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Abstract 

The 21st century shift towards economic rationalism has included a trend towards measuring the outcomes 

of education and, equipped with these data, placing a higher priority on accountability in all sectors of the 

educational community. Corresponding to this shift, policy makers and government officials continue to 

demand better quality information on which to make data-informed decisions and allocate resources. To 

measure educational outcomes, for instance, stakeholders routinely look to national and international large-

scale testing programs for indicators of success in achieving national goals and to identify areas for systemic 

attention. 

A majority of these large-scale assessments use multiple-choice item types to assess student ability for the 

reporting of the outcomes of student achievement against curriculums and national or international 

standards. Students are encouraged to attempt all questions in these assessments. By doing so it is likely 

that students will guess the answers to those items where the concepts assessed are beyond their capabilities 

and be rewarded with an incremental increase in their results. This has the potential to threaten the validity 

of students’ overall results, due to the chance of correctly guessed responses inflating assessment results 

beyond students’ actual ability levels.  

 

This PhD research investigated the potential impact of – and proposed a statistical solution for – guessing 

in large-scale education assessments. Specifically, it examined the outcomes from a novel application of 

the Rasch analysis technique, which quantified and adjusted for the measurement error associated with 

guessing and, consequently, increased the validity of the outcomes of the assessments.  

The initial study to evaluate this potential extension and application of the Rasch model developed 

simulated data with specific responses defined as guesses. These data were used to develop a protocol that 

investigated item parameters that consistently identified the defined guesses. These parameters were termed 

the Guessing Indication Protocol (GIP). Next, GIP was applied to a small-scale field study and several sets 

of existing large-scale assessment data to ascertain the efficacy of the procedure. Application of GIP with 

the large-scale data revealed considerable changes in student ability estimates in the upper and lower 

regions of achievement, compared to the Rasch calibrations that did not attempt to take account of guessing 

in the data. Without GIP, there was a consistent trend for higher-ability students to have their ability 

underestimated and the lower-ability students to have their ability overestimated. The recalibration of item 

estimates with the GIP-conditioned data provided improved fit of the data to the Rasch model and caused 

significant changes in the student ability estimates, scaled scores, and achievement levels relative to initial 

estimates that ignored guessing. The implementation of the GIP process caused a significant proportion of 

students to have their assigned achievement level reclassified.  

These findings suggest that the GIP procedure should be considered as a process for generating results from 

large-scale assessments, in which multiple-choice items are analysed using the Rasch Model, to improve 

the accuracy, and integrity of student results and the validity of actions and decisions based on the data. 
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Reader’s Guide 

Ability estimate: The location of students on the variable of interest inferred by the observations on a 

collection of data. 
Calibration: The procedure of estimating item difficulty and/or student ability by converting raw scores 

to logit values on a measurement scale. 
Construct: A single latent trait, characteristics, attribute or dimension assumed to be underpinning a set 

of items. 
Deterministic: Characteristic of a model that implies the exact prediction of an outcome. 
Dichotomous: Dichotomous data have only two possible outcomes: correct (1) or incorrect (0). 

Estimation: The Rasch process of using obtained raw scores to calculate the probable values of student 

parameters and item parameters. 

Fit: The degree of match between the pattern of observed responses and the expectation of the model. 

Fit Statistics: Indices that estimate the extent to which responses adhere to the expectations of the model. 

Item Difficulty: An estimate of an item’s underlying difficulty calculated from the total number of 

successful responses to the item. Item difficulty is expressed in logits (also known as location or delta). 

Item Facility: Observed number of correct responses compared to the number of attempted responses. 

Facility is expressed as a percentage.  

Latent Trait: A characteristic or attribute of a student that can be inferred from the observation of the 

student’s behaviours. 

Logit: The unit of measurement that results when the Rasch model is used to transform raw scores 

obtained from the original student responses to log odds ratios on an interval scale. 

Missing data: An item that the student does not answer or is omitted as a result of not reaching the item 

in the test sequence or an item omitted by some process. 

Residual: A value that represents the difference between the Rasch model’s theoretical expectation and 

the actual observed result. 

Standard Error of Measure (SEm): A measure of how much measured test scores are spread around a 

“true” score. 

Student ability: An estimate of a student’s underlying capability on a trait as measured by the 

performance on a set of items that measure the trait. 

Targeted: The extent to which items on the test match the range of students’ abilities on the trait being 

measured. 

Unidimensionality: A single attribute being tested that represents a hierarchical continuum. 

Variable: An attribute of the trait of interest that can be assigned a variety of magnitudes. A variable will 

reflect the estimate of student ability in the latent trait examined by the construct. 
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Chapter 1  

Background to the Study 

1.1 Introduction 

Since the 1980s there has been an increasing use of analysis methods grounded in modern measurement 

models to quantify and report student educational performance. In Australia, the analyses of student 

performance and the estimations of student ability in the major learning domains have used Rasch (1960, 

1980) measurement models and their extensions (Andrich et al., 2010; Wright & Masters, 1982; Wu et al., 

1998). Nationally, the aggregated outcomes of large-scale testing programs provide a baseline for 

measuring the achievement of educational outcomes. Internationally, assessments provide information 

regarding Australia’s educational standards compared to its overseas counterparts. The information derived 

from these national and international assessments drive Australian federal-, state-, and territory-specific 

policy decisions and the distribution of resources under the banner of “data-driven decision making”.  

The guiding principles of the goals of the national education agenda in Australia were promulgated by the 

Ministerial Council for Education, Employment, Training and Youth Affairs (MCEETYA) through the 

Adelaide Declaration on National Goals for Schooling in the Twenty-First Century (1999), which included 

the aspiration of: 

increasing public confidence in school education through explicit and defensible standards 

that guide improvement in students’ levels of educational achievement and through which 

the effectiveness, efficiency and equity of schooling can be measured and evaluated (p. 2). 

These goals have been reinforced by the Melbourne Declaration on Educational Goals for Young 

Australians (2008), which highlighted the need for “reliable, rich data on the performance of their students 

because they have the primary accountability for improving student outcomes” (p. 16). A significant 

outcome of the Melbourne Declaration was the introduction of the National Assessment Program – Literacy 

and Numeracy (NAPLAN), which has provided a vehicle for the measurement and estimation of student 

ability in Numeracy and Literacy at Years 3, 5, 7 and 9. Within this program a national taskforce, with 

representation from all jurisdictions, undertakes statistical monitoring processes to provide data on the 

overall “health” of the national educational system and enable state and territory performances to be 

compared.  

In 2010, the Australian Curriculum, Assessment and Reporting Authority (ACARA) was established to 

coordinate these national curriculum, assessment and reporting activities and provide annual feedback on 

the extent to which the state and territory jurisdictions have achieved the national goals articulated in the 

Declarations, as measured through the standardised testing and census-collection activities. As evidence of 

this focus on educational data enduring, the Alice Springs (Mparntwe) Education Declaration of 2020 has 

reinforced a commitment to high-quality assessment, with the declaration stating that the Commonwealth 

continues to “commit to ensuring that all education sectors deliver world-class curriculum and assessment 

in Australian schools” (p. 15).  
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A direct impact of these declarations in the national educational environment is that governments now 

require measures that indicate the impact of educational initiatives on learning outcomes. These initiatives 

include better articulation of what students “know, understand and can do” at various stages of their 

educational journey; quantifiable estimates of how systems are improving educational outcomes as a 

consequence of programs, initiatives and interventions; and a system of national and international 

“benchmarks” to empirically support the argument that Australia’s educational outcomes are comparable, 

or ideally better than, other countries around the world. 

In practice, a pragmatic outcome of the declarations has been the increasing pervasiveness of the nationally 

implemented standardised educational assessments. All states and territories are now required to participate 

in cyclical implementations of the cohort-wide National Assessment Program (NAP) suite of assessments, 

as well as in international population sample programs, including the OECD assessment PISA (15-year-old 

students), the IEA’s PIRLS (Year 4), and TIMSS (at Years 4 and 8). 

At state level the information from national and international assessments is used to monitor the progress 

of groups, regions, schools, and students over time. At the school level, national assessments provide an 

indicator for monitoring the impact of school-based interventions and improvement programs and an 

external reporting mechanism to stakeholders. 

1.1.1 Educational Environment – Curricula Structures and Assessment Constructs 

ACARA developed national curriculum documents that define the sequence of a student’s progress in terms 

of desired outcomes. The curriculum documents define (with flexibility to accommodate local situations 

and environments across Australia) content, skills, understandings, and standards in terms of the expected 

outcomes that should be demonstrated by students at different stages of their educational journey. These 

curriculum documents, and accompanying guidance and examples, provide foci for item writers involved 

in large-scale assessment programs to develop items and prepare tests to assess students’ performance. 

Professional item writers and test constructors engage with curriculum documents to produce a range of 

items that accord with the desired range of observable behaviours that may be expected from the target 

cohort of students. These processes mitigate threats to the validity of the test instruments (Messick, 1989b).  

However, the legislative requirements that govern national testing programs have imposed several 

unintended constraints on item writers. For example, the interaction of legislative requirements, budgetary 

constraints, and the timeline demands for providing results to stakeholders have led to multiple-choice items 

being the dominant item type in large-scale testing programs. This is due to the relative ease and low 

marginal cost of scoring multiple-choice items through electronic data-capture and scanning processes. The 

high accuracy of data-capture processes contributes to the validity of the scoring. However, since the 

inception of multiple-choice items there has been contention over the validity of the students’ responses to 

them due to the chance of students obtaining inflated scores through random guessing. 
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At present both the NAPLAN suite of assessments and the international assessments referenced above rely 

heavily on multiple-choice items to assess student achievement against defined assessment frameworks. 

The advantages of multiple-choice items are well documented and include allowing a wide range of 

curriculum coverage; objective scoring; permitting a variety of cognitive domains and relative content item 

difficulties; allowing for a range of formats and stimuli; the potential for distractor analysis to inform 

misconceptions or misunderstandings; quick turnaround time for feedback; and the capacity for items to be 

auto-scored. A commonly cited disadvantage of multiple-choice items is the potential for students to guess 

a correct answer with no effort or knowledge of the skill underpinning the item. The dependence on 

multiple-choice items introduces a potential for uncontrolled guessing that threatens the accuracy and 

validity of the data derived from these assessments. Hence, given the dominance of multiple-choice items 

in such assessments, it is imperative that the data extracted from these items, along with the information 

provided to and the consequent data-driven decisions of all stakeholders, be grounded in accurate, reliable, 

and non-biased results. The extent to which guessing threatens the intended use of these data is the topic of 

interest in this study.  

1.2 Issues Threatening Validity in Multiple-Choice Items 

Moss et al. (2006, p.206) comment on the use of assessments in relation to “the soundness of those 

interpretations, decisions, or actions” taken in response to the information provided by different sources, 

and constrained administrative and data availability. In particular, they contend “educational assessment 

should be able to support professionals in developing interpretations, decisions and actions that enhance 

students’ learning. Validity refers to the soundness of those interpretations, decisions and actions” (p. 109).  

An imperative of effective data-driven decision making is the availability of high-quality, valid information. 

The concept of validity in assessment has been researched over several decades. There is general agreement 

that validity can be defined as “how well a test measures what it is purported to measure” (Brown, 1996, 

p.231). Researchers (e.g., Embretson, 1983; Lord, 1964; Messick, 1989b) have identified multiple 

characteristics that support the concept of validity, not only in terms of the instruments assessing particular 

traits, but in the manner in which the information is used following the implementation and reporting of the 

assessment. According to Messick (1989), a source of bias that may impact validity is uncontrolled guessing 

in multiple choice items, which may influence construct and content validity by introducing uncertainty 

into the achievements reported. Uncertainty is also relevant to this study with respect to the concept of 

“consequential validity”, which relates to “the appraisal of both potential and actual social consequences 

of applied testing” (p. 20). 

The validity of test data and the use of student results is an imperative for effective decision making. Central 

to this study is the identification and management of guessing in multiple-choice items to reduce the 

instances of actions based on a potentially flawed sets of results. 
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1.3 The Development of Assessment Models and the Evolution of 

Educational Measurement 

The next section introduces Test Theory and the analysis techniques that have been derived from those 

theories. In relation to educational measurement, test theory defines the test construct, the analysis model 

and the range of outcomes that can be obtained from a test grounded in a theory. Test theories that guide 

the current Australian national and international assessment context will be discussed in detail in the body 

of this thesis. 

1.3.1 Classical Test Theory (CTT) 

Modern test analysis procedures have evolved from statistical procedures termed Classical (or Traditional) 

Test Theory (CTT). Initially dating back to the early 1900s, this theory stems from the subsequent work of 

Thurstone (1929, 1959), Fisher (1935), Cronbach (1951), and Guttman (1944, 1950). CTT concentrates on 

the features of the test: student performance is reported in terms of raw scores, and these are used to produce 

mean scores for categories (e.g., male and female), classes, schools, and jurisdictions, along with their 

respective standard deviations as indicators of student achievement. 

CTT is constrained by the fact that each test is unique and the parameters that report performance on, or 

about, the test are unique to that test. Lord (1953) observed that in this model, student test scores and true 

scores are not synonymous with student ability. That is, ability scores are test independent, whereas 

observed scores and true scores are test dependent. Hence the measurement of student ability can be 

obfuscated by specific test interactions. 

Traditionally under CTT models, student performance is reported in terms of raw scores, possibly with a 

standard error in the metric of the test. A test containing items with a high level of difficulty will generally 

result in a relatively lower score than would have been obtained if the items were easier. However, the 

underlying student ability in the trait1 remains constant within a defined period. Parameters reported for test 

items include item difficulty, expressed as percent-correct or facility, and/or point bi-serial correlations, 

and the reliability of the test overall is reported using Cronbach’s alpha (α) (Cronbach, 1951). 

It should be noted that many international testing models are firmly rooted in CTT, with established norms 

and benchmarks for longitudinal comparisons (Goldstein, 2011). Such models are test specific; that is, if 

any of the test items are changed then the scores are no longer directly comparable. In CTT, test results are 

easily computed, explained, and readily understood by the broad community, but comparisons over time 

are not as well understood and explained. Modern Test Theory (MTT) (Kline, 2005) practices have been 

developed to address these perceived shortcomings in CTT. 

  

 
1 A trait is quality or characteristic that distinguishes a person. In the educational context this relates to the 

amount or quality of information or ability a person possesses in relation to a particular skill. 
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The confounding issue regarding public perceptions about the comparability of the nominally “same” test 

(e.g., NAPLAN) over time is that adjacent tests are expected to have the same overall level of difficulty 

when in fact they do not. In the Australian context, where it is considered important to provide feedback to 

teachers and students about performance on the test, new tests are constructed each year. Yet to assess 

student outcomes, and the results from year to year, the tests must be comparable. To achieve this, 

Australian jurisdictions have indicated that they want different tests of the same “construct” to be used to 

allow for comparison of results. This is very difficult to achieve with CTT, and so a modern measurement 

theory, Rasch Measurement Theory, is preferred because it transforms the performances of students on a 

particular test from a raw score to an ability estimate on a latent trait scale that is independent of time and/or 

specific test instruments used to assess the trait (Lord, 1952, 1953). 

Hambleton et al. (1977) describe a latent trait in relation to testing situations: 

Examinee performance on a test can be predicted (or explained) by defining characteristics 

of the examinees, referred to as traits, estimating scores for examinees on these traits, and 

using the scores to predict of explain test performance (Lord and Novick, 1968). Since the 

traits are not directly measurable and therefore ‘unobservable’ they are often referred to as 

latent traits or abilities (p.75). 

1.3.2 Modern Test Theory and the Concept of an Educational Scale of Proficiency 

Rasch Measurement Theory (RMT) is commonly included in the family of models described as Modern 

Test Theory (MTT). It is a psychometrically based measurement model that defines the performance of 

items and students in terms of a scale that defines a latent trait (e.g., Reading as a developmental construct 

over time, or Number as a subdomain of a Numeracy construct that includes learning in Algebra, Geometry, 

Measurement, etc.). The term latent emphasises the concept that discrete item responses are assumed to be 

observable indicators of ability that contribute to the estimation of traits. The trait being assessed is defined 

as a variable or scale that is the object of the testing program, wherein items are constructed specifically to 

provide evidence of mastery of skills and concepts that contribute to the scale.  

RMT is underpinned by a relatively simple concept: the probability that a student will respond correctly to 

an item is a function of the ability of the students compared to the difficulty of the item. If the ability of the 

student exceeds the relative difficulty of the item, there is a greater than 50% probability that the student 

will answer the item correctly. As the positive difference between student ability and item difficulty 

increases so does the probability of a correct response. A negative difference between ability and item 

difficulty predicts a less than 50% probability of a correct response. The only variables that contribute to 

the student’s success in a response is ability and item difficulty. There is no consideration of a guessed 

correct answer, for which ability is irrelevant. 

A representation of the NAPLAN Reading scale, which is derived using the Rasch measurement model, is 

shown in Figure 1.1. Of note is that the scale is vertical in order to cover multiple cohorts within a calendar 

year, and longitudinal to allow comparisons over time. Figure 1.1 shows the distributions of ability 

estimates in NAPLAN Reading scores as students’ ages increase.   
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Reference to the NAPLAN scale been included at this stage of the study due to its relevance to the 

Australian educational environment and to demonstrate the observed overlap between distributions of 

abilities in adjacent grades, and in particular a “contraction” of the spread of “achievement” reported in 

each successive cohort, with a reduction in the median “growth” between successive assessed cohorts. The 

distributions represented in Figure 1.1 have been generated using Rasch measurement techniques, which 

do not account for guessing in the analysis. The focus of this research is the degree to which the plateauing 

and contraction of reported ability may be a function of the reduced calibration of item difficulty due to 

guessing, which is not controlled for in the analysis applied. 

Figure 1.1 

Evidence of Achievement in Australian Schools – NAPLAN  

 

Source (Gonski, 2018, p. 29) 

In the NAP suite of assessments, the presence of correct guesses in student responses has been largely 

ignored by contemporary analysis techniques. A likely outcome of continuing with the current analysis 

practices will be to negate the ability of the assessments to fully represent the distributions of student 

achievements and thus reduce the capacity of new assessment strategies to recognise improvements in 

student achievement, as intended by the national agenda. 
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It is appreciated that in recent iterations of the NAPLAN assessments an adaptive model has been developed 

that takes account of student success to assigned items more appropriate to the observed success in common 

items presented in the early stages of the test. This strategy may have the potential to reduce the impact of 

guessing which is discussed in more detail in Chapter 11. However other national (e.g., NAP_ICTL, 

NAP_SL, NAP_CC) and international assessments still administer non-adaptive assessment instruments 

(PISA and TIMSS with multiple linked forms) that utilize m/c as a dominant item type. 

1.4  The Problem: The Impact of Guessing in Multiple Choice Items  

Guessing (in particular random guessing) and its impact on individual student and cohort ability have been 

subjects of psychometric inquiry since the inception in the 1920s of multiple-choice items as a vehicle for 

“objective” assessment (Wilson & Engelhard, 2000, p. 744). They have been investigated in relation to test-

taking strategies (Crocker & Benson, 1976), correction for guessing (Diamond & Evans, 1973; Fray 1969, 

1980, 1988; Harper, 2003) and, to a lesser degree, Modern Test Theory (Hambleton, 1982; Andrich et al., 

2012, 2015). 

For the purpose of this research, a correct guess is a notion, judgement, or conclusion gathered from mere 

probability or imperfect information that is not associated with knowledge or ability in the trait of interest. 

In relation to using data generated from student assessments, a correct guess does not contribute to the 

measurement of the trait or the ability of the student as it will have been achieved by test-taking strategies 

unrelated to the student’s skill and/or knowledge of the trait of interest. Yet given the importance of the 

currently reported outcomes of national and international assessment, students are encouraged and 

rewarded by guessing in the absence of knowledge (Mehrens & Lehmann, 1973). Indeed, an unintended 

outcome of the raising of the stakes associated with national testing programs such as NAPLAN in the 

Australian context, is that students are being encouraged, and in some cases taught, to guess when they do 

not know the correct answer. This violates the requirements of not only measurement (Sadeghi, 2000), but 

also the measurement models (e.g., the Rasch Measurement Model) used to analyse the results of the 

NAPLAN tests, with consequent impact on the calibrations, estimation of ability, and reporting of student 

achievements. 

A correct guess thus contaminates the estimate of the difficulty of the item and, consequently and directly, 

the estimate of student ability. Higher-ability students can typically engage with the relatively easy 

questions in a test and will have a high probability of answering correctly. However, as the items become 

increasingly more difficult, fewer students will have the requisite skills and understandings to answer the 

questions correctly, and a greater proportion will resort to some form of elimination processes or, in the 

extreme, random guessing to maximise their scores.  

The systematic consequences of guessing on the analysis and reporting of achievement of a cohort, and of 

the individuals within it, cannot be uniformly adjusted. Lower-ability students will be advantaged by 

guessing, relative to their true score, and higher-ability students will be disadvantaged in relation to the 

estimate associated with their raw score. In addition, the consequent inflation of the estimation of the item 

difficulty will directly impact the subsequent estimation of student abilities across the whole cohort.  
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1.5 The Current Study 

The problem of guessing in multiple-choice items is neither new nor unique, although no universally 

accepted solution has been found for it. Multiple approaches have been adopted to identify and correct for 

guessing in Classical Test Theory (CTT) and in Rasch applications. The limitations of these approaches are 

addressed in detail in Chapter 3 in relation to the properties of measurement. The current study advocates 

for an alternative solution from a validity and misinformation perspective by including a review and a 

critical evaluation of the past and current mechanisms applied to large-scale data. 

A benefit of the Rasch Model is that it is a mathematical model that predicts the interaction between students 

of a given ability and items of a derived difficulty. Guessed responses are manifest by misfit to the predicted 

model. Leveraging the indicators of misfit, the current study has proposed and evaluated a possible way of 

indicating and accounting for guessing in students’ responses that is grounded in an analysis of the degree 

to which misfit identifies a guessed item. The viability of this solution was evaluated through a series of 

studies involving simulated and other data collected for the express purpose of this research, as well as 

through its application to an existing large-scale educational dataset.  

To improve the estimations of item difficulty and hence the fidelity of the measure of the trait, this study 

considered individual item–student interactions and associated parameters to identify and suppress 

individual interactions that exhibit a high probability of guessing. This differs from previous work in that 

rather than using current approaches of analysis of aggregated data, which do not consider the individual 

item/student interactions, it drew on the work of Guttman (1950), Waller (1989), Andrich et al. (2004, 2012, 

2015), and others to identify guessing by investigating individual student response patterns. 

This research has quantified the impact of guessing on the calibration of item difficulty and, as a 

consequence, student ability estimates. It has articulated and provided evidence in support of an indication 

procedure – the Guessing Indication Protocol (GIP) – that can account for guessing in multiple choice items 

analysed using the Rasch (1960,1980) measurement models that feature in the Australian context. The 

implementation of the revised model may mitigate the misinformation that is a consequence of uncontrolled 

guessing. In particular, it addresses that the degree to which the ability estimates of the more able students 

are underestimated and those of the less able students are overestimated. It is hoped that a consequence of 

the successful development of this algorithm to better account for guessing will be a higher quality of 

information provided to stakeholders and hence more appropriate data-driven policy decisions and resource 

allocation. 

1.6 Organisation of the Thesis 

Chapter 2 describes the theoretical underpinning of the mathematical models used to produce 

“measurement scales”. These scales provide the basis for reporting and generating the inferences upon 

which decisions are made at local and federal levels about student progress and the health of the Australian 

education system. It is the potential misinformation in these scales due to student guessing that is the subject 

of this research. Chapter 2 also reviews recent investigations and research into the issue of guessing with 

multiple-choice items. 
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Chapter 3 reviews the available analysis models that can be applied to the study of guessing and compares 

the strengths and weaknesses of each in relation to accommodating guessing. The chapter also elaborates 

the properties of the Rasch (1960) model, which is the focus of this study. 

Chapter 4 presents the rationale for the research methodology implemented in this study.  

Chapter 5 describes the application of the proposed algorithm to the simulated data and the GIP model that 

was thus developed. The chapter also reports on the procedures and analyses that were designed to refine 

the development of the GIP based on its application to multiple student-response distribution profiles.  

Chapter 6 describes the application of the proposed GIP to a sample of locally sourced small-scale field 

data. These convenience-sampled “live” data were used to test the efficiency of the GIP model. Students 

were required to indicate which items had been “guessed” as a component of their individual responses. 

The data were first analysed by ignoring the self-identified guessing in each response pattern, and then by 

taking account of guessing as indicated by the students. These data were intended to provide a platform to 

inform the efficiency of the GIP model developed from the simulations described in Chapter 5. 

Chapter 7 describes the application of the GIP on an existing set of data from a large-scale test and reports 

on the analyses conducted. The use of large-scale authentic data provided a platform to test the efficiency 

and efficacy of the GIP. The analyses report the degree of reclassification of achievements uncovered by 

accounting for guessing compared to the current practice that does not account for guessing.  

Chapter 8 introduces time as a possible variable in indicating or confirming guessed items in a student’s 

response pattern. The consideration of response time as a potential indicator of probable guessing emerged 

as a result of the analyses with the large-scale test data. “Item-time” has become an available variable due 

to the evolution of online testing and its consequent capacity to record student response times by item. 

These data were factored into the model to confirm its application to the large-scale sample, and to 

potentially provide a further parameter in any future revisions of the model. 

Chapter 9 discusses the findings of this research. It compares the outcomes achieved by the application of 

the GIP, highlighting the observed differences between those of the developed strategy and those that would 

otherwise be reported to stakeholders when probable guessing was not accounted for. It also comments on 

the degree to which improvement in student achievement estimates and test parameters might be assessed 

using the GIP. 

Chapters 10 and 11 consider the implications of the study’s findings with respect to the potential for 

correcting misrepresentation in assessments that do not take account of guessing in student response 

patterns. Chapter 10 is concerned with the degree to which student achievement might be reclassified when 

using the GIP procedure to account for guessing, and Chapter 11 notes further potential topics for research 

in the area.  The study contributes to the assessment literature through the investigation of the consequences 

of not accounting for guessing on the distribution of student ability estimates in a Rasch analysis 

environment.  
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Chapter 2  

Issues in Measuring Student Ability and Achievement 

2.1 Introduction 

Access to accurate and reliable data is a fundamental requirement of sound decision making. In the physical 

sciences, there are defined scales that provide vehicles for knowledge and comparison of factors that 

influence decisions in spheres of interest However, in the social sciences, particularly education, such scales 

do not exist a priori, and the measurement of knowledge, ability, and cognitive skills of humans is an 

ongoing and developing field. 

The purpose of this chapter is to articulate the principles and properties of measurement as they relate to 

the social sciences and how they were used to evaluate the various analytical and assessment procedures 

undertaken in this study. The chapter briefly traces the history of the methodologies developed to account 

for guessing in multiple-choice (MC) items and to evaluate issues implicit in these approaches that mitigate 

the properties required by “measurement”. It then elaborates on the measurement approaches based on the 

Rasch Model (RM) theory that have informed this study’s proposed approach to address guessing.  

2.2 Measurement and Scales 

Since ancient times, units of measure have allowed for commonly understood quantification of lengths or 

amounts of produce (https://www.britannica.com/science/measurement-system). According to Tal (2020), 

“Measurement is an integral part of modern science as well as of engineering, commerce, 

and daily life … Despite its ubiquity and importance, there is little consensus among 

philosophers as to how to define measurement, what sorts of things are measurable, or which 

conditions make measurement possible. Most (but not all) contemporary authors agree that 

measurement is an activity that involves interaction with a concrete system with the aim of 

representing aspects of that system in abstract terms (para. 1)”. 

This quotation highlights the importance of measurement, but not what it entails or requires. The Science 

Learning Hub of New Zealand defines measuring “the process of obtaining the magnitude of a quantity 

relative to an agreed standard. Measurement of any quantity involves comparison with some precisely 

defined unit value of the quantity” (Measurement Standards Laboratory of New Zealand, 2019). The term 

implies assigning some numeric value that is relevant to the variable of interest and has a defined and 

commonly agreed meaning. 

2.2.1 Measurement in the Physical Sciences 

In the physical sciences, a measurement is a collection of quantitative or numerical data that describes a 

property of an object or event by comparing a quantity with standards that have been established by the use 

of guidelines such as the International Bureau of Weights and Measures, the Metric System, and the more 

recent International System of Units (SI) determined at the 26th meeting of the General Conference on 

Weights and Measures in 2018.  
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Such units and scales can be defined by reference to some directly observable property, and they are 

commonly developed over time. For example, the metre was originally defined as one ten-millionth of the 

distance between the equator and the pole measured along a meridian. To make this tangible, the metre was 

construed as the distance between two lines on a platinum-iridium bar maintained under a controlled 

environment in the International Bureau of Weights and Measures in Paris. The most recent, more precise, 

definition of the metre is 1/299,792,458 of the distance travelled by light in a vacuum in one second. Scales 

are also used with other phenomena such as temperature, humidity, electrical currents, and luminosity, and 

their refinement over time has allowed for advances in science and technology.  

Measurement in the physical sciences is thus defined by the characteristics of scalability, standardisation, 

a common understanding, acceptability, consistency, invariance, reproducibility, independence of the 

physical object of interest, and stability over time. It is also notable that a measurement scale relates to a 

single attribute (e.g., metre to length) and that the instrument used to measure the variable of interest is 

independent of the defined variable. Hence temperature (variable) is measured by a thermometer 

(instrument). This independence is a fundamental requirement of measurement. Rasch (1966) argued that 

the comparison of any two objects should be independent of the instrument used. He described this property 

of measurement as “specific objectivity”. 

2.2.2 Measurement in the Social Sciences 

When considering the factors that contribute to the measurement of social phenomena, physical attributes 

such as age, height, hair colour, weight, income, marital status, home ownership, etc. can be counted or 

classified in a consistent manner. Some of these attributes may also contribute to other scales that measure 

social conditions such as socio-economic status (SES). However, where the attribute of interest is student 

ability in a trait, as in this study in the mathematics domain, its lack of tangibility precludes the presence of 

directly measurable characteristics and therefore of instruments to directly measure them. For instance, 

there are no commonly understood and recognised instruments that can measure student ability; measuring 

it is constrained by the same challenges that affect the measuring of social phenomena such as attitudes, 

values, beliefs, culture, and well-being.   

The principles of measurement in the social sciences should have the same requirements as in the physical 

sciences, but since it is not possible to physically measure attributes such as knowledge, understanding, or 

skills, it is necessary to collect artefacts and observe behaviours that demonstrate them. For example, 

surveys are used to generate data that inform the development of social scales. In educational attainment 

specifically, the instruments used include informal observations of student behaviour (e.g., conversations 

and observations); evaluating assignments and tasks; and formal assessments such as classroom and large-

scale standardised tests.  
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2.3 Measurement in Student Achievement Tests 

In the social sciences the prevailing measurement theories have evolved from psychology and 

psychometrics. They are grounded in the observation of cases and mathematical models that can predict 

and to some extent explain various phenomena. Current practices also draw on specifically constructed 

standardised tests that include MC items to measure student ability and achievement in traits of interest. 

In his review of the literature on psychological scaling, Torgerson (1958) conceptualised the concepts of 

rigour and validity that underpin the measurement ideal: 

Measurement of a property involves the assignment of numbers to systems to represent the 

property. In order to represent the property, an isomorphism, i.e. a one-to-one relationship 

must be obtained between certain characteristics and the number of the system involved and 

the relations between various quantities (instances) of the property to be measured. The 

essence of this procedure is the assignment of numbers in such a way as to reflect this one-

to-one correspondence between these characteristics of the numbers and the corresponding 

relations between the quantities (p. 14). 

Student ability, for instance, may be depicted by a series of numbers designed to represent increasing 

amounts of the property of interest. The intent of the measurement model, as defined by Torgerson, is to 

represent a system characterised by a one-to-one relationship between mathematical ability and the number 

assigned to represent that ability. The development of the-one-to-one relationship is affected by students’ 

responses to items that represent increasing skill in the attribute.  

2.3.1 Measurement Scales in Education 

The purpose of establishing a scale is therefore to have a fixed external reference against which to compare 

objects or observations that are stable over time. In the physical sciences, precise measurement includes 

allowing for an acceptable margin of error that is a function of the quality of the measuring instrument, the 

object, and its use, and how critical the margin of error is in relation to its use.  

When measuring student ability in education through testing, precision is influenced by the quality of the 

items included in the test as indicators of both the trait and increasing knowledge and ability in that trait. 

Models of modern measurement theory will be discussed in detail in Chapter 3. Typically, they calculate 

two parameters to provide information regarding the precision of the instrument. These are Fit Statistics, 

which denote the difference between an observed outcome and the expected outcome of a student–item 

interaction; and the Measurement Error associated with the individual items and the overall test. The 

concept of measurement error is a feature of any quantification of a variable. In modern assessments, MC 

items are the dominant structure in test constructs. In MC items, a source of measurement error is random 

guessing, and as such, its removal would improve the precision of measurement estimates.  
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As indicated in Chapter 1, in random guessing the response is independent of any knowledge or 

understanding of the trait being measured. Hence a correct answer, generated randomly by chance, imparts 

no information to the external observer about the amount of knowledge the student has displayed in the 

variable of interest. This situation is a direct contravention of Torgerson’s definition of a one-to-one 

relationship between the number representing the property and the amount of the property demonstrated by 

the student. Although correct responses to items increase the measure of the overall ability of a student in 

the attribute, correct guesses are a threat to the veracity of that measurement and contribute to uncontrolled 

measurement error.  

2.3.2 Issues in Measurement With Multiple Choice Items 

Traditionally, tests comprised of MC items have been scored using the “sum of correct answers” scoring 

method (Bereby-Meyer et al., 2002; Kurz, 1999). In the context of MC, correct answers are typically scored 

with a value of one (1), incorrect answers and absent or omitted answers with a value of zero (0). The sum 

of the scores for correct responses is the student score, which is traditionally a “sufficient statistic” to rank 

the student in the test and provide a “measure” of the student’s ability in the trait of interest. Students who 

lack the ability to solve a particular item gain marks by guessing (Budescu & Bar-Hillel, 1993; Choppin, 

1988; Frary, 1988; Kubinger et al., 2010), which introduces a random factor into test scores that lowers 

their reliability and validity (Bereby-Meyer et al., 2002; Burton, 2001; Kubinger et al., 2010; Prihoda, 

2006). In such cases, analysts cannot distinguish between correct answers based on knowledge mastery 

from those based on a guess (Bar-Hillel et al., 2005).   

Clearly the aim of any test is to create an instrument that results in accurate data, is fit for purpose, and 

permits the generation of reliable and valid reports. For instance, in large-scale national educational testing 

programs such as NAPLAN, the measurement of student ability involves various processes and highly 

specialised experts. These are mobilised toward maximising the probability that the instrument used to 

determine a student’s true score on a test (reflecting their ability) minimises avoidable errors in the data 

and consequent reports. Typically, professional test developers construct an assessment framework that 

aligns the types of test items with an accurate indication of the students’ ability on the trait of interest. The 

framework is then further refined as a test specification that defines the combination of the items and their 

relative difficulty so that the full range of student abilities in the content area can be assessed. A series of 

reviews are then conducted as the experts prepare individual items to match the framework and 

specifications, thus ensuring that the final instrument has good fit to the intended scale that reports ability 

in the variable of interest. Supporting guides and instructions to standardise the administration of the 

instrument are also prepared to minimise any inconsistencies that can add to errors in the measures. These 

strategies and processes contribute to the reliability and validity of the test and the results generated from 

their implementation. 
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2.4 Early Research and Traditional Strategies to Address Guessing 

in MC Items 

2.4.1 Strategies to Discourage Guessing 

Despite extensive efforts such as those just mentioned, the inclusion of MC items in testing instruments has 

introduced an unintended source of uncontrolled measurement error. There is statistically a 1/n probability 

(in cases of one correct answer among n response options in the item) of a correctly guessed response 

independent of knowledge of the variable. By definition, a correctly guessed response contributes nothing 

to the measurement of the ability of a student in the variable and, by association with the calibration of the 

item, introduces error and bias into an item’s true facility/difficulty.  

Since the inception of MC items, there has been acknowledgement of the potential issue of guessed 

responses and various strategies and techniques have been implemented to minimise their impact (Yerkes, 

1917). Researchers have concluded that guessing reduces reliability by increasing the error variance without 

a corresponding increase in true score variation, and that since higher-ability students have a lower 

probability of obtaining a correct answer by guessing, guessing disproportionately advantages lower-ability 

students. 

To discourage random guessing in tests that include MC items, there have been attempts to reduce it by 

imposing penalties for incorrect answers. These have taken two forms:  

1. Implementing very explicit administration rules to discourage guessing (Traub et al., 1969); and 

2. Penalising students for incorrect responses (underpinned by the assumption that all incorrect responses 

are random guesses) (Kurz, 1999).  

In relation to the first strategy, in its simplest form students are simply advised not to guess (Davis, 1967; 

Frary, 1988). The issue of managing guessing behaviour through instructions about responding to items 

may also be related to “test-wiseness”. By contrast, and particularly in large-scale and high-stakes 

assessments, students are instructed to answer all the questions they are sure of and omit any items that they 

are unable to answer with certainty (Prieto & Delgado, 1999). In an alternative strategy, students are 

instructed to guess whenever they can eliminate one or more alternative choices (Betts et al., 2009; Davis, 

1967; Frary, 1988; Hammond et al., 1998).  

In relation to the second strategy, various scoring formulae have been proposed to correct for guessing 

(Kurz, 1999). Perhaps the most prevalent is the “rights minus wrongs” correcting model (Kurz, 1999), 

which penalises the student for incorrect responses. The fundamental idea behind this scoring method is 

that students acknowledge they will lose marks for incorrect answers and, as a consequence, they will be 

discouraged from guessing (Betts et al., 2009). This is expected to increase reliability and validity because 

the test score is a truer reflection of a student’s ability (Kurz, 1999). The expected total score should be 

zero if a student guesses all answers at random. The term “negative marking” has been used to describe this 

scoring method. For this to happen, the penalty for an incorrect answer should be 1/(n – 1), where n stands 

for the number of response options (Karandikar, 2010).  
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The logic that underpins negative marking is that if the student does not have a correct response, then any 

response is a function of guessing or misconceptions. Accordingly, some studies have reported an increase 

in validity or reliability when negative marking is implemented for incorrect responses (Burton, 2002; 

Muijtjens et al., 1999). Other authors argue that by implementing negative marking, MC tests measure 

students’ answering strategies and risk-taking behaviours instead of their mastery of domain knowledge 

(Budescu & Bar-Hillel, 1993; Choppin, 1988; Fowell & Jolly, 2000; Hammond et al., 1998; Kurz, 1999; 

Moss, 2001; Prihoda, 2006). However, even in cases where negative marking has been implemented, it has 

not solved the guessing problem (Bar-Hillel et al., 2005; Betts et al., 2009) and has been observed to 

introduce new problems. This is because students differ in their guessing behaviours, with some daring to 

take more risks than others (Chan, 2019; Choppin, 1975; Sharma et al., 2020). This introduces a concern 

about students’ risk attitudes adding to uncontrolled sources of variance, thus reducing the test’s reliability 

and validity (Bar-Hillel et al., 2005). It is also apparent that the process of negative marking disadvantages 

lower-ability students disproportionally, as students of higher ability have less need to guess. The 

contention over these issues highlights the challenge in giving recommendations that are fair and beneficial 

to all students. Students react in inconsistent ways, and thus Budescu and Bar-Hillel (1993) contend that 

the question of whether students should be instructed to guess or not is far more difficult to answer than it 

seems. It is also difficult for students to ascertain the optimal decision strategy under negative marking. 

An alternative model proposed by Traub et al. (1969) rewards a student for not guessing by awarding points 

for omitted items rather than penalising for incorrect responses. They argue that students do not feel 

threatened by receiving a reward for skipping items compared to receiving a penalty for incorrect responses. 

This presents a psychological advantage since it rewards desired behaviours instead of penalising 

undesirable behaviours, and it thus leads to more valid and reliable estimates of their achievement (Crocker 

& Algina, 1986; Prieto & Delgado, 1999). 

Another approach is “correction for guessing”. Prior to being able to access the power that computers now 

provide for investigating and analysing data, examiners and researchers implemented correction-for-

guessing algorithms that adjusted student scores based on the number of incorrect responses using the 

generalised formula: 

S = R - W(k-1) 

where  S is the corrected score;  

              R is the observed number of correct responses;  

              W is the number of incorrect responses; and  

   k is the number of options in each item. 

This correction-for-guessing formula was based on the assumption that all incorrect responses were a result 

of random guessing and that therefore a proportion of the correct responses would have been achieved by 

random guessing at a rate of 1/k where k is the number of options in the MC item. Hence the “true score” 

was adjusted down to reflect the assumed guessed component (Hendrickson, 1971; Sabers & Wright, 1969; 

Stanley & Wang, 1968). Research into the reliability and validity of tests for which the correction-for-

guessing strategies were implemented has provided a range of results (Davis, 1964, 1967; Davis & Fifer, 

1959; Frary, 1969; Thomas et al., 2005). Lord (1963) researched the use of correction-for-guessing 
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procedures and concluded that the increased validity in the results as a consequence of this procedure was 

only marginal, and he supported the implementation of the procedures only in cases where 

1. the tendency to guess varies considerably among the students;  

2. there are fewer than five options in each item; and  

3. the tests overall were very difficult.  

There is general agreement among the researchers just mentioned that strategies involving correction for 

guessing, which physically adjust a student’s score, actively discourage risk taking by students who have 

partial or incomplete knowledge of a particular skill as tested by an item. The imposition of a penalty for 

an incorrect response discourages any “not for certain” responses, and there has been some contention about 

whether the assumptions underpinning the application of scoring formulae are realistic (Cliff, 1958). 

Moreover, guessing might benefit students who guess frequently compared to students with equal ability 

levels who are more reticent to guess (Choppin, 1988; Muijtjens et al., 1999).  

Given that the probability of a random guess for an unknown answer in a traditional MC item is 
1

𝑘
, where k 

is the number of distractors, there have been other MC item structures that attempt to reduce the probability 

of a correct guess. These include structures such as two correct answers in a five-option item that reduces 

the probability of the composite correct response to 
𝑛

𝑘
 × (n-1)/(k-1). In the two-from-five structure the 

probability of a correct response is 
1

10
, or 10%, compared to the traditional proportion of 25% (Kubinger et 

al., 2010).  

It is apparent, therefore, that the problem of guessing in MC test administrations is both longstanding and 

persistent, and there is still no common approach to addressing it. In addition, traditional approaches such 

as those discussed above may introduce new factors into response patterns that impact on measurement, for 

example, the face validity of negative marking. However, in each of the strategies so far described, an 

overarching issue is that they are not in accord with the concept of measurement. Assessment theory 

presumes that a correct answer is an indication of ability in the trait and contributes to the measurement of 

ability. An incorrect answer does not detract from the measurement of the student’s ability or the 

measurement of the trait. 

It is worth noting that the implementation of these traditional approaches to account for guessing 

contravenes the requirements of “measurement” because they do not meet the demands of an external, 

independent, stable scale that relates the process to a measure. The assumption underpinning the processes 

of correcting for guessing – that all incorrect responses involve random guesses – is questionable as well. 

It ignores the argument that a student’s knowledge of a particular trait can be evolving and that a correct 

answer can be determined by the application of partially incomplete knowledge.  
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2.5 Psychometric Approaches to Account for Guessing  

In modern administrations of large-scale MC assessments that use Modern Test Theory, such as NAPLAN, 

there tend not to be any a priori penalties applied to incorrect responses of MC items. Paradoxically, there 

are anecdotal reports that because students cannot be penalised, they have been encouraged to use both 

elimination strategies and, as a last resort, random guessing to improve their overall total scores in these 

tests. This is despite the advances in computing capacity to interrogate and manipulate data in multiple 

ways. 

 2.5.1 Introduction to Modern Analysis Techniques to Account for Guessing  

Advances in the development of a mathematical theory that underpins the relationship between student 

performance and a measurement scale have been grouped in MTT under the general term Item Response 

Theory (IRT). As well, in the modern large-scale testing environment, two analytical applications within 

the RM (Rasch, 1960) dominate the field: the 1PL Model and the 3PL Model (Birnbaum, 1968). As 

mentioned in Chapter 1, the RM, is particularly relevant to the Australian context due to its dominance in 

the NAP suite of assessments and the context of those assessments in the national goals. These theories are 

discussed in detail in Chapter 3. 

Although the use of the RM has become commonplace over several decades, contention remains about its 

relative appropriateness and the information it provides to various stakeholders in relation its treatment of 

guessing. This issue is important for researchers who have investigated mechanisms to account for guessing 

in the RM paradigm (Andrich et al., 2012, 2015; Marias, 2015; San Martin et al., 2006; Waller, 1987). In 

recognition of their success in these efforts, Andrich et al. (2015) noted, “Guessing in the responses will 

affect the fit to the Rasch Model, thus eliminating responses that are likely to have been guessed should 

improve fit” (p. 430).  

The following sub-sections describe the previous approaches that have informed the current study.  

2.5.2 Previous Approaches to Account for Guessing in the IRT Paradigm  

As just mentioned, two general approaches have typically been adopted to address guessing using Rasch 

Model. The 1PL Model tests item fit and other parameters to assess whether the item contributes to or 

confounds the measurement of the trait. In cases where the fit statistics indicate that the item does not 

contribute to the measure, the item is excluded from the final analysis. This strategy is possible when the 

instruments are secure and not in the public domain. It can be problematic to omit items in cases where 

other stakeholders are aware of the test structure.  

The second approach attempts to build on the RM in the analysis phase of the assessment procedures to 

account for inconsistencies in the data, including possible guessing. This strategy has been imbedded in the 

3PL analytical procedures (Birnbaum, 1968; Hambleton, 1983; Hambelton et al., 1991). However, as will 

be discussed in Chapter 3, this technique violates fundamental measurement principles. Nevertheless, the 

3PL Model attempts to account for guessing, and possibly other noise in item calibration, from student 

response patterns by creating a parameter to address the issue in the item difficulty estimate (Birnbaum, 

1968). 
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The next sub-section traces previous research and highlights an issue common among these approaches, 

which is that they attempt to address the issue of guessing by analysis and modification of the calibration 

of items attempted by a group of students involved in the test. Guessing is not a group activity; it is assumed 

to increase in frequency as items increase in difficulty for the group and as individual abilities within the 

group decrease. But guessing is an individual item/student interaction that impacts estimates of an 

individual student’s ability. As such, the typical approach of aggregation of the potential changes in 

individual student ability estimates consequently impacts estimates of achievement of the group. The point 

of differentiation between previous approaches and the one proposed in this study is that in the latter the 

guessing is addressed at the individual item/student level, not at a more global level. The next sub-section 

will review approaches that have previously been attempted and from which the proposed approach 

diverges. 

In recent times there has been an increase in the development of methodologies that elaborate the RM and 

attempt to account for guessing through analysis algorithms (e.g. 1PL-AG procedures described below). 

These methodologies recognise that the RM does not account for guessing in student responses. As Park et 

al. (2015) put it: “In terms of IRT modelling, multiple-choice (MC) items impose an interesting problem 

that cannot be handled with the conventional Rasch model” (p. 449).  

Lin (2018) implemented a methodology to correct for likely guessing in the CAL English Proficiency Test 

(EPT) for Students: Listening and Reading. This strategy suppresses any item that, in the initial analysis, 

had a difficulty estimate greater than 2.0 logits higher than the ability estimate of the student. A discrepancy 

-2.0 logits between student ability and item difficulty means the probability of a correct response is less 

than 12%. Lin (2018) found that “likely guessing … [has] a greater impact on difficult items than on easy 

items” (p. 414), and  

It is evident that correcting for the effects of likely guessing results in increased person ability 

measures for high-performing examinees, while such effects have a smaller impact on low 

performing examinees … [and the] increase in person ability measures for high-performing 

examinees are a directly due to the relatively difficult items becoming more difficult after 

removing responses with likely guessing (p. 416).  

Lin’s approach seems a viable concept, but the threshold value is arbitrary and does not appear to have a 

stochastic underpinning. And it remains limited because it is biased towards impacting the estimates of 

higher-ability students, not those less able. 

 

In other approaches, researchers (e.g., Barnes, 1988; Waterbury & Mars, 2019) have investigated various 

approaches to accounting for guessing within a RM paradigm. These researchers generally contend that 

methods that adjust for guessing tend to increase standard errors in the measures but decrease the bias. 

Barnes (1988) undertook research in which simulated and actual small-sample test data were used to 

compare Rasch ability and item estimates with estimates obtained from the three-parameter 3PL model, 

and from two modified Rasch models that incorporated a constant guessing parameter. She found that 

“ability estimation errors tended to be systematic in that the Rasch model overestimated ability, whereas 

the guessing models underestimated ability” (p.1).  
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Jia et al. (2019) also investigated the effect of aberrant responses as indicators of guessing or cheating and 

attempted to derive a generalised formula of bias with aberrant responses. Barnard (2013) proposed and 

investigated a methodology called Option Probability Theory (OPT) and concluded that although the 

challenge of identifying guessed item/student responses was not significantly determined, there was a 

significant increase in the certainty of responses that would be useful to inform teachers. 

San Martin et al. (2006) investigated the ability-based guessing model 1PL-AG, including an ability 

function to the guessing parameter that addressed the shortcomings of the 3PL model. The 1PL-AG method 

breaks the estimation of parameters and person ability estimates into two components, in recognition of the 

contention of Hutchinson (1991). It also attempts to resolve the interaction between the probability to guess 

and student ability with respect to each item. San Martin et al. (2006) identify a possible trade-off between 

the estimates of guessing and the discrimination parameter (ai) caused by the simultaneous estimation of 

both, and the interaction effect of lower discrimination for lower-ability groups that are the object of the 

estimate of the ‘guessing’ parameter. According to the 1PL-AG, the probability of correct response to item 

i given ability of person j is βj and item parameters is:     

 

      Pr{x = 1; βj} = 1/[1+ exp(-(βj – δi)] + [(1 -1/(1+ exp(-(βj – δi))]. 1/[1+ exp(-(αiβj – λi)]     Eqn 2.1 

Source: San Martin et al, 2006. http://apm.sagepub.com/cgi/content/abstract/30/3/183 

where:    βj is the latent ability of the student (j) in the trait of interest 

δi is the relative difficulty of any particular item (i) that is an indicator of understanding in the trait 

of interest 

αi is the slope parameter – the discrimination - of item I, and 

λi is a guessing probability for an examinee with an average ability (βj = 0) for a normal distribution 

that fits the model. 

 

Although this study concentrates on the RM as the analysis technique applied to large-scale dichotomous 

data, the RM is not the only model derived from the one-parameter Simple Logistic Models (SLM). Other 

models that explain student responses include: 

• Rating Scale Model (Andrich, 1978b; Masters, 1980) 

• Partial Credit Model (Masters, 1982; Master & Wright, 1981) 

• Extended Logistic Model (Andrich, 1988; Tognolini, 1989) 

• Linear Logistics Model (Fisher, 1973) 

• Bionomial Trial Model (Andrich 1978a, b); and 

• Poission Counts Model (Rasch, 1960/1980). 
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Other alternative IRT models have also been proposed to explain guessing behaviour, including:  

(a) a fixed value of 1=L, with L being the number of options in MC items. However, this model, to account 

for guessing, reflects the concept of random guessing in its parameterization, which studies have shown 

may be under-estimating or over-estimating the guessing factor depending on the attractiveness of incorrect 

options (Hambleton et al., 1991);  

(b) an average guessing parameter across items in a MC testing domain; 

(c) a guessing parameter specific to each item, as in the three-parameter logistic (3PL) model (Birnbaum, 

1968); and,  

(d) models for guessing that are dependent on person ability (Hutchinson, 1991).  

It is beyond the scope of this study to consider all these models; they are described in detail in the cited 

publications. 

In relation to the approach proposed by this study, the works of Anderson (1995, 2005), Waller (1989), and 

Andrich et al. (2012, 2015), summarised below, have had the most influence due to their focus on the 

relationship between ability and item difficulty and the degree of fit divergence from the expected outcomes 

that may provide indicators of guessing.  

Andersen (1995, 2002) proved a theorem that relates variances of parameter estimates from samples and 

subsamples and showed an application where the theorem was central to the hypothesis tested, namely, 

whether random guessing to multiple choice items affects their estimates in the RM. The theorem provided 

a context for the work of Andrich et al., (2012), which this study extends. 

Waller (1989) and Choppin (1985) independently hypothesised that guessing was more present in student 

responses for more difficult items. In the same way that the current study attempts to identify guessing in 

student response patterns, Choppin (1985) proposed a two-parameter variation of the RM based on the 

contention that it is possible to identify those responses to relatively difficult items that may have resulted 

from guessing. Once those responses have been identified they should be suppressed when constructing the 

variable. Yet the problem encountered by Choppin was in the confidence around identification of guesses. 

These approaches highlighted a need to develop indicators in which one can have a degree of confidence 

regarding the identification of highly probable guessed responses at the individual item/student interaction 

level. This need is elaborated on in Chapter 4. 

The studies outlined above have contributed to the strategy to account for guessing proposed in this 

research. In most cases, these prior investigations focused on the items rather than on the interaction 

between items and students in developing strategies and recommendations. However, the approach that has 

most influenced the method developed in this study in relation to accounting for guessing is that of Andrich 

et al. (2012, 2015). This is because it concentrates on the misfit in item/student interactions as an indicator 

of error due to guessing. The next section elaborates on Andrich et al.’s work. 
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2.6 Recent Approaches to Account for Guessing Within the Rasch 

Model Paradigm  

2.6.1 The Approach of Andrich et al. (2012, 2015) 

The psychometric team led by David Andrich developed a logic to account for guessing that built on the 

work of Waller (1989) and Andersen (1995, 2002). They “formalised Waller’s (1989) procedure for 

removing the effects of guessing and demonstrated how statistical bias in (item) difficulty estimates can be 

quantified, tested for statistical significance and, most importantly, removed” (2012, p. 413). The Andrich 

et al. (2012) procedure is based on a parsimonious identification of guessing that involves the inspection of 

the item–student residuals based on item difficulty and student ability. Specifically, Andrich et al. (2015) 

acknowledge the issue in MC items in relation to attempts to remove the effects of the problem:  

The major hypothesis is implied … random guessing is a matter of degree, increasing as a 

function of the difference between the difficulty of the item and the proficiency of the student 

– that is, the more difficult the item relative to the proficiency of the student the more likely 

the student will guess (p. 413).   

Andrich et al. (2012, 2015) interrogated student response patterns and the interaction between ability and 

item difficulty to suppress items that have a high likelihood of being guessed in the item calibration phase. 

They then recalibrated ability estimates based on the outcomes of a multi-phase process. This is termed the 

Tailored Analysis. Table 2.1 shows the Tailored Analysis step in the Vertical Equating Design process 

implemented by Andrich et al. (2015) to better estimate student ability by accounting for guessing in a 

NAPLAN assessment. 

 

Table 2.1 

Vertical Equating Design for the 2013 NAPLAN Reading Scale  

Step Analysis Description 

1 Initial 
An analysis of initial data (no missing responses and equal sample sizes of 

9,382 for all year groups) 

2 
Tailored 

Analysis 

Analysis of anchored data (responses likely to have been guessed changed 

to missing responses) 

3 Origin-equated 
Reanalysis of the initial data (the origin equated to the mean of the four 

easiest items of the Year 3 group in the tailored analysis) 

4 All-anchored 
Reanalysis of the initial data (all difficulty estimates anchored to those from 

the tailored analysis) 

Source: Andrich et al. (2015, p. 419). 

The logic that underpins Andrich et al.’s (2015) Tailored Analysis to account for guessing is that the easiest 

items are the least likely to have been impacted (biased) by guessing. In response, their method involves 

treating all items beyond a defined item-student interaction level, for which the probability of a correct 

response is less than (an arbitrary value) of 0.3, as “not administered”.  
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The impact of this process is to recode items as missing data (p. 430). Treating these items as missing has 

a dual effect by reducing 

1. the number of student responses and hence the data set being analysed; and, as a consequence,  

2. the number of interactions available for the conditional difficulty estimations that are a feature of 

the implementation of the model for item difficulty estimation with student data.  

This process makes the response patterns more “Guttman-like”, with any noise beyond the estimated person 

ability or probability of a correct response interaction being eliminated from the analysis. The process has 

the effect of refining the variable and improving the fit of the Tailored data set to the model. However, the 

recoding of items to “missing” reduces the number of interactions that are available for estimating item 

difficulty, and the relative difficulty of harder items. The process thus reduces the precision of the estimates 

and increases the measurement errors associated with estimation. 

It should be noted that in any test design there are typically a few items targeted to the lower-ability students. 

It is these easy items that were the focus of Andrich et al.’s (2015) Tailored Analysis; they selected the 

easiest five or six items in the anchoring stage of the method. It should also be noted that the facility rates 

of these items (as informed by the NAPLAN trialing process) are in the range 80% to 95%; in other words, 

the items are specifically designed to engage the lower-ability students. This approach remains problematic 

because it means that, on average, these items are beyond the ability level of between 5% and 20% of the 

student population. Hence it is likely that these items too will be impacted to some degree by the students 

most likely to guess in the NAPLAN assessment.  

Andrich et al. (2015) evaluated the efficacy of accounting for guessing in their Tailored Analysis by 

investigating the relative fit of the analyses to the RM, using the chi-square statistic as an indicator of how 

well the results represented the expected outcomes. They note: “This statistic is a test of deviation from 

perfection of the data from the model” (p. 427). Andrich et al. (2015) concluded:  

The fit in the tailored analysis is substantially better than in the origin-equated analysis. … 

This confirms that fit can be substantially improved by tailored analysis, further confirming 

the hypothesis that guessing is a function of the difficulties of the items relative to the 

proficiencies of the students (p.428). 

2.6.2 Comments on the Approach of Andrich et al. (2012, 2015)  

Andrich et al. (2015) found that “not controlling the guessing bias underestimates the progress of students 

over seven years of schooling with important educational implications” (p. 416). Specifically, their research 

concluded that their methodology showed that the abilities of higher-ability students are under-estimated 

when guessing is ignored. However, since the method anchors a number of easy items, the interaction 

between item difficulty and raw score determination defined by the model will limit the impact on students 

who are only able to engage with the easiest items. Hence this model is limited in its ability to adjust for 

lower-ability students. 

Commenting on the work of Andrich et al. (2012), Humphry (2015) noted that “although this approach 

may account for the effects of guessing on item estimates, it entails a loss of information and provides no 
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solution for obtaining person estimates based on all of the response data” (p. 193). The approach proposed 

in this research addresses this limitation.  

2.7 A Proposal to Account for Guessing in the Rasch Model 

As will be detailed in Chapter 4, the approach to account for guessing proposed that is evaluated in this 

study follows a similar strategy to that of Andrich et al. (2015) outlined in Table 2.1. The major 

differentiation between the proposed approach, as summarised in Table 2.2, and the work of Andrich et al. 

(2015) is that in the proposed methodology only items identified as probable guessing are modified in the 

development of the revised measurement scale. All other responses are maintained. This means that only 

items that fail the defined guessing identification parameters are recoded. The advantage of this method, 

rather than recoding all items beyond a specified threshold, is to minimise the consequent loss of data and 

the impact on the facility rates of items that have had significant numbers of cases in which the response is 

recoded as missing.  

 

Table 2.2 

Methodology Design for the Overall Research 

Step Analysis Description 

1 

Initial (INIT) 

- simulated 

- field trial 

- large scale 

An analysis of initial data (no missing responses 

all data analysed using Rasch measurement 

applications (RUMM and Conquest) 

2 

Suppressed (GS) 

- simulated (defined guess) 

- field trial (self-identified) 

 

Recoding of the data and re-analysis to develop 

a revised Raw Score to ability table (responses 

self-nominated, or defined as, guessed recoded 

as missing data) 

3 

Guessing Indication Protocol  

GIP3A – item recalibration 

GIP3B – ability estimate 

recalibration - all data sets 

a. (GIP3A) recalibration of item locations 

b. (GIPINIT3B) reanalysis of the initial data 

(the original responses) with the locations of 

items identified as likely guessed by the GIP3A 

procedure recalibrated. 

 

To evaluate this approach, the proposed solution employed simulated data to determine an algorithm that 

is feasible in identifying guessing, the Guessing Indication Protocol (GIP). The GIP was then applied to 

condition data from a field trial and a large-scale assessment in an attempt to remove/reduce the 

measurement error imputed through guessing and to resolve the impact of guessing on the ability estimates 

of the students. 

Since this study is concerned with the measurement and reporting of individual students, as well as groups 

and/or cohorts, with a particular focus on NAPLAN, the RM is its focus. This is due to its measurement 

properties and the fact that it addresses the face validity issue of reporting to every participant in the test.  
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The proposed approach attempts to both build upon and improve the research described earlier in order to 

provide better estimates of student ability and item difficulty, as well as an indication of the presence of 

guessing by the individual at item-person interaction.  

The ultimate intended outcome of this research is to estimate the impact of not accounting for guessing in 

the reporting of student ability to stakeholders in the variable of interest. Apart from Marais (2015), this 

impact evaluation is the area least investigated in previous research. 

2.8 Summary 

This chapter has articulated the principles and properties of measurement as they relate to the social sciences 

and how they were used to evaluate the various analytical and assessment procedures undertaken in this 

study. It also explained how the issue of guessing is a threat to accurate measurement, and briefly described 

some of the strategies that have traditionally accounted for guessing in student achievement tests. 

Modern assessment theory commonly uses IRT to analyse student assessment and report achievement. In 

particular, in the Australian context of NAPLAN, the RM is commonly utilised. However, this model does 

not take account of guessing. The chapter concludes by introducing a model that uses the RM as the base 

measurement instrument and proposes supplementary analyses based on individual item–student 

interactions to account for probable guessing in the student response patterns.  
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Chapter 3  

Background of Modern Test Theory Applied to Student 

Achievement 

3.1 Introduction  

The purpose of this chapter is to review the development of modern data analysis techniques to estimate 

student ability and achievement and to evaluate each in relation to the aims of the research. The chapter 

provides a detailed review of requirements of the Rasch Model (RM), which was identified as the most 

appropriate measurement model to estimate individual student ability and as having specific relevance to 

the Australian context and the analysis of large-scale population assessments. 

3.1.1 Relationship Between Student Ability and Achievement 

For the purposes of this study, student ability is defined as “the possession of the means or skill to do 

something” (Messick, 1984, p. 159). Messick (1984) contends that student ability evolves as a result of an 

interaction with environment, culture, and prior or current instruction. Its value can be estimated as the 

amount of the trait that the student has exhibited in a particular test. To determine student ability, 

consideration of the responses of the cohort that has completed a test is used to calibrate the relative 

difficulty of the items of the test and subsequently the ability of each student based on his/her result on the 

test. 

The considerable research and commentary on the relationship between student ability and achievement 

(Abel, 1984; Nizoloman, 2013; Rohde & Thompson, 2007) relate to the impact of external factors in 

addition to student ability that contribute of measures of achievement. In the education environment, the 

term achievement is often used interchangeably with “performance”, although it is contended that the two 

are not synonymous. For Messick (1984), for example, “Educational achievement refers to what an 

individual knows and can do in a specified subject area” (p. 154), and the capacity to demonstrate ability 

(or performance) is a function of “comprehension, memory retention and retrieval, reasoning, analysis and 

restructuring, evaluation or judgement and fluency” (p. 156). In this distinction, student achievement is the 

product of several factors, including, but not limited to, ability. Accordingly, and throughout this thesis, 

student ability is estimated using specific psychometric analysis techniques. In contrast, achievement is 

reported in relation to the comparison of the outcomes of groups of students in the tests evaluated.  

3.1.2 Early Estimation of Student Ability 

The evolution of assessment instruments and analysis techniques to assess student achievement has its roots 

in the work of Fischer (1935), Guttman (1944, 1950a, 1950b, 1954) and Thurstone (1927, 1929, 1959) in 

the first half of the 20th century, and its later development with Andersen (1977), Birnbaum (1968), 

Hambleton et al. (1991), Rasch (1960/1980), Wright (1968, 1977), and Wright and Masters (1982). Most 

recently, Andrich (2012, 2015, 2016) and other noted psychometricians and statisticians have added to the 
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body of knowledge and the development of applications that fall under the generic terms Modern Test 

Theory (MTT) and Item Response Theory (IRT). 

Modern Test Theory and its component Item Response Theory have their origins in the traditional statistical 

treatments of data and, in particular, the relationships between test participants and the relative difficulty 

of test items for the target group. Indicators of the quality of the instrument in achieving its aim of measuring 

student ability were grounded in statistics such as item discrimination as a measure of the correlation of the 

items with the total score and reliability statistics. These approaches were coordinated in Gulliksen’s (1950) 

work, Theory of Mental Tests, and were reviewed by Guttman (1953) as he developed theories on 

measurement that challenged the traditional test theory approaches.  

Guttman’s (1950a,b, 1954) work is a significant development in the theory of student ability measurement 

as applied to educational testing. For instance, Guttman (1950a) proposed: 

A person’s score tells what his responses were to each question … [the deterministic paradigm] … A person 

with a higher score is “favourable” on all questions that a person on a lower score answers “favourably”, 

and on at least one more in addition. This rank order, furthermore, exists not only for the given series of 

questions, but is the same as the rank order that would be obtained with any series of questions in the same 

area (p. 20).  

Our definition of a single continuum as a series of items each of which is a simple function of the scale 

scores permits a clear-cut statement of what is meant by a rank order based on a single variable (p. 154).  

Taken together, these statements define a unidimensional variable that can be constructed from a series of 

related test items.  

Although not explicitly stated in the literature, Guttman’s (1950) proposition that student achievement in a 

test item is a function of student ability and item difficulty was a precursor to the development of IRT. 

Guttman proposed a deterministic theory that “explains” the pattern of student responses to items. In 

essence, if items are strictly ordered according to relative difficulty, then as a student interacts with the set 

of items, they will correctly answer those for which they have knowledge and/or ability and incorrectly 

answer those for which the inherent difficulty of the items is in excess of their knowledge and/or ability. In 

this construct, a student’s measure of achievement and ability is derived in a deterministic manner. For 

Andrich (1988), the similarity of Guttman’s and Rasch’s aims when constructing measures align with the 

theoretical construct of what is described later in this chapter as a “model of intent” (p.39). The particular 

importance of Guttman’s work, the rigour that underpins requirements of the Guttman scales, and their 

relevance to this research are discussed in detail in Chapter 5. 
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3.2 Development of Modern Test Theory  

3.2.1  Estimation of Educational Achievement 

MTT is premised on the assumption that a student possesses an amount of skill and knowledge with respect 

to a construct or variable (termed the “latent variable” (Andrich, 1988, p14). Whereas in the physical 

sciences a variable is observable and can be measured, a latent variable is not directly observable and is 

inferred from other variables typically derived from mathematical modelling. The amount of the latent 

variable “possessed” by a student can be measured by the interaction of the student with items that represent 

increasing knowledge or ability in the construct of interest (e.g., mathematical ability). The amount of the 

latent variable is used to “locate” a student along a developmental continuum according to the amount of 

the construct possessed by the student.        

In both MTT and IRT, the concept that defines the estimation of student educational achievement and 

progression of learning is quite simple. When students are confronted with a problem in which their skills 

and understanding of the latent variable are at a higher level than the cognitive demands of the problem 

then the students will most likely be able to complete the problem successfully. Conversely, if the cognitive 

demands of the problem exceed the ability of the student, then it is likely that the student will not be able 

to successfully complete the problem. In the case where the student’s level of skills and understanding are 

of the same relative level as the cognitive demands of the problem, the student has a 50:50 chance of solving 

the problem successfully. 

IRT currently includes three basic models: the Rasch Model (RM), also known as the Simple Logistic 

Model (SLM)); the Two Parameter Logistic Model (2PL Model); and the Three Parameter Logistic Model 

(3PL Model). Each model attempts to estimate item difficulty and student ability in relation to the latent 

variable. The term “logistic” relates to the scales typically generated in logarithmic units (logits) that are 

used to change the response intervals from natural numbers to an ordinal scale in which the distance 

between units is a constant unit of measure, not an arbitrary observation of raw scores.  

It is noted that criticism of the RM has led to the other two models (2PL, 3PL) in the family of IRT models. 

For reasons expanded upon below, it is appropriate to discuss the 2PL Model and 3PL Model in advance 

of the discussion of the RM, which is the ultimate focus of this research study.  

3.2.2 The Two Parameter Model (2PL Model) 

Birnbaum (1968) contended that in addition to the basic parameters of latent ability (βj) and item difficulty 

(δi), items tend not to be of equal discrimination. To account for this, the 2PL Model introduces the 

discrimination parameter (α), as shown in Eqn 3.1. In the 2PL Model, Birnbaum (1968) modifies Rasch’s 

one-parameter logistic model (or RM) by allowing item parameters to vary, not only in terms of their 

difficulty (δ), but also in terms of their ability to discriminate (a) among individuals of varying ability. 

 

              Pr{x = 1; β,δ,αi} = exp[αi(β – δ)]/( 1 + exp[-Dαi(β – δ)]) Eqn 3.1 
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where   β is the latent ability of the student in the trait of interest; 

δ is the relative difficulty of any item that is an indicator of understanding in the trait of interest; 

αi is the slope parameter – the discrimination – of item i; 

D is an arbitrary scaling constant typically set to 1.7 to approximate results from the normal ogive 

model; and, 

Pr{x = 1; β,δ,αi} defines the probability of a correct response given the parameters β,δ,αi .  

The model defined in Eqn 3.1 generates an item discrimination index, which is a point biserial correlation 

coefficient. Item discrimination indicates the extent to which success on an item corresponds to success on 

the whole test. Since all items in a test are intended to cooperate to generate an overall test score, any item 

with negative or zero discrimination undermines the test. Eqn 3.2 shows the formula for point biserial 

discrimination. 

                     PBc = (Mc – M) / S √(Pc / 1 - Pc)                        Eqn 3.2 

 

where  Mc is the mean score of the students who answered the question correctly; 

M and S are the mean and standard deviation, respectively, of all the students; and,  

Pc is the proportion of students who answered the question correctly. 

It is worth noting that although the 2PL Model does not explicitly account for guessing in its fundamental 

equation, its impact is in the way guessing biases the values of both Mc and Pc. In the 2PL Model, guessing 

inflates the value of Mc and by inflating the proportion of  Pc it results in an overestimation of the value of 

the point biserial (PBc). Hence, the 2PL Model suffers the same deficiency as the RM with respect to 

guessing. 

The 2PL Model also suffers from a face-validity issue for large-scale assessment in which individual 

student achievement is reported to stakeholders. The inclusion of the discrimination parameter results for 

students who achieve the same raw score may lead to a different ability estimate because the ability estimate 

is a function of which items a student has answered correctly. Hence, the 2PL Model has been most 

commonly used in research programs that do not report individual student performances, but instead are 

concerned with aggregated results of sample populations. 

Given the 2PL Model’s inability to explicitly account for guessing and its challenges to implementation in 

large-scale testing programs, no further investigation of it is included in the research and analysis phases 

of this study. 

3.2.3  The Three Parameter Model (3PL Model) 

Birnbaum (1968) further developed the 2PL model by incorporating an item discrimination parameter, 

modelling the slope of the item characteristic curve, and introducing a lower asymptote parameter often 

interpreted as modelling “guessing’ or “item guessability”. This model is called the Three-Parameter-

Logistic Item Response Theory model (3PL Model), and it is defined in Eqn 3.3. 

 

            Pr{x = 1; β,δ,αi,c} = c + (1-c){exp[αi(β – δ)]}/( 1 + exp(β – δ))  Eqn 3.3  
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where:    β is the latent ability of the student in the trait of interest;  

δ is the relative difficulty of any item that is an indicator of understanding in the trait of interest; 

αi is the slope parameter – the discrimination – of item i;  

c is the quantification of a lower asymptote that reflects the probability of low ability students 

answering the item correctly: and, 

Pr{x = 1; β,δ,αi,c} defines the probability of a correct response given the parameters β,δ,αi,c .  

The 3PL Model reflects the development of a specific set of parameters as a “best fit” of the data to derive 

a model to analyse the data. Interpretations of the alpha (a) parameter as item discrimination and delta (δ) 

parameter as difficulty have found general agreement in the field, but interpretation of the c parameter as 

guessing has generated considerable debate. Including a ‘c’ parameter in the model was Birnbaum’s (1968) 

approach to allow for statistical adjustment of item responses for the non-zero performance of low-

proficiency students on multiple choice (MC) items. This approach involves the computation of a non-zero 

asymptote that reflects the impact of non-ability-based, random guessing by students who exhibit low 

ability in the trait of interest. Typically, the constant generated to reflect guessing in the 3PL Model is in 

the range 0 < g <  
1

𝑘
, where k is the number of distractor options of the item. 

In this respect, practitioners have generally termed the c parameter the “guessing” or the “pseudo-chance” 

parameter (Chiu & Camilli, 2012; DeMars, 2007; Harris, 1989; Socha & DeMars, 2013). The c-parameter 

estimates, however, typically tend to be smaller than the value that would result if examinees answered an 

item correctly by random chance (Lord, 1974), and consequently Hambleton et al. (1991) proposed the 

term “pseudo guessing parameter” as more appropriate for the c parameter. 

The 3PL Model violates a fundamental aspect of measurement, namely, that there is a one-to-one 

relationship between the trait and the items. With the 3PL Model, the resulting estimate of ability in the 

trait is not independent of the items used to generate the ability. A measurement scale exists as an inviolate 

reference of the characteristics of a trait, and not a function of observations of specific data sets. In the 

physical sciences, it is not the practice to recalibrate the variable and associated scales with every measure. 

