming and reduced water 

flows coupled with a changing climate can also put extra stress onto coastal wetlands (Spalding et al., 
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2014). Urbanisation in coastal zones is another factor that threatens coastal wetlands. As sea-level 

rises, these habitats will naturally migrate landwards, but in places that infrastructure is built close to 

the coastal zone, this landward migration can only occur up until this anthropogenic barrier is reached 

(Donato et al., 2011; Spalding et al., 2014; Brown et al., 2021). This threat is referred to as ‘coastal 

squeeze’ and can result in the drowning of coastal wetlands as they are unable to further respond to 

SLR. 

The protective properties and ability to increase elevation with SLR leads to the opportunity for 

coastal wetlands to be used as an ‘’Ecosystem-based adaptation’, or EbA, response to managing SLR 

across the globe and mitigating the hazards that coastal ecosystems and communities will face in a 

changing climate (Spalding et al., 2014; Oppenheimer et al., 2019). Implementing EbA strategies 

facilitates the restoration and conservation of coastal wetlands, not only providing the direct benefits 

in hazard mitigation, but also the wider benefits to the variety of life that depends on these 

ecosystems. However, the restoration and conservation of coastal wetlands can have even larger, and 

arguably more important and widespread effects. Specifically, this is their ability to sequester and 

store carbon in their sediments, more carbon than any other terrestrial ecosystem; globally the 

estimated sequestration rate is up to 87.2 ± 9.6 Tg Carbon per year (Donato et al., 2011; Macreadie, 

Hughes and Kimbro, 2013). Figure 3.1 shows the magnitude of difference between different wetland 

systems themselves, and the overall difference between wetlands and other terrestrial environments. 

  

Figure 3.1: Mean above and below-ground sources of carbon in coastal wetlands compared with 
terrestrial forests (Howard et al., 2014). Carbon stock is measured per hectare. 
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3.1.2. Carbon Cycling and Greenhouse Gasses  

Coastal wetland ecosystems receive large amounts of organic matter and nutrients from both 

ocean upwelling and land and river run-off, thus they can be highly productive ecosystems (Crooks et 

al., 2011). Significant productivity supports the sequestration of large amounts of CO2 from the 

atmosphere as both above ground biomass growth, and below ground as roots and rhizomes. As 

biomass dies and mixes with the soil profile, carbon is locked there by the constant tidal wetting of 

the soil, which inhibits rapid degradation back into CO2, and subsequent burial by sediment supplied 

to the system (Crooks et al., 2011). This cycle of biomass death, burial and trapping as soil carbon 

repeats, allowing the accretion of carbon-rich organic soils for millennia, rather than decadal or 

centennial timescales of terrestrial forests. Thus, carbon can accumulate for longer periods of time 

and build much larger stocks, as emphasised in Figure 1 (Crooks et al., 2011). The rate of carbon burial 

for parts of the NSW Coast has been estimated to be 2.50 Mg C ha-1 year-1; however, this value varies 

between vegetation assemblages (Saintilan et al., 2013). Gaseous emissions of CO2 from saltmarsh 

have been found to be between 35 – 207 mg C m-2 h-1, as reported by Livesley and Andrusiak, (2012) 

for south-eastern Australia. Although, these values were obtained from the southern coast of Victoria, 

Australia, and due to the high variability of carbon budgeting arising from factors like rainfall regime, 

mean annual temperatures and vegetation structures, the reported flux values may be different to 

the NSW South Coast (Krauss et al., 2018) 

The process of carbon sequestration and storage may be interrupted as soon as any of the threats 

outlined in section 3.1.1 arise. Destruction of vegetative material may slow the system’s ability to 

capture carbon, and any disturbance to the soil or to the tidal regime can switch the wetland from a 

carbon sink to a carbon source (Crooks et al., 2011). Although, the removal of vegetation alone may 

not completely transition a wetland into a carbon source. Unvegetated mudflats also have the ability 

to fix atmospheric carbon, as they are inhabited by cyanobacteria and other microphytobenthos that 

drawn carbon from the atmosphere (Brown et al., 2021). While the amount of carbon fixation is 

significantly less that from vegetated wetlands, mudflats can still bury up to 21 ± 6 g C m2 year-1 (Brown 

et al., 2021). However, carbon emissions as a result of land-use change and disturbance are not well 

understood, and is likely dependant on how deeply the soil is affected by disturbance (Donato et al., 

2011) 

However, while not the focus of my research, it is important to note that CO2 is not the only 

greenhouse gas (GHG) that is associated with coastal wetlands. Wetlands can also be a sink or source 

of both methane (CH4) and nitrous oxide (N2O) (Crooks et al., 2011; Rosentreter et al., 2021).  Both 

gasses have higher global warming potential (GWP) than CO2 (25 and 265 times that of CO2, 

respectively) (IPCC, 2007).Hence, these gasses will still be included within this review of existing 
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literature, due to their importance as a GHG and the many ways that the environmental parameters 

looked at within this review affect them. The large GWPs of CH4 and N2O mean they have the potential 

to offset some, if not all, the sequestration and cooling effects obtained through wetlands trapping of 

CO2 (Rosentreter et al., 2021). Conversely, certain environmental conditions within wetlands could 

also increase the uptake of these higher-GWP gasses, enhancing the net cooling effects wetland may 

have. Understanding the conditions that lead to the formation of these GHGs in wetlands is an 

important aspect of understanding the long-term effectiveness of wetland ecosystem restoration in 

the context of global warming mitigation (Rosentreter et al., 2021). How these GHGs are produced, 

and the conditions under which they occur will be detailed in the relevant sections within this review. 

 Environmental Variables 

Interactions between environmental parameters like hydrology, salinity, soil characteristics and 

plant biomass can produce varied responses in GHG fluxes. Even within the same ecosystem, small 

changes in one parameter could lead to a source of GHGs, while another part acts as a sink (Krauss et 

al., 2018). How fluxes respond to variations in these parameters will be described within the 

remainder of this section. 

3.2.1. Tidal Inundation Duration and Extent 

Inundation dynamics can be controlled through both tidal and non-tidal processes such as 

catchment inflows. The degree of control that either type of force has on a coastal water body leads 

to the formation of differing estuary types (Roy et al., 2001). Estuaries with a more marine and tidal 

influence are classified as being either bays, or tide or wave-dominated estuaries. A stronger influence 

from non-tidal forces like freshwater catchment flows will result in entirely freshwater bodies, or 

estuaries that intermittently open to the open ocean (Roy et al., 2001). Intermittently open and closed 

lakes or lagoons (ICOLLS), when open, are subjected to tidal inundation dynamics, which subject 

surrounding wetland vegetation – primarily saltmarsh – to cycles of inundation and exposure, and 

increased salinity (Hughes, Rogers and Wen, 2019). When closed, the ICOLL is subjected to elevated 

water levels, as catchment inflows, and rainfall are unable to escape. This creates a non-tidal 

environment, with varying salinity regimes due to the erratic and unpredictable rainfall patterns of 

south-eastern Australia (Roy et al., 2001). The type of inundation regime that a coastal wetland is 

subject to in part controls how the wetland system will respond with respect to gaseous fluxes of 

GHGs. 
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Tidal inundation of coastal wetlands can trigger changes in the gas flux from the wetland’s surface 

through biological pulses or by changing the composition of nutrients and substrates used by soil 

microbes (Emery et al., 2021). Soil microbes consume organic matter contained within the soil profile, 

and through various biological respiration pathways, convert nutrients to energy and emit GHGs as an 

end-product of this process (Luo et al., 2019). Emissions from wetlands have been found to be higher 

during the low periods in the tidal cycle, when more of the wetland’s surface is exposed to air. 

Inundation events slow microbial respiration and subsequent gas emissions by interrupting soil-

atmosphere gas exchange at the surface of the wetland, reducing microbes’ ability to access the 

oxygen required for respiration (Emery et al., 2021). A study published by Emery et al. (2021), which 

subjected wetland soil cores to simulated tidal, precipitative, and combined rewetting events, found 

that CO2 emissions were halved by rewetting. The reduction in CO2 emissions upon rewetting was 

immediate and lasted from 24 to 48 hours. However, the presence of some CO2 emissions even under 

anoxic conditions indicates there is anaerobic respiration taking place (Emery et al., 2021). A similar 

CO2 reduction was experienced in a study monitoring a restored wetland, whereby upon restoration 

of tidal influence, CO2 flux decreased by 95 g C m-2 year-1.by (Negandhi et al., 2019).  

Emery et al (2021) also saw a sustained, rather than pulse-like, increase in CH4 emission after 

rewetting. CH4 formation, via methanogenesis, occurs from the microbial decomposition of organic 

matter within the soil profile, under strictly anaerobic conditions, as per the equation in Table 2.1 

(Bange, 2006).  Under more saline, anoxic conditions, however, sulfate reduction is typically the 

preferred pathway due to the sequential depletion of more energetically favourable electron 

Figure 3.2:Factors that influence microbial respiration pathways within coastal wetlands. Also 
shown is the preferential use of electron acceptors, where sulfate reduction is preferable than 
methanogenesis. (Source from Macreadie et al., 2017). 
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acceptors before methanogens begin respiration (Luo et al., 2019; Emery et al., 2021). The order that 

electron acceptors are utilised, and their associated reaction pathways are shown in Figure 3.2 and 

Table 3.1. Electron acceptors are used in order of their relative energy yields (Table 3.1), and 

methanogenesis is the least favourable pathway, hence the presence of sulfates in the soil profile will 

trigger sulfate reduction as it is more energetically favourable (Chambers, Reddy and Osborne, 2011; 

Kristensen et al., 2017; Luo et al., 2019). The gradual increase in CH4 seen by Emery et al (2021) was 

attributed to this gradual depletion of other electron acceptors brought into the system through 

simulated tidal inundation. However, the restoration of tidal flows monitored by Negandhi et al., 

(2019) resulted in a net decrease in the CH4 fluxes emitted from the wetland. This decrease was 

dwarfed by the effect of large rainfall events, which were removed to identify the net decrease in CH4 

fluxes post tidal flow restoration. The freshening effect of rainfall inundation further highlights the 

variability these coastal systems can exhibit, which may be further exacerbated by the unpredictable 

effects of climate change (Negandhi et al., 2019). 

The core experiment conducted by Emery et al (2021) showed a pulse of N2O immediately after 

rewetting. N2O can be produced through two pathways – nitrification and denitrification. During 

nitrification, N2O is mostly a by-product, but under anoxic conditions, nitrifiers switch to the nitrifier 

denitrification pathway where N2O becomes the primary end product (Bange, 2006; Emery et al., 

2021). Simultaneously, as oxygen is depleted, denitrifiers metabolise the nitrate produced by 

nitrification, creating a pulse of N2O where they would normally produce N2 under aerobic conditions. 

As the pool of nitrate is consumed, denitrifiers return to complete reduction to N2, reducing the N2O 

pulse (Emery et al., 2021). 

Table 3.1: Selected soil microbe respiration pathways and their associated reaction equations and standard free energy 
changes (Reproduced using equations from Lou et al., 2016) 

Pathway Reaction Equation CH2O (kJ mol-1) 

Aerobic Respiration CH2O + O2 → CO2 + H2O -475 

Denitrification 5CH2O +4NO3
- → 2N2 + CO2 + 4HCO3

- + 3H2O -448 

Sulfate Reduction 2CH2O + SO4
2- → H2S + 2HCO3 -77 

Methanogenesis 2CH2O → CH4 + CO2 -58 

Nitrification NH3 + 1.5 O2 --> NO2- + H+ + H20.  
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 Inundation of coastal wetlands by tidal waters can decrease CO2 emissions and increase emissions 

of N2O, however, inundation can have mixed effects on the emission of CH4. Gaseous emissions can 

be highly site-specific based of the inundation regime and can also be heavily influenced by large 

rainfall events, as demonstrated by Negandhi et al., (2019). As rainfall events, and similarly tidal 

inundation duration and extent are expected to increase with rising sea-levels and climate change, 

wetlands will be inundated for longer, and the inundation will be deeper, but also areas previously 

out of tidal reach will begin to experience flooding (Luo et al., 2019). The potential increase emissions 

of the higher GWP gases may be offset by the sequestration ability of coastal wetlands and hence, 

monitoring of gas fluxes from coastal wetlands will be increasingly important to understand how they 

are currently responding, and will continue to respond to a changing climate and rising sea-levels 

(Crooks et al., 2011; Oppenheimer et al., 2019; Rosentreter et al., 2021). 