In relation to the 3PL model, Smith (1993) comments 

The measurement task is to differentiate between random guessing, which contains no 

information, and informed guessing, which contains some information. This cannot be 

accomplished by modelling guessing as an item or even as a person parameter. The pseudo-

guessing item parameter in the three-parameter model is useless. It mistakes guessing as a 

function solely of the item, when, in fact, guessing is an interaction between item propensity 

to provoke guessing and person proclivity to guess. In addition, the parameterization of 

guessing obliterates differentiation between random and informed guessing. (p.262). 

At the face-validity level for the reporting of individual student ability, the 3PL Model is constrained in the 

same manner as the 2PL Model because it generates results for which the same raw score may produce a 

different ability estimate expressed in the logistic parameter. Hence, public reporting is inherently 

problematic at the individual student level, and consequently it is generally recommended that individual 

results are not reported. 
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Psychometrically, there are three additional issues with the 3PL Model:  

1. The guessing parameter (ci) represents the expected ability of lower performing students and 

therefore typically there are fewer data points on which to accurately estimate its value. 

Consequently, this lack of precision leads to relatively large standard errors about each estimate 

(Thissen & Wainer, 1982). Research shows that the c parameter is poorly recovered in simulation 

studies. This is particularly the case in the easier items where lower performing students are more 

likely to answer correctly, and with poorly discriminating items, where guessing is more likely to 

be an influence (Lord, 1975; McKinley & Reckase, 1980). These factors detract from the 3PL 

Model’s capacity to provide precision in the measurement of the trait. 

2. The introduction of a guessing parameter has an unintended impact on the model because of its 

interaction with the discrimination parameter. By introducing a lower, non-zero asymptote, the 

slope of the discrimination is depressed. As the c parameter approaches 
1

𝑘
, the discrimination factor 

for the item is reduced, which introduces a double interaction on the item difficulty and student 

ability estimates. The consequence in relation to the estimate of student ability is to reduce the 

numerator in the model equation, which in turn reduces the estimates of the higher-ability students 

to a degree more evident than in the estimates of the lower-ability students. 

3. The third issue is the simplification of the interpretation of the c parameter given its determination. 

The 3PL Model assumes random guessing, in which the response is independent of ability. Studies 

indicate that in real test situations this assumption does not hold, with students using various 

strategies to eliminate less plausible options or implement partial knowledge in the trait of interest 

(Embertson & Riese, 2000; Yen & Fitzpatrick, 2006), especially in cases where the c parameter 

estimates are at the lower extreme of the range 0<g<
1

𝑘
  (Kinston, 1985; Waller, 1989). 

Alternatively, De Ayala (2013) showed that in cases where the value the c parameter exceeded  
1

𝑘
, 

it was common that the distractors functioned poorly, thus impacting significantly on 

discrimination. Obinne (2012) observed values of c in the MC items ranged from 0.09 to 0.50 

using the 3PL Model. The mean value was 0.26, which approximates the 
1 

𝑘
 logical value for 

random guessing, but in 28 of the 56 MC items the c factor exceeded 0.25. This is problematic, as 

it implies that in half the items there was successful guessing at a rate higher that the expected 

value of 25%. 

These issues highlight the fallacy of the internal assumption implied by the 3PL Model that guessing is a 

variable independent of ability, and that the guessing parameter is applied universally, independent of 

student ability. 

An overarching issue with the implementation of both the 2PL and 3PL Models in the analysis of data is 

that they are not constrained by a measurement theory, insofar as both attempts to derive a model from data. 

The central approach of each is to determine a combination of parameters that describe the data; that is, to 

create a model that is a best fit to the data. In this respect these models are not grounded in measurement 

theory, but rather are solutions that reflect a particular data collection. By extension, this concern draws 

into question the stability of the developed scales, as they suffer from the same issues as Traditional Test 
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Theory (TTT) analyses, with the scale being to some degree test bound. The differences in underlying 

assumptions and approaches to analyses between the 2PL and 3PL models and the RM approach are 

articulated in Table 3.1 (Wright, 1992). The RM rejects guessing, its presence being noted by the misfit of 

person ability estimates. However, the application of the Rasch model in authentic assessments is a function 

of mean misfit statistics for each person, not individual item/student interactions and, typically apart from 

noting the statistic abnormality, no action is taken to account for guessing.   
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Table 3.1  

Comparison of the Properties of the 3PL and Rasch Models 

Birnbaum Model: 3PL 

For 2PL, set ci=0 

For 1PL, set ai=1.7, ci=0 

Rasch Model 

Allan Birnbaum 1957/1968 Georg Rasch 1952/1960 

imitates data defines measures 

contrived to fit observed MCQ ICC's derived to construct scientific measurement 

 

θ is the assumed, not actual, person sample 

distribution  

 

n is the actual individual person ability  

 

Shared ai and θ causes θ <–> ai feedback: 

divergence unless constrained 

 

B and D estimable separately: 

inevitable convergence 

MCQ dichotomies only 

[1992: Eiji Muraki's Generalized Partial Credit 

Model] 

any ordered observation 

dichotomy, rating, ranking, counting 

guessing accepted ci 

reliable item asset 

guessing rejected 

unreliable person liability 

discrimination variation welcomed ai 

as a useful item scoring weight 

discrimination variation rejected 

as a misleading item-bias interaction 

crossed ICCs accepted 

natural and unavoidable 

item-difficulty-ordering is different for different 

persons 

crossed ICC's rejected 

prevents construct validity 

item-difficulty-ordering is the same for 

everyone 

Source: www.rasch.org/rmt/rmt61a.htm 

  

https://www.rasch.org/rmt/rmt61a.htm
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3.3  The Rasch Model 

3.3.1 Introduction 

As noted earlier, the RM is relevant in the Australian context because it is used in the national assessment 

suite of programs (NAPLAN, NAP_SL, NAP_ICTL, and NAP_CC). The RM is sometimes termed the 

Simple Logistic Model (SLM) due to its requirement that the interaction of item difficulty and student 

ability are the only factors that are relevant in determining the nature of the latent variable and the estimation 

of student ability in the latent variable. 

In theory, the RM is fundamentally different from the 2PL and 3PL Models in that it embodies the property 

of specific objectivity (which will be defined later in this chapter). The RM is a mathematical extension of 

the following requirements that define the measurement properties of the variable: 

•  Item statistics are independent of the sample from which they were estimated.  

•  Student scores are independent of item difficulty. 

•  Item analysis accommodates matching test items to student knowledge level.  

•  Test analysis does not require strictly parallel tests for assessing reliability.  

•  Item statistics and student ability are both reported on the same scale.  

These theoretical requirements of the RM generate psychometric and measurement advantages compared 

to classical models. For example, in contrast to the 2PL and 3PL Models, the RM is a mathematical 

derivation from a set of requirements grounded in defined measurement principles. The RM is applied to 

the data and the psychometric question is whether the data fit the model, that is, do the data comply with 

the measurement principles that dictate the appropriate use of this procedure. 

This “simple” construct can be converted into the mathematical function defined in Eqn 3.4. 

     Pr{x = 1; β,δ} = exp(β – δ)/( 1 + exp(β – δ))  Eqn 3.4 

 

where;  β is the latent ability of the student in the trait of interest;  

δ is the relative difficulty of any item that is an indicator of understanding in the trait of interest; 

and 

Pr{x = 1; β,δ} defines the probability of a correct response given the parameters β,δ. 

The denominator is a normalising function that ensures the resultant probability calculated is in the range 

0.0 < Pr(1) <1.0;  

 

As proposed by Rasch (1960), this mathematical relationship defines the SLM, and it represents how data 

that conform to the model can be analysed and reported using the SLM. The unit of the RM is the 

Logarithmic Unit, which is called the “logit”. The mathematical implementation of the RM develops a 

logarithmic scale with equidistant units in the integer scale. If the data do not accord with or fit the RM, 

then the use of the RM is inappropriate as a reliable estimator of student achievement on the trait. This 

approach contrasts with those of the 2PL and 3PL Models, which “adjust” to maximise the fit of the data, 

and whose every analysis is defined by the set of data, not by a theoretical model that is consistently applied 

to a data set.  
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The RM is a mathematical model defined by Eqn3.4, and it therefore underpinned by a number of 

assumptions. In relation to measurement, these assumptions have been deemed by Andrich (1988) to be 

requirements of measurement. These requirements of the RM are discussed in detail below, but it should 

be noted that, in theory, once the item difficulty (when ordered from easy to hard) exceeds the ability of the 

student then there should be no credit achieved through guessing. The inclusion of guessed items corrupts 

the fundamental relationship between students’ abilities, as demonstrated by responses to items of varying 

difficulty, and the relationship of the items to the trait of the investigation. Correct guesses impute 

unintended bias into the estimations of both student ability and item difficulty. In regard to student/item 

interaction, this problem is central to the current study. When the constraints of measurement theory are 

overlaid onto the RM, it is necessary to unpack the contributing factors and environmental conditions with 

which the RM must comply to allow these estimations to be meaningful, valid, and invariant over time. 

The following sub-sections discuss the features of the RM. 

3.3.2 Features of the Rasch Model 

3.3.2.1 A Model of Intent 

The term Model of Intent (MOI) was proposed by Andrich (1986a) to make explicit the construct validity 

of an instrument. An MOI underpins the fundamental assessment construct and addresses the issue of 

content validity in the analyses of a set of data (Messick, 1987). The overarching concept is that the items 

included in the instrument to assess subject ability are manifestations of the trait of interest, and that the 

sum of the collection of items provides valid information regarding the interaction of the subject with the 

trait of interest. The characteristics that are evidence of increasing knowledge or ability in a particular trait 

can be used to construct a collection of items that capture the range of abilities that the students 

display/possess regarding the trait of interest. The Rasch Measurement Model is interested in the 

development of scales that reflect a measurement variable rather than modelling an existing data set. Rasch 

(1960/1980, 1966, 1968a) and Wright (1968) have strongly supported the relevance and advantages of 

objectivity in measurement. In describing the MOI, Andrich (1986a) made explicit the difference between 

modelling data and constructing a measurement variable: 

In the Rasch approach, a theoretical position is articulated first … the theoretical position is 

then transformed into variables ... and … the transformation reflects the intention to construct 

a variable. The variable is constructed through a series of items or micro-replications that are 

intended, and expected, to hang together … The model chosen is an expression of this 

intention, and therefore comes before any data are collected. The data are then collected and 

compared to the model, which is a mathematical rendition of the intention. If the data do not 

accord with the model then this is evidence that the data do not reflect the intention. (p. 46)  

3.3.2.2 Measurement Objectivity 

The RM requirement of measurement objectivity relates to the independence of the instruments used to 

measure the amount of the trait exhibited by the object of the measurement. This feature has previously 

been referenced as a fundamental requirement of measurement. For example, the latent trait of 

mathematical ability cannot be measured without some evidence of students’ knowledge, understanding, 

and capacity to apply the fundamental knowledge in some tangible form. To achieve this, assessments are 
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developed with test items of varying difficulty and a range of scenarios that attempt to enable students to 

display manifestations of their ability in the trait. According to Wright (1968), there are two necessary 

conditions of objective measurement: “First, the calibration of measuring instruments must be independent 

of those objects that happen to be used for calibration. Second, the measurement of objects must be 

independent of the instrument that happens to be used for measuring” (p. 87). 

 

3.3.2.3 Separation of Parameters 

The principle that the parameters of student ability and item difficulty are independent is significant, both 

in relation to the measurement properties and to the estimation of ability in the trait. Rasch (1961) referred 

to this feature as “specific objectivity” and was explicit in articulating this feature as a necessary condition 

of measurement: 

The comparison between two stimuli should be independent of which particular individuals 

were instrumental for the comparison; and it should also be independent of which other 

stimuli within the considered class were or might also have been compared. Symmetrically, 

a comparison between two individuals should be independent of which particular stimuli 

within the class considered were instrumental for the comparison; and it should also be 

independent of which other individuals were also compared, on the same or some other 

occasion. (p. 331)  

It is important to appreciate that although the item difficulty and student ability estimates are sample free, 

this does not suggest that the characteristics of the sample are totally irrelevant. Rasch (1961) relates this 

to the “class”, which pertains to the frame of reference of the test and, by association, the MOI. Andrich 

(1985) makes this relationship explicit: “Relationships need to be established with some specific frame of 

reference, the frame of reference included a definition of a class of persons, the class of items, and any other 

relevant conditions that would ensure objective relationships were maintained” (p. 44). 

 

When considering the presence and impact of guessed responses in a test analysed using the RM, 

Tognolini’s (1989) comments on this characteristic of the model are salient: 

Persons’ characteristics govern their responses to the items and their responses are used in 

conjunction with the model to determine the item difficulties. Since the locations of the items 

on the variable define the variable, it can be deduced that the definition of the variable results 

from the reaction of the sample of persons to the set of items. If the characteristics of the 

persons that interact with the items are changed, so is the definition of the variable (p. 53). 
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Andrich (1988) comprehensively covers the derivation of the mathematical logic demonstrating the 

separation of the parameters, so it is not elaborated upon here. Instead, the following commentary explains 

the relationship between item difficulty and student ability as derived in the RM analyses. This relationship 

is critical in determining which responses may reflect a guess. 

A first estimate of relative difficulty of an item is the ratio of the number of correct responses compared to 

the total number of responses to the item. From this, an initial estimate of relative item difficulty is 

developed. In the estimation of item parameters, the matrix of the possible outcome space in two adjacent 

items provides two combinations that impart information regarding the relative difficulty of the two items, 

as follows: 

 

 

 

 

In observing a student’s response patterns, these outcomes are indicators of the transition in the ability-item 

difficulty interaction from within the ability range to beyond the ability range (the correct/incorrect–1, 0–

pattern), or an indication of a zone of approximate equivalence of the student ability and the item difficulty 

in which there is a relatively equal chance of a correct response.  

In reducing the conditional probability of the 0,1 or 1,0 events occurring, Andrich (1989) showed that the 

total score of an item (its facility) “is a key statistic containing all of the information about the difficulty of 

an item” (p. 75). The reduction of the probability of the 1, 0 event is shown in Eqn 3.5. 

 

Prob{xv1 = 1, xv1 = 0 | r v= 1} = 𝑒−𝛿1/(𝑒−𝛿1 + 𝑒−𝛿2) 

The reduction of the probability of the 0, 1 event is; 

Prob{xv1 = 0, xv1 = 1 | r v= 1} = 𝑒−𝛿2/(𝑒−𝛿1 + 𝑒−𝛿2) 

        Eqn 3.5 

where rv is the total raw score of person v on the two items. 

These conditional probabilities can then be expanded over multiple items and the estimates of the relative 

ability of each item maximised by an iterative process. 

The significant issue in these observations is that the estimation of the relative item difficulties is 

independent of person ability. They do not contain any reference to βV. Hence, if the data fit the RM, the 

relative difficulty of the items can be estimated independently of the distribution of the abilities of the 

students who have participated in the collection of the data. Andrich (1989) elaborated on the significance 

of this feature of the RM: “It means that the total score (of and individual) contains all of the information 

about the person, and if the data fit the Rasch LTT [latent trait theory], then all of the information about the 

ability βV is contained in the total score” (p. 76). 

This mathematically derived condition of the RM leads to the raw score being a sufficient statistic for 

student ability (which is consistent with Guttman’s contentions, which will be elaborated on in Chapter 4).  

  

Incorrect Item(i,) 

Correct Item( i+1) 
Correct Item(i,) 

Incorrect Item( i+1) 
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3.3.2.4 Raw Score as a Sufficient Statistic 

The fundamental requirement for the RM is that the interaction between a student’s ability in the trait of 

interest and the relative difficulty of the item that represents a manifestation of the trait are the only factors 

that interact to determine the probability of a correct response to an item. This condition leads to the 

conclusion that all the information regarding a student’s ability is contained in the response pattern and the 

summation of the positive responses to the individual items within the collection that are contributing to 

the variable. Hence, the achieved score on the set of items represents a “sufficient statistic” to estimate the 

ability of the subjects that are targets of the analysis in the trait of interest. The term “estimate” is intentional 

and reflects the measurement property of “measurement error”, which is the degree of uncertainty about 

the precision of the measure due to the uncontrolled factors or natural influences. 

Flowing from this requirement is an assumption of “no guessing”, as guessing provides no information 

regarding the ability of the subject with regard to the trait of intent and thus corrupts the data as a whole by 

overestimating the observed raw score. The presence of guessing would therefore make the information 

regarding the student’s ability less reliable. 

3.3.2.5 Determining Student Ability Estimates 

The raw score is determined as the sum of the probabilities of a given ability interacting with the set of 

items with the determined difficulty. Table 3.2 provides an example of the way an iterative process develops 

the relationship between the observed raw score and the ability estimate derived for each student in the test. 

Specifically, the relationship between raw scores and ability is a function of the interaction of the item 

difficulties with potential abilities. The allocation of an ability estimate for a student with a particular raw 

score, which can be achieved by any distribution of correct answers in the response pattern, is independent 

of the response pattern. It is a function of the item difficulties that are calculated for the items that comprise 

the test. Table 3.2 shows that a student’s raw score of 3 is achieved by an ability estimate somewhere 

between -1.50 and -1.00. An iterative process applied within this range determines that a score of 1 is 

achieved when the ability estimates approximate -1.48 logits. The impact of a raw score being inflated due 

to guessing is evident in the table. 
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Table 3.2 

Example of the Iterative Process to Relate Raw Score to Ability for an 11-Item Test   

Item It01 It02 It03 It04 It05 It06 It07 It08 It09 It10 It11 SUM(Pr) 

Person β 

/ Item δ 
-2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 RS 

-3.50 0.27 0.18 0.12 0.08 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.77 

-3.16 0.34 0.24 0.16 0.10 0.07 0.04 0.02 0.02 0.01 0.01 0.00 1.00 

-3.00 0.38 0.27 0.18 0.12 0.08 0.05 0.03 0.02 0.01 0.01 0.00 1.14 

-2.50 0.50 0.38 0.27 0.18 0.12 0.08 0.05 0.03 0.02 0.01 0.01 1.64 

-2.19 0.58 0.45 0.33 0.23 0.16 0.10 0.06 0.04 0.02 0.01 0.01 2.00 

-2.00 0.62 0.50 0.38 0.27 0.18 0.12 0.08 0.05 0.03 0.02 0.01 2.25 

-1.50 0.73 0.62 0.50 0.38 0.27 0.18 0.12 0.08 0.05 0.03 0.02 2.97 

-1.48 0.73 0.63 0.50 0.38 0.27 0.19 0.12 0.08 0.05 0.03 0.02 3.00 

-1.00 0.82 0.73 0.62 0.50 0.38 0.27 0.18 0.12 0.08 0.05 0.03 3.77 

-0.87 0.84 0.76 0.65 0.53 0.41 0.30 0.20 0.13 0.09 0.05 0.03 4.00 

-0.50 0.88 0.82 0.73 0.62 0.50 0.38 0.27 0.18 0.12 0.08 0.05 4.62 

-0.29 0.90 0.85 0.77 0.67 0.55 0.43 0.31 0.22 0.14 0.09 0.06 5.00 

0.00 0.92 0.88 0.82 0.73 0.62 0.50 0.38 0.27 0.18 0.12 0.08 5.50 

0.29 0.94 0.91 0.86 0.78 0.69 0.57 0.45 0.33 0.23 0.15 0.10 6.00 

0.50 0.95 0.92 0.88 0.82 0.73 0.62 0.50 0.38 0.27 0.18 0.12 6.38 

0.87 0.97 0.95 0.91 0.87 0.80 0.70 0.59 0.47 0.35 0.24 0.16 7.00 

1.00 0.97 0.95 0.92 0.88 0.82 0.73 0.62 0.50 0.38 0.27 0.18 7.23 

1.48 0.98 0.97 0.95 0.92 0.88 0.81 0.73 0.62 0.50 0.37 0.27 8.00 

1.50 0.98 0.97 0.95 0.92 0.88 0.82 0.73 0.62 0.50 0.38 0.27 8.03 

2.00 0.99 0.98 0.97 0.95 0.92 0.88 0.82 0.73 0.62 0.50 0.38 8.75 

2.19 0.99 0.99 0.98 0.96 0.94 0.90 0.84 0.77 0.67 0.55 0.42 9.00 

2.50 0.99 0.99 0.98 0.97 0.95 0.92 0.88 0.82 0.73 0.62 0.50 9.36 

3.00 1.00 0.99 0.99 0.98 0.97 0.95 0.92 0.88 0.82 0.73 0.62 9.86 

3.17 1.00 0.99 0.99 0.98 0.98 0.96 0.94 0.90 0.84 0.76 0.66 10.00 

3.50 1.00 1.00 0.99 0.99 0.98 0.97 0.95 0.92 0.88 0.82 0.73 10.23 

4.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.95 0.92 0.88 0.82 10.50 

4.50 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.95 0.92 0.88 10.68 

5.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.95 0.92 10.80 

5.50 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.95 10.88 

6.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 10.92 

6.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 10.95 

7.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 10.97 

7.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 10.98 

8.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.99 

8.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.99 

9.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11.00 
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3.3.3 Measurement Principles Underpinning the Rasch Model 

Section 3.2 explained the features of the RM. This sub-section elaborates on several underlying 

requirements that are fundamental to implementation of the RM for analysis and reporting of student data. 

3.3.3.1 Undimensionality 

Associated with the concept of an MOI is the requirement of “unidimensionality”. The collection of items 

which make up the assessment instrument are required to provide evidence of increasing “possession” of 

the trait of interest and to contribute to the measurement of the trait. In addition, the items should function 

uniformly as manifestations of the characteristics that are observed in the trait. For example, if the trait of 

interest is Algebra, the collection of items that comprises the construct validity of the instrument must not 

include items that assess Calculus ability. The concept is relatively simple in theory; however, in practice 

it is challenging to achieve when, for example, there are factors such as the reading and language 

comprehension requirements inherent in Mathematics or Science items and differences in cognitive load 

across sub-domains. Yet this requirement is essential given that all of the items in a test contribute to the 

definition of the variable and to the subsequently determined item difficulties and student ability estimates. 

3.3.3.2 Local Independence 

The concept of “local independence” refers to the correlation of the items that comprise the instrument 

designed to measure the latent ability of students in the trait of interest. The local independence requirement 

demands that the items are only correlated through the latent variable. This implies there are no instances 

of the success of any item being dependent upon the success in a previous item, and that the parameters 

generated explain all the systematic difference among the data. Tognolini (1989) noted that a violation of 

this requirement would result in a variation of the definition of the construct: “Altering the sequence of 

items that constitute the test may alter the ordering of items and persons on the continuum” (p. 62). The 

mathematical derivation that defines this RM requirement is presented in Eqn 3.5. 

    Pr{Xni = 1: Xnj = 1| β} = P(Xni|β) . P(Xnj|β)                                Eqn 3.5 

 

where  β is the latent ability of the student in the trait of interest; and 

δn is the relative difficulty of any item that is an indicator of understanding in the trait of interest 

and the subsequent item in the test series. 

 

3.3.3.3 Equal Item Discrimination 

The RM requires that all items within a test set have similar item discrimination and differ only in relation 

to relative difficulty. Item discrimination in the RM is represented diagrammatically by item characteristic 

curves (ICCs). Figure 3.1 provides a sample of an ICC derived from the RUMM 2030 Rasch Measurement 

Model program (Andrich et al. 2013). 

  



57 

 

 

Figure 3.1 

Example of an Item Characteristic Curve.  

 

Source: Current Research Study 1, SIM1.item16_GIPp=0.5 

Figure 3.1 shows that the difficulty of that item is -1.292. This value is determined by the intersection of 

the probability of a correct response being 0.5 as the Expected Value (50%) with the item ogive. As person 

ability increases, the probability of success on the item increases. A student with an ability of approximately 

-0.9 on this item/scale would have an approximate probability of 60% for a successful response. The slope 

of the ogive represents the defined discrimination of the item in the RUMM program. 

The concept of equal discrimination is problematic in the relation to authentic data. The term “equal” 

becomes a relative concept with the emphasis on “sameness” within acceptable bounds. Ideally the family 

of ICCs of a test should comply with the example from Sick (2010) shown in Figure 3.2. 

 

Figure 3.2 

Example of Item Characteristic Curve for a 3-Item Test–Equal Discrimination 

 

Source: Sick (2010) https://hosted.jalt.org/test/sic_5.htm     

https://hosted.jalt.org/test/sic_5.htm
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Figure 3.2 shows that the probability of a successful response on each of the successively more difficult 

items is a function of the student ability only. Violation of the requirement that items have equal 

discrimination may result in item curves such as those displayed in Figure 3.3 (Sick, 2010). 

Figure 3.3 

Example of Item Characteristic Curve for a 3-Item Test–Unequal Discrimination 

 

Source: Sick (2010) https://hosted.jalt.org/test/sic_5.htm 

 

Figure 3.3 shows the issue that arises from a test that comprises items of unequal discrimination. In tests 

that exhibit items of this type, success on higher discriminating items has a greater impact on the calculation 

of student ability than success on those of lower discrimination. As Masters (1988) notes: “When two 

persons have the same number of right answers the higher ability estimate goes to the student who succeeds 

on the more discriminating items” (p. 16.) This issue, and its distracting feature, is similar to that addressed 

in the earlier discussion of the 2PL Model. 

3.3.3.4 No Guessing 

A fundamental tenet of the RM is that the only factors influencing the probability of a student’s successful 

response to an item are the difficulty of the item and the ability of the student in relation to the trait of 

interest. In cases in which a correct response does not relate to ability in the trait of interest, a correctly 

guessed response not only provides no information about the true ability of the student, it also biases the 

data and confounds the estimations of items and hence the ability estimates of all participants in the test. 

As Zimmerman and Williams (2003) note: “Chance success due to guessing limits the reliability of 

multiple-choice tests … for many multiple-choice tests, error variance resulting from guessing can be a 

larger than the error variance from other sources” (p. 367). 

  

https://hosted.jalt.org/test/sic_5.htm
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Yet this requirement is fraught. Given the symmetrical relationship between the estimate of student ability 

derived from the raw score and the item difficulties of the instrument designed to measure student ability, 

as shown in Table 3.2, there is direct impact of a correct guess on the estimate of student ability. For 

instance, Table 3.2 shows that two correct guesses cause a “true” score of 7 being reported as score of 9, 

which results in an increase in the ability estimate in excess of one logit in the scale of this test. In a large-

scale test such as NAPLAN, this equates to approximately two years of learning in the subject. 

Given the current state of the research into the resolution of this “guessing problem”, Humphry (2015) 

asserts: “There is currently no avenue for practitioners to apply Rasch models to standard multiple-choice 

items in a manner that accounts for guessing and maintains a focus on core measurement criteria” (p. 194, 

emphasis added). In response, this study has sought to develop a model that identifies and measures the 

impact of guessing to the calibration of the variable, and the ability estimates of groups of subjects. 

Specifically, the Guessing Indication Protocol developed and evaluated through this research attempts to 

address the consequence of this requirement of no guessing, which, when it is routinely violated, awards 

credit for correct guessing beyond the ability of a student and directly influences the estimate of ability 

attributed to the student.  

3.4 Summary 

This chapter has investigated the common analysis techniques that derive from the family of models that 

comprise Item Response Theory, and it has highlighted current alternative analysis procedures that purport 

to address the issue of guessing in student response data. In particular, it discussed the 2PL and 3PL Models 

and provided a rationale for refuting the use of these methods to address this issue. 

The Rasch Model was presented in detail as the dominant model in cases in which the intention is to share 

results with participants, teachers, and the wider field of educational stakeholders by means of reports and 

diagnostic feedback. This is the case in Australia’s NAP suite of national assessments. The discussion 

highlighted the requirements of the RM and introduced a tension between the theory and the application of 

the model by using authentic data that may contain guessing. 

This and the preceding chapter thus provide a framework and segue into the primary aims of this study, 

which are to 

1. develop a model that takes account of the interaction between students and items at the item/student 

interaction level, but maintains the fundamental principles of measurement that underpin the RM; and 

2. investigate the extent to which stakeholders are guessing by using inaccurate data in their decision 

making as a result of information that does not take account of guessing in a Rasch modelling 

environment. 

The next three chapters investigate the ways in which guessed responses may be identified in student 

response patterns. The thesis then provides a methodology to account for guessing – the Guessing Indication 

Protocol – which aims to reduce the bias that guessing introduces to student data analysed using the RM. 
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Chapter 4  

Methodology Overview 

4.1 Introduction 

The purpose of this chapter is to describe the data sources and the analysis methodology applied during this 

series of studies, and to outline the principles that underpin the Guessing Indication Protocol (GIP) 

algorithm that has been developed to indicate probable guessing in student responses. As outlined in 

Chapters 2 and 3, each phase of this research was evaluated in terms of conformity with the properties 

required of measurement and development of a scale. 

4.1.1 Overview of Research Design and Phases 

The overall study is quantitative in design and grounded in a combination of simulated and authentic data 

that were initially used to identify, through the parameterisation of item/student interactions, the 

characteristics that typify a response with a high probability of being a guess. Those parameters were then 

applied to two sets of authentic data by conditioning student responses to account for identified guessing. 

The outcomes were evaluated using tests of fit and reliability to measure the impact of conditioning the 

data to account for identified guesses. Table 4.1 summarises the analysis phases, purposes, and means of 

evaluation implemented at in phase, the specific analyses for which are elaborated in this chapter. 

  

Table 4.1  

Summary of the Analysis Phases of This Research 

Phase Purpose 

1. Initial (INIT) 

Determine initial Rasch parameters of student ability and item 

location to determine the probability of a correct student/item 

interaction and evaluate misfit. 

2. Guessing Suppressed (GS) 

Re-code defined (Simulations)/self-identified (Field data) guesses to 

determine impact on item difficulty (and student ability) of re-coding 

indicated guessed student/item interactions. 

3A.   Guessing Indication 

Protocol (GIP3A) – item re-

calibration 

Re-calibrate item locations using developed GIP and evaluate impact 

of re-coding items indicated as guessed in the calibration of item 

difficulty compared to the INIT values. 

3B.    Guessing Indication 

Protocol (GIPINIT3B) – student 

ability estimate re-calibration 

Re-calculate GIP student ability estimates using GIP3A item 

locations with the INIT student data (INIT_RS) and evaluate the 

differences in student ability estimates compared to the INIT values. 

 

Each phase contributed to the development of a conditioned data set in which the bias imputed by guessing 

was reduced. Specifically, Phase 1, the INIT phase produced initial Rasch statistics with item location and 

student ability estimate as the statistics of interest. Phase 2, the GS phase produced a conditioned set of 

parameters, with the difference in the item locations and student ability estimates indicating the extent to 

which guessing had biased the results.  
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Phase 3, the development of the GIP was completed in two stages. The first stage (GIP3A) determined the 

interface between the probability of a correct response of an individual student/item interaction and the 

actual guesses in the simulation data, and thus a threshold that was consistent in indicating a known guess. 

Having resolved the threshold parameters, these were applied to individual student/item responses, and 

those indicated as probable guesses were suppressed. Revised item locations were generated with this 

conditioned data set. The second stage (GIP3B) used the revised item locations determined in GIP3A with 

the original data set to assess the impact of suppressing probable guesses from the analysis.  

The research methodology involved three related studies to develop, refine, and evaluate the GIP. These 

are summarised in Table 4.2. 

Table 4.2  

Summary of the Data Investigated and the Analysis Phases Performed on Each Study 

Simulations 
 

Analyses Phases 

Study 1: Simulated data Target data design Name INIT GS GIP3A GIP3B 

Simulation data 

developed to determine 

optimal parameters to 

identify defined guessing 

in data. Parameters then 

applied to small-scale 

field data and large-scale 

cohort assessments 

Normal distribution n(S):400; 

n(I) 40 SIM1 √ √ √ √ 

Small data set n(S):200; n(I) 20 SIM2 √ √ √ √ 

Large data set n(S):1000; n(I) 40 SIM3 √ √ √ √ 

Test too easy n(S):400; n(I) 40 SIM4 √ √ √ √ 

Test too hard n(S):400; n(I) 40 SIM5 √ √ √ √ 

Authentic data sets 
 

Analyses Phases 

Study 2: Small-Scale 

sample  
Target data design Name INIT SIG GIP3A GIP3B 

Small-Scale sample; 

Mathematics 

Convenience sample n(S):303; 

n(I) 40 
Year 5 √ √ √ √ 

Small-Scale sample; 

Mathematics 

Convenience Sample n(S):187; 

n(I) 45 
Year 7 √ √ √ √ 

Study 3: Large-scale 

data  
Target data design Name INIT GS GIP3A GIP3B 

Large-Scale data; 

Mathematics 

Cohort Population n(S): 26000; 

n(I) 18 
Grade 4 √ x √ √ 

Large-Scale data; 

Mathematics 

Cohort Population n(S): 21000; 

n(I) 23 
Grade 8 √ x √ √ 

Large-Scale data; 

Science 

Cohort Population n(S): 26000; 

n(I) 22 
Grade 4 √ x √ √ 

Note: x indicates not implemented  
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4.2 GIP Principles 

The aim of the GIP procedure was to determine the threshold limits of student/item misfit that can be 

effective in identifying a highly probable guess, so that data could be conditioned to remove this source of 

bias and recover more accurate item difficulty and student ability estimates. The basic “building blocks” 

that underpin the development of the GIP procedure are outlined below: 

• The probability of student success on an item is a function of the relative difficulty of the item and the 

ability of the student. 

• The value of the probability of success for an item for a particular student can be calculated using the 

Rasch model with known estimates of item location and student ability. 

• The Rasch model predicts the probability of success on an item for a range of ability levels. 

• When a student whose ability is less than the difficulty of an item correctly responds to the item, the 

result is misfit of the individual student/item interaction. 

• The quantum of misfit is the standardised square of residuals between the observed response and the 

“recovered” response according to the model, after taking account of the student ability and the item 

difficulty estimated from the RM. 

• The degree of the misfit can be used to identify students with an abnormal response to a particular item, 

with these parameters used to indicate probably guessing. 

The GIP was developed from the analysis of sets of parameters observed to be strong indicators of the 

defined guessed responses in a student response pattern. Simulated data were first generated with the intent 

of providing a known source of a student/item guessed responses and, by interrogation of the parameters 

of these data, to develop the GIP. To verify the efficacy of the parameters, and have confidence in their 

generalisability, a series of structured simulated data was used to cover a wide range of distributions of item 

difficulties, a range of student abilities, and the kurtosis and skewness of those abilities in different item 

sets. These variations were intended to cover the range of the typical outcomes that would ensure 

representativeness across most of the large-scale assessment response patterns that occur in practice. 

Approximately 0.5% of “noise” was included and randomly assigned to student responses in each dataset 

to represent the carelessness or misunderstanding that is common in large-scale assessments. The noise 

reflected incorrect responses in the “expected correct” regions of student responses. The inclusion of 

“noise” in the data was to overcome the purely deterministic structures of Guttman, which are typically 

problematic using a probabilistic analysis model. In addition, about 1% of unexpected correct responses 

were randomly included from lower-ability students to reflect some experiences outside the formal teaching 

and curriculum experiences of those students.  

4.3 Analysis Methodology Overview 

The analysis methodology was hierarchical and implemented using Bayesian methods. The data from each 

component of the overall study were imported into SPSSv25 (2019) to enable initial coding of the 

responses. For the simulated data, the analyses applied respectively to each set were as shown in Table 4.1: 

“Initial (INIT)”, “Defined Guessing Suppressed (GS)” and data conditioned by “the Guessing Indication 
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Protocol (GIP3A and GIP3B)”. In the school-derived, small-scale field responses, data streams were 

analysed in the “Initial (INIT)”, “Student Self-Identified Guessing” (SIG) and conditioned by the “Guessing 

Indication Protocol (GIP3A and GIP3B)” phases. The large-scale cohort data involved only an INIT 

collection, and the data conditioned by the GIP3A and GIP3B, as there were no defined guesses indicated 

by the participants.  

SPSSv25 generated descriptive and psychometric statistics (e.g., mean, standard deviation, reliability), and 

conduct significance testing (t-test) for group differences of means. It was also used to recode student 

responses and prepare data in the formats used by the Rasch analysis programs for each treatment. RUMM 

2030 (Andrich et al., 2013) and Conquest 4.14.1 (Wu et al., 1988) were used to prepare Rasch statistics, 

including a confirmation of the traditional statistics extracted by SPSS. Item fit statistics, student statistics, 

and item/student residuals were extracted using RUMM 2030.  

4.4 Participants 

4.4.1 Study1: Simulated Data 

Five sets of simulated data were generated to cover a range of differing statistical properties: sample size, 

test length, item difficulty, central tendency, distributions, skewness, and kurtosis. These data five sets 

provided a variety of structures to represent the generalisability of the protocol developed. No students were 

involved in the generation of the simulated data. In each simulated dataset the “student” response patterns 

conformed to a large extent with the Guttman scale.  

4.4.2 Study 2: Small-Scale Field Data 

A convenience sample of 490 school students from NSW was used for the field study. The total sample 

comprised 303 students from Year 5 and 187 students from Year 7. The Year 5 students comprised 157 

females (52%) and 146 males (48%) from intact and unstreamed classes at four suburban and one regional 

primary school. The Year 7 students comprised 68 females (36%) and 119 males (64%) from intact, mixed 

ability classes at two suburban high schools. 

4.4.3 Study 3: A Large-Scale, System-Wide Sample  

The large-scale data for Study 3 were collected from a standardised, mandated Mathematics and Science 

assessments implemented in the Abu Dhabi jurisdiction of the United Arab Emirates. These assessments 

are administered to the full cohort of students in Grades (Years) 4 and 8. Each administration of the 

assessments comprised a population sample in excess of 20,000 students, which meant no sampling bias 

was present in the data collected. Throughout this thesis these data are referred to as “large-scale” and 

“authentic” data, as they represent data collected from system-wide achievement assessments conducted 

under consistent and system-defined administration processes. 
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4.5 Data Sources  

4.5.1 Study 1: Simulated Data Generation 

The simulated data of Study 1 were generated in Microsoft Excel to the specifications outlined in Table 

4.1. These specifications provide a variety of distributions from which to determine the initial parameters 

used to identify the pre-defined guessing in student responses. The use of simulated data in which the 

guesses are defined gives a certainty to the development of parameters in item/student interaction that 

indicates a true guess. This diverges from other approaches (e.g. the 3PL model) that impute an overall 

guessing parameter to the item. 

Simulated data sets were constructed with varying item/student interactions, ranging from 1,000 students 

with 40 items to 250 students with 20 items, and with targeting varying from a test which was too easy 

through to one which was well targeted and too hard. The response structures were designed to provide 

sufficient variation in item difficulties and simulated student abilities. This sample size also allowed some 

disaggregation of student ability estimates into groups to enable comparison of differences in the quantum 

of variation in parameter estimates for different ability groups (Andrich, 2012; Marias, 2015). 

All simulated data reflected a multiple-choice item set with four distractors and a single correct key. The 

construct of these data was consistent with the items ranging from relatively easy to harder, with targeted 

facilities ranging from 20% to 90%. In the easy items there were relatively few items defined as guesses 

(on average about 2.5%). In the harder items, approximately 20% of the responses were defined guesses 

(25% guessed of 75% incorrect responses). These figures are approximate due to the randomisation 

algorithm, which produced variable quantities with each iteration. 

4.5.2 Study 2: Small-Scale Sample Data Collection 

This small-sample case study was conducted with “live” data to assess the efficacy of the protocol 

developed using the simulated data. It involved fieldwork with a sample of students in Years 5 and 7 – the 

NAPLAN cohorts – attempting Mathematics tests. This study again included only MC items, each with 

four options and only one correct answer. Mathematics was the subject used in the analyses of these field 

data and large-scale authentic data in subsequent studies. 

The tests were developed using items that were pre-calibrated using items that had previously been used in 

a large-scale assessment, hence the relative difficulty of the items that comprised the test, and their 

psychometric properties, were already known. Only items that had functioned with acceptable item 

statistics and overall test characteristics in the large-scale administration were included in the sample tests. 

The Year 5 tests consisted of 40 multiple choice items ordered from easy to hard (as determined by the item 

location in the previous administration). The Year 7 tests consisted of 44 multiple choice items also ordered 

from easy to hard. 
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Consistent with the curriculum experiences of each academic year, the tests comprised a selection of items 

from the subdomains of Number, Geometry, Measurement, Chance, and Data.  

For each Year level, two versions of the test were produced from the initial English version: one in English 

and the other in Arabic, each with the same items. The students participated in both versions of each test. 

This provided a baseline estimate of student ability and item difficulty with the English version of the test 

– effectively a “control” group. The Arabic version not only provided an “intervention” group in which the 

guessing was self-identified, it also generated statistics to compare with the baseline English version values.  

The tests were first administered to the students in the Arabic language, with the content and contexts of 

the items involving varying degrees of language dependence. In some cases, the items were language 

independent. In others, the context or processes needed to solve the items were familiar to the students. The 

remaining items were language dependent and, since none or very few of the students understood Arabic, 

the responses were generally either guessed or omitted. To gain further insight into whether students were 

guessing their responses, the students were asked to colour-code their responses as follows: 

• green if the student believed they had answered the item correctly using their knowledge;   

• yellow if the student had used partial knowledge or a process of elimination; and  

• pink if the student had guessed their answer.  

 

The same students were then administered the same items in English and were asked to use the same colour-

coding system for each response. The English versions of the tests were designed to 

• obtain a better estimate of student ability in a common language medium; and 

• assess the veracity of the Arabic data by investigating the responses to non-language dependent items 

compared to the baseline statistics provided by the English versions of the items.  

4.5.3 Study 3: Large-Scale Cohort Data Collection 

The large-scale data study used data collected from a student achievement program grounded in the Abu 

Dhabi national curriculum. To ensure anonymity of student performance, students were de-identified by a 

unique system of IDs and, apart from gender, no other identifying information was provided. The test 

procedures and implementation were conducted under the authority of the Abu Dhabi Education Council 

and grounded in the curriculum expectations of Grades 4 and 8 at the time of the tests. 

The tests were constructed by professional test developers and subjected to the rigours of a national 

assessment in regard to test framework, review protocols, final test assembly, and checks. The tests used a 

combination of MC items and constructed response (CR) items. The CR items were omitted from the 

analyses, and the data set re-calibrated using only the MC items. The tests comprised 22 or 23 MC items 

delivered in an on-line format, with 40 minutes allowed for completion. Due to the differences in the online 

resources available in the schools, some variation in administration procedure was expected, although all 

tests were expected to be conducted under the mandated administration protocols. 
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4.6 Procedures 

4.6.1 Study 1: Simulated Data 

The simulated data were structured in a Guttman pattern with a variety of correct responses, depending 

upon the nominated relative ability of the “student”, followed by the remainder of the responses being 

incorrect for each “student”. Each data set was then “corrupted” by introducing defined “guessed 

responses” at a random rate of approximately one in four (
1

4
), which is in the regions of the item/student 

response patterns that Guttman determines as incorrect for an individual. The random “correct guesses” 

were generated by a randomisation algorithm with four categories (7 through 10). One category of these 

random data was then defined as a “guess”. For convenience, the value “9” was selected to define random 

guessing within the regions of student responses beyond their ability. The remaining values in the “incorrect 

regions” were coded as incorrect responses. 

4.6.2 Study 2: Small-Scale Field Study Data  

Ethics approval for Study 2 was provided by the University of Wollongong’s Human Research Ethics 

Committee (HE15/450) and the NSW Department of Education’s SERAP process (2015296), which is 

required for research involving NSW schools. Working with Children clearances were also obtained for all 

invigilators, as required by the NSW government. To recruit schools, letters were sent explaining the intent 

of the study and the instruments to be used. Consent to participate was indicated by approval from the 

school principal and the teacher, after which the information was distributed to relevant families to seek 

parents’ or carers’ written consent and the student’s verbal assent.       

The tests were administered in class groups in accord with the test’s administration guidelines: first with 

the Arabic administration and then the English version immediately after a short break. The tests were 

administered in pen-and-paper format, with students additionally responding to items using coloured 

markers as described above. Students were given up to 30 minutes to complete each version of the test, and 

typical examination conditions were followed. 

4.6.3 Study 3: Large-Scale Study Data 

As the assessments for Study 3 were implemented as a component of the Abu Dhabi Education Council’s 

assessment program, no ethics approval required for data collection. Permission was sought and received 

from the Director of Research and Assessment of the Abu Dhabi Education Council to conduct and report 

investigations specific to the identification of guessing in student response patterns, and for using item 

response time as a potential indicator of guessing. The permission allowed use of both the analyses and the 

de-identified data. 
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4.7 Plan for Analysis 

Each of these five simulation data sets were analysed using the Rasch analysis technique according to the 

processes and sequences outlined in Table 4.1.  

4.7.1 Study 1: Simulated Data 

In the simulated data, all sets had defined “guessed” responses. The analysis plan applied to simulated data 

were those outlined in Table 4.1, with the exception that the plan for Study 1, the Simulated Data, used 

defined guesses formulated with the intent of determining GIP. The plan and sequence for analysis had 

three phases.   

Phase 1 was the “Initial” (INIT) analysis. In the INIT analysis all the defined guesses were treated as correct 

responses, ignoring the fact that they were defined a priori as guesses. The item, student, and item-student 

interaction parameters from the INIT analysis of each simulated dataset were then extracted to determine 

an appropriate set of parameters that would indicate the defined, embedded guesses in these data.  

As the INIT estimates were produced from data sets that were analysed without accounting for guessing, 

“defined correct guesses” were included both in the calibration of the item difficulty and the student raw 

score, and hence the student ability estimate. The measures extracted from the analyses included: 

• INIT person ability (logits); 

• INIT item difficulty (location in logits); and  

• reliability statistics (Cronbach’s alpha).  

The Rasch model was used to calculate: 

• individual item/student probability of success; and 

• individual item/student residuals based on the success of the student on the item. 

 

Phase 2, the GS phase, involved a process in which the defined guessed items were re-coded as missing 

data to estimate the impact guessing had on the calibrations of item locations and student ability estimates. 

GS estimates were produced from the data sets in which the defined guesses were re-coded as missing data 

in the calibration stage, and the student raw score was reduced by the number of “correct guesses”, with 

consequent impact on the calculated student ability estimate. GS-conditioned data were analysed to 

determine revised item difficulties and student parameters, together with the item-student interaction 

parameters. These data represented “accounting for guessing”, as the guessing response had been defined 

a priori in each data set.  

 

Differences in outcomes of the INIT and GS phases were determined with the parameters relating to items 

that had been generated in the INIT analysis compared to those that were generated from the GS analysis 

for responses a priori defined as “guessed”. These parameters were interrogated to develop a beta model 

for the identification of guessed items in the response patterns of students of differing ability ranges. The 

three parameters found relevant in differentiating items that were defined guesses were the location of the 

item; the calculated probability of the interaction; and the calculated misfit of a correct guess compared to 
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the expected outcome for the interaction of the student ability with the item of that difficulty. Following a 

series of iterations and interrogation of the simulated data, the GIP parameters were determined. This 

process is elaborated on in Chapter 5. 

 

Phase 3 had two parts. Part 3A involved first using the parameters from the Phase 1 data to instigate a re-

code of the specific items that had failed GIP indicators, determined from the simulated data, and indicated 

as probable guesses. The revised GIP was implemented to suppress indicated guessing in the calibration of 

item difficulties. This phase of the analysis (GIP3A in Table 4.1) was used to re-calibrate the item locations 

to be used in the GIP3B process, which was the re-calibration of student ability estimates. 

In the next step of Phase 3A, after the items identified as “highly likely guesses” were re-coded to “missing 

data”, the conditioned GIP item sets were analysed to extract revised test performance, item statistics, and 

individual student ability estimates. These results were extracted for comparisons with the INIT outcomes 

and the GS outcomes of Phases 1 and 2. Comparisons were then made between “actual” guessed responses, 

as defined in the Phase 1 data set, and the guesses identified by the GIP process to determine the efficacy 

of the process in respect of “recovery rates” (where recovery rate reflects a comparison between the 

percentage of defined guesses in the simulated data and the percentage indicated by the GIP procedure). 

Finally, Part 3B involved using the raw scores from the Phase 1 data with the re-calibrated item locations 

derived in Phase 3A. The conditioned GIP item sets were re-analysed to extract revised test performance, 

item statistics, and individual student ability estimates to reflect the impact of the GIP. In this final phase 

of the GIP evaluation, the guessed items were scored as correct (score for a guess = 1). This process 

provided an estimate of the degree to which ability was misreported in analyses that did not account for 

guessing, while maintaining the face validity of scoring probable guesses as correct. This version of the 

GIP was considered by the researcher to represent the reported ability of the student on the trait if guessing 

was taken into account.  

4.7.2 Study 2: Field study 

The data collected in the field study were analysed using the same processes outlined in Study 1. This 

involved an INIT phase, a SIG (self-identified guess) phase, and the GIP3A and GIP3B processes. The 

second phase of the analysis of the English version of the test took account of the colour-coded responses. 

This was the Self-Identified Guess (SIG) analysis. The efficacy of the proposed GIP model was assessed 

by comparing the success of the GIP model in identifying the item/student interactions that were indicated 

as guesses in the student data. 

The data from this study were analysed initially with the English form of the test, taking into account the 

student answers without reference to the colour coding to determine a set of baseline data. The parameters 

obtained from these analyses were compared to the item parameters of the original Arabic tests from which 

the items were extracted in relation to the order of difficulty and the fit statistics (INIT). The items had 

performed uniformly with their original calibrations that had been used to determine the test content and 

item order.  
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The responses to the Arabic version of the tests were subjected to the same analysis phases (INIT, SIG, and 

GIP) for the purpose of comparison with the baseline data extracted from the English versions. These 

analyses were designed to provide further insight into the relationship between student ability and their 

propensity to guess. The analyses of the results from the Arabic version of the tests were predicated on 

three “known” parameters: 

1. the relative mathematical ability of each of the students was “known” from the English version of the 

test.  

2. the relative difficulty of each item was “known” from both the initial large-scale calibration statistic and 

the analysis of the English version of the instrument; and 

3. there was knowledge of the degree to which each item was language dependent (i.e., there were no 

clues, and the item was totally encoded in Arabic).  

The intent of this component of the study was to provide further insight into the response patterns of groups 

of students of differing ability when guessing was an expected and self-indicated outcome.  

4.7.3 Study 3: Investigations of a Large-Scale Data Set 

In the analysis of the large-scale data, an INIT, GIP3A, and GIP3B analyses were implemented using the 

final threshold parameters developed for the GIP process. Ability estimates from the initial analysis were 

generated and, following the implementation of the GIP procedure, new estimates were generated to 

provide an indication of the impact of guessing.  

The MC items of the data sets were analysed in the same manner as the simulated data and the field trial 

data, with an INIT analysis ignoring response patterns. No GS analysis was possible with the large-scale 

data, as there was no process to identify or define guesses. In the case of the large-scale data, the second 

iteration of the analysis involved implementation of the parameters of the GIP model developed in phases 

GIP3A and GIP3B. Tests of fit were completed, and the individual and group results before and after data 

conditioning were evaluated to assess the efficacy of the process and the final outcomes of accounting for 

guessing using the GIP process. These are elaborated on in Chapter 7.  

4.7.4 Investigation of Student Response Time as a Parameter in the Identification of 

Guessing 

The technology associated with online assessments allows additional (unplanned) response time data at the 

individual item/student level to be collected alongside the item response data. Consequently, for this 

research it was possible to investigate average item response time across a cohort by item (using aggregation 

of individual response times) and by interrogation of the individual responses.  

The researcher considered it plausible that the interaction between individual and cohort response times 

might give some indication that there was a factor (e.g., guessing) impacting a student’s response to a 

particular item. These instances were considered in association with the cognitive load required to engage 

with the stimulus, review the options in MC items, and perform calculations or operations demanded to 

answer the item. It was expected that there would be some variation in student responses to individual items 

depending upon item complexity, word count, item location within the test, and the ability of individual 
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students. However, it was reasonable to assume that a response pattern, in relation to item answer and item 

response time, might observed for a student, and that when taken in tandem with their ability, it would give 

some insight into the level of engagement and commitment of a student at the individual item level. 

Response time data thus potentially provided an additional factor that could be incorporated into the model 

to identify guessing.   

Chapter 8 details these investigations in which the response time for a student was well below the average 

response time of the cohort or ability group of the student, yet a correct response was recorded. These 

parameters were considered in conjunction with GIP parameters to determine if the timing parameter could 

be used to better identify a “guessed” item. 

4.8 Summary 

This chapter has outlined the overall methodology, the data sources, and the characteristics of the data used 

to develop and evaluate the GIP procedure. The methodology includes the logic used to address the problem 

of accounting for guessed items in a Rasch analysis. The major deviation of this methodology from those 

of previous researchers is that it addresses the identification of guessing at the individual item/student 

interaction level and maintains the complete set of response data. Previous methods either generalised a 

guessing parameter over the population or reduced the data set by removing responses that were deemed to 

be beyond the ability of students. 
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Chapter 5  

Study 1: Analysis of the Simulated Data 

5.1 Introduction to the Chapter 

In Study 1, the simulated data were controlled with a specific definition of which student/item interactions 

were guesses. This allowed observation of results before and after controlling for guessing as a baseline for 

determining and refining a Guessing Indication Protocol (GIP) that could subsequently be evaluated in 

“live” data (see Study 2 in Chapter 6, and Study 3 in Chapter 7). The purpose of this chapter is to describe 

the process by which this GIP procedure was developed and initially evaluated. Specifically, this chapter 

provides a rationale for using the Guttman structure to develop Study 1 data and describes how the 

simulated data were generated. The conduct of Study 1 followed the methodology outlined in Chapter 4, 

and the plan for these analyses is elaborated in this chapter. The results of the analyses are then presented, 

summarising the several iterations of analyses that informed the development of the GIP, which is the 

subject of further evaluation in Study 2 and Study 3. The chapter concludes with an interim discussion of 

the outcomes of Study 1 and a definition of the GIP developed and used throughout the remainder of the 

thesis. 

5.2 The Guttman Structure as a Starting Point for Investigations 

5.2.1 Introduction to the Section 

Until the late 1900s the dominant theory that underpinned test construction, multicomponent assessment 

instruments, and student achievement testing in the educational, social, and behavioural science domains 

was Classical Test Theory (CTT). CTT measures the reliability of the test, as determined by the difficulty 

of the test items and the score achieved by individual test-takers. The development of CTT dates to the work 

of Spearman (1904b), Fisher (1921), Thurstone (1927), and Cronbach (1951), and is typically represented 

by the equation:  

Observed Score (Xj) = True Score (Tj ) + Error (εj) Eqn 5.1 

The development of CTT is grounded in three conceptualisations: 

1. the acceptance that there are errors in measurement; 

2. these errors are random variables; and 

3. there are correlations between items that contribute to a test, and these correlations can be indexed. 

The general initial aim of CTT is to minimise the impact of the errors by understanding and improving the 

reliability of the items used to measure the ability of students in the trait of interest. The source of the error 

in trait measurement may include systematic errors that reflect misclassification in the measures and random 

errors that may accrue due to arbitrary noise, careless mistakes, and/or misconceptions. Random errors that 

impact on individual test scores are independent of the individual test-taker and of the trait of interest, and 

hence will sum to zero over the entire sample of test-takers. Systematic errors will engender a positive or 

negative misclassification across the individual test-takers and the overall performance of the entire sample.  
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Although systematic errors will not affect the distribution of the scores (Xj) of test-takers, they will affect 

the average of the aggregated scores as represented in Figure 5.1. Given the assumptions regarding the 

relationship between item difficulty and student ability in the source of guessing, an error that accumulates 

due to guessing is considered systematic. The existence of systematic errors in the calibration of the 

parameters that contribute to the estimation of item difficulty, and consequently the quantification of student 

ability, contaminates the quality of the variable of interest and, by extension, imputes inaccuracy into the 

reported results of the students.  

Figure 5.1 

Impact of NOT Accounting for Errors on the Distribution of a Set of Raw Scores  

Note. Adapted from Marias (2015, p. 125).  

 

5.2.2 The Guttman Scale 

Guttman’s (1944, 1950) significant contribution to the development of measurement theory and the 

evolution of Modern Test Theory (MTT) was the conceptualisation and subsequent coding of the 

interrelationships between items and their difficulty, and between test-takers and their ability, along with 

the concept and construct of unidimensionality in the measurement of the trait of interest. The Guttman 

scale arose from an appreciation that although the reliability of an item in a test is a significant consideration 

in determining its contribution to the measure, it is not sufficient in determining if the total set of items are 

unidimensional. That is, item reliability provides a necessary, but not sufficient, indication of internal scale 

consistency and unidimensionality of the scale. The relationship between internal consistency and 

unidimensionality was investigated by Cronbach (1951) and Lumsden (1957), each of whom discussed the 

concept of a “pure factor” or “same thing” as a concept of unidimensionality, which is a feature central to 

the concept of measurement. Guttman’s (1944, 1950) contribution to MTT stem from his work with sets of 

dichotomous test items that were initially designed to order a sample of students and position their ability 
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on a derived scale. His work advanced the concept of a unidimensional scale on which items and students 

could be placed in relative, comparable positions that are invariant for the set of conditions and variables. 

He developed a set of requirements that are implicit in measurement theory, the use of which generates data 

complying with conditions of the Guttman scale. This led to the concept of “items operating in the same 

direction” being superseded by “items belonging to a scale that measure the same dimension” (Guttman, 

1950, p. 185). This concept is fundamental to the principles of “measurement”. 

For a given data set, there are significant similarities between the conditions that satisfy the requirements of 

the Guttman scale and the requirements of the Rasch model (RM), which underpins this research. Andrich 

(1985) notes: “The Rasch models and the Guttman scale are both constructed a priori to the data whereas 

their respective rivals are governed more by the data” (p. 36, emphasis added). That is, a principal aim of 

CTT and some Item Response Theory models is to fit data to a bespoke statistical outcome to explain the 

data, rather than to conceptualise a measurement model, collect data, interrogate the results, and from that 

ascertain if the data fit the conceptualised model; “The Rasch models are consistent with the Guttman scale 

because they are generated from the same conditions and requirements for unidimensional scaling of 

measurement” (p. 36). Andrich also notes that the conditions in common with the RM that satisfy a Guttman 

scale include dichotomous responses, reproducibility, unidimensionality, data reduction, and invariance. 

The requirements of the Guttman scale (1950) will now be introduced. 

5.2.2.1 Dichotomous responses  

The use of dichotomous response formats provides a simple vehicle for the definition and implementation 

of a scale, and for providing a data structure on which unique items and students can be located on the 

conceptualised variable. The data structure allows for the ordering of items from easiest to hardest in an 

unequivocal structure based on percent correct as the measure of relative difficulty. The ordering of item 

difficulty, and the implicit assumption regarding the ability of the student who answers the item correctly, 

define that the knowledge required to answer all previous items has been mastered.  

5.2.2.2 Reproducibility 

Guttman (1950) makes reproducibility of scale development explicit in the perfect correlation between 

individual item responses and the total score. The item pattern is defined by the total score for each test, 

which provides the deterministic characteristic of a Guttman scale. This condition is highly problematic in 

the real-world application of student achievement tests and is a point of divergence with IRT models that 

calculate the probability of a positive response and a “likely” response pattern rather than a “certain” 

response pattern. However, in the simulated data of Study 1 the Guttman scale provides certainty in the 

relationship between the response pattern and the achieved score. 
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5.2.2.3 Unidimensionality 

Unidimensionality is a requisite element of data for the valid use of the RM. Guttman (1950) defined the 

condition of unidimensionality as “a single continuum as a series of items each of which is a simple function 

of the scale scores permits a clear-cut statement of what is meant be rank-order based on a single variable” 

(p. 154). Given the relationship between the items, and the defined dependency of the correctness of item x 

being contingent upon a correct response to item x-1, the pure Guttman response pattern typically displays 

a high reliability index (KR-20 and/or Cronbach α), which indicates that all items are contributing uniformly 

to the trait and hence a high degree of unidimensionality.  

5.2.2.4 Data reduction  

The Guttman scale is cumulative in that if a student answers a given item correctly, the student must have 

correctly responded to all preceding items. For dichotomous items, the number of acceptable responses 

(scale items) is the number of possible item responses (item × categories), less the number of items (incorrect 

responses) + 1 (all incorrect). The item combinations satisfying the Guttman scale are defined in Eqn 5.2: 

 

     Number of scale items = (n × 2) – n + 1              Eqn 5.2 

 

The total of all possible item response combinations for a set of dichotomous items is 2n, where n is the 

number of items in the set. For example, for a three-item test, the scale item combinations (assuming the 

items are ordered by difficulty) are: Scale items (3 × 2) – 3 + 1 = 4 (see Table 5.1); and the possible total 

number of response combinations is 23, being the scale items plus the following non-scale items = 8 (see 

Table 5.2). 

 

Table 5.1 

Guttman Scale Responses for a Three-Item Test 

Item 1 Item 2 Item 3 Score 

0 0 0 0 

1 0 0 1 

1 1 0 2 

1 1 1 3 

 

Table 5.2 

Non-Guttman-Like Responses for Three-Item Test 

Item 1 Item 2 Item 3 Score 

0 1 0 1 

0 0 1 1 

0 1 1 2 

1 0 1 2 

1 1 0 2 
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For a 40-item test, the number of scale items is (40 × 2) – 40 + 1 = 41 scale item combinations. The total 

number of possible response combinations is 240. Andrich (1985) notes:  

The reduction of the data to scale types according to the total score is a major feature of the 

Rasch models (the raw score is a sufficient statistic) and provides an important link between the 

Guttman and Rasch scaling principles. (p. 41)  

5.2.2.5 Invariance 

The concept of invariance relates closely to the fundamental principles of the RM. This concept concerns 

the relative ordering of students on a defined dimension, irrespective of the items that have been used to 

define the test-taker’s position on the scale of interest. Hence, irrespective of different sets and subsets of 

items that make up a unidimensional scale, the order of students on each of these tests will be invariant.  

The major deviation between the conditions that define a Guttman scale and the requirements of a Rasch 

scale is the deterministic nature of the Guttman scale. Although both models contend that the raw score is a 

sufficient statistic to determine student ability estimates, the Guttman scale defines a specific item order and 

student response pattern required to achieve a particular score. This defines the deterministic nature of the 

Guttman scale. Rasch, on the other hand, defines an achievement scale as a probabilistic matrix in which 

the raw score is a random variable that can be achieved by several different item/success combinations. 

Although the concept of a Guttman scale has declined in popularity due to its deterministic properties, the 

theoretical underpinnings specifically link item difficulty and student ability in determining student response 

patterns. According to Andrich (1982), 

The ideal of a Guttman scale is difficult to achieve in real testing, the main obstacle being the 

requirements that the responses of a student to an item is governed in a determinable way. … 

The realizations of the Guttman scale is enhanced if the items have a large spread in 

difficulty and no two items are close together on the scale. … The probabilistic counterpart of 

the ideal Guttman response pattern is the simple logistic model (SLM) of Rasch. (p. 96) 

In developing the SLM, Rasch … in fact presents a pattern of ideal results for ordering 

students and items which take the Guttman form. The responses of students to items which 

conform to the SLM conform to the Guttman scale in terms of probabilities. … Consistent 

with the SLM’s being a probabilistic counterpart of the Guttman scale, if item difficulties 

are spread greatly, then the responses generated according to the SLM will reveal a 

Guttman pattern. (p. 96) 

 

Guttman’s scale was utilised in Study 1 to derive a practical, theoretically based initial data set that allowed 

guessing to be defined and identified in a Guttman-like data set. This provided certainty regarding the impact 

upon item parameters and consequent student ability estimates from applying different approaches to 

account for guessing. Specifically, the use of a Guttman-like data set was appropriate as a starting point as 

it represents “a limiting case of the probabilistic SLM pattern” (Andrich, 1982, p. 95). Hence, given the 

similar requirements of the Guttman scale and the Rasch measurement scale, as outlined in Chapter 4, it 
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was deemed appropriate to derive, evaluate, and refine an initial GIP using simulated data that essentially 

follows a Guttman scale, with defined relationships between item difficulty and person ability.  

In the simulated data sets the Guttman-like data structures were corrupted by introducing randomly 

generated guessed items to develop the potential indicators of systematic guessing in a student response 

pattern. The following sections elaborate on these methods.  

5.3 Elaboration of the Methods 

5.3.1 Development of Simulated Data Algorithm 

The intention of this research was to develop a protocol that is efficient and effective in identifying highly 

probable guesses in student responses. The plan outlined in Chapter 4 proposed that this could be achieved 

by evaluating the misfit in the student/item responses and suppressing those interactions that were 

considered indicative of a probable guess. Having suppressed the likely guesses, a new set of item 

parameters could be generated and used to develop a revised set of student ability estimates. Comparisons 

could then be made between the initial item locations and student ability estimates and the revised values 

to determine the impact of accounting for probable guessing in the estimates of student ability. 

Aligned with this intention, this chapter describes the development of sets of simulated data in which the 

guessed responses are defined such that comparisons can be made with certainty over which items in the 

student response pattern were guesses to provide confidence in the developed protocol. 

5.3.1.1 Overarching Method for the Development of the Simulated Data 

The simulated data were created to serve two main purposes: 

to produce a data structure that was effectively Guttman-like in design and provided the benefit of a defined 

relationship between item difficulty, student ability, and response regions in which items would be 

incorrect; and  

to introduce defined “guessed” responses into those regions in which student responses would be incorrect 

in a Guttman structure. 

 

The data structure thus had the following four features: 

a number of students ranked from more able to less able, in a Guttman-like scale, based on a raw score; 

a decreasing number of correct responses per student to reflect a population ordered by decreasing student 

ability; 

a corresponding increase in incorrect responses to reflect a population ordered decreasing ability; and  

a corruption of the zones of incorrect responses by randomly including correct guesses, which inflate the 

raw score of the lesser ability students. 
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The fundamental principles underpinning the Guttman scale are students will have varying degrees of ability 

in the trait of interest, that it is possible to construct a unidimensional scale of items that contribute to the 

measurement of the trait of interest, and that the items comprising the testing instrument can be ordered by 

difficulty. The dichotomous result (1,0) of the interaction between the test-taker and individual items is a 

function of the ability of the test-taker and the difficulty of the item. Hence, if the relative difficulty of 

item(i) is lower than the ability of the student(j), the response to the item(i) will be correct for student(j). 

Conversely, when the student’s ability is exceeded by the difficulty of the item(i) the test-taker(j) will 

respond incorrectly to the item. The matrix in Table 5.3 is an example the Guttman scale generated by these 

basic principles. 

Table 5.3 

An Example of the Guttman Scale: Six items, Seven Test-Takers 

  

 

According to Guttman (1950), the student score (Xj) not only provides the estimate of the relative ability of 

the test-taker, assuming the validity of the items selected to measure the trait, but also defines the response 

pattern of the dichotomous answers to each item. For example, within this pattern, a score of 4 can only be 

achieved by a response pattern of 1,1,1,1,0,0 in relation to this test with the items ordered by increasing 

difficulty. The model is deterministic, with all the information about the student being defined by the score. 

Correct guesses were introduced in the regions indicated in Table 5.3 that would be defined as incorrect 

responses (scores of zero) in a pure Guttman pattern. These are systematic in that they are in the region 

beyond the ability of the student. The introduction of these correct guesses was by the implementation of a 

randomisation algorithm in the “incorrect” region as shown by the values of ‘9’ in Table 5.4. These values 

were defined as correct guesses. 

To accommodate the paradox between purely Guttman-like data and the RM being a stochastic data 

response pattern, the following two minor variations were introduced to the simulated data patterns (see 

Table 5.4 for a demonstration of this structure): 

1. Some random incorrect responses were included within the determined “correct” zone of the Guttman 

response pattern to reflect careless mistakes and/or misunderstandings of some able students with 

respect to individual items or concepts. 
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2. A “zone of uncertainty” was also introduced to the data. This was a region at about the intersection of 

the correct/incorrect boundary at which it is reasonable to expect that an individual item/student 

response has about a 50% probability of being correct (incorrect). This zone of uncertainty translated 

into random correct/incorrect responses (randomly coded 5, correct, and 6, incorrect) for each student 

at the boundary between the determined correct and incorrect response pattern. 

 

Table 5.4  

An Abridged Example of the Structure of the Simulated Data 

Person Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Xj 

Case 1 0 0 0 0 0 9 1 

Case 2 5 0 9 0 0 0 2 

Case 3 1 5 0 0 9 0 3 

Case 4 1 1 6 0 0 9 3 

Case 5 1 1 1 9 9 0 5 

Case 6 1 1 1 0 0 9 4 

Case 7 1 1 1 1 0 0 4 

Case 8 1 1 1 1 5 0 5 

Case 9 1 1 1 1 5 9 6 

Case 10 1 1 1 1 1 1 6 

Obs Facility 90.0% 80.0% 80.0% 50.0% 50.0% 50.0%   

True Facility 90.0% 80.0% 60.0% 40.0% 30.0% 10.0%  

Note. Table 5.4 shows correct responses that are a function of ability coded as 1; responses in the zone of 

uncertainty coded as 5 and scored as correct (1); mistakes in the zone of uncertainty coded as 6 and scored 

as incorrect (0); and correct guesses in the zone of uncertainty coded as 9 and scored as correct (1).  

The Observed (Obs) Facility is the sum of the items scored correct divided by the total number of responses, 

expressed as a percentage. The True Facility is the sum of the items scored correct, less those correct due 

to guessing (9), divided by the total number of responses. Xj is the raw score that would be reported, after 

inflation by the correct randomly generated guesses. 

Table 5.5 

Summary of Intended Targeting and Observed Traditional Statistics for Each Data Set 

Simulation Target Cases 
Max 

Score 

Raw Score 

M (SD) 

True Score 

M (SD) 

Introduced 

Guess 

M (Total) 

SIM 1 Normal 400 40 24 (8.7) 19 (11.1) 4 (1771) 

SIM 2 Marginal easy 250 20 14 (3.8) 13 (4.8) 1 (360) 

SIM 3 Normal 1000 40 24 (8.1) 19 (10.5) 4 (4304) 

SIM 4 Easy 400 40 27 (8.5) 22 (11.1) 3 (1311) 

SIM 5 Hard 400 40 20 (7.6) 14 (9.7) 5 (2164) 

Note. Raw Score is the mean of the sample. The standard deviation about the mean for the sample is 

represented in the brackets. True Score is the mean of correct answers when all correct defined guesses 

have been removed. Introduced Guess is the mean number (per student) of defined random guesses (9) 

within each simulated data set. The number in brackets is the total number of randomly generated guesses 

introduced to each simulated data set. 
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For the reported outcomes of the simulated data to be generalisable across a wide range of distributions, five 

variants of the analysis of the data are provided. Since the emphasis in Study 1 was the student/item response 

interactions, the simulated data reflect a wide range of response patterns (see Table 5.5). 

• The rationales that underpinned these five reported simulated data sets were, respectively: 

• SIM1 was a normally distributed data set with a linear distribution of item difficulties, including a 

sufficient number of items (40) and a sufficient number of students (400) to generate stable item and 

student parameters. 

• SIM2 was a data set with a variation in student numbers and test width, resulting in an insufficient 

number of items (20) and possibly too few students (250) to generate stable item and student parameters. 

• SIM3 was a normally distributed data set with a wider separation between item difficulties, with a 

sufficient number of items and a larger sample of students to generate stable item and student 

parameters. 

• SIM4 was developed as a negatively skewed distribution, with sufficient items that tended to be too 

easy for the sample students and hence there would be an expectation of a lower proportion of guesses 

in these data. 

• SIM5 was developed as a positively skewed distribution, with sufficient items that tended towards too 

difficult for the sample students and hence there would be an expectation of a large proportion of guesses 

in these data among the more difficult items. 

5.3.2 Plan for Analysis (PfA) of the Simulated Data 

Using Rasch analysis, the following three primary factors were considered relevant to student guessing:  

• the score of the student on the item (1,0);  

• the ability of the student in the trait of interest; and 

• the difficulty of the item in the scale of the trait of interest. 

The result of the student/item interaction was determined by referencing the student response to the correct 

key defined in the test specification. All multiple-choice (MC) items had a dichotomous value: incorrect 

(0) or correct (1). 

The analysis of the simulated data was a 3-step process: 

• Each of the simulated data sets was first analysed using traditional techniques to review the facility 

performance of the items in situations in which defined guesses are ignored (current convention). These 

analyses sought to demonstrate the extent to which guessing could influence reported scores. 

• Each simulated data set was then analysed using the RM, as described in Phases 1 and 2 of the Plan for 

Analysis (Table 4.1), which initially took no account of defined guesses (INIT). The data were then 

conditioned with the defined guesses recoded to produce revised parameters that accounted for the 

guesses, the Guessing Suppressed analysis (GS), to inform the development of the GIP. The purpose of 

this analysis was to determine the extent to which accounting for the defined guesses in each data set 

impacted on the item difficulty locations and the relative ability estimates of the students represented in 

the simulated data.  

• The third step followed on from the overarching presumption guiding this proposed approach to account 

for guessing: the parameters of misfit and probability of a correct guess might provide threshold values 
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that accurately and consistently indicate high probability of a guess. Observations of the differences in 

the item locations, the probability of a successful outcome for each student/item interaction, and the 

value of the misfit residual were collated to determine reliable and defensible thresholds that could be 

assessed for their efficacy in identifying the defined guesses. 

5.4 Results for the Simulated Data 

5.4.1 PfA Step 1: Preliminary Results of Observed Item Performance in the 

Simulations 

Results of the first step in the analysis confirmed that there was a strong relationship between item difficulty 

and the proportion of guesses as difficulty increased. This demonstrated the extent to which guessing could 

influence reported scores. These results are reported separately for each data set in the sub-sections that 

follow. 

5.4.1.1 SIM1 

Figure 5.2 shows the relationship between the proportion of correct random guesses and the true facility 

(correct responses minus guessed responses) for each of the 40 items. Specifically, the difference between 

the observed facility (red dots) and percentage of correct guesses (purple dots) is the true facility (green 

dots). For example, for Item 10 approximately 3% of the responses were correct guesses, the observed 

facility was 80%, and the true facility was approximately 77% (80%-3%). The inconsistency in these 

proportions, as indicated by the deviation from the trend line, reflects the random nature of the generated 

successful guesses in the simulation. 

Figure 5.2 

SIM1 Comparison of Facility With Correct Guesses 
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Note. The pattern of item facilities shown in Figure 5.2 follows the expected pattern as hypothesised in 

Chapter 1. The value of R2 – the co-efficient of determination of the random guessing variable – indicates 

that 87% of the variation about the mean could be explained by the facility in the regression analysis.  

In examining the full SIM1 dataset (detailed in Appendix A), the analysis of the mean true facility of the 

full test (47.2%) indicated that 52.8% of the responses were incorrect. When compared to the observed mean 

facility of the full test (58.3%), the impact of the correct random guesses was an overestimation of the mean 

facility of the test by 11.1%. The scale of the misclassification of the correct random guesses was of the 

order of 25% of the number of true incorrect responses, which was the expected rate of random guessing in 

a 4-distractor multiple choice item pattern. 

The dataset created for Simulation 1 confirmed the expectations in terms of rate of guessing and 

demonstrated the potential impact of reporting student results when guessing is not accounted for, given 

that scores were inflated by an average of 11.1% over the population. 

5.4.1.2 SIM2 

Simulation 2 was derived to provide a different sample size and true score distribution than that evaluated 

in SIM1. The mean of the true item facilities was 64%, which was the normal target for a test appropriate 

to a lower age group assessment. The mean of the observed item facilities of the overall test was 71%, 

indicating a difference from true facility of 7%. This represents an inflation due to guessing of approximately 

¼ of the proportion of true incorrect responses. As observed in Figure 5.3, high correlations exist between 

the coefficients of determination of the item order (ordered from easy to hard) and the facility rate of the 

item as shown in Figure 5.4. These high rates are also shown in the rate of guessing and the facility of the 

item.  

Figure 5.3 

SIM2 Comparison of Facility With Correct Random Guesses  
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Note. The dataset created for Simulation 2 confirm the expectations in terms of rate of guessing and also 

demonstrate the potential impact of reporting student results when guessing is not accounted for. For this 

smaller, more homogenous set, the scale of the inflation of the scores was marginally reduced. 

5.4.1.3 SIM3 

Figure 5.4 reflects a data set with a significant increase in the sample size. The averages are 58.2% and 

47.4% for observed and true facility rates, respectively, which indicates the raw scores were inflated by the 

random guessing misclassification by 10.8%. This value is very close to the expected value of 10.5%, (¼ 

of 42%), indicating that the data are consistent with the design construct. The values of the R2 (co-efficient 

of determination) are also closer to a value of 1. This result suggests that the relationship between item 

difficulty and the instance of guessing was more determined in this larger sample.  

The results of SIM3 are consistent with those of the earlier simulations, with an indication that larger 

samples tend to conform more closely to the expected outcomes of the hypothesis. 

Figure 5.4 

SIM3 Comparison of Facility With Correct Random Guesses 

 

5.4.1.4 SIM4 

Figure 5.5 displays the relationships for a data set that was designed to be relatively easy for the target 

group. It shows the equivalence of the facility rates for the true and observed values for the easy items, in 

which random guessing is negligible. As such, this sample design (an easy test) has relatively low impact 

on the R2 coefficients compared to the previous sample simulation data designs. This statistic resulted from 

the higher number of easy items in the data, in which there were fewer instances of guessing to contribute 

to the co-efficient of determination. These data result in an observed average facility of 63.7%, with a 

corrected true facility of 55.5%. The misclassification due to the correct random guesses is 8.2%, which is 

in accord with the expected value of 9.1%.  These results confirm that when a test is too easy for the target 
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Figure 5.5 

SIM4 Comparison of Facility With Correct Random Guesses 
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Figure 5.6 

SIM5 Comparison of Facility With Correct Random Guesses  

 

 

The previous commentary described the methodology implemented to produce the simulated data and report 

the traditional statistical outcomes derived from the planned initial analyses those data. Those analyses 

sought to evaluate the impact of “known” guessing and the potential to extract parameters from “defined 

guessing” within the simulated data. The results provided confidence in these data as a baseline for the 

investigation of indicators of guessing in data in a Rasch analysis environment 

In each of Figures 5.2 through 5.6 it was noted that the R2 is higher for the true facility rate than for the 

observed facility rate. This confirms that the removal of random guessing improves the reliability of the 

data set. The analysis of distributions shown in these figures supports the overall contentions regarding the 

relationship between item difficulty and the proportions of random guessing in the simulated data. 

The simulated data were “perfect” data sets in which the random guessing pattern was controlled. Hence 

the resulting outcomes represent an extreme example of “perfect” knowledge of student responses and its 

relationship to the trait of interest. Clearly this is unobtainable using real world data. However, within Study 

1 the aim of the simulations was intended as the catalyst for generating a solution to the problem of guessing 

in large scale assessments.  
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5.5 Rasch Analyses to Inform the Guessing Indication Protocol 

(GIP) 

5.5.1 PfA Step 2: Introduction 

The second step in the planned analyses involved an initial Rasch analysis (INIT) of each of the simulated 

data sets, followed by an analysis in which the defined guessing was conditioned in the data by recoding 

these instances as missing data (termed here as ‘Guessing Suppressed’ (GS) analysis). The purpose of these 

analyses was to provide evidence of the changes in parameters when guessing is accounted for, as a basis 

for development of the GIP. 

5.5.2 Rasch Analyses Conducted on Simulated Data 

5.5.2.1 Expected Outcomes from Rasch Analyses of the Simulated Data Sets 

In line with the hypotheses outlined in Chapter 2, in relation to the comparisons of the parameters generated 

by the INIT and GS analyses, the suppression of the defined guesses embedded into the distribution of the 

simulated data were expected to have the following six results: 

1. The item difficulties would vary, particularly for the more difficult items where the guessing had the 

greatest effect. The harder items would become even more difficult as a consequence of removing the 

guessed correct responses. 

2. Because item locations are centred on zero (0), there would be a shift in the relative locations of the 

easier items, causing them to be relatively easier. 

3. Consequently, the range of the distribution of item difficulties in the GS analysis would increase relative 

to the INIT analysis. 

4. The interpretation of the changes in the distributions of student abilities would be more problematic 

because the defined guesses had been suppressed and treated as missing. Consequently, the student 

results would be impacted because they would have a reduced score based on the number of recoded 

items that had been indicated as defined guesses. 

5. In the interaction between item difficulty and student ability, lower-ability students would have reduced 

ability estimates in the GS analysis than in the INIT analysis, and higher-ability students (who are less 

impacted by guessing in their responses) would have increased ability estimates. 

6. The mean ability estimates, impacted by both the re-calibration of the item locations and the reduction 

caused by recoding correct responses to missing, would be lower for the GS analysis than for the INIT 

analysis. 

 

The interrogation of these simulated data parameters aimed to provide the characteristics of student response 

patterns that were strong indicators in identifying guessing, and to subsequently develop a critical set of 

parameters that could be applied generally to other datasets to account for the misclassification caused by 

guessing. 
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5.6.2.2 Data Preparation for the INITIAL (INIT)  

The INIT analysis was conducted on raw data with no accounting for guessing (although items identified 

by the code 9, correct guesses, were treated as correct responses = 1). There were no missing data. This 

analysis was the type of typical Rasch analysis carried out on any large-scale program of standardised 

educational assessment. From these analyses, using RUMM 2030 (Andrich et al., 2010), Rasch estimates 

were produced for the following parameters: 

• item locations also known as “deltas” – Rasch difficulties (δ) expressed in logits; 

• item category frequencies – facility expressed as a percentage; 

• student ability estimates (β) – expressed in logits; 

• the item difficulty (δ), which is the value at which the student cohort is demonstrated to have probability 

of a correct response of 0.5 (p = 0.5); 

• item-student correlations (there must be less than 500 students for auto generation in RUMM 2030); 

• the extraction of a raw score to ability conversion table; and 

• the values of the item delta and student ability enable external calculation of the probability of a correct 

response to any item by any individual, using the Rasch model involving the item difficulty/student 

ability interaction.  

5.6.2.3 Data Preparation for Guessing Suppressed (GS) Analysis  

The second analysis took the original complete data sets and scored correct responses due to sufficient 

knowledge (1) and those at the threshold of knowledge (5) also scored correct (1). The randomly generated 

guess responses of “9” were recoded as “missing data”. All other responses were scored as incorrect, as in 

the INIT analyses. The incidence of missing data in these analyses resulted in the inability to calculate a 

Cronbach’s Alpha (α) for these data. In RUMM 2030 the Separation Index is a surrogate for the Cronbach’s 

Alpha. 

5.5.3 Simulation Item/Student Maps 

Figures 5.7 and 5.8 show comparative item/student maps of the simulation data sets generated in the Rasch 

analysis program Conquest (Wu et al., 1997). This program was used to highlight the extent of the changes 

in outcomes by providing a visual representation of the results. The figures have been arranged to provide 

comparison between the outcomes of the INIT analysis (which has not taken account of the defined 

guessing) and the GS analysis (for which the guessed responses have been recoded as “missing” data).  
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5.5.3.1 SIM 1 Analysis Results INIT and GS Analyses 

Figure 5.7 compares outcomes of these analyses of the SIM1 data. The INIT analysis is shown in the left-

hand column, with the effective scale ranging from -3 to +4 for the student ability estimates and the items, 

expressed in the same scale, ranging from -3 to +2. The outcomes of the GS analysis are shown in the right-

hand column. Overall, the relative order of the locations of the items are maintained. Minor variation in the 

location order of the items in the GS analysis was a function of the randomisation process for the guesses 

in the “incorrect” zones of the student response patterns. This indicates that the randomisation algorithm 

was consistent in the allocation of uniformly increasing guesses as the difficulty of items increased over the 

range. 

A major impact of the suppression of the defined guesses, as shown in the GS analysis, was the effect on 

the student ability estimates. The analysis discriminates between students more effectively in the GS 

analysis and reflects the “normal distribution” centred about zero of the student ability estimates. By 

comparison, the mean ability of the INIT analysis students is located at about 0.8 logits – an indication of 

the impact of not accounting for guessing for these data and the consequent inflation of the raw scores of all 

students, particularly the lower-ability students. 

The other significant impact when guessing was suppressed was that the range of ability estimates of the 

GS analysis showed the the quartile of the higher-ability students having ability estimates above +4 logits, 

which was the maximum observed value in the INIT analysis. This observation highlights the detrimental 

impact of ignoring the presence of guessing on the estimates of higher-ability students. In the lower range 

of the ability estimates, the lower-ability students had estimates below -4 logits when guessing had been 

suppressed. By comparison, in the INIT analysis these students reported ability estimates in the range 0 to 

-3 logits, which suppressed the “true” estimates of the lower-ability students. 

As expected, there was a significant increase in the distribution of the item difficulties centred about zero in 

each analysis. Whereas the locations in the INIT analysis are effectively within the range -2 < δ <2 (one 

outlier), in the case of the GS analysis the effective range of item locations is about -5 < δ <6.5, which 

provided the basis for the model to better estimate student ability (as inferred by Table 3.2). It is noted that 

the student ability estimates represented in the GS outcomes resulted in a reduction in the raw score for each 

defined guess. The results displayed in Figure 5.7 reflect the expectations of the hypothesis in that 

accounting for guessing will increase the distribution of item locations and consequently the increase the 

distribution of student ability estimates.  
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Figure 5.7 

SIM1 Item/Student Map for INIT Analysis and GS Analysis 

Phase 1: Defined Guess scored as correct 

INIT analysis; p = 0.5 

Phase 2: Defined Guess suppressed  

Guess recoded as missing  

GS analysis; p = 0.5 

SIM1. Normal, 400 cases, 40 items 
 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The outcomes displayed in Figures 5.7 and 5.8 of the SIM1, SIM3 INIT, and GS analyses indicate 

the degree to which the reported performance of students differs when either ignoring or accounting for 

guessing. The figures have been aligned to be centred on a common value of zero (the defined mean of the 

item locations for each analysis) and the scales aligned (dotted horizonal lines). The purpose of this 

alignment is to highlight the impact on the range and distribution of item locations and student ability 

estimates from each analysis. 

5.5.3.2 SIM 3 Analysis Results INIT and GS Analyses 

Simulation 3 was designed as a sample of 1000 cases, with a target of a normal distribution about a mean 

“true” raw score of 20. The item/student maps shown in Figure 5.8 show a similar distribution to Figure 

5.7, with the INIT distribution of the ability estimates of students considerably compressed compared to 

the range observed in the GS scales. This was a consequence of the compressed item difficulties in the 

INIT analysis that were impacted by guessing, with facilities inflated, and, as a consequence, item 

difficulty locations reduced. The impact was the contraction of the item locations, with the consequent 

contraction of the range of ability estimates of the students. 
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Figure 5.8 

SIM3 Item/Student Map for INIT Analysis and GS Analysis 

Phase 1: Defined Guess scored as correct 

INIT analysis; p = 0.5 

Phase 2: Defined Guess suppressed  

Guess recoded as missing  

GS analysis; p = 0.5 

SIM3. Normal 1000 cases, 40 items 

 

 

 
 

 

 

 

 

Note: The comparable figures for SIM2, SIM4, and SIM5 are provided in Appendix A. They 

demonstrate similar outcomes and have been added as appendices to reduce redundancy in this 

chapter. 

Tables 5.6 and 5.7 provide a summary of the results from the five INIT and GS analyses for each of the 

simulated distributions. The results in each of these tables were consistent in highlighting the GS analysis, 

showing a greater distribution of item locations, and reflecting the “perfect” identification of the guessed 

items. 
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Table 5.6 

Summary Results of Simulated Data Sets – INIT ANALYSIS – Defined Guesses (1) 

 Distribution Sample Items  (logits) Students  (logits) 

SET Target N St. Dev Range Skew Mean β St. Dev Range α* 

SIM1 Normal 400 1.19 -2.6/1.9 0.65 0.72 1.39 -2.6/4.6 0.90 

SIM2 Normal 250 1.37 -2.4/1.7 0.89 1.40 1.27 -1.4/4.0 0.79 

SIM3 Normal 1000 1.26 -2.2/1.8 0.50 0.72 1.30 -2.2/3.9 0.89 

SIM4 Too easy** 400 1.26 -2.3/2.2 0.34 1.27 1.48 -3.0/4.7 0.89 

SIM5 Too hard** 400 1.19 -2.7/1.9 0.65 0.72 1.39 -2.6/4.6 0.89 

Note 1. α* = Cronbach computed for complete data sets.  

Note 2. **Too easy/hard relates to the targeting of the items with respect to the ability of the cohort 

of students.  

None of the INIT analyses summarised here takes account of guessing. The skew of the distribution 

reported in this study was an indicator of “shift” of the distribution of results as a result of the 

implementation of the data conditioning to account for guessing. Skewness relates to the asymmetry 

of the distribution relative to a normal bell curve. By definition, a normally distributed bell curve has 

a skew of zero. The mean in a positively skewed distribution has the mean to the right of the mode and 

median and have a longer “tail” to the right of the distribution; the change in the skew is an indicator 

of the impact on the distribution of the scores and the movement in the mean of the distribution. 

Table 5.7 

Summary Results of Simulated Data Sets – GS ANALYSIS – Guesses Scored Missing (9) 

 Distribution Sample Items (logits) Students (logits) 

SET Target N St. Dev Range Skew Mean β 
St. 

Dev 
Range α* 

SIM1 Normal 400 2.88 -4.6/5.9 -0.18 0.03 3.20 -6.3/7.4 0.96* 

SIM2 Normal 250 1.79 -3.1/2.4 0.64 1.27 1.69 -3.1/4.4 0.81* 

SIM3 Normal 1000 3.08 -4.2/6.3 -0.82 0.02 3.12 -6.4/6.8 0.96* 

SIM4 Too Easy 400 2.52 -3.5/5.8 -0.60 1.15 2.83 -5.7/7.2 0.95* 

SIM5 Too Hard 400 3.27 -4.3/8.4 -0.21 -0.16 3.29 -6.1/10.2 0.95* 

Note. α* = RUMM Separation Index indicated for incomplete data sets (missing data). 

The following six features of results were common across the analyses comparing the INIT and GS 

analyses of the simulation data: 

1. The range of the item difficulties was increased when guessing was suppressed (GS). 

2. The distribution of student ability estimates increased to reflect the wider distribution of item 

difficulties from which ability estimates were constructed, i.e., the more difficult items led to higher 

ability estimates and lower item difficulties reflected lesser ability in the trait (GS). 

3. The item order with respect to difficulty was maintained. 

4. The mean ability of the GS analysis was less than in the INIT analysis, due to the uniform reduction 

in the raw score for removed defined guesses.  

5. The higher-ability students had increased ability estimates in the GS analysis.  

6. The lower-ability students had reduced ability estimates in the GS analysis outcomes. 
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These outcomes are in accord with the hypothesis; that is, to ignore guessing is to deflate the range of 

item difficulties and student ability, creating a non-uniform increase in raw scores across student ability 

levels. The following important points were also noted: 

7. The degree of skew in the data moved in a negative direction to account for the over-estimation of 

student ability in the data in which there were no adjustments for defined guessing. 

8. The reliability indicator – Cronbach’s α in the case of the complete data sets and Separation Index in 

the case of the incomplete data – improved when guessing was suppressed. 

These eight points, when taken in combination, indicate that accounting for guessing improved the 

reliability of the data and hence the quality of the variable and the subsequent reporting of item locations 

and student abilities. The process of recoding the defined guesses uncovered a degree of misclassification 

in the INIT data, which was to the order of 0.5 of a logit when estimating the mean ability of the students. 

This difference in ability relates to approximately one year of learning in a large-scale assessment such as 

NAPLAN (Choppin, 1983). For the domain of Reading, the difference between the “minimum standard” 

between Year 5 and Year 7 was 52 scaled score points. A value of 70 scaled score points represented one 

standard deviation in the initial calibration of the NAPLAN scale – or approximately 0.75 logits over two 

years (BEMU, 2010). 

5.6 Initial Observations and Iteration of a Guessing Indication 

Protocol (GIP)  

5.6.1 Initial Determination of the GIP Parameters 

Critical to the analyses in Study 1 was that the guessed responses of the students were known. In each of 

the simulations the “guessed” items were defined and could be suppressed in the analyses. In cases where 

guessed items are not known, Andrich et al. (2012, 2015) proposed that the misfit of the item-student 

interaction of each student with each item can be used as an indicator of guessing. Andrich et al.’s (2012, 

2015) research proposed that item/student residuals of 2.56 or greater suggested a less than 5% probability 

of a student of given ability being able to correctly respond to an item with difficulty location significantly 

higher than the student’s ability estimate. They reported similar directional outcomes to the current study’s 

findings reported earlier in this chapter, with improved results using the item-student correlation parameter 

as a criterion to determine which item/student interactions should be suppressed.  

The intention of the current research is to improve upon the thresholds proposed by Andrich et al. (2012, 

2015), as it is proposed that these values may be too parsimonious. To achieve this, a Rasch analysis of 

the responses of each of the simulations interactively produced two major statistics regarding each test: 

1. an ability estimate for each student based on the total score achieved for the set of items in the test; and 

2. a location of the difficulty of each item in the test, each expressed in the unit of logits. 
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The relationship between these two major statistics in relation to determining a student ability from the score 

achieved on the items of calculated difficulty was articulated in Table 4.2. The determination of a set of 

parameters that indicated likely guessing at the individual student/item level was grounded in calculating 

and observing two additional statistics: 

3.  the probability that a student of a given ability could achieve a correct response to an item of given 

difficulty; and 

4. a measure of the degree to which the probability of a correct response by a student to an item of a 

determined difficulty, that exceeds the student ability estimate, differs from the expected result for that 

interaction. This measure was termed the student-item correlation index.  

In interrogating the five simulated data sets, these two statistics were viewed as potentially complimentary 

in identifying correct responses due to guessing at the individual item-student interaction level.  

The item/student interaction probability was derived from the item and student parameters using the RM. 

The matrix of the item-student probability was calculated from the initial estimates of difficulty and student 

ability, and it was derived in the INIT analysis by applying the RM to the relative difficulty of the individual 

item (δi) and the observed ability of the student on the overall test (βj). The derivation of these values is 

defined in Eqns 5.3 and 5.4. 

 

               Pr(1)ij = exp(βj – δi) / (1+ exp(βj – δi))                   Eqn 5.3 

 

where Pr(1)ij is the probability of student (j) responding correctly to item (i) given 

 βj is the determined ability of the student, and  

              δi  is the determined difficulty of the item expressed in logits. 

The item-student residual index as derived by Andrich et al. (1988) is calculated as: 

 

        IF(Scoreij=1) then residual= (SQRT((1-Pr(1)ji)/ Pr(1)ji)) else (-SQRT(Pr(1)ji /(1- Pr(1)ji))))       Eqn 5.4  

             

where Scoreij is the observed scored response of student(j) on item(i); and  

              Pr(1)ij is the probability of student(j) responding correctly to item(i) (see Eqn 5.3). 

 

The value of the residuals is the measure of the degree of the difference between the expected result (0,1) 

for an individual item/student interaction, given the item difficulty, student ability, and the observed result. 

Greater values of this index reflect greater misfit between the individual result and the expected result 

predicted by the model, and they were used as an indication of a guessed response. The idea proposed and 

advanced in this Study 1 is that these statistics can be used to generate data conditioning to account for 

indicated guesses, rather than simply reporting the misfit as demonstrated by Andrich et al. (2012, 2015).  
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5.6.1 PfA Step 3: Initial Development of the Guessing Indication Protocol (GIP) 

In attempting to determine a set of parameters that would be defensible in identifying an individual guess 

in a student response pattern, several combinations of values of the two indicative indices (using Eqns 5.3 

and 5.4) were trialed to determine which values were accurate and consistent in “identifying” defined 

guessed responses in the simulated data. The implicit relationship between the calculation of the residual 

and the probability of a correct response, given the ability of the student (βj) and the difficulty of the item, 

makes these calculations complementary.  

5.6.2 Identification of Guesses Using Critical Indices 

5.6.2.1 Interrogation of SIM1 

By observing the values of the probabilities and residuals for item/student interactions that were both 

consistent with the defined guessed response and defensible as a logical result, the GIP was determined. The 

results of this process and series of analyses are the focus of this sub-section. Table 5.7 is an extract from 

Appendix A, which shows the observed response pattern (1. Scores), the derived item-student probability 

of a correct response (2. Pr(1)), and the item/student correlation statistic (3. Residual) for SIM1 for each 

student for SIM1. Table 5.7 is provided as an example of the multiple composite parameters generated to 

reflect the outcomes of the five final data sets used to determine a defensible and appropriate set of 

parameters that are consistent in identifying the defined guesses embedded in the data. 

This abridged extract shows a range of the lower scores with the defined random guesses (coded as 9) 

highlighted red for convenience. Specifically, it presents a selection of 16 of the 40 items from SIM1, for 

students ranging from lower ability through higher ability (separated by the red lines). The table is sorted 

horizontally, left to right, from the easiest item to hardest the item. These item difficulties were derived 

from the INIT analysis. The table is sorted vertically by student ability estimate to display the response 

pattern of extracted parameters for each item/student interaction. The calculated ability estimates and the 

raw score (RawSc) from the INIT analysis are also included in the table for each student. The blue 

highlighted cells display the calculated values of the probability of a correct response (Pr(1)ij) and the item-

student residual calculated using Eqn 5.4. The table is partitioned (the red line) to show the interaction of 

the GIP procedure with different ability groups of students of increasing ability as indicated by their relative 

raw score. Identification of the most efficient GIP parameters was an iterative process involving reconciling 

both statistical values and face validity considerations in resolving the parameters that indicated a defined 

guess.  

In Table 5.7 the lowest ability student in the simulated data set is student S390. The full table provided in 

Appendix A shows that this student answered no items “correctly”, yet successfully guessed four items to 

generate a raw score of 4. The fact that S390 could answer no items correctly does not necessarily indicate 

that the student has no ability in the trait. Rather, it is a reflection that the scope of items in this test did 

not include items of an appropriate level of difficulty that could be successfully accessed by this student. 

The following three general observations can also be made for S390 from Table 5.7: 
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1. The four correct define d guesses were items 19, 29, 31, and 34. 

2. For each of the correct defined guesses, the probability of a correct response was less than 0.25. 

3. The item-student residual was positive and had a value greater than 3.0 [Andrich (2012, 2019) 

proposed greater than 2.56 as the critical value]. 

 

Consider another student, S371, who had a raw score of 15, which derived an ability estimate of -0.647. 

This student had 14 defined correct guesses (items 4, 10, 17, 20, 22, 23, 25, 28, 31, 33, 34, 35, 36, and 

40). Five items were considered very unlikely outcomes (calculated residuals greater than 2.56). Items 4 

and 20 show the probability of a correct response to exceed 35%, which results in residual statistics less 

than 1.4. The impact of these correct guesses is to contaminate the statistics of other items in the student’s 

response pattern by influencing the calibration of the item locations. These results show that student S371 

only correctly answered item mkQ01, and the remainder of the observed scores were a result of 14 of 39 

correct random guesses. This inflated assignment of ability for S371 (relative to S390, despite little 

difference in their true ability) directly relates to both the calculation of the individual probabilities of 

correct responses on all other items and the calculation of the item-student correlation statistic.  

These observations highlight three challenges in identifying guesses in response patterns:   

1. As student raw scores increase there is a decrease in the number of items that the student is likely 

to guess, or to be indicated as a probable guess.  

2. Lower ability students have a higher probability of guessing the correct answer, with an observed 

randomising range of a correct guess about +/-6% in the SIM1 data. This estimate was derived by 

the variation observed in the number of guesses generated by the randomising algorithm. This can 

be seen by reference to the extract of students with a raw score of 16, ability of -0.511, in which 

S314 has had six successful guesses, whilst student S334 has had 11 successful guesses. 

3. The greater the “capacity” of the student to guess correctly, the lower is the capacity to identify 

guessing in the response pattern using probability and residual indices.  
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Table 5.8 

Elaboration of the Composite Parameter Table (Abridged SIM1 - 16 of the 40 Items)  

 

Note 1. The number of random guesses is shown in the column on the extreme right of the table. This 

table shows that lower ability students had a greater number of guesses as the items became more 

difficult. This is indicated by the pink shading. 

Note 2. SIM1 is used as an example of the processes and interrogations implemented for each simulation.  

Note 3. Appendix B provides the fully extracted matrix for SIM1. 
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Determining a set of parameters to apply to the analysed data to account for guessing was thus an 

iterative exercise that involved observing the minimum value for the item-student residual in 

conjunction with a probability of a correct response. It was initially considered that the lowest 

defensible criterion at face value, in relation to the probability of a correct response, was a probability 

less than 0.25. This value of 25% is consistent with the 1-in-4 construction typical of a multiple-choice 

structure. This constraint resulted in a reduced identified guess recovery rate compared to what would 

be identified if the 0.30 (which implies a ratio of approximately 1-in-3) criteria used in Andrich et al., 

(2015).  

Having observed the interaction between the defined guesses of the simulation data (see Table 5.8 for 

SIM1) and the item-person residuals, a value of 1.75 in combination, with a probability of correct response 

of less than 0.25, was determined to be consistent in identifying the defined guesses. The residual value 

of 1.75 is less than Andrich et al.’s (2015) value of 2.56, but it represents a statistical confidence level of 

approximately 90%.  In the analyses of each of the simulations the application of these thresholds did not 

produce any instances of Type 1 errors (i.e. indicating an interaction to be a guess that was not pre-defined 

in the data). 

As a result of these observations and the iterations comparing the critical parameters and the defined 

guesses in the simulations, the parameters from the INIT analysis assigned for initial investigation to 

indicate a guess were defined as: 

 

IF observed_response(ji)=1, AND  

    Pr(1)_response(ji)<0.25,  AND 

   item-student correlation(ji)>1,75),  

THEN ’classify observed_response(ji) as a guess (7), recoded as missing data 

ELSE maintain observed_response(ji) as scored (1).    

        Syntax 5.1 

 

5.7 Preliminary Analyses and Observations of the Initial Defined 

Protocol 

5.7.1 Initial Analysis Results 

As indicated in the Plan for Analysis (Section 5.3.2), an INIT analysis of each dataset was conducted 

to extract the primary statistics. From these INIT analyses the item/score interactions, item/student 

ability probabilities, and student/item residuals were calculated. Syntax 5.1 was then applied to indicate 

any individual student/item interaction that failed the GIP parameters: in the item/score interaction, 

the item had been scored as correct; in the item/student ability calculation, the probability of a correct 

response was less than 0.25; and the student/item residual index had a value greater than 1.75 (see 

Eqns 5.3 and 5.4). If an individual student/item interaction failed these GIP parameters, the individual 

item/student response was recoded from a correct response (1) to “missing data” (7) in the re-analysis 

of the data to “account for guessing” using the proposed GIP procedure. 
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As shown in Table 5.9, a comparison of the actual defined random guesses with the GIP-recovered 

random guesses indicates a relatively low percentage of defined items identified by the GIP process. 

Table 5.9 

Summary of the GIP Recovery Rates by Simulation p = 0.5 

Simulation 

Count of Actual 

Defined Random 

Guesses  

Count of Guesses 

recovered by GIP 

strategy  

Recovery rate 

Identified/actual 

SIM1, Normal, 400,40 1771 572 32.3% 

SIM2, Normal, 250,20 360 55 15.3% 

SIM3, Normal, 1000,40 4304 1397 32.5% 

SIM4, Easy, 400,40 1311 337 25.7% 

SIM5, Hard, 400,40 2164 754 34.8% 

Note. “Count of actual random guesses” is the number of defined guesses from the simulation data 

sets. These interactions were initially coded as correct in the INIT analysis and recoded as missing in 

the GS analysis. The actual defined random guesses that were identified using the GIP procedure are 

recorded in the “count of guesses recovered by the GIP strategy”. 

Although this result was initially considered a low rate, further disaggregation of the cohorts revealed 

that this “recovery rate” was not consistent across all student ability ranges. Follow-up analyses sought 

to evaluate these recovery rates by student ability, for each data set. Table 5.10 shows the variation in 

the capacity of the GIP procedure to identify the defined guessed responses across various ability 

groups within the cohort for each simulation. The proposed GIP parameters with a default p value of 

0.5 produced relatively low rates in the capacity of the GIP to recover instances of defined guessing. 

Across the simulations an overall recovery rate of about 30% was achieved when comparing the GIP 

identified “guesses” with the actual defined guesses (Table 5.10). It was noted that the procedure was 

more efficient in indicating the defined guesses in the lower-ability groups, which is the student group 

in which guessing is more likely to occur. 

The item/student maps of the analyses for the data sets of SIM1 and SIM3, respectively, which are 

representative of the outcomes of all simulations for the INIT, GS, and GIP3A phases of analysis are 

provided in Figures 5.9 and 5.12. The probability of a correct response was set at the default level of 

p = 0.5. For the GS analysis each of the defined guesses in the dataset were recoded as “missing’ data. 

For the GIP3A analysis, the GIP identified guesses were recoded as “missing” data. Hence the student 

ability estimates in Figures 5.9 and 5.12 reflect a raw score for each student that has been reduced by 

the number of guesses defined (GS) or identified by the GIP process. Figure 5.9 appends the GIP3A 

analysis to the outcomes shown in Figure 5.7 and thereby shows the degree to which the results are 

misclassified by ignoring guessing in the GIP3A analysis compared to the values of the defined guesses 

reported in Figure 5.7. 
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Table 5.10 

Elaboration of the GIP Recovery Rates by Simulation p=0.5  

Simulation 
Group 

(Quartile) 

Proportion 

of items 

guessed (%) 

Count of Actual 

Random 

Guesses 

Count of Guesses 

recovered by GIP 

strategy 

Recovery rate 

Identified/ 

actual 

SIM1, Normal,  Q4, most able 1.8 72 0 0.0% 

 400,40 Q3, able 11.2 446 9 2.0% 

  Q2, less able 12.0 478 116 24.3% 

  Q1, least able 19.4 775 447 57.7% 

  Overall   1771 572 32.3% 

SIM2, Normal,  Q4, most able 1.1 14 0 0.0% 

 250,20 Q3, able 6.0 74 0 0.0% 

  Q2, less able 9.2 114 1 0.9% 

  Q1, least able 12.7 158 54 34.2% 

  Overall   360 55 15.3% 

SIM3, Normal,  Top decile 0.4 14 0 0.0%  

 1000,40 Decile 9 2.5 98 0 0.0% 

  Decile 8 6.5 259 0 0.0% 

  Decile 7 10.0 400 0 0.0% 

  Decile 6 12.0 481 12 2.5% 

  Decile 5 11.0 438 60 13.7% 

  Decile 4 11.8 473 137 29.0% 

  Decile 3 14.8 591 266 45.0% 

  Decile 2 19.8 791 452 57.1% 

  Decile 1 19.0 759 470 61.9% 

  Overall 10.8 4304 1397 32.5% 

SIM4, Easy,  Q4, most able 1.8 72 0 0.0% 

 400,40 Q3, able 5.4 217 0 0.0% 

  Q2, less able 9.7 389 62 15.9% 

  Q1, least able 15.8 633 275 43.4% 

  Overall  1311 337 25.7% 

SIM5, Hard,  Q4, most able 7.6 303 0 0.0% 

 400,40 Q3, able 10.4 417 10 2.4% 

  Q2, less able 18.1 722 293 40.6% 

  Q1, least able 18.1 722 451 62.5% 

  Overall       2164       754       34.8% 
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Figure 5.9 

SIM1 Comparison of Item Student Maps for INIT Analysis, GS Analysis, and GIP3A Analysis 

Note. The left-most plot shows the distribution of items and students on a common scale derived from the INIT analysis. This analysis took no account of the defined 

guesses in the data set of SIM1. The middle plot shows the distribution of items and students derived from the GS analysis (guesses suppressed). The right-most plot 

shows the item/student map of the analysis when the GIP parameters had been applied to the data. All items were centred on a location of zero (by definition).

Phase 1: Defined Guess scored as 1  

INIT analysis 

Phase 2: Defined Guess suppressed – missing 

GS analysis 

Phase 3A: Indicated Guess suppressed – missing – 

GIP p=0.5 analysis 

SIM1. Normal, 400 cases, 40 items   
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5.7.2 Observations Regarding the Initial Analysis Results 

In the INIT analyses, the range of item difficulties was between -2.66 and + 1.87, a range of 4.53 logits. 

The student ability estimates varied between -2.62 and + 4.64, a range of 7.26 logits. By comparison, when 

all the defined guess items had been suppressed and recoded as missing data (GS analysis), item locations 

varied between -4.64 and + 5.89, a range of 10.5 logits. Yet the distribution of student estimates is more 

“revealing” in relation to the impact on the distribution when guessing is ignored. The GS results show that 

the mean of the ability estimates was close to zero (0.03). This was in accord with the intended distribution 

of the data set in its simulated construction. The student estimates varied from -6.31 to +7.45, a range of 

13.76 logits. It is noticeable that the distribution of the lower-ability students in this figure reveals a greater 

discrimination among the students of SIM 1, compared to the INIT analysis figure. The GS analysis reveals 

a negative skew not reflected in the INIT analysis. 

 

In the GIP3A analysis, correct responses were suppressed as “missing data” by recoding the 

item/student interactions whenever the item failed to achieve a location/ability interaction defined by 

the GIP. As noted in Table 5.9, the application of the GIP protocol was sub-optimal in identifying all 

defined guesses in student response patterns. Overall, the GIP3A phase of the protocol resulted in a 

rate of approximately 30% in recovering the actual defined guesses. However, in relation to the lower-

ability students, the recovery rate of the defined guesses was above 50%. This is reflected in the wider 

distribution of ability estimates for the lower-ability students. The GIP3A analysis increased spread of 

item locations and student ability estimates compared to the INIT analysis (see Figure 5.9).  

Overall, the application of the GIP procedure to the SIM1 data resulted in a minor reduction in the mean of 

the ability estimates of the cohort compared to the INIT analysis (0.61), but a greater distribution of ability 

estimates, with the most able students recording an ability estimate of +4.66 and the least able students 

recording an ability estimate of -5.38. These analyses show that the impact of applying these GIP 

parameters to the INIT data was to discriminate more effectively among the lower-ability students. It can 

also be seen that the impact on the results of, and discrimination between, the average ability estimates of 

higher-ability students was not as significant as in the lower-ability students.  

Figure 5.10 shows the comparison of the item locations for the three datasets. The variations in the item 

locations for each Phase shown in Figure 5.11 are reflected in Figure 5.10. Specifically, the GS analysis 

provides the greatest range of item locations with both significantly lower locations for the easier items and 

higher locations for the more difficult items than the INIT estimates. The INIT analysis has the least 

discrimination in the item locations and the GIP3A analysis tends to be mid-range, but still noticeably 

different from the INIT locations at the extremes. 
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Figure 5.10 

SIM1 Comparison of Item Locations INIT Analysis, GS Analysis and GIP3A p=0.5 Analysis  

 

   

Figure 5.10 shows the comparison of the recovery rate of the implementation of the GIP procedure 

compared to the actual defined guesses in the 40-item data set of SIM1. Results of the SIM1 Phase 2 and 

Phase 3A analyses show that for the easiest items the protocol had a relatively low efficiency in identifying 

the guessed items (see Figure 5.10), which impacted the R2 statistic. This is because the ability required to 

correctly answer easy items was relatively low. As items became more difficult, the protocol was more 

effective. 

Figure 5.11 

SIM1 Comparison of Count of Defined Guesses Recovered From GS and GIP3A p=0.5 Analysis   
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The SIM3 data were designed to be a normal distribution, which is shown in the graphic in the middle 

of Figure 5.13 for which the defined guesses have been suppressed. These results mirror the outcomes 

of SIM1, with the outcomes of the GIP3A procedure having a minor impact on the overall mean 

compared to the INIT results. The figure likewise shows marginal impact in the upper ability ranges 

but a significant impact on the distribution of abilities of the lower-ability groups. The range of the 

item distribution of the GIP3A analysis is also noted as greater than that observed in the INIT analysis.  
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Figure 5.12 

SIM3 Comparison of Item Student Maps for INIT Analysis, GS Analysis, and GIP p=0.5 Analysis  

Phase 1: Defined Guess scored as 1 – INIT Analysis Phase 2: Defined Guess suppressed – GS analysis Phase 3A: Indicated Guess suppressed – GIP3Ap=0.5 analysis 

SIM3. Normal 1000 cases, 40 items   
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Figure 5.13 follows a similar pattern to that shown for SIM1 data in Figure 5.10. The R2 value of 0.814 

indicates that about 66% of the variation in the mean of the GIP analysis can be explained by the frequency 

of defined guesses. The GIP implementation was relatively inefficient for items with locations less than 

zero (the easy items), but it improved for more difficult items because of the suppression of the guessed 

items, with greater differentiation between the item locations in the more difficult items. 

Figure 5.13 

SIM3 Comparison of Item Locations – INIT Analysis, GS Analysis, and GIP3Ap = 0.5 Analysis  

 

 

Figure 5.14 shows a similar pattern to that observed in Figure 5.11, with relatively few instances of 

guessing identified by the process for items with locations less than zero. This observation precipitated 

a review of the components of the protocol as described in the following section. 
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Figure 5.14 

SIM3 Comparison of Count of Defined Guesses Recovered From the GS and GIP3Ap=0.5 Analyses  

 

5.8 A Second Iteration of the Protocol: Adjusting the p Value 

5.8.1 Modification of the Protocol Parameters 

In the initial iteration of the GIP, in which the default value of response probability (RP or p value) of 

p = 0.5 was applied, an insufficient capture of guesses was observed and so the default value of p = 

0.5 was reconsidered. In evaluating the possible (theoretically and practically) sound revisions that 

could be made, it seemed reasonable that to effectively identify a correct, ability-based response to an 

item a better than 50% probability of responding with a correct answer would be more appropriate. 

Since all parameters are stochastic and, to an extent, an application of a subjective threshold, it was 

deemed reasonable and defensible to increase this threshold. The theme of this research is conceptual, 

and consequently this iteration of the protocol was investigated to observe the impact of the 

modification. Consideration of an “optimal” p value is a possible topic of future research. 

To improve upon the identification rates achieved in the preliminary results for the GIP displayed 

above, an investigation of the effectiveness of the GIP procedure when a RP value of 0.6 was 

introduced and the efficacy in the analysis of data for each simulation was evaluated. It is noted that 

both RUMM 2030 (Andrich et al., 2013) and Conquest (Wu et al., 1998) have default values that 

compute the probability of a correct response as 0.5; that is, the dichotomous state of a response is 

right or wrong (0/1). This constraint defines that at the intersection between the ability of a student 

being equal to the difficulty of the item in the RM, the probability of a successful response is 0.5.  
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This can be resolved mathematically that by simplifying the Equation 5.5  

              0.6 = exp(β – δ) / (1+ exp(β – δ))   which derives       

-0.405 = β – δ  Eqn 5.5 

 

Hence by adjusting the p value to 0.6, the student ability (β) required to have at least a 0.6 probability 

of success on an item of difficulty δ is (δ + 0.405). Effectively, this adjustment requires the ability of 

the student to be 0.405 logits greater than the difficulty of the item to indicate a correct response with 

at least a 60% probability. In relation to the calculation of the probability of success in the item/student 

interactions, the “adjustment” of the ability of the INIT student estimates by the constant -0.405 allows 

the recalculation of the Pr(1) and the item/student residual by applying the revised ability estimate to 

Equations 5.3 and 5.4 respectively.  

5.8.2 Result of the Modification of the p Value With the Protocol Parameters 

5.8.2.1 The Response Probability p= 0.6 Recovery Rates 

The process reported in Section 5.6 was repeated after adjusting the values of the residuals and the 

Response Probability (RP) of a correct response (Pr(1)) with the revised p value. These revised 

analyses with p = 0.6 gave rise to a new set of GIP data, with the number of items failing the defined 

GIP parameters increased. Table 5.11 shows the impact of the implementation of a p value of 0.6 to 

the results of this iteration of the GIP implementation. It also shows a significant improvement in the 

recovery rates of the GIP procedure compared to Table 5.9. 

Using a p value of 0.6 for the probability of a correct response for the student produces a greater 

efficiency in the recovery of the defined guessing in the simulated data (Table 5.11). Further analysis 

revealed there were no Type 1 errors generated by increasing the p value to 0.6; that is, there was no 

incidence of a defined correct response being recoded as missing under this protocol. Only defined 

guesses, although not all, were identified when this modification to the analysis and calculation of the 

GIP parameters was introduced. 

As shown in Table 5.11, the effect of changing the probability of a correct response from 0.5 to 0.6 

was to increase the capacity of the GIP procedure to identify the defined guesses without 

compromising the accuracy by introducing any Type 1 errors on average by approximately 15%. The 

comparison of the analyses shows that the use of the p = 0.6 constraint tended to maintain the 

discrimination among the lower-ability students and increase the range of both item difficulties and 

student abilities in the simulated responses. 
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Table 5.11 

Comparison of Guess Recovery Rates p = 0.5 and p = 0.6  

Simulation 

Count 

of 

Actual 

Defined 

Random 

Guesses 

Count of 

Guesses 

recovered 

by p = 0.5 

GIP 

strategy  

Count of 

Guesses 

recovered 

by p = 0.6 

GIP 

strategy 

Increased 

number 

recovered 

Recovery  

rate  

Identified/ 

actual 

p = 0.5 

Recovery  

rate  

Identified/ 

actual 

p = 0.6 

Rate of 

increase 

SIM1 1771 572 791 219 32.3% 44.7% 12.4% 

SIM2 360 55 119 64 15.3% 28.9% 13.6% 

SIM3 4304 1397 2049 652 32.5% 47.6% 15.1% 

SIM4 1311 337 589 252 25.7% 44.9% 19.2% 

SIM5 2164 754 1031 277 34.8% 47.6% 12.8% 

 

A feature of the disaggregation of the recovery rates by group is the region in which the increased recovery 

is most apparent (see Table 5.12). In each simulation the increase in the p value resulted in an increased 

proportion recovered in the lower-ability groups than in the higher-ability groups. In all cases the increased 

p value did not uncover any guesses in the highest ability group, although in all cases there were some 

defined guesses in this group. 

The evidence presented earlier in this chapter, and the underlying hypothesis of the research, is that guessing 

is more likely to occur among the lower-ability students. In this respect, the increase in the p value increased 

the capacity of the GIP to identify probable guesses in this group, without error. This was a more efficient 

and, consequently, a more valid representation of the ability of this group in the relative scales.   

  



108 

 

 

Table 5.12 

Elaboration of the Comparison Between Defined Guess and GIP3Ap = 0.6 by Quartile/Decile   

Simulation 

p = 0.6 
Group Proportion 

of items 

guessed (%) 

Count of 

Actual 

Random 

Guesses 

Count of 

Guesses 

recovered 

by GIP3A 

strategy 

Recovery rate 

Identified/ 

actual 

SIM1, Normal, 400,40 Q4, most able 1.8 72 0 0.0% 

  Q3, able 11.2 446 59 13.2% 

  Q2, less able 12.0 478 195 40.8% 

  Q1, least able 19.4 775 537 69.3% 

  Overall  1771 791 44.7% 

SIM2, Normal, 250,20 Q4, most able 1.1 14 0 0.0% 

  Q3, able 6.0 74 0 0.0% 

  Q2, less able 9.2 114 20 17.5% 

  Q1, least able 12.7 158 84 53.2% 

  Overall  360 119 28.9% 

SIM3, Normal, 1000,40 Top decile 0.0 14 0 0.0% 

  Decile 9 0.7 98 0 0.0% 

  Decile 8 2.0 259 0 0.0% 

  Decile 7 3.3 400 28 7.0% 

  Decile 6 4.0 481 128 26.6% 

  Decile 5 4.6 438 177 40.4% 

  Decile 4 5.0 473 237 50.1% 

  Decile 3 6.6 591 407 68.9% 

  Decile 2 7.5 791 502 63.5% 

  Decile 1 9.3 759 572 75.4% 

  Overall  4304 2051 47.6% 

SIM4, Easy, 400,40 Q4, most able 1.8 72 0 0.0% 

  Q3, able 5.4 217 7 3.2% 

  Q2, less able 9.7 389 150 38.6% 

  Q1, least able 15.8 633 432 68.2% 

  Overall  1311 589 44.9% 

SIM5, Hard, 400,40 Q4, most able 7.6 303 0 0.0% 

  Q3, able 10.4 417 90 21.6% 

  Q2, less able 18.1 722 409 56.6% 

  Q1, least able 18.1 722 532 73.9% 

  Overall  2164 1031 47.6% 

 

5.8.2.2 Analysis of the Pattern of the GIP Indicated Guess 

Although in the simulation design the definition of guessed responses was generated by a random algorithm, 

the pattern of GIP-identified probable guesses was very Guttman-like (see Tables 5.13 and 5.14); in other 

words, as item difficulty location increased so did the identified number of guesses as ability decreased 

(indicated by the raw score). This supports the contentions that there are relationships between ability, item 

difficulty, and guessing, and that the GIP procedure generated the expected outcomes regarding the 

interactions between the ability, item location, and guesses identified.  

Given the guiding premise of this research – that guessing will increase as item difficulty increases – it was 

expected that the GIP procedure would identify an increasing number of item/student responses as item 

difficulty increased. Tables 5.13 and 5.14 confirm this expectation. Specifically, they highlight the 

relationships between the item locations, the student abilities, and the rate of probable guessing identified 

by the GIP process, showing that as the item difficulty location increased the GIP procedure identified an 

increased number of probable guesses.  
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Further there tended to be an increased number of guesses identified as student ability decreased (i.e., the 

protocol has a greater capacity to identify guesses among the lower-ability students compared to those of 

higher ability). This is consistent with the hypothesis that there will be an increasing proportion of guessed 

responses in the responses of lower-ability students. 

As a confirmatory strategy, a supplementary analysis was undertaken to investigate the interaction between 

the GIP procedure with the student item responses, to access the relationships between student ability, item 

difficulty, and guesses identified by the protocol. These analyses were interpreted with respect to the quality 

in the fit of the revised data to the RM (i.e., did the protocol provide a better fit of the data to the model 

than an INIT analysis). The results of these analyses of the SIM1 and SIM3 data are shown in Tables 5.13 

and 5.14.  

5.8.2.3 Alternate Response Probability (p Value) Investigations 

The selection of p = 0.6 as the response probability (RP) was arbitrary. Other values may have been selected 

however the purpose of defining an alternative response probability was to assess the efficiency of the 

action. This component of the research was conceptual rather than a definitive resolution. 

It was also appreciated that, given the probability of success for a correct response was defined as 0.25, in 

adjusting the RP there was a fundamental change in the proportion of the student success that was related 

to the changed RP and a lessening of the proportion of the success that may be attributed to student 

knowledge or learning or other factors. The impact of the increase in the RP is detailed in Appendix D and 

discussed in the Areas for Further Research section of Chapter 11. 

Appendix D has been provided to show the outcomes of introducing RP values of 0.62, 0.65 and 0.70 

respectively for the responses defined in SIM1 and SIM3. This allows comparison with the outcomes shown 

in Table 5.13 and Table 5.14 below. 
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Table 5.13 

SIM1 Extract of GIP3A Indicated Guesses by Ability Quartile and Item Location p =0.6  

 

Note. Items are ordered by item location (δ) from easiest to hardest, and students are grouped in quartile groups ranked by raw score from highest to lowest.   

 
Table 5.14 

SIM3 Extract of GIP3A Indicated Guesses by Ability Decile and Item Location p = 0.6  

 

Note. Items are ordered by item location (δ) from easiest to hardest, and students are grouped in decile groups ranked by raw score from highest to lowest.   

Note. This table provides an extract of the count of GIP-identified guesses in the same structure as Table 5.12, for the SIM3 data. The outcomes are very similar to the 

Guttman-like pattern and the increasing number of items identified as guessing as item difficulty increases and ability decreases.

δ -2.66 -1.69 -1.73 -1.75 -1.35 -1.47 -1.13 -1.22 -1.01 -1.03 -1.1 -0.68 -0.8 -0.72 -0.6 -0.67 -0.58 -0.43 -0.27 -0.04 0.123 0.233 0.477 0.665 0.801 0.899 0.842 0.898 0.941 0.928 1.026 1.233 1.153 1.142 1.527 1.283 1.58 1.594 1.697 1.874

Quartile Q01 Q04 Q03 Q02 Q06 Q05 Q08 Q07 Q11 Q10 Q09 Q13 Q14 Q12 Q16 Q15 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q27 Q28 Q26 Q30 Q29 Q31 Q34 Q33 Q32 Q36 Q35 Q37 Q38 Q39 Q40 Total

Q4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 1 3 0 5 9 9 12 17 59

Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 2 1 6 3 6 7 7 14 14 9 19 17 15 25 25 18 195

Q1 0 0 0 0 0 0 0 0 1 1 1 3 2 0 4 1 1 7 9 16 20 23 23 17 24 26 33 23 29 29 28 29 27 23 26 23 26 20 24 18 537

ALL p0.60 0 0 0 0 0 0 0 0 1 1 1 3 2 0 4 1 1 7 9 16 20 23 25 22 26 27 39 28 35 36 35 44 42 35 45 45 50 54 61 53 791

δ -2.23 -1.91 -1.9 -1.88 -1.7 -1.68 -1.68 -1.4 -1.27 -1.06 -1.06 -0.98 -0.89 -0.78 -0.59 -0.37 -0.37 -0.36 -0.22 0.078 0.369 0.375 0.542 0.567 0.841 0.876 0.88 0.953 1.005 1.051 1.07 1.085 1.337 1.426 1.51 1.531 1.56 1.636 1.795 1.84 Total

Decile Q03 Q02 Q07 Q05 Q01 Q04 Q09 Q11 Q06 Q10 Q13 Q08 Q12 Q15 Q17 Q18 Q16 Q14 Q19 Q20 Q21 Q22 Q24 Q23 Q26 Q25 Q27 Q28 Q30 Q31 Q29 Q32 Q34 Q33 Q38 Q35 Q36 Q37 Q40 Q39

Decile 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 12 28

Decile 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 19 17 19 24 25 19 128

Decile 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 17 26 23 24 19 18 177

Decile 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 4 9 7 17 16 21 22 22 25 19 14 18 19 18 237

Decile 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 9 19 25 31 20 30 20 32 30 23 18 27 17 24 27 21 21 407

Decile 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 28 25 31 18 23 19 23 28 23 31 24 28 22 20 34 26 26 21 24 18 502

Decile 1 0 0 0 0 1 1 1 0 3 3 3 4 2 9 7 21 14 23 15 20 17 20 24 27 34 17 22 24 23 27 15 26 22 22 25 19 17 25 19 20 572

ALL p = 0.60 0 0 0 0 1 1 1 0 3 3 3 4 2 9 7 21 14 23 17 28 45 45 68 54 81 62 80 81 83 95 87 105 116 110 147 124 123 139 143 126 2051
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5.9 Implementation of Phase 3 of the Plan for Analysis 

5.9.1 The Phase 3, GIP Process 

The results reported in Section 5.8 show the increase efficiency of the p = 0.6 constraint in association with 

the GIP thresholds. The following sections show the results of implementing the procedure with each of 

the data sets.  

To reiterate, the developed GIP procedure that was implemented in this third phase of analysis had two 

components: 

1. Phase 3A: the identification of probable guesses using the protocol, with a primary goal of re-

calibrating the item locations. This process has the capacity to produce a student estimate in which the 

identified guesses are suppressed and “scored” as missing, resulting in reduced student raw scores 

compared to those in the INIT data. 

2. Phase 3B (also termed GIPINIT3B) was the re-calibration of student ability estimates using GIP item 

locations produced in the GIP3A procedure in conjunction with INIT response data (raw score). This 

analysis was achieved by “anchoring” the item locations with the GIP3A-determined parameters and 

implementing the Rasch analysis with the student INIT data. 

Given the outcomes of the GIP item identification process detailed in Section 5.8.2.1, it was anticipated 

that the GIP process would result in more difficult items being re-calibrated as even more difficult than in 

the initial calibration. This would be as a result of the identification of guessing in the lower-ability student 

responses, which are typically associated with the more difficult items.  

In relation to the measurement scale generated, the re-calibration of the item locations was expected to 

increase the distribution of the item locations, with a consequent impact on student ability estimates. The 

increase in the distribution of items (centred on zero by definition) means the harder items would be re-

calibrated with higher difficulty locations and the easy items display lower locations. It was also expected 

that the item location/student ability estimate of the RM would result in the ability of lower-ability students 

to be reported at a lower value than the INIT estimate, and the ability of the higher-ability students being 

reported at a higher value than the INIT estimate. The outcomes of these analyses were based on 

conditioned data with the GIPp=0.6 application of the GIP procedure, thus drawing comparisons between all 

analysis phases (from INIT to GIPINIT3B).   

5.9.2 PfA Step 3: Comparison of Rasch Analysis Results: INIT vs GIP3A and 

GIP3B 

In this section, only the results of the INIT analysis and each of the GIP3A and GIPINIT3B analyses 

are discussed. The impact of the GS analysis has been previously demonstrated in Figures 5.10 and 

5.13, and it is not repeated in the figures below. The item locations shown in the GIP3A and GIPINIT 

3B graphs were identical because the GIP analysis has these locations anchored.  

 



112 

 

 

Given the outcomes reported, it was expected that the suppression of the indicated guessed item from 

the GIP process would have a consistent impact on the item calibration and relative difficulty locations 

and a varied impact with respect to the ability estimates of the GIP3A and GIPINIT3B outcomes. The 

expected impact on the student ability estimates was likely to be varied. It was expected that the GIP3A 

analyses would result in a lower mean ability estimate of the group accompanied by a significant 

increase in the distribution of estimates about that mean. Both the maximum and minimum observed 

ability estimates for the GIP3A analysis were anticipated to be greater than the INIT analysis. The 

GIPINIT3B results were likely to be varied because of the relative target of the test and the capacity 

of the GIP process to indicate guesses, particularly with more easy test items. Consequently, the impact 

of reintroducing the INIT raw score data was expected to have a varied impact on the final outcomes. 

Figure 5.16 shows the comparison between the INIT analysis outcomes with the GIP3A outcome 

(identified guesses suppressed) and the GIPINIT3B outcome (anchored GIP locations with INIT data) 

for the SIM1 data. The GIP3A analysis suppressed the GIP identified guesses and consequently 

reduced the GIP3A raw score for each student by the total of the guesses identified. This resulted in 

the lower-ability students being reported with a considerably lower mean ability estimate – up to 

approximately three logits lower. By comparison, the higher-ability students benefitted from a more 

accurate estimate of item locations by up to approximately two logits.  

 

The GIPINIT3B analysis enabled the higher-ability students to have their true ability recognised as a 

consequence of the re-calibrated item locations. However, re-introduction of the INIT data means that 

the lower-ability students were credited with the probable guesses as correct answers. Consequently, 

the degree to which the distribution of the lower ability estimates increased was reduced compared to 

the GIP3A analysis. Nevertheless, the lower-ability students were still reported with a lower ability 

estimate than the original INIT analysis. 

Figures 5.16 to 5.20 confirm the expectations of item location re-calibrations and their impact on the 

distribution of student ability estimates for each of the simulated data sets. 

5.10 Results of the Implementation of Phase 3 of the Plan for Analysis 

Figures 5.15 to 5.19 and the subsequent tables (Tables 5.15 to 5.19) detail the results of the analyses of the 

simulated data with a p value of 0.6.
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Figure 5.15 

SIM1 Comparison of Item/Student Maps for INIT Analysis, GIP3A Analysis, and GIP3B Analysis  

Phase 1 – Defined Guess scored as 1 

INIT analysis 

Phase 3A – indicated Guess suppressed - 

Item calibration analysis GIP3Ap = 0.6 

Phase 3B – indicated Guess scores correct – 

 INIT data with GIPp = 0.6 item locations 

(GIPINIT3B) 

SIM1. Normal, 400 cases, 40 items   
 
 

 

 

 
 

 

 

 

 

 

 

Note. These item/student maps compare the INIT analysis outcomes with the outcomes of the GIP3A analyses with p = 0.6 and GIPINIT3B locations with the 

item locations of the GIP3A analysis anchored with the data from the INIT student responses. Hence, the item locations of the GIP3A analysis are the same as 

those in GIPINIT3B but the student ability distributions are different, as anticipated.
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Figure 5.16 

SIM2 Comparison of Item/Student Maps for INIT Analysis, GIP 3A Analysis, and GIP 3B Analysis  

Phase 1 – Defined Guess scored as 1 

INIT analysis 

Phase 3A – indicated Guess suppressed - 

Item calibration analysis GIP3Ap = 0.6 

Phase 3B – indicated Guess scores correct – 

 INIT data with GIP3Ap = 0.6 item locations 

(GIPINIT) 

SIM2. Normal 250 cases, 20 items    
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Figure 5.17 

SIM3 Comparison of Item/Student Maps for INIT Analysis, GIP Analysis, and GIPINIT Analysis  

Phase 1 – Defined Guess scored as 1 

INIT analysis 

Phase 3A – indicated Guess suppressed - 

Item calibration analysis GIP3Ap = 0.6 

Phase 3B – indicated Guess scores correct – 

 INIT data with GIP3Ap = 0.6 item locations 

(GIPINIT) 

SIM3. Normal 1000 cases, 40 items   

 

 

 

 

 

 

 
 

 

 

Note. This figure shows that the p = 0.6 constraint had a similar impact in the SIM3 data as that observed in the SIM1 data. The range of the item locations of the 

GIP p = 0.6 increased compared to the p = 0.5 INIT analysis, and the range of the student ability estimates was also increased. There was a greater discrimination 

and a higher maximum achieved among the higher-ability students than was found in the results summarised in Figure 5.13.  
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Figure 5.18 

SIM4 Comparison of Item/Student Maps for INIT Analysis, GIP Analysis, and GIPINIT Analysis  

Phase 1 – Defined Guess scored as 1 

INIT analysis 

Phase 3A – indicated Guess suppressed - 

Item calibration analysis GIP3Ap = 0.6 

Phase 3B – indicated Guess scores correct – 

 INIT with GIP3Ap = 0.6 item locations (GIPINIT) 

SIM4. Easy, 400 cases, 40 items   

 
 

 

 

 

 

 

 
 

Note. The SIM4 data reflect a test that was too easy for the cohort. The results shown for the GIP p = 0.6 analysis mirror the results of SIM2, which had a similar 

test/cohort interaction. The impact was not as marked in SIM4 as in SIM2. This relationship may indicate that the effect was limited as the sample size increased. 
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Figure 5.19 

SIM5 Comparison of Item/Student Maps for INIT Analysis, GIP Analysis, and GIPINIT Analysis  

Phase 1 – Defined Guess scored as 1 

INIT analysis 

Phase 3A – indicated Guess suppressed - 

Item calibration analysis GIP3Ap = 0.6 

Phase 3B – indicated Guess scores correct – 

 INIT data with GIP3Ap = 0.6 item locations 

(GIPINIT) 

SIM5. Hard, 400 cases, 40 items   
 

 

 

 

 

 

 
 

Note. This figure shows the introduction of the p = 0.6 probability of a correct response constraint, when combined with the GIP parameters, for a hard test. It illustrates 

that this implementation had the effect of increasing the range of item difficulties and the range of student ability estimates in the GIP3A and GIPINIT3B outcomes 

compared to the INIT Rasch analysis.



118 

 

 

5.10.2 Comparison of Rasch Results for the Four Analysis Phases 

5.10.2.1 Item Statistics 

Table 5.14 provides a summary of the differences in item statistics for the SIM1 data for each of the four 

analyses applied: the INIT analysis; the GS analysis; and GIP analyses for each of the p = 0.6 probabilities. 

It is notable that the mean location and standard deviation are identical for each of the GIP Phase 3A GIP3A) 

and GIP Phase 3B (GIPINIT3B) analyses, because of the anchoring of the GIPINIT locations to the GIP 

values. However, the Fit Residuals of the GIPINIT3B analysis were consistently higher than the GIP 

comparable statistics as a result of the interaction with the INIT student response raw score data. 

Comparisons between “perfect” identification of data (GS) and the initial summary statistics (INIT analysis) 

in Tables 5.15 to Table 5.19 show a significant improvement in the skewness of the data and an increase in 

the range of the item difficulties in the GS analysis, which accounts for the defined guessing. The 

comparison between accounting for guessing achieved by implementing the identification parameters 

(GIP3Ap=0.6 and GIPINIT3B p=0.6) to the original data analysis (INIT) also show a reduction in the skew of 

the data as a result of the suppression of the indicated guesses and an increased range of difficulties, in the 

approximate range of -3 < δ <3 compared to the INIT values, which provides for location estimates up to 

three deviations from the mean.  

The GIP process provides a measurable improvement in the scale, which is a function of item difficulty 

independent of the participants, (upon which student ability estimates are calibrated) over the INIT scale 

which takes no account of guessing in the student responses. 

 

Table 5.15 

Comparison of SIM1 Item Statistics for the Four Analyses 

  

ITEMS: INIT 

analysis – Guessing 

ignored 

ITEMS: Guess 

Suppressed (GS)              

Defined guess 

missing 

ITEMS: GIP3A 

analysis – Indicated 

Guess suppressed  

p = 0.6 

ITEMS: GIPINIT3B 

analysis – INIT data 

scores  

p = 0.6 

Item 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual 

Mean 0 0.407 0 0.615 0 0.317 0 3.550 

SD 1.188 2.169 2.883 1.688 2.169 1.856 2.169 2.181 

Skewness 
 0.646  -0.175  0.023  0.465 

Kurtosis 
 -0.927  -1.590  -1.468  -1.386 

Correlation 
 0.703  -0.735  -2.673  0.801 

Min δ -2.660  -4.642  -3.749  -3.749  

Max δ 1.874  5.888  3.996  3.996  

range δ 4.534  10.53  7.745  7.745  

Note. The INIT column shows the results of the initial analysis that took no account of guessing. The Guess 

Suppressed (GS) column shows the results when all defined guessing is recoded as missing. The GIP3A p=0.6 and 

GIP3Bp=0.6 columns display the results when the resolved identification parameters have been applied to the data.  
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Table 5.16 

Comparison of SIM2 Item Statistics for the Four Analyses 

  

ITEMS: INIT 

analysis – Guessing 

ignored 

ITEMS: Guess 

Suppressed (GS)                

Defined guess 

missing 

ITEMS: GIP3A 

analysis – Indicated 

Guess suppressed  

p = 0.6 

ITEMS: GIPINIT3B 

analysis – INIT data 

scores  

p = 0.6 

Item 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual 

Mean 0 -0.682 0 -0.427 0 -0.674 0 1.580 

SD 1.365 2.674 1.785 2.622 2.240 0.931 2.240 2.753 

Skewness 
 0.894  0.636  0.954  0.908 

Kurtosis 
 -0.507  -1.280  0.102  -0.924 

Correlation 
 0.677  0.651  0.336  0.779 

Min δ -2.373  -3.113  -3.368  -3.368  

Max δ 1.664  2.356   3.199   3.199  

range δ 4.037  5.469   6.567   6.567  

 

 

Table 5.17 

Comparison of SIM3 Item Statistics for the Four Analyses 

  

ITEMS: INIT 

analysis – Guessing 

ignored 

ITEMS: Guess 

Suppressed (GS)                

Defined guess 

missing 

ITEMS: GIP3A 

analysis – Indicated 

Guess suppressed  

p = 0.6 

ITEMS: GIPINIT3B 

analysis – INIT data 

scores 

p = 0.6 

Item 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual 

Mean 0 0.370 0 0.937 0 0.216 0 5.226 

SD 1.260 4.029 3.084 2.318 2.254 2.818 2.254 3.671 

Skewness 
 0.504  -0.082  0.472  0.361 

Kurtosis 
 -0.648  -0.736  -0.963  -1.355 

Correlation 
 0.601  -0.721  -0.734  0.775 

Min δ -2.226  -4.187  -4.832  -3.246  

Max δ 1.870  6.333   5.150   5.150  

range δ 4.096  10.520   9.982   8.396  
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Table 5.18 

Comparison of SIM4 Item Statistics for the Four Analyses 

  

ITEMS: INIT 

analysis - Guessing 

ignored 

ITEMS: Guess 

Suppressed (GS)             

Defined guess 

missing 

ITEMS: GIP3A 

analysis – Indicated 

Guess suppressed  

p = 0.6 

ITEMS: GIPINIT3B 

analysis – INIT data 

scores 

p = 0.6 

Item 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual 

Mean 0 0.206 0 0.600 0 0.267 0 2.697 

SD 1.263 2.399 2.520 2.142 2.001 2.224 2.001 2.356 

Skewness 
 0.343  -0.600  -0.376  0.695 

Kurtosis 
 -0.470  -1.210  -1.291  -0.131 

Correlation 
 0.141  -0.731  -0.762  0.568 

Min δ -2.310  -3.526  -3.049  -3.049  

Max δ 2.211  5.813   3.961   3.961  

range δ 4.521  9.339   7.110  7.110  

 

 

Table 5.19 

Comparison of SIM5 Item Statistics for the Four Analyses 

  

ITEMS: INIT 

analysis - Guessing 

ignored 

ITEMS: Guess 

Suppressed (GS)            

Defined guess 

missing 

ITEMS: GIP3A 

analysis - 

conditioned data  

p = 0.6 

ITEMS: GIPINIT3B 

analysis - conditioned 

scores 

p = 0.6 

Item 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual Location 

Fit 

Residual 

Mean 0 -0.735 0 0.023 0 -0.329 0 3.210 

SD 1.136 4.244 3.273 1.471 2.358 1.886 2.358 3.155 

Skewness 
 0.240  -0.213  0.028  -0.035 

Kurtosis 
 -1.457  -1.231  -0.783  -1.306 

Correlation 
 0.579  -0.586  -0.532  0.694 

Min δ -2.590  -4.272  -3.813  -3.813  

Max δ 1.550  8.352   3.233   3.231  

range δ 4.140  12.624  7.046  7.044  

 

Results in relation to student ability estimates (summarised in Tables 5.21 to 5.25) are consistent 

across the four analyses in the following five ways: 

1. The distribution of ability estimates was greatest for the GS phase, and in the GIP3A analysis 

the distribution of ability estimates was greater than the INIT analyis to a lesser degree than the 

GS result. 

2. The distribution of ability estimates for the GIP3A  analysis was greater than for the GIPINIT3B 

analyis, both of which were greater than for the INIT analysis. 

3. The reliability statistic for the GIP3A and GIPINIT3B=0.6  analyses were higher than for the INIT 

analysis. 

4. The mean ability esimates for the GIP3Ap=0.6  analysis tended to be lower than for the INIT 

analysis.  
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5. The mean of the GIPINIT3B analysis was greater than for the INIT analysis, reflecting 

introduction of the INIT data that credits all correct responses in a more refined GIP scale. 

5.10.2.2 Ability Estimate Statistics 

Tables 5.20 to 5.24 summarise the observed ability estimate statistics for each of the four analyses of the 

simulated data. They show a consistent pattern that makes explicit the outcomes observed in Figures 5.15 

to 5.19. For each of the data sets, the GS analysis shows significant increases in the distribution of ability 

estimates around a lower mean value compared to the INIT analysis. This was a consequence of the 

reduction in the raw scores of the GS analysis compared to the INIT analysis. 

The GIP analyses show two consistent patterns. The GIP3A result has a lower mean result for the group as 

a result of the suppression of the indicated guesses, and a higher distribution of ability estimates about that 

mean. Both the maximum and minimum estimates are greater than the INIT outcome. By comparison, the 

mean of the GIP3B analysis generally shows a mean ability estimate higher than the INIT outcome because 

of the recalibration of the item difficulties and the reintroduction of the initial response data. However, the 

both the maximum and minimum GIPINIT3B estimates are greater than the INIT outcome. 

Table 5.20 displays the outcomes for SIM1. It shows that the GS analysis for the defined guessing resulted 

in a mean ability approaching zero, compared to 0.72 logits in the INIT analysis. The GS analysis also 

resulted in a wider distribution of abilities calculated – a range of 13.7 logits – and the extremities being 

almost 3 logits further distant from without accounting for guessing. 

The two components of the GIP analyses (3A and 3B) show a deviation in their ability estimates to a 

lesser degree than does the GS analysis. Both GIP analyses show a greater range of abilities calculated, a 

higher maximum ability reported (recognising the ability of higher-ability students), and a lower minimum 

ability reported (which more accurately positions lower-ability students than parameters of the INIT 

analysis). Tables 5.21 to 5.24 provide a comparison of the item parameters for each of the analyses and 

the two versions of the GIP procedures (p = 0.6) in relation to SIM2 to SIM5 data sets.  
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Tables 5.20 to 5.24 provide the results for each of the simulations, with the genearl pattern of results 

similar to those observed for SIM1. 