3.2.2. Soil and Water Salinity 

 Depending on the geomorphic setting within an estuary, salinity may be linked to tidal inundation 

duration and extent, as water is the vector for salt transport, and these salts will be brought into 

wherever the tidal water reaches. Salts will also deposit into the sediment layer that is wetted by the 

inundation event. Salinity exerts some control over carbon mineralisation and subsequent CO2 

emission rates through the stresses it puts on soil microbes who undergo respiration. According to a 

review published by Luo et al., (2019), most studies agree that increasing salinity has an inhibitory 

effect on carbon mineralisation rates. This is further backed by an experiment carried out on soil cores 

(Doroski, Helton and Vadas, 2019). Those results showed a suppressed CO2 response across soil cores 

treated with both saltwater and sulfate-enriched water, when compared to a freshwater control. The 

suppression of CO2 emission lasted throughout the experiment and did not return to pre-treatment 

levels. Hence, the potential for carbon mineralisation is likely lowest in brackish marshes; however, 

this could change depending on the hydrodynamic forces in an area – for example, a freshwater 

stream may discharge nearby, which would reduce saline stress and increase the potential for carbon 

mineralisation (Luo et al., 2019). Trends in carbon burial rates have also been identified that show 

increased carbon burial with decreased salinity towards the upper estuary in tidal systems (Krauss et 

al., 2018). Rates in forested freshwater tidal wetlands and freshwater marshes have been found to 

exceed those of low-salinity marshes and saltmarshes (90, 124, 93 and 40 g C m2 year-1, respectively) 

(Craft, 2012; Loomis and Craft, 2010).  
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 Increases in salinity do not always have an inhibitory effect on carbon mineralisation. The findings 

present above apply to coastal wetlands, which are environments with an existing saline influence. 

When salinity increases in freshwater environments (less than 2.0 practical salinity units (psu) rates of 

carbon mineralisation can be increased, resulting in increased carbon emissions (Krauss et al., 2018). 

Where the baseline inundation regime of these freshwater systems is typically water >2 psu, the 

primary respiration pathway is via methanogenesis; however, exposure to saline water can switch the 

respiration pathway to sulfate reduction, and if sustained, can double the rate of carbon 

mineralisation (Krauss et al., 2018; Rogers et al., 2019). Even a short pulse of saline water into 

freshwater habitats is enough to sustain carbon losses for multiple months after exposure has 

occurred. (Krauss et al., 2018). Over time, continuing saline pulses have the potential to shift 

freshwater systems towards increased rates of carbon mineralisation via sulfate reduction pathways 

(Krauss et al., 2018). Such an occurrence would lead to heightened CO2 emissions as SLR occurs and 

freshwater ecosystems are more frequently exposed to saline tidal waters. This would create a 

positive feedback loop, further exacerbating global warming. As a result of salinisation, there is a 

strong, negative correlation between salinity and CH4 fluxes, due to increased presence of more 

energetically favourable electron acceptors facilitating sulfate reduction over other pathways (Luo et 

al., 2019).  This is consistent with findings presented by Moseman-Valtierra et al., (2016), in which 

high CH4 emission events corresponded with low salinities. The contrasting influences that increasing 

salinity may have on wetland environments on carbon fluxes – both CO2 and CH4
 – means that further 

research is necessary to understand how they will respond to SLR and salinisation, and what climate 

feedbacks may occur. 

3.2.3. Soil Characteristics and Soil Carbon Content  

 The geomorphic setting that a wetland is contained within can have an overarching control over 

the biological, physical and biogeochemical processes that are responsible for carbon accumulation 

and storage (Roy et al., 2001; Kelleway et al., 2016a). As a consequence of this, there can be substantial 

variation in carbon stores between wetlands locally and globally (Kelleway et al., 2016a). The role of 

vegetation in carbon fixation via photosynthesis is discussed in section 3.2.4, but the geomorphic 

setting controls factors that trap the carbon and store it within the soil profile, and one of these key 

factors is soil characteristics (Kelleway et al., 2016a). Two broad geomorphic settings can be identified 

in estuaries; those with a more marine influence have moderately well-sorted sands with lesser 

amounts of mud, and those with a more dominant fluvial, or mixed influence, have ranging sediment 

compositions of poorly sorted mixtures of sand, mud and organics to mud and organic-rich sediments 

(Kelleway et al., 2016a). A growing link has been found that there is a relationship between 

depositional settings and the carbon stored within the soil. Marsh habitats located near to fluvial 
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influences have a greater carbon store than those with a more marine influence (Kelleway et al., 

2016a; Macreadie et al., 2017; Gorham et al., 2021). In Western Australia, fluvially-influenced marshes 

had up to 1.3 times more carbon than marine-influenced marshes (Gorham et al., 2021). While coastal 

wetland systems along the NSW Coastline on average, have more than double the store of carbon in 

fluvially-influence settings than in those with a marine influence (226.09 ± 12.37 Mg C ha-1 and 104.54 

± 7.11 Mg C ha-1 respectively. A further breakdown of these values is provided in Table 3.2 (Kelleway 

et al., 2016a). Sediment grain size was found to be the primary explanatory variable for carbon density 

in Southern NSW estuaries, with finer-grained sediments having significantly higher carbon densities 

than mixed and sandy sediments, in that order (Kelleway et al., 2016a). 

Table 3.2: Organic carbon stocks found in different vegetation stands in fluvial and tide-influenced saltmarsh settings. 
Values are averages and are presented with standard errors. Values are Megagrams of carbon per hectare. (Reproduced via 
Kelleway et al. 2016). 

 

 One mechanism that may be a factor for finer sediments having higher carbon densities is sediment 

porosity. Bulk density is a function of grain size, and soils with lower bulk densities have more pore 

space between soil aggregates (Ball, 2013; Morris et al., 2016). Sandy soils have more rapid drainage 

from a larger porosity, which allows for exposure of soil carbon to the atmosphere, likely causing more 

rapid mineralisation and emission of carbon from the soil (Kelleway et al., 2016a). Finer-grained 

sediments would however show opposite characteristics, having a smaller porosity, holding onto 

water for longer and hence not exposing trapped carbon to the atmosphere, lessening carbon 

emissions. However, a contrasting pattern was found during a review, where pore spaces tended to 

be larger and bulk density lower in freshwater to brackish sediments, which would allow for more 

contact between organic matter and the atmosphere and promote aerobic respiration and CO2 

emissions (Hedges and Keil, 1995; Luo et al., 2019; Gorham et al., 2021). 

 Soil moisture is typically recorded as the percentage of measured soil that contains water, 

calculated after drying. The moisture content is controlled by both the tidal inundation and 

precipitation regimes, but also by the soil characteristics as discussed above. As outlined in Sections 

3.2.1 and 3.2.2, a higher moisture content can create increasingly anoxic conditions, decreasing CO2 

Vegetation 

Community 

Fluvial Influence Carbon Density 

(Mg C ha-1) 

Marine Influence Carbon Density 

(Mg C ha-1) 

 Mean SE Mean SE 

Rush 215.8 25.7 118 25.8 

Succulent/grass 232.9 25.5 91.8 25.5 

Saltmarsh (whole) 164 
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emission and increasing CH4 production, or under more saline conditions, will cause the production of 

SO2. However, there may be an optimal moisture content for microbial respiration. Wickland and Neff, 

(2008) suggested that respiration peaked when the moisture content of the soil was approximately 

75 percent, however local variation in soil characteristics and microorganism communities could lead 

to the optimal moisture content varying spatially (Yin et al., 2019). 

3.2.4. Biomass/vegetation variation 

 The plant species in an area, and their subsequent productivity and biomass will ultimately depend 

on the environmental conditions in that area. In the context of this thesis, plant distribution and 

biomass will be discussed within the environmental parameters outlined in sections 3.2.1 through 

3.2.3. Both inundation and salinity are stressors on plants, and can negatively impact their 

productivity, biomass, and carbon sequestration capacity (Lill et al., 2013; Moseman-Valtierra et al., 

2016; Luo et al., 2019). Though, in brackish wetlands, salinity may allow for higher biomass as the 

selective pressure of more saline waters increases competition and increases the presence of 

nutrients like ammonia (NH4
+) (Luo et al., 2019). Inundation can be seen as a driver of vegetation 

variation through its partial control over salinity, directly by tidal inundation, but also if inundation is 

not occurring (for example, in a closed ICOLL) then saltmarshes can become increasingly saline as 

water is evaporated (Saintilan, 2009). This will then determine where the salt-tolerant species exist 

(Saintilan, 2009; Luo et al., 2019). Inundation acting in this way naturally leads to more salt-tolerant 

species out-competing non-tolerant species as sea-levels rise. Variation in vegetation distribution can 

also be a factor of tidal inundation itself, as tidal currents may dislodge seedlings and transport 

propagules, or turbid waters may deposit sediment on leaves of plants, lowering their photosynthetic 

capacity (Saintilan, 2009). 

3.2.4.1. Community Variation on NSW South Coast 

 The variation and distribution of vegetation types within the location of interest, being the NSW 

South Coast, typically shows a zonal distribution of vegetation along a gradient, beginning at 

approximate mean sea-level, through to the supratidal zone, above the Highest Astronomical Tide 

(Saintilan et al., 2019). The tidal inundation regime creating this gradient are also affected by changes 

in elevation on both macro and micro-scales. Mangroves are normally constrained to below mean 

high water and above mean sea-level. Avicennia marina is the abundant mangrove species in this 

region but may be absent from ICOLLS (Kelleway et al., 2017). Stands of Casuarina glauca or Melaleuca 

ericifolia typically inhabit areas above mean high water, where there is little tidal inundation (Saintilan 

et al., 2019). Between these two communities lies the saltmarsh, where different vegetation types are 

likely to occur in either upper or lower sections, each generally having a low species richness of one 
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or two dominating plant species, particularly towards the lower elevations that are more frequently 

inundated (Saintilan, 2009; Kelleway et al., 2016a; Mills, 2021).  

 The species richness can increase further up the saltmarsh zones but can again be reduced if there 

is a freshwater input facilitating the growth of tall competitive and dominant species like Phragmites 

and Typha (Saintilan, 2009). Low to mid marsh zones are typically inhabited by Sarcocornia 

quinqueflora, a low-growing succulent, and Sporobolus virginicus, a grass, while the upper zone of the 

marsh is dominated by Juncus kraussii and Baumea juncea, however, a mosaic of vegetation types 

may also occur (Kelleway et al., 2016a).  Biomass is typically higher in the rush-dominated 

communities (Juncus = 1116 g m2) versus the non-rush communities (320 and 350 g m2 for Sarcocornia 

and Sporobolus, respectively) (Kelleway et al., 2017). Some saltmarshes also have algae communities 

that form where there is little-to-no coverage of vegetation, or on hyper-saline tidal flats (Saintilan, 

2009; Kelleway et al., 2017). However, the occurrence of hyper-saline patches within NSW marshes is 

small, compared to tropical counterparts (Saintilan, 2009). 

3.2.4.2. Plant driven GHG Variations 

 Variations in GHG emissions are influenced by the distribution and presence of vascular plants, the 

species composition and abiotic and biotic factors (Moseman-Valtierra et al., 2016). Some marsh 

plants that occupy the lower marsh, which is more prone to inundation, contain features such as 

aerenchyma, which are gas-filled spaces within the plant tissue that facilitate gas exchange and keep 

roots oxygenated during anoxic conditions. It is these aerenchyma that may increase fluxes of GHGs 

from anoxic soil conditions, despite the soil-atmosphere gas exchange being interrupted by overlying 

water (Moseman-Valtierra et al., 2016). High-marsh zones can be inhabited by species that are denser, 

with shallow roots, adaptations that result in less ventilation of soils and lower GHG fluxes. In coastal 

marsh areas in New England, USA, CO2 fluxes were highly correlated with belowground biomass, and 

moderately with aboveground biomass, which may reflect that lower-marsh plants have larger gas 

fluxes than higher marsh plants with shallower belowground biomass (Moseman-Valtierra et al., 

(2016). 