Table 5.20 

Comparison of SIM1 Student Ability Estimate Statistics for the Four Analyses 

 

STUDENTS:  

INIT analysis  - 

Guess is correct 

STUDENTS:  

Guess Suppressed (GS) 

- Guess is missing 

STUDENTS: 

GIP3A analysis – 

Indicated Guess 

suppressed  

p = 0.6 

STUDENTS: 

GIPINIT3B analysis 

– INIT responses 

with GIP3A p = 0.6 

item locations 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual 
Location 

Fit 

Residual 
Location 

Fit 

Residual 

Mean 0.724 -0.310 0.034 -0.265 0.543 -0.254 0.950 0.839 

SD 1.390 1.304 3.196 0.647 2.388 0.780 1.963 1.095 

Skewness  0.473  0.328  -0.022  0.203 

Kurtosis  -0.298  0.196  0.356  -0.379 

Correlation  -0.362  0.368  -0.410  -0.523 

Min β -2.615  -6.314  -5.392  -3.417  

Max β 4.646  7.448  5.495  5.004  

range β 7.261  13.762  10.887  8.421  

RELIABILITY INDICES         

Separation Index 0.899  0.958  0.950  0.932 

Cronbach Alpha 0.919  N/A  N/A  N/A 

 

Table 5.21 

Comparison of SIM2 Student Statistics for the Four Analyses 

 

STUDENTS:  

INIT analysis - 

Guess is correct 

STUDENTS:  

Guess Suppressed (GS) 

- Guess is missing 

STUDENTS: 

GIP3A analysis – 

Indicated Guess 

suppressed  

p = 0.6 

STUDENTS: 

GIPINIT3B analysis 

– INIT responses 

with GIP3A item 

locations 

p = 0.6 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual 
Location 

Fit 

Residual 
Location 

Fit 

Residual 

Mean 1.403 -0.329 1.271 -0.327 1.534 -0.331 1.862 0.136 

SD 1.274 0.889 1.691 0.835 2.119 0.515 1.653 0.878 

Skewness   1.609   1.028 
 0.574  1.258 

Kurtosis   2.275   1.279 
 3.670  0.667 

Correlation   -0.473   -0.355 
 0.027  -0.626 

Min β -1.420   -3.140   -3.364  -1.989  

Max β 4.029    4.401    5.004  5.004  

range β 5.449   7.541    8.368  6.993  

RELIABILITY INDICES       
  

Separation Index 0.725   0.815   0.799 
 

0.797 

Cronbach Alpha 0.800   N/A   N/A N/A 
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Table 5.22 

Comparison of SIM3 Student Statistics for the Four Analyses 

 

STUDENTS:  

INIT analysis - Guess 

is correct 

STUDENTS:  

Guess Suppressed (GS) 

- Guess is missing 

STUDENTS: 

GIP3A analysis – 

Indicated Guess 

suppressed  

p = 0.6 

STUDENTS: 

GIPINIT3B analysis 

– INIT responses 

with GIP3A item 

locations 

p = 0.6 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual 
Location 

Fit 

Residual 
Location 

Fit 

Residual 

Mean 0.717 -0.326 0.019 -0.223 0.517 -0.299 0.950 0.838 

SD 1.302 1.286 3.118 0.621 2.302 0.837 1.859 1.105 

Skewness   0.489   0.532 
 0.088  0.104 

Kurtosis   -0.129   0.051 
 -0.179  -0.519 

Correlation   -0.349   0.365 
 0.402  -0..522 

Min β -2.419   -6.408   -5.640  -3.246  

Max β  3.887    6.828    5.150  5.150  

range β  6.306   13.236   10.790  8.386  

RELIABILITY INDICES       
  

Separation Index  0.891   0.958   0.948  0.927 

Cronbach Alpha  0.907   N/A    N/A  N/A 

 

 

Table 5.23 

Comparison of SIM4 Student Statistics for the Four Analyses 

 

STUDENTS:  

INIT analysis - Guess 

is correct 

STUDENTS:  

Guess Suppressed (GS) 

- Guess is missing 

STUDENTS: 

GIP3A analysis – 

Indicated Guess 

suppressed  

p = 0.6 

STUDENTS: 

GIPINIT3B analysis 

– INIT responses 

with GIP3A item 

locations 

p = 0.6 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual 
Location 

Fit 

Residual 
Location 

Fit 

Residual 

Mean 1.267 -0.166 1.144 -0.168 1.313 -0.185 1.577 0.786 

SD 1.479 1.071 2.834 0.696 2.294 0.810 1.979 1.112 

Skewness   0.411   0.311  0.238  0.292 

Kurtosis   -0.027   -0.296  -0.867  -0.350 

Correlation   -0.175   0.529  0.571  -0.452 

Min β -2.989   -7.471   -5.344  -3.530  

Max β  4.724    7.222    5.926   5.926  

range β 7.713   14.693   11.270   9.456  

RELIABILITY INDICES         

Separation Index  0.889   0.950   0.939  0.921 

Cronbach Alpha 0.923   N/A   N/A  N/A 
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Table 5.24 

Comparison of SIM5 Student Statistics for the Four Analyses 

 

STUDENTS:  

INIT analysis - Guess 

is correct 

STUDENTS:  

Guess Suppressed (GS) 

- Guess is missing 

STUDENTS: 

GIP3A analysis – 

Indicated Guess 

suppressed  

p = 0.6 

STUDENTS: 

GIPINIT3B analysis 

– INIT responses 

with GIP3A item 

locations 

p = 0.6 

Statistics Location 

Fit 

Residual Location 

Fit 

Residual 
Location 

Fit 

Residual 
Location 

Fit 

Residual 

Mean 0.240 -0.217 -0.157 -0.063 -0.257 -0.224 0.305 1.166 

SD 1.313 4.244 3.290 0.489 2.249 0.810 1.720 1.224 

Skewness   0.240   0.806 
 0.649  -0.309 

Kurtosis   -1.457   1.476 
 0.413  -0.822 

Correlation   0.579   0.156 
 0.322  -0.678 

Min β -2.599   -6.146   -5.855  -3.642  

Max β 2.520    8.260    3.797   3.797  

range β 5.119   14.406    9.652  7.439  

RELIABILITY INDICES       
  

Separation Index  0.865   0.952   0.949  0.923 

Cronbach Alpha  0.884   N/A   N/A  N/A 

 

Taken together, the improved item performance and largely improved estimates of overall student 

ability provide evidence to support an evolving conclusion that the GIP procedure yields an 

improvement in estimating test performance and ability estimates more than a Rasch analysis that does 

not attempt to take account of guessing. 

5.11 Analysis of Fit Statistics 

In the analyses reported in Tables 5.20 to 5.24, the GIPp=0.6 analysis also had an improved Separation Index 

statistic compared to the comparable INIT analysis. This statistic is a pseudo Cronbach α that measures the 

internal reliability of the data in which there were missing values. As a first indicator, this feature suggests 

that the GIP procedure was an improvement in the measurement of the student estimates compared to the 

INIT unconditioned data. 

In the following the methodolology of Andrich et al. (2015), measures of improvement in the fit to the RM 

are demonstrated through comparisons of the mean square statistic. 

 

Mean Square = χ2 /d.f.    Equation 5.6 

 

Where χ 2  is the sum of the squares of the deviations of the observed student/item interactions from 

the model; and 

d.f. is the number of degrees of freedom of the sample. 
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Applied to the current data, in each data set the mean square fit statistic of the GIP3Ap=0.6 analysis was 

lower than the INIT analysis statistic (see Table 5.24 to compare the results of the analyses in terms of fit 

statistics and calculated mean square statistic for each simulated data set). Andrich et al. (1988) describe 

this outcome as an improvement in the fit of the data to the model. In cases where the GIP mean square 

approches half the INIT statistic, this represents a “substantial” improvement (Andrich et al., 2012) in the 

fit of the data used to re-calibrate the item locations. These results provide evidence that the GIP3A process 

produced a more “pure” variable (i.e., a better measure of the construct under investigation). 

Table 5.25 

Test of Fit for the INIT, GS, and GIP Analyses 

Analysis INIT 
GIP3Ap = 0.6 Guess 

Suppressed 

GIPINIT3B p = 0.6 with 

INIT data 

  
Total 

Chi-Sq d.f. 

Mean 

Square 

Total 

Chi-Sq d.f. 

Mean 

Square 

Total 

Chi-Sq d.f. 

Mean 

Square 

SIM1 1519 200 7.6 707 200 3.5 812 200 4.1 

SIM2 312 60 5.2 116 60 1.9 793 60 13.2 

SIM3 4540 360 12.6 3713 360 10.3 20474 360 56.9 

SIM4 1305 200 6.5 1239 200 6.2 4369 200 21.8 

SIM5 1859 200 9.3 807 200 4.0 13528 200 67.6 

 

When the initial student responses (INIT data) were re-introduced with the GIP3A item locations (analysis 

GIPINIT3B), the mean square fit statistic was universally greater than both INIT and GIP3A outcomes. 

To reiterate, the GIP3A analysis takes account of guessing and suppresses the probable guessed responses. 

This means they were scored as missing in the analysis. The impact of that process was to refine the variable 

by reducing the “noise” caused by the misfitting guessed items and create a better fit of the conditioned 

data to the model. By anchoring the GIP3A items locations (which redefines a more “pure” measurement 

scale) and introducing the INIT data, the degree of misfit of the guessed items in the GIPINIT3B analysis 

was increased and then exacerbated by the summing of the squares of the residuals. Yet, as Andrich (2012) 

noted:  

Within the Rasch measurement paradigm, misfit between the data and the model is seen as an 

anomaly in the data. … In the case of random guessing to multiple choice items, to remove the 

source of anomalies requires better alignment of the difficulty of the items to the proficiency of 

the students. (p. 420) 

Tables 5.15 to Table 5.25 and Figures 5.14 to 5.19 presented above clearly accord with this statement. 

The INIT analyses contain defined randomly generated guessing and display misfit as an anomaly in 

the data. By comparison, the GIP3Ap=0.6 results display better alignment of item difficulty to the 

achievement of the students, following the removal of the source of the anomalies (guessing as a source 

of systematic error). Consequently, the because the raw scores vary in the GIP3A procedure, students 

have revised, and more reliable, ability estimates in a scale that is a better representation the relative 

difficulties of the items in the trait. The reintroduction of the systematic error by using the INIT raw 

scores is an artifact of the face validity required when a student correctly responds to an item 
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irrespective of the ability related source of that response. This anomaly may be addressed in the way 

results are reported to various stakeholders. 

However, it is important to note that the GIPINIT3B outcomes are grounded in an improved 

measurement scales produced in the GIP3A process. Hence, although the re-introduction of the 

systematic errors in the INIT data have a negative impact on the fit statistics, the student estimates are 

based on a better measurement scale and hence an improvement over a scale that does not attempt to 

account for guessing. 

Tables 5.26 and 5.27 summarise the impact of implementing the GIP parameters with each simulation 

data set. They were designed to provide a summary of the INIT and final products of the application 

of the proposed GIPINIT3Bp=0.6 procedure to the data sets. They provide an abridged summary of the 

relevant parameters from the two analyses. 

Table 5.26 

Summary of the Results of the INIT Simulated Data Sets 

Distribution Sample Items Students 

Target N St. 

Dev 

Range Skew Kurtosis Mean β St. 

Dev 

Range α 

Normal 400 1.19 -2.7/1.9 0.65 -0.93 0.72 1.39 -2.6/4.6 0.90 

Normal 250 1.37 -2.4/1.7 0.89 -0.51 1.40 1.27 -1.4/4.0 0.72 

Normal 1000 1.26 -2.2/1.8 0.50 -0.65 0.72 1.30 -2.4/3.9 0.89 

Too easy 400 1.26 -2.3/2.2 0.34 -0.47 1.27 1.48 -3.0/4.7 0.89 

Too hard 400 1.14 -2.7/1.9 0.24 -1.46 0.24 1.05 -2.6/2.5 0.86 

 

Table 5.27 

Summary of the Results of the GIPINIT3Bp=0.6 Simulated Data GIP3A Locations with INIT Raw Scores 

Distribution Sample Items Students 

Target N St. 

Dev 

Range Skew Kurtosis Mean β St. 

Dev 

Range α 

Normal 400 1.90 -3.4/3.3 -0.09 -1.26 0.54 2.39 -3.4/5.9 0.95 

Normal 250 1.88 -3.2/2.6 0.09 -1.45 1.86 1.65 -2.0/5.0 0.80 

Normal 1000 1.81 -2.9/3.0 0.76 -0.41 0.95 1.86 -3.2/5.2 0.93 

Too easy 400 1.81 -2.8/3.5 -0.19 -0.71 1.58 1.98 -3.5/5.9 0.92 

Too hard 400 2.36 -3.4/2.8 -0.03 -1.31 0.31 1.72 -3.6/3.8 0.92 

Note. α = RUMM Separation Index indicated for incomplete data sets (conditioned data) with missing values 

(guesses). 

 

Eight conclusions can be drawn from the overall pattern of results summarised in Tables 5.25 and 5.26: 

1. The range of item difficulty locations derived from the simulated data was greater when guessing 

was suppressed by applying the GIP, compared to the INIT values. In these simulated data, the 

defined guesses of each student in the original response pattern had been indicated and suppressed 

with an overall recovery rate to the order of 33%. However, in the region where there is likely to 

be most guessing (the lowest quartile, or lower deciles of the student above), the recovery rate of 

“indicated” defined guesses was of the order of 60%.  
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2. The wider distribution of GIP item difficulty locations generated both lower and higher item 

locations than in the INIT analysis. The consequences of the lower difficulty location for easier 

items and higher difficulty location for harder items is demonstrated by the method of computing 

student ability estimates. That is, the interaction between the raw score and the item difficulty, as 

determined by the RM, results in success on lower difficulty items and thus in a lower ability 

estimate than when the item difficulty is overestimated. Conversely the interaction between higher 

item locations and the raw score, in applying the RM, generates higher ability estimates for students 

who have been successful in a greater number of items.    

3. The application of the GIP procedure tended to impact the skew in the data in a negative (beneficial) 

direction, which accounted for the overestimation of student ability in the unconditioned data. 

4. The mean ability of the sample decreased in response to suppression of the guessing in the response 

patterns. This was not simply a function of the reduced scores produced by re-coding correct 

guessed responses, it was also a function of the interaction between the ability estimate and the 

item difficulty (Table 3.2). The GIP procedure resulted in an improvement in the accuracy of 

estimating student abilities, but to a lesser extent than was observed by suppressing all “defined” 

guesses. 

5. The spread of ability estimates increased to reflect the wider distribution of item difficulties, from 

which the ability estimates were constructed. The more difficult items led to higher student ability 

estimates, and success in only the items of lower difficulty reflected a lower ability in the trait. 

6. The reliability indicators generated by suppressing guessing – Cronbach’s α in the case of the 

complete data sets, and Separation Index in the case of the incomplete data – improved when 

guessing was accounted for using the GIP procedure, compared to the unconditioned initial data. 

7. Although the fit of the ability estimates for the GIPINIT3B analysis showed greater misfit than for 

the INIT analyses, the ability estimate and item fit analysis of the GIP3A analysis, which defines 

the GIPINIT3B item scale, was an improvement over the INIT analysis. Hence the measurement 

scale upon which the student achievement was compared appears to be a better indicator of ability 

than a scale which makes no attempt to account for the guessing in the data. 

8. The GIPINIT3B highlighted the misfit introduced by the presence of guessing, which is consistent with 

the expectations and theory that underpins this research. The misfit observed in the GIPINIT3B analyses 

does not negate the findings. Rather, it highlights the impact of guessing and supports the contention 

that this two-stage analysis of the data provides a better measure of the students in the trait, provided 

the items that are producing the misfit – the GIP indicated probable guessing – are reported to the 

stakeholders for further consideration.  
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The application of the GIP process to account for guessing did not represent a procedure to adjust a model 

to fit the data, as is the cases in the 3PL IRT model discussed in Chapter 4. Rather, it represents the 

application of a logic to refine the variable by omitting responses which are highly likely to be a corruption 

of the requirements of the model, and hence develop an improved measurement variable – a removal of the 

systematic error. 

The impact of the application of the GIP to the simulated data provided a better alignment between the item 

difficulties and the abilities of the students, as summarised in Tables 5.25 and 5.26. However, there were 

limiting factors in the capacity of the GIP that restricted the practical identification of every case of defined 

guessing generated in the simulated data. These will be discussed in Chapter 11.  

5.12 Summary 

The aim of Study 1, the analysis of the simulated data, was to develop a set of parameters that consistently 

identified a defined guess in the simulated data. The developed GIP could then be used in investigations of 

live data. This chapter detailed the process by which the GIP process was determined. The outcome of the 

analyses identified a set of parameters that were efficient in identifying previously defined guesses without 

any Type 1 errors. These processes and parameters constitute the GIP that will be the focus of the next 

chapters, which will evaluate its ability to indicate and account for guessing in student data. The results 

from implementing the GIP procedures (3A and INIT3B) to the simulated data sets are consistent with the 

expected outcomes the hypothesis of the research study as a whole.  

Given the pattern of results derived from the sequence of the planned analyses, the parameters tested 

and reported in this chapter were used for subsequent investigations and development of the GIP. In 

summary, likely guessing is inferred in the GIP process when: 

• the p = 0.6 constraint is applied in estimating the probability of a correct response and in 

calculating parameters 2 and 3 below; 

• Pr(1)p = 0.6 <0.25; and 

• item/student residual >1.75. 
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Chapter 6  

Study 2: Investigating the Proposed GIP Process Using Small-

Scale Field Data 

6.1 Introduction 

The purpose of Study 2 was to review the application and effectiveness of the GIP parameters – developed 

with simulated data – for indicating probable guessing when using a set of real-life educational assessment 

data. As outlined in the Methodology of Chapter 4, this Study involved the administration of an Arabic 

version of a mathematics achievement test to students of Year 5 and Year 7 designed to increase the rate of 

guessing while introducing a mechanism to identify the self-indicated guesses. Following the 

administration of the Arabic tests, a English versions of the same tests was administered to the same 

students (adopting a within-subjects design), to enable the collection of a set of baseline data for comparison 

with the Arabic version that was designed to engender guessing.  

To briefly reiterate the methodology, two convenience samples (total N = 492 students) sat a Mathematics 

test developed from previously trialled items, which had functioned uniformly when administered in large-

scale assessments. Consistent with recommendations of Wright and Stone (1988), prior administration 

made it possible to order the items in the tests by item facility, from easy to hard. This structure was intended 

to maximise the potential for Guttman-like response patterns if the assumptions regarding the interaction 

between students and items that underpin Rasch Theory were observed in these real-world data. The tests 

were constructed using only multiple-choice items with four distractors. In responding to the items, students 

were asked to answer each item by filling in a response “bubble”. The only deviation from “normal” 

practice was that the students were required to answer with different coloured pens to self-identify guessing 

in the response data (Green (G) = known answer, Yellow (Y) = unsure response, and Pink (P) = Guess). 

Reference to the likely guessed items nominated by the GIP process uses the verb “indicate” in the reporting 

of these results. A differentiation is made between students “identifying” their self-identified responses and 

the guesses “indicated” by the GIP process.  

For each stage of Study 2, this chapter follows the structure of Chapter 5. 

6.2 Plan for Analysis (PfA) for the English Versions of the Tests 

1. The analysis of the English versions of the tests are presented before the Arabic analysis outcomes, as 

the English versions were assumed to provide a better estimate of baseline data against which the results 

of the Arabic version could be compared. Analyses of these field data followed a similar plan as for the 

simulated data; separately for each language version of the tests and for each of the Year 5 and Year 7 

students who engaged with the items. These followed processes similar to those developed with the 

simulated data: 
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3. For each test and Year level, data were first analysed using traditional techniques to investigate the item 

performance and the relationships between the self-identified guesses and the item difficulty expressed 

as facility (percent correct).  

4. Each data set was then analysed using the Rasch model (RM) (see Table 4.1), which initially took no 

account of the self-identified guesses (INIT), followed by an analysis that accounted for the self-

identified guesses (SIG, analogous to the GS analyses of the simulated data). The purpose of this 

analysis was to determine the extent to which accounting for the self-identified guesses in each data set 

impacted the item difficulty locations and relative ability estimates of the students. It also enabled 

comparison to the results from the simulated data to observe if these live data generated similar 

outcomes, as a further evaluation of the GIP procedure. 

5. The third step involved the application of the GIP procedures (Phases 3A and 3B) with the original data. 

In this step, a correlation between the items indicated by GIP were compared to the self-identified 

guessing to evaluate the efficacy of the protocol. 

6. Supplementary analysis of the frequencies of the GIP-identified items and item fit were conducted to 

assess the degree to which the outcomes accorded with the expectations of the hypotheses and the 

outcomes found with the simulation data.  

7. Concluding comments are provided regarding how Study 2 contributes to the overall program of 

research, in terms of the prior findings and plan for subsequent studies. 

8. The remainder of this chapter reports on the background, specifications, and results for each of the 

analytical steps.  

6.3 Study 2, Stage 1, English Versions of the Tests 

6.3.1 PfA Step 1 Analysis – Investigation of Self-Identified Guesses 

For both the Year 5 and Year 7 levels, the relationship between item difficulty and self-identified guesses 

was generally consistent with results from the simulated data analyses and the hypothesis. That is, as item 

difficulty increased so did the proportion of guesses in the student response patterns.  

6.3.1.1 Year 5 

Results of the relationship between the proportion of guesses and the facility of each item for the Year 5 

sample conformed to the expected pattern (Figure 6.1). Although there was some variation in the proportion 

of guessing relative to the facility of each item (Figure 6.2), the R2 of the guessing distribution indicated 

that more than 70% of the variation in the self-identified guessing was explained by the facility of the item. 

Figure 6.1 shows the variability in the proportion of guesses and the relative proportion of successful 

guesses for each item.  
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Figure 6.1 

Year 5 Relationship Between Item Facility and the Percentage of Self-Identified Guesses  

 

Note 1. The observed Self-Identified Guesses (SIG) represents the proportion of self-identified guesses. 

Note 2. The items have been ordered from most difficult (lowest facility) to least difficult.  

In reviewing the self-identified guesses of Year 5 students that were successfully answered (Figure 6.2), it 

is interesting to note that for the hardest items the success rate of self-identified guesses was approximately 

the expected chance rate (25%). As the items became easier, the success rate was considerably higher, 

which suggests that as item difficulty decreased the self-identified guesses were not random. 

Figure 6.2 

Year 5 Relationship Between the Percent of Self-Identified Guesses and the Percent of Correct Guesses  

 

Note. Items ordered from hardest (lowest facility) to easiest 
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6.3.1.2 Year 7 

Whereas the Year 5 patterns of the item/guess interactions were relatively uniform, there was greater 

variation within the Year 7 response data, especially in relation to the most difficult items (Figure 6.3). 

However, this may reflect the higher proportion of non-attempts (13%) associated with those items. It is 

notable that for the 20 most difficult items the proportion of self-indicated guesses tended to be at or above 

25%. As items became easier, this proportion reduced considerably with less variability but was well below 

the expected rate of 25%. This supports the inference from the Year 5 results that as items became easier 

the guessing was less random and possibly reflected partial knowledge. 

Figure 6.3 

Year 7 Relationship between item Facility and the percentage of Self-Identified Guesses          

 

Note. This figure shows the relationship between the total number of guesses and the number of correct 

guesses for Year 7. It highlights the variability in response patterns for “authentic data”, in which the 

students’ pattern of guessing did not necessarily accord with theoretical expectations. 

For the Year 5 sample, the value of the correlation between the observed raw score and the number of 

incorrect “known” answers was r = -0.78, indicating that lower-ability students suggested they knew the 

answer when it was in fact incorrect more frequently than the higher-ability students. For Year 7, the 

comparable statistic was r = -0.18; however, the correlation between raw score and non-responses (missing) 

was r = -0.73, indicating that higher-ability students tended to omit items more frequently rather than 

attempting a guess. This was not evident in the Year 5 responses. 
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Figure 6.4 

Year 7 Relationship Between the Percentage of Self-Identified Guesses and the Percentage of Correct 

Guesses 

 

 

These data reflect the real-life responses that do not accord exactly with theoretical patterns demonstrated 

in the simulated data, and they highlight the need to evaluate theoretically derived solutions with authentic 

data. In order to further understand the patterns of student responses observed in these data, the items were 

further disaggregated by quartile, based on the INIT values of item difficulty and student ability (Figures 

6.5 and 6.6). These figures display responses irrespective of whether items were guessed correctly or 

incorrectly.  

For the Year 5 data, the trend lines displayed in Figure 6.5 show that the higher-ability students (most-able 

quartile and Q3) generally had an increasing propensity to guess as items became more difficult, yet this 

propensity was less than that shown in the trend lines that represent the Q2 and lower-ability students. 

However, across the range of item difficulties, the proportion of guesses tended to be hierarchical, with the 

lower-ability students consistently guessing on more occasions that the higher-ability students. The results 

of these analyses show that there was an increasing propensity to guess as items became more difficult, and 

that increased guessing was observed as student ability declined. 

Figure 6.6 shows a similar pattern in the Year 7 data to that displayed in Figure 6.5, although the variation 

in the patterns was more defined, with a clearer delineation between the trend lines of each of the quartiles. 

The frequency analysis conducted on the Year 7 responses clearly showed the relationship between 

propensity to guess and item difficulty for all ability groups. These data demonstrate the inverse relationship 

between the ability of the students and the number of guessed items, as item difficulty increased. These 

Year 7 data thus reflect the expected patterns and support the assumptions that underpinned the constructs 

of the simulated data.
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Figure 6.5 

Year 5 Relationship Between INIT Item Location and the Proportion of Self-Identified Guesses Irrespective of Result 

 

 

Figure 6.6 

Year 7 Relationship Between INIT Item Location and the Proportion of Self-Identified Guesses Irrespective of Result 

 

Note. The percentage of self-identified guessed responses is shown for each ability quartile as the item difficulty locations increase.
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6.3.2 PfA Step 2 and Step 3 Rasch Analysis – English Version Test Data 

In a similar manner to the methodology applied to the simulated data in Chapter 5, the following three 

phases of data analysis using Rasch analyses techniques were conducted: 

1. The INIT involved a simple analysis of the response data, taking no account of the self-reported 

guessing identified by the students. Item parameters and student ability estimates were obtained from 

these data. 

2. The SIG analysis re-coded the student-identified, correctly guessed items as “missing data” in order to 

recalibrate the item parameters and student ability estimates (analogous to the GS analysis).  

3. The GIP, developed from the results of the simulation data analyses (see Chapter 5), revised the student 

estimates using the GIP by re-coding items indicated as “probable guessing” and re-calibrating the item 

locations and the consequent raw score to ability estimates. The GIP3A procedure ignored the student-

indicated self-identified guesses. The raw score to ability conversion parameters from the “GIPINIT3B 

conditioned” treatment were then applied to the original response raw score analysed in Phase 1 (the 

INIT analysis) to determine the ability estimate achieved by each student following the GIPINIT3B 

analysis. 

6.3.2.1 Probable Guessing in the Year 5 Data – Comparison of the SIG Items and GIP Outcomes  

The initial investigation focused on the relationship between the student-identified guesses and those 

indicated by the GIP process based on the INIT analysis. The first observation was the degree to which 

student success in items was associated with “known” responses (G) and those that were self-identified as 

a guess (Y and P).  

The response pattern for a selection of lower ability Year 5 students is provided in Table 6.1 to illustrate 

the response pattern of this group of students. This group is displayed because it is the group for which 

guessing is most likely to occur (see Figure 6.5). For this group, there were many instances of incorrect 

responses that were indicated by the student as “known” answers (green colouring for Mode and a response 

score of zero). The frequency of incorrect answers in the responses of the lowest ability group that were 

self-identified as “a known answer” supported the earlier contention that students, especially the younger 

age group, may have difficulty in identifying a guess or a known answer (750 of a total of 1850 cases of 

”known” incorrect answers) or a false sense of their knowledge. Given that the GIP procedure is grounded 

in an alogithm that considers the difference between the ability of the student and the difficulty of the 

individual item, the frequency of the incorrect answers that were nominted as “known” responses suggests 

a high likelihood that these incorrect responses were guessed or a function of incomplete knowledge.  

The number of cases in which the GIP parameters indicated a probable guess, for which the student 

considered he/she knew the answer, were initially considered a challenge to the efficacy of the GIP process. 

However, observation of the incorrect responses in these tables provides some insight into this apparent 

anomaly. On multiple occasions, across all ability levels, students answered items incorrectly for which 

they believed they “knew” the answer. Hence these responses may indicate incomplete knowledge, a 

misconception by the student, or perhaps a careless mistake. Hence, the coding of student-identified 
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“known answers” that the GIP procedure indicated as probable guessing may not be an indication of a mis-

coding, but rather could be construed as evidence of incomplete knowledge of the student for the 

concept/contexts being assessed. These inconsistencies challenged the intent of this component of the study, 

in which it was presumed that the self-identified guesses could provide a baseline for evaluating the GIP 

process; however, the process described in the PfA was completed to investigate the efficacy of the GIP 

process with live data. 

An extract of the Year 5 results for mid-range abililty students was reviewed to compare and assess the 

consistency of the inferences made in relation to the lower ability interactions (Table 6.1). This extract 

shows that the only items indicated by the GIP procedure to be likely guesses were the harder items 

(highlighted in pink). A feature of these response patterns was the presence of non-responses as student 

ability increased, coded in Table 6.2 with the value “9”. This characteristic of the data suggests that the 

lower-ability students were more likely to guess in a random manner when items were too difficult for their 

current understanding and/or ability, rather than omit the item, as evidenced in the responses of the the 

higher-ability students. There were no instances of omission in the lower ability quartile of students 

(approximately 75 students). The increase in the proportion of missing items in the results of the higher-

ability students contributed to the decrease in the proportion of student/item interactions indicated as 

probable guesses by the GIP process.  

6.3.2.2 Probable Guessing in the Year 7 Data 

Three items have been indicated as probable guesses for student G5E212 (ability estimate 0.086), namely, 

items Math5Q31, Math5Q35, and Math5Q33, which have difficulty locations that exceed the student ability 

by about 1.1 logits in this Year 5 scale. In each case, the student identified these responses as “a known 

answer”. These items, when the set are ordered by difficulty, are in the region that the Guttman scale would 

expect incorrect answers. By comparison, when student G5E048 (ability estimate 0.214) attempted item 

Math5Q29 (difficulty location of 1.418), a probability of a correct response was less than 0.25 and the 

residual greater than 1.75. The GIP indicated this response by as a probable guess. The Guttman-like pattern 

of responses, generated as a by-product of ordering the items by increasing difficulty, support the contention 

that item Math5Q29 was beyond the ability of student G5E048. These examples highlight the variability in 

live data that challenge the GIP process in indicating probable guesses, but in general confirm the 

consistency of the application of the process. 

An extract of the higher-ability students is not presented because in the responses of the students in the top-

two ability quartiles the GIP procedure did not indicate any probable guesses, even though there were more 

than 200 instances of SIG in the upper two quartiles. This highlights a possible challenge encountered by 

the GIP procedure, when items prove to be too easy for the participating students. 

 



137 

 

 

 

Table 6.1  

Response Pattern for Lower Ability Year 5 Students Ordered by Item Difficulty (p = 0.6) 

 

Note. The red boxes highlight examples of correct responses that were indicated by the GIP procedure to be likely guesses and also indicated by the student to be a guessed 

item. The blue borders highlight examples of correct responses that were indicated by GIP to be likely guesses but which the student had indicated was not a guess. The green 

(G) boxes indicate the items for which the students indicated they “knew” the correct answer: The yellow (Y) boxes indicate that the student was unsure of the response 

provided.  
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Table 6.2   

Response Pattern for Mid-Tange Ability Year 5 Students Ordered by Item Difficulty 

 

Note 1. The table has been ordered by item difficulty from easiest to hardest. 

Note 2. In the case of omitted data, an asterix indicates no residual was calculated for a non-response. It highlights the relationship between the raw score achieved, the ability 

estimate generated, and the identification of probable guesses under the GIP implementation for this sub-sample of students. 
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The previous analyses were also performed with the Year 7 data to evaluate consistency with Year 5 

patterns. In the Year 7 responses there was an increased occurrence of missing responses (“9”) in these data 

(Table 6.3). It is also noted that in the majority of cases where a non-response was observed, the probability 

of a correct response was less than 0.25. The general Guttman-like pattern of correct responses is also 

notable. This suggests that the older age group (Year 7) of students seemed more likely to not respond to 

an item that was beyond their knowledge/ability compared to the younger age group (Year 5). There were 

also several items that were correctly answered and indicated by the GIP procedure as probably guessed, 

that the student indicated they “knew” the answer (9%). Yet many of their incorrect responses were also 

reported as “known” answers (15%). This tends to confirm the assertion that students were unable to 

distinguish between a response derived from a misconception and a guess. An extract of the lower ability 

Year 7 students (based on INIT analysis) is provided in Table 6.3. This group was selected as it was in this 

group that guessing was self-indicated as most prevalent and it also contributed the most number of GIP-

indicated interactions.  

This phase of the analysis highlights two issues that are relevant to the current study: 

1. the higher-ability students had a greater propensity to omit harder items, whereas the lower-ability 

students were more prone to guessing; and 

2. as indicated by the presence of the incorrect “known” responses, it is likely that in the case where 

students had partial skill/knowledge of the concept being assessed by an item they were more likely 

to respond than to omit the item.   
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Table 6.3   

Response Pattern for Lower Ability Year 7 Students Ordered by Item Difficulty Including Response Mode (G, Y, or P) (p = 0.6) 

 

Note1. This table is presented in the same format as the Year 5 data, with the top row showing the item label. The first row in each set (1. Score) records the scored responses for 

student G7E188. The “E” in the item code represents the English version of the test. The second (2. Pr(1)) records the probability that a student of ability estimate -1.944 (the p=0.6 

ability estimate of student G7E188) would achieve a correct response to each item in the test. The third row (3. Residual) records the student/item residual for the specific response 

recorded for each item. The fourth row (4. Mode) shows the student’s self-indication for each response to each item. The items indicated by the GIP procedure are highlighted. 

Note 2. As noted in the Year 5 data, there were no instances of GIP-indicated interactions in the upper two quartiles of ability. 
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6.3.3 PfA Step 3 Investigations of the Field Data 

The reporting that follows details the Rasch analyses and outcomes. The tables and figures report on the 

Rasch analyses of the student responses for the INIT (raw data), SIG (self-identified guesses suppressed), 

and GIP analyses. Given the similarities in the outcomes, the Year 5 and Year 7 data are reported together 

within each sub-section.  

6.3.3.1 Student Ability Estimate Statistics 

The increased proportions of GIP-indicated items as item difficulty increased (see Figure 6.4) affected the 

distribution of item locations and student ability estimates in the GIP analysis. However, the mean of the 

student ability estimates tended to be negated in the GIPINIT3B estimations (see Figure 6.7). These results 

were influenced by the relative ease of these test for the sample students, which highlighted the relationship 

between item and test targeting to the students when attempting to identify probable guessing in the student 

responses. Despite this impact on the mid-range student estimates, the GIP process did provide a better 

discrimination among the higher and lower-ability students, which had been anticipated from the simulation 

studies.  

The results of the GIP3A analyses indicate that student-identified guesses were more accurately identified 

by the GIP for lower-ability students than for higher-ability students (see Figures 6.6. and 6.7) While this 

is not an ideal situation, it was an improvement over existing approaches (reflected in INIT analysis) that 

did not provide even this benefit. That guessing could be indicated among students with the highest 

proclivity to guess is thus encouraging. 

As anticipated from the simulation analyses, the mean ability estimates were reduced in the GIP3A analysis, 

reflecting the recoding of probable guessing and its impact on the raw scores. However, as expected, the 

standard deviation (as an indicator of the spread of ability distributions) had increased (Tables 6.6 and 6.7). 

The differences between the student ability statistics of the INIT and GIPINIT3B analyses, as well as the 

improvement in the separation indices increased for all analyses compared to the INIT analysis, were small. 

However, the analyses displayed a similar pattern to those observed in SIM4 data analyses, which 

represented a test too easy for the sample and confirmed the manner in which the GIP process functions 

with data of these type. Given the premise of the current research is that the commonly applied Rasch 

analysis – which takes no account of guessing – does not accurately reflect the ability estimates of students 

in the higher and lower ability regions, the consistency of these outcomes is encouraging as confirmation 

of the manner in which the GIP process functioned for these distributions. 

Despite the challenge imputed by the less than optimal targeting, the results of the planned analyses are 

revealing. The results show that the SIG conditioning yielded a higher degree of differentiation in student 

ability estimates, as indicated by the increase in the standard deviation of the mean statistic. Both the SIG 

and the GIP analyses provided a higher degree of reliability for the assessment, as indicated by the relative 

Person Separation statistics. Thus, even with these challenging data, these analyses demonstrate a superior 

performance of the GIP process relative to current (guessing agnostic) practice. The sections that follow 

describe the analyses conducted and their results. 
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The results show that for each test the mean ability estimate of the INIT analysis was well over one logit: 

1.735 and 1.421, respectively (Tables 6.6 and 6.7). When tests are well targeted these values would trend 

towards zero, so that there is an alignment between the mean difficulty of the test and the mean ability of 

the students. These statistics, together with the graphical representations in Figures 6.7 and 6.8, clearly 

demonstrate that these tests proved too easy for the participating samples. 

Table 6.4   

Year 5 Summary Analysis – Student Ability Estimates by Analysis Phase 

STUDENTS 

n = 303 Phase 1 Phase 2 Phase 3A (GIP) Phase 3B (GIPINIT) 

 
Location 

INIT 

Fit    

Residual  

INIT 

 

Location 

SIG 

Fit    

Residual  

SIG  

Location  

GIP3A 

p=0.6 

Fit 

Residual 

GIP3A 

p=0.6 

Location 

GIPINIT 

p=0.6 

Fit 

Residual 

GIPINIT 

p=0.6 

Mean 1.735 -0.145 1.649 -0.186 1.752 -0.192 1.816 -0.019 

SD 1.285 0.642 1.427 0.656 1.453 0.604 1.354 0.645 

Skewness  1.405  1.040  1.108  1.432 

Kurtosis  5.006  4.210  4.709  5.176 

Correlation  -0.052  0.118  0.302  -0.128 

Separation 

Index 
0.829  0.855  0.858  0.839  

Max β 4.70  4.87  4.90  4.90  

Min β -5.43  -5.50  -5.70  -5.70  

 

These data, when considered with the low range of item difficulties, which, if the outliers are ignored, were 

of the order of approximately 3.0 logits in each year level (Figures 6.7 and 6.8), highlight a challenge for 

the GIP to identify a guess when the assessments are relatively easy for the target group. This phenomenon 

was also observed, albeit to a lesser degree, in the Simulation 4 analysis. 

Table 6.5   

Year 7 Summary Analysis – Student Ability Estimates by Analysis Phase 

STUDENTS 

n = 189 Phase 1 Phase 2 Phase 3.A (GIP) Phase 3.B (GIPINIT) 

 
Location 

INIT 

Fit 

Residual 

INIT 

 

Location 

SIG 

Fit    

Residual  

SIG  

Location  

GIP3A 

p=0.6 

Fit 

Residual 

GIP3A 

p=0.6 

Location 

GIPINIT 

p=0.6 

Fit Residual 

GIPINIT 

p=0.6 

Mean 1.421 -0.176 1.212 -0.231 1.332 -0.174 1.543 0.197 

SD 1.016 0.625 1.193 0.676 1.419 0.406 1.220 0.639 

Skewness  1.217  0.883  0.394  1.541 

Kurtosis  2.080  1.008  0.535  2.759 

Correlation  -0.215  -0.001  0.344  -0..328 

Separation 

Index 
0.769  0.815  0.858  0.811  

Max β 4.86  5.03  5.81  5.81  

Min β -5.48  -5.55  -6.85  -6.85  
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6.3.3.2 Item Difficulty Statistics 

Summary statistics for items across all three analysis phases are presented in Tables 6.4 and 6.5. The item 

statistics largely conformed to the same pattern found with SIM 4, a test of 40 items that was too easy for 

the cohort. In these analyses, the mean item locations were constant (default value of zero); however, the 

standard deviation increased when the guessed items had been accounted for in the SIG and GIP analyses. 

The range of item difficulties, including maximum and minimum item locations of the SIG and GIP 

analyses, tended to increase compared to the INIT locations, as anticipated by the simulation studies (Tables 

6.4 and 6.5). This is consistent with the outcomes of the simulation studies and indicates that the procedures, 

when applied to the English-language field study data, functioned fairly uniformly with the outcomes of 

the simulation. 

Table 6.6 

Year 5 Item Summary Statistics by Analysis Phase 

ITEMS  
 

n = 40 Phase 1 - INIT Phase 2 - SIG Phase 3A (GIP) Phase 3B (GIPINIT)   

 
Location 

INIT 

Fit 

Residual 

INIT 

Location 

SIG 

Fit    

Residual  

SIG 

Location 

GIP3A  

p=0.6 

Fit 

Residual 

GIP3A 

p=0.6 

Location 

GIPINIT  

p=0.6 

Fit Residual 

GIPINIT 

p=0.6 

 

 
Mean 0 -0.181 0 -0.228 0 -0.322 0 0.366   
SD 1.338 1.480 1.417 1.624 1.488 1.614 1.488 1.432   

Skewness  0.706  0.612  0.160  0.757   
Kurtosis  -0.039  -0.086  -0.170  0.138   

Maximum 

Minimum 

2.37 

-4.23 
 2.43 

-4.35 
 

2.89 

-4.54 
 2.89 

-4.54 
 

 

 
 

Table 6.7 

Year 7 Item Summary Statistics by Analysis Phase 

ITEMS 

n = 44 Phase 1 - INIT Phase 2 – SIG Phase 3A (GIP) Phase 3B (GIPINIT) 

 
Location 

INIT 

Fit 

Residual 

INIT 

Location 

SIG 

Fit    

Residual  

SIG 

Location 

GIP3A 

p=0.6 

Fit 

Residual 

GIP3A 

p=0.6 

Location 

GIPINIT 

p=0.6 

Fit Residual 

GIPINIT 

p=0.6 

Mean 0 -0.135 0 -0.170 0 -0.135 0 0.678 

SD 1.391 1.410 1.504 1.438 1.839 1.047 1.839 1.604 

Skewness  1.242  0.553  0.849  1.323 

Kurtosis  1.636  0.126  1.042  1.488 

Maximum 

Minimum 

2.39 

-4.15 
 2.86 

-3.09 
 

4.44 

-5.09 
 

4.44 

-5.09 
 

 

The outcomes from each of the Years 5 and 7 analyses are shown in Figures 6.7 and 6.8, respectively. 

Figure 6.8 also shows the impact of items that were too easy for the cohort, with items 1, 2, 4 and 8 

functioning as below the relative ability of the lowest ability students in the Year 7 test. These items 

contribute little to the scale and highlight the issue of mis-targeting item difficulty to the participating 

cohort. 
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Figure 6.7 

Field Trial Data Item Student Maps – Year 5 English Version Analyses 

Phase 1 – Unconditioned Guess scored as 

correct – INIT analysis 

Phase 2 - Self Identified Guess suppressed 

(missing) – SIG analysis 

Phase 3A – Identified Guess suppressed – 

missing – GIP3A analysis p = 0.6 

Phase 3B – Identified Guess suppressed –  

INIT RS – GIPINIT3B analysis p = 0.6 

Year 5. 303 cases, 40 items    
 

 

 

 

 

 

 

 

 

Note. Figure 6.7 was “aligned” to centre each of the distributions to highlight the shift in the student abilities and the relative differences in the item difficulties for each analysis.  
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Figure 6.8 

Field Trial Data Item-Student Maps – Year 7 English Version Analyses 

Phase 1 – Unconditioned Guess scored as 

correct – INIT analysis 

Phase 2 - Self Identified Guess suppressed 

(missing) – SIG analysis 

Phase 3A – Indicated Guess suppressed – 

missing – GIP3A analysis p = 0.6 

Phase 3B – Indicated Guess suppressed – 

INIT RS – GIPINIT3B analysis p = 0.6 

Year 7. 189 cases, 44 items    

 
 

 

 

 

 

 

 

Note. Figure 6.8 was “aligned” to centre each of the distributions to highlight the shift in the student abilities and the relative differences in the item difficulties for each analysis.
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6.3.4 GIP Indication Rates by Quartile  

In order to evaluate the efficacy of the p=0.6 criterion, the GIP procedure was investigated for both p=0.5 

and p=0.6 to confirm the implications of the analyses of the simulation data. Comparison of the proportion 

of guesses suppressed by each of the analyses (Table 6.8) shows that the overall mean GIP statistics of the 

p=0.5 recoding were very low (17.6% in Year 5 and 12.7% in Year 7). The process of defining the 

probability of a correct response at p=0.6 had a significant impact on the number of items indicated as a 

probable guess, with a corresponding increase in the rate of agreement between GIP indicated and the self-

indicated guesses. Furthermore, the protocol was comparatively more successful for the lower-ability 

students, as experienced with the simulated data. For both Year 5 and Year 7 the recovery rate exceeded 

70% for the lower-ability group when the p=0.6 process was implemented, compared to approximately 

30% for the p=0.5 analysis (Table 6.8).  

An interesting observation in Table 6.8 is the proportion of correct SIG responses for the higher-ability 

students. In Quartile 4 (most able) of the Year 5 sample, the success rate of the SIG items was above 65%, 

which would suggest that these were more informed responses that random guesses. Only in the least able 

quartile of Year 5 SIG statistic did the success rate approximate the expected rate of a random guess for a 

four-distractor MC item (25%). This confirms the earlier suggestions that in items that proved too easy some 

students possibly indicated a guess even though the response was supported by knowledge. 

Table 6.8 

Proportion of Responses Indicated as a Probable Guess by the GIP3A Procedure by Ability Group 

Cohort Group 

Proportion 

of SIG 

items 

correct 

Count of  

SIG 

items 

Count 

Correct 

SIG 

items 

Count of 

Guesses 

recovered 

by GIP3A 

p = 0.5 

Recovery 

rate Self-

Identified 

GIP3A 0.5        

(SIG vs 

GIP) 

Count of 

Guesses 

recovered 

by GIP3A          

p = 0.6 

Recovery 

rate Self-

Identified 

GIP3A 0.6        

(SIG vs 

GIP) 

Year 5 

Mathematics, 

303 cases 

Q4, most able 65.2% 69 45 0 0.0% 0 0.0% 

Q3, able 37.9% 116 44 0 0.0% 0 0.0% 

Q2, less able 37.3% 418 156 8 5.1% 22 14.1% 

Q1, least able 25.0% 956 239 77 32.2% 171 71.5% 

Overall 31.0% 1559 484 85 17.6% 193 39.9% 

Year 7 

Mathematics, 

189 cases 

Q4, most able 67.3% 104 70 0 0.0% 0 0.0% 

Q3, able 44.5% 245 109 2 1.8% 29 26.6% 

Q2, less able 43.6% 431 188 21 11.2% 62 33.0% 

Q1, least able 42.1% 361 152 43 28.3% 131 86.2% 

Overall 45.5% 1141 519 66 12.7% 222 42.8% 

 

6.3.5 Analysis of Fit 

Following the methodology of Andrich et al. (2015), an analysis of the mean square statistic (see Eqn 5.6) 

was conducted using the outcomes from the Rasch INIT, SIG, and GIPp=0.6 3A and GIPINIT3B analyses. 

The mean square statistic of each analysis was very similar (Table 6.9). In relation to the commentary by 

Andrich et al. (2015), this indicates that the SIG and each of the GIP analyses displayed an effectively 

unchanged fit of the data to the model.  
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These statistics reflect the similarities in the analysis outcomes, with the differences at the extremes 

compensated by constant estimates about the central tendencies and the minimal impact of the data 

conditioning due to the relatively few instances of GIP-indicated items. The implication of this outcome is 

that the GIP process was challenged in improving the scale when there was significant mis-targeting of the 

test items to the participating cohort to the degree observed in these data.  

Table 6.9 

Comparison of Mean Square Statistics – INIT and GIP Analyses for Year 5 and Year 7 

Analysis INIT SIG GIP3A p = 0.6 GIPINIT3B p = 0.6 

  

Total 

Chi-

Square 

d.f. 
Mean 

Square 

Total 

Chi-

Square 

d.f. 
Mean 

Square 

Total 

Chi-

Square 

d.f. 
Mean 

Square 

Total 

Chi-

Square 

d.f. 
Mean 

Square 

Year 5 English 

Mathematics 
355 160 2.2 415 160 2.6 414 160 2.6 421 160 2.6 

Year 7 English 

Mathematics 
231 88 2.6 247 88 2.8 236 88 2.7 740 88 8.4 

 

6.4 Guttman Analysis of GIP-Indicated Items 

Given the assumption of this research study that there exists an inverse relationship between item difficulty 

and student ability in regard to the propensity to guess, an analysis of the GIP-indicated items was 

conducted to confirm this relationship with these data. The data support this relationship (Table 6.10); that 

is, as ability decreased the number and percentage of GIP-indicated guesses increased, although these 

proportions were very low due to the relative low difficulty of the test item compared to the ability of the 

students. 

Table 6.10 

Proportions of GIP-Identified Items by Year and Ability Quartile  

Group Year 5 Year 7 

 Count Percent Count Percent 

Quartile 4 0 0.0% 0 0.0% 

Quartile 3 0 0.0% 31 1.5% 

Quartile 2 22 0.7% 52 2.6% 

Quartile 1 123 4.0% 134 6.6% 

Total 145 1.2% 217 2.6% 

 

Another assumption of this research study is that the pattern of GIP-indicated interactions should be 

Guttman-like, as observed in the simulation data. The results of the analysis of the outcomes of the GIP-

indicated probable guesses show that, although there were anomalies in some cells of the matrix, overall 

the pattern was Guttman-like, which largely confirms the expected outcomes of the GIP procedure. The 

distributions shown in Tables 6.11 and 6.12 confirm the expectations of the study that, as difficulty 

increased, the lower-ability students were likely to guess more often.  
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Table 6.12 shows similar patterns to those observed for Year 5 and displays the pattern expected of GIP-

identified items in accord with the hypotheses; that is, as student ability decreased, the number of GIP-

indicated items tended to increase, although the overall proportions were low. This was interpreted as a 

function of the tests being too easy for the students and the relatively small distribution of item locations 

for most items relative to the student ability estimates. As shown in Table 6.12 the high proportion of 

omitted responses indicated by the percentage of non-attempts had an adverse impact of the number of GIP 

identified responses. 

6.5 Discussion – Implications of the Outcomes of the English Tests 

Figures 6.7 and 6.8 demonstrate the mis-targeting of the English versions of the tests for the sample 

students, with the tests proving to be too easy. This characteristic of the tests impacted on the degree to 

which guessing was present, with the difference between the mean ability estimates being more than 1.4 

logits above the mean item locations in the case of both Year 5 and Year 7 (see Tables 6.6 and 6.7). This 

degree of mis-targeting reduced the amount of guessing in the tests overall and thus constrained the capacity 

of the GIP procedure to indicate probable guessed items.  

6.5.1 The SIG Outcomes  

The initial observations that there were fewer occurrences of self-identified guessing for easier items and 

an increase in the amount of guessing in more difficult items (see Figures 6.1 and 6.3) support the 

assumptions that underpin the study and thereby provide at least partial support for use of the GIP 

procedure. For many of the items in Year 5 test, the item facility was greater than 80%, with the proportion 

of SIG items less than 10% (Figure 6.1). In the simulated data, typically about 90% of the explained 

variation in the comparable statistic (GS) was a function of the overall facility of the item. In the Year 5 

data, the variation explained by the SIG was closer to 28%. In the Year 7 data the explained variation in 

the SIG was approximately 13%. Given the amount of incorrect, “known” answers, there was inconsistency 

in the SIG data that militated against the use of the data as a baseline for comparison with the GIP 

procedures. 

It was noted that students in both Years who randomly guessed items (indicated by the “P” for pink marker) 

in general had probability estimates less than 0.25 for each indicated item and an item-student residual 

greater than 1.75 (see Tables 6.1 to 6.3). However, given the inconsistencies observed, it was difficult to 

confidently comment on the source of the variability in the SIG data. In the simulated data, the incidence 

of guessing was defined. In these “real-life data” the self-identified guessing was far less “determined”. 

Considering the intended methodology that involved the students’ self-identifying guesses (SIG), the 

results proved inconclusive and consequently were sub-optimal to evaluate the GIP process. 
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Table 6.11 

Year 5 Number of GIP-Identified Items by Item Location  

 

 

 

Table 6.12 

Year 7 Number of GIP-Identified Items by Item Location  
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6.5.2 The GIP outcomes  

The results for Simulation 4, a test too easy for the cohort, suggest that the GIP procedure was more 

challenged in identifying guessed responses for higher-ability students. This happened because the general 

over-estimation of all students prior to the conditioning of the data with the GIP process resulted in 

generally inflated ability estimates. The inflated ability estimates reduced the difference between student 

estimates and item difficulties, with a consequent reduction in the ability of the GIP process to identify 

guessing, especially in the higher-ability students.  

The GIP process results were similarly influenced by the relative ease of these tests for the sample students, 

thus highlighting the relationship between item difficulty and test targeting when the students were 

attempting to identify probable guessing in the student responses. In these data, the mean ability of the 

participating students was significantly above the mean location of the items (1.7 and 1.4 respectively). 

Given that the critical difference to have a probability of a successful response of less than 25% (0.25) is a 

difference of 1.1 logits, the simple numeric capacity of GIP to operate effectively was severely reduced. 

Despite that constraint, in both Years 5 and 7 there were marginal increases in the distribution of item 

locations between the INIT and the GIP3A analyses (see Table 6.5 and Figure 6.8), with the relative rank 

order of items remaining constant across all analyses. This is a consequence of how the GIP procedure 

identifies more instances of probable guessing as item difficulty increases. Hence the location order remains 

constant but the difference between locations increases. The relatively small number of GIP-indicated re-

coded items resulted in little change in item difficulty and consequent ability estimates in the GIP results, 

when compared to the INIT outcomes. 

In the results of the GIP3A analyses for both Years, the distance between the ability estimates increased in 

the more difficult item ranges, which indicates that the GIP was accounting for guessing in an increasing 

proportion. This is shown in Figure 6.7, where the range of each distribution was reasonably similar, 

although the GIPp=0.6 analysis had a greater range that was influenced predominately in the lower ability 

regions. This reflects the GIP procedure impacting the lower-ability students more effectively, with less 

impact on the higher-ability students.  

The Separation Index of the GIPINIT3B improved compared to the INIT analysis, which reflects the 

outcomes observed in the simulation studies. Given that the lower-ability groups were more likely to guess 

(Figures 6.7 and 6.8), the results are encouraging as they indicate the GIP p = 0.6 procedure had a positive 

impact on the accuracy of the estimates of the lower-ability group. This outcome is not provided by Andrich 

et al.’s (2015) methodology.  

As much as these outcomes were sub-optimal in terms of the effectiveness of the GIP procedure, they don’t 

detract from the outcome that the GIP procedure produced an improvement in the estimates of item 

difficulties and in the reliability of the student ability estimates. These results generally confirm the 

outcomes of the relevant simulation study and provide preliminary evidence that an improved measurement 

was obtained by procedures that account for guessing in student response patterns, despite the fact that the 

tests were too easy for the cohort. 
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6.6 Study 2, Stage 2, Arabic Versions of the Tests 

6.6.1 Introduction: The Arabic Versions Study 

The intent of having students complete an Arabic version of the same Mathematics achievement test was 

to gain insight into students’ guessing patterns. The Arabic version was administered to the students prior 

to the administration of the English version to ensure responses could not be informed by recall of the 

English versions of the items. The tests were designed to provide commonality in the items that were not 

language dependent to enable analysis of the correlation between student ability and propensity to guess 

with the language dependent items. For instance, there were items with clues that allowed the higher ability 

mathematical students to engage with the items using strategies beyond pure guessing. There were also 

items that were simple algorithms or English format equivalents, which were language independent, given 

that the presentation was identical and in a format familiar to students in each cohort. Yet each of the Arabic 

tests also included some items that were language dependent. Given that Arabic was not the first language 

of the students, it was anticipated that administration of this Arabic assessment would compel at least some 

random guessing by all students. 

It was noted that for the SIG and GIP phases for the Arabic versions of the tests there were some items for 

which no student attained the “correct answer” without guessing. In a Rasch analysis methodology these 

items would be removed from the data, which would impact and limit the comparability of results as the 

ability estimates are based on a lower potential raw score. 

6.7 PfA of the Arabic Versions 

The PfA of the Arabic versions of the tests followed the same basic plan as for the English versions of the 

test.  

6.7.1 Comparisons of English Version and Arabic Version of Selected Items 

Initial comparisons were undertaken to provide evidence that the participating students had made genuine 

attempts to respond to the English and Arabic versions of the tests, and thereby legitimate the planned 

analyses that would follow. A sample of items has been included (Figures 6.9 to 6.12) in this section to 

show the relative differences between items that were language dependent compared to those that were 

language independent. The statistics for language-independent items suggest that the students did not 

generally randomly guess the answer when there were clues to aid familiarity. However, the differences in 

the facility rates of the English and Arabic versions of these items indicated that random guessing was in 

fact occurring. The facility rates for all items are presented in Appendix C.  
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6.7.1.1 Year 5 Items 

The items displayed in Figure 6.9 were selected as samples of language-dependent and language-

independent items to show the relative facility rates (percent correct) of the cohorts in the Arabic versions 

of the test session (which were completed first in all cases) and the subsequent English versions of the test. 

The purpose of showing these items is to demonstrate the relationship between the capacity of the students 

to attempt the Arabic items and to gauge the impact of language in their ability to interpret the content and 

correctly answer the English version of the item. The results suggest that the students did make a genuine 

attempt in the tests, thus providing some insight into the observations regarding tests that proved “too 

difficult” for a cohort.  

As an example of a language-independent item, Math5Q03 had a context that would be familiar to students, 

in that recognisable digits and equations were presented. In support of this item as language independent, 

the language demand of the Arabic version did not impede the students’ capacity to respond correctly to 

the item (96% and 96% for English and Arabic forms, respectively, in the INIT data). Response patterns 

showed that in this and in similar items that were not fully language dependent, the facility rate was due 

mainly to “known responses” or “informed guess” responses. This supports the conclusion that students 

made genuine attempts at each of the items encountered in the Arabic version of the test. 

Figure 6.9 

Year 5 Math5Q03 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

3 Math5Q03 96% 96% 96% 96% 97% 96% 

 

 

By comparison, Figure 6.10 shows an item (Math5Q08) in which the responses were significantly impacted 

by the language barrier. There was a pronounced difference between English and Arabic facility rates; the 

English version had a facility rate of 95%, while the Arabic version had a 30% success rate (which is about 

the expected value of a random guess in the INIT and GIP analyses). When the self-identified guesses were 

excluded in the SIG analysis, only 2% of the students answered the item correctly. Six students indicated 

that they knew the answer. All six had some Arabic language knowledge. Although this knowledge afforded 

an advantage to these students, it was considered inconsequential to the analysis overall due to the 

proportion of the sample they represented. These outcomes also provide confidence that the analyses 

conducted on these data were grounded in genuine attempts to complete the test, not simply spurious 

random data. 
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Figure 6.10   

Year 5 Math5Q08 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

8 Math5Q08 95% 95% 95% 30% 2% 31% 

 

6.7.1.2 Year 7 Items 

As observed in the Year 5 examples, the facility rates and response modes support the contention that the 

Year 7 students made serious attempts at answering the items during both versions of the tests. As with the 

Year 5 selection, a few items have been provided to demonstrate various response patterns by the cohort to 

items of varying language dependency (Figures 6.11 and 6.12). 

In the English version of item Math7Q12 (Figure 6.11) only two students omitted the question, with 94% 

of the remaining 187 students responding correctly. In the Arabic version 23% “guessed” correctly (the 

approximately expected chance). Only four students omitted the item in the Arabic version, which may be 

an indicator of the propensity to guess by students in an assessment regime with no downside for an 

incorrect guess. No student answered this item correctly without a self-indicated guess in the Arabic version 

of the SIG analysis. Consequently, the item was removed from the SIG analysis as a result of the re-coding 

of all the guessed answers to have “missing” values. In the Rasch analysis model, an item with no correct 

responses is “extreme” and omitted from the analysis. Hence there are no statistics for this item in the SIG 

analysis. 

The data displayed in Figures 5.11 and 5.12 initially appear appropriate for evaluating the GIP, given they 

appear to be genuine attempts and authentic indications of guessing behaviours. 
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Figure 6.11   

Math7Q12 

Year 7 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP  

12 Math7Q12 94% 94% 94% 23% N/A 6% 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 shows the relatively minor impact of language in item (Math7Q01) that is common in its 

presentation, and where the task demands of the item are conveyed independently of language. The minor 

increase in the facility rate observed by the SIG analysis reflects the reduction in the number of students 

attempting the item when self-identified guesses were suppressed in the SIG analysis. 

Figure 6.12 

Math7Q01– Arabic Version 

Year 7 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

1 Math7Q01 98% 98% 98% 91% 89% 91% 
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6.7.1.3 PfA Step 1, Guesses Indicated by the GIP Procedure  

An analysis of the proportion of GIP-indicated guesses by quartile (similar to Table 6.10) was produced for 

the Arabic data, based on the INIT analysis (Table 6.13). This table shows relatively consistent percentages 

of GIP-indicated probable guesses irrespective of the ability of the students, which was inconsistent with 

expectations and the observed results in the simulations and the English tests. Instead, these results reflect 

the randomness of the data and show that they are not Guttman-like. This pattern suggests that the outcomes 

of the Rasch analyses, which assumes a general Guttman relationship, should be considered with caution. 

 

Table 6.13   

Year 5 and Year 7 Proportion of GIP identified items by INIT ability quartile 

Group Year 5 Year 7 

 Count 
Percent 

identified 
Count 

Percent 

identified 

Quartile 4 47 1.5% 53 2.6% 

Quartile 3 72 2.4% 40 2.0% 

Quartile 2 107 3.5% 50 2.4% 

Quartile 1 65 2.1% 146 7.1% 

Total 291 2.4% 289 3.5% 

Note. The table shows the percentage of items indicated by the GIP procedure. The percentage reported is 

the ratio of the number of GIP-identified items in the quartile compared to the total number of items for 

which there was a response in the quartile. 

The distributions of GIP-indicated guesses (Table 6.14) show little relationship to the Guttman-like patterns 

observed in the simulated data and the English versions of the test (see Tables 6.11 and 6.12) and also 

confirm the random nature of the responses and the randomness of the interaction of item location with 

student ability estimates. 

Table 6.14 

Year 5 Distribution of GIP-Identified Items by Quartile and Item Location   

 

Note. The INIT item locations are sorted from easiest to most difficult and the number of GIP-identified items are 

noted in each cell of the matrix. 

The distribution of GIP-indicated interactions in the Year 7 test (Table 6.15) are also quite random and do 

not follow the Guttman-like pattern. This outcome indicates similar cause for concern in the Rasch analyses 

that were conducted with these data.  
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Table 6.15 

Year 7 Distribution of GIP-Identified Items by Quartile and Item Location  

 

Note. The INIT item locations are sorted from easiest to most difficult and the number of GIP-identified items are noted in 

each cell of the matrix. 

Despite these concerns, a Rasch analysis of the data and supplementary analyses were conducted for 

completeness and to determine if further inferences or observations relative to the aims of the study could 

be obtained from these data. 

6.8 PfA Step 2, Rasch Analyses of the Arabic Response Data 

6.8.1 Year 5 Item Statistics 

The results of the Rasch analyses indicate that there was a significant shift in the standard deviation of the 

item locations, with the SIG analysis having more than twice the spread of the INIT analysis (Table 6.16). 

This was expected, as it was associated with the suppression of the items that were language dependent 

and/or influenced by the language component of items that contained clues for the mathematically more 

able students. The INIT analysis has item statistics that are close to a normal distribution (SD = 1.17). By 

comparison, the SIG analysis shows a considerable positive skew, and the distribution of the item locations 

is non-normal, as indicated by the large kurtosis statistic as a result of the suppression of the student/item 

interactions. The shift in these statistics highlights the degree to which the SIG data are fundamentally 

different from the INIT data, which is a cause for caution in drawing inferences from the SIG data analyses. 

Table 6.16 

Year 5 Arabic INIT, SIG, GIP, and GIPINIT Summary of Analyses – Items 

n = 40 Phase 1 Phase 2 Phase 3A Phase 3B 

 
Location 

INIT 

Fit 

Residual 

INIT 

Location 

SIG 

Fit    

Residual  

SIG 

Location 

GIP3A 

 p = 0.6 

Fit    

Residual  

GIP 

 p = 0.6 

Location 

GIPINIT  

3Bp = 0.6 

Fit    

Residual  

GIPINIT 

 p = 0.6 

Mean 0 0.042 0 -0.383 0 0.042 0 0.096 

SD 1.173 1.414 2.657 1.129 1.206 1.555 1.206 1.468 

Skewness  -0.302  2.814  -0.330  -0.384 

Kurtosis  -0.469  11.471  -0.517  -0.518 

Correlation  0.415  -0.154  0.407  0.384 
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6.8.2 Year 5 Student Ability Statistics 

The INIT analysis indicates a homogenous group with the mean ability estimate of -0.628 and a standard 

deviation of 0.651, which is a small distribution (Table 6.17). The Separation Index (the index of score 

correlations) of 0.663 indicates a test that did not discriminate between the students, and consequently 

suggests a test of low reliability. The SIG analysis in Table 6.17 shows a decrease in the mean ability 

estimate (as a result of the decreased raw score) of more than two logits, and a doubling of the spread of 

results when comparing the standard deviations. Although this shift in the SIG outcomes was expected, due 

to the impediments of the language barrier, the degree to which the observed change in the variable was 

actuated means that these results have not contributed to a meaningful interpretation of the outcomes. 

The GIP3A and GIPINIT3B results are very similar to the INIT statistics. This may be a function of the 

extreme randomness of the data, due to language barriers mitigating the impact of ability, which influenced 

the range of item locations and student ability estimates in these analyses. In these data the homogeneity of 

ability estimates resulted in relatively few student/item interactions indicated as probable guessing (see 

Table 6.15). Consequently, these data provided little information for an evaluation of the GIP procedure. 

 

Table 6.17 

Year 5 Arabic INIT, SIG, GIP, and GIPINIT Summary of Analyses – Students 

n = 303 Phase 1 Phase 2 Phase 3A Phase 3B 

 
Mean 

Ability 

estimate 

INIT 

 

Fit    

Residual  

INIT 

 

Mean 

Ability 

estimate 

SIG 

Fit    

Residual  

SIG 

Location 

GIP3A 

 p = 0.6 

Fit    

Residual  

GIP 

 p = 0.6 

Location 

GIPINIT  

3Bp = 0.6 

Fit    

Residual  

GIPINIT 

 p = 0.6 

Mean -0.628 -0.121 -2.975 -0.235 -0.684 -0.101 -0.628 -0.086 

SD 0.651 0.963 1.396 0.313  0.685 0.934 0.655 0.961 

Skewness  0.607  2.210  0.538  0.666 

Kurtosis  0.266  13.237  0.084  0.421 

Correlation  -0.307  -0.158  -0.326  -0.303 

Separation 

Index 
0.663  0.719  0.675  0.665  

 

The SIG item/student map (Figure 6.13) displays a larger number of items with locations considerably 

higher than ability levels compared to the INIT analysis. The SIG figure also shows a long negative “tail” 

for the students, with the majority achieving ability estimates below -2.0 logits, which was the lower 

extreme of the INIT analysis.  

The range of item locations in the INIT analysis is effectively -1.5 to +1.0 (Figure 6.13) if the very difficult 

items (top right of Figure 6.13) from the INIT analysis are ignored. This means there was little 

discrimination between the 32 items in the effective range, with a cluster of items located between 0 and 

+1.0. By comparison, student ability estimates ranged between -2.0 and +1.0, with the vast majority falling 

between 0 and -1.0. Again, this means there was little discrimination between relative abilities of the 

students generated by the interaction of the items with the student responses. 
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Figure 6.13 

Item/Student Maps for Year 5 Arabic INIT and SIG Analyses 

Phase 1 – Unconditioned Guess scored as 

correct – INIT analysis 

Phase 2 - Self Identified Guess suppressed 

(missing) – SIG analysis 

Phase 3A – Indicated Guess suppressed – 

missing – GIP3A analysis p = 0.6 

Phase 3B – Indicated Guess suppressed – 

INIT RS – GIPINIT3B analysis p = 0.6 

Year 5: 303 cases, 40 items    
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This result indicates that the data did not fit the RM, and consequently could not contribute to the study 

aims apart from highlighting the issues in relation to targeting of test items to the ability of the group and 

the challenges when there is considerable mis-targeting of the test to the cohort. Consequently, these results 

regarding the analysis of the Year 5 data are provided for reference and to document the completion of the 

Plan for Analysis, rather than to provide insights and comparisons that would have significant caveats. 

6.8.2.1 Year 7 Item Statistics 

The removal of many items in the SIG and GIP analyses, due to facility rates of zero, obfuscated comparison 

of the results (Table 6.18). Again, it is apparent that the test was too “hard” for the participants, and this 

impaired the capacity of the GIP process to indicate probable guessing. The high degree of guessing in the 

responses to the Arabic items generated less reliable indicators of ability in the trait of interest. This is 

supported by the low reliability indices shown in Table 6.19. 

The item statistics in Table 6.18 display a pattern of outcomes similar to those recovered for the simulation 

data for a test that was too hard for the cohort (SIM5). However, these data represent an extreme case of a 

test which is too hard. It is significant that eight items were removed from the SIG analysis due to the 

students universally nominating these items as “guessed”. These eight items were language dependent. Four 

items were removed from the GIP analysis, all of which were also language dependent. Relative to the INIT 

analysis, the standard deviation of the items in the GIPp=0.6 analysis increased, although this was influenced 

by the removal of items in the GIP3A and GIPINIT3B phases. 

Table 6.18   

Year 7 Arabic Summary Analysis for Items by Analysis Phase 

ITEMS 

n = 184 
Phase 1 Phase 2 Phase 3A Phase 3B 

 36 items – 8 removed 40 items converged – 4 removed 

 
Location 

INIT 

Fit    

Residual  

INIT 

 

Locatio

n SIG 

Fit    

Residual  

SIG  

Location 

GIP3A 

 p = 0.6 

Fit    

Residual  

GIP3A   

p = 0.6 

Location 

GIPINIT

3B  

p = 0.6 

Fit    

Residual 

GIPINIT

3B p = 0.6 

Mean 0 0.017 0 -0.603 0 -0.450 0 1.948 

SD 1.258 1.545 2.055 1.218 2.084 1.153 2.084 1.790 

Skewness  -0.086  0.881 
 

0.501  -0.975 

Kurtosis  0.011  1.642 
 

0.578  1.557 

Correlation  0.372  0.009 
 

-0.403  0.359 
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6.8.2.2 Year 7 Student Ability Statistics 

In considering the interaction between the item difficulties and the student ability estimates, it is noted that 

the ability estimates fell within the range +1 to -2 logits, with the mean of -0.628 logits in the INIT analysis. 

This lack of differentiation restricted the capacity of the GIP process to function at an optimal level. The 

INIT and GIPINIT3B analyses identified several items that had difficulty locations in excess of the general 

calculated ability of the participating student sample; 18 items in the case of the SIG analysis and nine in 

the INIT analysis (see Figure 6.14). These results confirm that the Arabic language versions of the test were 

“too difficult” for the cohort and, as per the Year 5 data, detract from the capacity to compare outcomes 

(see Figure 6.13). Specifically, the relatively small distribution of item locations and student ability 

estimates in the INIT analysis resulted in a low proportion of student/item interactions indicated as probable 

guesses. Despite the reduced number of re-coded items, there was a reduction in the mean ability estimate 

and an increase in the standard deviation compared to the INIT values as predicted by the simulations. 

However, these comparisons are made with caution as the GIP outcomes are based on 40 items compared 

to the INIT analysis of 44 items. 

The re-introduction of the INIT raw scores to the GIPINIT3B analysis effectively negated the impact of the 

GIP on the mean ability estimates, although increased discrimination among lower-ability students was 

observed. Given the low reliability of these results, they must be considered with caution. 

Table 6.19   

Year 7 Arabic Summary Analysis for Students by Analysis Phase 

STUDENTS 

n = 184 
Phase 1 Phase 2 Phase 3A Phase 3B 

 36 items – 8 removed 40 items converged – 4 removed 

 

Mean 

Student 

ability 

INIT 

Fit 

Residual 

INIT 

 

Mean 

Student 

ability 

SIG 

Fit    

Residual  

SIG 

Mean 

Ability 

estimate 

GIP3A 

p = 0.6 

Fit    

Residual  

GIP p = 0.6 

 

Mean 

Ability 

estimate 

GIPINIT

3B 

p = 0.6 

Fit    

Residual  

GIPINIT

3B 

p = 0.6 

 

Mean -0.310 -0.218 -1.369 -0.471 -0.948 -0.354 -0.321 0.986 

SD  0.555 1.222  1.291 0.824  0.991 0.667  0.722 1.355 

Skewness   0.323  1.244  0.939  0.310 

Kurtosis   -0.489  2.333  1.342  -1.028 

Correlation   -0.346  -0.089  0.119  -0.313 

Separation Index 0.568    0.781   0.780  0.667  

 

These results reflect the opposite situation compared to the English version of the tests. In these data there 

were again extreme differences between student ability and item difficulty, but in this case the reverse of 

the English test situation. However, the ultimate outcome was the same: a constraint of the capacity of the 

GIP procedure to confirm self-indicated guesses.  
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Figure 6.14 

Item-Student Maps for Each of the Analysis Phases Performed on the Year 7 Data 

Phase 1 – Unconditioned Guess scored as 

correct – INIT analysis 

Phase 2 - Self Identified Guess suppressed 

(missing) – SIG analysis 

Phase 3A – Identified Guess suppressed – 

missing – GIP3A analysis p = 0.6 

Phase 3B – Identified Guess suppressed – 

INIT RS – GIPINIT3B analysis p = 0.6 

Year 7: 189 cases, 44 items 36 items – 8 removed 40 items converged – 4 removed 40 items converged – 4 removed 
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6.9 Discussion and Implications of the Arabic Test Outcomes 

Given the outcomes of the analysis and the random nature of these data, it is inappropriate to draw conclusions 

from this section of the study, apart from recognising the impact on the GIP procedure of a data set in which 

the test was too hard for the cohort. These observations may still be valuable in informing the utility of the 

process in sub-optimal targeting situations. 

6.10 Summary 

The purpose of this chapter was to report the outcomes of a study that was intended to compare the 

outcomes of student-identified guesses with the GIP-indicated guesses and, through this comparison, 

evaluate the effectiveness of the application of the GIP procedures with a small-scale sample. The results 

show that targeting aspects of the two tests impaired the ability to evaluate the effectiveness of the proposed 

GIP procedure against these data. Nevertheless, the results provide some insight into the constraints 

imposed on the protocol by poor targeting. 

The results of the English versions of the tests had similar outcomes to those observed in SIM4 (a set of 

data approximating a test too easy for students), although the field study data were even easier than the 

respective simulation data. There was also similarity in the outcomes of the Arabic tests and SIM5 (which 

was simulated to be too hard for the cohort). However, the degree to which the Arabic items in the test 

were inaccessible and hence the test proved “too hard” for students exceeded the difficulty in SIM5.  

In each case the GIP procedure was constrained by the degree of mis-targeting of the tests to the sample 

populations. However, in the case of the English tests, the procedure produced outcomes generally in 

accord with the expectations of the hypotheses and findings of Study 1, the simulation study. In contrast, 

the Arabic tests proved too difficult to make any consistent observations with respect to the overall way 

the GIP procedure functioned in this data environment. 

 

Despite these short-comings, Study 2 has provided an opportunity to evaluate the GIP procedure with another 

small sample of live data, and it has allowed some insight into the how the GIP procedure functioned with 

poorer targeted tests. While the GIP proved to be sub-optimal under the test-targeting conditions of the current 

study, that it functioned similarly in authentic data as in simulation data suggests the integrity of the assumptions 

and procedures embedded within the GIP. The next chapter extends these findings by evaluating the GIP with 

sets of large-scale data generated in cohort-wide system-sponsored tests. 
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Chapter 7  

Study 3: Results of the Application of the Proposed GIP Model 

with Large-Scale Authentic Data 

7.1 Introduction 

The simulations and field data described in Chapters 5 and 6, respectively, were used to determine a set of 

parameters that were consistent in mapping “likely guessing” in student responses that were essentially 

“Guttman-like”. The purpose of this chapter is to describe the outcomes of the application of the GIP parameters 

in a large-scale authentic assessment setting. As detailed in Chapter 4, these data were collected from cohort 

tests given to Grades 4 and 8 (the TIMSS cohorts) for the purpose of estimating how well these cohorts were 

prepared for the TIMSS assessments.  

Although these cohort tests were constructed with a combination of multiple choice (MC) and constructed 

response items, only the MC items were included in these analyses. The MC items were of the typical structure, 

with four distractors, one of which was the correct key. The content and contextual validity (Messick, 1989) of 

the test were evidenced by the processes implemented in the development of the tests. That is, each test was 

linked to the curriculum by detailing the outcome assessed in each item. The tests were constructed to a 

predefined and evaluated test specification written within an overall assessment framework. The test structure 

covered three cognitive domains and a number of proposed item difficulties that extended the range of the 

anticipated ability of the target cohorts (Thurstone, 1928). Prior to implementation of the test, the items and 

overall test structures were reviewed by curriculum and assessment experts of the governing educational 

authority independently of the test developers. The test instruments were administered in an online environment 

with the data collated centrally via cloud technology. Three data sets were investigated: Grade 4 Mathematics 

cohort (N = 26,280 students); Grade 4 Science cohort (N = 26,070); and Grade 8 Mathematics cohort (N = 

21,003 students). De-identified student responses were collected along with the response time taken for each 

item.  

The test development processes just described are consistent with Rasch’s concept of a “model of intent”. These 

tests were unidimensional, and their development accounted for the target cohorts’ stages in their educational 

journey.  

7.2 Plan for Analysis (PfA) 

Since these are live authentic data collected under typical examination conditions, there are no indicators of 

which items were responded to with a guess, as there were in the simulated data (Study 1) and in the small-

scale field study (Study 2). Consequently, the PfA was a two-step process, with only the INIT and GIP analyses 

conducted. As these data were “authentic”, there are cases within each set where a null response was observed. 
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These were coded as “9” in the original data. Consequently, to enable distinctions between student-defined 

omissions (missing data) and GIP-implemented conditioning of the data, the items indicated as guessed by the 

GIP process were recoded as “7” in the conditioned data.  

Using the ability estimates and item locations extracted from the INIT analysis, the probability of a correct 

response for each item/student interaction was calculated, together with an item/student residual coefficient for 

each interaction taking account of the response correctness. The calculation algorithms for these processes are 

described in Chapter 4 and shown in Eqn 4.5. A number of supplementary analyses were also conducted to 

determine fit statistics and the effect sizes of the implementation of the protocol with these large-scale data. 

7.1.1 Application of the GIP Procedure 

Following from the results reported in Chapters 5 and 6, and the final parameters they supported, the GIP 

procedure applied to these authentic data was defined as having: 

• the p value for ability estimates for a correct response at 0.6; 

• a probability of a correct response at, or less than, 0.25 (Pr(1) < 0.25)); and  

• the item student residual at a critical level of 1.75 (r >= 1.75), based on the estimates from the INIT analysis. 

At the individual item/student response level, a failure of the GIP criteria was indicative of a probable guess for 

the item, which was re-coded to “missing data” (“7”). The subsequent analysis of this set of conditioned data 

produced a new set of item parameters that were impacted by the suppression of the item/student responses 

indicated by GIP as guessing.  

Two sets of salient parameters were generated from these analyses:  

1. GIP3A: An item location estimate based on the data, in which the GIP-indicated items were re-coded as 

missing – a reduction in the student raw score compared to the INIT analysis together with revised item 

locations that have accounted for probable guessing; and 

2. GIPINIT3B: A student estimate and scaled score based on the INIT raw score for the set data, with the item 

locations derived in GIP3A anchored in this analysis. 

 

Following these Rasch analyses, supplementary analyses of fit, effect size, and comparisons of the GIP-

identified items (with the expected Guttman-like structure) were conducted to assess the efficacy of the 

procedure with a large-scale data set. The next section reports on the results of each of these analyses. The 

chapter concludes with a brief discussion of the outcomes of applying the GIP with these large-scale data. 
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7.3 PfA Step 1, Rasch Analysis of the Large-Scale data 

7.3.1 Summary Item Statistics 

As also found in the research of Andrich et al. (2012), there were significant increases in the distributions of 

the item locations when the likely guessed items had been accounted for. The comparative ranges of item 

difficulty locations shown in Tables 7.1 to 7.3 show the relative differences in the item parameters generated 

by the application of the GIP procedures to the data, compared to the INIT parameters.  

The distribution of item locations increased by a factor of almost 2 across the three data sets. These results are 

consistent in direction with the outcomes of the simulations of Study 1, which shows that the GIP procedure 

functions consistently with large-scale data sets as indicated by the simulations. 

Table 7.1 

Comparison of Rasch Analysis G4 Mathematics – Item Parameters INIT, GIP, and GIPINIT 

 

 G4 Mathematics 

Item Statistics 

Items  

INIT 

data 

Items  data 

GIP3Ap=0.6 

Items  

GIPINIT3Bp=0.6  

data 

Location Location Location 

Mean 0 0 0 

SD 0.796 1.542 1.542 

Min δ -1.565 -2.769 -2.769 

Max δ   0.955  2.398  2.398 

Range δ   2.520  5.167  5.167 
 

 

Table 7.2   

Comparison of Rasch Analysis G4 Science – Item Parameters INIT, GIP, and GIPINIT 

 

 G4 Science 

Item Statistics 

Items  

INIT 

data 

Items data 

GIP3Ap=0.6 

Items  

GIPINIT3Bp=0.6  

data 

Location Location Location 

Mean 0 0 0 

SD 0.617 1.169 1.169 

Min δ -1.736 -2.750 -2.750 

Max δ 0.956  2.272 2.272 

Range δ 2.692  5.022 5.022 
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Table 7.3   

Comparison of Rasch Analysis G8 Mathematics – Item Parameters INIT, GIP, and GIPINIT 

 G8 Mathematics 

Item Statistics 

Items 

INIT 

data 

Items data 

GIP3Ap=0.6 

Items 

GIPINIT3Bp=0.6  

data 

Location Location Location 

Mean 0 0 0 

SD 0.492 1.186 1.186 

Min δ -0.971 -1.903 -1.903 

Max δ   0.941  2.675  2.675 

Range δ   1.912  4.578  4.578 

Note. The item parameters for the GIPINIT3B analysis are identical to the GIP parameters, by definition, in 

the anchored analysis.  

7.3.2 Summary Student Ability Statistics 

The impact of the GIP process on the summary statistics of the ability estimates of the students was considerable 

compared to the INIT values (Tables 7.4 to 7.6). As hypothesised, the relative ability estimate of the higher-

ability students had increased, as shown in the comparison of the Max β results in each analysis, between the 

INIT data compared to the GIP3A p = 0.6 (indicated guess scored as missing) outcomes and in the GIPINIT3B 

analysis. The mean ability estimates of the GIP3A and GIPINIT3B analyses were universally lower that the 

INIT analysis in all analyses. The range of the distributions of ability estimates, as shown by the comparison of 

the standard deviations of each analysis, also increased compared to the INIT analysis.  

These results are consistent with the outcomes of the simulated data for a large cohort (SIM3) and indicate that 

the GIP procedures for each data set functioned uniformly with the data, as predicted by Study 1 and Study 2. 

Table 7.4 

Comparison of Rasch Analysis G4 Mathematics Ability Estimates – INIT, GIP, and GIPINIT 

Statistics 

G4 Mathematics 

Student INIT 

data 

Student 

Pr(Guess) 

GIP3A p = 0.6 

Student  

GIPINIT3B p = 0.6 

data 

Estimate Estimate Estimate 

Mean -0.398 -1.144 -0.512 

SD 1.096  1.890 1.395 

SEm 0.590 0.800 0.650 

Min β -2.744 -4.139 -3.391 

Max β 3.536  4.210  4.210 

Range β 6.280  8.349  7.601 
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Table 7.5 

Comparison of Rasch Analysis G8 Mathematics Ability Estimates – INIT, GIP, and GIPINIT  

Statistics 

G8 Mathematics 

Student INIT 

data 

Student 

Pr(Guess) 

GIP3A p = 0.6 

Student 

GIPINIT3B p = 0.6 

data 

Estimate Estimate Estimate 

Mean -0.438 -1.260 -0.559 

SD  0.936  1.739 1.118 

SEm 0.50 0.78 0.54 

Min β -2.744 -3.999 -3.999 

Max β  3.536  4.231  4.231 

Range β  6.280  8.230  8.230 

 

 

Table 7.6 

Comparison of Rasch Analysis G4 Science Ability Estimates – INIT, GI,P and GIPINIT  

Statistics 

G4 Science 

Student INIT 

data 

Student 

Pr(Guess) 

GIP3A p = 0.6 

Student  

GIPINIT3B p = 0.6 

data 

Estimate Estimate Estimate 

Mean 0.034 -0.508 0.033 

SD 1.112 1.888 1.291 

SEm 0.51 0.69 0.54 

Min β -3.738 -4.055 -3.738 

Max β  3.673  4.157  4.226 

Range β  7.411  8.262  7.974 

 

7.3.3 Standard Errors 

The Standard Error of the measure (SEm) has also been reported in Tables 7.4 to 7.6. It is calculated as: 

     SEm = 𝑆√1 −  𝑟𝑥𝑥     Eqn 7.1 

where  rxx is the reliability index – the Separation Index in the case of incomplete data 

           S is the standard deviation about the mean. 

In each analysis, the value of the SEm for the GIP analysis was higher than the relative INIT analysis. The 

higher values of the SEm of the GIP result compared to the INIT results are due to the higher standard 

deviations observed in the GIP analyses, and the higher reliability index. Together these reduce the value 

within the square root sign and with the increased the standard deviation increase the SEm. A similar impact 

is observed when comparing the GIPINIT statistics with the INIT and GIP statistics. An increase in SEm 

usually means that the confidence in the precision of the measure was reduced. However, in this case, the 

statistic for the GIPINIT3B analyses was plausibly interpreted as a marginally higher range of scores in the 
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confidence level about the true score, but it relates to a better scale of the trait of interest. The SEm is greater, 

but the variable is more precise. 

7.3.4 Reliability Indices 

In each of the analyses of the data sets, the reliability coefficient improved following the implementation of the 

GIP3A and GIPINIT3B procedures compared to the INIT analysis. Table 7.7 indicates that there was a better 

fit of the GIP-conditioned data to the RM, as well as a higher reliability in the outcomes achieved as a result of 

implementation of the GIP3A and GIPINIT3B procedures for each of the data sets analysed. 

 

Table 7.7 

Comparison of Reliability Indices for Each Analysis INIT vs GIP Conditioned Data Phases 

 

Student  Statistics 

G4 Mathematics 

Student 

INIT data 

Student  

GIP3A p = 0.6 

Student 

GIPINIT3B p = 0.6 

data 

Separation Index 0.714 0.822 0.782 

 

Student  Statistics 

G4 Science 

Student 

INIT data 

Student  

GIP3A p = 0.6 

Student  

GIPINIT3B p = 0.6 

data 

Separation Index 0.791 0.868 0.823 

Student  Statistics 

G8 Mathematics 

Student 

INIT data 

Student  

GIP3A p = 0.6 

Student  

GIPINIT3B p = 0.6 

data 

Separation Index 0.710 0.801 0.764 

 

7.4 Display of Distributions – Student/Item Maps for Test 

7.4.1 Graphic Representation of the Rasch Outcomes  

Figures 7.1 to 7.3 show the distributions of items and student abilities of the INIT analyses and the GIP 

analyses for each of the three tests investigated. The GIP analyses shown include both phases – the GIP3A 

and the GIPINIT3B analysis. Each of Figures 7.1 to 7.3 displays the compression of the scales generated by 

the INIT analyses compared to the GIP analyses, with the range of student ability estimates and item locations 

in the GIP analyses greater than those in the INIT analyses. To show this feature explicitly, each analysis has 

been re-sized to centre the item difficulties at zero and to approximate the relative scale of the range of 

parameters displayed. 
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The increase in the range of item difficulties and consequent discrimination between student ability estimates 

(Figures 7.3 to 7.5) has been shown to be a direct result of the identification and suppression of the probable 

guessing in the GIP analyses of the student response data in the outcomes of Study 1 and Study 2. 

In Grade 4 Mathematics the effective range of item locations in the INIT analysis was 2.4 logits (-1.2 to +1.2). 

In Grade 8 Mathematics the comparable range was just 2.0 logits (-1.0 to +1.0), and in Grade 4 Science, 

excluding the outlier, it was also 2.0 logits (-1.0 to +1.0). The impact of this low range of discrimination in 

the difficulty locations was to constrict the estimation of ability estimates as demonstrated previously. In 

relation to the GIP procedure, the homogeneity of these locations means the difference between the estimated 

ability and items location that defines the indication of a guess is reduced, which has a negative impact on the 

capacity of the protocol to indicate probable guesses.  

The critical difference between item location and student ability estimate is 1.1 logits to produce a probability 

of a correct response of less than 25%. With item locations compacted, and consequent ability estimates 

constrained, this difference is observed relatively infrequently in the mid-range interactions and is restricted 

in the upper ability regions. However, it was far more common in the lower-ability groups where the guessing 

is more likely to occur. 

Figure 7.1 shows that the order of the items was relatively constant; however, the distance between the item 

difficulty locations had increased in the GIP analysis to produce a wider scale of parameters. Although the 

mid-range items had very similar difficulty locations in both the INIT and the GIP analyses (e.g., Items 2 and 

10 near zero), there was an increasing difference apparent at the upper and lower extremes of the scale for the 

same item in the GIP analysis relative to the INIT analysis. Item 1 was located at approximately -1.7 in the 

INIT analysis and at about -3.1 in the GIP analysis scale, whilst Item 15 was located at about 3.0 in the INIT 

analysis scale and at about 4.0 in the GIP analysis scale. Overall, the distributions were similar, with a negative 

skew evident in both cases. Figure 7.1 also shows the changes in the range of ability estimates generated by 

the GIP procedure with Grade 4 Mathematics data, with the mid-range candidates showing the depression of 

the mean statistic, the increased ability estimates of higher-ability students, and the removal of the 

overestimation of the lower ability Grade 4 students in the INIT analysis. 

Figure 7.2 shows similar outcomes for the Grade 8 students’ Mathematics data, with the overall test being 

hard for the cohort, but with similar outcomes in relation to the shift in the estimates of the higher ability, 

mid-range ability, and lower-ability students relative to the Grade 4 outcomes (Figure 7.1). As shown in Figure 

7.3, the GIP3A process on Grade 4 Science data generated a significant difference in the distributions 

compared to the INIT analysis, but the re-introduction of the INIT raw scores in the GIPINIT3B analysis 

returned the student ability estimates to values very similar to the INIT analysis. Despite the reintroduction of 

the INIT data, the higher-ability students’ abilities were better recognised by the GIPINIT3B procedure.  
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Figure 7.1 

Comparison of Analysis Distributions – Grade 4 Mathematics INIT vs GIP Conditioned Data 

Grade 4 Mathematics – No Account for Guessing – 

INIT analysis p = 0.5 

Grade 4 Mathematics 

Phase 3A – indicated Guess suppressed – 

Item calibration analysis GIP3Ap = 0.6 

Grade 4 Mathematics  

Phase 3B – indicated Guess scores correct – 

 INIT data, GIP3Ap = 0.6 item locations – GIPINIT3B 

 

 

 

 

 

 

 

 

 

 

 

 
The INIT analysis graphic has been reduced 

to align the scales and show the relative 

distributions of the analyses. 

For each analyses have the item difficulty 

locations centred on zero. 
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Figure 7.2 

Comparison of Analysis Distributions – Grade 8 Mathematics INIT vs GIP Conditioned Data 

Grade 8 Mathematics – No Account for Guessing – 

INIT analysis p = 0.5 

Grade 8 Mathematics 

Phase 3A – indicated Guess suppressed – 

Item calibration analysis GIPp = 0.6 

Grade 8 Mathematics  

Phase 3B – indicated Guess scores correct – 

 INIT data, GIP3Ap = 0.6 item locations – GIPINIT3B 
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 Figure 7.3 

Comparison of Analysis Distributions – Grade 4 Science INIT vs GIP Conditioned Data 

Grade 4 Science – No Account for Guessing – 

INIT analysis p = 0.5 

Grade 4 Science 

Phase 3A – indicated Guess suppressed – 

Item calibration analysis GIPp = 0.6 

Grade 4 Science  

Phase 3B – indicated Guess scores correct – 

 INIT data, GIP3Ap = 0.6 item locations – GIPINIT3B 
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In each test outcome for the GIPINIT3B analysis, the ability estimates of the higher-ability students 

increased (see Tables 7.4 to Table 7.6), the ability estimate of the lower-ability students decreased, and 

the reliability indices improved over the INIT values. The outcomes presented in Tables 7.4 to 7.6 

demonstrate improvements in the measurement scale produced by the GIP procedure and a better 

distribution of item and student ability estimates in the GIPINIT3B phase of the analysis. These results 

are consistent with the expectations indicated by the simulations, and they also support the logic that 

underpinned the hypotheses of the study, namely, it is possible to improve the scale by reducing the source 

of the systematic error due to the noise in the data resulting from correct guesses. 

7.5 Shifts in Distributions of the GIP Analyses Compared to the INIT 

Analysis 

This section details the analysis outcomes and comparisons that confirm that the GIP process functioned 

uniformly, as predicted by the simulated data and as expected in respect of the hypothesis and assumptions 

that directed the research question. 

7.5.1 Item Distributions 

Table 7.8 shows the distribution statistics for each analysis. In the Mathematics test, the item distributions 

of the GIP3A analysis tended to be more normal, with a higher skew value and a reduced kurtosis for both 

Grades 4 and 8. The impact of the accounting for guessing achieved by the GIP process is intended to 

remove the underestimation of the item difficulty, which not only generates a wider distribution of item 

locations but makes the distribution more normal rather than constrained by the bias caused by the guessing 

in the INIT data. In each of the large-scale cohort Mathematics tests in Study3, the INIT analysis revealed 

that the tests were marginally hard for the respective cohorts (consistent with SIM 5 – the simulation 

designed to be ‘too hard’) as indicated by Figures 7.1 to 7.3 and the skew of each GIP distribution (Table 

7.8). 

Table 7.8 

Item Distribution Statistics for Each Analysis 

Grade 4 

Mathematics INIT GIP3A GIPINIT3B 

Skewness 0.104 0.667 -0.062 

Kurtosis -1.411 -0.247 -1.183 

    

Grade 8 

Mathematics INIT GIP3A GIPINIT3B 

Skewness 0.188 1.128 0.045 

Kurtosis -1.599 0.57 -0.393 

 

Grade 4 

Science INIT GIP3A GIPINIT3B 

Skewness 0.507 0.202 1.14 

Kurtosis -0.458 -0.084 0.212 
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7.5.1.2 Student Ability Distributions 

By comparison, the statistics shown in Tables 7.9 to 7.11 of the GIP3A analysis are consistent with an 

increase in the positive skew of the student ability estimates, which resulted from the increase in the higher-

ability students’ estimates. However, the re-introduction of the raw scores of the INIT data in the 

GIPINIT3B analysis effectively returns the distribution range to the INIT distributions values for the 

Mathematics tests. Although the scale of the GIP analysis was improved, the increase in the estimates of 

the lower-ability students in the GIPINIT3B analysis reduced the efficacy of the process for this group.  

Table 7.9 

Student Ability Estimate Distribution Statistics for Each Analysis 

Grade 4 

Mathematics INIT GIP3A GIPINIT3B 

Skewness 0.363 0.967 0.038 

Kurtosis 1.823 1.247 -0.643 

Grade 8 

Mathematics INIT GIP3A GIPINIT3B 

Skewness 0.051 0.926 0.045 

Kurtosis -0.399 1.094 -0.393 

Grade 4 

Science INIT GIP3A GIPINIT3B 

Skewness 0.465 0.784 0.327 

Kurtosis 0.063 0.927 -0.614 

 

7.5.2.2 Distributions of Ability Estimates 

In each of the large-scale data sets displayed in Figures 7.1 to 7.3 there was an increased discrimination 

between the ability estimates of the students across the distribution in each GIP analyses. In all cases, the 

student estimates in each GIP analysis were in excess of the maximum achievement reported in the INIT 

analysis, which reflected the increased estimate of some item difficulties and the consequent higher ability 

estimates for the higher-ability students. By contrast, the distribution of ability estimates for the lower-

ability students was “stretched” to reveal a significant proportion of students whose INIT ability estimates 

had been advantaged by not only their inflated raw score as a consequence of correct guessing, but also by 

the inflated estimates due to the guessing not being accounted for in the INIT Rasch analysis. This result is 

consistent with the expectations indicated by the simulations and the logic that underpinned the hypotheses 

of the study. 

Tables 7.10 to 7.15 show the net result of the impact of the GIP procedures, by ability group in each 

cohort. The compositions of the groups were as follows: 

• A higher-ability group comprised of students whose ability estimate was in decile 9 and/or decile 10 

(more than one standard deviation above the mean); 

• a middle-ability group comprised of students in deciles 3 through 8 (approximately one standard 

deviation about the mean); and 

• a lower-ability group, comprised of students in decile 1 and decile 2 (more than one standard deviation 

below the mean). 
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Table 7.10 shows the relative mean ability estimate for each decile. In Grade 4 Mathematics, the size of 

each decile was about 2,600 students. The table shows the increase in the distribution of estimates, with 

the range of these averages being about 4 logits in the INIT analysis and about 5.5 logits in the GIPINIT3B 

analysis. The impact of the GIPINIT3B analysis in Grade 4 Mathematics was to reduce the mean of the 

ability estimates of students in deciles 1 through 7 with a break-even point (where the INIT and 

GIPINIT3B values intersect) located in Decile 8. The mean of the students in Deciles 9 and 10 was higher 

after implementation of the GIP procedure. Thus, the GIP procedure produced mean ability estimates that 

were higher in the higher deciles and lower in the lower deciles. This is consistent with the expectation 

of applying the GIP procedure relative to the nature of the data set to which it was applied. Table 7.10 

also shows the degree to which estimates were overestimated for the lower-ability students and, to a lesser 

extent, the underestimation of the higher-ability students. In the middle-range ability there was some 

variation in the distribution of abilities, which is reflected in Figure 7.4; however, as observed in the 

simulated data, the change in the middle-range ability students was marginal. In these data the upper two 

deciles were disadvantaged by a simple Rasch analysis that did not account for guessing, while the lower 

5 deciles were all advantaged by a process that did not account for probable guessing (Table 7.11). 

Table 7.10   

Grade 4 Mathematics Comparison of Mean Ability Estimate by Decile 

Decile 

Mean INIT 

ability 

estimate  by 

Decile (logits) 

Mean 

GIP3Ap=0.6 

ability 

estimate by 

Decile (logits) 

Mean 

GIPINIT3Bp=0.6 

ability estimate 

by Decile 

(logits) 

10 1.679 2.126 2.126 

9 0.757 0.994 0.994 

8 0.297 0.284 0.401 

7 -0.089 -0.340 -0.104 

6 -0.381 -1.129 -0.490 

5 -0.645 -1.793 -0.838 

4 -0.903 -2.244 -1.175 

3 -1.165 -2.697 -1.511 

2 -1.488 -3.246 -1.918 

1 -2.163 -3.954 -2.720 
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Table 7.11   

Grade 4 Mathematics Comparison of Mean Ability Estimates by Ability Groupings 

 

 

 

 

 

 

Figure 7.4 

Grade 4 Mathematics Break-Even Mean Ability Estimates by Decile 

 

 

Tables 7.12 and 7.13 show a similar pattern for the ability distribution of Grade 8 Mathematics as for the 

Grade 4 cohort. The lowest decile was overestimated by about .3 of a logit, which is approximately one 

third of a standard deviation in this test, or approximately four months of learning (Choppin, 1983). The 

break-even point again fell in Decile 8, with the upper two deciles being under-estimated by the INIT 

analysis, which took no account of probable guessing. 

As shown in Table 7.12, there was little variation in the middle-level ability students, and similar mean 

values of variation for the overestimation of the lower-ability students and the underestimation of the 

higher-ability students after implementation of the GIP procedure. The reduced range in these variations 

may be a function of the lack of discrimination evidenced in the INIT analysis, with most of the cohort 

performing within the -1 to 2 logit range on the analysed scale and the relatively few MC items in each 

analysis. 
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GIP3Ap=0.6 

ability 

estimate by 

Group (logits) 

Mean 

GIPINIT3Bp=0.6 

ability estimate 

by Group 

(logits) 

∆ 

INIT 

vs 

GIPINIT3B 

Higher-ability 1.218 1.560 1.560 +0.342 

Middle-ability -0.481 -2.436 -0.620 -0.139 

Lower-ability -1.825 -3.599 -2.318 -1.493 
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The points at which accounting for guessing (break-even point) impacts students’ ability estimates are made 

explicit in Figures 7.5 and Table 7.13. These data follow a similar pattern to those displayed in the Grade 

4 Mathematics data. The Grade 4 Science test also displayed a relatively compressed scale for most 

students. The effective ability range of the estimates of students’ ability was within the range -2 to +2.5 

logits on the INIT-analysed scale. The Grade 4 test was relatively equally distributed about the Decile 5 

break-even point, with relatively small variations in ability estimated revealed by the GIP procedure 

implementation. 

Table 7.12   

Grade 8 Mathematics Comparison of Ability Estimate by Decile 

 

 

 

 

  

Decile 

Mean INIT 

ability 

estimate  by 

Decile 

(logits) 

Mean 

GIP3Ap=0.6 

ability 

estimate by 

Decile (logits) 

Mean 

GIPINIT3B 

p=0.6 ability 

estimate by 

Decile (logits) 

10 1.372 1.661 1.661 

9 0.548 0.633 0.633 

8 0.141 0.059 0.120 

7 -0.170 -0.468 -0.263 

6 -0.453 -1.045 -0.605 

5 -0.675 -1.631 -0.868 

4 -0.891 -2.226 -1.119 

3 -1.108 -2.887 -1.368 

2 -1.371 -3.588 -1.664 

1 -1.941 -3.963 -2.258 
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Figure 7.5 

Grade 8 Mathematics Break-Even Mean Ability Estimates by Decile 

  

 

Table 7.13 

Grade 8 Mathematics Comparison of Mean Ability Estimates by Ability Groupings 

 

 

 

 

 

 

 

 

 

 

Although the differences in ability estimates between the INIT and GIPINIT values were relatively small 

(Table 7.15 and Figure 7.6), it is worth noting that for this more targeted test the break-even point was more 

central in the Decile5/Decile 6 region, all students above that point were advantaged by the GIPINIT 

process, and all the students below that point had ability estimates revised downwards (Table 7.14). This is 

consistent with the expected outcomes articulated in the hypothesis.  

 

These outcomes are similar to the SIM 3 outcomes, which indicated that the GIP process functioned 

uniformly across the full distribution when tests are well targeted.  
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estimate by 

Group (logits) 

Mean 

GIPINIT3B 

p=0.6 ability 

estimate by 

Group (logits) 

∆ 

INIT  

vs 

GIPINIT3B 

Higher-ability .951 1.135 1.135 +0.184 

Middle-ability -0.519 -1.351 -0.676 -0.157 

Lower-ability -1.468 -3.693 -1.771 -0.303 
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Table 7.14   

Grade 4 Science Comparison of Mean Ability Estimates by Decile 

Decile 

Mean INIT 

ability 

estimate by 

Decile (logits) 

Mean 

GIP3Ap=0.6 

ability 

estimate by 

Decile (logits) 

Mean 

GIPINIT3B 

p=0.6 ability 

estimate by 

Decile (logits) 

10 2.118 2.450 2.450 

9 1.292 1.504 1.504 

8 0.818 0.951 0.951 

7 0.410 0.472 0.472 

6 0.033 -0.106 0.031 

5 -0.304 -0.749 -0.363 

4 -0.568 -1.442 -0.670 

3 -0.813 -2.133 -0.954 

2 -1.126 -2.761 -1.315 

1 -1.650 -3.834 -1.909 

 

Figure 7.6 

Grade 4 Science Break-Even Mean Ability Estimates by Decile 

 

 

Table 7.15   

Grade 4 Science Comparison of Mean Ability Estimates by Ability Groupings 
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Group 
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Group (logits) 

Mean 

GIP3Ap=0.6 

ability 

estimate by 

Group (logits) 

Mean 

GIP3Bp=0.6 

ability 

estimate by 

Group (logits) 

∆ 

INIT  

vs 

GIPINIT3B 

Higher-ability 1.705 1.977 1.977 +0.272 

Middle-ability -0.071 -0.501 -0.089 -0.018 

Lower-ability -1.196 -3.297 -1.393 -0.137 
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7.7 Summary of Indicated Guesses of the GIP Procedure 

7.7.1 Grade 4 Mathematics 

In Grade 4 Mathematics, 36,802 responses (~8%) were suppressed by the GIP procedure. The highest 

proportions of suppressed responses were indicated in the lower and mid-ability groups, but interestingly 

the highest proportion of suppressed items was not in the lowest ability group. This presumably was a 

function of the lower-ability group having the highest count of non-attempted items, which reduced the 

proportion of overall items the GIP had an opportunity to condition.  

Table 7.16 summarises the comparison of the INIT data responses for the Grade 4 Mathematics test when 

the GIP procedure has been implemented to identify probable guesses.  

Table 7.16   

Comparison of Number of Items Re-Coded by GIP Procedure by Ability Group – Grade 4 Mathematics 

Cohort Group 
Items not 

attempted 

Count of 

Guesses 

indicated 

GIP3A p =0.6 

% of responses 

suppressed by 

GIP3A p = 0.6 

Grade 4 Mathematics:  

n = 26,279 

items: 18 

Decile group size: 

2,680 

  

Top Decile 10 20 0 

 

0.0% 

Decile 9 37 0 0.0% 

Decile 8 65 958 2.0% 

Decile 7 105 1878 4.0% 

Decile 6 113 4628 9.8% 

Decile 5 88 6349 13.4% 

Decile 4 149 6420 13.6% 

Decile 3 250 6270 13.3% 

Decile 2 317 5985 12.7% 

Decile 1 1740 4314 9.1% 

Overall 2884 36802 7.8% 

Note. The effect of the GIP recoding has been disaggregated by ability groups based on the INIT analysis 

outcomes. For comparison purposes the students were ordered by ability estimates and grouped by decile. 

The table shows the number of items not attempted in the original data set and the number of guesses 

indicated by the implementation of the GIP procedure within each decile.  

Table 7.17 makes explicit the relationships between the item difficulty, the student ability, and the probable 

guesses indicated by the GIP procedures. It shows that at the higher ability deciles (9 and 10), no instances of 

possible guessing were indicated. The overall pattern of GIP identifications (shown in Table 7.2 to be very 

Guttman-like in its structure) supports the initial assumption that lower-ability students tend to guess the harder 

items more often than higher-ability students. The lower values of GIP items identified with the lower-ability 

students in the most difficult items are explained by the increased omission rate by this group for these items. 
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Table 7.18 follows the same format as Table 7.16 for the Grade 8 Mathematics cohort. The table shows similar 

patterns with relatively few items not attempted by the cohort. As also shown in Table 7.16, a higher proportion 

of items were not attempted by the lower ability decile. Most items re-coded by the GIP procedure were in the 

middle-range and lower ability deciles. These outcomes were largely as expected, with the unexpected anomaly 

of the lowest ability decile having the highest incidence of non-attempted items, influencing the proportion of 

GIP-indicated guessed items. 

Wright and Stone (1989) predicted that lower-ability groups would discontinue the test and tend to display 

a higher proportion of non-attempts for items of higher difficulty. This is consistent with patterns of each 

of the test cohorts reported in these data, with the highest number of omitted items observed in the lower-

ability groups. 
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Table 7.17   

Grade 4 Mathematics Count of GIP Implementations by Item Difficulty (Logits) 

δ -1.879 -1.484 -1.416 -0.984 -0.828 -0.81 -0.572 -0.155 -0.028 0.008 0.058 0.12 0.152 0.182 0.272 0.719 0.85 0.922 

Cognitive 

Domain 
Know Apply Apply Know Apply Know Know Know Apply Apply Reason Apply Apply Reason Apply Apply Apply Reason 

Decile G4MQ01 G4MQ09 G4MQ07 G4MQ03 G4MQ08 G4MQ04 G4MQ11 G4MQ06 G4MQ10 G4MQ02 G4MQ23 G4MQ05 G4MQ22 G4MQ16 G4MQ24 G4MQ19 G4MQ14 G4MQ13 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 429 452 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 261 618 524 475 

6 0 0 0 0 0 0 0 0 0 448 531 432 565 406 723 596 531 396 

5 0 0 0 0 0 0 0 373 414 603 780 645 861 546 738 567 474 348 

4 0 0 0 0 0 0 521 454 653 479 729 582 731 426 656 475 415 299 

3 0 0 0 0 289 313 747 363 542 380 650 468 622 299 598 403 341 255 

2 0 0 0 273 569 629 634 265 418 279 510 407 507 201 509 295 267 222 

1 51 216 431 415 358 363 353 131 258 152 272 210 276 93 282 192 134 127 
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Table 7.18   

Comparison of Number of Items Re-coded by GIP Procedure by Ability Group – Grade 8 Mathematics 

Cohort Group 
Items not 

attempted 

Count of Guesses 

indicated by GIP3A 

% of responses 

suppressed by GIP3A 

Grade 8 Mathematics  

n = 21004 

items: 22 

Group Size: 2100 

 

 

 

 

 

  

Top decile 10 0 0.0% 

Decile 9 52 0 0.0% 

Decile 8 45 513 1.1% 

Decile 7 64 1857 3.8% 

Decile 6 113 3728 7.7% 

Decile 5 100 5775 12.0% 

Decile 4 143 7276 15.1% 

Decile 3 109 8486 17.6% 

Decile 2 261 8553 17.7% 

Decile 1 1904 5791 12.0% 

Overall 2801 41979 8.7% 

 

Table 7.19   

Grade 8 Mathematics Count of GIP Implementations by Item Difficulty 

δ  

-

0.971 

-

0.575 

-

0.515 

-

0.492 

-

0.446 

-

0.434 

-

0.382 

-

0.224 -0.2 

-

0.106 

-

0.049 

0.05

3 

0.06

9 0.129 

0.16

4 0.2 0.363 0.482 

0.58

5 

0.68

6 0.72 0.941 

Cog  Know Reason Apply Apply Reason Apply Know Know 

Reaso

n Know Know Apply Apply 

Reaso

n Apply Know 

Reaso

n 

Reaso

n Apply Apply 

Reaso

n 

Reaso

n 

Decile MQ03 MQ06 MQ08 MQ13 MQ19 MQ12 MQ01 MQ10 MQ25 MQ04 MQ05 
MQ1

1 

MQ2

3 
MQ20 

MQ1

6 

MQ0

9 
MQ14 MQ21 

MQ1

7 

MQ2

4 
MQ22 MQ15 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 308 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82 50 434 313 563 415 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 266 268 628 558 615 430 504 459 

5 0 0 0 0 0 0 0 0 0 0 314 290 369 268 714 649 592 642 572 432 451 482 

4 0 0 0 0 0 0 0 326 358 292 549 420 649 437 662 633 587 571 544 424 372 452 

3 0 0 332 304 302 274 225 454 528 407 460 331 556 364 649 578 497 529 496 430 339 431 

2 0 238 670 577 419 504 360 359 417 292 389 239 412 295 612 481 369 501 381 421 263 354 

1 233 244 460 389 188 304 238 226 252 180 313 144 261 193 360 346 222 308 239 335 151 205 
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Table 7.20 shows the impact of the GIP process on the response data for a cohort of Grade 4 Science 

students. It shows a similar pattern of responses and GIP impact for Science as for Mathematics in both 

grades. The uniformity in the increasing number of re-coded items using the GIP protocol follows the 

anticipated pattern, with increasing identification of probable guessing as student ability decreased. The 

alignment of these outcomes with the outcomes predicted in the hypothesis may relate to the fact that the 

Science test was better targeted to the cohort than each of the Mathematics test outcomes, as shown in 

Figure 7.3, although relatively small distributions of the range of item difficulties were observed, which 

may be a function of the homogeneity of the MC item locations with little discrimination between the 

relative difficulties of the items.  

Table 7.20   

Comparison of Number of Items Re-coded by GIP Procedure by Ability Group – Grade 4 Science 

Cohort Group 
Items not 

attempted 

Count of 

Guesses 

indicated by 

GIP3A 

% of responses 

suppressed by 

GIP3A 

Grade 4 Science: 

n = 26070 

items: 23 

Group size: 2607 

 

 

 

 

 

 

 

  

Top decile 3 0 0.0% 

Decile 9 25 0 0.0% 

Decile 8 55 0 0.0% 

Decile 7 129 8 0.0% 

Decile 6 149 1638 2.7% 

Decile 5 106 4259 7.1% 

Decile 4 115 7674 12.8% 

Decile 3 171 10075 16.8% 

Decile 2 350 10003 16.7% 

Decile 1 2074 9118 15.2% 

Overall 3177 42775 7.1% 

The Science ability estimates for the Grade 4 cohort may have been impacted by concepts, language, and 

interpretation of questions expressed at a level that were challenging for some students. A review of the 

overall response patterns did not reveal any time-limit effects that may have contributed to the very 

different distribution of non-attempted items across the ability groups shown in Table 7.20 when 

compared to Tables 7.16 and 7.18.  

It is suggested that the Guttman-like pattern in the relationship between the ability groups and the number 

of items indicated by the GIP process provides some evidence of the effectiveness of the process in these 

authentic data. It is not unreasonable, given the evidence regarding the difference between item difficulty 

and the student propensity to guess, to propose that there could be high levels of guessing present in the 

student responses for these items and that the GIP provided a reasonable approach to identify these 

guesses (based on hypotheses related to the conditions under which guesses are more/less likely).  Table 

7.21 displays a similar pattern to that observed in Tables 7.17 and 7.19.    
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Table 7.21 Grade 4 Science Count of GIP Implementations by Item Difficulty 

Cog 

Dom 
Know Know Know Know Apply Know Know Know Apply Know Apply Apply Apply Apply Apply Reason Apply Reason Reason Apply Apply Apply Reason 

δ -1.736 -0.852 -0.576 -0.507 -0.492 -0.462 -0.398 -0.361 -0.09 0.009 0.038 0.164 0.194 0.229 0.247 0.307 0.317 0.351 0.462 0.577 0.676 0.945 0.956 

Decile G4SQ02 G4SQ03 G4SQ01 G4SQ05 G4SQ15 G4SQ04 G4SQ06 G4SQ07 G4SQ19 G4SQ08 G4SQ09 G4SQ20 G4SQ11 G4SQ13 G4SQ17 G4SQ12 G4SQ18 G4SQ14 G4SQ24 G4SQ16 G4SQ21 G4SQ22 G4SQ25 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 249 667 722 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 208 248 242 767 731 551 741 771 

4 0 0 0 0 0 0 0 0 0 0 0 559 462 492 472 581 683 860 861 652 530 774 748 

3 0 0 0 0 0 0 0 6 768 720 654 919 606 671 757 516 579 684 788 524 523 663 697 

2 0 0 146 165 212 166 119 664 727 735 619 755 428 531 571 453 413 579 697 404 446 563 610 

1 2 300 404 502 766 400 357 444 521 540 469 574 246 337 431 309 258 348 492 264 327 411 416 
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7. 8 PfA Step 2, Supplementary Analyses  

7.8.1 Analysis of Fit 

Following the methodology of Andrich et al. (2015, p. 430), an investigation of the mean chi-square was 

conducted on each of the analyses. Table 7.22 displays the outcomes (see Eqn 5.7). The reduction in the 

mean chi-square statistic was consistent across all analyses, indicating that the GIP3A procedure produced 

a better fit of the data to the model than the original unconditioned INIT data. Hence, and consistent with 

the previous results, the GIP scale appeared to yield a more refined variable and a better measure of the 

trait than the INIT analysis. This was a result of the removal of the “noise” in the measure caused by the 

guessed responses. 

 

Table 7.22   

Comparison of Reliability Indices for Each Rasch Analysis INIT, GIP3A, and GIPINIT3B 

Analysis INIT GIP3A p = 0.6 GIPINIT3B p = 0.6 

  

Total 

Chi-

Square d.f. 

Mean 

Square 

Total 

Chi-

Square d.f. 

Mean 

Square 

Total 

Chi-

Square d.f. 

Mean 

Square 

Grade 4 Mathematics 11447 162 70.7 10128 162 62.5 56088 162 346.2 

Grade 4 Science 18956 207 91.6 14917 207 72.1 60938 207 294.4 

Grade 8 Mathematics 12860 198 64.9 10124 198 51.1 63143 198 318.9 

The misfit of the GIPINIT3B analysis was expected. This is a consequence of the introduction of the 

guessed responses to the more refined GIP scale, which caused the degree to which the guessed items 

misfitted the refined model to be increased. Hence the total chi-square and consequent mean square 

statistics were considerably greater in the GIPINIT3B analysis than in the INIT analysis. 

7.8.2 Statistical Significance of the GIP Interventions 

The t-test for the significance of the difference of the means and the Effect Size analysis was undertaken 

on these data for completeness. The results are as expected, with the GIP3A analysis displaying significant 

differences in the means between the GIP3A and the INIT values because the GIP3A process reduced the 

scores of the students by the number of items indicated as probable guesses. By comparison, the results 

of these analyses of the GIPINIT3B data are more variable. The reintroduction of the INIT raw scores as 

a result of crediting students with the indicated probable guesses tends to return the overall scores to the 

original mean. However, the fact that the scale was revised in the GIP3A process introduces some 

variation in the degree to which the revised scale scores are changed. 

Throughout this research the significant feature of the GIP process is that the GIPINIT3B process does 

not impact the mean greatly. However, both the GIP3A and GIPINIT3B processes do impact the 

distribution and uncover higher estimates for the higher-ability students and lower estimates for the lower-

ability students. As noted, the lower-ability students are these whose estimates are most biased by not 

accounting for guessing in the analysis of results using the RM. 



187 

 

 

Tables 7.23 to 7.25 report t-tests that show the difference between the Rasch means from the INIT ability 

estimates, GIP3A (conditioned data) estimates, and the GIPINIT3B analysis. In the comparison of the 

mean ability estimates of both Grade 4 and Grade 8 Mathematics, the two-tailed t-tests reported in Tables 

7.23 and 7.24 indicate that there were significant differences in the mean estimates for GIP3A and the 

GIPINIT3B compared to the INIT mean statistic. 

Table 7.23   

Comparison of Means – Grade 4 Mathematics Student INIT Ability Estimate and GIP and GIPINIT 

Ability Estimates 

One-Sample t-Test Grade 4 Mathematics 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

G4INITab -119.13 26278 0.000 -0.8110 -0.8239 -0.7972 

G4GIP3Aab -100.81 26278 0.000 -1.1990 -1.2223 -1.1757 

One-Sample Test Grade 4 Mathematics INIT ability estimate vs GIPINIT ability estimate statistics 

 

Test Value = 0 

t df Sig. (2-tailed) 

Mean 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

G4INITab -119.13 26278 0.000 -0.8106 -0.8239 -0.7972 

G4GIPINIT3Bab -60.46 26278 0.000 -0.5229 -0.5398 -0.5059 

 
Table 7.24   

Comparison of Means – Grade 8 Mathematics Student INIT Ability Estimate With GIP and GIPINIT 

Ability Estimates 

One-Sample t-Test Grade 8 Mathematics 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

G8INITab -130.81 21006 0.000 -0.8511 -0.8638 -0.8383 

G8GIP3Aab -107.47 21006 0.000 -1.3373 -1.3617 -1.3129 

One-Sample Test Grade 8 Mathematics INIT ability estimate vs GIPINIT ability estimate statistics 

 

Test Value = 0 

t df Sig. (2-tailed) 
Mean 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

G8INITab -130.81 21006 0.000 -0.8511 -0.8638 -0.8383 

G8_GIPINIT3Bab -73.42 21006 0.000 -0.5704 -0.5857 -0.5552 

Table 7.25 shows the outcomes of the t-tests of the comparison of the mean statistics of each analysis of 

Grade 4 Science. There is a significant difference between the means of the INIT analyses compared to 

the relative GIP3A analyses. This indicates the difference in the more refined variable of the GIP3A 

analysis compared to the INIT analysis. However, in comparing the GIPINIT3B mean to the INIT mean, 

the difference is not statistically significant, as shown by the p-value of 0.015. 
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Table 7.25   

Comparison of Means – Grade 4 Science Student INIT Ability Estimate With GIP and GIPINIT Ability 

Estimates 

One-Sample t-Test Grade 4 Science 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

G4ScINITab -54.76 26064 0.000 -0.3803 -0.3939 -0.3667 

G4GIP3Aab -47.04 26064 0.000 -0.5653 -0.5888 -0.5417 

One-Sample Test Grade 4 Science INIT ability estimate vs GIPINIT ability estimate statistics 

 

Test Value = 0 

t df Sig. (2-tailed) 
Mean 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

G4ScINITab -54.76 26064 0.000 -0.3803 -0.3939 -0.3667 

G4SciGIPINIT3B 2.42 26064 0.015 0.0195 0.0037 0.0353 

The non-significance of the comparison of the means of the INIT and GIPINIT3B analyses was expected, 

given the degree to which the means differed (.001 logits) (Table 7.12). This may be related to the small 

discrimination in item locations in these data with most locations falling within the range -1.0 to +1.0. It 

was apparent that the small range in the item locations and consequent student ability estimates impacted 

on the capacity of the GIP to indicate probable guessed items, due to the interaction between item 

locations and ability estimates in the RM. 

7.8.3 Effect Size 

Given the sample size of each of these cohorts, the statistical significance in the variation of the mean 

statistics of the analyses were significant for most comparisons. An analysis of the Effect Size was 

conducted to further obtain an estimate of the magnitude of the difference between the mean ability 

estimates of the GIP and GIPINIT analyses, compared to the INIT analysis for each data set.  

7.8.4 Cohen's d 

Cohen’s d (Cohen, 1988, 1992) calculates a standardised mean difference between two groups by 

subtracting the mean of one group from the mean of the other (M1 – M2) and dividing the result by the 

standard deviation (SD) of the population from which the groups were sampled (Eqn 7.2). 

Effect Size =  [Mean of experimental group] – [Mean of control group]          Eqn 7.2 

Standard Deviation of the group (pooled) 

In this case, the control group is the INIT analysis statistic, and the experimental group is the GIP analysis 

statistic, or the GIPINIT statistic, as appropriate (Table 7.26). 
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Table 7.26   

Cohen’s Interpretation of Effect Size Statistic 

Relative Size 

Effect 

Size 

‘d’ 

% of control 

group below the 

mean of the 

experimental 

group 

 0.0 50% 

Small 0.2 58% 

Medium 0.5 69% 

Large 0.8 79% 

 1.4 92% 

The observed changes in the summary statistics are shown to be statistically significant using the Effect 

Size calculations. 

Using Cohen’s d as the indicator the following values are returned 

 for the GIP3A means compared to the INIT means: 

Grade 4 Mathematics: (-1.660 - -0.936) ⁄ 1.637 = 0.483 

Grade 4 Science: (-0.517 - 0.034) ⁄ 1.555 = 0.350 

Grade 8 Mathematics: (-1.279 - -0.557) ⁄ 1.428 = 0.589 

The differences in Grade 4 Mathematics and Grade 8 Mathematics for the GIP3A analysis were of the 

order of about half of a standard deviation change in the mean statistic, which represents a 13% to 19% 

reduction in the proportion of students who would be reported as having achieved the INIT analysis mean 

standard. The effect size of the student ability statistic for the Grade 4 Science GIP3A compared to the 

INIT mean was less significant than the mathematics values, however, the Effect Size statistic approached 

the medium range in Cohen’s matrix (Table 7.26) and confirmed a significant difference in the mean 

statistics. The Effect Sizes of the GIPINIT3B means compared to the INIT analysis were universally in 

the small range using the Cohen’s d scale indicators. 

 

Using Cohen’s d as the indicator the following values are returned  

for the GIPINIT3B means compared to the INIT means: 

Grade 4 Mathematics: (-1.660 - -0.936) ⁄ 1.637 = 0.090 

Grade 4 Science: (-0.517 - 0.034) ⁄ 1.555 = 0.001 

Grade 8 Mathematics: (-1.279 - -0.557) ⁄ 1.428 = 0.117 

 

The Effect Size statistics for the GIPINIT3B analyses were expected to be non-significant, as re-

introduction of the INIT raw score re-established the original responses that included the probable guessed 

items scored as correct. This proved to be the case. 
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7.9 Discussion 

This investigation focused on the distributions of abilities and, although statistical means are important, this 

research study has highlighted the impact on the range of abilities reported by the analyses performed. It is 

important to keep in mind the key issues while interpreting these analyses. The statistics indicate that there 

was a difference in the mean of the GIPINIT3B analysis compared to the mean of the INIT analysis. In 

comparing the INIT statistics and the GIPINIT3B statistics for the analyses, although the respective means 

have generally changed only marginally, the distribution of ability estimates uniformly increased in the 

GIPINIT3B analysis, which was grounded on a more refined variable that was a better measure of the trait. 

It was expected that the GIPINIT3B mean would vary marginally compared to the that of the INIT analysis, 

as suggested by the simulated data analyses. These results confirm the expected outcomes of 

implementation of the GIPINIT3B processes. 

7.9.1 Significance of Test Targeting and Item Difficulty Distributions 

An observation suggested by the analysis of the simulated data and also evident in these large-scale 

authentic data relates to the capacity of the GIP procedure to indicate probable guessing when applied to 

tests of few items with low distributions of item location and consequent student ability estimate 

distributions.  

The impact of a well-targeted or a poorly targeted test was shown to be important in relation to the GIP. 

In relation to this research, the better targeted the test, the more effective was the GIP procedure for 

identifying guessing, provided there was a reasonable distribution of item locations. A well-targeted test 

does not negate the presence of harder and easier items in the test structure. This is a significant issue for 

test developers and item writers. Findings from the analysis of simulated data were also evident in these 

large-scale authentic data; that is, the capacity of the GIP procedure to indicate probable guessing differed 

with different item location and student ability distributions. Figures 7.4 to 7.6 show that the Grade 4 and 

8 Mathematics tests were verging on being too difficult for the cohorts tested. By comparison, the Grade 

4 Science test was relatively well targeted.  

Thurstone (1928) intimated the requirement that items used to measure cohort ability should be of the 

appropriate general difficulty relative to the cohort. The current research has revealed that it was possible 

to identify student guessing, and to do this to a better extent when tests were well targeted relative to the 

participating cohort and constructed with a wide range of item locations that extended across the full 

range of student ability. 
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7.10.2 Significance of Accounting for Guessing in These Data 

According to Choppin (1983), 

A change in achievement of one logit represents a considerable amount of learning. Studies 

in various parts of the world indicate that in a given subject area, the typical child’s 

achievement level would rise by rather less than half a logit in a typical school year. (p. 4) 

The indicated degree to which ability estimates have been changed by the GIP process shown in Tables 

7.10, 7.12, and 7.14 suggests that although the changes in terms of logit values may be relatively small 

they are significant in terms of learning progress. 

7.11 Summary 

Study 3 had two aims: 

1. to confirm the efficacy of the GIP procedure for indicating likely guessed items in student response 

patterns in large-scale authentic data; and 

2. to provide a measure of the degree to which student estimates are biased by procedures that do not 

account for guessing, the premise being that stakeholders are guessing when using biased information 

for “data driven” decision making. 

The statistics regarding the GIP3A analyses show a better fit to the model compared to the INIT analyses 

for each data set. This confirms the hypothesis that removing probable guessing from the data improves 

the quality of the measurement scale of the trait. For both the GIP3A and GIPINIT3B analyses, the 

reliability index (Separation Index) showed the improved reliability of the test compared to the INIT 

analysis. The re-introduction of the initial data in the GIPINIT3B analysis resulted in considerable misfit 

between these data and the model, as shown in the SEm and the mean square statistics. Although the 

GIPINIT fit statistics are a poorer resultant if considered as individual fit-statistic, they are derived from 

a better fit of the data to the model based on the GIP analysis. 

 

The benefit achieved by the application of the GIP procedure, compared to previous research outcomes 

that attempted to account for guessing (Andrich et al., 2015), was the impact on lower-ability students, 

for whom the estimates of the INIT analysis were inflated. This was a different result compared to Andrich 

et al.’s (2015) anchored procedure in that the GIP procedure indicated and accounted for the 

overestimation of the lower-ability students in each of the analysed data sets.  

The analyses presented in this chapter, particularly the consistency of improving the estimates of both the 

upper and lower-ability groups in a large-scale assessment, indicate that the procedure should be applied 

uniformly to all assessments of these scale that use the RM for analysis and reporting student achievement. 

Although the targeting of the tests may limit the capacity of the GIP procedure to operate uniformly across 

the full distribution of students, the outcomes of a GIP procedure are an improvement over a process that 

takes no account of probable guessing in the tests.  
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This chapter has demonstrated that the differences between the outcomes of an analysis that did not 

account for guessing (INIT analyses) and the proposed protocol (GIP procedure) were significant in an 

authentic large-scale assessment context. Given the current trend towards reporting student ability and 

achievement outcomes in terms of Bands or Proficiency Bands (e.g., Gonski 2.0; NSW HSC), Chapter 9 

presents the outcomes of these analyses in relation to reported scores and achievements in proficiency 

bands. It also quantifies the degree to which the reclassification of student abilities and achievement levels 

was apparent in each of the data sets analysed for these tests. 
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Chapter 8  

Response Time as a Factor in Indicating Guessing 

Investigation of Student/Item Response Time as a Potential Parameter 

in Identifying or Confirming Guessed Items 

8.1 Introduction 

8.1.1 Rationale 

The GIP procedure is based on a single piece of data, the response to an item by a student. Calculations 

involving the Rasch model derive the probability of a correct response and the degree of misfit if a correct 

response to an item is observed for a student of a given ability. 

In the case of the authentic data referenced in Chapter 7 a second piece of datum, item response time, was 

collected for each student/item interaction. This Chapter is devoted to investigating whether this second 

data source can be leveraged to improve the consistency and reliability of the GIP procedure in indicating 

guessed responses.  

An advantage of an online testing environment, such as that analysed in Chapter 7, was that the time 

students took to respond to each item (response time) could be collected. Researchers have examined the 

interaction of student/item response time with possible guessing and/or test effort (Guo et al., 2016; Lee & 

Yue, 2014; Michaelides et al., 2020; Setzer et al., 2013). In some assessment programs, such as the MAP 

Growth Northwest Evaluation Association assessment (https://www.nwea.org/map-growth), studentreports 

noted the percentage of items recorded with rapid-response behaviour as an indicator of student effort on a 

test. This chapter investigates the potential of using student/item response time to support the GIP procedure 

in the indication of guessing, leveraging the data collected as part of Study 3 (see Chapter 7).  

8.2 Plan for Analysis (PfA) 

The investigation of item response time as an indicator of guessing had two steps.  

Step 1 involved a simple review of the total engagement times of students of different ability, as indicated 

by the students’ resective raw scores, with the tests overall. This relationship was investigated to ascertain 

if there was an initial indication of a relationship between student ability and item/student response time. 

Step 2 involved an analysis of the response times of groups of students of similar ability estimates for items 

of varying difficulty by reviewing individual response times with INIT item difficulties and student ability 

statistics. This relationship was investigated to ascertain if there was a relationship between item difficulty, 

student ability and item/student response time that could be leveraged to improve the GIP procedure. In 

this step the GIP indications from Chapter 7 were used to observe if there were any relationships between 

the time parameter and the GIP processes.  
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The response time of each student/item interaction was compared to an “average” time to evaluate a set of 

plausible relationships that can be determined to be an indication of a guess.  

Consistent with the method of grouping shown in Chapter 7, each cohort was divided into the following 

three sub-groups for comparison purposes:  

Higher-ability group: the students whose INIT analysis estimate located them in deciles 9 and 10; 

Mid-range ability group: the students whose INIT analysis estimate located them in deciles 3 to 8; and 

Lower-ability group: the students whose INIT analysis outcome located them in deciles 1 and 2. 

In deriving this average time, it was observed that the higher-ability students (top two deciles) tended to 

spend considerably more time on items than the lower-ability students (bottom two deciles) (see Table 8.1 

below). Consequently, the mean of the mid-range ability group was used as an indicator of the time taken 

for a typical student/item interaction and as a reference to determine if an individual response student/item 

time would be considered “rapid”.  

Rule 8.1 was imposed for indicating if a student/item rapid response would be a potential indicator of a 

guess. 

            if {rGIPij = 1 AND Tip < avT};  rGIPij = 6, else rGIPi = 1                                  Rule 8.1 

Three potential time (avT) constraints were considered: when the response item time was half (T/2) 

the defined rapid-response time, when the response item time was one-third (T/3), and when the 

response item time was one-quarter (T/4) of the average time of the mid-range ability group. 

In general, the addition of an extra constraint on any of the characteristics that define a variable reduces 

the occurrence of instances that meet the composite’s requirements. As an analogy, if an aim was to 

determine the number of females in a population, a survey would determine ‘n’ cases that meet this 

criterion; however, a constraint that the females need to be taller than 1.8m would reduce the original 

frequency of ‘n’ to a smaller subsample. In the current study, a reduction in the item/student interactions 

that would be indicated as a guess was an expected outcome of including time as an additional parameter 

in the GIP equation. 

8.3 PfA Step 1 Results: Interaction of Response Time and Raw Scores 

In reviewing the student/item response times in the tests overall, a relationship between the total test 

response times of students and their ability, as indicated by the raw score, was observed. The lower-ability 

students tended to spend less time completing the test, whilst generally more time was taken by mid-range 

and higher-ability students. Tables 8.1 to 8.3 relate to the completion of the MC items in each test. 
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Table 8.1   

Year 4 Mathematics Comparison Between Observed Raw Score and Time Taken on the Test 

Av raw score 

(/25) 

% of 

cohort Time Taken on Test 

5.7 6.1% less than 5 minutes 

5.9 17.5% from 5 minutes and less than 10 minutes 

7.6 19.6% from 10 minutes and less than 15 minutes 

8.4 19.5% from 15 minutes and less than 20 minutes 

10.3 15.3% from 20 minutes and less than 25 minutes 

10.7 9.9% from 25 minutes and less than 30 minutes 

11.2 12.1% 30 minutes or more 

 

Table 8.2 

Year 8 Mathematics Comparison Between Observed Raw Score and Time Taken on the Test 

Av raw score 

(/25) 

% of 

cohort Time Taken on Test 

6.2 16.0% less than 5 minutes 

7.3 13.1% from 5 minutes and less than 10 minutes 

8.6 12.2% from 10 minutes and less than 15 minutes 

10.0 13.7% from 15 minutes and less than 20 minutes 

11.2 13.8% from 20 minutes and less than 25 minutes 

11.8 11.1% from 25 minutes and less than 30 minutes 

12.5 8.1% from 30 minutes and less than 35 minutes 

13.1 12.0% 35 minutes or more 

 

Table 8.3   

Year 4 Science Comparison Between Observed Raw Score and Time Taken on the Test 

Av raw score  

(/25) 

% of 

cohort Time Taken on Test 

7.0 18.8% less than 5 minutes 

9.4 23.4% from 5 minutes and less than 10 minutes 

13.4 21.1% from 10 minutes and less than 15 minutes 

15.0 17.1% from 15 minutes and less than 20 minutes 

15.3 9.5% from 20 minutes and less than 25 minutes 

15.2 4.9% from 25 minutes and less than 30 minutes 

14.8 5.2% 30 minutes or more 

 

The issue that was not clear from this initial observation was the degree of causality between time taken to 

respond to the test and the raw score achieved (the indicator of relative ability). Specifically, did the higher-

ability students take longer overall because they were able to apply the skills, knowledge and demands of 

the items that caused them to take longer to complete, or did they simply take longer on the items due to a 

different level of engagement than the lower-ability students? 
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However, as an initial indicator, the consistency between ability (raw score) and response time suggested 

that these relationships functioned similarly and may have complemented each other. Consequently, 

investigation of how response time might assist in the indication of guessed responses was undertaken to 

determine if the time parameter could enhance the GIP procedure in improving the quality of the scale and 

increasing the accuracy of the protocol in indicating probable guessed responses.  

8.4 PfA Step 2 Results: Relationship Between Item Location and 

Response Time by Ability Group 

Approximately a quarter of cohort completed the mathematics tests in less than 10 minutes – a quarter of 

the time available for the test – and these students achieved raw scores of less than 30% of the possible 

score. Since there was no penalty for guessing, these students may have simply answered some questions 

quickly, which tends to obfuscate any systematic analysis of student/item response times. In the Grade 4 

Mathematics assessment, the lower-ability students took an average of six minutes to complete the MC 

items in the test, whereas the mid-range ability group took nine minutes, and the higher-ability group took 

over 12 minutes (approximately double the time of the lower-ability students). 

Table 8.4 shows the relationships between the average time taken to respond to each MC item and the 

difficulty location of the items sorted from least difficult to most difficult by the defined ability groups for 

each Grade. The lower-ability students (those in deciles 1 and 2) spent a shorter time on more items than 

the mid-range ability students (those in deciles 3 to 8) and the higher-ability students (those in deciles 9 and 

10). It is important to note that in most cases, regardless of ability, the students completed all items. 

In the Year 8 Mathematics test, the lower-ability students were again, on average, the quickest to complete 

the individual items. However, there was only a marginal difference between the mid-range and higher-

ability groups in relation to individual item and overall test response time. In Year 8, the lower-ability 

students generally completed the test in about two-thirds of the time that the mid-range and higher-ability 

students took. Although there was some evidence of non-attempted items, relatively few students omitted 

items in this test. 

The Grade 4 Science test showed similar ratios of response time across ability levels. However, the lower-

ability group completed the test in less than half the time of the mid-range ability group, and it was in the 

latter items (more difficult by assessment design) that this lack of engagement was most apparent. In the 

case of Science, the tendency towards rapid responses may be a function of multiple variables such as item 

difficulty, item context, language complexity, or simple disengagement with the test as it became too 

difficult. 
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Table 8.4   

Average Time Taken per MC Item by Ability Groups for Grades 4 and 8 Mathematics and Grade 4 Science Students  

 

Note 1. Blanks records the average number of non-responses/omits to items in the test for each group.  

Note 2. The pattern for Grade 4 was consistent between Mathematics and Science, with the lower-ability students recording more non-responses, on average, than the higher-ability 

students. However, given the rotated item presentation design, there was no consistent pattern of omission of the later items in any student’s test, although there was some evidence of 

harder items, which were presented later in the test, being omitted. 
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8.5 Investigation of Response Time as a Unique Indicative Guessing 

Parameter 

8.5.1 Frequency of Rapid Responses by Criterion Investigated 

A large number of student responses would have been considered a probable guess if the defined 

student/item response time constraint had been applied as the unique indicator to indicate a guess 

(Table 8.5). The information in this sub-section demonstrates the variability that would have been 

introduced if the item response time had been used as a single variable to indicate guessing in the 

large-scale assessments of this study.     

As expected, when the differing time constraints were applied to defining a rapid response (T/2, half 

the average time; T/3, one-third of the average time; T/4, one-quarter of the average time), fewer 

cases were indicated as possible complements of the GIP process. The T/4 condition indicated fewer 

cases than either the T/2 or the T/3 conditions. 

In Year 4 Mathematics, the impact of applying the constraint T/2 resulted in 187,486 items (40% of 

the total responses (see Table 8.5)), were indicated as possibly guessed, irrespective of the student’s 

success on the item. Of these rapid responses, approximately one-third were correct responses that 

could be considered probable guesses due to the rapid-response criteria of T/2. When the constraint 

T/3 was applied, the number of items identified as a rapid response reduced to 139,200 (30% of the 

total responses) and 46,810 (33.6% of rapid responses). In each case these responses had been 

correctly answered by the student. 

As indicated in Table 8.5, there were a number of cases in which a student/item interaction was 

identified as a rapid response under the criteria investigated. The application of this variable as the 

sole indicator was likely to result a significant number of “false positive” outcomes when, for 

example, a higher-ability student might respond correctly quickly to an item within their 

knowledge/skill region. 

Table 8.5 

Count of Rapid Responses Potentially Re-Coded as Guesses by the Defined Time Constraint 

Data Set 

Count of items for defined for each time constraint only 

TIME /2 (T/2) TIME /3 (T/3) TIME /4 (T/4) 

Items 

identified 

Correct 

responses 

identified 

Items 

identified 

Correct 

responses 

identified 

Items 

identified 

Correct 

responses 

identified 

Grade 4 

Mathematics 

187,486 

(40%) 

63,676 

(14%) 

139,200 

(30%) 

46,810 

(10%) 

114,740 

(25%) 

38,790 

(8%) 

Grade 8 

Mathematics 

196,107 

(42%) 

97,115 

(21%) 

162,740 

(35%) 

72,575 

(16%) 

143,804 

(31%) 

68,411 

(15%) 

Grade 4 

Science 

281,228 

(47%) 

126,190 

(21%) 

209,352 

(35%) 

90,385 

(15%) 

167,841 

(28%) 

71,590 

(12%) 

Note. Table 8.5 shows the number of identified rapid-response items and the number of correctly 

answered rapid-response items (indicated guesses) when the response time was compared to the 

mean item response time of the mid-range ability group for each respective sample.   
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In Table 8.5, if the response time was a single indicator of a probable guess, almost half of those items 

identified as a rapid response with the T/2 constraint would be correct responses re-coded as a guess 

irrespective of the student ability. While response time alone was thus likely to be an ineffective parameter 

to identify guesses, the response times were investigated in conjunction with the GIP outcomes of Chapter 

7 to determine if they would prove useful as an additional parameter to increase the confidence in the 

indication of the guess using the GIP process. 

8.5.2 Consideration of the Relationship Between Item Difficulty and Rapid 

Responses 

The information so far presented in this chapter relates to the observed response times of groups of students 

on the test overall and in an aggregated form by item (see Table 8.4). However, the issue of concern is not 

simply the count of rapid responses by student, but the degree to which the observation of a rapid response 

is an indicator of a probable guess. In other words, are the observed relationships between the variables of 

interest, a rapid-response time and a probable guess, causal? 

Table 8.6 shows the occurrence of rapid responses with the T/2 criterion for Grade 4 Mathematics 

disaggregated by decile group. Overall, 39.6% of responses would be considered rapid. The average number 

of rapid responses was in the range of 31% to 45%, but the number of observed rapid responses was 

relatively independent of item difficulty. In the higher ability deciles (deciles 9 and 10), the easiest items 

have the most frequent rapid responses, and as items become more difficult the rates of rapid responses 

stabilise at about 20%. However, in the lower ability ranges (deciles 1 and 2), the rates of rapid response 

stabilise at approximately 60% to 70%, irrespective of item difficulty. In the mid-range ability deciles 

(deciles 3 to 8), there is again no clear relationship between item difficulty and rapid responses.  

Given that it is assumed that items of higher difficulty would require more effort and typically require a 

longer time to respond, the data in Table 8.6 suggest that this is not the case with difficulty having little 

bearing on the rate of rapid responses observed within decile groups. These observations appear to negate 

the hypothesis that rapid response time is necessarily a function of item difficulty.  
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Table 8.6 

Grade 4 Mathematics Rapid Response Proportions by Decile 

Item Decile Q01 Q09 Q07 Q03 Q08 Q04 Q11 Q06 Q10 Q02 Q23 Q05 Q22 Q16 Q24 Q19 Q14 Q13 

δ 

 

-1.57 -1.18 -1.14 -0.7 -0.53 -0.52 -0.3 0.13 0.24 0.29 0.31 0.38 0.4 0.46 0.52 0.96 1.09 1.17 

n(T/2) Decile1 1250 1361 1213 1633 1688 1696 1291 1542 1701 1745 1922 1558 1885 1184 2056 1498 1691 1920 

% T/2 %Dec1 47.60% 51.80% 46.20% 62.10% 64.20% 64.50% 49.10% 58.70% 64.70% 66.40% 73.10% 59.30% 71.70% 45.10% 78.20% 57.00% 64.30% 73.10% 

n(T/2) Decile2 1056 1224 1016 1420 1520 1594 1142 1357 1526 1545 1847 1380 1767 1094 1950 1330 1503 1808 

% T/2 %Dec2 40.20% 46.60% 38.70% 54.00% 57.80% 60.70% 43.50% 51.60% 58.10% 58.80% 70.30% 52.50% 67.20% 41.60% 74.20% 50.60% 57.20% 68.80% 

n(T/2) Decile3 1045 1156 1023 1390 1511 1500 1120 1315 1494 1502 1764 1372 1714 1068 1867 1313 1425 1699 

% T/2 %Dec3 39.80% 44.00% 38.90% 52.90% 57.50% 57.10% 42.60% 50.00% 56.80% 57.20% 67.10% 52.20% 65.20% 40.60% 71.00% 50.00% 54.20% 64.60% 

n(T/2) Decile4 896 1043 948 1281 1360 1404 1034 1185 1314 1381 1635 1283 1602 1004 1784 1239 1276 1523 

% T/2 %Dec4 34.10% 39.70% 36.10% 48.70% 51.80% 53.40% 39.30% 45.10% 50.00% 52.50% 62.20% 48.80% 61.00% 38.20% 67.90% 47.10% 48.60% 58.00% 

n(T/2) Decile5 817 926 861 1106 1180 1242 965 1030 1161 1199 1456 1112 1454 919 1650 1140 1109 1357 

% T/2 %Dec5 31.10% 35.20% 32.80% 42.10% 44.90% 47.30% 36.70% 39.20% 44.20% 45.60% 55.40% 42.30% 55.30% 35.00% 62.80% 43.40% 42.20% 51.60% 

n(T/2) Decile6 708 742 733 910 953 965 824 789 972 939 1169 869 1131 758 1378 898 872 1053 

% T/2 %Dec6 26.90% 28.20% 27.90% 34.60% 36.30% 36.70% 31.40% 30.00% 37.00% 35.70% 44.50% 33.10% 43.00% 28.80% 52.40% 34.20% 33.20% 40.10% 

n(T/2) Decile7 696 704 630 725 762 732 751 659 798 764 915 701 915 577 1084 702 667 866 

% T/2 %Dec7 26.50% 26.80% 24.00% 27.60% 29.00% 27.90% 28.60% 25.10% 30.40% 29.10% 34.80% 26.70% 34.80% 22.00% 41.20% 26.70% 25.40% 33.00% 

n(T/2) Decile8 674 678 564 587 544 551 640 488 648 500 625 512 638 469 831 531 531 641 

% T/2 %Dec8 25.60% 25.80% 21.50% 22.30% 20.70% 21.00% 24.40% 18.60% 24.70% 19.00% 23.80% 19.50% 24.30% 17.80% 31.60% 20.20% 20.20% 24.40% 

n(T/2) Decile9 842 835 605 529 516 514 676 379 617 465 464 527 497 401 632 445 477 531 

% T/2 %Dec9 32.00% 31.80% 23.00% 20.10% 19.60% 19.60% 25.70% 14.40% 23.50% 17.70% 17.70% 20.10% 18.90% 15.30% 24.00% 16.90% 18.20% 20.20% 

n(T/2) Decile10 1153 1185 740 738 663 644 862 560 822 612 502 737 522 502 612 551 637 641 

% T/2 %Dec10 43.90% 45.10% 28.20% 28.10% 25.20% 24.50% 32.80% 21.30% 31.30% 23.30% 19.10% 28.00% 19.90% 19.10% 23.30% 21.00% 24.20% 24.40% 

n(Total) 187476 9140 9857 8336 10323 10701 10846 9308 9307 11057 10656 12303 10055 12129 7979 13849 9650 10192 12043 

%Overall 39.60% 34.80% 37.50% 31.70% 39.30% 40.70% 41.30% 35.40% 35.40% 42.10% 40.60% 46.80% 38.30% 46.20% 30.40% 52.70% 36.70% 38.80% 45.80% 

Note. Items have been sorted from least to most difficult based on INIT analysis. Each quartile consists of 2628 students. 
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8.5.3 Consideration of the Relationship Between Rapid Responses and GIP Indicated Items 

The lack of a causal relationship between responses and response time is further demonstrated in Table 8.7. The table 

shows combinations of correct responses that are (a) rapid responses, and (b) incorrect responses that are rapid responses, 

and (c) instances of GIP-indicated responses that are rapid responses. However, there is no consistent pattern. This lack 

of a pattern is also obfuscated by the number of non-rapid correct and incorrect responses in the sample of student data 

provided. 