 Emissions of GHGs also vary on a temporal scale. Typically, as plants are photosynthesising 

throughout the day, net fluxes of CO2 tend to be smaller, or more negative as plants draw in CO2. At 

night, photosynthesis pauses, and respiration is the dominant process occurring, hence fluxes of CO2 

tend to be more positive as CO2 is released (Moseman-Valtierra et al., 2016; Abdul‐Aziz et al., 2018) 

Both sunlight and soil temperature have been found to have moderate to strong control over daytime 

CO2 uptake by plants in North American saltmarshes, as increased temperatures accelerate the rates 

of photosynthesis in some plants. However, photosynthetic rates can be reduced should temperatures 
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climb too high (Abdul‐Aziz et al., 2018). This may have complex implications for saltmarsh and their 

capacity to both survive and sequester carbon from the atmosphere under increasing global warming. 

While CO2 fluxes did vary temporally, there was no difference in CH4 fluxes between day and night-

time, as CH4 fluxes are not directly driven by sunlight or photosynthesis (Moseman-Valtierra et al., 

2016). Vegetative growing cycles throughout the year also lend to seasonal variations in the GHGs 

fluxes from plant communities. CO2 fluxes can be expected to be more negative during the growing 

seasons of plants – typically spring through early summer (Emery and Fulweiler, 2014). 

3.2.4.3. Vegetation Controls on Soil Carbon Variation 

 Variation in plant species and community composition creates differences in the soil carbon 

content throughout a coastal wetland system. Differences in the structural properties and productivity 

between species can influence the capacity of a vegetation community to directly contribute to the 

carbon pool through growth, but also by capturing and retaining sediment and organic material from 

surrounding communities (Kelleway et al., 2016a). The roots and rhizomes of a plant are also a 

significant source of organic matter into the soil, so plants with a larger biomass, more roots and a 

high rate of turnover are likely to contribute more carbon to the soil (Kelleway et al., 2017). Rates of 

carbon sequestration can vary between vegetation types and communities, as found by Lovelock et 

al., (2014) in Southeast Queensland. Here, J. kraussii-dominated marshes had a higher rate of carbon 

sequestration than marshes dominated by S. quinqueflora. Variation in carbon accumulation rates was 

also studied by Saintilan et al., (2013), who found that rates of accumulation depended more on the 

hydro-geomorphic setting rather than the vegetation type. 

 Despite rates of carbon sequestration potentially varying both within and between coastal 

saltmarshes, stocks of carbon in the soils of saltmarsh does not vary by vegetation, but by geomorphic 

setting, as outlined in section 3.2.3 (Kelleway et al., 2016a). The drivers of the difference between 

marine and fluvially influenced marshes are complex, but outside the realm of my research, however, 

the difference remains important, nonetheless. If carbon stocks are higher within fluvial marsh 

systems that are hydrodynamically connected to tidal deltas and marsh areas, then they stand at risk 

of salinisation and subsequent carbon mineralisation from rising sea-levels.  

 Surface sediment accretion is important to maintain as it ensures the survival of the saltmarsh 

under SLR (Kelleway et al., 2017). Inputs of sediment can be derived from within the saltmarsh, or 

come from adjacent environments, and accreted sediment and organic matter eventually will become 

part of the soil carbon pool in a site. J. kraussii-dominated marsh zones, given their higher biomass 

and stable input of organic matter to the soil, combined with less tidally driven export of decaying 

material, allows for higher rates of accretion (Kelleway et al., 2017; Saintilan et al., 2013). 
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Contrastingly, marsh dominated by S. quinqueflora and S. virginicus is subject to more regular tidal 

flows, which act to ‘clean’ the surface and export decaying organic material, lowering the rate of 

accretion (Saintilan et al., 2013).  

 The GHG flux response arising from the vegetation-controlled variations in soil carbon is less well 

researched. The response of coastal wetlands to SLR may be mixed, as salinisation of freshwater zones 

may cause increased carbon mineralisation, yet mangrove encroachment forced by rising sea-levels 

has been found to increase carbon stores beneath new mangrove habitat (Kelleway et al., 2016b). 

How these gas fluxes vary is a key component of this research report and data collection from the 

Tilba Lake study site. 

 Soil Carbon and Net Ecosystem Exchange 

 The transfer of carbon, between the biosphere and the atmosphere is referred to as the Net 

Ecosystem Exchange (NEE) (Restaino and Peterson, 2013). NEE is measured as carbon per unit of 

ground area per unit time and is an indicator of the strength of an ecosystem to act as either a sink or 

source (Restaino and Peterson, 2013). Some examples of NEEs from around the globe are presented 

in Table 3.3. 

Table 3.3: Examples of NEEs from different environments around the world. Negative values indicate an exchange towards 
the ground, or uptake of carbon by an ecosystem. A positive value indicates a net release of carbon to the atmosphere 

Location 
Net Ecosystem 

Exchange 
Source 

Morgan Monroe State Forest (USA) 236 g C m2 year-1 (Reichle, 2020) 

Managed grassland (Ireland) -189 g C m2 year-1 (Dondini et al., 2018) 

Himalayan Pine Forest (India) -99 g C m2 year-1 (Singh et al., 2019) 

Dry tropical forest (Brazil) 
-169 g C m2 year-1 (2014) 

-145 g C m2 year-1 (2015) 

(Mendes et al., 2020) 

Salt Marsh (Massachusetts, USA) 
-179 g C m2 year-1 (Forbrich, Giblin and Hopkinson, 

2018) 

Managed Urban Tidal Marsh (New 

Jersey, USA) 

-65 – 310 g C m2 year-1 (Krauss et al., 2018) 

Tidal Freshwater Marsh (Louisiana, 

USA) 

290 g C m2 year-1 (Krauss et al., 2018) 

Restored Tidal Wetland (California, 

USA) 

 397 – 804 g C m2 year-1 (Krauss et al., 2018) 
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A means of measuring NEE is the eddy Covariance (EC) method, which will be introduced in more 

detail in the following section. The use of EC to measure NEE is beneficial as it can be utilised over 

multiple timeframes (Reichle, 2020). However, NEE itself does not factor carbon losses from other 

sources, such as lateral loss of dissolved carbon or losses associated with disturbance, or loss as 

Volatile Organic Compounds (VOCs) (Reichle, 2020).  

 NEE is calculated as the difference between the Gross Ecosystem Production (GEP) and the 

Ecosystem Respiration (Reco), that is: 

𝑁𝐸𝐸 = 𝑅𝑒𝑐𝑜 − 𝐺𝐸𝑃 

 GEP represents the total amount of carbon taken up by an ecosystem, while Reco is the carbon 

released by plants during respiration (Reichstein et al., 2005). The splitting of the overall flux into its 

respective parts can help to understand interannual and seasonal variations when EC data exists 

across a wide temporal scale. For instance, when splitting the NEE into its two parts, Reco would be 

expected to be much higher during the plants growing season when it is respiring more than during 

periods of dormancy (Reichstein et al., 2005). The seasonal variations in NEE are related to changes in 

abiotic variables throughout the year, factors such as photosynthetically active radiation, air and soil 

temperature and precipitation (Peichl et al., 2014). The level of the water table may also have an 

influence over NEE seasonally, as its position controls both plant productivity and the rate at which 

decomposition can occur(Peichl et al., 2014). The variability of NEE as a result of changes in abiotic 

factors also highlights the susceptibility of these system to climate change, as a warmer and drier 

climate may increase decomposition and subsequent carbon emissions (Peichl et al., 2014). This shows 

the importance of understanding how environmental variables can affect GHG fluxes within wetland 

environments to predict the future impacts of climate change. 
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 The Eddy Covariance Method 

 Fluxes, as mentioned earlier, in the context of this research refers to the amount of gas - CO2 and 

H2O – passing through a plane of unit area per time unit. This plane can exist both parallel to and 

perpendicular to the ground. Only a ground-parallel plane is of interest in this study, as vertical fluxes 

from the wetland surface are of interest. A flux is dependent on the size of the area that the gas is 

passing through, the amount of gas, the time taken, but also the ambient weather conditions exerting 

control on the air parcel’s motion (Burba and Anderson, 2010). A negative flux indicates an overall net 

downward motion of gas, likely due to plants absorbing CO2 for photosynthesis during the day, while 

a positive flux indicates a net upwards motion – emission – of gas from the grounds surface (Burba 

and Anderson, 2010). Of the common methods chosen for measuring fluxes in coastal wetlands, the 

eddy co-variance method was selected for my study site. The eddy co-variance towers (EC towers) 

measure the net flux in and out of a ‘box’ of space. For example, if ten molecules of CO2 left the ‘box’ 

upwards, then only five returned back down, then the net flux was upwards – a positive flux of CO2 

leaving the ‘box’. This net exchange of CO2 in and out of the box in subsequent eddies are contained 

within a much larger, overall air flow motion, which contains many eddies within it (Burba and 

Anderson, 2010). The instrument mounted on the EC tower rapidly samples many of these eddies as 

they pass through, allowing an overall flux to be given. The instrument is also able to monitor wind 

speed and direction on all three axes (one vertical and two horizontal). The speed and direction of the 

flux allows a footprint to be determined – that is the area from which that parcel of air and its 

contained gases originated. There are a number of assumptions however, that go into the automatic 

calculations carried out in the instruments processing of the data. It is assumed that there is an 

adequate fetch, that is the terrain in the upwind distance is uniform, to ensure that the measured flux 

only comes from the area of interest and is representative of that area, and not contaminated by 

fluxes from distant sources (Burba and Anderson, 2010; Drexler et al., 2004). Other assumptions are 

that the measurements are done within the boundary layer of interest, and that density fluctuations 

and flow divergences and convergences are negligible (Burba and Anderson, 2010). 

 The boundary layer is the atmospheric layer of interest, and is typically 20-50 metres high, when 

the atmosphere is unstable and consequentially unstratified (Aubinet, Vesala and Papale, 2012). The 

thickness of this layer can reduce if the atmosphere becomes more stable and stratifies. Stability is 

the resistance of the atmosphere to vertical motion, and it can change throughout the day, as it is 

controlled by the energy available – more energy will reduce stability as there is more turbulence and 

more mixing in the atmosphere, and this typically occurs during the day. These conditions are optimal 

for the instruments used in the EC method, as it ensures adequate mixing of gases to obtain a 

representative sample (Drexler et al., 2004). At night, when there is less energy entering the 
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atmosphere as heat, stability increases, and stratification can occur. During stratification, layers of the 

atmosphere do not mix, which can lead to the same air parcel remaining around the detection 

instruments on the EC tower, which is not ideal for obtaining representative samples. 

3.4.1. Alternative Flux Measurement Methods 

 In addition to the EC Method outlined in section 2.4, there are two additional ways of measuring 

fluxes in salt marsh environments; henceforth the Chamber Method, and the Soil Core Method. 

 The Chamber Method involves setting up a space that can capture gases – a chamber – over the 

top of an ecosystem. This chamber can be opened and closed as necessary to conduct measurements. 

A field-based study that utilised the Chamber Method was carried out by Chojnicki, Acosta and 

Augustin, (2014) in a freshwater wetland in Poland. While the environment was not a salt marsh, the 

general approach of using chambers can be used in coastal ecosystems. Their chambers were 

constructed out of PVC, in a quadratic prism with a total volume of 0.3 cubic metres. Within the 

chamber, an infrared gas analyser, thermometer and soil temperature probes were installed to collect 

data, while a second thermometer was mounted outside for comparison of internal and external 

temperatures. The way in which the chambers were set up by Chojnicki, Acosta and Augustin, (2014), 

allowed for near constant measurement of fluxes, but only allows a small spatial scale to be sampled, 

unless multiple chambers are established over an area, which can be expensive. Different plant 

communities within a wetland can be sampled independently of one another using chambers but does 

not allow for larger spatial scale samples as eddy Covariance does. Sampling of vegetation can also be 

disruptive, as the chamber needs to be placed over the vegetation, in a way that it can meet the 

ground. 

 The alternative, the soil Core Method, is more lab-based than either the Chamber or EC Methods. 