Table 8.7 has items sorted horizontally by INIT item difficulty from easiest to hardest. A random selection of students 

(Stud) from a sample of decile groups has been drawn to exemplify particular characteristics. 

The defined average time for each item is noted in row 3. Two sets of statistics are provided for each student. The row 

‘Time’ indicates whether the time for that student/item interaction was rapid, and the row ‘Score’ the result of the 

student/item interaction (0/1) conditioned in some cases by the GIP indicated items (annotated as code ‘7’). 

The student ability is noted together with the number of rapid responses observed and the number of GIP-indicated items 

indicated in the final three columns. 

Student 10 is used to exemplify the structure of the Table.  Student 10 has nine instances of rapid response when the 

student’s response time is compared to the calculated T/2 average time. Student 10 has not recorded a response to items 

Q22, Q16, Q19 and Q14. However, given that the student has attempted Q23 it is assumed that the non-response was a 

‘considered’ action, not a case of student 10 being unable to access all the items in the test. 

In inspecting the student response pattern, Q01 was a correct response that was not a rapid response. Q07 was a correct 

answer that was a rapid response. Q08 was a correct response that was indicated by GIP as a probable guess (7) but was 

not a rapid response. Whilst Q23 was a correct response that was also indicated as a probable guess (7) by the GIP 

procedure and was also a rapid response. Hence Student 10 provides examples of all possible combinations in the matrix 

of correct responses with rapid responses. 

Of note is Student 51, who has all 18 items considered as rapid responses. In two instances the responses are not indicated 

as probable guesses (GIP) and in three instances the responses are GIP indicated. By comparison, Student 10 has one 

instance of a non-rapid response indicated as a probable guess (GIP) and a second instance of a rapid response that is a 

GIP-indicated probable guess. These inconsistencies mitigate against the inclusion of time as a complementary indicator 

of likely guesses in the GIP procedure.  
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Table 8.7 

Extract of Response Time (T/2), Response, and GIP-Indicated Items for a Random Selection of Students  

  Item Q01 Q09 Q07 Q03 Q08 Q04 Q11 Q06 Q10 Q02 Q23 Q05 Q22 Q16 Q24 Q19 Q14 Q13 
Maths 

INITab 

GIP 

change 

T/2 

Rapid 

  δ -1.565 -1.18 -1.135 -0.7 -0.533 -0.523 -0.296 0.129 0.237 0.287 0.309 0.379 0.395 0.461 0.519 0.955 1.09 1.17       
Av. 

Time 
Stud 0:18 0:25 0:22 0:25 0:44 0:35 0:22 0:29 0:26 0:42 0:32 0:39 0:33 0:29 0:50 0:28 0:22 0:40       

Time 8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE -2.78 

 

1 

Score 8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 -2.78 1   

Time 10 FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE -2.35 

 

9 

Score 10 1 0 1 0 7 0 0 0 0 0 7 0 #NULL! #NULL! 0 #NULL! #NULL! 0 -2.35 2   

Time 13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE -1.72 

 

3 

Score 13 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 7 0 0 -1.72 1   

Time 51 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE -1.45 

 

18 

Score 51 0 0 0 0 0 0 1 1 0 7 0 0 0 7 0 7 0 0 -1.45 3   

Time 9 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE -1.22 

 

3 

Score 9 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 7 0 -1.22 1   

Time 14 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE -0.99 

 

18 

Score 14 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 7 -0.99 1   

Time 2 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE -0.78 

 

3 

Score 2 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 -0.78 0   

Time 5 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE -0.38 

 

2 

Score 5 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 -0.38 0   

 

Note. An annotation of time as “false” indicates that this was not a rapid response for that item/student interaction. An annotation of “true” indicates that that student/item 

interaction was a rapid response.
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8.6 Results of Analyses of Student Responses Times 

The initial observations of the relationship between overall test response times and student ability detailed 

in Sections 8.3 and 8.4 indicated that there may be relationships between student ability, item difficulty and 

student/item response time that could be leveraged to develop a more reliable and accurate GIP, However, 

further investigation of these relationships revealed inconsistencies in that there were cases where a rapid 

response time was observed with a correct response for multiple students with higher ability estimates and 

relative slow response time for multiple students of lower ability to items which the GIP procedure 

suggested were likely guesses.  

These inconsistencies were found in each subject and grade with specific examples of the issue made 

explicit in Tables 8.6 and 8.7. The lack of a consistent relationship between student ability, item difficulty 

and student/item response time made inclusion of response time as a variable in the GIP process problematic 

as discussed below.  

8.7 Discussion of the Outcomes of PfA Step 1 and Step 2 

In the review of item response rate, two relationships were apparent from the summary data (see Table 8.4): 

1. Lower-ability students generally responded to each item in the test in the fastest time; and 

2. Higher-ability students consistently responded to the MC items in the test in the longest time. 

These observations are not considered causal, and may have been influenced by two opposing factors:  

1. The relative inability of lower-ability students to interact with the items engendered guessing as the 

likely response action, with quick response time reflecting a ‘no-knowledge’ reaction; and 

2. The time taken by the higher-ability students, for whom the item was within their range of knowledge, 

skill, and ability, reflected the time taken to read and decode the question and consider the best answer.  

Considering that the lower-ability students had lower success rates on the more difficult items overall, the 

observation that they tended to respond more rapidly to those items that were too difficult for their ability 

level supports the assumption that these responses were likely to have been guessed. 

However, it is worth noting that the lower-ability students generally took no longer to respond to the items 

requiring higher cognitive demand than to those requiring lower cognitive demand. There was increasing 

interaction time for the higher-ability students on the items as cognitive demand and item difficulty 

increased. In considering these interactions, these data support the principal hypothesis regarding the 

relationship between student ability, item difficulty, and guessing. However, the potential for a time 

variable in the GIP procedure is not supported, as there was no consistent not apparent causal relationship 

between item difficulty and the time taken to respond to items as difficulty increased across the full range 

of student ability estimates. 
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8.8 Conclusion Regarding the Student/Item Response Time as an 

Additional Parameter in the GIP Algorithm 

This chapter has shown that, at least for some cases, there was a likely relationship between response 

time and possible guessing. Some researchers have linked this to test-taking effort (Guo et al., 2016, 

Michaelides et al., 2020; Setzer et al., 2013). However, this analysis illustrates that a rapid response may 

indicate knowledge of the item demand and quick identification of the correct option. Indeed, the 

inconsistency of the time-only constraint across all groups of students suggests that there was no 

consistent response time ratio that can provide a reliable indicator of guessing. 

Given the inability of response time to be a reliable indicator of guessing and the diminishing returns in 

relation to the confirmation of the GIP indicators as a result of including time as an additional variable, 

the student/item response time parameter was ultimately not used in conjunction with the previously 

defined GIP process to indicate probable guessing. 
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Chapter 9  

Reports of Student Achievement 

Impact of the Guessing Indication Protocol (GIP) on Reported Student 

Performance 

9.1 Introduction 

The outcomes reported in each of Chapters 5, 6, and 7 indicate a significant difference between the 

individual ability estimates of the higher and lower-ability student groups in analyses that account for 

probable guessing in MC items using the defined Guessing Indication Protocol (GIP) procedures compared 

to the outcomes when no processes were implemented to account for probable guessing. This chapter 

discusses the potential impact of guessing on the reporting of student performance. 

The increase in the standard deviations of the distribution of student ability estimates is considerable in 

each of the analyses of Chapter 7. It is appreciated that these increases, with marginal increases in the 

reliability coefficient, increased the measurement error in relation to each estimate by a significant factor. 

Consequently, the confidence interval about each student’s ability estimate also increases in absolute terms. 

However, the Level in which a student’s performance is reported, discussed below, is calculated on the 

point estimate of student ability and does not take the confidence interval into consideration.  

Section 9.1 explains the construct of scaled scores and how they relate to the assignment of Levels in student 

achievement. The differences in scaled scores observed for the different analysis Phases is a fundamental 

aspect of the discussion regarding the final reports of student assessments. 

Sections 9.2, 9.3 and 9.4 provide detail of the manner in which the GIP outcomes differ from the INIT 

outcomes in relation to the assignment of Levels for each of respective Studies provided in Chapters 5, 6 

and 7. In particular it shows the degree to which the reported Levels change when the GS and GIP analyses 

are conducted.  

Section 9.5 discusses the degree of misclassification of students in Levels when no account is taken for 

probable guessing in the Rasch analysis. The discussion highlights the potential scale of misinformation 

provided to stakeholders when a simple INIT analysis provides data upon which decisions are made.  

9.1.1 Achievement Standards in Australia 

In the Australian context, student achievement is guided by the aims and content of the Australian 

Curriculum (https://australiancurriculum.edu.au). The Curriculum articulates the levels of knowledge, 

understanding, and skills that are expected to be achieved at various stages of a student’s educational 

journey. Figure 9.1 is an extract from the Australian Curriculum that provides a framework for the expected 

learning outcomes to be achieved by the end of Year 4 in Mathematics. It is against these Achievement 

Standards that summative reports are prepared to indicate progress of individual students against the 

curriculum expectations. 
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Figure 9.1 

Extract From the Australian Curriculum Year 4 Mathematics Achievement Standards 

  

Source. https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/ 

9.1.2 Reported Levels and the Link to Achievement Standards 

This section provides examples of reports and standards statements to illustrate the context for the 

discussion of possible misinformation from data that have not accounted for guessing. Figure 9.2 is an 

extract of a Mathematics Standards Scale (Abu Dhabi Educational Council, EMSA scale, 2018) that shows 

the link between student scaled scores (the outcomes of the analyses shown in section 9.1.3) and the 

described achievement standards.  

  

https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/
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Figure 9.2   

An Example of a Mathematics Standards Framework (Grade 3 to Grade 6) 

Level Label 
Scaled 

Score 
Level Descriptor 

Numeric Range Learners at this level can typically: - 

Cycle 1 

Level 7 and 

above 

(max for 

G4 and G5 

Above 

801 

Use a probability tree diagram. Understand stem and leaf plots. Calculate 

averages. Solve simple permutation problems. Solve contextual percentage problems. 

Calculate values of investments. Solve simple rate problems. Identify properties of 

complex 2-D shapes. Solve problems involving volume, area and length. Find properties 

of graphs including domain, range, gradients, intercepts & continuity. Apply 

differentiation rules. Evaluate simple integrals. Identify a term in a geometric sequence. 

Cycle 1 

Level 6 

(max for 

Grade 3) 

701 – 

800 

Work with positive and negative integers. Solve problems involving 

multiplication, division and rounding. Round numbers to significant figures and convert 

from scientific to decimal notation. Solve measurement problems involving area and 

perimeter. Use Pythagoras' theorem and identify equivalent trigonometric values. 

Solve spatial reasoning problems involving visualisation and addition. Evaluate a 

formula to solve a problem. Transform an algebraic expression using standard 

procedures, including differentiating simple functions. Sum a finite arithmetic series. 

Cycle 1 

Level 5 

601 - 

700 

Use four operations to solve simple problems and relate processes. Identify 

numbers and fractions on number lines and work with fractions and simple 

percentages. Continue sequences in number patterns, identify missing values in 

increasing patterns and relate shape patterns to value tables. Interpret graphical 

displays and relate frequency numbers in tabled data. Work with trigonometric ratios 

and angle properties. Identifies the properties of 3D objects and follow position 

language on grids. Evaluate a simple function of one variable for a given value. 

Cycle 1 

Level 4 

501 - 

600 

Identify and use simple fractions, decimals and percentages. Solve addition, 

subtraction and multiplication and work with square and cubed roots. Identify common 

multiples of simple factors and understand 4-digit numbers. Select minute equivalent 

of part of hour. Identify combined shape from given shapes. 

Cycle 1 

Level 3 

401 - 

500 

Understand place value to three digits and order numbers on number lines. 

Identify value equivalence of different coins and ordinal position. Continue simple 

shape patterns and number patterns. Match tabled data with graph representation, 

and match analogue and digital times. Identify cylindrical shapes and follow simple 

positional language. 

Cycle 1 

Level 2 

301 - 

400 

Solve simple word problems and identify missing terms in ascending and 

descending patterns. Select appropriate instrument to measure length. Understand 

tally representation and interpret column graphs. Identify familiar 3D objects. 

Cycle 1 

Level 1 

201 - 

300 

Perform simple operations including counting a small collection, adding, 

subtracting and multiplying single digits. Identify key times on an analogue clock and 

identify area in units. 

Note 1. The Level for a student’s performance in the assessments is operationalised by the assignment of 

a score that indicate achievement within each level. The ranges that relate to each level are defined in the 

column Numeric Range. 

Note 2. The first column shows the possible levels that can be achieved by students who participate in the 

test. The second column represents the possible range of standardised scale scores that define a Level, and 

the third column describes the skills and contexts of the test for items within each range of difficulty.  
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Standards, expressed as Level descriptors, provide meaning to the numeric scaled score. The Level 

descriptors are developed by aggregating the task demands of items that fall within defined difficulty ranges 

into meaningful text. The text typically describes the skills demonstrated within the defined range. Figure 

9.2 shows seven levels that transcend the learning outcomes expected of students in Grades 3 through 5 

(termed “Cycle 1” in this UAE 2context). The purpose of this scale is to allow students to be located on a 

scale, constant over time, and provide a stable standard against which progress may be measured. The 

descriptions provided are derived from the types and contexts of items that are observed within the score 

ranges indicated in numeric range column. A student who falls within a particular level will have shown 

evidence of the skills in the test(s) from which this report is generated. 

Overall, the scale attempts to capture the expected achievement of students of the target cohort and describe 

the continuum of the domain as learning advances through the Grades/Year levels. The report is divided 

into levels, which describe the observed achievement of the students as evidenced by their performance in 

the assessment. The detail articulated in Figure 9.2 captures the principle that, although the curriculum 

describes an achievement standard for the Year/Grade, not all students progress at the same rate. Hence, 

the report allows for a range of achievements, from students who are well below the expected level to 

students who are exceeding the expected outcomes of the Year/Grade. The Levels described in Figure 9.2 

reflect the observed achievement and the skills typically demonstrated by a student who has achieved a 

specific level.  

In Figure 9.2 the “width” of each Level is 100 scaled score points. The derivation of the level width for a 

particular domain could be considered “arbitrary” as the level3 width will vary for different domains 

depending upon several factors, including (but not limited to); 

• the capacity to unambiguously describe the attributes that determine a level within the scale; 

• the number of bands (levels) that can be unambiguously described; 

• the range of Year/Grade levels that the scale is referring to (NAPLAN has 10 bands (levels) 

encompassing 7 years of learning, as shown in Figure 9.3; and 

• the range of the distribution of item locations in the original implementation of the assessment from 

which the scale and descriptors have been derived.  

As demonstrated in Figure 9.2, the alignment of student achievement, typically represented as a scaled 

score, with the standards statements provides a meaningful description of the student score as a 

manifestation of learning evidenced in the assessments. The information displayed in the Standards Scale 

provides a framework for the targeting of interventions and comparisons to future outcomes that evidence 

student progression towards increasing standards of learning in the domain of interest. 

 

  

 
2 The large-scale data were derived from the Abu Dhabi Education Council’s Semester 1 test of the 2019 

Question a Day program 

3 The terms “band” and “level” are equivalent; they are used alternatively by different jurisdictions. 
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9.1.3 Scaled Scores and the Link to Levels 

The Victorian Curriculum and Assessment Authority (VCAA) have published explanatory notes (  

http://usingassessmentdata.vcaa.vic.edu.au/naplan/tut1) that relate the NAPLAN Reading scaled scores to 

the NAPLAN Band (Level) descriptors, as shown in Figure 9.3. The figure highlights the one-to-one 

relationship between scaled scores, the band cut scores, and the band descriptors. It also shows that the 

level width between successive bands for this subject is 52 scaled score points. This represents one standard 

deviation in the Reading Scale. The scaled score value of a level width varies for different subjects, as 

detailed in the NAPLAN Technical Report (2019). 

Figure 9.3   

NAPLAN Reported Bands (Reading) and Scaled Score Cut Scores 

  

Source: http://usingassessmentdata.vcaa.vic.edu.au/naplan/tut1_1/mod1.aspx# 

In the modern educational environment of large-scale standardised assessments, scaled scores are derived 

from analyses such as the Rasch to provide numeric values to the student outcome that are more user 

friendly than the Rasch logit value. Figure 9.2 shows a scale in which the standardisation process involved 

fixing the mean to a scaled score 500 and the standard deviation to a scaled score of 100. 

 

http://usingassessmentdata.vcaa.vic.edu.au/naplan/tut1
http://usingassessmentdata.vcaa.vic.edu.au/naplan/tut1_1/mod1.aspx
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The use of mathematical equating procedures between Years and across time (Andrich, 2008; Linn, 1993; 

Mislevy, 1992; NAPLAN Technical Reports, 2008 to 2019) enables comparison of equivalent cohorts to 

measure identifiable improvement in the system, and/or the tracking of individual students to measure 

growth in learning attainment. The process used to determine the standardised scaled scores is the common 

procedure defined in Eqn 9.1. 

 

𝑋𝑠𝑠 = {
[ 𝑋𝑗− �̅�]

𝑆𝐷𝑗
} 𝑥 𝑆𝐷𝑑 + �̅�𝑑    Eqn 9.1 

 

Where  𝑋𝑠𝑠 is the calculated Standardised Scaled Score; 

 xj is the achieved score of person j; 

 �̅� is the mean of the achieved scores of the cohort; 

              SDj is the standard deviation of the achieved scores; 

              SDd is the defined standard deviation of the standardised scaled sores; and 

�̅�𝑑 is the defined mean of the standardised scaled scores. 

The parameters used to standardise the ability estimates calculated for the INIT phase outcomes are shown 

in Table 9.1. Throughout this current research, the standardisation of the logit values (Chapters 5, 6, and 7) 

used a mean of 500 and a standard deviation of 100 to create a scaled score in order to facilitate 

comparisons. 

Table 9.1   

Parameters Determined for Calculation of INIT Standardised Scaled Scores 

Data Mean X ̅ SDj Source 
 

SDd 

Study 1, SIM 1 0.72 1.39 Table 5.27 500 100 

Simulations SIM 2 1.40 1.27 Table 5.27 500 100 

 SIM 3 0.72 1.30 Table 5.27 500 100 

 SIM 4 1.27 1.48 Table 5.27 500 100 

 SIM 5 0.24 1.39 Table 5.27 500 100 

Study 2, FT Y5 1.74 1.29 Table 6.15 500 100 

Small Scale FT Y7 1.42 1.01 Table 6.16 500 100 

Study 3, Maths G4 -0.40 1.10 Table 7.10 500 100 

Large-scale Science G4 0.03 1.11 Table 7.11 500 100 

 Maths G8 -0.44 0.94 Table 7.12 500 100 

In this study, levels have been ascribed by reference to the standards described in Eqn 9.2 

if SS{analysis} > 700 {analysis}Level = 6. 

if SS{analysis} <701 AND SS{analysis}>600 {analysis}Level = 5. 

if SS{analysis} <601 AND SS{analysis}>500 {analysis}Level = 4. 

if SS{analysis} <501 AND SS{analysis}>400 {analysis}Level = 3. 

if SS{analysis} <401 AND SS{analysis}>300 {analysis}Level = 2. 

if SS{analysis} < 301 SIM1Level = 1.        Eqn 9.2 



211 

 

 

 

These Levels and the associated “cut scores” may be considered as arbitrary, but they are efficient as a basis 

for comparisons for determining the impact of the GIP conditioning of the response data for each analysis.  

9.2 Study 1, Simulated Data – Reporting of Achievement Levels for 

Each Analysis Phase 

Tables 9.2 to 9.6 provide comparisons of the relative “reassignment” of students to performance levels in 

the simulated data sets developed and analysed in this research. These tables present the three-phase 

calibrations of the response data for each of the five simulation data sets analysed. The purpose of each 

column will now be explained: 

1. The column “{analysis} LevelINIT” describe the distribution outcomes of a simple Rasch analysis of 

the scored data without any accounting for guessing. The ability estimates are determined from Raw 

Score to Ability tables derived in the INIT analysis and then standardised applying the mean and 

standard deviation of the data for the particular data set (mean 500, st.d. 100). 

2. The column “{analysis} LevelGS” describes the distribution outcomes of a Rasch analysis of the 

scored data with the defined guesses (or in the case of the field trial data, the self-nominated guesses) 

suppressed. 

3. The column “{analysis} LevelGIP3A” describes the distribution outcomes of a Rasch analysis of the 

scored data conditioned to suppress responses that “fail” the GIP thresholds for indicating a guess. In 

these tables the GIP identified responses are scored as missing data. Hence the levels ascribed are 

based on a reduced raw score – the GIP3A raw score. 

4.  The column “{analysis} LevelGIPINIT3B” describes the distribution outcomes a Rasch analysis of 

the scored data conditioned to suppress responses that “fail” the GIP thresholds for indicating a guess. 

The item locations resolved by the GIP3A analysis are anchored in this analysis. The levels ascribed 

to students are based on the raw score determined in Phase 1 (the INIT Raw Score). This phase is the 

outcome of interest and termed the GIPINIT3B analysis in the discussion that follows. 

The values shown in the column LevelINIT represent the relative percentages in each of the defined levels 

as a result of the Rasch analysis and the application of the standardisation process on the observed student 

ability estimates generated. By comparison, the column LevelGS shows the comparable percentages where 

the responses that have been predefined as guesses are suppressed and considered as “missing data” for 

both calibration and ability calculations for these data. In Tables 9.2 to 9.6, the lower ability levels are 

shaded. 

 

9.2.1 Reported Achievement Levels for the SIM1 Data  

The outcomes of the three phases of the data set Simulation 1 (SIM1) are displayed in Table 9.2. The 

differences in the scaled scores and levels for each phase reflect the re-calibration of item difficulties, the 

consequent raw score, and the ability estimate determined in each phase, as a result of the reclassification 

of the defined (GS) and GIP identified guesses as appropriate.  
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Table 9.2   

Comparisons of Percentages in Each Level for Simulation 1 by Analysis Phase 

Level 

SIM1 LevelINIT SIM1 LevelGS SIM1 LevelGIP3A p=0.6 SIM1 LevelGIPINIT3B p=0.6 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 
Percent 

Freq Percent 
Cumul 
Percent 

Freq Percent 
Cumul 

Percent 

6 9 2.3 100.0 104 26.0 100.0 43 10.8 100.0 58 14.5 100.0 

5 54 13.5 97.8 34 8.5 74.0 55 13.8 89.3 47 11.8 85.5 

4 116 29.0 84.3 103 25.8 65.5 94 23.5 75.5 96 24.0 73.8 

3 156 39.0 55.3 53 13.3 39.8 100 25.0 52.0 103 25.8 49.8 

2 60 15.0 16.3 46 11.5 26.5 51 12.8 27.0 80 20.0 24.0 

1 5 1.3 1.3 60 15.0 15.0 57 14.3 14.3 16 4.0 4.0 

 400 100.0  400 100.0  400 100.0  400 100.0  

 

Comparing the INIT values to the GS values of SIM1, Table 9.2 shows that the percentage of students in 

the lowest ability groups (Levels 1 and 2) on this trait has been overestimated by about 10.2% (16.3% vs 

26.5%, respectively) when the defined guessing has not been accounted for. This overestimation derives 

from the inflation in the raw scores achieved by the correct random guessing achieved by students. This 

percentage indicates that approximately 10% of the population who are performing below the expected 

achievement range would be reported as achieving at in acceptable range of achievement for the Grade. At 

the other extreme of the scale, the comparison of the frequencies between the INIT levels and the GS levels 

for the highest ability group (Level 6) were underestimated by almost 24%. The calibration effect of 

unaccounted-for guessed items was the reduction of the relative difficulty of harder items due to the impact 

of correct guesses from the lower-ability groups, with consequent impact on the ability determination for 

the set of items across the range of abilities. In the range between the extremes of the INIT and GS 

outcomes, there is variation in the observed proportion of students in each level. However, of interest is the 

degree to which students achieved the lowest two bands (INIT – 16.3% compared to GS – 26.5%) and the 

upper two bands (INIT – 15.8% compared to GS – 34.5%, respectively). These represent significant 

misclassifications of students for the purpose of both individual and cohort reporting.  

9.2.2 Discussion – Achievement Levels for SIM1 Simulated Data  

The focus of this thesis is to report what is feasible and practical to achieve with a process grounded in 

Rasch modelling that takes account of guessing. The analysis that satisfies these requirements is the 

GIPINIT3B outcomes. The application of the GIP provides a further comparison of the set of values shown 

in the column SIM1 LevelGIPINIT3B p=0.6 against the INIT analysis outcomes. As discussed in Chapter 5, 

the GIP process is less efficient in the identification of guessing in the responses of the higher-ability 

students due to the consequent positive probability of success on all but the most difficult items and the 

requirement that the item difficulty exceeds the ability estimate of the student by at least 1.1 logits. 

However, it has an important degree of efficiency in indicating probable guessing for the lower-ability 

students. This was evident by the comparison of the INIT (guessing not accounted for) outcomes compared 

to the GIPINIT3B outcomes for students achieving in the lower levels. 
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Although not as stark as the comparisons between the unconditioned data (column SIM1 LevelINIT) and 

the defined guessing data outcomes (column SIM1 LevelGS), the GIPINIT3B process resulted in the 

students in the lower two levels being reported at 24% compared to 16.3% in the LevelINIT, and the upper 

two levels at 26.3% for the LevelGIPINIT compared to 15.8% in the unconditioned INIT data. In large-

scale data sets (25,000 candidates) this represents an overestimation of ability of around 1,900 students in 

the lower ability levels, who are the students most likely in need of greater support. In addition, there would 

be approximately 2,600 students at the higher end of the ability spectrum whose abilities, and consequent 

achievement levels, have been underestimated. 

9.2.3 Reported Achievement Levels for the Simulated Data Sets 

The outcomes of the three phases of the data set Simulation 2 (SIM2) are displayed in Table 9.3. In SIM2, 

the comparison of the GIPINIT3B analysis with the INIT outcomes shows relatively small variations in the 

percentages of students in each of the lower two levels. This may be an artefact of the small cohort sample 

and the relatively few items in this simulation, together with the lack of discrimination in item difficulty 

locations and student ability estimates. At the upper two levels a larger difference was observed. 

Table 9.3   

Comparisons of Percentages in Each Level by Analysis Phase 

Level 

SIM2 LevelINIT SIM2 LevelGS SIM2 LevelGIP3A p=0.6 SIM2 LevelGIPINIT3B p=0.6 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 

6 11 4.4 100.0 11 4.4 100.0 40 16.0 100.0 40 16.0 100.0 

5 29 11.6 95.6 49 19.6 95.6 46 18.4 84.0 46 18.4 84.0 

4 87 34.8 84.0 67 26.8 76.0 65 26.0 65.6 65 26.0 65.6 

3 73 29.2 49.2 92 36.8 49.2 27 10.8 39.6 49 19.6 39.6 

2 48 19.2 20.0 28 11.2 12.4 43 17.2 28.8 47 18.8 20.0 

1 2 0.8 0.8 3 1.2 1.2 29 11.6 11.6 3 1.2 1.2 

 250 100.0  250 100.0  250 100.0  250 100.0  

 

The outcomes of the three phases of the data set Simulation 3 (SIM3) are displayed in Table 9.4. By 

comparison with Table 9.3, Table 9.4, with both a larger cohort size, item numbers, and discrimination 

between item difficulty locations, displays substantial differences in the percentages of students in each 

level of the GIPINIT3B compared to the INIT analysis percentages. The changes reflect the increase in the 

distribution of outcomes when guessing in the data responses had been considered. When the GS outcomes 

are compared to the INIT outcomes, there is a considerable increase in the percentage of students in the 

lowest achievement level. This increase reflects the process of accounting for the defined random guessing 

in the lower-ability student groups. In the lower two levels there are almost twice the number of cases in 

the GS outcomes compared to the INIT outcomes. In the higher levels, the GS outcomes show about 25% 

in the highest two levels, while the INIT analysis shows about 16% in these levels. The GS outcomes reflect 

what would be the “true” situation if it were possible to identify all the guessed items.   
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In comparing the INIT outcomes with the GIPINIT3B outcomes there are marginal increases in the 

percentages of students in the lower two levels. The degree to which the GIPINIT3B outcomes are able to 

reflect the actual achievement of the students is impacted by the awarding of credit for those items indicated 

by the GIP process as guessed. This is made apparent when the GIP3A outcomes are observed. In 

comparing the GIP3A outcomes with the INIT outcomes there is an increase of approximately 12.6% in 

students indicated as performing at the lowest level when the GIP 3A outcomes are used as the indicator of 

achievement. At the higher ability end of the scale the GIP3A and GIPINIT3B analyses both report 23.6% 

in the highest two levels compared to 16.4% in the INIT analysis. This pattern of outcomes is consistent 

across all the simulation studies in the upper regions of achievement.  

Table 9.4   

Comparisons of Percentages in Each Level for Simulation 3 by Analysis Phase 

Level 

SIM3 LevelINIT SIM3 LevelGS SIM3 LevelGIP3A p=0.6 
SIM3 LevelGIPINIT3B 

p=0.6 

Freq Percent 
Cumul 
Percent 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 
Perce

nt 
Freq Percent 

Cumul 
Perce

nt 

6 18 1.8 100.0 167 16.7 100.0 71 7.1 100.0 71 7.1 100.0 

5 146 14.6 98.2 88 8.8 83.3 165 16.5 92.9 165 16.5 92.9 

4 273 27.3 83.6 79 7.9 74.5 202 20.2 76.4 254 25.4 76.4 

3 402 40.2 56.3 193 19.3 66.6 270 27.0 56.2 332 33.2 51.0 

2 145 14.5 16.1 198 19.8 47.3 150 15.0 29.2 144 14.4 17.8 

1 16 1.6 1.6 275 27.5 27.5 142 14.2 14.2 34 3.4 3.4 

 1000 100.0  1000 100.0  1000 100.0  1000 100.0  

The outcomes of the three phases of the data set Simulation 4 (SIM4) are displayed in Table 9.5. Table 9.5 

shows a relatively high percentage of students classified in the middle two levels in the INIT analysis. This 

reflects the contraction of the distribution in the simple Rasch analysis of this simulation, in which the items 

are too easy for the population. By comparison, the GS analysis distributes the students relatively equally 

among the six levels. The GIPINIT3B analysis is similar in the percentages of students in each level when 

compared to the GS analysis, and they distribute students relatively equally among the levels, with the 

exception of Level 1. There is also a noticeable increase in the percentage of students in the higher two 

levels. This is an improvement over the Rasch analysis when considering that the GS analysis reflects the 

“true” values. 

Table 9.5  

Comparisons of Percentages in Each Level for Simulation 4 – Mistargeted – Too Easy. 

Level 

SIM4 LevelINIT SIM4 LevelGS SIM4 LevelGIP.A p=0.6 SIM4 LevelGIPINIT3B p=0.6 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 
Percent 

Freq Percent 
Cumul 
Percent 

Freq Percent 
Cumul 

Percent 

6 3 0.8 100.0 72 18.0 100.0 47 11.8 100.0 47 11.8 100.0 

5 69 17.3 99.3 57 14.3 82.0 86 21.5 88.3 86 21.5 88.3 

4 114 28.5 82.0 42 10.5 67.8 71 17.8 66.8 74 18.5 66.8 

3 146 36.5 53.5 79 19.8 57.3 82 20.5 49.0 114 28.5 48.3 

2 64 16.0 17.0 72 18.0 37.5 71 17.8 28.5 67 16.8 19.8 

1 4 1.0 1.0 78 19.5 19.5 43 10.8 10.8 12 3.0 3.0 

 400 100.0  400 100.0  400 100.0  400 100.0  
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The outcomes of the three phases of the data set Simulation 5 (SIM5) are displayed in Table 9.6. Table 9.6 

shows the outcomes of the simulation that was designed to be too hard for the cohort. The outcomes of 

these analyses produced some interesting comparisons. The GS analysis recalibrated the scale, having 

removed comparatively large numbers of defined guesses, and resulted in a very different distribution of 

ability outcomes. The GIP analysis identified seven items with no “correct” responses. These were 

identified as “extreme” cases and were removed from the redefined scale. Hence the outcomes of the 

GIPINIT3B are based on only 33 items. The GIPINIT3B analysis is similar to the GS analysis in indicating 

students in the lowest two levels and in the totals of the highest two levels. However, it is difficult to make 

valid comparisons given the different scale generated following the removal of the extreme response 

patterns. These outcomes may be significant in consideration of the impact of guessing in instances where 

tests are too hard for the target cohort. 

Table 9.6   

Comparisons of Percentages in Each Level for Simulation 5 – Mistargeted – Too Hard 

Level 

SIM5 LevelINIT SIM5 LevelGS SIM5 LevelGIP3A p=0.6 SIM5 LevelGIPINIT3B p=0.6 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 

6 2 0.5 100.0 106 26.5 100.0 2 0.5 100.0 52 13.0 100.0 

5 75 18.8 99.5 34 8.5 73.5 75 18.8 99.5 87 21.8 87.0 

4 125 31.3 80.8 26 6.5 65.0 103 25.8 80.8 41 10.3 65.3 

3 126 31.5 49.5 43 10.8 58.5 76 19.0 55.0 44 11.0 55.0 

2 64 16.0 18.0 44 11.0 47.8 86 21.5 36.0 59 14.8 44.0 

1 8 2.0 2.0 147 36.8 36.8 58 14.5 14.5 117 29.3 29.3 

 400 100.0  400 100.0  400 100.0  400 100.0  

 

9.2.4 Simulation Analyses – Scaled Scores 

It is common practice in large-scale assessments for both described levels and a scaled score to be reported 

to various stakeholders. Table 9.7 shows the relative differences in the mean scaled score performances of 

each of four equal-number groups of candidates (n = 100) in the outcomes of the three analyses of the SIM1 

data, together with the indicative “level” achieved by the student at the cusp cut-score of the quartile.  

Table 9.7   

Comparison of Mean Scaled Scores by Quartile for SIM1 Data 

Quartile 

SIM1 

Mean 

SSINIT 

SIM1 

Mean 

SSGS 

SIM1 

Average 

Level 

INIT 

SIM1 

Av. 

Level 

GS 

SIM1 

Mean 

SSGIP3A 

p=0.6 

SIM1 

Av. 

Level 

GIP3A 

p=0.6 

SIM1 Mean 

SS 

GIPINIT3B 

p=0.6 

SIM1 

Av. 

Level 

GIPINIT3B 

p=0.6 

SIM1 

∆ mean 

SS 

GIP3A 

p=0.6 with 

INIT 

SIM1 

∆ mean 

SS 

GIPINIT3B 

p=0.6 with 

INIT 

Q4 636 864 4.7 6.0 685 5.4 708 5.6 49 72 

Q3 521 587 3.8 4.4 544 3.9 551 4.1 23 30 

Q2 470 486 3.0 3.3 459 2.9 472 3.0 -11 2 

Q1 375 253 2.3 1.5 280 1.4 337 1.9 -95 -38 

Average 500 546   491  516    

Std Dev 100 234   155  141    
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Although it is appreciated that achievement levels are categorical values, an average level is presented to 

represent a measure of the progression “through” the level that the group achieved. This is consistent with 

reporting presentations such as NAPLAN, as represented in Figure 10.2. Hence a value of 4.7 represents a 

scaled score that indicates about three-quarters of the skills contained within Level 4 have been achieved 

or observed, whereas a value of 2.3 is interpreted as evidence of skills within Level 2 but in the early regions 

of the skills that are encompassed by that outcome. 

Table 9.7 shows an anomaly in the outcomes that, at first glance, seems inconsistent with the findings in 

Chapters 5, 6, and 7. The mean standardised scaled score of the INIT analysis was 500 by definition. It was 

noted in Chapter 5 that the impact of the suppression of the defined guessing in the GS analysis reduced 

the mean ability estimates but increased the distribution of scores. Table 9.7 reflects this in the column 

SIM1 Mean SSGS, with the mean ability scaled score less than the INIT mean SS value of 500.  

However, the mean of the calculated scaled scores for the column SIM1 Mean SSGIPINIT3Bp= 0.6 was 516, 

which is 16 scaled score points above the mean of the INIT analysis outcome. The reason for this apparent 

anomaly, and other instances that follow in the tables below, is that the analyses of the GIPINIT3B in 

Chapters 5, 6, and 7 are based on data that had been conditioned to take consideration of defined or probable 

guessing in the item calibration. In the calibration of the item difficulties and raw score to ability tables of 

the GS and GIP3A analyses, the achieved raw score of each student was reduced by the count of recoded 

item–person interactions determined as guesses. Although the mean score was reduced, a consequence of 

the guessing was that the distributions of scores increased. In the GIPINIT3B analysis, the INIT raw score 

data was reintroduced, which credits students for correct “guesses” and inflates the student raw score with 

consequent impact on the ability estimate and hence the mean statistic. 

This process has been discussed and rationalised in Chapters 5, 6, and 7. In the calculation of the 

standardised scaled scores of both the GS and GIP3A procedures, the mean and the standard deviation of 

the INIT analysis were applied (Eqn 9.1) to generate the scaled score (and reflect the variations in the 

distributions shown in Tables 9.8 to 9.11. It follows that the use of these inflated raw scores would result 

in a higher mean than when raw scores were reduced to reflect the reclassification of probable guessed 

responses from a “1” to a missing value.  

The increase in the distribution of GIPINIT3B ability estimates, translated into scaled scores, shows that 

the higher-ability students were underestimated, on average, by 72 points (in excess of 0.7 s.d.) in relation 

to the INIT analysis. The “true” value, once the defined guesses were suppressed (GS analysis) in the SIM1 

data, was in excess of 200 scaled score points. This underestimation is reflected in the percentages assigned 

to the achievement levels shown in Table 9.2. As indicated in Chapter 5, the GIP techniques were unable 

to fully identify guessing (compared to the GS defined cases), especially as the observed raw score of the 

student increased. Table 9.2 shows that the GIPINIT3B values for the Quartile 3 students were, on average, 

about 30 points higher than the INIT values. The lower-ability students were overestimated by 

approximately 38 scaled score points – the equivalent of approximately 0.4 s.d. – a significant effect size, 

reflecting approximately five months of student learning. 
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By comparison, in comparing the “true” levels (GS analysis) to the INIT analysis derived levels, there are 

differences in the reported levels of each student at the cusp of a quartile (students 100, 200, 300 and 400, 

respectively). However, in the GIPINIT3B analysis, the students on the cusps of the upper quartiles (Q4 

and Q3) shifted across the level boundary to denote improvement, while those on the cusps of the two lower 

quartiles (Q2 and Q1) were reported at approximately the same level as the INIT level analysis. 

Tables 9.8 to 9.11 show the impact on the scaled score comparisons of the three analyses on each of the 

other four simulation studies. Tables 9.10 to 9.11 show similar patterns in relation to the changes in revised 

values to those displayed in SIM1 (see Table 9.7). The mid-range quartiles/deciles of the GIPINIT3B 

analysis phases are in a similar range to the INIT values but there are definite differences in the upper and 

lower quartiles/deciles. For the simulation cohorts of 400, four groups (quartiles) of 100 students are 

reported, and for the larger sample of 1000, 10 groups of 100 (deciles) were generated for comparison 

purposes. 

Table 9.8   

Comparison of Mean Scaled Scores by Quartile for SIM2 Data 

Quartile 

SIM2 

Mean 

SSINIT 

SIM2 

Mean 

SSGS 

SIM2 

Av.Level 

INIT 

SIM2 

Av. 

Level 

GS 

SIM2 

Mean 

SSGIP3A 

p=0.6 

SIM2 

Av. 

Level 

GIP3A 

p=0.6 

SIM2 

Mean SS 

GIPINIT3B 

p=0.6 

SIM2 

Av. 

Level 

GIPINIT3B 

p=0.6 

SIM2 

∆ mean 

SS 

GIP3A 

p=0.6 with 

INIT 

SIM2 

∆ mean 

SS 

GIPINIT3B 

p=0.6 with INIT 

Q4 634 661 4.8 5.1 704 5.6 704 5.6 70 70 

Q3 532 554 4.0 4.0 585 4.4 585 4.4 53 53 

Q2 461 476 3.0 3.0 473 3.3 489 3.4 12 28 

Q1 376 377 2.2 2.5 280 1.6 369 2.2 -96 -7 

Average 500 516   509  536    

Std Dev 100 110   167  130    

 

Table 9.9   

Comparison of Mean Scaled Scores by Decile for SIM3 Data 

Quartile 
SIM3 

Mean 

SSINIT 

SIM3 

Mean 

SSGS 

SIM3 

Av.Level 

INIT 

SIM3 

Av. 

Level 

GS 

SIM3 

Mean 

SSGIP3A 

p=0.6 

SIM3 

Av. 

Level 

GIP3A 

p=0.6 

SIM3 

Mean SS 

GIPINIT3B 

p=0.6 

SIM3 

Av. 

Level 

GIPINIT3B 

p=0.6 

SIM3 

∆ mean 

SS 

GIP3A p=0.6 

with INIT 

SIM3 

∆ mean 

SS 

GIPINIT3B 

p=0.6 with INIT 

Decile 10 685 881 5.2 6.0 730 5.7 730 5.7 45 45 

Decile 9 611 726 4.7 5.7 647 5.0 647 5.0 36 36 

Decile 8 568 605 4.0 4.5 596 4.4 596 4.4 28 28 

Decile 7 529 487 4.0 3.3 545 4.0 549 4.0 16 20 

Decile 6 502 434 3.4 2.8 499 3.4 516 3.9 -3 14 

Decile 5 484 401 3.0 2.5 468 3.0 493 3.0 -16 9 

Decile 4 462 357 3.0 2.0 432 2.9 464 3.0 -30 2 

Decile 3 435 282 3.0 1.4 374 2.2 429 3.0 -61 -6 

Decile 2 395 184 2.4 1.0 307 1.6 378 2.2 -88 -17 

Decile 1 333 35 1.8 1.0 199 1.0 305 1.7 -134 -28 

Average 500 438   479  510    

Std Dev 100 244   155  122    
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Considering the outcomes of the simulated distributions that were not centrally targeted it is noticeable that 

in the case of the test that is too easy for the cohort (Table 9.10) the GIP process tends to indicate a greater 

proportion of students in the more able deciles than the INIT analysis. In the case of the test being too hard 

for the cohort (Table 9.11) the opposite tends to be the case with the INIT analysis overestimating the 

outcomes of the lower-ability students compared to the GIP analyses. 

Table 9.10   

Comparison of Mean Scaled Scores by Quartile for SIM4 Data 

Quartile 
SIM4 

Mean 

SSINIT 

SIM4 

Mean 

SSGS 

SIM4 

Av.Level 

INIT 

SIM4 

Av. 

Level 

GS 

SIM4 

Mean 

SSGIP3A 

p=0.6 

SIM4 

Av. 

Level 

GIP3A 

p=0.6 

SIM4 

Mean SS 

GIPINIT3B 

p=0.6 

SIM4 

Av. 

Level 

GIPINIT3B 

p=0.6 

SIM4 

∆ mean 

SS 

GIP3A p=0.6 

with INIT 

SIM4 

∆ mean 

SS 

GIPINIT3B 

p=0.6 with 

INIT 

Q4 632 743 4.8 5.7 698 5.5 698 5.5 66 66 

Q3 537 550 3.9 4.0 572 4.3 573 4.3 35 36 

Q2 455 397 3.0 2.5 438 2.9 456 3.1 -17 1 

Q1 377 251 2.3 1.3 301 1.6 357 2.1 -76 -20 

Average 500 485   502  521    

Std Dev 100 194   156  134    

 

Table 9.11    

Comparison of Mean Scaled Scores by Quartile for SIM5 Data 

Quartile 
SIM5 

Mean 

SSINIT 

SIM5 

Mean 

SSGS 

SIM5 

Av.Level 

INIT 

SIM5 

Av. 

Level 

GS 

SIM5 

Mean 

SSGIP3A 

p=0.6 

SIM5 

Av. 

Level 

GIP3A 

p=0.6 

SIM5 

Mean SS 

GIPINIT3B 

p=0.6 

SIM5 

Av. 

Level 

GIPINIT3B 

p=0.6 

SIM5 

∆ mean 

SS 

GIP3A 

p=0.6 with 

INIT 

SIM5 

∆ mean 

SS 

GIPINIT3B 

p=0.6 with 

INIT 

Q4 624 866 4.8 5.9 625 4.8 713 5.5 1 89 

Q3 548 565 4.0 4.2 538 3.8 568 4.2 -10 20 

Q2 460 302 3.0 1.7 408 2.6 354 2.1 -52 -106 

Q1 370 81 2.2 1.0 286 1.4 172 1.0 -84 -198 

Average 500 453   464  451    

Std Dev 100 319   135  216    

 

9.3 Study 2, Field Trial Data    

Tables 9.12 and 9.13 are presented in a similar format to those presented for the simulated data and provide 

comparisons of the relative “reassignment” of students to performance levels in the English versions of the 

Field data. These results reflect the degree to which there may be misinformation in assessments that are 

‘too easy’ for the target cohort. The analyses of Chapter 6 indicated that there were relatively few 

student/item interactions indicated as highly probable guessing which restricted the efficacy of the GIP 

process. 
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9.3.1 Year 5 

As noted in Section 9.2.4, of Chapter 6, the capacity of the GIP procedure to interact with data collected 

from easy tests was limited. In the case of these data the test proved very easy with several items having 

difficulty locations at the extreme low end of the ability scale. Tables 9.12 and 9.13 highlight these 

limitations.  

Table 9.12 shows that in comparing the students in the highest achievement level there was no 

discrimination observed in any of the analyses. At the lowest level of achievement, there was an increase 

observed in the SIG analysis compared to the INIT analysis outcomes, which reflects the lower-ability 

students indicating that they had guessed the relatively few harder items. The GIP analysis shows a similar 

trend for the lower-ability students, although the numbers in each of the observations of Level 1 were small.  

Table 9.12   

Comparisons of Percentages in Each Level for Field Trial Data – Y5 English Version Mathematics 

Level 

Y5FT LevelINIT Y5FT LevelSIG Y5FT LevelGIP3A p=0.6 
Y5FT LevelGIP3B p=0.6 

GIPINIT 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 

6 8 2.6 100.0 8 2.6 100.0 8 2.6 100.0 8 2.6 100.0 

5 38 12.5 97.4 49 16.2 97.4 54 17.8 97.4 54 17.8 97.4 

4 101 33.3 84.8 81 26.7 81.2 85 28.1 79.5 85 28.1 79.5 

3 102 33.7 51.5 91 30.0 54.5 100 33.0 51.5 102 33.7 51.5 

2 52 17.2 17.8 59 19.5 24.4 49 16.2 18.5 52 17.2 17.8 

1 2 0.7 0.7 15 5.0 5.0 7 2.3 2.3 2 0.7 0.7 

 303 100.0  303 100.0  303 100.0  303 100.0  

9.3.2 Year 7  

The analysis of the Year 7 sample was limited not only by the ease of the test but also by the relatively 

small sample size. Table 9.13 shows small increases in the percentages of students in the lower ability levels 

in the SIG and GIP3A analyses compared to the INIT analysis and increases in percentages of students in 

the higher Levels as predicted by the outcomes of SIM4. 

Table 9.13   

Comparisons of Percentages in Each Level for Field Trial Data – Y7 English Version Mathematics 

Level 

Y7FT LevelINIT Y7FT LevelSIG Y7FT LevelGIP3A p=0.6 
Y7FT LevelGIP3B p=0.6 

GIPINIT 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 

6 4 2.1 100.0 2 1.1 100.0 14 7.4 100.0 14 7.4 100.0 

5 25 13.2 97.9 25 13.2 98.9 27 14.3 92.6 27 14.3 92.6 

4 53 28.0 84.7 39 20.6 85.7 34 18.0 78.3 41 21.7 78.3 

3 84 44.4 56.6 79 41.8 65.1 77 40.7 60.3 84 44.4 56.6 

2 17 9.0 12.2 22 11.6 23.3 20 10.6 19.6 16 8.5 12.2 

1 6 3.2 3.2 22 11.6 11.6 17 9.0 9.0 7 3.7 3.7 

 189 100.0  189 100.0  189 100.0  189 100.0  
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The outcomes of the Arabic versions of the tests are not reported here. This is because the suppression of 

self-identified guessed responses in the SIG analysis resulted in the removal of a significant number of 

“extreme” items from the analysis which resulted in the scales developed for the SIG analyses being no 

longer directly comparable with the INIT outcomes. Similarly, the suppression of multiple items in the GIP 

analyses and the uncertainty of the outcomes caused by the random nature of the data made comparisons 

to the INIT outcomes inconclusive. 

9.4 Study 3, Large-Scale Data Sets   

The ultimate aim of this research is to estimate the degree to which student outcomes are biased in analyses 

that do not take account of the presence of guessing in student responses. The research also aimed to provide 

a strategy to indicate and mitigate the impact of guessing on the outcomes of large-scale assessments. The 

commentary and Tables that follow investigate the issue of guessing in Rasch analyses using authentic 

large-scale data. 

9.4.1 Reported Levels for Large-Scale Data  

Since there was no capacity to illicit any defined or self-identified guessing in the tests, only the INIT 

analysis and the GIP analysis outcomes are displayed in Tables 9.14 to 9.16. These tables show the 

comparisons between the outcomes of the INIT analysis and the GIP3A/GIPINIT3B analyses for the 

authentic large-scale data sets. They show a similar pattern to the outcomes in the simulations, particularly 

SIM3 and SIM5, for the INIT analysis compared to the GIPINIT3B analysis which is encouraging given 

the variability experienced in ‘live’ data. 

9.4.1.1 Grade 4 Mathematics Levels Analysis  

In comparing the LevelINIT outcomes with the LevelGIPINIT3B outcomes for Grade 4 Mathematics 

(Table 9.14), the percentage of students in Level 1 (lowest ability students) increased by almost 1200 cases 

(4.4% of the cohort). These Level 1 students represent the “at risk” students for whom the majority of the 

skills and concepts, as assessed by this test, were lacking and, as a consequence, may require future targeted 

learning. At Level 2, an additional 1500 (5.8%) students were indicated as performing below the expected 

level for students of the target grade. 

Table 9.14   

Comparisons of Percentages in Each Level for Large Scale Assessment – G4 Mathematics 

Level 

G4 Math LevelINIT G4 Math LevelGIP3A p=0.6 G4 Math LevelGIPINIT3B p=0.6 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 

Percent 
Freq Percent 

Cumul 

Percent 

6 744 2.8 100.0 1333 5.1 100.0 1333 5.1 100.0 

5 3780 14.4 97.2 3191 12.1 94.9 3191 12.1 94.9 

4 7009 26.7 82.8 5419 20.6 82.8 7009 26.7 82.8 

3 10979 41.8 56.1 3705 14.1 62.2 8281 31.5 56.1 

2 3172 12.1 14.3 4662 17.7 48.1 4713 17.9 24.6 

1 595 2.3 2.3 7969 30.3 30.3 1752 6.7 6.7 

 26279 100.0   26279 100.0   26279 100.0   
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Typically, in this type of test students performing at Levels 3 and 4 are considered to be either approaching 

or performing at the expected level of the cohort grade for the curriculum skills assessed. The comparison 

of the percentages indicated by the INIT and GIPINIT3B analyses are similar. This is the outcome predicted 

by the simulation studies, with little variation observed in the mid-range ability estimates noted in these 

regions. At the higher ability levels, there is accord between the INIT analysis outcomes and the GIPINIT3B 

analysis outcomes, as observed in the simulation studies. Although the increase in the number of students 

in the highest ability level was relatively small (2.3%), this value represents the 589 students who were 

underestimated in the highest achievement level by the INIT analysis.   

9.4.1.2 Grade 8 Mathematics Levels analysis 

Table 9.15 shows the comparisons of the percentages of students in each level for the Grade 8 Mathematics 

cohort. The table shows a similar set of outcomes to the G4 Mathematics cohort (see Table 9.14). At both 

Level 1 and Level 2, there were considerable increases in the percentage of students identified by the 

GIPINIT3B analysis compared to the INIT analysis. In total, an additional 2015 students (9.6% of the 

cohort) were identified as performing in these “at risk” levels of Levels 1 and 2. In the higher levels, the 

GIPINIT3B analysis identified fewer students as reclassified, but there were still 447 students (2.1%) in the 

highest level whose ability was underestimated by the INIT analysis. 

Table 9.15   

Comparisons of Percentages in Each Level for Large Scale Assessment – Grade 8 Mathematics 

Level 

G8 Math LevelINIT G8 Math LevelGIP3A p=0.6 G8 Math LevelGIPINIT3B p=0.6 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 
Percent 

Freq Percent 
Cumul 

Percent 

6 788 3.8 100.0 1235 5.9 100.0 1235 5.9 100.0 

5 2774 13.2 96.2 2327 11.1 94.1 2327 11.1 94.1 

4 6119 29.1 83.0 3649 17.4 83.1 4598 21.9 83.1 

3 8092 38.5 53.9 3691 17.6 65.7 7598 36.2 61.2 

2 3036 14.5 15.4 3407 16.2 48.1 4615 22.0 25.0 

1 198 0.9 0.9 6698 31.9 31.9 634 3.0 3.0 

 21007 100.0  21007 100.0  21007 100.0  

 

The outcomes shown in Tables 9.14 and 9.15 tended to follow the pattern predicted by SIM5. In the cases 

of the Grade 4 and Grade 8 Mathematics the tests provided to be marginally hard for the target cohorts. 

SIM5 was the comparable simulation in which the GIP3A and GIPINIT3B analyses tended to report greater 

percentages of students in the lower-ability groups with only marginal differences in the upper ability 

groups. The outcomes observed in the respective analyses of Grade 4 and Grade 8 tended to follow this 

pattern.  
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9.4.1.3 Grade 4 Science Levels analysis 

Table 9.16 compares the percentage of students in each level for the Grade 4 Science cohort. The overall 

outcomes follow a similar pattern to those shown in Tables 9.14 and 9.15. Importantly, the GIPINIT3B 

analysis produced an outcome with considerably more of the lower-ability students being reclassified into 

the “at risk” levels. Although the GIPINIT3B procedure did not indicate there were more students in the 

lowest level, it identified approximately 2,000 students (about 8.5%) who were probably performing below 

the level expected for Grade 4 students in the skills assessed by this test when guessing is not accounted 

for. The percentages observed in Levels 3 and 4 are relatively similar for both Mathematics and Science in 

the INIT and GIPINIT3B analyses. At the upper levels, there is no difference in the Level 6 outcomes, 

although an approximate additional 1,250 (4.8%) students were indicated by the GIPINIT3B analysis as 

performing at Level 5, which is marginally above the expected level of achievement for the cohort. 

Table9.16   

Comparisons of Percentages in Each Level for Large-Scale Assessment – Grade 4 Science 

Level 

Grade 4 Science LevelINIT Grade 4 Sci LevelGIP3A p=0.6 Grade 4 Sci LevelGIPINIT3B p=0.6 

Freq Percent 
Cumul 
Percent 

Freq Percent 
Cumul 

Percent 
Freq Percent 

Cumul 
Percent 

6 1140 4.4 100.0 1140 4.4 100.0 1140 4.4 100.0 

5 3204 12.3 95.6 4462 17.1 95.6 4462 17.1 95.6 

4 7516 28.8 83.3 5640 21.6 78.5 6258 24.0 78.5 

3 10946 42.0 54.5 4746 18.2 56.9 8973 34.4 54.5 

2 2992 11.5 12.5 5139 19.7 38.7 4965 19.0 20.1 

1 267 1.0 1.0 4938 18.9 18.9 267 1.0 1.0 

 26065 100.0  26065 100.0  26065 100.0  

 

It is worth noting that the numbers and percentage of students in the lowest two levels for the GIP3A 

analysis are considerably different between the INIT and GIPINIT3B outcomes. This is a reflection of 

suppressing the identified guesses and reducing the raw score by the sum of the identified guesses for each 

student. As observed throughout this study, this has been a consistent and expected feature of this phase of 

the GIP3A process.  

9.4.2 Scaled Score Comparisons of the Large-Scale Data sets 

9.4.2.1 Grade 4 Mathematics Scaled Score Analysis 

This sub-section shifts the focus of the analysis from Levels to reported scaled scores. When changes in 

scaled score between the INIT value and the GIP values are considered, a pattern emerges that confirms 

the impact of accounting for guessing is most notable at the extremes of the scales. Each analysis of reported 

scaled scores shows that there were relative low degrees of change in the percentages of mid-range ability 

students (deciles 3 to 8) but in all cases there were significant changes in the scores of the upper ability 

students (decile 10) and the lower-ability students (deciles 1, 2 and 3). This outcome was expected by the 

hypothesis that underpinned the methodology that took account of guessing in the student response patterns. 

Table 9.17 shows the differences in the mean scaled scores of Grade 4 Mathematics students when grouped 
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by decile. Each decile comprised approximately 2728 students. The table shows the difference between the 

mean score of each decile, comparing the INIT value with the GIP3A and GIPINIT3B values, and 

highlights the degree to which students falling within particular decile groups were underestimated or 

overestimated when there was no consideration for guessing in the student responses. 

Table 9.17   

Differences Between INIT and GIP Standardised Scale Scores for Grade 4 Mathematics 

Decile 
Av. Scaled 

Score INIT 

Av. Scaled 

Score 

GIP3A 

Av. Scaled 

Score 

GIPINIT3B 

∆ INITSS and 

GIP3ASS 

∆ INITSS and 

GIPINIT3BSS 

10 689 730 730 41 41 

9 606 627 627 21 21 

8 564 563 573 -1 9 

7 529 506 528 -23 -1 

6 503 435 493 -68 -10 

5 479 375 461 -104 -18 

4 455 334 431 -121 -24 

3 432 293 400 -139 -32 

2 402 243 363 -159 -39 

1 341 179 291 -162 -50 

 

Figure 9.4 shows that the “break-even” point was around the decile 8. Students positioned below the decile 

8 had standardised GIPINIT3B scale scores inflated by the INIT raw scores by up to 50 scaled score points. 

Figure 9.4 

Comparison of Grade 4 Mathematics Scaled Scores by Decile 
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9.4.2.2 Grade 8 Mathematics Scaled Score Analysis  

Table 9.18 and Figure 9.5 show a very similar pattern in the differences in the mean scaled scores of Grade 

8 with relatively small changes in the mid-range ability deciles and larger score changes at each of the 

extreme ability deciles.  

Table 9.18 shows that the highest ability students were, on average, underestimated by 30 scaled score 

points by the INIT analysis compared to the GIPINIT3B analysis and the lowest ability students were, on 

average, overestimated by 36 scaled score points. As shown in Figure 9.4 the “break-even” point was in 

decile 8, a marginally higher decile value than observed in Grade 4 Mathematics. 

Table 9.18  

Differences Between INIT and GIP Standardised Scale Scores for Grade 8 Mathematics 

Decile 
Av. Scaled 

Score INIT 

Av. Scaled 

Score 

GIP3A 

Av. Scaled 

Score 

GIPINIT3B 

∆ INITSS and 

GIP3ASS 

∆ INITSS and 

GIPINITSS 

10 690 720 720 30 30 

9 607 616 616 9 9 

8 564 556 562 -8 -2 

7 531 500 521 -31 -10 

6 500 438 484 -62 -16 

5 477 377 456 -100 -20 

4 454 313 430 -141 -24 

3 431 244 403 -187 -27 

2 403 168 372 -235 -31 

1 344 128 308 -216 -36 

 

Figure 9.5 

Comparison of Grade 8 Mathematics Scaled Scores by Decile 
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9.4.2.3 Grade 4 Science Scaled Score Analysis  

The outcomes shown in Table 9.19 and Figure 9.6 are similar to those shown for the two Mathematics 

analyses. A difference can be seen in the position of the “break-even” point, which for Grade 4 Science was 

decile 6. This probably reflects the marginally better targeting of this test with respect to the item locations 

and the cohort ability estimates. 

Whereas both the Grade 4 and Grade 8 Mathematics tests were marginally difficult for the cohorts, the G4 

Science assessment was reasonably well targeted (see Figure 7.3). The impact of this better targeting 

appears to be a more central break-even point, with the relatively similar distributions of the differences in 

the numbers of over/under estimation for the decile groups about decile 6. 

 

Table 9.19   

Differences Between INIT and GIP Standardised Scale Scores for Grade 4 Science 

Decile 
Av. Scaled 

Score INIT 

Av. Scaled 

Score GIP 

Av. Scaled 

Score 

GIPINIT 

∆ 

INITSS 

and 

GIPSS 

∆ INITSS 

and 

GIPINIT

SS 

10 687 717 717 30 30 

9 613 632 632 19 19 

8 571 583 583 12 12 

7 535 540 540 6 6 

6 501 489 501 -12 0 

5 471 431 466 -40 -5 

4 447 370 438 -78 -9 

3 426 308 413 -118 -13 

2 398 252 381 -146 -17 

1 351 156 328 -195 -23 

 

Figure 9.6 

Comparison of Grade 4 Science Scaled Scores by Decile 
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In summary, the indication and implementation of a GIP process that indicated probable guessed items and 

suppressed those items in a supplementary analysis resulted in considerable differences in the percentages 

of students’ reported achievement outcomes in the both the higher and lower ability levels. The current 

requirement that students be credited with all correct responses, irrespective of whether they are probable 

guesses, reduced the degree to which the misclassification was recognised at the lower achievement levels. 

The GIP procedure indicated the probable guesses more frequently in the more difficult items, with the 

consequent impact on the difficulty location of all items. This resulted in the recalibration of student ability 

estimates and consequent increases in the percentages of students identified in the upper and lower ability 

levels compared to the INIT analysis.  

The consistency between the outcomes of these large-scale authentic data with the simulation studies and 

the convergence of these outcomes with the hypothesis of this study suggest that a process like this should 

be applied to all large-scale assessments to provide a better scale of achievement and more accurate 

estimates of the ability of students on the revised scale.  

9.5 Scale of Reclassifications 

The analyses of this research reveal that although there is a consistency in the impact of the GIP procedures 

in improving the measurement scale and better locating student ability estimates on the scale there is 

variability in the degree to which student achievement is reclassified by the recalibration of the estimates. 

The section below discusses this element of the impact of the GIP procedure.  

9.5.1 Degree of Reclassification of Reported Outcomes in Simulated Data 

Tables 9.20 to 9.27 summarise the degree of reclassification by level for the various analyses. The 

simulation data are included to show the relative impact on “true” values when there was no adjustment for 

guessing in the INIT analyses. The net effect sums to zero as students are redistributed among the levels. 

Even so, the focus of the study is the degree to which students have been misreported by not accounting for 

guessing in the MC items.  

Table 9.20 shows the percentages of students in each level for each analysis phase for the SIM1 data. The 

INIT analysis produced a relatively normal distribution of percentages in each level. When comparing the 

outcomes of the INIT analysis with the “true” values of the GS analysis for SIM1, the outcomes show a 

significant under-identification of students in the lowest achievement level, with the GS analysis revealing 

that 15% of students may be unrecognised at Level 1 due to successful guessing. 

Although the GIP process was unable to indicate all the defined guessed responses, its overall impact on 

identifying students in the “at risk” Levels 1 and 2 was to better reflect the “true” achievement of students 

than the INIT analysis. Specifically, the GIPINIT3B analysis identified 24% of students in the “at risk” 

levels compared to 16.3% in the INIT analysis. At the higher end of the scale, the GIPINIT3B analysis 

identified 26.3% of students in the Level 5–6 range compared to 15.8% in the INIT analysis. This outcome 

reflects the impact of the relationship between ability estimates and item difficulty when the GIPINIT3B 

process has accounted for guessing in the more difficult items, despite students receiving full credit for 

guessed responses. 
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These outcomes are consistent with the expectation of the study, which is that the current practice of a 

simple Rasch analysis of students’ assessment underestimates item locations and consequently 

overestimates the ability estimates of lower-ability students. In addition, the recalibration of item locations 

revealed an increased number of higher-ability students being reported at even higher achievement levels.  

Table 9.20   

Discrepancy Between Reported Percentages in Levels – the Degree of Reclassification SIM1 

Level 

SIM1 

Level 

INIT 

SIM1 

Level 

GS 

SIM1 

Level 

GIP 

SIM1 

Level 

GIPINIT 

Reclassifications 

Percent Percent Percent Percent 
reclass% 

GS 

reclass% 

GIP3A 

reclass% 

GIPINIT3B 

6 2.3 26.0 10.8 14.5 23.8 8.5 12.2 

5 13.5 8.5 13.8 11.8 -5.0 0.3 -1.7 

4 29.0 25.8 23.5 24.0 -3.3 -5.5 -5.0 

3 39.0 13.3 25.0 25.8 -25.8 -14.0 -13.2 

2 15.0 11.5 12.8 20.0 -3.5 -2.3 5.0 

1 1.3 15.0 14.3 4.0 13.8 13.0 2.7 

  100.0 100.0 100.0 100.0  

Note. The three “reclassifications” columns show the difference between the percentages in each level for 

the column compared with the percentage shown in the INIT column. 

Table 9.20 shows that the increases in the number of students in the upper and lower ability levels were 

compensated by reductions in the percentage of students in the mid-range ability levels. Hence, in Tables 

9.20 to 9.24, the increased percentages in the higher and lower ability levels are consistent with the 

reductions in the percentages reported in Levels 3 and 4 in the GIP3A and GIPINIT3B analyses compared 

to the INIT analysis. Table 9.21 shows fewer changes in the percentages in each level, which is a reflection 

of the fewer candidates in the sample and the fewer items from which guessing can be defined (GS) or 

identified (GIPINIT3B). Table 9.21 also demonstrates the bluntness of the “Level” paradigm. In the GIP3A 

and GIPINIT3B analyses there was an increase in the percentage of students in Levels 5 and Level 6 

compared to both the INIT and GS phases. This demonstrates the limitation of a single cut score. In this 

case, there were students whose scale scores just exceeded the limit scale scores of 400 and 500 

respectively, which caused them to be reported in the higher ability level. This demonstrates the rationale 

that scale-score reporting is an important adjunct to Level reporting. 
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Table 9.21   

Discrepancy Between Reported Percentages in Levels – the Degree of Reclassification SIM2 

Level 

SIM2 

Level 

INIT 

SIM2 

Level 

GS 

SIM2 

Level 

GIP 

SIM2 

Level 

GIPINIT 
Reclassifications 

Percent Percent Percent Percent 
reclass% 

GS 
reclass% 

GIP3A 
reclass% 

GIPINIT3B 

6 4.4 4.4 16.0 16.0 0.0 11.6 11.6 

5 11.6 19.6 18.4 18.4 8.0 6.8 6.8 

4 34.8 26.8 26.0 26.0 -8.0 -8.8 -8.8 

3 29.2 36.8 10.8 19.6 7.6 -18.4 -9.6 

2 19.2 11.2 17.2 18.8 -8.0 -2.0 -0.4 

1 0.8 1.2 11.6 1.2 0.4 10.8 0.4 

  100.0 100.0 100.0 100.0  

 

Table 9.22 shows the changes for a larger sample with a longer test length in SIM3. The outcomes of the 

analyses of this data set demonstrate the underestimations of the INIT analysis in reporting percentages of 

students in both the lower-ability group and the higher-ability group. The GS analysis shows the “true” 

percentages whilst the GIPINIT3B analysis shows a similar pattern to the GS analysis, but with the 

constraints in the efficiency of identifying guessed item/person interactions, as discussed in Chapter 7. 

However, even with that constraint, the GIPINIT3B analysis was a more efficient reflection of the real 

achievement level with respect to the reporting of performance and ability compared to the INIT analysis 

that did not consider guessing in the student responses. 

Table 9.22   

Discrepancy Between Reported Percentages in Levels – the Degree of Reclassification SIM3 

Level 

SIM3 

Level 

INIT 

SIM3 

Level 

GS 

SIM3 

Level 

GIP3A 

SIM3 

Level 

GIPINIT3B 

Reclassifications 

Percent Percent Percent Percent 
reclass% 

GS 
reclass% 

GIP3A 
reclass% 

GIPINIT3B 

6 1.8 16.7 7.1 7.1 14.9 5.3 5.3 

5 14.6 8.8 16.5 16.5 -5.8 1.9 1.9 

4 27.3 7.9 20.2 25.4 -19.4 -7.1 -1.9 

3 40.2 19.3 27.0 33.2 -20.9 -13.2 -7.0 

2 14.5 19.8 15.0 14.4 5.3 0.5 -0.1 

1 1.6 27.5 14.2 3.4 25.9 12.6 1.8 

  100.0 100.0 100.0 100.0  

 

With regard to SIM3, Table 9.23 shows the outcomes of a test that was marginally easy for the cohort. The 

INIT analysis was relatively normally distributed about the Level 3 and 4 percentages. The GS analysis had 

a relatively equal distribution of percentages across the levels, with larger percentages reported in both 

Levels 1 and 6, compared to the INIT analysis. In this instance, the GIPINIT3B analysis was relatively 

inefficient in identifying students in the lowest ability level as the test was very easy and there were fewer 

items that allowed the identification of guessing strategies in the response data. Hence, the GIPINIT3B 

procedure was less efficient than the GS “true” estimations. However, the GIPINIT3B procedure did 

provide better discrimination in the upper levels compared to the INIT analysis.  
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Table 9.23   

Discrepancy Between Reported Percentages in Levels – the Degree of Reclassification SIM4 

Level 

SIM4 

Level 

INIT 

SIM4 

Level 

GS 

SIM4 

Level 

GIP3A 

SIM4 

Level 

GIPINIT3B 

Reclassifications 

Percent Percent Percent Percent 
reclass% 

GS 
reclass% 

GIP3A 
reclass% 

GIPINIT3B 

6 0.8 18.0 11.8 11.8 17.3 11.0 11.0 

5 17.3 14.3 21.5 21.5 -3.0 4.3 4.3 

4 28.5 10.5 17.8 18.5 -18.0 -10.8 -10.0 

3 36.5 19.8 20.5 28.5 -16.8 -16.0 -8.0 

2 16.0 18.0 17.8 16.8 2.0 1.8 0.8 

1 1.0 19.5 10.8 3.0 18.5 9.8 2.0 

  100.0 100.0 100.0 100.0  

 

The SIM5 outcomes presented in Table 9.24 provide a redistribution of Levels consistent with the changes 

in scaled scores. A significant percentage of students reported in the mid-range Levels when using the INIT 

analysis have been redistributed in both higher and lower Levels. More of higher-ability students have been 

recognized at Level 6 whilst a significant proportion of the lowest ability students have been identified as 

performing in the Lowest Level compared to those reported by the INIT phase.  

Table 9.24   

Discrepancy Between Reported Percentages in Levels – the Degree of Reclassification SIM5 

Level 

SIM5 

Level 

INIT 

SIM5 

Level 

GS 

SIM5 

Level 

GIP3A 

SIM5 

Level 

GIPINIT3B 

Reclassifications 

Percent Percent Percent Percent 
reclass% 

GS 
reclass% 

GIP3A 
reclass% 

GIPINIT3B 

6 0.5 26.5 0.5 13.0 26.0 0.0 12.5 

5 18.8 8.5 18.8 21.8 -10.3 0.0 3.0 

4 31.3 6.5 25.8 10.3 -24.8 -5.5 -21.0 

3 31.5 10.8 19.0 11.0 -20.8 -12.5 -20.5 

2 16.0 11.0 21.5 14.8 -5.0 5.5 -1.3 

1 2.0 36.8 14.5 29.3 34.8 12.5 27.3 

  100.0 100.0 100.0 100.0  

 

9.5.2 Degree of Reclassification of Levels in Authentic Data   

Tables 9.25 to 9.27 indicate the degree to which students would be reclassified in the reporting of these 

tests under the current procedures of a Rasch analysis of the data, without any consideration of 

probable/possible guessing in the student responses compared to the GIP outcomes. In comparing the 

percentages of students in each level from the INIT analysis to the GIPINIT3B analysis, Table 9.25 shows 

that 1,157 students (4.4%) had their abilities overestimated by the INIT analysis in the lowest achievement 

level. It is common for students indicated in Level 1 (more than 2 standard deviations below the mean) of 

a reporting scale to be considered “at risk” and for targeted intervention to be developed to support these 

students.  
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Similarly, at Level 2, the INIT analysis overestimated the ability of about 1,500 students (5.8%) in Grade 

4 Mathematics. Based on this INIT analysis, these students would be considered as approaching the mid-

range of the curriculum expectations when, in fact, as indicated by the GIPINIT3B analyses, they were 

more likely functioning well below the expected curriculum level. 

At the higher end of the scale, approximately 600 students were not indicated at the level of their skills and 

knowledge because of the impact of the successful guessing of lower-ability students and the “knock-on” 

effect of the bias on item difficulty calibration and subsequent ability estimate calculations. 