It involves taking soil cores from the ecosystem of interest and taking them to a lab where the cores 

are subjected to a range of experimental treatments. For example, Emery et al., (2021) subjected 

saltmarsh soil cores to treatments simulating tidal, storm, and combined storm and tidal inundation 

events to measure the effect of these events on GHG fluxes. A different soil core experiment, 

conducted by Doroski, Helton and Vadas, (2019) subjected tidal wetland soil cores to treatments of 

fresh and seawater, elevated sulfate, elevated nitrate and copper, and combined nitrate and copper. 

This simulated the effects of saltwater intrusion, urban pollution run-off, and a combined effect of the 

two on GHG fluxes. The Soil Core Method allows for more controlled experimental treatment than EC, 

which only allows for capturing of the natural variability, which is obviously the strength of EC. Soil 

core experiments may also be cheaper to carry out, as the instruments required for EC are expensive, 

and when field-based, are subject to weather and tidal conditions that place them at risk. 
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 Blue Carbon Sampling and Estimation 

 Blue carbon includes carbon that is stored within four main smaller pools in the coastal 

environment. These pools include above and belowground living biomass (branches, leaves, roots and 

pneumatophores), non-living biomass (dead wood and leaf litter) and the carbon held within the soil 

itself (Howard et al., 2014). Blue carbon can be categorised two ways; autochthonous carbon is grown, 

deposited, and buried within the same area, while allochthonous carbon is brought into an area from 

another through hydrodynamic vectors (Howard et al., 2014). To understand further how blue carbon 

systems can help mitigate global warming, and to address this role of blue carbon through policy and 

other regulatory frameworks, it is important to be able to quantify the stocks of blue carbon that exist 

within coastal ecosystems (Howard et al., 2014). Accounting of carbon stocks can be done at site-

specific, regional, national or global scales to create inventories, and this can be done to one of three 

tiers of accuracy to align with methods described by the IPCC.  

Table 3.4: Mean values carbon stocks in the top metres of soil for the three primary coastal wetland environments both 
globally and within Australian coastal ecosystems (Reproduced from Howard et al., (2014) and Serrano et al., (2019) 
respectively). N/R = not reported. 

Coastal Ecosystem Carbon Stock 

(Mg ha-1) 

± One Standard 

Deviation 

Mangrove (Globally) 386 N/R 

Saltmarsh (Globally) 255 N/R 

Seagrass (Globally) 108 N/R 

Mangrove (Australia) 251 155 

Saltmarsh (Australia) 168 127 

Seagrass (Australia) 112 88 

 

3.5.1. Estimating Blue Carbon Stocks 

 At tier one, the lowest level of accuracy, when no site-specific data exists, carbon stocks are 

calculated using the global mean carbon stock for the primary vegetative ecosystem, as displayed in 

Table 3.4 and multiplying it by the size of the given area (Howard et al., 2014).  

 The belowground biomass pool of coastal saltmarsh contributes a large proportion of the overall 

carbon stored within an ecosystem (Howard et al., 2014). It can also be hard to separate from the non-

living soil carbon pool, hence they can be treated as a single pool without compromising the accuracy 

of the inventory assessment (Howard et al., 2014). This combined pool is an important stock of carbon, 

as the soil component can account for upwards of 98 percent of the total carbon in tidal saltmarshes 

(Howard et al., 2014).  
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 To begin estimating carbon stocks to a level of detail greater than tier 1 as described by the IPCC, 

Howard et al., (2014) outline a sampling and analysis method. Necessary parameters of soil depth, dry 

bulk density (DBD) and soil organic carbon content (%Corg) must be determined for an estimation to 

be carried out. Determination of necessary parameters generally involves taking soil cores from an 

adequate spread of a coastal wetland, and sampling down the depth profile of each for DBD and %Corg. 

Cores should be taken to a minimum depth of one metre but are commonly sampled to between three 

and five metres. There are several methods of determining %Corg; elemental analysers give a 

quantitative measure of carbon within a sample, but instruments can be expensive to purchase and 

maintain. A wet combustion method uses chemical digestion reactions but can involve incomplete 

reactions and produces toxic waste. A method that is both cheaper and more reliable than the 

previous option respectively, is loss on ignition (LOI). LOI burns off organic matter from soil samples, 

and the resulting weight difference is used to determine the organic matter component, from which 

the %Corg can be empirically derived (Howard et al., 2014). Empirical equations are provided by 

Howard et al, however these are specific to regions outside of Australia (table 3.5). 

Table 3.5:Empirical equations relating the organic matter content established through LOI to the organic carbon component 
within the soil. 

Ecosystem 
Relationship 

Strength (r2) 
Empirical Equation Location (Source) 

Tidal Salt Marsh 
0.98 %Corg = 0.47 * %LOI + 0.0008 * (%LOI)2 Maine, USA (Howard et 

al., 2014) 

Tidal Salt Marsh 

0.99 %Corg = 0.4 * %LOI + 0.0025 * (%LOI)2 North Carolina, USA 

(Craft, Seneca and 

Broome, 1991) 

 

 The LOI method may result in overestimation of %Corg if the soil is overly clayey – due to the loss of 

structural water – or if the soil contains larger proportions of carbonate material – inorganic carbon 

can be lost at combustion greater than 500°C (Howard et al., 2014). Despite these limitations, the LOI 

method has been demonstrated to be a reliable method to determine %Corg (Craft, Seneca and 

Broome, 1991) 

 Once the above parameters are determined, the total soil in each core can be estimated and 

converted to a value of carbon per unit area. Cores can then be averaged over any sampling strata 

that are present in the area, resulting in an estimation of the total soil carbon inventory in a coastal 

wetland. 
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3.5.2. Sampling Vegetative Carbon Pools 

A complete picture of the carbon stored within an ecosystem cannot be formed without also 

estimating the carbon stored within above-ground biomass. For best estimates, samples should be 

taken when biomass is at its greatest (Howard et al., 2014). Sampling across seasons also grants more 

insight into how biomass and carbon stores vary throughout the year, but samples must be collected 

at the same time each season (Howard et al., 2014). Howard et al., (2014) suggests measuring stem 

number and height of rush-like vegetation (i.e., J. Kraussii) to develop allometric equations to 

determine for biomass. A biomass amount can then be multiplied by a species-specific carbon 

conversion factor to determine the amount of carbon stored within vegetation. However, this method 

may not be practical for all saltmarsh species that show weak relationships between height and 

biomass (Owers, Rogers and Woodroffe, 2018). Hence, the use of allometric equations may yield 

inaccurate estimations of biomass and carbon stores within a salt marsh environment. An alternative 

approach, albeit still destructive, is to establish replicate plots within and across vegetation strata and 

harvest all standing plant material within each plot (Clarke and Jacoby, 1994). Vegetation should then 

be dried to constant mass, and the biomass component can be multiplied by a carbon conversion 

factor (a factor of 0.45 is suggested by Howard et al., (2014) for grasses, sedges and other herbaceous 

plants). This can then be scaled up to the appropriate scale of different vegetation types, and the 

saltmarsh as a whole, if needed. 
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4. Site Selection and Characterisation: 

The saltmarsh studied as a part of this research project is located on the edge of Tilba Tilba Lake 

(Tilba Lake), on the New South Wales South Coast (36°18’33’’ S 150°07’11’’ E) (Figure 4.1) Tilba Lake 

is an ICOLL, an Intermittently Closed and Open Lake or Lagoon, the mouth of which, when open, drains 

into the ocean. When open, the estuary is subject to tidal cycles. The wider area of the wetland is 

approximately 6.9 hectares in area, as indicated in yellow in Figure 4.1. The wetland consists of a main 

saltmarsh which is fronted by a small tidal channel that is approximately five metres wide when the 

marsh surface is exposed during an open ICOLL phase. 

 

t 

Figure 4.1: Map showing the location of Tilba Tilba Lake, and the extent of the saltmarsh monitored 
as a part of this research project 

Tilba Lake and the Extent of the Monitored Saltmarsh 
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 The site was selected due to a number of factors. Local Land Services (in conjunction with the NSW 

Government Department of Planning, Industry and Environment (DPIE)) have been undertaking 

management actions in the Tilba Lake Catchment to improve water quality in the lake. Landowners 

around the lake can participate in the program, and the owner of the land that the saltmarsh sits on 

allowed a long-term research program to occur to monitor GHG fluxes, which this project sits within. 

The site was previously grazed by livestock, which are now excluded from the area as part of the 

ongoing management program. The private property is also beneficial as it allows a secure site to 

establish expensive, long-term monitoring instruments without the threat of theft or interference. 

The smaller size of the wetland also allows for a more constrained vegetation footprint for utilisation 

of the eddy co-variance method - outlined in section 3.4 - to measure gas fluxes. 

The vegetation zonation of the marsh shows a marked change from the tidal channel towards the high 

end of the marsh. The channel is flanked by small patches of mudflat on both sides. On the northern 

side of the channel, the marsh transitions through multiple vegetation communities, which are 

displayed in Figure 4.2 Henceforth, the vegetation communities will be referred to in the following 

manner. 

• ‘Sarcocornia’ Community: This community consists almost completely of Sarcocornia 

quinqueflora. At the interface of this and the Juncus community, the two dominant vegetation 

types intermix with one another, forming a patchy mosaic. 

• ‘Juncus’ Community: This community is dominated by stands of Juncus krauss ii, intermixed 

with S. quinqueflora, Paspaylum distichum, Samolus repans, and Trigloghin striatum. The 

Juncus community borders both the Phragmites and Melaleuca communities, forming a more 

abrupt transition into both than the Sarcocornia community. 

• ‘Phragmites’ Community: This community is dominated by Phragmites australis, but still 

contains all of the same species as the Juncus community, however with significantly less J. 

kraussii.  

• ‘Melaleuca’ Community: This community contains less species diversity, instead consisting 

mostly of mature Melaleuca ericifolia trees. This community is located at the end of the 

transect, at the highest point at the northern end of the marsh. 

The marsh surface contains some depressions that form pools following rainfall or some high tides. 

There is also evidence of dried algal mats that have been captured by taller vegetation, primarily J. 

kraussii. 
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A transect was established to capture changes in the vegetation through the Sarcocornia, Juncus 

and Melaleuca communities, ending at a groundwater standpipe in the latter community. The transect 

begins at the point in the middle of the tidal channel that fronts the marsh – this point is where the 

tidal channel water logger is placed. The transect then runs perpendicular to the tidal channel for 210 

metres, and has an elevation increase of approximately 1.14 metres from beginning to end. Points 

were marked along the transect using PVC pipes, and these locations were used as soil sample 

reference points and locations of the groundwater standpipes (sections 5.2.1 and 5.1.1 respectively). 

The Phragmites community was not directly on the sample transect; it was located approximately 30 

metres to the east. Samples were still collected in the Phragmites community to assess how 

environmental variables may change with the vegetation. This community was not subject to GHG 

measurements. 

Figure 4.2: Map showing the different vegetation communities throughout the Lake Tilba 
saltmarsh. Also included are the locations of both current eddy co-variance towers, the location 
of the initial tower, the location of the initial three water loggers and the path of the transect. 
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5. Methods: 

 Sensor Equipment Placement 

5.1.1. Water Level and Salinity Loggers 

 Automated loggers were deployed at multiple locations across the study site (Figure 4.2). These 

located enabled capturing of temporal and spatial variation in water level and salinity of ground and 

surface water. Three Loggers had already been deployed to the Tilba Lake study site before the 

commencement of this research project, as part of the larger, still on-going project. One of these 

loggers (HOBO U20L) collects only water-level data, and was placed in the centre of the channel 

surface, as in Figure 4.2. The remaining two water level and salinity loggers (Solinst Levellogger® 5 

LTC) were placed in groundwater standpipes in distinct vegetation communities, one each in the 

Sarcocornia and Juncus communities. The standpipes were PVC pipes of 5 centimetres diameter, sunk 

into the marsh surface, to a depth of ~120 centimetres. The loggers were attached to a thin rope which 

was fastened to the top of the standpipe, allowing the loggers to hang 100 centimetres below ground-

level, not the top of the pipe. The pipe was capped and sealed with tape to ensure no rainfall directly 

entered the pipe. Two additional standpipes were deployed on the 4th of May. These were deployed 

in the same manner as the existing two. One was placed into the Phragmites community, and the 

other into a stand of Melaleuca trees at the end of the transect. Data was downloaded from the 

loggers upon subsequent trips to the site. 

Figure 5.1: Photograph of the initial eddy co-variance tower set up. The table in the lower-left corner 
holds the solar panel and battery use to power the tower. 
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5.1.2. Eddy-Covariance Towers 

Initially, only a single eddy-covariance Tower (EC Tower) was deployed on the first visit to the site 

– 22nd of February. The EC system in use is an IRGASON® Integrated CO2/H2O Open-Path Gas Analyser 

and 3D Sonic Anemometer system that reports fluxes of both CO2 and water vapour in the air using 

mid-infrared light (Campbell Scientific, 2020). The field set-up consists of two parts. The first is the 

tower which holds the measurement equipment – the open-path sensor, the anemometer which 

measures wind speed and direction in three vectors, and a probe which measures humidity and 

temperature, as well as the data processing and storage unit. The second part holds a solar panel and 

a battery supported on a trestle table that powers the equipment on the tower. Power equipment 

was strapped to the table, also in turn tied to the ground (Figure 5.1). The tower was placed at the 

junction of the Sarcocornia and Juncus communities (36° 18' 34.12" S, 150° 7' 11.01" E). This 

placement was designed to capture gas fluxes from either community, dependent on the wind 

direction, by orienting the Gas Analyser and Anemometer to an Azimuth of 135°. Azimuth alignments 

were made to perpendicular to the primary wind directions. The gas analyser put at a height of 1.10 

metres. On the second visit on the 4th of May, a second EC Tower was deployed, this time placed in 

the approximate centre of the Juncus community (36° 18' 32.59" S 150° 7' 11.78" E). The Gas Analyser 

and Anemometer were oriented in a 160° Azimuth. The tower was set-up in the exact manner as the 

initial tower, except for the instrument height – 1.70 metres. Additionally, the initial tower was 

deployed on the first visit was moved into the Sarcocornia community (36° 18' 34.83" S 150° 7' 

10.33" E). In its new position the sensing equipment was oriented along an Azimuth of 135° and the 

instrument height was 1.25 metres. The towers were placed in these altered locations to better 

capture gas fluxes that are attributable to whole vegetation communities at all times, rather than one 

community or another based on wind direction, as in the first case. 

 Field Sample Collection 

5.2.1. Soil Samples 

 Soil samples were collected on each visit to the study site. Samples were collected along the pre-

established transect, in the middle of the mudflat, each vegetation community and in February,  the 

transitions between communities in order to detect any shift in the measured environmental 

variables. Samples were collected using a modified plastic 60 mL syringe with the narrow end cut off 

to create a tube that could be inserted into the marsh surface to extract a miniature soil core and 

dispel it into a specimen container. Soil cores were taken to be 5 cm in depth. At each sampling point, 

a PVC pipe was stuck into the ground to mark the position for return sampling. Five samples were 

taken at each location, one at the pipe, and then four in a sequence taken from one metre away from 

the pipe, beginning on the left-hand side, when facing the landward end of the transect (Figure 5.2). 
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Specimen containers were labelled with the respective vegetation community and sequential number. 

Upon subsequent sampling trips, boundaries between communities were no longer sampled. This 

decision was made due to the time required to collect the samples, process and analyse them in the 

lab, and the lack of variance in the measured parameters between one community and the boundary. 

5.2.2. Water Samples 

 Water samples were collected from both the groundwater standpipes and the lake surface on each 

sample trip (the Phragmites and Melaleuca standpipes were not installed in February and hence were 

not collected). Twelve samples were taken from each of the two established standpipes, six from the 

surface of the groundwater and six from the deep end of the pipe. Of these, three ‘surface’ and three 

‘deep’ samples were also filtered using 45 µm filters to removed dissolved solids and any larger organic 

matter. This sampling methods was repeated to sample lake surface water, and water from the mouth 

of Tilba Lake, for comparison of parameter trends.  

 Upon the second sampling visit in May, the above method was repeated for the lake surface, 

existing standpipes, and the new standpipes in the Phragmites and Melaleuca communities. Water 

was also collected from Mystery Bay Beach, to act as a seawater reference against the collected 

groundwater samples. 

Figure 5.2: Schematic diagram showing the soil sampling procedure. The red circle 
indicated the PVC markers, and the grey circles represent the sequence of soil 
samples taken to maintain consistency 
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5.2.3. Biomass Samples 

 On the second trip to the study site, samples were also collected to allow for above-ground biomass 

determination. A 0.25 metre-square quadrat was randomly placed on the marsh surface in the 

Sarcocornia, Juncus and Phragmites communities. Using secateurs, plant material was removed at 

ground level and stored in a garbage bag in a cool room until processing. This process was repeated 

in three locations for each of the Sarcocornia, Juncus and Phragmites communities. 

 Laboratory Sample Analysis 

5.3.1. Soil Samples 

 Wet samples were weighed to a precision of 0.01 g and using the known volume of the syringe 

used to collect them, the wet bulk density was calculated. Samples were then dried at 45°C until 

constant weight, after which samples were weighed and their dry bulk density and moisture content 

calculated. Once dried, the samples were ground using a mortar and pestle, and put through a 2-

millimetre sieve to separate larger organic matter. Any separated larger organic matter was placed 

into a separate tray and weighed, then discarded. This weighed component was subtracted from the 

dry weight total before the calculation of moisture content. Inorganic material caught in the sieve was 

returned to the sample and they were stored for further analysis. The equipment was rinsed and dried 

between samples. Samples taken from the Sarcocornia community in February were misplaced 

between the field and lab, and hence weren’t able to be processed and included in the data. 

 A sub-sample of each ground sample was separated into a centrifuge tube for testing of soil pH, 

conductivity, and other parameters. Soil was weighed to a precision of 0.0001 g and approximately 5 

g of soil was transferred into the tube. The tube was filled distilled water to the mass required for a 

five to one dilution. Diluted samples were then shaken using an orbital shaker for 24 hours and tested 

using a Mettler-Toledo Seven GoDuo Water Quality Probe. 

 Another sub-sample of the dried soil sample was subjected to Loss on Ignition (LOI). Crucibles had 

been drying beforehand in a 45°C oven. Crucibles were weighed to a precision of 0.0001g, noting the 

weight. Approximately 2.5 grams of sample was transferred into the crucible and final weight noted. 

A muffle furnace was used for LOI, and samples were heated at 550°C for four hours as per Heiri, 

Lotter and Lemcke, (2001). Once cooled, samples were removed from the furnace into a desiccator 

and then re-weighed to a precision of 0.0001 g. Soil samples were disposed, and crucibles washed and 

re-dried for subsequent furnace runs. 
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5.3.2. Water Sample Analysis 

 Where possible, water samples were filtered in the field, as described in section 4.2.2. Any bulk 

samples that were brought back to the lab were filtered using the same 45 micrometre syringe filters. 

The resulting ‘surface’ and ‘deep’ samples had both filtered and non-filtered, or ‘bulk’, components. 

The Mettler-Toledo Water Quality Probe was used to measure conductivity, salinity, total dissolved 

solid (TDS) and temperature. A separate benchtop probe (Thermo Scientific Orion Star) was used to 

measure pH. Each testing probe was also rinsed with distilled water between measurements. 

5.3.3. Biomass Sample Preparation 

 Plant material was separated into species and shortened to appropriate size to fit into foil trays. 

Material was dried in an oven at 60°C until constant mass, then re-weighed and the final mass 

recorded. Separation of plant species allowed for species diversity to be determined, as well as overall 

biomass for the sample area. 

 Data Processing 

Data from the soil and water results, as well as the water logger data were processed and 

presented using Microsoft Excel. Averages between all replicates for soil and water data were 

obtained and their respective standard errors obtained for graphing. Eddy covariance data were pre-

processed on Microsoft Excel. Here, appropriate data were selected from the instrument output and 

refined. EC datapoints had attached data quality flags, ranging from 1 to 9. As per Foken et al., (2012), 

only classes 1 to 6 were used to carry out analysis on. Any remaining outliers were individually 

inspected and removed if their associated wind speed or direction, atmospheric stability or friction 

data were deemed to be non-conforming. EC data were further processed using R-Studio, primarily 

using the ‘openair’ package (Carslaw and Ropkins, 2012). This allowed for the creation of windroses, 

polarplots and boxplots. When separating outputs into day and night datasets, daytime was made to 

be between 7AM and 5PM, and night-time between 5PM and 7AM. This split was decided based off 

approximations of sunrise and sunset data from Sydney weather stations. 

 Map Making 

The maps shown in Figures 4.1 and 4.2 were created using ArcMap software. The vegetation 

communities and equipment locations shown in Figure 4.2 were identified and mapped using RTK GPS 

(Trimble R8S) points and vegetation data provided by Dr Michael Hughes from DPIE.  
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6. Results  

 Tidal inundation trends 

Figures 6.1 shows the water level relative to Australian Heigh Datum (AHD) for each of the three 

initial water logger sites. However, the tidal channel logger was deployed much later than the 

Sarcocornia and Juncus loggers. Figure 6.2 shows the comparison of water levels between the duration 

of sample collections in February and May. The longer timescale represented by figure 6.1 shows at 

least one large closed ICOLL phase for Lake Tilba. This is the large peak in water depth occuring towards 

the end of December 2020. The sudden drop in water level – almost a metre over approximately one 

hour – was triggered by the reopening of Lake Tilba to the ocean on the 2nd of January 2021, an event 

that has been confirmed by local landholders. The shorter timescale represented by Figure 6.2 allows 

a tidal signature to more easily be seen through the short, regular peaking and subsiding of the water 

depth signature. However, the lack of a tidal signature in the water channel logger is not necessarily 

indicative of a closed ICOLL phase. Figure 6.2 shows that even though there is no tidal signature in the 

tidal channel, it is still present in the groundwater.The ground elevation of the initial EC Tower has 

been included in Figures 6.1 and 6.2 for reference, as it was the only tower deployed during the same 

time period. Figure 6.2 shows that the water level does sometimes rise to the same elevation as the 

EC tower, and may affect the flux arising from the footprint around the tower. Although, these effects 

won’t be detected as EC data analysis was conducted on data from the two towers post relocation in 

May. Individual logger plots, with rainfall data are presented in Appendix Figure 10.1 to 10.3. 
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Figure 6.1: Displayed here is the output of all three water loggers overlain against one another. Level is relative to AHD. Also 
included here for reference is the base height of the initial eddy covariance tower. 
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  Soil Sample Analysis 

6.2.1. Bulk Density 

Soil dry bulk density (DBD) values are shown in Figure 6.3 from samples obtained during the first 

collection in February were overal much higher than the densities from samples collected in the 

second collection in May. However, the trend of decreasing DBD from the channel to the upper end 

of the transect is consistent between both sampling periods.  
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Figure 6.2:Inset of Figure 6.1 to enlarge the period between sample collections where data from all three loggers exists. 
Here, smaller fluctuations in the water depth are more easily discerned. 

Figure 6.3: Average dry bulk density for each vegetation community, a) from February, including community boundary zones, and b) from 
May. Values are averages of five replicates and the error bars represent ± standard error. 
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6.2.2. Moisture Content 

Average soil moisture content values are shown in Figure 6.4, which shows similar trends over both 

sampling periods, being a larger moisture content in the mudflat, dropping off and then slowly rising 

through the transect, with the Melaleuca and Phragmites communities having the highest moisture 

contents in both cases. Analysis via t-test of the moisture contents of the Sarcocornia and Juncus 

communities’ samples from May yields a P value of 0.001. When using a 95 percent confidence 

interval, this is substantial enough to reject the null hypothesis and conclude that there is a significant 

difference between the mean moisture content of both vegetation communities. 

 

  

Figure 6.4: Moisture content as percentage weight for vegetation community, a) from February, including community boundary zones, and b) 
from May. Values are averages of five replicates and the error bars represent ± standard error. 
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6.2.3. Soil Salinity 

All salinity values seen in Figure 6.5, aside from the Melaleuca community were lower in samples 

collected in May than those obtained in February. While the decrease in salinity from the second batch 

of samples does not coincide with any recent rainfall event seen in Appendix Figures 1.01 to 10.3, 

there may have been localised rainfall at Lake Tilba that wasn’t captured in the Narooma rainfall data. 