Table 9.25   

Comparison of Analysis Outcomes – Percentage in Levels – Grade 4 Mathematics 

Level 

G4 Maths Level 

INIT 
G4 Maths Level GIP 

G4 Maths Level 

GIPINIT 

reclass 

INIT 

and 
GIP3A 

reclass 

INIT and 
GIPINIT3B Freq Percent Freq Percent Freq Percent 

6 736 2.8 1340 5.1 1340 5.1 2.3 2.3 

5 3784 14.4 3180 12.1 3180 12.1 -2.3 -2.3 

4 7017 26.7 5414 20.6 7017 26.7 -6.1 0.0 

3 10985 41.8 3705 14.1 8278 31.5 -27.7 -10.3 

2 3180 12.1 4652 17.7 4704 17.9 5.6 5.8 

1 604 2.3 7963 30.3 1761 6.7 28.0 4.4 

  100.0  100.0  100.0  

 

Table 9.26 shows a similar overall pattern to the Grade 4 Mathematics outcomes. The general impact of the 

GIPINIT3B analysis was to increase the number of students in the lower two levels and in the higher level 

compared to the INIT analysis, with these differences being redistributed in the mid-range levels. However, 

a consistent pattern is observed regarding the differences in percentages in levels in comparing the INIT 

outcomes with the GIP outcomes. 

Table 9.26   

Comparison of Analysis Outcomes – Percentage in Levels – Grade 8 Mathematics 

Level 

G8 Maths Level 

INIT 
G8 Maths Level GIP 

G8 Maths Level 

GIPINIT 

reclass 

INIT 

and 
GIP3A 

reclass 

INIT and 
GIPINIT3B Freq Percent Freq Percent Freq Percent 

6 798 3.8 1239 5.9 1239 5.9 2.1 2.1 

5 2772 13.2 2331 11.1 2331 11.1 -2.1 -2.1 

4 6111 29.1 3654 17.4 4599 21.9 -11.7 -7.2 

3 8085 38.5 3696 17.6 7602 36.2 -20.9 -2.3 

2 3045 14.5 3402 16.2 4620 22.0 1.7 7.5 

1 189 0.9 6699 31.9 630 3.0 31.0 2.1 

  100  100  100  

 

Referring to Table 9.27, in Grade 4 Science changes were observed in the proportion of students 

overestimated in Level 2 and underestimated in Level 5; however, at the extremes, the same students fell 

within the level boundaries.  



231 

 

 

Table 9.27   

Comparison of Analysis Outcomes – Percentage in Levels – Grade 4 Science 

Level 

G4 Science Level 

INIT 

G4 Science Level 

GIP3A 

G4 ScienceLevel 

GIPINIT3B 

reclass 

INIT 

and 
GIP3A 

reclass INIT 

and 
GIPINIT3B Freq Percent Freq Percent Freq Percent 

6 1144 4.4 1144 4.4 1144 4.4 0.0 0.0 

5 3198 12.3 4446 17.1 4446 17.1 4.8 4.8 

4 7488 28.8 5616 21.6 6240 24.0 -7.2 -4.8 

3 10920 42.0 4732 18.2 8944 34.4 -23.8 -7.6 

2 2990 11.5 5122 19.7 4940 19.0 8.2 7.5 

1 260 1.0 4914 18.9 260 1.0 17.9 0.0 

  100.0  100.0  100.0  

 

9.6 Review of Findings 

9.6.1 Study 1, Simulated Data 

The simulations of Study 1 provided a framework for estimating the impact of the GIP procedure in Studies 

2 and 3. Reflecting upon the outcomes of SIM1 and SIM3 (large sample and large item pool, which are 

typical of large-scale assessments), the GIPINIT3B analysis shows a definite increase in the students in the 

highest and lowest bands compared to the INIT analysis outcomes. These outcomes indicate that, for larger 

cohorts with a test length of 40 items, the GIPINIT3B procedure was more efficient in indicating the ability 

of students in the higher and lower levels than the simple Rasch analysis with no accounting for guessed 

items.  

Although the scale of the differences in percentages within Levels varies in the comparisons shown in Table 

9.28, the data were randomly generated and hence both the percentages of random guessing and the 

recovery rate of the GIP application were variable. However, the critical feature of interest demonstrated 

in the table is that the same general conditions were noted: the overestimation of the lower-ability students 

and the underestimation of the higher-ability students. 

These observed differences are relevant in measuring the learning growth of students. An artefact of the 

INIT analysis observable in all analyses is the compression of the scale when there was no consideration 

of guessing. The impact of this compression was the potential misclassification of lower-ability students 

into relatively higher levels, and the underestimation of achievement of the higher-ability students. 
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Table 9.28   

Summary of Differences in Percentages in Levels, Study 1, Simulations 1 to 5 

   Percentages Within Specific Levels 

Data 

Set N Treatment 

Percent 

Level 1 

Percent 

Level 1 and 

Level 2 

Percent 

Level 5 and 

Level 6 

Percent 

Level 6 

SIM 1 400 

INIT 1.3 16.3 15.8 2.3 

GS 15.0 26.5 34.5 26.0 

GIP3A 14.3 27.0 24.6 10.8 

GIPINIT3B 4.0 24.0 26.3 14.5 

SIM 2 250 

INIT 0.8 20.0 16.0 4.4 

GS 1.2 12.4 24.0 4.4 

GIP3A 11.6 28.8 34.4 16.0 

GIPINIT3B 1.2 20.0 34.4 16.0 

SIM 3  1000 

INIT 1.6 16.1 16.4 1.8 

GS 27.5 47.3 25.5 16.7 

GIP3A 14.2 29.2 23.6 7.1 

GIPINIT3B 3.4 17.8 23.6 7.1 

SIM 4 easy 400 

INIT 1.0 17.0 18.1 0.8 

GS 19.5 37.5 32.3 18.0 

GIP3A 10.8 28.5 33.3 11.8 

GIPINIT3B 3.0 19.8 33.3 11.8 

SIM 5 hard 400 

INIT 0.3 11.3 8.3 0.0 

GS 27.8 46.0 33.3 19.8 

GIP3A 14.5 36.0 23.3 0.5 

GIPINIT3B 29.3 44.0 34.8 13.0 

 

It is worth noting that when comparing percentages within levels in this manner, an issue arising is the 

bluntness of these indicators. With a bandwidth of 100 scaled score points for a Level, it is possible to 

“improve” by up to 98 scaled score points (.98 s.d.) and still be re-coded as within the same level after one 

year of study. In relation to a measure of student “growth”, this is potentially misleading. Consideration of 

the scaled scores in conjunction with the reported level provides a more refined measure of changes in 

ability over a period. It is in this level of analysis that the action of not accounting for guessing in MC items 

was more problematic. 

9.6.2 Study 2, Small-Scale Sample  

The English versions of the test implemented with the small-scale field study were shown to be generally 

too easy for the students. The similarities in the outcomes between the INIT and GIPINIT3B values shown 

in Table 9.29 may reflect the interaction of the relatively small samples in the field trial and the tests proving 

to be relatively easy for the target sample. In reviewing the outcomes of the SIG analysis, the observed 

outcomes may be associated with the uncertainty regarding the students’ capacity to indicate which 

responses (correct and/or incorrect) were guessed. 
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Table 9.29   

Summary of Differences in Percentages in Levels, Study 2, Field Trial Data Year 5 and Year 7 

Field Trial Summary  Percentages Within Specific Levels 

Data Set N Treatment % level 1 

%Level 

1 and 2 

% level 5 

and 6 % level 6 

Y5 Mathematics 303 

INIT 0.7 17.8 15.1 2.6 

SIG 5.0 24.4 18.8 2.6 

GIP3A 2.3 18.5 20.4 2.6 

GIPINIT3B 0.7 17.8 20.4 2.6 

Y7 Mathematics 189 

INIT 3.2 12.2 15.3 2.1 

SIG 11.6 23.3 14.3 1.1 

GIP3A 9.0 19.6 21.7 7.4 

GIPINIT3B 3.7 12.2 21.7 7.4 

 

9.6.3 Study 3, Large-Scale Outcomes  

The summary outcomes shown in Table 9.30 are similar to the outcomes observed in SIM1 and SIM3, with 

the percentages observed in the highest achievement levels and those in the lowest achievement level 

increased in the GIPINIT3B analysis compared to the INIT analysis. 

The improvements in the scale and the capacity of the GIP procedure to better estimate ability is not as 

pronounced as the simulations, but this reflects the variation expected in live data that do not accord exactly 

with the theoretical situation and the lower number of MC items in these tests. In general, the similarities 

in direction observed in these analyses support the contention that the GIP procedure improves the scale 

and provides an improved estimate of student achievement across the scale.  

Table 9.30   

Summary of Differences in Percentages in Levels, Study 3, Large-Scale Data 

      Percentages Within Specific Levels 

Data Set N Treatment 

% level 

1 

%Level 

1 and 2 

% level 

5 and 6 

% level 

6 

Grade 4 Mathematics 26279 

INIT 2.3 14.3 17.2 2.8 

GIP3A 30.3 48.1 17.2 5.1 

GIPINIT3B 6.7 24.6 17.2 5.1 

Grade 8 Mathematics 21003 

INIT 0.9 15.4 17.0 3.8 

GIP3A 31.9 48.1 17.0 5.9 

GIPINIT3B 3.0 25.0 17.0 5.9 

Grade 4 Science 26067 

INIT 1.0 12.5 16.7 4.4 

GIP3A 18.9 38.7 21.5 4.4 

GIPINIT3B 1.0 20.1 21.5 4.4 
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9.7 Summary 

This chapter has reported the outcomes of the Initial (INIT) and Guessing Identification Protocol (GIP3A, 

GIPINIT3B) analyses on a set of large-scale authentic data. The tables and figures presented show the 

impact on reported achievement levels as a result of ignoring the effect of probable guessing in student 

responses. The application of the GIP procedures, developed through the observation of the simulation 

parameters and the confirmation of the determined parameters for the GIP, and subsequent GIPINIT3B 

values, were effective in providing a structured approach to the identification of probable guessing in large-

scale data.  

The impact of the application of the GIP procedure on the scaled scores follow the expected pattern, with 

the higher-ability students underestimated and adjusted upward by the GIP process and the lower-ability 

students overestimated and adjusted lower by the GIP procedure. The GIPINIT3B analysis tended to 

replicate the GIP3A values in the higher levels, as the higher raw scores were less impacted by the GIP 

processes. However, the reinstatement of the credit for the guessed responses (GIPINIT3B) had a larger 

impact on the capacity of the process to “correctly” locate the lower-ability students. The mid-range ability 

students had only marginal changes in their pre- and post-GIP ability estimates, and the overall distribution 

was structurally normal. The analyses in this chapter also demonstrate the importance of well-targeted tests 

of sufficient item difficulty range and length to allow for accurate estimation of student ability (Wright, 

2008) and a more effective application of the GIP process. 

The INIT outcomes reported above represent the current practice in the Australian National Assessment 

Program contexts (NAPLAN). The outcomes displayed and the commentary provided highlight the 

deficiency in this practice in which no account is taken of probable guessing in student responses. 
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Chapter 10  

Discussion: Limitations and Merits of the GIP 

10.1 Introduction – Limiting Factors 

The investigations of the simulated data indicate that the extent of change in student ability estimates, when 

employing the Guessing Indication Protocol (GIP) process compared to typical current practice, was up to 

100 scaled score points as a result of accounting for guessing, which is at the extremes of the scale. This 

means that up to 15% (see Table 9.4) of students who were classified as meeting a minimum level of 

proficiency based on current approaches would be identified as actually being below the proficiency level 

when the GIP process was applied to account for guessing. However, the GIP procedure experienced some 

challenges in identifying all of the defined guesses in the simulation data and indicating guesses in the 

subsequent applications to authentic data, as shown in Chapter 7. The next section discusses some of the 

factors that limited the efficiency of the GIP procedure to indicate probable guessing across the full range 

of student abilities. 

 

10.2 Reflections on the Circular Constraints in Identifying Guessing in 

Student Response Data 

10.2.1 Calculation of Item Difficulty 

Item difficulty is a function of the number of correct responses observed in an item compared to the number 

of students who have responded to the item. Hence, the number of responses omitted or suppressed becomes 

a factor in the overall item difficulty calculation, as expressed in Eqn 10.1. 

 

A simple estimate of item difficulty (δi) is:     

 

δi = log
[1− 𝜆]

[𝜆]
      Eqn 10.1 

where     λ is the ratio 
𝑛𝑖

𝑁𝑖
  

ni is the number of correct responses for item(i), and 

               Ni is the number of students who have attempted item (i). 

 

When guessing is present, the number of correct responses (ni) is inflated, on average at approximately the 

rate of 1/d (where d is the number of distractors) for each response in which the difficulty of the item 

exceeds the ability of the student, which is the item/student interaction region of the item in which random 

guessing occurs. The literature describes in detail the estimation procedures for item difficulty location 

(Anderson, 1970, Ghosh, 1995, Molenaar, 1995a, Wilson, 2004). A mathematical feature that characterises 

the RM is that the estimation of item difficulty is independent of the distribution of ability of the students 

who have participated in the test (Andrich, 1998; Rasch, 1960).  
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However, the interaction that engenders guessing is a function of item difficulty and the student ability at 

the individual student/ item interaction level. The inflation of ni as a consequence of guessing inflates the 

difficulty location of the items and consequently impacts on the number of responses included in the 

calculation of the item difficulty location, the probability of a successful response, and the degree to which 

the interaction misfits the RM. 

In the case of dichotomous items, there is a 2-by-2 matrix of potential response outcomes for any two 

adjacent items. This contributes to the conditional probability calculation that underpins item difficulty 

estimation in the RM, as shown in Table 10.1 (Andrich, 1988, p. 27). 

Table 10.1   

Item Estimation – Conditional Probability of Dichotomously Scored Responses 

Item (n) Item (n+1) Joint Outcome Joint Outcome matrix 

Correct (1) Correct (1) Both Correct (1,1) 

 

Incorrect (0) Correct (1) Incorrect/correct (0,1) 

Correct (1) Incorrect (0) Correct/incorrect (1,0) 

Incorrect (0) Incorrect (0) Incorrect/Incorrect (0,0) 

 

In the Rasch item estimation procedure, the only response patterns that impart information regarding the 

relative difficulty of the items is the correct/incorrect and incorrect/correct responses of adjacent items. 

Using Eqn 10.2, the total probability of that subset of responses can then be mathematically derived: 

 

Pr{(xj1 = 1, xj2 = 0|(xj1 = 1, xj2 =0) OR (xj1 = 0, xj2 = 1)} = 𝑒−𝛿1 / (𝑒−𝛿1 + 𝑒−𝛿2)  Eqn 10.2 

 

Where xj1 is a correct/incorrect response by student j to item 1  

xj0 is an incorrect/correct response by student j to item 1 

e-δn is the inverse of the difficulty of item 1 and 2 respectively. 

         

Eqn 10.2 shows that estimate of item difficulty independent of student ability (βj). When guessing is not 

suppressed, there is contamination of the difficulty estimate of each item. It is logical to assume a direct 

relationship between the difficulty of the item and the number of occasions in which guessing will be 

employed, with the more difficult items more greatly impacted by guessing in a test. In the limit, the true 

value of ni will be overestimated to the degree ni(1 + 0.25×(Ni – ni)). Hence, there is ‘noise’ around the 

estimates of item difficulty caused by the presence of guessed items. 
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10.2.2 Distribution of Item Difficulties 

Eqn 10.1 shows the difficulty of an item in terms of the correct/incorrect response ratio whilst Eqn 10.2 

shows the relative difficulty of an item as calculated in the RM. In a RM analysis the item difficulty 

locations are, by default, centred on zero. Hence, when the proportions of correct responses and overall 

responses change, the relative difficulty locations may change due to the degree to which ni and Ni change. 

In the case of suppressing item responses indicated as guessed student/item interactions, both ni and Ni are 

reduced. However, it has been shown that the suppression of items observed as likely guesses for harder 

items is greater than for easier items. Hence, the harder items become harder than initially calculated. In a 

RM analysis, the item locations are centred on zero and hence the easier items have lower locations on the 

scale and, overall, the distribution of the item locations on the scale increases as a result. When guessing is 

not accounted for, the distribution of item locations is contracted in a RM analysis. 

10.2.3 Estimation of Student Ability 

Chapter 3 described how student abilities are estimated. In the RM there is a one-to-one relationship 

between a student’s raw score and the ability estimate assigned to the response pattern of correct answers. 

Although the calibration of item difficulty is independent of the ability(s) of the students participating in 

the assessment, the converse is not the case. The raw score/ability interaction is a direct result of the item 

difficulty calibrations and estimates. 

Eqn. 10.3 provides the definition of the interaction between raw score (r j), item difficulty, and student 

ability estimate. This equation is solved iteratively for possible values of ability (βj) that, given defined 

values of item difficulties (δ1 through δn), provide natural number equivalents for the potential scores of a 

test of N maximum score points (items if all questions are dichotomous MC items). 

 

  rj = ∑ 𝑒𝛽𝑗−𝛿𝑖𝑁
𝑖=1 / 1+ 𝑒𝛽𝑗−𝛿𝑖    Eqn 10.3 

 

This relationship derived by the iterative process determines the natural number equivalents of possible 

ability estimates, given the set of difficulties estimated for the set of items that comprise the test. The 

relationship between the student raw score/ability estimation and the item difficulties within the test gives 

rise to two further sources of uncertainty in the estimates derived: 

1. The inflation of item difficulties impacts the iterative interaction with the possible ability estimates and 

depresses the relative ability estimate associated with each raw score across the full spectrum of 

possible values. Hence, at the higher ability level, the higher raw scores are not attributed the full 

measure of ability on the trait, and at the lower ability level, the lower scores are attributed a degree of 

inflation in their estimate of ability on the trait.  

2. Since the number of items in which guessing may occur is likely to be inversely proportional to the 

ability of a student, the effect of successful guessing thus has a greater impact on lower-ability students. 

The fact that these students’ raw scores are inflated, relative to their “true” score, causes an 

overestimation of the ability estimates in the lower-ability students.  
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11.2.4 Calculation of Item/Student Probability of a Correct Response. 

The probability of a correct response by a student of any estimated ability to an item of derived difficulty 

is a simple application of the RM, as follows: 

   Pr{xji =1|βj, δi} = 𝑒𝛽𝑗− 𝛿𝑖  / 1 + 𝑒𝛽𝑗− 𝛿𝑖    Eqn 10.4 

When the item difficulty estimate has been contaminated by guessing, the value of δi is underestimated. 

Concurrently, the raw score of student j is overestimated due to the positive impact of unconditioned 

guessing. The interaction of these two factors causes the probability of a correct response, as calculated 

using the RM, to be overestimated, meaning that the efficacy of using the interaction of individual item 

difficulty with specific student ability is diminished by this dual impact of a correct guess. The impact is 

exacerbated by the randomness of the number of successful guesses, as demonstrated in the simulated data 

in which students with pre-defined low ability in a 40-item test have “randomly guessed” up to 14 of the 

39 items that are defined as beyond their ability in the trait.  

When a response is a successful random guess, then the ability of the student is effectively inflated in the 

calculation in Eqn 10.5 by the difference an additional response impacts on the ability estimate of the 

student. This contaminates all of the resulting measures that derive from the RM.  

10.2.5 Calculation of Item/Student Residual 

The item/student residual is a measure of the misfit between an individual response to an item by a student 

of a calculated ability. Given that ability is a continuous variable, and the natural number raw score is a 

representation of the trait of interest about that difficulty level, there will always be some “noise” about the 

convergence of the estimated score derived by the RM and the natural number value (1 or 0) that represents 

success or failure on the specific item. Conceptually, the value of the residual is the difference between the 

observed response(s) and expected response(s) across all items (Andrich, 1986; Masters, 1982; Wright & 

Stone, 1979). 

The value of the item/student residual is calculated by using the conditional formula below (Andrich, 1988), 

which results in two possible standardised values. 

 zJi = (xji – E[Xji] / √𝑉[𝑋ji] which resolves to  

for:  Xji = 0:  -√𝜋𝑗𝑖(1 −  𝜋𝑗𝑖)  and 

for:  Xji = 1:  
√(1−𝜋𝑗𝑖)

√𝜋𝑗𝑖
  

where    E[Xji]  is the probability of a correct response derived from the RM for the calculated values of βj 

and δi . 

These values are contaminated by the influence of correct guessing patterns, and these derived parameters 

have a circular nature of. The interrelationships discussed above explain to some degree the challenge in 

using the outputs of the RM and the initial analysis parameters to identify guessing patterns at the individual 

item/student level. 
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 10.3 Merits of the GIP: Student Scaled Scores and Reported Levels 

The limitations articulated in Section 10.2 above help explain the challenges in accurately indicating 

guessing when using the RM. Despite these limitations militating against the efficiency of indicating 

guessing in student responses, this study shows that these challenges can be addressed in a psychometrically 

sound manner that ensures that at least a proportion of the guesses can be removed with confidence. This 

in turn means that the final measures of student ability are more valid than those obtained without using the 

GIP procedure, both at the scale and individual student level. 

10.3.1 Summary Observation in Simulated Data Sets 

In the simulated data, in which the random guesses in each student response pattern were defined, the GIP 

procedure was applied and the responses identified as guessed were re-coded as missing. The new set of 

data were then re-analysed; the resultant recovery rate of identified guesses, compared to defined guesses, 

ranged between 29% and 48%, as shown in Chapter 5, Table 5.12, and reproduced in Table 10.2. 

Closer examination of those recovery rates, by partitioning the data into sub-groups, revealed a significant 

improvement in the identification of guessing (identified and defined) among the lower-ability groups, as 

shown in quartiles 1 and 2, and deciles 1, 2, and 3, in Table 10.2. It is also noted that in no instance was a 

correct response identified as a guess by the application of the GIP that was not predefined as a guess.  

In the higher-ability regions – quartiles 3 and 4, and deciles 8, 9, and 10 in SIM3 – the recovery rate of 

“defined” guesses was, on average, less than 6%, except for the SIM5 test. In the lower quartiles (deciles), 

which report the outcomes of the lower-ability students, the recovery rate improved significantly and, in 

the lower ability category, at least 50% of the “defined” guesses were “identified”. 

Given the relationship between guessing and ability, the GIP functioned most effectively in the region 

where guessing is most prevalent; that is, among the lower-ability students. Hence, the GIP can be 

considered to contribute favourably to the refinement of the scale, particularly in areas of increased need.  
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Table 10.2   

Proportion of GIP Identified Guesses by Ability Group Compared to Simulated Data INIT Analysis 

Simulation Group 

Count of 

defined 

random 

Guesses 

 
(Table 5.12) 

Count of 

Guesses 

recovered 

by 

GIPp=0.6 

Recovery 

rate 

Identified 

vs actual 

(%) 

SIM1, Normal 400,40 Q4, most able 72 0 0.0% 

  

  

  

  

Q3, able 446 59 13.2% 

Q2, less able 478 195 40.8% 

Q1, least able 775 537 69.3% 

Overall mean 1771 791 44.7% 

SIM2, Normal 250,20 Q4, most able 14 0 0.0% 

  

  

  

  

Q3, able 74 0 0.0% 

Q2, less able 114 20 17.5% 

Q1, least able 158 84 53.2% 

Overall mean 360 119 28.9% 

SIM3 Normal  Top decile 14 0 0.0% 

1000,40 Decile 9 98 0 0.0% 

  

  

  

  

  

  

  

  

  

Decile 8 259 0 0.0% 

Decile 7 400 28 7.0% 

Decile 6 481 128 26.6% 

Decile 5 438 177 40.4% 

Decile 4 473 237 50.1% 

Decile 3 591 407 68.9% 

Decile 2 791 502 63.5% 

Decile 1 759 572 75.4% 

Overall mean 4304 2051 47.6% 

SIM4, Easy 400,40 Q4, most able 72 0 0.0% 
 Q3, able 217 7 3.2% 
 Q2, less able 389 150 38.6% 
 Q1, least able 633 432 68.2% 
 Overall mean 1311 589 44.9% 

SIM5, Hard 400,40 Q4, most able 303 0 0.0% 
 Q3, able 417 90 21.6% 
 Q2, less able 722 409 56.6% 
 Q1, least able 722 532 73.9% 
 Overall mean 2164 1031 47.6% 

10.3.2 Large-Scale Data Sets 

The evidence demonstrated in the simulation analyses and in the GIP analyses of the large-scale authentic 

data set, makes it apparent that the proposed GIP model is an improvement on a process that takes no action 

to account for guessing.  

Tables 10.3 to 10.8 make explicit the reclassification of results for groups of students (see also Chapter 7, 

Figures 7.4, 7.5, and 7.6, for each of the GIP3A and GIPINIT3B analyses). In each case, the tables present 

the amount by which student results may be misrepresented by an analysis method that does not consider 

the influence of guessing in student data. In Table 10.3, the scaled scores have been approximately aligned 

to indicate at what point of progress through the level the scaled score had located the students on a 

particular score.  
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Table 10.3   

G4 Mathematics Comparison of Proportions in Levels by Scaled Score and Analysis Phase 

Level 

SSMathG4INIT SSMathG4GIP3A SSMathG4GIPINIT3B 

Scaled 

Sc 
Freq Percent 

Scaled 

Sc 
Freq Percent 

Scaled 

Sc 
Freq Percent 

6+ 
   919 79 0.3 919 79 0.3 

858 79 0.3 838 237 0.9 838 237 0.9 

 782 237 0.9 777 428 1.6 777 428 1.6 

6 728 428 1.6 732 589 2.2 732 589 2.2 

5 

689 589 2.2 693 874 3.3 693 874 3.3 

658 874 3.3 659 1066 4.1 659 1066 4.1 

631 1066 4.1 628 1251 4.8 628 1251 4.8 

606 1251 4.8       

4 

583 1448 5.5 598 1448 5.5 598 1448 5.5 

561 1597 6.1 569 934 3.6 569 1597 6.1 

539 1816 6.9 540 1437 5.5 540 1816 6.9 

516 2148 8.2 511 1600 6.1 511 2148 8.2 

3 

494 2562 9.7       

470 2780 10.6 481 1236 4.7 481 2562 9.7 

445 2939 11.2 450 987 3.8 450 2780 10.6 

416 2698 10.3 417 1482 5.6 417 2939 11.2 

2 
384 2015 7.7 381 2209 8.4 381 2698 10.3 

344 1157 4.4 341 2453 9.3 341 2015 7.7 

1 
288 477 1.8 293 2857 10.9 293 1157 4.4 

211 118 0.4 230 2667 10.1 230 477 1.8 

Below Level 1       146 2445 9.3 146 118 0.4 

  Total 26279 100.0 Total 26279 100.0 Total 26279 100.0 
 

The GIP3A and GIPINIT3B values of the scaled scores of the students were the same as a result of the 

anchoring process, but the percentages in the levels show the difference as a result of suppressing, compared 

to not suppressing, the score associated with the GIP indicated guesses. Noticeably, the percentages shown 

for the GIP3A and GIPINIT3B in the upper levels do not change due to the GIP process not indicating 

probable guesses in this region. However, at the lower regions there are considerable differences in the 

frequencies of students at each level. The equivalence of the frequencies between the INIT outcomes and 

the GIPINIT3B outcomes is due to the INIT raw scores being applied in the GIPINIT3B analyses. However, 

the scaled scores and level variations reflect the impact of accounting for guessing. 

In Table 10.3, the GIP3A and GIPINIT3B outcomes show a group of students who were described “below 

Level 1” with a scaled score of 146, which is approximately 0.5 s.d. below the cut score for Level 1 (i.e. as 

scaled score below 200). This level of achievement was not reported in the INIT analysis. This outcome 

indicates that the content in the test was beyond the ability of the students when guessing was accounted 

for. Yet, in a simple Rasch analysis, these students would be identified as among the 595 students at Level 

1. In contrast, the GIP3A/GIPINIT3B analysis indicates that there were many more students at this level 

who were misclassified in a simple Rasch analysis. The GIPINIT3B analysis indicates that 6.6% of students 

were at/or below Level 1, compared to 2.2% identified by the Rasch INIT analysis. 
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At the higher ability end of the scale, the GIPINIT3B analysis indicates that 1,333 students performed at 

Level 6 or above, compared to 744 in the INIT analysis. The similarity in the scaled scores and proportions 

of students in the mid-range ability Levels (3 and 4) reflects the expected achievement for these levels. 

These outcomes are consistent with those of the simulated data and are predicted by the GIP processes 

applied.  

Table 10.4 aggregates the data of each analysis into three performance groups. The shaded area at the 

bottom of the table indicates the aggregation of Level 1 and below with Level 2 and represents students 

who were performing below the expectation of the cohort. These students are considered “at risk” of not 

achieving the learning outcomes for the cohort. The unshaded area (the aggregation of Levels 3 and 4) 

represents the students who were “approaching or at” the expected achievement level of the cohort. The 

shaded area at the top of the table represents students who were achieving above the expected level (the 

aggregation of Levels 5, 6, and 6+). 

Table 10.4   

G4 Mathematics Comparison of Percentages in Levels 

Level 

INIT GIP3A GIPINIT3B 

Frequency 
% at 

level 

Total 

% 
Frequency 

% at 

level 

Total 

% 
Frequency 

% at 

level 

Total 

% 

6+ 79 0.3  316 1.2  316 1.2  

6 665 2.5 17.2 1017 3.9 17.2 1017 3.9 17.2 

5 3780 14.4  3191 12.1  3191 12.1  

4 7009 26.7 
68.5 

5419 20.6 
34.8 

7009 26.7 
58.2 

3 10979 41.8 3705 14.1 8281 31.5 

2 3172 12.1 

14.4 

4662 17.7 

48.0 

4713 17.9 

24.6 1 595 2.3 5524 21.0 1634 6.2 

Below 1 0 0.0 2445 9.3 118 0.4 

Note. There are minor rounding errors in aggregating proportions within levels 

Table 10.4 highlights the challenge of condensing information in reports. At first glance, the percentages 

of higher-ability students in Levels 5, 6, and 6+ is the same for each analysis (17.2%). However, the 

disaggregation into the component levels shows a variation in the percentages in each level. The alignment 

of the frequencies in the GIP3A and GIPINIT3B outcomes is a function of the reduced capacity of the GIP 

process to indicate guessing in the higher-ability students when the student ability estimate is high 

compared to a minor differentiation between the item locations for harder items. However, both of these 

analyses show an increase in the percentage of students identified as performing at Levels 5, 6, and 6+ 

compared to the INIT analysis.  

By comparison, the variation in the percentage of students in each level for the lower-ability students is 

significant. The GIP3A analysis (suppressed indicated guesses) displays 48.0% of students in the “at risk” 

region, with high percentage s of that group in or below Level 1. The INIT analysis resulted in the majority 

of these students achieving the expected level of achievement for the Grade 4 students. The GIPINIT3B 

analysis displays 24.6% of students in the “at risk” levels, which is approximately 10% more than the INIT 
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analysis. This outcome shows the negative impact of crediting student with the results of highly probable 

guesses. The lower-ability students were most advantaged by guessing.  

Table 10.5   

G8 Mathematics Comparison of Percentages in Levels by Scaled Score and Analysis Phase 

Level 

SSMathG8INIT SSMathG8GIP SSMathG8GIPINIT 

Scaled 

Sc 
Freq Percent 

Scaled 

Sc 
Freq Percent 

Scaled 

Sc 
Freq Percent 

6+ 

   996 23 0.1 996 23 0.1 

928 23 0.1       

   900 69 0.3 900 69 0.3 

842 69 0.3 831 133 0.6 831 133 0.6 

6 

781 133 0.6 781 215 1.0 781 215 1.0 

739 215 1.0 740 348 1.7 740 348 1.7 

706 348 1.7 705 447 2.1 705 447 2.1 

5 

677 447 2.1 673 643 3.1 673 643 3.1 

652 643 3.1 644 763 3.6 644 763 3.6 

629 763 3.6       

   617 921 4.4 617 921 4.4 

608 921 4.4       

 

4 

587 974 4.6 591 974 4.6 591 974 4.6 

567 1058 5.0 566 871 4.1 566 1058 5.0 

548 1227 5.8 542 868 4.1 542 1227 5.8 

528 1339 6.4 518 936 4.5 518 1339 6.4 

508 1521 7.2       

3  

488 1852 8.8 494 899 4.3 494 1521 7.2 

466 2040 9.7 469 874 4.2 469 1852 8.8 

443 2185 10.4 444 973 4.6 444 2040 9.7 

418 2015 9.6 418 945 4.5 418 2185 10.4 

 

2 

390 1608 7.7 389 931 4.4 389 2015 9.6 

357 992 4.7 357 1136 5.4 357 1608 7.7 

314 436 2.1 321 1340 6.4 321 992 4.7 

1  

   276 1363 6.5 276 436 2.1 

254 161 0.8       

   213 1802 8.6 213 161 0.8 

Below1 
168 37 0.2       

   124 3533 16.8 124 37 0.2 

 

Tables 10.5 and 10.6 present the results for the Grade 8 students, in the same format as Tables 10.3 and 

10.4, respectively. Table 10.5 shows a similar pattern to the Grade 4 Mathematics distributions. The 

GIPINIT3B analysis reveals more students in both the higher and lower ability achievement levels than the 

INIT analysis. The variation evident in the scores achieved is an expected outcome of the recalibration of 

the scale and the “purer” GIP variable against which the students were measured. 
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The variations in the scaled scores, resulting from these recalibrations, shifted groups of students across the 

cut score for particular levels and provided a better estimate of their achievement relative to the expected 

standard. For instance, the 133 students with scaled scores of 781 in the INIT analysis had been classified 

as Level 5, whereas the same students achieved a recalibrated scaled score of 831 and were classified at 

Level 6 in the GIPINIT3B analysis. 

Table 10.6 displays the movement of students between levels as a consequence of the recalibration of the 

Grade 8 scale when comparing the INIT outcome to the GIPINIT3B outcome. The notable variation is the 

proportion of students who were classified as “at risk” in the GIPINIT3B analysis compared to the INIT 

analysis 

Table 10.6   

G8 Mathematics Comparison of Percentages in Levels 

Level 

INIT GIP3A GIPINIT3B 

Frequency 

% at 

level 

Total 

% Frequency 

% at 

level 

Total 

% Frequency 

% at 

level 

Total 

% 

6+ 92 0.4  225 1.1  225 1.1  

6 696 3.3 16.9 1010 4.8 17.0 1010 4.8 17.0 

5 2774 13.2  2327 11.1  2327 11.1  

4 6119 36.2 
74.7 

3649 17.4 
34.9 

4598 21.9 
58.0 

3 8092 38.5 3691 17.6 7598 36.1 

2 3036 14.5 

15.4 

3407 16.2 

48.1 

4615 22.0 

25.0 1 161 0.8 3165 15.1 597 2.8 

Below 1 37 0.2 3533 16.8 37 0.2 

Note. There are minor rounding errors in aggregating proportions within levels 

Tables 10.7 and 10.8 present the Grade 4 Science summary statistics. These outcomes reflect the different 

distribution of item locations and ability estimates shown in Figure 7.6 in Chapter 7. Table 10.7 shows a 

close relationship between the scaled scores of the INIT and GIPINIT3B values, which maintained the 

variation in the proportions in levels observed in the previous analyses. 

The lowest scale score in the GIPINIT3B analysis was lower than that reported in the INIT analysis, and 

the highest score in the GIPINIT3B was higher than the INIT analysis. The impact on the final scaled scores 

and the variation in the percentages in the levels follows a similar pattern to those observed in Grade 4 

Mathematics. Despite the Grade 4 Science assessment displaying a more condensed scale in the INIT 

analysis, the GIP outcomes demonstrate that the students located in the lowest ability level were likely to 

be performing below the level reported the INIT analysis outcomes. 

At the higher end of the scale, the percentage of students in the “better than expected” achievement group 

is also greater than the comparative INIT group. The GIP3A process and the GIPINIT3B application 

provided a better discrimination of students across the scale when guessing was considered in the calibration 

process.      

  



245 

 

 

Table 10.7   

Grade 4 Science Comparison of Percentages in Levels by Scaled Score and Analysis Phase 

Level 

SS SciG4INIT SS SciG4GIP3A SS SciG4GIPINIT3B 

Scaled 

Sc 
Freq Percent 

Scaled 

Sc 
Freq Percent 

Scaled 

Sc 
Freq Percent 

6+ 
   869 69 0.3 869 69 0.3 

826 69 0.3             

6 

   791 375 1.4 791 375 1.4 

753 375 1.4 735 696 2.7 735 696 2.7 

702 696 2.7       

5 

      694 908 3.5 694 908 3.5 

667 908 3.5 662 1120 4.3 662 1120 4.3 

639 1120 4.3 635 1176 4.5 635 1176 4.5 

615 1176 4.5 610 1258 4.8 610 1258 4.8 

4 

594 1258 4.8 588 1228 4.7 588 1228 4.7 

575 1228 4.7             

557 1245 4.8 567 1245 4.8 567 1245 4.8 

540 1238 4.7 547 1238 4.7 547 1238 4.7 

524 1271 4.9 527 1271 4.9 527 1271 4.9 

 507 1276 4.9 508 658 2.5 508 1276 4.9 

 491 1393 5.3 489 1062 4.1 489 1393 5.3 

3 

475 1560 6.0 470 985 3.8 470 1560 6.0 

458 1815 7.0 451 836 3.2 451 1815 7.0 

441 2049 7.9        

423 2156 8.3 431 935 3.6 431 2049 7.9 

2 

403 1973 7.6 410 928 3.6 410 2156 8.3 

381 1544 5.9 387 953 3.7 387 1973 7.6 

357 977 3.7 362 1055 4.0 362 1544 5.9 

328 471 1.8 334 1469 5.6 334 977 3.7 

      302 1662 6.4 302 471 1.8 

1 

292 186 0.7       

   261 1315 5.0 261 186 0.7 

239 52 0.2       

 

Below Level 1 

   203 1713 6.6 203 52 0.2 

165 29 0.1       

   121 1910 7.3 121 29 0.1 

 Total 26065 100.0 Total 26065 100.0 Total 26065 100.0 
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Table 10.8   

Grade 4 Science Comparison of Percentages in Levels 

Level 

INIT GIP GIPINIT 

Frequency 
% at 

level 

Total 

% 
Frequency 

% at 

level 

Total 

% 
Frequency 

% at 

level 

Total 

% 

6+ 69 0.3 

16.7 

69 0.3 

21.5 

69 0.3 

21.5 6 1071 4.1 1071 4.1 1017 4.1 

5 3204 12.3 4462 17.1 4462 17.1 

4 7516 28.8 
70.8 

5640 21.6 
39.8 

6258 24.0 
58.4 

3 10946 42.0 4746 18.2 8973 34.4 

2 2992 11.5 

12.5 

5139 19.7 

38.7 

4965 19.0 

20.1 1 238 0.9 3028 11.6 238 0.9 

Below 1 29 0.1 1910 7.3 29 0.1 

 

10.4 Overall Comments 

The Guessing Indication Protocol (GIP) developed during this study provides a method for taking account 

of the guessing in individual student response patterns in a probabilistic manner. In particular, even though 

the GIP does not capture 100% of guesses across the full range of ability estimates, the strength of the 

procedure is that it meets a need in areas where the issue is greatest, namely, the overestimation of students 

at risk. This chapter has considered the factors that limit the capacity of the GIP’s efficiency in identifying 

guessing; however, these limitations do not diminish the findings of the study, or its potential contribution 

to providing more accurate information to educational stakeholders. Rather, these limitations provide the 

agenda for future research directions. 

In considering the outcomes in Tables 10.3 to 10.8, in conjunction with those presented of the simulation 

studies, these outcomes clearly indicate that analyses that do not take account of guessing underestimate 

the ability of higher-ability students and overestimate the ability of lower-ability students. 

The consolidated impact of the suppression of highly probable guessed items in individual student response 

patterns was to generate a more refined variable that was less contaminated by the noise associated with 

guessing. A further consequence of this refinement of the variable was to stretch the distribution of the 

cohort outcomes. Specifically, there was an increase in the ability estimates of the higher-ability students 

as a consequence of removing the depression caused by false positive-guessed answers in the more difficult 

items. The identification of the probable guesses in the more difficult items is a significant benefit compared 

to current practice in that it generates better estimates of the difficulty of those items and contributes to an 

improvement in the overall scale and estimates of student ability within the scale.   

At the lower end of the scale, the overestimated ability of lower-ability students was also recognised when 

outcomes contaminated by probable guessing were identified. In particular, the presence of guessed items 

masked the true ability level of the lower-ability students. 
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10.4.1 Degree of Reclassification 

The outcomes shown in Tables 10.3 to 10.8 suggest that stakeholders should first consider the possible 

degree of reclassification of students indicated by the GIP procedure, which represents the best 

approximation of the “true” ability estimate that has taken account of the probable guessing. Table 10.4 

shows approximately 14% of students in Levels 1 and 2 when the INIT Rasch results are reported. By 

comparison, the GIP results display approximately 30% in the “highly at risk” Level 1 or below, and 

approximately 18% at the “at risk” Level 2. These outcomes indicate that approximately 8,960 students 

were misclassified using the INIT results for the G4 Mathematics cohort.  

The GIPINIT analysis shows that almost 2,900 of the lower-ability students were overestimated and 

misclassified by the INIT analysis. At the higher ability end of the scale of the G4 Mathematics students, 

the INIT, GIP, and GIPINIT analyses report the same number of students to be in the “beyond expectation” 

group. However, the disaggregation of the group by level shows that the GIP3A and GIPINIT3B analyses 

reveal a degree of underestimation of the growth achieved. The INIT analysis displays 297 students in Level 

5 with a scaled score of 782 points, while the GIP and GIPINIT analyses show these students as achieving 

a scaled score of 838 and more likely to be in Level 6. 

The potential consequence of these misclassifications is that lower-ability students who need support in 

achieving the expected curriculum outcomes, as assessed by the test, are inaccurately measured and the 

unlearned content and skills remain unidentified. Simultaneously, educators may overlook the higher-

ability students and fail to provide extension and experiences that challenge their true ability. 

Tables 10.5 through 10.8 show similar patterns, with the GIP3A and GIPINIT3B analyses reporting higher 

percentages of lower-ability students in levels lower than those reported by the INIT analysis. The 

misclassifications impacted up to 3,900 students in the Grade 8 Mathematics analysis and nearly 2,900 

students in the Grade 4 Science analysis. In respect of the higher-ability students, approximately 1,000 

students are reported above the level of the INIT analysis for both Grade 8 Mathematics and Grade 4 

Science. 

In comparing the GIPINIT3B scale to the INIT scale, these outcomes indicate misclassification in reporting 

of the lower ability of the order of 10%. These students were systematically overestimated. At the higher 

end of the scale there is a greater accord between the overall performances reported by the INIT and 

GIPINIT analyses; however, there is a variation in the percentages reported in each level, which generally 

underestimates the performance of the higher-ability students. 

In general, comparison between the INIT and the GIP outcomes indicates that the students in the mid-range 

ability deciles were reported at approximately the appropriate level by the outcomes of the INIT analysis; 

however, the abilities of the lower-ability groups were overestimated and those of the higher-ability groups 

were underestimated. 
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10.5 Summary 

The introduction to this chapter highlighted the constraints of the RM on the capacity of a process designed 

to identify guessing in the response patterns of students. The chapter highlights that even though the 

proposed GIPp=0.6 process is not able to identify all instances of probable guessing over the full range of 

student abilities, it produces a more accurate set of estimates of student ability than does ignoring the 

influence of guessing in student responses. In the case of lower-ability students, stakeholders who use the 

currently reported outcomes of the Rasch (INIT) analysis are typically using unreliable data in their 

considerations. Messick (1989) would suggest that these misclassifications may produce invalid 

consequential actions.  
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Chapter 11  

Conclusion 

11.1 Introduction to the Chapter 

The underlying premise of this thesis is that if educational professionals and other stakeholders are to make 

reliable decisions about large-scale assessments, they should have high-quality, data-driven information 

that minimises measurement errors and maximises the reliability and validity of those assessments. This 

issue is significant because educational systems, schools, and individual students use the reported outcomes 

from large-scale assessments in multiple ways. 

This research examined the potential impact of guessing on estimations of item difficulty and student 

ability. Its particular focus was degree to which student ability may be misclassified in large-scale 

assessments in which multiple-choice (MC) items are the dominant item type, and then to propose and 

evaluate a protocol that addresses this issue. 

11.2 Summary of the Research 

The initial chapters of this thesis explained the research context and outlined the development of Modern 

Test Theory and the analysis techniques that have evolved to meet the requirements of educational 

stakeholders. A key feature of reporting to stakeholders is the presumption that assessment outcomes are 

accurately measured according to stable and reliable scales that compare student achievements. The Rasch 

Model (RM) conforms to such principles of measurement and is the analysis technique mostly used in the 

Australian national assessment context, specifically the National Assessment Program (NAP) suite of 

assessments. However, the RM does not directly account for guessing.  

This research involved simulations that were grounded in the assumptions of the RM. They included student 

response patterns that were contaminated with defined guesses. The simulations clearly demonstrated a 

degree of bias in the results of the estimations of item difficulty and consequent estimates of student ability 

and Level of achievement in which the defined guessing was accounted for.  

The protocol that was proposed and evaluated in this study is termed the Guessing Indication Protocol 

(GIP). The GIP was evaluated using a set of small-scale data and three sets of large-scale data. It reduced 

the bias seen in the simulations and improved the reliability of student ability estimates. The application of 

the proposed protocol with large-scale data returned outcomes that were consistent with the outcomes of 

the simulations which validated the process.  Hence the GIP process goes some way to addressing the 

problems articulated in the research question. The penultimate chapters explicated the degree to which 

reports to stakeholders may be misrepresented in cases where guessing, as indicated by the GIP, is not 

accounted for.  
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11.3 Summary of the Key Results 

Chapter 2 described the multiple strategies that have been employed to remove the bias caused by guessing 

in MC items. These range from soft options such as encouraging students not to guess, to more punitive 

actions such as reducing the achieved score to penalise students for incorrect answers that are assumed to 

be guesses. In the NAPLAN and many other large-scale assessments, there is no penalty for guessing.  

The simulations of Study 1 indicated that a relatively poor student on a “good guessing day” could achieve 

a score in the mid-range of ability estimates, thus demonstrating the potential for obfuscation of the true 

learning and ability of the student due to successful guessing. Aligning with previous research (Andrich et 

al., 2012, 2015), this piece of research confirmed that correct responses to items beyond the calculated 

ability of the students contributed to the misfit of an item to the RM. These student/item responses 

contaminated the “purity” of the variable as a unidimensional measure of student achievement. 

Advancements developed in this study are that the RM can be used to indicate probable guesses in the 

response pattern of an individual student, and the suppression of the individual probable guesses can 

improve the scale that accrues from the modification of the data. 

Overall, the outcomes observed in Studies1, 2 and Study 3 have shown that when the RM is used, the 

quantity of misfit at the individual item/student interaction level can indicate aberrant interactions that are 

strong indicators of probable guessing. The use of a set of threshold values with respect to the quantum of 

the misfit, the GIP can be used to indicate item/student interactions that are probable guesses that may be 

suppressed. The subsequent analysis of the conditioned data in which the indicated aberrant interactions 

have been suppressed improve both the fit of the data to the RM and the reliability statistics. 

A significant effect of the GIP is that it consistently increased the distribution of item difficulties, which 

increased the consequent distribution of student ability estimates. This meant there was greater 

differentiation between the ability estimates of the higher-ability students and, in most cases, an improved 

reflection of the achievements of those students. In addition, the GIP resulted in a reduction in the ability 

estimates of the lower-ability students that better reflected their achievements when the guessing was 

accounted for. The increased reliability of the ability estimates of the lower-ability students is a critical and 

important outcome of this research that has not been evident in previous studies. 

Another significant feature of the GIP is that the first phase – GIP3A – redefined the scale of the assessment. 

This phase took account of the guessing and improved the item difficulty estimates so that they could better 

reflect the true location of each item. Hence, the revised described scale is potentially more valid and the 

annotations of the skills that describe the levels ascribed to the scale were more accurate.  

Despite the bias in the student ability estimates caused by the reintroduction of the initial response data in 

the second phase – GIPINIT3B – the students scaled score results and the assignment of levels to students 

on the revised scale were based on a more accurate and reliable calibration of achievement. 

11.4 Implications of the study 
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A significant implication of this study is that when the RM is used to analyse large-scale data in which 

guessing is present in the student response patterns, the reported results may be constrained with respect to 

the range of item difficulties. This is a direct consequence of not accounting for any guessing that is present 

in the data. This can produce an overestimation of the ability estimates and percentages of students in the 

lower ability levels and an underestimation of the percentages of students in the higher ability levels. 

The GIP appears to function more effectively when there is discrimination between the item difficulties of 

the MC items in the test. When the items function relatively homogeneously, the measurement scales can 

be negatively affected in two ways. The first is a contraction of the student ability estimates that are 

functions of the item locations. Second, the homogeneity of the item locations means there are fewer 

instances of differences in item location and student/item ability interactions exceeding 1.1 logits, which in 

turn restricts the number of cases of probable guessing indicated by the GIP procedure. It is recommended 

that test constructors address this issue to ensure MC items not only transcend the full range of student 

abilities in a test but also cover a wide range of item difficulties.  

Another implication is the impact of targeting of the test to the cohort which can deliver variable 

distributions of outcomes for the cohort. In a Rasch analysis, the well-targeted test items and student ability 

estimates cover a significant range of the scale and tend to produce a relatively normal distribution of item 

locations and student ability estimates. Tests that are too easy tend to underestimate the abilities of the 

higher-ability students and, to a lesser extent, overestimate the outcomes of lower-ability students. Tests 

that are too hard also underestimate the abilities of the higher-ability students and significantly overestimate 

the abilities of the lower-ability students when guessing is ignored. Associated with these issues is the 

misrepresentation of the achievement levels of students whose scaled scores are impacted by not accounting 

for guessing.     

In recent decades there has been a trend in large-scale assessments to involve multiple test forms with 

linking items to enable concurrent estimations of item difficulty and student ability (e.g., TIMSS, PISA, 

NAP-SL, NAP-ICTL, NAP-CC). However, alternative forms of adaptive test design in which student 

responses determine the items students interact with are now being introduced (e.g., NAPLAN since 2019). 

For more reliable student ability estimates to be determined in these test formats, it is imperative that when 

the RM is applied as the analysis technique it is accompanied by a process such as the GIP to negate the 

contamination of the item difficulties caused by guessing. 

Given these findings, it is recommended that a protocol such as the GIP be implemented to assess the impact 

of probable guessing and to provide more reliable ability estimates upon which to make data-driven 

decisions in instances where the RM is implemented.  
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11.5 Limitations of the Study 

Although the GIP indicated probable guessing, it functioned differentially across ability levels within a 

cohort. It did not have a significant impact of the ability estimations of the mid-range ability students. This 

was due to the discrimination between items difficulty locations, and consequent student ability estimations 

about the default centralised values in a RM analysis, especially when tests were well targeted to the 

participating students. 

The targeting of the tests – the alignment of the cohort ability with the range of item difficulty – affected 

the GIP’s ability to indicate probable guessing. The basic assumption of the GIP is that misfit is an indicator 

of probable guessing. Misfit is a function of the accord of the data with the RM, and it is a typical feature 

of a Rasch analysis when there is poor test targeting it. This limitation of the GIP in instances of poor test 

targeting is a function of the general characteristics of the test/student interaction, rather than a malfunction 

of the GIP itself. 

In this research, the data for the large-scale component of Study3 were extracted from mixed model test 

constructs that included both MC and constructed response (CR) items. Only the sub-set of MC items in 

these tests were analysed which resulted in smaller effective test lengths than observed in the majority of 

the simulation studies.  Consequently, the reliability statistic of the student ability estimates of Study 3 was 

impacted by the smaller number of items, a phenomenon which was demonstrated in SIM2. However, the 

overall results were consistent with the outcomes of the simulated data.  Since the mixed model test 

construct reflects current practices in educational assessment the impact of the GIP procedure in improving 

the reliability and fit of these components of the test result in a more precise estimation of student outcomes 

in the combined test construct. 

As mentioned earlier, the GIP has two phases. The GIP3A phase conditions the data to recalibrate the item 

difficulties and generates a revised set of student ability estimates, thus producing a more reliable scale and 

a better fit of the data to the model. In other words, it generates a purer item calibration and student 

achievement scale. The GIPINIT3B phase re-introduces the misfit by acknowledging that a correct response 

cannot be discounted at the individual student level, even if it is highly probable that it is a guess. This 

limitation introduced by the second component of the GIP process is an issue that may be best handled in 

the reporting of student achievement, which requires more consideration and investigation.   

11.6 Recommendations for Further Research 

An issue that could be further investigated is the optimum p value to apply to the calculations of the GIP 

parameters. In this conceptual piece of research a p value of 0.6 was used to demonstrate the principles of 

the procedure. The implementation of alternative p values could be evaluated in the simulation data to find 

the optimum value to maximise the indication of a guess in the simulated data.  

If the Pr(1) = 0.25 is maintained, the calculated difference between item location and person ability was 

approximately 1.1 logits. Hence the p = 0.6 threshold means approximately 0.7 logits (1.1 – 0.4) represents 

the difference in the learning achieved by the student. Cohen (1985) contends that this relates to 
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approximately 18 months of learning. If the p value increases the impact is the reduction in the contribution 

attributed to learning. Hence, the optimal level is not simply a mathematical application of an alternative p 

value but rather a more complex psychometric issue that requires both quantitative and qualitative research. 

Given the Australian context an area thar requires further investigation is the interaction of the GIP 

procedure with the adaptive model now current for the NAPLAN assessments in Reading, Numeracy and 

Language Conventions. In each of these subjects the adaptive model introduces each test with one-third of 

the items with relatively easy difficulty to engage the students and assess their potential for items that are 

more or less challenging as appropriate to their observed performance of the initial item testlet.  

However, the NAPLAN Technical Report (2019) notes that in each subject at least 66% of the items of the 

total test (100% in the case of Grammar and Punctuation) and probably the majority of items in the initial 

testlet (not specified in public reports) will be multiple choice items. As such the general principles that 

underpin the GIP procedure are highly relevant. 

A revolutionary approach to address the issue of guessing in a RM analysis would be to include the GIP3A 

outcomes, which take full account of highly likely guessing, in reports to stakeholders. In this study, the 

GIP3A phase was effective in indicating probable guesses with the lower-ability students, who are likely 

to be the most advantaged by engaging in guessing. It also consistently generated the highest reliability 

statistics and produced a better fit of the data to the RM and better estimations of item difficulty and student 

ability. 

Reporting the GIP3A results should, to some extent, neutralise the advantage of guessing and support the 

soft approach to informing students that guessing has few benefits. Such reporting would also indicate to 

all stakeholders which items had been suppressed by the GIP3A process and whether a correct response to 

the item was credited by chance or was a function of student knowledge.  

11.7 Next Steps 

Reports of student achievements to stakeholders take several forms. In NAPLAN, for example, they are 

typically public and technical reports for the educational systems, and school- and student-based reports for 

teachers, students, and parents (https://www.nap.edu.au). The school-based reports are usually in an 

electronic format that allows mining of the data at the item/student interaction level. Future researchers 

might investigate not only how to introduce the GIP into these reporting regimes, but also how to educate 

stakeholders to extract, interpret, and implement the associated information. 

  

https://www.nap.edu.au/
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11.8 Conclusion to the Chapter 

The use of MC items in large-scale assessments has many benefits. However, failing to account for guessing 

is problematic when RM procedures are used to analyse student data, particularly when reports are provided 

to the students. This study has shown that ignoring guessing when using the RM can lead to overestimating 

the abilities of lower-ability students and underestimating those of higher-ability students. 

 Hence, when data-driven decisions are made using outcomes of measurements that ignore guessing, 

stakeholders themselves will be imprecise in their recommendations and interventions.  

The outcomes presented in this piece of research evidence the potential contribution of the GIP process to 

improve the quality of the data from MC items and the consequent information reported, Hence the process 

has the potential to assist decision makers in their actions based on more precise information. The outcomes 

presented support the contention that a process such as GIP is a necessary adjunct to any analysis of MC 

data when the RM is the chosen analysis methodology.   
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APPENDIX A 

Detail of the Data Construct of Study 1: the Simulated Data 

A.1 Simulation Algorithm Conceptualisation 

A.1.1 A Guttman-like Arithmetic Progression 

The algorithm assumes that a set of items can be created with a defined percentage correct (facility) that 

defines the number of students that will correctly answer the item based on their ability. Hence it is possible 

to simulate a 40-item unidimensional test in which the range of facilities can be defined uniformly as an 

arithmetic progression with Term1 defined as 90% and the difference being -2%. 

Hence a = 90, n = 40 and d = -2. Each of the 40 terms (Tn) are defined by Tn = a + (n-1)d as percentage of 

theorical correct answers for the sample of the students in a Guttman-like response pattern. In the algorithm 

the number of students is a random number, but for the sake of consistency of the comparisons of outcomes, 

the simulated data for Simulation1 was defined to have 400 students. 

Given the arithmetic progression defined for Simulation 1(SIM1) data T20 (Item 20) will have a defined 

percentage correct of 52% and therefore have and expected number of correct responses defined as 

52%*400 = 208, with those response accruing to students whose ability is equal to or greater than the 

difficulty of Item 20. 

Table A.1 
 Extract of Simulated Data (SIM1) 

 

Given the starting point for the research study is the impact of guessing in an assessment, the initial 

simulated data set is a pure Guttman scale pattern that is contaminated in two ways; 

1. in order to replicate the presence of random errors (e.g. through carelessness and/or misconceptions) 

amongst those students who have scored very well, some random errors have been impregnated into the 

data set as incorrect answers;  
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2. in order to replicate the presence of random guessing in the region ‘beyond’ the “ability” of the student, 

a random number generator has embedded responses in the “incorrect” region of each student’s 

responses pattern. 

Assuming that in a typical multiple choice item of four distractors it is reasonable that one in four random 

guesses will be correct. The data are ‘contaminated’ by a specifically defined value that can be coded as a 

correct answer and defined as a correct random guess.  

A.1.2 The Data Construct 

Table A.2 is an overview of a simulated data set construct and explained below. 

Table A.2 
 Assumptions Regarding Construct of Simulated Data Matrix 

 

Note 1. The row Item%corr is the defined facility or relative ‘difficulty’ of the item. As mentioned, it is an 

arithmetic progression of 40 items with the difference between each item -2%. With 400 students the 

expected number of correct responses (score 1) for item Q01will be 360. 

Note 2. The row EdGuess(1) is defined as an estimate of the ‘zone of uncertainty’ within which individual 

student’s ability on the trait is approximately equal to the difficulty of the item and hence the response will 

return a random ‘1’ or ‘0’ on 50% of occasions. 

Note 3. The row Item%(1) is the sum of Item%corr and EdGuess(1) and represents the inflation of the true 

facility due to ‘Educated Guessing’. 

Note 4. The row Guess(1) is the expected persentage of correct guesses calculated as one-quarter of the 

number of potential incorrect answers (Total items – Correct and Educated Guesses). 

Note 5. The row Observed(1) is the expected percentage of correct responses being the sum of  Item%corr 

with EdGuess(1) and Guess(1).  

The construct assumes that every student attempts every item, and the overall test has three major 

components for each student; 

1. A ‘zone’ in which the student’s ability is greater than the item difficulty with a score of ‘1’.  

2. A zone in which the student’s ability is approximately equal to the item difficulty in which the student’s 

will be randomly assigned a code of ‘5’ a score of ‘1’,  or assigned a code of ‘6’ which is scored as ‘0’ 

(incorrect). This was termed ‘the zone of uncertainty’. 

3. A zone in which the student’s ability is less than the item difficulty with responses coded from ‘7’ to 

‘10’ for which a ‘9’ is defined as a correct guess (scored ‘1’) and other responses (7, 8, and 10) are 

coded as incorrect (‘0’).  
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This construct provides three potential analyses depending upon the coding of the responses that are in each 

zone for each student; 

1. items for which the difficulty of the item exceeds the ability of the student the random guessing 

responses of ‘9’ can be coded as correct – score ‘1’ (Pr(9) = ¼) , and all other responses are coded as 

incorrect (‘0’) which reflects the current typical analysis methodology in which there is no accounting 

for guessing; 

2. items for which the difficulty exceeds the ability the guess responses (‘9’) can be coded as incorrect 

(‘0’) to confirm compliance with the Guttman scale conditions; and 

3. items that are defined as guesses (code 9) are suppressed and coded in the data set as ‘missing data’ so 

that they are not included in the calibration of item difficulty. 

Table A.3 below is an extract of the simulated data set comprising multiple choice items (4-options) each 

dichotomously scored. 

Table A.3 
 Abbreviated Components of the SIM1 Data Structure 

 

Taking item 20 as an example (shaded blue) a defined Item % correct of 52% with an adjustment for 1% 

for Educated Guesses means that 47% of the target sample ‘should’ score zero for this item. However, 

given that the probability of a correct guess in a four-distractor multiple choice item is ¼ then the expected 

percentage of correct guess is ¼ of 47 = 11.75% (rounded 12%).  

Assumptions regarding 

data structure 

Extract of student 

response patterns for 

students of varying ability 

Samples of responses in the zones 

‘equal to’ and ‘beyond ability’. Note 

‘5’ and ‘9’ are ‘correct’ guesses. 

Deconstruction of the 

observed score, True score 

and outcomes of 

‘guessing’. 
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This is the logic that has been attributed to the calculation of the values assigned to the row Guess(1). These 

are the response that contaminate the Guttman scale and add nothing to the understanding of the 

characteristics of the scale or the ability of the participants in the test to measure the scale. 

The row Observed(1) represents the sum of Item(1) and Guess(1) and shows the expected number of correct 

responses for this item. This value is compared to the number recovered by the application of the algorithm 

given the random nature of the assignment of codes ‘7’ to ‘10’ in the zones that represent difficulty beyond 

ability for each test-taker. 

Note for Item 20 with a defined percent correct of 52% the expected Observed percent correct is 65% and 

for the most difficulty item (Item 40) the defined percent correct of 12% is inflated to 36% due to the 

guessing factor. Table A.4 provides an extract of a data set SIM1. 

Table A.4  

Data Extract of SIM1 Data Structure 

 

There are three component sections to these data, together with the aggregated score Initial Raw Score 

(RSc). 

Component 1 – Mastery 

For each student there is a string of ‘1’s that represent the correct responses an indication that, under the 

Guttman conditions, students have mastery of the skills and/or knowledge implicit within the items as it 

contributes to the scale. 

Student S030 has mastery of all the items up to and including Item 37, whilst student S217 has a lower 

ability on this scale with mastery in the Guttman pattern up until and including Item 19. 

Note that student S032 has a result of ‘0’ for Item 21 despite evidence that he/she has mastered the skill up 

to and including Item 36. These random incorrect responses in the Guttman patterns for most students 

represent the random errors that may accrue due to misconceptions, misinterpretations and carelessness 

often evidenced in test papers in which capable student answer easy items incorrectly. 
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Component 2 – The ‘Zone of Uncertainty’ 

For each student there is an area in which the student ability is about the same as the item difficulty which 

is termed, for the purpose of this work, the zone of uncertainty. In this area of variable width students may 

achieve a correct or incorrect response. Random codes of ‘5’ and ‘6’ have been assigned in the ‘zone of 

uncertainty’ for which a code of ‘5’ is a correct ‘educated guess’ and a code of ‘6’ is an incorrect ‘educated 

guess’. Student S218 displays one incorrect response and one correct response. This region has been 

included in an attempt to replicate the observations of student responses in the field.  

Component 3 – Random Guessing Zone. 

The Random Guessing Zone represents the region beyond the ability of each student relative to the 

difficulty of the items that have been ordered by increasing difficulty. Random codes of ‘7’, ’8’, ’9’, and 

‘10’ have been assigned with the code ‘9’ representing a correct response. In the scored data this will result 

in credit of one mark for that item for which the student has incomplete or little knowledge. 

The Raw Score, which in the Guttman scale defines the response pattern, and in a Rasch model is a 

sufficient statistic for the estimation of student ability, is the sum of the correct answers (code 1), the correct 

Educated Guesses (code 5) and the correct Random Guesses (code 9). 

Table A.5  

Extract of Data Structure SIM1 Showing Summary Scoring Structure 

 

Table A.5 is the deconstruction of the way in which a Raw Score is computed for a range of students. 

  



271 

 

 

This table includes column RSc – the observed raw score achieved by the student, True(1) the defined True 

score defined under a Guttman structure with some random error to represent εj, a column EG(1) that 

represents the correct Educated Guesses attributed as a random code of ‘5’ in the zone of uncertainty, and 

a column RG(1) to represent the number of ‘Correct’ Random Guesses assigned to each student  through a 

code of ‘9’ in the zone beyond his/her ability. 

Hence student S031 has a raw score of 37 obtained through 35 marks from correct answers as a result of 

knowledge and two marks due to the random code ‘5’ in the ‘zone of uncertainty’. 

Student S218 has a raw score of 24, constructed of 18 correct answers, one educated guess and five ‘correct’ 

random guesses, whilst student S400 has a raw score of 14 made up entirely of ‘correct’ random guesses. 

These the data allow for observations to be made about the parameters that are generated from a Rasch 

analysis to provide a base line for models that may be discernible to identify guessing in student response 

patterns and hence by accounting for these violations of the requirements of the RM improve the quality of 

the item calibration and the accuracy of variable of interest. 

Table A.6 below is an extract of 80 sets of statistics from Simulation 1 (SIM1). The items have been 

ordered from easiest to hardest as annotated by the difficulty label (δ) in Row 1. 

Student item interaction statistics are sorted by Student ID (ID) – column 2. They include: 

1. Marked score (per item) e.g. Rows 4, 7 etc 

2. Pr(1) - the probability of a correct response for the student item interaction given the difficulty of 

the item and the estimated ability of the student 

3. Residual – the calculated difference between the observed and expected result for that 

student/item interaction. 

The Raw Score achieved (column 3) is the sum of all correct responses including correct defined guesses. 

The INIT ability estimate (β) (column 4) is used to calculate the probability of a correct response (Pr(1)). 

 Column 4 is the score including correct guesses (9) and column 5 the RS when the correct defined 

guesses are accounted for (RS - CG). 

 

The Pink shaded statistics are those interactions that have a Pr(1) less than 0.25 with the whole interaction 

shaded when the response is a “1” – derived from the defined guesses. The green shaded statistics are the 

“5”’s that have been randomly assigned in the “Zone of Uncertainty”. 
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Table A.6 Extract of SIM1 Statistics 
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A.2 Selection of item/student maps – INIT and GS analyses p = 0.5 

A.2.1 Item Maps for Simulations 2, 4, and 5  

The item/student maps for SIM1 and SIM3 are provided in the body of the study. The summary item/student 

maps shown below in Figures A.1 to A.4 provide information of alternative simulated data structures. 

Figure A.1  

SIM2 Item/Student Map for INIT Analysis and GS Analysis 

Phase 1 – Defined Guess scored as correct - 

INIT ANALYSIS 

Phase 2 - Defined Guess suppressed – 

recoded as missing – ANALYSIS GS 

SIM2. Normal 250 cases, 20 items   

 

 

 

 

 

 

Simulation 2 comprised only 20 items and 250 cases and as such was a smaller sample. This variation was 

designed to investigate the effects of sample size and test length on the identification of guessing in student 

response patterns. 

Figure A.1 shows that the test was too easy for the sample with the hardest item (20) being accessible by 

about 40% of the population. The removal of the defined guesses in the sample increased the distribution 

of the item locations and the range of ability estimates of the students with the higher-ability students 

achieving higher estimates and the lower-ability students being identified as having a lower ability 

estimate than indicated in the INIT analysis. This pattern is consistent with the outcomes of SIM1 and 

SIM3.  
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Figure A.2  

SIM4 Item/Student Map for INIT Analysis and GS Analysis 

Phase 1 – Defined Guess scored as correct - 

INIT ANALYSIS 

Phase 2 - Defined Guess suppressed – 

recoded as missing – ANALYSIS GS 

SIM4. Too easy, 400 cases, 40 items  

 

 

 

 

 

 

 

 

The design of Simulation 4 attempted to represent a positively skewed distribution which relates to a test 

which is relatively easy for the target population. This is made explicit in the item/student maps with the 

analyses item locations centred on a mean difficulty of zero. The student ability distributions are observed 

to be concentrated well above the zero point on the common scale.  

The similarity of the distributions with respect to the relative compression of the INIT scale and the wider 

distribution of the item difficulties and student ability estimates in the GS analysis was more apparent in 

this data set than that observed in SIM2. 

The suppression of the defined guesses highlighted a proportion of the lower-ability students whose ability 

is overestimated in the INIGT analysis. There are also significant proportions of higher-ability students 

with revised GS estimates beyond the highest value observed in the INIT scale  
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Simulation 5 data, as shown in Figure A.3, provide the obverse of Simulation 4 data with the test generally 

too hard for the target population resulting in a negatively skewed distribution of student ability estimates. 

A feature that was highlighted when the defined guessing has been removed (GS) was the number of items 

that are calibrated as the most difficult in the INIT analysis were re-calibrated as too hard in the GS 

analysis. (viz. items 32 to 40 in the upper right-hand region of the figure). 

The degree to which the scales were extended in the GS analysis compared to the INIT analysis when 

guessing was removed from the data was significant. Also significantly changed was the skew of the 

ability estimates of the population with lower-ability student having estimates recalibrated significantly 

lower than the INIT value. 

Figure A.3   

SIM5 Item-Student Map for INIT Analysis and GS Analysis 

Phase 1 – Defined Guess scored as correct - 

INIT ANALYSIS 

Phase 2 - Defined Guess suppressed – 

recoded as missing – ANALYSIS GS 

SIM5. Too hard, 400 cases, 40 items  
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A.2.1 Item Maps for Simulations 2, 4, and 5 including GIPp=0.5 Analyses  

The Figures below detail the implementation of the GIPp=0.5 process with the GIP3A item/student ,map for each of the data sets SIM2, SIM4 and SIM5.  

Figure A.4 

SIM2 Comparison of Item Student Maps for INIT Analysis, GS Analysis and GIP3A p=0.5 Analysis 

Defined Guess scored as 1 - INIT Analysis Defined Guess suppressed GS Analysis Identified Guess suppressed GIP3A p=0.5 Analysis 

SIM2. Normal 250 cases, 20 items    
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 Figure A.6 

SIM2 Comparison of Defined Guesses Recovered From GS by GIP p=0.5 Analysis 

Figure A.5  

SIM2 Comparison of Locations – INIT, GS and GIP3Ap=0.5 Analysis 
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Note. Figures A.4 to A.6 relate to the SIM2 data, a dataset of 20 items attempted by 250 students. Overall, the targeting of this test was moderately easy for the 

simulated students which is reflected in the observation of the relative location of the means of the student distributions shown for each analysis in Figure A.4. 

The lower co-efficient of determination in respect of efficiency of the GIP application (R2 = 0.60) in Figure A.6 compared to the GS analysis value may be a 

function of the targeting of the easy test and the fewer items in the analysis which constrains the possible distribution of item locations. The homogeneity of the 

items locations of Item 5 through Item 15 shown in Figure A.5 evidence the lack of discrimination in the difficulty of the items. Only in the most difficult items ( 

16 through 20) and the more easy items (1 through 4) was there a notable difference in the item locations for the various analyses. 
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The SIM4 data displayed in Figure A.7 were generated to show the impact of a mis-targeted test which was too easy for the target cohort. The sample size was 

defined as 400 cases to control for this variable to allow for comparison with SIM1. The GS analysis shows considerable differences in the item locations and student 

ability estimates with guessing suppressed compared to the INIT analysis, with the GIP analysis showing a wider distribution of item locations and student estimates.  

Figure A.7  

SIM4 Comparison of Item/Student Maps for INIT Analysis, GS Analysis and GIP p=0.5 Analysis 

Defined Guess scored as 1 - INIT Analysis Defined Guess suppressed - GS Analysis Identified Guess suppressed GIP3A p=0.5 Analysis 

SIM4. Students  too easy, 400 cases, 40 items   
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Figure A.8 

 SIM4 Comparison of Item Locations: INIT, GS Analysis and GIP3Ap=0.5 

Analysis 

Figure A.9 

SIM4 Comparison of Defined Guesses Recovered From GS by GIPp=0.5 Analysis 
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Figure A8 displays the difficulty location of each item for each analysis. As per SIM2 there is relatively little difference in the mid-range items. However at the 

upper end of the scale there is significant discrimination in item locations generated by the different analyses. In the easier items (items 1 through 10) there was an 

apparent consistency in the degree to which each analysis impacted on the item difficulty location. 

Figure A.9 shows a similar pattern as the previous analyses in relation to the recovery rates of the GIP procedure compared to the full accounting for defined guesses 

in the GS analysis. However, it is noted that this distribution that reflects an ‘easy’ test has a lower coefficient of determination (R2)  than that observed in better 

targeted tests SIM1 and SIM3. This statistic represents the proportion of the variance observed in the dependent variable that is explained by the independent 

variable. In the figures above the dependent variables are the item order and the dependent variables are the item difficulty and count of random guesses respectively. 

The lower R2 coefficient was also observed in SIM2 the previous easy test. 
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Figure A.10 

 SIM5 Comparison of Item Student Maps for INIT Analysis, GS Analysis and GIP Analysis  

Defined Guess scored as 1 - INIT Analysis Defined Guess suppressed GS Analysis Identified Guess suppressed GIP3A p=0.5 Analysis 
SIM5. Too hard, 400 cases, 40 items   
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The SIM5 data shown in Figure A.10 were generated to show the impact of a mis-targeted test which was too 

hard for the target cohort. The sample size was also defined as 400 cases to control for this variable to allow 

for comparison with SIM1.  

The INIT analysis appears to have a slightly bimodal distributed about the mean of zero for both items and 

students. When the defined guessing is suppressed (GS) the ‘true’ distribution is revealed in the graphic in 

the centre of Figure A.10. The bi-modal distributions were maintained however there are significant 

differences in the item locations. In the GS analysis the nine most difficult item are recalibrated as at the 

extreme of the ability range of the students, whilst the nine easiest items have item locations recalibrated 

below the lowest value of the INIT analysis. In the GS analysis the distribution of the student ability estimates 

was also far wider than the INIT analysis.  