However, rainfall events occurring earlier during March could be influencing soil salinity for an 

extended period of time, and this combined with reduced inundation events could be responsible for 

the decline in soil salinity. Alternatively, this could be a return to an open-entrance state 

representative of an open-ICOLL phase, as the closed phase seen in the lead up to the beginning of 

January could have elevated soil salinity to the levels shown in Figure 6.5a. t-test analysis of the 

Sarcocornia and Juncus communities’ samples from May yielded a P-value <0.05, confirming that the 

two communities had significantly different salinities. Conducting a paired t-test of the Juncus 

Community samples in February and May yielded a P-value of 0.08, which is not enough to reject the 

null hypothesis, therefore there is no significant change in the Juncus community’s salinity between 

sampling events. 

 

6.2.4. Soil Organic Matter Content 

Organic matter (OM) shows consistently higher percentages towards the upper end of the transect 

in samples retrieved in February (Figure 6.6). Data collected on both occasions shows a smaller OM 

percentage near the tidal channel at the beginning of the transect that increases along the profile, 

with a slight decrease in the Phragmites community. There was also increased variability among 

replicates from February samples. T-test analysis of the Sarcocornia and Juncus communities’ samples 

from May yielded a P-value of 0.049 at a 95% confidence level, confirming that the two communities 

had significantly different OM percentages. Conducting a paired t-test of the Juncus Community 

Figure 6.5: Soil Salinity in each vegetation community for a) from February, including community boundary zones, and b) from May. Values 
are averages of five replicates and the error bars represent ± standard error. Values are final after correction for dilution. 
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samples in February and May yielded a P-value of 0.7, which is not enough to reject the null 

hypothesis, therefore there is no significant change in the Juncus community’s OM percentage 

between sampling events 

Carbon density shows an increasing trend away from the tidal channel in the samples collected in 

February, but there is an overall decreasing trend away from the channel in May samples (Figure 6.7). 

Two sites (mudflat and Sarcocornia) show much higher peaks in May samples than their counterparts 

in February, (albeit comparing Sarcocornia to the boundary samples either side), and the remaining 

sample sites. T-test analysis of the Sarcocornia and Juncus communities’ samples from May yielded a 

P-value <0.05, confirming that the two communities had significantly different carbon densities. 

Conducting a paired t-test of the Juncus Community samples in February and May yielded a P-value 

of 0.41, which is not enough to reject the null hypothesis, therefore there is no significant change in 

the Juncus community’s carbon density between sampling events 

Figure 6.6: Average organic matter content in g/cm3 a) from February, including community boundary zones, and b) from May. Values are 
averages of five replicates and the error bars represent ± standard error. 

                                                       
 

 

  

  

  

  

  

  

  

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                                 

                        
 

 

  

  

  

  

  

  

  

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

                                                 

a) b) 

Figure 6.7: Average organic carbon density in g/cm3 for a) from February, including community boundary zones, and b) from May. Values 
are averages of five replicates and the error bars represent ± standard error. 
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 pH Results 

Overall, the pH values obtained in February showed a much narrower range than those obtained 

in May. On both occasions, there was an acidity shift from the tidal channel towards the rear of the 

transect. 

Groundwater pH results from February all range between a pH range of 7 to 8, sitting close to 

neutral. A similar result is seen in the Juncus and Sarcocornia groundwater pH values from May as 

well. In all cases except the Sarcocornia values from May, the filtered treatments show a more alkaline 

pH than the bulk samples. The mean ± SE for seawater taken from the open coast was 7.86 ±0.03 and 

7.70±0.02 for the bulk and filtered samples respectively. All pH data is shown in Appendix Figures 10.4 

to 10.6 

 Groundwater Salinity 

Groundwater salinity concentrations from samples collected in February are overall lower than the 

samples collected in May. They had higher associated standard errors, which may be due to more 

disturbance in the first sample collection (Figure 6.8). The addition of data from the Melaleuca and 

Phragmites communities in Figure 6.9 shows a very low salinity further away from the influence of the 

tidal channel. Overall, there seems so be no effect of filtering on the salinity concentrations unlike for 

the pH data presented in the Appendix. 

 

  

                    
    

    

     

     

     

     

           

 

 

 

 

 

 

 

 

 

 

 

  

            

                                

            

                
    

    

     

     

     

     

           

 

 

 

 

 

 

 

 

 

 

 

  

            

                           
            

Figure 6.8:Community groundwater salinity results from February samples for the Sarcocornia and Juncus vegetation communities. Values 
are average salinities from three replicates and are presented as Practical Salinity Units (psu). Error bars indicated standard error. 
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 Biomass 

Vegetation community composition varied between strata. The Sarcocornia community was 

completely dominated by S. quinqueflora and had a mean dry biomass weight of 0.48 ± 0.06 kg m2, 

with ranges from 0.37 to 0.54 kg m2. The Juncus community showed more species of vegetation, 

however, was still vastly dominated by J. kraussii and S. quinqueflora (Figure 6.10). The average dry 

biomass for each vegetation type was 0.28 ± 0.15 kg m2. The total dry biomass across the Juncus 

community strata is 1.40 kg m2. The Juncus community had slightly more variability between 

replicates, with a minimum biomass value of 0.90 kg m2, and a maximum of 2.08 kg m2. 

 The Phragmites community was dominated by P. australis, with lesser contributions from other 

plant species like J. kraussii (Figure 6.11). The average dry biomass for each vegetation type was 0.25 

± 0.13 kg m2. The total dry biomass across the Phragmites community strata was 0.99 kg m2, with 

samples ranging from 0.90 to 1.06 kg m2. A further breakdown of summary values for each vegetation 

strata is provided in Table 6.1. 

  

                    
    

    

     

     

     

     

     

           

 

 

 

 

 

 

 

 

 

 

  

            

                                
            

                
    

    

     

     

     

     

     

           

 

 

 

 

 

 

 

 

 

 

  

            

                           
            

                

    

    

     

     

     

     

     

           

 

 

 

 

 

 

 

 

 

 

  

            

                               

            

                
    

    

     

     

     

     

     

           

 

 

 

 

 

 

 

 

 

 

  

            

                              

            

Figure 6.9:Community groundwater salinity results from May samples for all four vegetation communities. Values are average salinities 
from three replicates and are presented as Practical Salinity Units (psu). Error bars indicated standard error 
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Figure 6.10: Percentage composition of the Juncus vegetation community. Percentages are yielded 
from averages of dry weight across three replicates. 

    

   

    

   

                                

                                              

Figure 6.11:Percentage composition of the Phragmites vegetation community. Percentages are 
yielded from averages of dry weight across three replicates. 
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Table 6.1: A breakdown of the summary values for each vegetation community where biomass samples were collected. 
‘Total Community Biomass’ indicates the biomass value when scaled up to the entire vegetation community’s area. 

 
Measured Characteristic 

Community 
 

Dry 
Weight 

MC% BM% kg 
dry/m2 

Standard 
Error 

%Veg by dry 
Weight 

Sarcocornia S. quinqueflora 1810.16 80.0 20.0 0.480 0.057 100 

Juncus J. krausii 517.13 64.7 35.3 0.690 0.493 52.4%  
S. quinqueflora 428.12 85.8 14.2 0.571 0.162 43.4%  
P. distichum 31.04 67.1 32.9 0.124 0.062 3.1%  
S. repans 8.63 84.5 15.5 0.012 0.009 0.9%  
T. striatum 1.12 86.5 13.5 0.004 

 
0.1%  

Mean Individual 
BM 

   
0.280 0.146 

 

 
TOTAL 
Community BM 

   
1.400 

  

Phragmites P. australis 479.16 73.7 26.3 0.64 0.168 8.6  
J. krausii 144.22 75.2 24.8 0.19 0.116 19.5  
S. quinqueflora 53.71 85.6 14.4 0.07 0.068 7.3  
S. repans 63.56 83.7 16.3 0.08 0.062 64.7  
Mean Individual 
BM 

   
0.25 0.133 

 

 
TOTAL 
Community BM 

   
0.99 

  

 

 Eddy Covariance  

6.6.1. Background Synoptic Data 

6.6.1.1. Temperature 

Average, half-hourly temperature readings are largely consistent between both communities, and 

also between day and night readings between communities (Figure 6.12). The average overall 

temperatures were 15.5°C and 15.2°C for the Sarcocornia and Juncus communities respectively. 

Sarcocornia daytime temperatures averaged at 16.5°C and night-time at 14°C, while daytime 

temperatures for the Juncus community sat at an average of 16.3°C and night-time 13.7°C. 
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6.6.1.2. Humidity 

Similarly to temperature, humidity data shows little variation between communities, but does 

show differences within each community between night and day (Figure 6.13). The overall humidity 

was 66% and 67% for the Sarcocornia and Juncus communities respectively. The former having a 

62% daytime and 72% night-time humidity average, while the daytime humidity was 63% and 73% 

for the night in the Juncus community.  

Figure 6.12: Boxplots showing the range of temperature readings for both the Sarcocornia and Juncus communities. 
Temperature ranges are then separated into daytime and night-time plots for each community. 

Figure 6.13: Boxplots showing the range of relative humidity measurements for both the Sarcocornia and Juncus 
communities. Humidity ranges are then separated into daytime and night-time plots for each community. 
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6.6.1.3. Wind Characteristics 

Figure 6.14a shows that a majority of the EC tower measurements are associated with wind coming 

from the south-west, with a lesser influence from the north and north-north-east. The northerly and 

north-north-easterly influence becomes slightly more pronounced when looking at daytime 

measurements only. The daytime maximum speed was measured at 9.6 m s-1. Overnight, the number 

of measurements originating from northerly sources drops from between 5 and 10 percent of the total 

count. The night-time measurements also show more measurements falling into the 6 to 8 m s-1 

category than during the day, but there is only a maximum wind speed of 8.3 m s-1. 

Figure 6.14: Windrose plots from the Sarcocornia EC tower. Each 
plot shows the frequency (as a percentage) of a measurements 
wind direction and its associated speed. a) shows the overall wind 
data and b) and c) show the split into daytime and night-time 
datasets respectively. 

a) b) 

c) 



46 
 

Unlike in the Sarcocornia community, the Juncus EC tower recorded the majority of its 

measurements with a south-westerly or southerly wind direction (Figure 6.15). Regardless of time of 

day, the maximum windspeed reached was 8 m s-1, although this was more common during the day. 

The daytime measurements also contain more counts with a wind speed less than 2 m s-1 than the 

night. 

  

a) 

Figure 6.15: Windrose plots from the Juncus EC tower. 
Each plot shows the frequency (as a percentage) of a 
measurements wind direction and its associated speed. 
a) shows the overall wind data and b) and c) show the 
split into daytime and night-time datasets respectively. 

c) 

b) 
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6.6.2. Carbon Dioxide Flux 

When comparing the overall flux of the two vegetation communities, the Juncus community 

has stronger positive and negative fluxes than the Sarcocornia community (Figure 6.17). Both 

communities have the maximum flux contribution arising from air parcels within 20 metres of the 

respective EC Tower (Figure 6.16). However, the Juncus community tower does receive maximum 

flux contributions from a wider array of directions.  

When the flux data is separated into daytime and night-time, difference are more easily 

discerned. Both communities exhibit primarily negative fluxes during the day, but this effect is 

stronger in the Juncus as seen in Figure 6.18b. When the night-time flux data is separated, as in 

Figure 6.19, both vegetation communities show a strong positive flux with wind directions coming 

from the east, with that arising from the Juncus community being much greater than that from the 

Sarcocornia. 

 

  

a) b) 

Figure 6.16: Footprint plots detailing the distance and direction of each EC flux measurement for a) the Sarcocornia 
community and b) the Juncus Community 



48 
 

 l 

k 

a) b) 

Figure 6.17: Polar plots of the overall average flux from a) the Sarcocornia community, and b) the Juncus community. 
Fluxes here are plotted using wind speed and direction. 

b) 

Figure 6.188: Polar plots of thedaily  daytime average flux from a) the Sarcocornia community, and b) the Juncus 
community. Fluxes here are plotted using wind speed and direction. 

a) 
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Figure 6.20: Boxplots showing the range of flux readings for both the Sarcocornia and Juncus communities. Flux ranges are 
then separated into daytime and night-time plots for each community. 

a) b) 

Figure 6.199: Polar plots of the daily night-time average flux from a) the Sarcocornia community, and b) the Juncus 
community. Fluxes here are plotted using wind speed and direction. 
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Figure 6.19 has been included to show the range of half-hourly flux measurement for each 

community, and further decomposed into their respective daytime and night-time datasets. It further 

reinforces the stronger flux values on both the positive and negative ends of the scale for the Juncus 

community. 

Statistical analysis of the mean daily flux values using a Welch Two Sample t-test, yielded a P-value 

of 0.003. Using a confidence interval of 95%, this result is enough to accept the alternative hypothesis 

that there is a statistically significant difference between the mean daily flux of both the Sarcocornia 

and Juncus vegetation communities. The same result was found when comparing the mean daily 

daytime flux, however, this P-value was much smaller than 0.05. No statistically significant difference 

was found when applying the t-test to the average daily night-time flux (P=0.136). Means for each 

vegetation community in differing time-of-day splits are displayed in Table 6.2.  

Table 6.2: Mean CO2 fluxes with associated standard error for each community, including the mean daily flux, daily mean 
daytime flux and daily mean night-time flux. 

 Sarcocornia Community 

Flux Mean ± SE 

(mg CO2 m-2 s-1) 

Juncus Community 

Flux Mean ± SE 

(mg CO2 m-2 s-1) 

P-Value 

Overall -0.029 ± 0.0062 -0.078 ± 0.013 0.003 

Daytime -0.061 ± 0.0046 -0.162 ± 0.013 <0.001 

Night-time 0.053 ± 0.0178 0.096 ± 0.0069 0.136 
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7. Discussion 

 Differences in Carbon Dioxide Fluxes  

 Net fluxes of CO2 from the Juncus community were significantly more negative at a 95% confidence 

interval, than those from the Sarcocornia community. When the night-time flux data were removed, 

there was an even greater negative flux of CO2 in the Juncus community during daytime hours. One 

driving factor of this difference may be the Juncus community having a much higher average biomass 

than the Sarcocornia community. Having a larger biomass – more than triple – it would be expected 

that the Juncus community draws down much more CO2 than the Sarcocornia community (Emery and 

Fulweiler, 2014; Moseman-Valtierra et al., 2016). This is reflected in the Lake Tilba data, both when 

comparing the Net Ecosystem Exchange (NEE) of each community, and the total annual amount of 

carbon sequestered by a kilogram of dry biomass (Table 7.1). Combined, the Lake Tilba saltmarsh flux 

is -385 mg C m2 hour, a value in which is higher than the 35 – 207 mg C m2 hour-1 saltmarsh fluxes 

reported by Livesley and Andrusiak, (2012). 

Table 7.1: Community data for the two monitored vegetation communities. 

 

However, when comparing NEEs from the Lake Tilba saltmarsh in Table 7.1 with values obtained 

from the literature in Table 3.3, there is a large disparity. NEE values for the Sarcocornia community 

are less negative than the -179 g C m-2 year-1, obtained by (Forbrich, Giblin and Hopkinson, 2018). 

However, when accounting for the season that data exist from, the NEE of the Sarcocornia community 

sit within the range of values reported in a Northern Hemisphere peatland (-60 g C m-2 year-1) (Peichl 

et al., 2014).  

NEE values from the Juncus community exceed the magnitude of those reported in Table 3.3, up 

to three times. When comparing the Juncus community to communities of Spartina alterniflora in the 

Northern Hemisphere, values from Tilba Lake still outweigh the magnitude of NEE by approximately 

two times for the same season (Zhou et al., 2015).  

Vegetation 

Community 

Area 

(m2) 

Measured 

Biomass 

(kg dry m-2) 

Total 

Community 

Biomass (kg) 

Mean 

Hourly Flux 

(mg CO2 m-2 

hour-1) 

NEE (g C m-2 

year-1) 

C 

sequestered 

(g C kg-1 BM) 

Sarcocornia 794 0.48 381.12 -104.4 -68.90 -0.27 

Juncus 514 1.40 719.6 -280.8 -568.40 -0.39 
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As, flux data was collected was collected during autumn, they may underestimate the NEE of the 

ecosystem, as CO2 fluxes may be even more negative during their growing seasons in spring and early 

summer (Emery and Fulweiler, 2014). Hence, monitoring over annual timescales is necessary to 

determine the true NEE, but also how the Lake Tilba saltmarsh may compare to other locations. 

The Juncus community is located further away from the source of any tidal influence, and hence, 

may be less prone to inundation and salinity stresses, allowing more opportunity for growth and 

carbon sequestration. The Juncus community consistently has a lower soil salinity (8.30 and 5.1 psu), 

than the Sarcocornia community, and in May, this difference was significantly different. As an increase 

in salinity can have an inhibitory effect on carbon mineralisation, it is logical that the Sarcocornia 

would have a lower flux (Doroski, Helton and Vadas, 2019; Luo et al., 2019). The current location of 

the Juncus community within the tidal frame may not remain unchanged, due to Lake Tilba being an 

ICOLL. As evidenced by Figure 6.1, closed ICOLL phases can significantly inundate the entire saltmarsh, 

which may act to reduce CO2 emissions from the marsh, but also drown vegetation if the inundation 

continues longer than several months, reducing sequestration capacity in the short-term (Naidoo and 

Kift, 2006; Saintilan, 2009; Livesley and Andrusiak, 2012). During open ICOLL phases, the saltmarsh 

will be subject to impacts of SLR. With inundation increasing in depth and duration, it is likely that the 

more salt-tolerant Sarcocornia community, dominated by S. quinqueflora, will slowly increase its 

range over the Juncus community, dominated by the less salt-tolerant J. kraussii. Results from Lake 

Tilba suggest that this occurrence will overall decrease the sequestration capacity of the saltmarsh.  

Unfortunately, additional water logger data were not able to be retrieved from the deployed 

instruments due to travel restrictions imposed by the NSW Government in response to the June 

Coronavirus outbreak. As a consequence, water level data is not available for the same period as the 

flux data analysed in this project, hence no relationships or conclusions can reliably be made for an 

effect of inundation on CO2 fluxes. 

Day-night cycles of respiration also account for variation in CO2 fluxes in the Tilba Saltmarsh. While 

the daytime fluxes of both measured vegetation communities are significantly different to one 

another, they also differ from their respective night-time fluxes. In both communities, night-time 

fluxes do not, on average, exceed the magnitude of their daytime flux. The night-time fluxes presented 

in Table 6.2 could be considered the base respiration rates of each community, and the daytime fluxes 

the net production of each community. This idea further agrees with the data presented in Table 7.1, 

in that the Juncus community has a higher capacity for carbon sequestration than the Sarcocornia 

community. 



53 
 

With respect to CH4 emissions, while direct measurement did not happen as a part of this research 

project, it may be possible to infer whether methanogenesis is occurring, and where on the saltmarsh 

CH4 emissions may arise. As higher salinities can significantly reduce CH4 emissions, the mudflat and 

Sarcocornia community may have lower, or even no, CH4 emissions due to their high salinities, 

particularly from samples collected in February 2021 (Figure 6.8a) (Livesley and Andrusiak, 2012). The 

remainder of the saltmarsh may have mixed CH4 fluxes, as Australian Melaleuca forests have been 

found to be moderate CH4 sinks (Livesley and Andrusiak, 2012). Future monitoring of CH4 at this site 

would be beneficial, as the monitoring of CO2 alone may not be sufficient to determine if a wetland is 

an overall sink or source of greenhouse gases. 

 Trends in Environmental Parameters 

The distribution of vegetation within the Tilba Lake wetland matches that of other coastal wetlands 

along the NSW coastline, however with a lack of mangroves. The absence of mangroves within the 

study site could be due to the nature of the lake being intermittently closed to the ocean, with 

extended periods of inundation not being conducive to mangrove propagation, or drowning any 

mangroves that may successfully colonise the area (Saintilan, 2009). S. quinqueflora biomass values 

from Lake Tilba match biomass data obtained by Clarke and Jacoby (1994) (Table 7.2). Similarly, J. 

kraussii biomass data was also consistent with values obtained by Clarke and Jacoby (1994). 

Additionally, the P. australis community was constrained within a lower salinity part of the wetland, 

which is typical to the species as described by Saintilan, (2009).  

Table 7.2: Biomass data for the Sarcocornia and Juncus communities, comparing values obtained from Lake Tilba with those 
obtained by Clarke and Jacoby (1994). All values are in g m2. N/R = not reported. 

 

 

 

 

 

 

 

On both sampling occasions, the soil salinity showed a decrease away from the tidal channel, 

however the salinities were lower on the second occasion, but the Juncus soil salinity did not fall 

enough for there to be a statistically significant difference. Three scenarios exist as to why this may 

 
Min Max Mean 

Sarcocornia (Tilba) 370 540 0.48 

Juncus (Tilba) 90 2080 1.4 

Sarcocornia (Clarke 

and Jacoby, 1994) 
52 1184 317 

Juncus (Clarke and 

Jacoby, 1994) 
96 4400 N/R 
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be the case. Firstly, as mentioned in section 6.2.3, this drop in salinity throughout the sea-ward end 

of the transect may be due to a larger amount of time having passed since Lake Tilba reopened to the 

open ocean, allowing salinity to return to a state that is less representative of constant inundation by 

concentrated saline water.  owever, a return to a ‘base-line’ salinity is not represented in conductivity 

from the water loggers (Appendix Figure 10.7). Alternatively, this drop in salinity could be due to three 

large rainfall events that occurred between the two sampling trips, acting to flush salts out of the soil 

and freshen them. Again, this is not fully represented in the groundwater conductivity data. While 

there is a drop in conductivity, namely in the Sarcocornia community, this is sustained and not just 

around the same time as the rainfall events (Appendix Figure 10.2 and 10.3 for rainfall, 10.7 for 

conductivity). Thirdly, conductivity and groundwater salinity data from the Sarcocornia and Juncus 

water suggests that the groundwater salinity is not changing between the two sampling periods, 

indicating that there may not be a return to open-phase salinity conditions. Instead, water level data 

suggests that when the Lake is closed, both communities exhibit the same level of inundation, but 

when the Lake is open, the Juncus community groundwater maintains a consistent depth 10 – 30 

centimetres higher than that of the Sarcocornia despite being at a higher elevation (Figure 6.1 and 

6.2). A higher groundwater level, and the lower soil and groundwater salinity and logger conductivity 

indicates that there may be a fresh-to-brackish water lens located underneath the Juncus community. 

The presence of this fresher lens would provide an explanatory factor for why we find the Juncus 

community in the location where it is, as it is generally a low salt-tolerant species (Naidoo and Kift, 

2006). Although, this does present further implications for SLR, as continued saltwater intrusion may 

completely intrude over this fresher-water lens, or drastically decrease its size. Removal or reduction 

of the Juncus community’s buffer from the saline water would potentially lead to a mass die-back in 

the community, with flow-on effects to greatly reduce the sequestration capacity of the entire 

saltmarsh. Additional groundwater sampling of the Lake Tilba saltmarsh may be beneficial to better 

determine the extent of this lens, as it may also reach to the Phragmites and Melaleuca communities, 

which also had a low soil salinity. No logger data is yet available to confirm this hypothesis. 

Soil carbon density shows opposing trends between the two sampling dates. In the samples 

obtained from February 2021, there is an increase in soil carbon density away from origin of tidal 

influence, with a peak in the Juncus community, and then off the transect in the Phragmites 

community – two heavier biomass zones. Despite vegetation communities with a higher biomass 

having the potential to contribute more carbon to the soil, it is likely that this is not the primary driver 

of carbon density differences (Kelleway et al., 2016a). OM percentage shows a similar trend in the 

February samples, however the peak now sits in the Melaleuca community. While it cannot yet be 

inferred from water logger data, the Melaleuca community may be less frequently inundated by tidal 
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waters due to its elevation within the tidal frame (~1.52 m AHD). Less frequent inundation would likely 

leave more OM on the wetland surface as it is not transported away by tidal flows (Saintilan et al., 

2013). In May samples, carbon densities are greater at the sea-ward end of the transect, while OM 

percentages are greater towards the land-ward end. In both parameters, the Sarcocornia and Juncus 

community means are significantly different to one another, but the Juncus community means do not 

show a significant change between sampling events. 

There appears to be a negative relationship in February between carbon density and soil salinity. 

Yet in the May samples, both soil salinity and carbon density decrease along the length of the transect. 

As for carbon density, soil salinity values in the Juncus community were not significantly different 

between sampling events, indicating there may be a link between the consistently low soil salinity and 

consistent incorporation of carbon into the soil. This is consistent with results obtained by Kelleway 

et al., (2016a), where there is more carbon in fluvial settings than in more marine settings. This is also 

seen in the data from the Melaleuca and Phragmites communities, which have the highest carbon 

densities, but much lower salinities than the tidal end of the saltmarsh. No analysis of grain size was 

carried out as a part of this research, hence no relationship can be drawn in this regard, as was done 

by Kelleway et al., (2016a).  

Soil bulk density (BD) does suggest a potential mixed effect on carbon density. A lower BD may be 

indicative that the carbon stored in a soil will be lower than in a soil with a higher bulk density, due to 

the open pore spaces and higher surface area that it offers. It could also be indicative of a higher 

carbon density, as a high percent of OM would take up more volume and contribute to a lower bulk 

density (Kelleway et al., 2016a; Morris et al., 2016).  

In the soil samples obtained during February, the lowest BDs also have the highest OM percentages 

and are among the higher values for carbon density. These values are summarised in Table 7.3 below. 

Alternatively, in the May samples, the lowest BDs are again associated with the highest OM 

percentages, yet this time the lowest organic carbon densities (Table 7.3). Data do not suggest that a 

higher BD has more potential to preserve carbon. Instead, data are suggestive of OM percentage 

driving the density of carbon within the soil. 
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Table 7.3: Summary table showing the Bulk Density (BD), Organic Matter (OM) percentage, and Carbon (C) density values 
for the vegetation communities in February and May. 

  BD (g cm3) OM (%) C Density (g C cm3) 

February 

Sarcocornia N/R N/R N/R 

Juncus 0.71 ± 0.02 16.67 ± 0.63 0.0664 ± 0.001 

Melaleuca 0.41 ± 0.09 34.20 ± 6.78 0.0562 ± 0.003 

Phragmites 0.46 ± 0.08 32.36 ± 5.61 0.0637 ± 0.003 

May 

Sarcocornia 1.06 ± 0.03 10.20 ± 0.33 0.115 ± 0.007 

Juncus 0.53 ± 0.09 22.96 ± 5.51 0.056 ± 0.011 

Melaleuca 0.27 ± 0.03 43.52 ± 5.28 0.035 ± 0.007 

Phragmites 0.32 ± 0.06 30.22 ± 3.42 0.033 ± 0.002 

 

 Site-Wide Estimates of Carbon 

 A tier one estimate of soil carbon, per the IPCC guidelines outlined by Howard et al., (2014), of 

carbon stored within the Lake Tilba study site would be the area, 6.9 ha, multiplied by the average for 

salt marshes, 255 Mg ha-1, resulting in an estimate of 1773 Mg of carbon. This estimation, however, 

does not factor in varying vegetation types, ground cover, or hydraulic regimes, and as such the true 

value would be expected to differ greatly. Using site-specific data collection, as done as part of this 

research project, it would be possible to obtain a value that is more likely to represent the actual 

situation of the Lake Tilba salt marsh, at least within the uppermost surface layer of the soil. However, 

the soil sampling carried out as a part of this project only sampled the uppermost 5 cm of soil, due to 

the shallow sampling depth, results and differences in carbon stocks should only be used to compare 

differences between marsh zones, not to determine the total carbon pool as this would require much 

deeper soil sampling and coring (Macreadie, Hughes and Kimbro, 2013). Therefore, no estimate of the 

site-wide carbon is made based on the measurements made here. 

 Limitations and Importance of Research 

As mentioned previously, the majority of limitations of this research project arise from not being 

able to collect additional samples and downloads of data. This is due to the recent lockdown and travel 

restrictions implemented by the NSW Government in response to the June Coronavirus outbreak. The 

lack of this data meant that the eddy co-variance data was limited to 42 days, which does not allow 

for a high temporal resolution to detect both long-term and seasonal trends in GHG emissions. 

Additionally, part of the original aims of this project was to sample the environmental variables on 

more than just the two occasions, which may also have allowed for the detection of seasonal changes 

in variables like soil salinity, biomass and soil carbon. Having access to long-term inundation and 
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conductivity data from the water loggers would also have allowed for a more in-depth understanding 

of how inundation and salinity affected CO2 fluxes from the wetland surface. While the data available 

as a part of this research project may have been limited, it still provides a starting point into 

determining how environmental variables interact with one another in the saltmarsh interface, and 

work to either inhibit or facilitate CO2 emission and sequestration. Another limitation exists in the 

calculation of the NEE for the saltmarsh. The value presented in Table 7.1 is likely not a true 

representation as lateral import and export of carbon both from tidal flows and groundwater transfer 

have not been taken into consideration during this project, nor is it representative of seasonal trends. 

 The importance  of this project rests in developing an understanding of the relationships between 

environmental variables such as tidal dynamics, salinity, vegetation characteristics and soil carbon 

stocks and the effect they have on greenhouse gas emissions. This is an important starting point for 

factoring saltmarsh and other coastal wetland ecosystems into blue carbon accounting frameworks 

and coastal management initiatives. Furthermore, this understanding can facilitate more efficient 

strategies to conserve and restore coastal wetlands to protect biodiversity, coastal communities and 

mitigate anthropogenic emissions exacerbating global warming.  
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8. Conclusion 

Measurement of CO2 fluxes from the two vegetation communities in the Lake Tilba saltmarsh 

revealed that there was a significant difference in the between the fluxes of the two communities. 

The community dominated by J. kraussii had a more negative flux, both when comparing the daily 

averaged half-hour flux, and that daily average daytime half-hourly flux. Additionally, this community 

had higher biomass, and an overall higher sequestration capacity. Biomass productivity may be the 

primary driver of the difference in fluxes between the two vegetation communities. Additionally, soil 

and groundwater salinity data indicate that a freshwater lens occurring beneath the Juncus 

community may be controlling the vegetative productivity and subsequent sequestration capacity of 

the Juncus community. This lens may also be contributing to reduced salinities seen in the Melaleuca 

and Phragmites communities and allowing for higher carbon densities to arise. Trends also arose in 

bulk density, with a decrease towards to land-ward end of the established transect. Organic matter 

proportion may be an explaining variable for bulk density; however, more analysis of this relationship 

in necessary before this conclusion can be properly drawn. 

While the Lake Tilba saltmarsh is small in comparison to other NSW South Coast sites, it can still 

provide a starting point for assessing how CO2 fluxes can vary between vegetation communities, what 

driving variables may be responsible for these differences and how NSW estuaries may respond to the 

challenges of sea-level rise. It is recommended then, that more monitoring and sampling of the site is 

carried out, to develop a more complete idea of the interactions occurring here over longer temporal 

scales, and how findings may be applied to areas outside of the Lake Tilba saltmarsh. Furthermore, 

the addition of CH4 sensors would allow an idea to be formed at how the saltmarsh is acting as either 

a sink or source for greenhouse gasses overall. 
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Figure 10.9.1:Water logger data from the tidal channel logger. Water level and daily rainfall data from Narooma are plotted 
together against time. Water level has been adjusted to show level relative to Australian Height Datum (AHD). 
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Figure 10.2:Water logger data from the Sarcocornia community. Water level and daily rainfall data from Narooma are 
plotted together against time. Water level has been adjusted to show level relative to Australian Height Datum (AHD). 



65 
 

  

  

0

10

20

30

40

50

60

70

80

90

100

0

0.5

1

1.5

2

2.5 A

v

e

r

a

g

e

d

 

a

i

l

y

R

a

i

n

f

a

l

l

(

m

m)

 

a

t

e

r

 

e

v

e

l

(

m)

 ate Time

Juncus  ogger  ater  epth
Rainfall  ater  evel

Figure 10.3: Water logger data from the Juncus community. Water level and daily rainfall data from Narooma are plotted 
together against time. Water level has been adjusted to show level relative to Australian Height Datum (AHD). 

b) a) 

Figure 10.4:Soil pH for each vegetation community for a) February, and b) May. Values are averages and the error bars represent ± standard 
error. 
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Figure 10.6:Community groundwater pH results from all four standpipes for May. Data points are averages of three replicates per 
sampling treatment. Error bars represent standard error. 

Figure 10.5:Juncus and Sarcocornia community groundwater pH results from the February. Data points are averages of three replicates 
per sampling treatment. Error bars represent standard error 
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Table 10.1:Replicate data for each biomass sample conducted across the Lake Tilba Saltmarsh 

 

  

Replicate # Species Total 
Wet 

Weight 
(g) 

Total 
Dry 

Weight 
(g) 

MC% BM% kg 
dry/m2 

%Veg 
dry by 
Weight 

Sarcocornia 1 Sarcocornia quinqueflora 682.77 133.76 80.4 19.6 0.54 100 

Sarcocornia 2 Sarcocornia quinqueflora 438.14 91.43 79.1 20.9 0.37 100 

Sarcocornia 3 Sarcocornia quinqueflora 689.25 134.59 80.5 19.5 0.54 100      
Mean 0.48 

 

Juncus 1 Juncus kraussii 1141.91 417.17 63.5 36.5 1.67 80.3  
Sarcocornia quinqueflora 510.92 64.02 87.5 12.5 0.26 12.3  
Paspaylum distichum 94.3 31.04 67.1 32.9 0.12 6.0  
Samolus repens 48.83 7.12 85.4 14.6 0.03 1.4  
TOTAL 1795.96 519.35 71.1 28.9 2.08 

 

Juncus 2 Juncus kraussii 69.33 23.51 66.1 33.9 0.09 10.5  
Sarcocornia quinqueflora 1366.13 198.68 85.5 14.5 0.79 88.4  
Paspaylum distichum 0 0 0.0 0.0 0.00 0.0  
Samolus repens 7.86 1.37 82.6 17.4 0.01 0.6  
Trigloghin striatum 8.28 1.12 86.5 13.5 0.004 0.5  
TOTAL 1451.6 224.68 84.5 15.5 0.90 

 

Juncus 3 Juncus kraussii 214.77 76.45 64.4 35.6 0.31 31.6  
Sarcocornia quinqueflora 1060.07 165.42 84.4 15.6 0.66 68.4  
Samolus repens 0.95 0.14 85.5 14.5 0.001 0.1  
TOTAL 1275.79 242.01 81.0 19.0 0.97 

 

Phragmites 1 Phragmites australis 310.88 84.09 73.0 27.0 0.34 33.8  
Juncus kraussii 347.33 104.12 70.0 30.0 0.42 41.8  
Sarcocornia quinqueflora 319.74 51.66 83.8 16.2 0.21 20.7  
Samolus repens 52.94 9.26 82.5 17.5 0.04 3.7  
TOTAL 1030.89 249.13 75.8 24.2 1.00 

 

Phragmites 2 Phragmites australis 766.14 166.05 78.3 21.7 0.66 73.3  
Juncus kraussii 37.94 6.70 82.3 17.7 0.03 3.0  
Sarcocornia quinqueflora 11.71 1.70 85.5 14.5 0.01 0.8  
Samolus repens 418.45 52.05 87.6 12.4 0.21 23.0  
TOTAL 1234.24 226.50 81.6 18.4 0.91 

 

Phragmites 3 Phragmites australis 761.35 229.02 69.9 30.1 0.92 86.4  
Juncus kraussii 125.16 33.40 73.3 26.7 0.13 12.6  
Sarcocornia quinqueflora 2.80 0.35 87.5 12.5 0.00 0.1  
Samolus repens 11.92 2.25 81.1 18.9 0.01 0.8  
TOTAL 901.23 265.02 70.6 29.4 1.06 
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Figure 10.7: Conductivity data from the Sarcocornia and Juncus community's water loggers. Data has been removed for the 
period of time when loggers were taken from the standpipes so as to not show the effects of disturbance 
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