The GIP3A analysis followed a similar pattern to the GS analysis but to a lesser extent. The distribution of 

item locations and student ability estimates were twice that observed in the INIT analysis although the most 

difficult items tended to be within the range of the higher-ability students. The distributions remained bimodal 

but with higher discriminations between the locations. 

In this data structure not only are the lower-ability students located even lower on the scale, but the more able 

students are also located relatively higher on the scale compared to SIM1. The R2 statistic shown in Figure 

A.12 below of 0.76 suggests that the GIP procedure may be more effective for hard tests than easy tests. 

An observation of interest is a common feature in each of Figures A6, A9 and A12. In each the paucity of 

items indicated by the GIP3A process in the region where the item location is less than zero, the default value 

of each analysis is noticeable. Past this point  the recovery of GIP identified guesses climbs at about the rate 

of the actual defined guesses indicated by the GS analysis.
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R² = 0.8576

R² = 0.76
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SIM5 Comparison of Defined Guesses Recovered From GS by GIPp=0.5 Analysis 

Figure A.11 

 SIM5 Comparison of Item Locations: INIT, GS Analysis and GIP3Ap=0.5 
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APPENDIX B 

Example of GIP Calculations for SIM1 

Table B.1 

SIM 1 Extract of Application of the GIP Process 
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B.1 Example of GIP Calculations for SIM1 data 

Table B.1 above shows examples of item/student interactions that fail the GIP parameters 

proposed in Section 5.4 for a selection of lower-ability students. 

Row 1 shows the item locations in logits from the INITp=0.5  analysis 

Row 2 is the item label in the original item order 

Each set of student data are presented over three rows: 1. Scores (for Student (n), 2. Pr(1) (for 

student (n) and 3. Residual (for student (n) 

Row 3 is the observed score for each item for Student S392 

Row 4 is the calculated probability of a correct response for student S392 for the specific 

item/student interaction given the difficulty location of the item and the p=0.6 ability estimate of 

the student determined from the INIT analysis. 

Row 5 is the calculated item/student residual for student S392 the observed score given the 

probability of a correct response. 

The sequence is then repeated for student S393, S394, etc. 

The highlighted cells are those for which the Residual is greater than 1.75 which also indicate the 

interactions in which the observed score is “1”- correct and the probability of a correct response 

(Pr(1)) is less than 0.25. 

The highlighted cells represent those interactions identified by the GIPp=0.6 process. 

The example provided displays the manner in which the aberrant responses are indicated. When 

these responses are suppressed, the conditioned data become more Guttman-like. 

 

 

The  
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APPENDIX C 

Analysis of Small-Scale Field Study Data 

C.1 Frequency Analysis – English version Self-Identified Guessing (SIG)  

C.1.1 Year 5 

Table C.1 below shows the relationships between the facility of each item and the self-identified logic that 

generated the student response with items ordered from most difficult to least difficult. The estimate of the 

‘True Facility’ is calculated as the difference between the observed facility and the proportion of correct 

self-identified guesses. 

Table C.11.1 

Year 5 Item Facility Rates INIT and Self-Identified Guessing (SIG) Sorted by Item Facility 

Item  Facility 

Non 

Attempts SIG* 

Correct 

SIG * 

 True 

Facility 

Incorrect 

responses 

Incorrect 

Guess 

MkM5EQ37 38.3% 1.0% 26.4% 2.3%  36.0% 60.7% 24.1% 

MkM5EQ40 46.5% 1.0% 26.1% 6.9%  39.6% 52.5% 18.5% 

MkM5EQ30 54.1% 1.0% 35.0% 9.6%  44.6% 44.9% 25.4% 

MkM5EQ18 54.8% 4.3% 34.0% 5.3%  49.5% 40.9% 28.1% 

MkM5EQ29 55.4% 0.7% 24.8% 2.6%  52.8% 43.9% 22.1% 

MkM5EQ33 56.1% 0.7% 12.2% 5.6%  50.5% 43.2% 6.6% 

MkM5EQ35 56.8% 1.7% 18.5% 5.6%  51.2% 41.6% 12.9% 

MkM5EQ31 58.7% 1.0% 23.8% 4.0%  54.8% 40.3% 19.5% 

MkM5EQ39 60.1% 2.0% 23.1% 6.9%  53.1% 38.0% 16.2% 

MkM5EQ32 62.7% 2.3% 19.1% 5.3%  57.4% 35.0% 13.5% 

MkM5EQ19 64.0% 1.3% 13.5% 6.3%  57.8% 34.7% 7.3% 

MkM5EQ17 69.0% 3.6% 28.4% 10.6%  58.4% 27.4% 17.8% 

MkM5EQ21 69.3% 0.7% 9.6% 3.3%  66.0% 30.0% 6.3% 

MkM5EQ36 69.3% 1.3% 16.8% 6.9%  62.4% 29.4% 9.9% 

MkM5EQ38 71.3% 0.3% 14.9% 3.0%  68.3% 28.4% 11.9% 

MkM5EQ34 71.6% 1.0% 18.2% 5.3%  66.3% 27.4% 12.9% 

MkM5EQ24 72.9% 0.0% 4.0% 0.3%  72.6% 27.1% 3.6% 

MkM5EQ28 72.9% 1.0% 15.5% 4.3%  68.6% 26.1% 11.2% 

MkM5EQ22 73.3% 1.3% 9.2% 3.0%  70.3% 25.4% 5.6% 

MkM5EQ27 73.6% 0.0% 11.9% 3.6%  70.0% 26.4% 8.3% 

MkM5EQ15 73.6% 0.7% 12.9% 5.6%  68.0% 25.7% 7.3% 

MkM5EQ13 74.9% 1.7% 15.5% 5.9%  69.0% 23.4% 9.6% 

MkM5EQ12 75.2% 1.7% 17.2% 7.9%  67.3% 23.1% 8.6% 

MkM5EQ23 78.5% 0.7% 6.6% 4.0%  74.6% 20.8% 2.6% 

MkM5EQ09 80.5% 0.7% 4.3% 1.3%  79.2% 18.8% 3.0% 

MkM5EQ26 83.2% 2.6% 6.9% 4.0%  79.2% 14.2% 3.0% 

MkM5EQ16 84.5% 0.7% 12.2% 4.3%  80.2% 14.9% 7.6% 

MkM5EQ25 86.1% 2.0% 4.6% 0.7%  85.5% 11.9% 4.0% 

MkM5EQ20 86.5% 1.3% 4.6% 2.0%  84.5% 12.2% 2.3% 

MkM5EQ11 87.1% 0.0% 5.9% 3.6%  83.5% 12.9% 2.3% 

MkM5EQ14 87.5% 2.6% 4.6% 2.0%  85.5% 9.9% 2.6% 

MkM5EQ05 89.8% 2.0% 10.6% 5.9%  83.8% 8.3% 4.6% 

MkM5EQ02 90.1% 1.3% 5.9% 1.7%  88.4% 8.6% 4.3% 

MkM5EQ06 91.4% 0.7% 3.0% 1.7%  89.8% 7.9% 1.3% 

MkM5EQ10 92.4% 0.3% 4.6% 2.0%  90.4% 7.3% 2.6% 

MkM5EQ04 92.7% 0.0% 2.3% 0.3%  92.4% 7.3% 2.0% 

MkM5EQ08 94.7% 0.0% 3.6% 3.0%  91.7% 5.3% 0.7% 

MkM5EQ03 95.4% 0.7% 2.3% 2.0%  93.4% 4.0% 0.3% 

MkM5EQ07 98.3% 0.3% 1.3% 0.7%  97.7% 1.3% 0.7% 

MkM5EQ01 98.7% 0.7% 0.7% 0.7%  98.0% 0.7% 0.0% 

* the column ‘SIGreports the proportion of self-identified guesses for each item and the column Correct 
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          17.2%                             33.3%                              10.2%                             38.3% 

SIG reports the percentage of responses that are self-identified as a guess AND are a correct response.  

Table C.1 of Year 5 shows that in Item 37 (the first item in the table) approximately 
1

10
 (2.3 of 26.4) of the 

reported-attempted-guessed-items were correct, whilst in Item 40 about 
1

4
 (6.9 of 26.1) of the self-reported 

guesses were correct.  

Item 37 was the hardest item being correctly answered by 38.3% of the 303 students. One percent (3 

students) did not attempt the item. Of the 300 students who attempted the item, 26.4% (79 students) 

indicated that they had guessed the response and seven (2.3%) of these students guessed correctly. Of the 

60.7% of students who answered incorrectly about one-third indicated that the response was a guess. Hence 

approximately two-thirds applied an incorrect logic in responding to the item. 

Item (37) is presented below in Figure 6.2, together with its facility annotated below each distractor. 

Figure C.1 

Year 5 Item 37 

 

 
 

The response pattern shows a definite logic in the incorrect distractors which have attracted a proportion of 

the students. Distractor B is strongly endorsed and the logic that generates this response easily unpacked. 

These data support the contention that not all incorrect responses are random guesses. Interrogation of the 

other items in Table 6.1 supports that contention. This observation is elaborated in tables and commentary 

that follow although there is no attempt within this study to further investigate the difference between 

random guesses and guesses from other strategies that may be employed by the students.   

C.1.2 Year 7 

Table C.2 shows the relevant statistic from Year 7 in the format presented for Year 5 students.  

An interesting feature of the table is the relatively high non-attempt rates for the more challenging items. 

This result was surprising as there was no penalty in guessing and the fact that students were encouraged 

to guess and indicate the ‘type’ of guess using the coloured marker. Students were requested to indicate 

when they had completed the test during the administration. There were no reports of students having 

insufficient time to complete the test. 
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Table C.11.2 

Year 7 Item Facility Rates INIT and Self-Identified Guessing (SIG) Sorted by Difficulty 

Item  Facility 

Non 

Attempts Guesses* 

Correct 

Guess* 

True 

Facility 

Incorrect 

Responses 

Incorrect 

Guess 

M7EQ42 23.3% 43.9% 5.3% 2.1% 21.2% 32.8% 3.2% 

M7EQ28 27.0% 13.2% 8.5% 5.3% 21.7% 59.8% 3.2% 

M7EQ43 27.6% 41.8% 7.9% 2.1% 25.5% 30.6% 5.8% 

M7EQ29 28.6% 17.5% 39.7% 10.1% 18.5% 53.9% 29.6% 

M7EQ41 29.7% 40.2% 19.0% 9.5% 20.2% 30.1% 9.5% 

M7EQ44 33.9% 40.7% 21.2% 11.1% 22.8% 25.3% 10.1% 

M7EQ34 39.2% 23.8% 6.9% 3.7% 35.5% 37.0% 3.2% 

M7EQ37 42.9% 30.7% 23.3% 13.8% 29.2% 26.4% 9.5% 

M7EQ31 44.0% 15.3% 24.9% 4.8% 39.2% 40.7% 20.1% 

M7EQ32 44.5% 20.6% 36.5% 15.9% 28.6% 34.9% 20.6% 

M7EQ36 45.0% 29.1% 11.1% 4.8% 40.3% 25.9% 6.3% 

M7EQ40 45.1% 36.5% 10.6% 4.8% 40.3% 18.4% 5.8% 

M7EQ38 45.6% 34.9% 24.9% 6.9% 38.7% 19.5% 18.0% 

M7EQ35 48.2% 29.1% 17.5% 7.4% 40.8% 22.7% 10.1% 

M7EQ39 50.9% 34.4% 13.2% 6.9% 44.0% 14.7% 6.3% 

M7EQ30 58.2% 14.3% 33.9% 14.3% 44.0% 27.5% 19.6% 

M7EQ26 61.4% 10.6% 38.1% 18.5% 42.9% 28.0% 19.6% 

M7EQ13 61.9% 2.1% 18.0% 9.0% 52.9% 36.0% 9.0% 

M7EQ33 64.1% 23.3% 6.9% 3.7% 60.4% 12.6% 3.2% 

M7EQ09 67.7% 6.9% 27.5% 8.5% 59.3% 25.4% 19.0% 

M7EQ25 70.4% 7.4% 19.0% 10.1% 60.3% 22.2% 9.0% 

M7EQ16 71.4% 4.2% 13.8% 5.8% 65.6% 24.3% 7.9% 

M7EQ10 72.0% 1.1% 8.5% 5.8% 66.1% 27.0% 2.6% 

M7EQ21 72.5% 3.7% 9.5% 4.8% 67.7% 23.8% 4.8% 

M7EQ24 73.6% 3.2% 16.4% 8.5% 65.1% 23.3% 7.9% 

M7EQ27 74.6% 10.1% 10.1% 4.2% 70.4% 15.3% 5.8% 

M7EQ14 75.1% 0.0% 14.8% 2.6% 72.5% 24.9% 12.2% 

M7EQ19 76.7% 2.6% 16.9% 2.6% 74.1% 20.6% 14.3% 

M7EQ17 78.8% 0.0% 10.6% 3.7% 75.1% 21.2% 6.9% 

M7EQ07 78.8% 1.1% 11.6% 2.6% 76.2% 20.1% 9.0% 

M7EQ22 78.9% 5.8% 6.9% 3.2% 75.7% 15.3% 3.7% 

M7EQ18 79.9% 2.1% 11.6% 7.4% 72.5% 18.0% 4.2% 

M7EQ05 83.1% 0.0% 6.3% 4.8% 78.3% 16.9% 1.6% 

M7EQ15 83.6% 1.1% 5.8% 4.8% 78.8% 15.3% 1.1% 

M7EQ23 87.8% 2.1% 10.6% 7.4% 80.4% 10.0% 3.2% 

M7EQ06 88.9% 1.1% 7.4% 5.8% 83.1% 10.0% 1.6% 

M7EQ20 91.0% 2.1% 7.9% 6.9% 84.1% 6.9% 1.1% 

M7EQ03 91.5% 2.1% 2.6% 2.6% 88.9% 6.3% 0.0% 

M7EQ11 92.6% 1.1% 9.0% 5.3% 87.3% 6.3% 3.7% 

M7EQ12 93.1% 1.1% 2.1% 1.6% 91.5% 5.8% 0.5% 

M7EQ01 94.7% 3.2% 1.1% 1.1% 93.7% 2.1% 0.0% 

M7EQ02 95.2% 3.7% 2.1% 2.1% 93.1% 1.1% 0.0% 

M7EQ04 97.9% 0.0% 0.0% 0.0% 97.9% 2.1% 0.0% 

M7EQ08 97.9% 0.0% 4.2% 3.2% 94.7% 2.1% 1.1% 
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C.2 Extracts of GIP indicated Guessed Items for Selected Students 

C.2.1 Indicating Probable Guessing in the Year 5 data  

A selection of student responses is provided in Tables C.3, C.4, C.5 and C.6 that follow to demonstrate the relationships between student responses, the proposed GIP 

parameters and the self-indicated guessing for differing ability levels.   

Table C.3 

Response Pattern for High-range Ability Year 5 Students Ordered by Item Difficulty Showing the Self-identified Response Mode (G, Y or P) 

 

Table C3 demonstrates the challenge of the GIP process to indicate probable guesses among the higher-ability students. The iem/student intercations highlighted in 

Yellow indicate the items to which the student indicated they did not know the answer but had some idea – an educated guess. Student G5E204 has a combination of 

correct and incorrect Yellow (Y) coded responses. However in eaach case the Pr(1) row – the probability of  a correct response for a student of that ability estimate is 

greater than 0.25, and the residual values are all less than 1.75 and hence these reponses do not ‘fail’ the GIP parameters. 

Student G5E007 has two self indicated guesses highlighted in Pink (P) which were correct answers. However neither of these are indicated by the GIP procedure due 

to the ability of the student interaction with items of the calculated difficulty. In both cases the calculated values of the probability of a correct response (Pr(1)) and the 

item/student residual do not fail the proposed GIP parameters. 
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C.2.2 Indicating Probable Guessing in the Year 7 data  

A similar set of analyses were conducted with the Year 7 data. Table C.4 below provides and extract of the response patterns and GIP outcomes for the lower-ability students. 

Table C.4 

Response Pattern for Low-ability Year 7 Students Ordered by Item Difficulty Including Response Mode (G, Y, or P) (p = 0.5) 

 

Table C.4 is presented in the same format as the Year 5 data with the first row showing the item difficulties ordered by difficulty from easiest to hardest. The second row 

records the item label. The third row (1. Score) records the scored responses for student G7E188. The next row 2.(Pr(1)) records the probability that a student of ability 

estimate -1.54 (the INIT estimate of student G7E188) would achieve a correct response to each item in the test. In all but the first 12 items the probability of a correct 

response to items of increasing difficulty in this test is less that 0.25; highlighted in red text. The next row (3. Residual) records the student/item residual for the specific 

response recorded for each item. For Student 188 the values greater than 1.75 have been highlighted in pink. The next row (4. Mode) shows the student’s self-indication 

for each response to each item and it is noted that student 188 knows (G) the answer to every item. The pattern of rows 3 through 6 is then repeated for each student.  

Table C.5 is an extract of the six least-able students (by result) in the Year 7 test. The cells shaded in pink show items that were indicated by the GIP procedure (Score = 

1 AND Pr(1) < 0.25 AND Residual >1.75) when the ‘p’ value for success in an item is set at p = 0.5. The table shows that few cases were indicated in the lower-ability 

group and the mid-range group and no cases indicated in the most-able group of students. 
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Table C.5 

 Response Pattern for Low-ability Year 7 Students Ordered by Item Difficulty Including Response Mode (G, Y, or P) (p = 0.6) 

 

Table C.6 

Response Pattern for Mid-range Ability Year 7 Students Ordered by Item Difficulty Including Response Mode (G, Y, or P) 

 

 

δ -4.15 -2.94 -2.764 -2.407 -1.6 -1.504 -1.345 -1.341 -1.18 -1.075 -0.489 -0.447 -0.395 -0.373 -0.263 -0.226 -0.096 -0.028 0.014 0.055 0.076 0.096 0.106 0.115 0.279 0.315 0.316 0.491 0.635 0.67 0.69 0.704 0.834 0.953 1.072 1.259 1.287 1.455 1.469 1.507 1.706 1.968 2.154 2.394

Criteria Seq ID β βp0.6 GM7EQ02 GM7EQ08 GM7EQ04 GM7EQ01 GM7EQ11 GM7EQ12 GM7EQ20 GM7EQ03 GM7EQ06 GM7EQ23 GM7EQ15 GM7EQ05 GM7EQ27 GM7EQ22 GM7EQ18 GM7EQ33 GM7EQ07 GM7EQ17 GM7EQ19 GM7EQ14 GM7EQ24 GM7EQ21 GM7EQ16 GM7EQ39 GM7EQ10 GM7EQ25 GM7EQ09 GM7EQ40 GM7EQ38 GM7EQ26 GM7EQ35 GM7EQ30 GM7EQ13 GM7EQ36 GM7EQ37 GM7EQ44 GM7EQ32 GM7EQ34 GM7EQ31 GM7EQ41 GM7EQ43 GM7EQ42 GM7EQ28 GM7EQ29

1. Score 188 G7E188 -1.54 -1.941 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0

2. Pr(1) 188 G7E188 -1.54 -1.941 0.901 0.731 0.695 0.614 0.416 0.392 0.355 0.354 0.318 0.296 0.190 0.183 0.176 0.173 0.157 0.153 0.136 0.129 0.124 0.120 0.117 0.115 0.114 0.113 0.098 0.095 0.095 0.081 0.071 0.068 0.067 0.066 0.059 0.052 0.047 0.039 0.038 0.032 0.032 0.031 0.025 0.020 0.016 0.013

3. Residual 188 G7E188 -1.54 -1.941 -3.018 -1.648 -1.509 0.792 -0.843 -0.804 -0.742 -0.741 -0.684 1.542 -0.484 -0.474 -0.462 -0.457 -0.432 2.357 2.516 2.603 -0.376 -0.369 -0.365 -0.361 -0.359 2.795 -0.330 -0.324 -0.324 3.374 -0.276 -0.271 3.727 -0.266 -0.250 -0.235 -0.222 -0.202 -0.199 -0.183 5.501 -0.178 -0.161 7.060 -0.129 -0.114

4. mode 188 G7E188 -1.54 -1.941 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G

1. Score 28 G7E028 -1.37 -1.771 1 1 1 1 9 9 9 1 1 1 9 1 9 9 9 9 9 1 9 1 9 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9

2. Pr(1) 28 G7E028 -1.37 -1.771 0.915 0.763 0.730 0.654 0.457 0.434 0.395 0.394 0.356 0.333 0.217 0.210 0.202 0.198 0.181 0.176 0.158 0.149 0.144 0.139 0.136 0.134 0.133 0.132 0.114 0.110 0.110 0.094 0.083 0.080 0.079 0.078 0.069 0.062 0.055 0.046 0.045 0.038 0.038 0.036 0.030 0.023 0.019 0.015

3. Residual 28 G7E028 -1.37 -1.771 0.304 0.557 0.609 0.728 -0.918 -0.875 -0.808 1.240 1.344 1.416 -0.527 1.939 -0.503 -0.497 -0.470 -0.462 -0.433 2.390 -0.410 2.492 -0.397 -0.393 -0.391 -0.389 -0.359 -0.352 -0.352 -0.323 -0.300 -0.295 -0.292 -0.290 3.678 -0.256 -0.241 -0.220 -0.217 -0.199 -0.198 -0.194 -0.176 -0.154 -0.141 -0.125

4. mode 28 G7E028 -1.37 -1.771 G G G G 9 9 9 G G G 9 G 9 9 9 9 9 G 9 G 9 9 9 9 9 9 9 9 9 9 9 9 Y 9 9 9 9 9 9 9 9 9 9 9

1. Score 30 G7E030 -1.37 -1.771 1 1 1 1 1 1 1 1 0 0 1 0 9 9 0 9 1 1 0 0 9 9 0 9 0 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9

2. Pr(1) 30 G7E030 -1.37 -1.771 0.915 0.763 0.730 0.654 0.457 0.434 0.395 0.394 0.356 0.333 0.217 0.210 0.202 0.198 0.181 0.176 0.158 0.149 0.144 0.139 0.136 0.134 0.133 0.132 0.114 0.110 0.110 0.094 0.083 0.080 0.079 0.078 0.069 0.062 0.055 0.046 0.045 0.038 0.038 0.036 0.030 0.023 0.019 0.015

3. Residual 30 G7E030 -1.37 -1.771 0.304 0.557 0.609 0.728 1.089 1.143 1.237 1.240 -0.744 -0.706 1.898 -0.516 -0.503 -0.497 -0.470 -0.462 2.311 2.390 -0.410 -0.401 -0.397 -0.393 -0.391 -0.389 -0.359 -0.352 -0.352 -0.323 -0.300 -0.295 -0.292 -0.290 -0.272 -0.256 -0.241 -0.220 -0.217 -0.199 -0.198 -0.194 -0.176 -0.154 -0.141 -0.125

4. mode 30 G7E030 -1.37 -1.771 G G G G G G G G G G G G 9 9 Y 9 G P P P 9 9 G 9 G 9 9 9 9 9 9 9 G 9 9 9 9 9 9 9 9 9 9 9

1. Score 133 G7E133 -1.37 -1.771 1 1 1 1 9 9 9 1 1 1 9 1 9 9 9 9 9 1 9 1 0 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9

2. Pr(1) 133 G7E133 -1.37 -1.771 0.915 0.763 0.730 0.654 0.457 0.434 0.395 0.394 0.356 0.333 0.217 0.210 0.202 0.198 0.181 0.176 0.158 0.149 0.144 0.139 0.136 0.134 0.133 0.132 0.114 0.110 0.110 0.094 0.083 0.080 0.079 0.078 0.069 0.062 0.055 0.046 0.045 0.038 0.038 0.036 0.030 0.023 0.019 0.015

3. Residual 133 G7E133 -1.37 -1.771 0.304 0.557 0.609 0.728 -0.918 -0.875 -0.808 1.240 1.344 1.416 -0.527 1.939 -0.503 -0.497 -0.470 -0.462 -0.433 2.390 -0.410 2.492 -0.397 -0.393 -0.391 -0.389 -0.359 -0.352 -0.352 -0.323 -0.300 -0.295 -0.292 -0.290 3.678 -0.256 -0.241 -0.220 -0.217 -0.199 -0.198 -0.194 -0.176 -0.154 -0.141 -0.125

4. mode 133 G7E133 -1.37 -1.771 G G G G 9 9 9 G G G 9 G 9 9 9 9 9 G 9 P P 9 9 9 9 9 9 9 9 9 9 9 Y 9 9 9 9 9 9 9 9 9 9 9

1. Score 115 G7E115 -1.22 -1.621 1 1 1 1 1 1 1 1 0 0 1 0 9 9 0 9 1 1 0 0 9 9 0 1 0 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9

2. Pr(1) 115 G7E115 -1.22 -1.621 0.926 0.789 0.758 0.687 0.495 0.471 0.431 0.430 0.392 0.367 0.244 0.236 0.227 0.223 0.205 0.199 0.179 0.169 0.163 0.158 0.155 0.152 0.151 0.150 0.130 0.126 0.126 0.108 0.095 0.092 0.090 0.089 0.079 0.071 0.063 0.053 0.052 0.044 0.044 0.042 0.035 0.027 0.022 0.018

3. Residual 115 G7E115 -1.22 -1.621 0.282 0.517 0.565 0.675 1.011 1.060 1.148 1.150 -0.802 -0.761 1.761 -0.556 -0.542 -0.536 -0.507 -0.498 2.144 2.218 -0.442 -0.433 -0.428 -0.424 -0.422 2.382 -0.387 -0.380 -0.380 -0.348 -0.324 -0.318 -0.315 -0.313 -0.293 -0.276 -0.260 -0.237 -0.234 -0.215 -0.213 -0.209 -0.189 -0.166 -0.151 -0.134

4. mode 115 G7E115 -1.22 -1.621 G G G G G G G G G G G G 9 9 Y 9 G P P P 9 9 G P G 9 9 9 9 9 9 9 G 9 9 9 9 9 9 9 9 9 9 9

1. Score 175 G7E175 -1.06 -1.461 1 1 1 1 1 1 1 1 1 1 0 0 9 9 1 9 0 0 1 0 1 0 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2. Pr(1) 175 G7E175 -1.06 -1.461 0.936 0.814 0.786 0.720 0.535 0.511 0.471 0.470 0.430 0.405 0.274 0.266 0.256 0.252 0.232 0.225 0.203 0.193 0.186 0.180 0.177 0.174 0.173 0.171 0.149 0.145 0.145 0.124 0.109 0.106 0.104 0.103 0.092 0.082 0.074 0.062 0.060 0.051 0.051 0.049 0.040 0.031 0.026 0.021

3. Residual 175 G7E175 -1.06 -1.461 0.261 0.477 0.521 0.623 0.933 0.979 1.060 1.062 1.151 1.213 -0.615 -0.602 -0.587 -0.580 1.820 -0.539 -0.505 -0.488 2.091 -0.469 2.157 -0.459 -0.457 -0.455 -0.419 -0.411 -0.411 -0.377 -0.351 -0.345 -0.341 -0.339 -0.317 -0.299 -0.282 -0.257 -0.253 -0.233 -0.231 -0.227 -0.205 -0.180 -0.164 -0.146

4. mode 175 G7E175 -1.06 -1.461 G Y G G G G Y G Y G G G 9 9 Y 9 Y Y G P P G 9 9 Y 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
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In reviewing the items indicated by the GIP process when a ‘p’ value of 0.5 was applied to the student ability estimate, a total of 101 cases were identified 

as probable guesses. Of these, 36 cases were identified by the student as ‘knowing’ the response (Green). Deconstructing this statistics by ability group, 25 

of the 46 (54%) cases indicated in the lowest quartile were not self-identified by coloured markers as guesses. Of the 31 (35%) cases indicated by the GIP 

process, 11 were not self identified as guesses in the next lowest abiliilty quartile.  In the next most-able quartile all of the 23 (0%) GIP indicated probable 

guesses were also self-identified guesses. In the most-able ability group no cases were indicated as probable guesses by the GIP procedure. 

Table C.6 shows the impact on the lower-ability students with an additional 14 item/student interactions being indicated by the GIP process as probable 

guesses when a ‘p’ value of 0.6 was applied to the ability estimate of the initial analysis. It was noted that in only two cases were items indicated by the GIP 

procedure which the student had not indicated as a random guess (7 instances) or a partial knowledge guess (5 cases). 

The implementation of the p =0.6 constraint on the student ability estimate increased the number of items indicated by the protocol by 141 (223 vs 82) cases. 

In a pattern similar to that shown from the p = 0.5 analysis the majority of indicated guessing cases were determined in the lowest ability quartile with 131 

cases, of which 81 (62%) did not self identify as a guess, the GIP indicated item/student result as a guess. In the next least-able quartile 16 of the 62 (25%) 

GIP indicated probable guesses were  not self-identified. In the next most-able ability quartile the GIP prcedure indicated 29 cases of whom ALL were self-

identified a either a partial guess OR a random guess. In the most-able ability group no cases were indicated as probable guesses.
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C.3 Arabic Versions of the Tests 

C.3.1 Analyses of Facility Rates of Year 5 Items 

Table C.7 highlights the relationship between the facility rates of the items in which there was a high 

correlation between the facilities of the Arabic and English versions of the test items for the various 

analyses. Table C.7 also annotates a plausible reason why these relationships may or may not be apparent. 

Table C.7 Year 5 Comparison of Item Facility by Analysis Phase 

 

  

Year 5 

Mathematics 
English Arabic Language demand 

Seq Item Label Original* INIT SIG GIPp0.6 INIT SIG GIPp0.6  
1 Math5Q01 92% 99% 99% 99% 77% 26% 78%   

2 Math5Q02 89% 91% 91% 91% 32% 23% 32%   

3 Math5Q03 
85% 96% 96% 96% 96% 97% 96% 

Algorithm – Non-language 

dependent 

4 Math5Q04 84% 93% 93% 92% 27% 1% 27%   

5 Math5Q05 76% 92% 91% 91% 11% 1% 8%   

6 Math5Q06 75% 92% 92% 92% 75% 71% 74% Image interpretation 

7 Math5Q07 71% 99% 99% 99% 58% 26% 60%   

8 Math5Q08 68% 95% 95% 95% 30% 2% 31%   

9 Math5Q09 64% 81% 81% 80% 48% 30% 45%   

10 Math5Q10 60% 93% 93% 92% 33% 16% 32%   

11 Math5Q11 60% 87% 87% 87% 41% 10% 39%   

12 Math5Q12 59% 77% 74% 75% 37% 2% 37%   

13 Math5Q13 59% 76% 75% 75% 20% 10% 18%   

14 Math5Q14 58% 90% 90% 89% 37% 1% 32%   

15 Math5Q15 58% 73% 72% 73% 57% 46% 55% Image interpretation 

16 Math5Q16 57% 85% 84% 84% 55% 17% 53% Image interpretation 

17 Math5Q17 54% 72% 68% 70% 57% 39% 57%   

18 Math5Q18 54% 57% 55% 53% 24% 2% 23%   

19 Math5Q19 52% 65% 63% 62% 15% 2% 13%   

20 Math5Q20 51% 88% 87% 87% 12% 1% 10%   

21 Math5Q21 50% 70% 69% 68% 9% * 8%   

22 Math5Q22 49% 74% 73% 73% 32% 1% 34%   

23 Math5Q23 46% 79% 78% 78% 28% 17% 26%   

24 Math5Q24 45% 73% 73% 72% 65% 63% 63% Image interpretation 

25 Math5Q25 45% 88% 88% 87% 15% 2% 13%   

26 Math5Q26 44% 85% 85% 85% 43% 22% 38%   

27 Math5Q27 43% 74% 73% 72% 33% 1% 32%   

28 Math5Q28 43% 74% 72% 72% 28% 3% 25%   

29 Math5Q29 42% 56% 55% 53% 53% 39% 50%   

30 Math5Q30 41% 55% 50% 51% 32% 13% 32% Image interpretation 

31 Math5Q31 38% 59% 58% 57% 40% 26% 38%   

32 Math5Q32 
37% 64% 62% 62% 58% 55% 57% 

Algorithm – Non-language 

dependent 

33 Math5Q33 36% 56% 54% 51% 33% 3% 33%   

34 Math5Q34 36% 72% 71% 71% 8% * 7%   

35 Math5Q35 35% 58% 55% 53% 66% 52% 64% Equation interpretation 

36 Math5Q36 34% 70% 68% 68% 7% * 7%   

37 Math5Q37 32% 39% 37% 32% 13% 1% 13%   

38 Math5Q38 31% 72% 71% 70% 35% 10% 33%   

39 Math5Q39 29% 61% 58% 57% 31% 2% 30%   

40 Math5Q40 26% 47% 43% 41% 42% 26% 40% Image interpretation 
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C.3.2 Relative Performance of Selected Items – Arabic and English Facility Rates 

Table C.8 shows a breakdown of the results of students have responded to the Arabic version of the test 

together with the facility rates achieved in both the Arabic and the English implementations of the test.  

Table C.8 

Year 5 Comparison of Item Facility INIT Analysis of English and Arabic Versions of Test  

Maths5 Baseline stats INIT analysis outcomes Response mode correct Arabic* 

Grade 5 

Item no 

Facility 

Rate 
Disc 

Language 

Dependency 

English 

Version 

Arabic 

Version 

Known 

Answer 

Guessed 

Informed 

Guessed 

Random 

1 88.7% 0.32 Arabic 99.0% 78.2% 9.3% 54.9% 35.9% 

2 85.5% 0.33 Arabic Clued 91.0% 32.0% 60.8% 25.8% 13.4% 

3 84.4% 0.33 English Equivalent 96.0% 95.4% 95.5% 3.5% 1.0% 

4 92.2% 0.27 Arabic 92.0% 26.4% 3.8% 13.8% 82.5% 

5 75.4% 0.42 Arabic 91.0% 9.6% 6.9% 6.9% 86.2% 

6 76.5% 0.29 Arabic Clued 92.0% 75.6% 76.0% 19.2% 4.8% 

7 64.0% 0.44 Arabic Clued 99.0% 59.1% 22.9% 24.0% 53.1% 

8 67.9% 0.47 Arabic 95.0% 30.7% 5.4% 34.4% 60.2% 

9 63.5% 0.41 Arabic 80.0% 47.2% 46.2% 34.3% 19.6% 

10 60.3% 0.53 Arabic Clued 92.0% 32.3% 37.8% 40.8% 21.4% 

11 60.0% 0.51 Arabic 87.0% 40.6% 15.4% 61.8% 22.8% 

12 59.3% 0.43 Arabic 76.0% 38.0% 2.6% 18.3% 79.1% 

13 59.0% 0.45 Arabic Clued 75.0% 19.8% 45.0% 41.7% 13.3% 

14 58.0% 0.45 Arabic 89.0% 36.3% 0.9% 14.5% 84.5% 

15 57.9% 0.42 Arabic Clued 73.0% 55.8% 63.9% 19.5% 16.6% 

16 57.2% 0.49 Arabic Clued 84.0% 52.8% 17.5% 37.5% 45.0% 

17 54.4% 0.20 Arabic 71.0% 56.8% 45.9% 31.4% 22.7% 

18 54.2% 0.39 Arabic 56.0% 22.8% 7.2% 15.9% 76.8% 

19 50.9% 0.43 Arabic 64.0% 14.5% 13.6% 38.6% 47.7% 

20 52.1% 0.52 Arabic 87.0% 10.6% 6.3% 18.8% 75.0% 

21 50.1% 0.44 Arabic 69.0% 8.9% 3.7% 14.8% 81.5% 

22 48.8% 0.45 Arabic Clued 73.0% 34.0% 1.0% 17.5% 81.6% 

23 45.6% 0.38 Arabic 78.0% 27.7% 51.2% 31.0% 17.9% 

24 45.4% 0.46 English Equivalent 72.0% 66.0% 84.5% 13.5% 2.0% 

25 44.8% 0.06 Arabic 87.0% 12.5% 10.5% 21.1% 68.4% 

26 28.8% 0.39 Arabic Clued 85.0% 41.9% 37.8% 20.5% 41.7% 

27 43.5% 0.36 Arabic 73.0% 32.0% 2.1% 6.2% 91.8% 

28 46.5% 0.40 Arabic 73.0% 27.7% 7.1% 25.0% 67.9% 

29 41.2% 0.42 Arabic Clued 54.0% 50.8% 58.4% 26.0% 15.6% 

30 42.0% 0.38 English Equivalent 53.0% 31.0% 30.9% 46.8% 22.3% 

31 37.1% 0.45 Arabic 58.0% 38.9% 52.5% 27.1% 20.3% 

32 36.1% 0.32 English Equivalent 63.0% 57.1% 83.8% 8.7% 7.5% 

33 37.8% 0.22 Arabic 55.0% 33.0% 5.0% 20.0% 75.0% 

34 35.8% 0.41 Arabic 71.0% 7.6% 4.3% 21.7% 73.9% 

35 35.3% 0.39 Arabic Clued 56.0% 65.0% 56.3% 25.4% 18.3% 

36 28.8% 0.11 Arabic Clued 69.0% 6.6% 5.0% 0.0% 95.0% 

37 30.5% 0.33 Arabic 36.0% 12.9% 5.1% 15.4% 79.5% 

38 34.7% 0.31 Arabic 70.0% 35.0% 18.9% 33.0% 48.1% 

39 28.8% 0.11 Arabic Clued 60.0% 31.4% 4.2% 32.6% 63.2% 

40 25.8% 0.32 Arabic Clued 45.0% 39.9% 49.6% 37.2% 13.2% 

• The statistics shown reflect the response mode for correct answers in the Arabic version of the test 
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Table C.8 shows that in the items that were not totally language dependent the facility rate was due mainly 

to ‘known‘ responses or ’informed guess‘ responses. This observation supported the conclusion that 

students made genuine attempts at each of the items encountered in the Arabic version of the test. 

Figure C.2 shows an item with a familiar algorithm where the language does not appear to impede students’ 

ability to identify the problem and solve it irrespective of the language issue. 

The items below have been selected to show the relative facility rates (percent correct) of the cohorts in the 

Arabic versions of the test session (completed first in all cases) and the English versions of the test. The 

purpose of showing these items is to demonstrate the relationship between the capacity of the students to 

attempt the Arabic items and to gauge the impact of language in students’ ability to interpret the content 

and correctly answer the English version of the item. 

C.3.3 Observations of Responses for Selected Year 5 Items  

These observations provided confidence that the analyses conducted on these data were grounded in 

genuine attempts to complete the test, not simply spurious random data. 

Figure C.2 

Year 5 Math5Q03 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

3 Math5Q03 96% 96% 96% 96% 97% 96% 

 

Figure C.3 shows an item (Item Math5Q08) in which the responses were significantly impacted by the 

language barrier. The difference between the English and Arabic facility rates was noticeable. Figure C.3 

shows the Arabic version of the same item (Item Math5Q08) in which the English version had a facility 

rate of 95%. However the Arabic version is uninterpretable by the assessed students and results with a 30% 

success rate; about the expected value of a random guess in the INIT and GIP analyses. When the self-

identified guesses were excluded in the SIG analysis only 2% of the candidature have answered the item 

correctly. Six students indicated that they knew the answer. All six of these students had some Arabic 

language knowledge. This item highlights the impact of language on the student’s capacity to interpret the 

demands of a relatively simple mathematics concept as demonstrated by the English version facility. 
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Figure C.3 

Year 5 Math5Q08 – English Version and Arabic Version 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

8 Math5Q08 95% 95% 95% 30% 2% 31% 

 

The differences between the facility rates in the Arabic versions due to self-identified guessing are more 

explicit in Tables 6.21 in the Year 5 results – and Table 6.28 –in the case of the Year 7 results. In the section 

that follows a variety of items have been selected to demonstrate those in which language appears less of 

an issue. 

Year 5 Mathematics Math5Q06 asked students which shape filled the image to complete the square. 

Figure C.4 

Year 5 Math5Q06 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

6 Math5Q06 92% 92% 92% 75% 71% 74% 

 

Figure C.4 shows the Arabic version of the item which was administered before the English version. When 

presented with the Arabic version, 75% of the students responded correctly indicating that for this item, 

language may be a barrier to some, but not the majority when responding to an item with a familiar context.  

When presented with the English equivalent, 92% of the same cohort responded correctly.  
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Figure C.5 

Year 5 Math5Q15 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

15 Math5Q15 73% 72% 73% 57% 46% 55% 

 

Figure C.5 shows relatively similar proportions of students successfully answering the item in both the 

Arabic and English versions. For those more-able students the language does not appear to be an issue. The 

variation in the facility of English INIT analysis with Arabic INIT analysis is a function of the increased 

number of non-attempts in the Arabic version relative to the English version. 

Figure C.6 shows a similar pattern with the task demand relatively intuitive and language independent. 

Figure C.6 

Year 5 Math5Q24 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

24 Math5Q24 73% 73% 73% 65% 63% 63% 

 

Figures C.7 and C.8 show varying degrees of the impact of language on the capacity of students to respond 

to these two items. For Item Math5Q28 the English version is relatively easy. The vast majority of students 

responded to the Arabic version with a self-identified random guess. The Arabic version of the item is 

presented below in Figure C.8. 
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Item Math5Q29 is interesting as there are few clues in the Arabic version, although the format is probably 

familiar to Year 5 Students. The English and Arabic INIT facility rates are surprisingly similar. 

Figure C.7 

Year 5 Math5Q28 and Math5Q29- English Versions 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

28 Math5Q28 73% 73% 73% 28% 3% 25% 

29 Math5Q29 56% 55% 53% 53% 39% 50% 

 

Figure C.8 

Year 5 Math5Q28 and Math5Q29 – Arabic versions

 

 

In the two figures below only the Arabic versions of the items are displayed. This is because the context 

is relatively familiar and the English version easily interpretable from the graphics. 
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Figure C.9 

Year 5 Math5Q30 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

30 Math5Q30 55% 50% 51% 32% 13% 32% 

 

 

Figure C.10 

Year 5 Math5Q35 

Year 5 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

35 Math5Q35 58% 55% 53% 66% 52% 64% 

 

Math5Q35 is an anomaly with a higher facility rate in the Arabic version than the English. 

However this may be explained in part by the position of the correct answer for English medium students 

and the fact that the first position is the correct answer. 

When considering the data and examples above, the relationships between the capacity to interpret and 

respond to the demands of these language independent questions suggested that responses were not random 

and had some association with mathematical ability. One aspect of these examples, and the results shown 

in Table 6.18 is the similarity in the proportion of correct responses in the INIT analysis and the GIP 

analysis. In most cases these facility rates are within one or two percent of each other with the GIP result 

typically being marginally lower than the INIT result. In the items in which language is a factor, the rates 

tend to be approximately a random guessing rate of 20% to 30%. This may be a function of the Arabic test 

being far too ‘hard’ of the students due to the language factor.  

This ‘too hard’ attribute of the test may result in these data being effectively random data. Scholars have 

noted that the Rasch model is appropriate when data fit the model:  i.e the model produces reliable statistics. 

In cases where the fit is poor it is recommended that the Rasch model not be used to analyse the data. 
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C.4 Analysis of the Year 7 Arabic versions 

C.4.1 Investigation of Year 7 Items 

Table C.9 shows the overall facility rates achieved for each language version of the test and the three 

analyses. The table also provides an annotation regarding the nature and form of the question and its impact 

on the variation due to language dependence in the item. 

Table C.9 

Year 7 Comparison of Item Facility by Analysis Phase 

Year 7 Mathematics English Arabic  

Seq Item Label ORIGINAL INIT SIG GIPp0.6 INIT SIG9 GIPp0.6 Language demand 

1 Math7Q01 92.7% 98% 98% 98% 91% 89% 91% Image interpretation 

2 Math7Q02 86.7% 99% 99% 99% 99% 88% 89% Algebraic Equation (simple) 

3 Math7Q03 76.5% 93% 93% 93% 73% 30% 73%   

4 Math7Q04 84.7% 98% 98% 98% 88% 83% 86% Image interpretation 

5 Math7Q05 72.6% 83% 82% 83% 79% 73% 79% Evaluate indices - no language 

6 Math7Q06 60.3% 90% 89% 90% 37% * 26%   

7 Math7Q07 70.3% 80% 79% 79% 35% 13% 21%   

8 Math7Q08 68.1% 98% 98% 98% 89% 88% 88% Arithmetic sequence 

9 Math7Q09 64.3% 73% 70% 72% 32% 2% 14%   

10 Math7Q10 85.5% 73% 71% 72% 57% 46% 56% Image interpretation 

11 Math7Q11 70.6% 94% 93% 94% 82% 80% 82% Image interpretation 

12 Math7Q12 43.4% 94% 94% 94% 23% * 6%   

13 Math7Q13 59.1% 63% 60% 60% 43% 15% 33%   

14 Math7Q14 57.6% 75% 74% 74% 38% 4% 23%   

15 Math7Q15 57.3% 84% 84% 84% 17% 2% 1%   

16 Math7Q16 56.2% 75% 73% 74% 46% 34% 41% Image interpretation 

17 Math7Q17 54.7% 79% 78% 77% 23% * 7%   

18 Math7Q18 53.9% 82% 80% 82% 51% 9% 48%   

19 Math7Q19 52.9% 8% 5% 78% 18% 39% 33%   

20 Math7Q20 52.7% 93% 92% 93% 73% 66% 69% Unit conversion km to m 

21 Math7Q21 50.6% 75% 74% 75% 11% * 2%   

22 Math7Q22 48.6% 84% 83% 84% 14% * 2%   

23 Math7Q23 41.2% 90% 89% 90% 73% 64% 71% Image interpretation 

24 Math7Q24 48.1% 76% 74% 75% 65% 52% 62% Image interpretation 

25 Math7Q25 45.6% 76% 73% 75% 77% 67% 73% Image interpretation 

26 Math7Q26 44.2% 69% 60% 67% 25% 4% 6%   

27 Math7Q27 43.9% 83% 82% 83% 77% 69% 70% Add fractions - algorism 

28 Math7Q28 41.3% 31% 27% 12% 38% 1% 5%   

29 Math7Q29 40.1% 35% 26% 20% 30% * 13%   

30 Math7Q30 39.5% 68% 61% 67% 54% 28% 53% Image interpretation 

31 Math7Q31 37.9% 52% 49% 50% 17% 1% *   

32 Math7Q32  56% 45% 53% 44% * 35%   

33 Math7Q33 30.8% 83% 83% 83% 17% 2% *   

34 Math7Q34 17.7% 51% 49% 45% 37% 23% 27% Image interpretation 

35 Math7Q35 33.0% 68% 64% 67% 9% 2% 1%   

36 Math7Q36 25.8% 63% 61% 63% 54% 26% 41% Image interpretation 

37 Math7Q37 31.4% 62% 52% 62% 46% 20% 39% Image interpretation 

38 Math7Q38 17.8% 20% 10% 80% 30% * 15%   

39 Math7Q39 30.8% 77% 75% 77% 23% 2% *   

40 Math7Q40 21.0% 71% 68% 70% 49% 20% 23% Image interpretation 

41 Math7Q41  50% 40% 41% 37% 2% 10%   

42 Math7Q42 20.1% 42% 39% 35% 9% * *   

43 Math7Q43 14.8% 47% 45% 40% 36% 17% 8% Sequence 

44 Math7Q44 19.2% 57% 47%    55%  50%      29%   35%        Image interpretation 
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Table C.10 shows the breakdown of the self-identified guessing patterns for each item. 

Table C.10 

Year 7 Comparison of Item Facility INIT Analysis of English and Arabic Versions of Test 

Maths Original source  INIT responses Response mode correct Arabic* 

Year 7 
Item no 

Facility 
Rate 

Language 
Dependency 

English 
Version 

Arabic 
Version 

Known 
Answer 

Guessed 
Informed 

Guessed 
Random 

1 92.7% English Equiv 98.0% 91.0% 62.5% 34.7% 2.8% 

2 86.7% English Equiv 99.0% 99.0% 85.9% 14.1% 0.0% 

3 76.5% Arabic 93.0% 73.0% 16.8% 32.7% 50.4% 

4 84.7% Arabic clued 98.0% 88.0% 67.9% 27.0% 5.1% 

5 72.6% English Equiv 83.0% 79.0% 85.4% 9.8% 4.9% 

6 60.3% Arabic 90.0% 37.0% 0.0% 32.1% 67.9% 

7 70.3% Arabic 80.0% 35.0% 29.6% 55.6% 14.8% 

8 68.1% Arabic clued 98.0% 89.0% 85.7% 10.0% 4.3% 

9 64.3% Arabic 73.0% 32.0% 4.2% 10.4% 85.4% 

10 85.5% Arabic clued 73.0% 57.0% 71.9% 12.4% 15.7% 

11 70.6% Arabic clued 94.0% 82.0% 91.5% 2.3% 6.2% 

12 43.4% Arabic 94.0% 23.0% 0.0% 2.9% 97.1% 

13 59.1% Arabic 63.0% 43.0% 25.0% 30.9% 44.1% 

14 57.6% Arabic 75.0% 38.0% 6.9% 5.2% 87.9% 

15 57.3% Arabic 84.0% 17.0% 7.7% 3.8% 88.5% 

16 56.2% Arabic clued 75.0% 46.0% 62.5% 30.6% 6.9% 

17 54.7% Arabic 79.0% 23.0% 0.0% 8.6% 91.4% 

18 53.9% Arabic 82.0% 51.0% 11.4% 53.2% 35.4% 

19 52.9% Arabic clued 79.0% 44.0% 79.7% 4.3% 15.9% 

20 52.7% English Equiv 93.0% 73.0% 70.8% 24.8% 4.4% 

21 50.6% Arabic 75.0% 11.0% 0.0% 12.5% 87.5% 

22 48.6% Arabic 84.0% 14.0% 0.0% 40.9% 59.1% 

23 41.2% Arabic clued 90.0% 73.0% 62.6% 26.1% 11.3% 

24 48.1% Arabic clued 76.0% 65.0% 65.0% 22.0% 13.0% 

25 45.6% English Equiv 76.0% 77.0% 70.1% 25.6% 4.3% 

26 44.2% Arabic 69.0% 25.0% 13.5% 18.9% 67.6% 

27 43.9% English Equiv 83.0% 77.0% 87.6% 8.8% 3.5% 

28 41.3% Arabic 31.0% 20.0% 6.7% 0.0% 93.3% 

29 40.1% Arabic 35.0% 30.0% 0.0% 22.7% 77.3% 

30 39.5% Arabic clued 68.0% 54.0% 38.8% 18.8% 42.5% 

31 37.9% Arabic 52.0% 17.0% 8.3% 25.0% 66.7% 

32  Arabic 56.0% 44.0% 0.0% 3.3% 96.7% 

33 30.8% Arabic 83.0% 17.0% 8.3% 33.3% 58.3% 

34 17.7% Arabic 51.0% 37.0% 51.9% 25.9% 22.2% 

35 33.0% Arabic 68.0% 9.0% 15.4% 46.2% 38.5% 

36 25.8% Arabic clued 63.0% 54.0% 41.9% 47.3% 10.8% 

37 31.4% Arabic clued 62.0% 46.0% 46.6% 15.5% 37.9% 

38 17.8% Arabic 70.0% 25.0% 5.6% 8.3% 86.1% 

39 30.8% Arabic clued 77.0% 23.0% 7.1% 21.4% 71.4% 

40 21.0% Arabic clued 71.0% 49.0% 43.3% 48.3% 8.3% 

41  Arabic clued 50.0% 37.0% 4.3% 4.3% 91.3% 

42 20.1% Arabic 42.0% 9.0% 0.0% 10.0% 90.0% 

43 14.8% Arabic clued 47.0% 36.0% 55.8% 30.2% 14.0% 

44 19.2% Arabic clued 57.0% 50.0% 38.7% 32.3% 29.0% 

*  The statistics shown reflect the response mode for correct answers in the Arabic version of the test 

As observed in the Year 5 sample the facility rates and response modes for, the Arabic versions of the tests supported 

the contention that the students have made serious attempts in answering the items during both versions of the tests.  
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C.4.2 Observations of Responses for Selected Year 7 Items  

As for the Year 5 section a few items have been selected to demonstrate various response patterns by the 

cohort to items of varying language dependency. 

Figure C.11 

Math7Q12– Arabic Version  

Year 7 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP  

12 Math7Q12 94% 94% 94% 23% N/A 6% 

 

In the English version of this item only two students omitted the question, with 94% of the remaining 187 

students responding correctly. In the Arabic version 23% ‘guessed’ correctly – approximately 
1

𝑘
.  Only four 

students omitted the item in the Arabic version which may be an indicator of the propensity to guess by 

students in an assessment regime with no downside from an incorrect guess. 

No students answered this item correctly without an indicated guess in the Arabic version of the SIG 

analysis. As a consequence, the item was removed from the SIG analysis as a result of the recoding of all 

the guessed answers to have ‘missing’ values.  In the Rasch analysis model an item with no correct 

responses is ‘extreme’ and omitted from the analysis. Hence there are no statistics for this item in the SIG 

analysis.  
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Figure C.12 

Math7Q12– English Version 

 

 

Figure C.13 

Math7Q01– Arabic Version 

Year 7 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

1 Math7Q01 98% 98% 98% 91% 89% 91% 

 

Figure C.13 also shows the relatively minor impact of language in an item that is common in its presentation 

and where the task demands of the item are conveyed independent of language. The minor increase in the 

facility rate observed by the SIG analysis reflects the reduction in the number of students attempting the 

item when self-identified guesses were suppressed in the SIG analysis. 

Figure C.14 also shows the negligible impact of language on an item that is common in its algorism and 

the task demands are conveyed in a mode relatively independent of language. 
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Figure C.14 

Math7Q02– Arabic Version 

Year 7 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

2 Math7Q02 99% 99% 99% 99% 88% 89% 

 

Figures C.15 and C.16 show two examples of the various item representations that are familiar to Year 7 

students and consequently the impact of language is reduced with a subsequent decrease in the proportion 

of random guessing for these items. 

 

Figure C.15 

Math7Q05– Arabic Version 

Year 7 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

5 Math7Q05 83% 82% 83% 79% 73% 79% 
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Figure C.16 

Math7Q04 – Arabic Version 

Year 7 Mathematics English Arabic 

Seq Item Label INIT SIG GIP INIT SIG GIP 

4 Math7Q04 98% 98% 98% 88% 83% 86% 

 

The facility rates shown in the items displayed throughout Appendix C suggested that students did not 

generally randomly guess the answer when there were clues to the demands of familiar items. However, 

the differences in the facility rates of the English and Arabic versions of these items indicate that random 

guessing was occurring. Further the relative similarities between the English SIG and English GIP facility 

rates would suggest that these processes were functioning similarly and the scale of differences between 

the INIT analysis facility rates and the conditioned rates of the SIG and GIP were relatively consistent. 
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APPENDIX D 

Investigation of Alternative p Values 

D.1 Frequency Analysis – GIP Indicated Guesses by Item by p Value  

D.1.1 SIM1 

The tables below provide an analysis of the proportion of items, sorted by item difficulty, indicated by the GIP procedure as probable guesses for SIM1. In each case a supplementary 

analysis of the comparison of initial defined guesses, presented in Table D.1, with each of the GIP tables developed, there were no cases of items which were not defined as a guess 

being indicated as a guess by the GIP procedure. This validates the rigour of the procedure as an arithmetic protocol however as indicated in Chapter 11.6, issues apart from the simple 

arithmetic calculations should be considered. 

 

Table D.1 SIM 1 Table of Defined Guesses by Ability Quartile and Item Difficulty 

    

Table D.1 shows the Guttman-like pattern of the defined guesses imbedded in the SIM1 data. The marginal variations in the number of defined guesses compared to the item 

difficulty is a function of the randomisation process by which the guesses were embedded in these data. 

 Table D.2 SIM 1 Table of GIP Indicated Guesses for p = 0.6 by Ability Quartile and Item Difficulty 

 

δ -2.66 -1.69 -1.73 -1.75 -1.35 -1.47 -1.13 -1.22 -1.01 -1.03 -1.1 -0.68 -0.8 -0.72 -0.6 -0.67 -0.58 -0.43 -0.27 -0.04 0.123 0.233 0.477 0.665 0.801 0.899 0.842 0.898 0.941 0.928 1.026 1.233 1.153 1.142 1.527 1.283 1.58 1.594 1.697 1.874

Quartile Q01 Q04 Q03 Q02 Q06 Q05 Q08 Q07 Q11 Q10 Q09 Q13 Q14 Q12 Q16 Q15 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q27 Q28 Q26 Q30 Q29 Q31 Q34 Q33 Q32 Q36 Q35 Q37 Q38 Q39 Q40 Total

Q4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 11 4 5 9 14 12 60

Q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 8 15 21 14 13 24 22 23 30 22 28 19 23 24 23 18 24 357

Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6 6 12 13 16 17 27 33 18 21 23 24 27 26 23 26 31 20 33 21 18 28 27 20 519

Q1 4 12 5 3 14 9 12 6 22 16 11 18 23 12 31 23 26 31 22 26 26 29 25 19 25 27 33 23 29 29 28 29 27 23 26 23 26 20 24 18 835

ALL def. 4 12 5 3 14 9 12 6 22 16 11 18 23 12 32 25 32 37 34 39 42 48 56 60 58 69 70 60 80 77 74 87 82 72 89 71 73 80 83 74 1771

δ -2.66 -1.69 -1.73 -1.75 -1.35 -1.47 -1.13 -1.22 -1.01 -1.03 -1.1 -0.68 -0.8 -0.72 -0.6 -0.67 -0.58 -0.43 -0.27 -0.04 0.123 0.233 0.477 0.665 0.801 0.899 0.842 0.898 0.941 0.928 1.026 1.233 1.153 1.142 1.527 1.283 1.58 1.594 1.697 1.874

Quartile Q01 Q04 Q03 Q02 Q06 Q05 Q08 Q07 Q11 Q10 Q09 Q13 Q14 Q12 Q16 Q15 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q27 Q28 Q26 Q30 Q29 Q31 Q34 Q33 Q32 Q36 Q35 Q37 Q38 Q39 Q40 Total

Q4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 1 3 0 5 9 9 12 17 59

Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 2 1 6 3 6 7 7 14 14 9 19 17 15 25 25 18 195

Q1 0 0 0 0 0 0 0 0 1 1 1 3 2 0 4 1 1 7 9 16 20 23 23 17 24 26 33 23 29 29 28 29 27 23 26 23 26 20 24 18 537

ALL p0.60 0 0 0 0 0 0 0 0 1 1 1 3 2 0 4 1 1 7 9 16 20 23 25 22 26 27 39 28 35 36 35 44 42 35 45 45 50 54 61 53 791
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As indicated in the body of the thesis the difference between the ability estimate of the student and the difficulty location of the item needs to be greater than 1.1 logits to indicate a 

probability of success on the items less than 0.25. In cases where this threshold is not reached the GIP procedure does not indicate a probable guess. Table D.2 highlights that in the 

easy items (up to item Q07) there are no instances in which the ability estimates as adjusted by the p = 0.6 condition are more than 1.1 logits below the item difficulty. Hence no items 

are indicated in any quartile as likely guessed items. As the item difficulties increase (student ability estimates remain stable) the occurrence in which the 1.1 logit difference threshold 

was reached increases with increasing numbers of items indicated as likely guesses. The indication of guesses also increased linearly as ability reduces as indicated by the Guttman-

like pattern for each quartile in Table D.2. 

Table D.3 SIM 1 Table of GIP Indicated Guesses for p = 0.62 by Ability Quartile and Item Difficulty 

 

Table D.3 shows the impact of increasing the p value to a value of 0.62 compared to 0.60. The effect is to adjust the ability estimate required to indicate success on the item by a value 

of 0.490 logits. Table D.3 displays a marginal increase in the number of item/student interactions which are indicated as guesses by the GIP procedure. The pattern of increasing 

indication was relatively uniform across items and quartiles with some randomness in the number of interactions. This was a function of; no change in the outcome for items previously 

indicated and the threshold being reached for some item/ability interactions at different situations in the matrix. The general pattern of; the lower the student ability estimate the greater 

the number of items indicated by the GIP procedure was maintained. 

Table D.4 SIM1 Table of GIP Indicated Guesses for p = 0.65 by Ability Quartile and Item Difficulty 

 

δ -2.66 -1.69 -1.73 -1.75 -1.35 -1.47 -1.13 -1.22 -1.01 -1.03 -1.1 -0.68 -0.8 -0.72 -0.6 -0.67 -0.58 -0.43 -0.27 -0.04 0.123 0.233 0.477 0.665 0.801 0.899 0.842 0.898 0.941 0.928 1.026 1.233 1.153 1.142 1.527 1.283 1.58 1.594 1.697 1.874

Quartile Q01 Q04 Q03 Q02 Q06 Q05 Q08 Q07 Q11 Q10 Q09 Q13 Q14 Q12 Q16 Q15 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q27 Q28 Q26 Q30 Q29 Q31 Q34 Q33 Q32 Q36 Q35 Q37 Q38 Q39 Q40 Total

Q4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 1 5 0 7 9 12 12 21 71

Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 5 3 3 6 3 11 10 7 14 14 16 19 18 15 26 25 20 218

Q1 0 0 0 1 0 0 0 0 3 2 2 3 4 0 7 1 4 10 12 16 23 23 23 17 25 27 33 23 29 29 28 29 27 23 26 23 26 20 24 18 561

ALL p0.62 0 0 0 1 0 0 0 0 3 2 2 3 4 0 7 1 4 10 12 16 24 23 25 22 28 30 39 28 41 39 35 44 42 44 45 48 50 58 61 59 850

δ -2.66 -1.69 -1.73 -1.75 -1.35 -1.47 -1.13 -1.22 -1.01 -1.03 -1.1 -0.68 -0.8 -0.72 -0.6 -0.67 -0.58 -0.43 -0.27 -0.04 0.123 0.233 0.477 0.665 0.801 0.899 0.842 0.898 0.941 0.928 1.026 1.233 1.153 1.142 1.527 1.283 1.58 1.594 1.697 1.874

Quartile Q01 Q04 Q03 Q02 Q06 Q05 Q08 Q07 Q11 Q10 Q09 Q13 Q14 Q12 Q16 Q15 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q27 Q28 Q26 Q30 Q29 Q31 Q34 Q33 Q32 Q36 Q35 Q37 Q38 Q39 Q40 Total

Q4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 2 0 0 4 2 7 2 14 12 12 13 21 94

Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 7 5 5 8 4 13 12 8 19 24 17 25 20 17 26 25 20 258

Q1 0 0 0 1 0 0 1 0 3 2 3 5 9 3 13 5 4 10 14 22 23 25 24 19 25 27 33 23 29 29 28 29 27 23 26 23 26 20 24 18 596

ALL p0.65 0 0 0 1 0 0 1 0 3 2 3 5 9 3 13 5 4 10 14 22 24 25 26 26 31 32 41 31 44 41 36 52 53 47 53 57 55 58 62 59 948
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Table D.5 SIM1 Table of GIP Indicated Guesses for p = 0.70 by Ability Quartile and Item Difficulty 

 

Tables D.4 and D.5 above display the outcomes of increasing the p value to 0.65 and 0.7 respectively. The impact on the effective ability estimates of the students is to adjust the p = 

0.5 ability estimate by 0.619 and 0.847 logits respectively. Both tables show the increasing numbers of items indicated by the protocol as expected and maintain the pattern of increasing 

indications as item difficulties increase and student ability is relatively lower. 

D.1.2 SIM3 

The tables (Tables D.6 to D.10) below follow the same pattern as presented for alternative RP calculations of the SIM1 data but provide greater differentiation due to the increased 

sample size (1000 students) and the consequent increase in the number of deciles represented in the tables. Table D.6 follows the same design as Table D.1 with the embedded 

defined guesses in a Guttman pattern with some variations due to the impact of the randomising algorithm employed to embed the guessed responses. 

δ -2.66 -1.69 -1.73 -1.75 -1.35 -1.47 -1.13 -1.22 -1.01 -1.03 -1.1 -0.68 -0.8 -0.72 -0.6 -0.67 -0.58 -0.43 -0.27 -0.04 0.123 0.233 0.477 0.665 0.801 0.899 0.842 0.898 0.941 0.928 1.026 1.233 1.153 1.142 1.527 1.283 1.58 1.594 1.697 1.874

Quartile Q01 Q04 Q03 Q02 Q06 Q05 Q08 Q07 Q11 Q10 Q09 Q13 Q14 Q12 Q16 Q15 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q27 Q28 Q26 Q30 Q29 Q31 Q34 Q33 Q32 Q36 Q35 Q37 Q38 Q39 Q40 Total

Q4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 6 4 4 6 1 6 9 7 11 14 18 18 17 17 24 165

Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 6 11 7 12 15 15 17 20 16 23 27 19 31 21 18 28 27 20 338

Q1 0 0 0 2 3 1 2 0 4 3 4 7 13 4 16 10 11 18 18 23 23 28 25 19 25 27 33 23 29 29 28 29 27 23 26 23 26 20 24 18 644

ALL p0.70 0 0 0 2 3 1 2 0 4 3 4 7 13 4 16 10 11 18 18 24 25 31 31 30 34 45 52 42 52 50 50 61 61 53 71 62 62 65 68 62 1147
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Table D.6 SIM 3 Table of Defined Guesses by Ability Decile and Item Difficulty 

 

Table D.7 is a replicate of Table 5.14 showing the outcomes of the application of the RP of 0.6 used throughout the study compared to the potential outcomes of alternative values. As 

observed in SIM1 the table shows that the GIP procedure indicates guessed items in a relatively linear pattern increasingly as ability estimates trend lower and items difficulties trend 

higher. The protocol is shown to be most efficient in the lower ability groups and more commonly in the more difficult items which is the anticipated outcome and follows the logic of 

the study which assumes that as items become harder, less-able students will employ guessing techniques to account for the lack of certain knowledge or skills.  

Table D.7 Table of GIP Indicated Guesses for p = 0.6 by Ability Decile and Item Difficulty 

 

δ -2.23 -1.91 -1.9 -1.88 -1.7 -1.68 -1.68 -1.4 -1.27 -1.06 -1.06 -0.98 -0.89 -0.78 -0.59 -0.37 -0.37 -0.36 -0.22 0.078 0.369 0.375 0.542 0.567 0.841 0.876 0.88 0.953 1.005 1.051 1.07 1.085 1.337 1.426 1.51 1.531 1.56 1.636 1.795 1.84 Total

Decile Q03 Q02 Q07 Q05 Q01 Q04 Q09 Q11 Q06 Q10 Q13 Q08 Q12 Q15 Q17 Q18 Q16 Q14 Q19 Q20 Q21 Q22 Q24 Q23 Q26 Q25 Q27 Q28 Q30 Q31 Q29 Q32 Q34 Q33 Q38 Q35 Q36 Q37 Q40 Q39

Decile 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 6 13 22 15 74

Decile 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 0 11 20 14 21 18 29 26 28 26 201

Decile 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 11 19 23 28 23 24 28 26 26 30 24 16 26 22 330

Decile 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 26 25 22 21 27 12 29 32 33 20 27 29 26 20 24 21 402

Decile 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 13 25 13 24 24 27 21 28 30 24 28 31 22 26 23 28 28 18 24 459

Decile 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 12 21 24 22 23 24 19 24 24 25 28 24 17 25 20 27 25 23 24 17 27 23 501

Decile 3 0 0 0 0 0 0 0 0 0 0 1 0 0 10 24 25 19 8 27 24 18 26 32 30 22 33 32 23 24 23 37 32 28 20 30 20 21 28 24 18 659

Decile 2 0 0 1 0 0 0 6 14 0 12 29 6 23 25 24 21 30 31 22 23 29 23 33 16 26 17 28 26 30 30 19 26 18 23 33 22 23 24 21 18 752

Decile 1 10 10 20 22 6 9 31 20 22 33 25 24 22 33 22 25 16 27 23 20 17 23 29 31 35 19 21 29 24 30 20 31 27 22 27 27 23 29 19 23 926

ALL defined 10 10 21 22 6 9 37 34 22 45 55 30 45 68 70 74 65 66 84 88 90 107 150 114 156 142 165 164 187 182 169 209 205 174 233 192 204 201 209 190 4304

δ -2.23 -1.91 -1.9 -1.88 -1.7 -1.68 -1.68 -1.4 -1.27 -1.06 -1.06 -0.98 -0.89 -0.78 -0.59 -0.37 -0.37 -0.36 -0.22 0.078 0.369 0.375 0.542 0.567 0.841 0.876 0.88 0.953 1.005 1.051 1.07 1.085 1.337 1.426 1.51 1.531 1.56 1.636 1.795 1.84 Total

Decile Q03 Q02 Q07 Q05 Q01 Q04 Q09 Q11 Q06 Q10 Q13 Q08 Q12 Q15 Q17 Q18 Q16 Q14 Q19 Q20 Q21 Q22 Q24 Q23 Q26 Q25 Q27 Q28 Q30 Q31 Q29 Q32 Q34 Q33 Q38 Q35 Q36 Q37 Q40 Q39

Decile 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 12 28

Decile 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 19 17 19 24 25 19 128

Decile 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 17 26 23 24 19 18 177

Decile 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 4 9 7 17 16 21 22 22 25 19 14 18 19 18 237

Decile 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 9 19 25 31 20 30 20 32 30 23 18 27 17 24 27 21 21 407

Decile 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 28 25 31 18 23 19 23 28 23 31 24 28 22 20 34 26 26 21 24 18 502

Decile 1 0 0 0 0 1 1 1 0 3 3 3 4 2 9 7 21 14 23 15 20 17 20 24 27 34 17 22 24 23 27 15 26 22 22 25 19 17 25 19 20 572

ALL p = 0.60 0 0 0 0 1 1 1 0 3 3 3 4 2 9 7 21 14 23 17 28 45 45 68 54 81 62 80 81 83 95 87 105 116 110 147 124 123 139 143 126 2051
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Tables D.8, D.9 and D.10 below provide the outcomes of the application of the RP values of 0.62, 0.65 and 0.70 respectively. As anticipated by the hypothesis they show an 

increasing number of item/student interactions being indicated as a probable guess as item difficulty increases and student ability reduces. 

Table D.8 Table of GIP Indicated Guesses for p = 0.62 by Ability Quartile and Item Difficulty 

 

 

Table D.9 Table of GIP Indicated Guesses for p = 0.65 by Ability Quartile and Item Difficulty 

 

δ -2.23 -1.91 -1.9 -1.88 -1.7 -1.68 -1.68 -1.4 -1.27 -1.06 -1.06 -0.98 -0.89 -0.78 -0.59 -0.37 -0.37 -0.36 -0.22 0.078 0.369 0.375 0.542 0.567 0.841 0.876 0.88 0.953 1.005 1.051 1.07 1.085 1.337 1.426 1.51 1.531 1.56 1.636 1.795 1.84 Total

Decile Q03 Q02 Q07 Q05 Q01 Q04 Q09 Q11 Q06 Q10 Q13 Q08 Q12 Q15 Q17 Q18 Q16 Q14 Q19 Q20 Q21 Q22 Q24 Q23 Q26 Q25 Q27 Q28 Q30 Q31 Q29 Q32 Q34 Q33 Q38 Q35 Q36 Q37 Q40 Q39

Decile 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 4

Decile 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 3 8 9 6 15 20 18 83

Decile 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 0 0 5 4 8 14 18 23 26 21 23 17 165

Decile 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 1 4 5 5 2 6 13 17 21 24 15 18 25 22 23 206

Decile 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 13 15 12 14 15 13 19 17 22 20 31 26 20 20 19 21 302

Decile 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 6 5 22 15 23 21 23 22 25 23 26 32 23 19 23 19 26 22 16 19 413

Decile 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 7 4 6 6 11 23 22 30 23 25 18 23 31 24 27 23 25 19 22 34 23 21 18 29 21 517

Decile 1 0 0 0 0 1 1 1 0 5 3 3 4 2 14 12 13 10 17 11 16 16 18 27 24 25 16 24 19 24 30 18 28 24 21 24 20 19 31 19 18 558

ALL p = 0.62 0 0 0 0 1 1 1 0 5 3 3 4 3 15 13 21 14 23 17 28 45 45 83 68 88 72 88 92 94 95 97 120 116 120 163 135 136 153 149 137 2248

δ -2.23 -1.91 -1.9 -1.88 -1.7 -1.68 -1.68 -1.4 -1.27 -1.06 -1.06 -0.98 -0.89 -0.78 -0.59 -0.37 -0.37 -0.36 -0.22 0.078 0.369 0.375 0.542 0.567 0.841 0.876 0.88 0.953 1.005 1.051 1.07 1.085 1.337 1.426 1.51 1.531 1.56 1.636 1.795 1.84 Total

Decile Q03 Q02 Q07 Q05 Q01 Q04 Q09 Q11 Q06 Q10 Q13 Q08 Q12 Q15 Q17 Q18 Q16 Q14 Q19 Q20 Q21 Q22 Q24 Q23 Q26 Q25 Q27 Q28 Q30 Q31 Q29 Q32 Q34 Q33 Q38 Q35 Q36 Q37 Q40 Q39

Decile 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 3 6 12

Decile 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2 0 0 2 5 5 9 16 10 18 26 26 123

Decile 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 3 2 2 1 5 10 15 21 22 30 33 22 23 17 210

Decile 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 4 7 10 11 11 6 25 23 21 27 17 19 25 22 23 258

Decile 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 5 16 20 15 19 17 13 19 18 25 21 31 26 20 20 19 21 332

Decile 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 6 8 26 17 23 22 23 22 25 24 26 33 23 19 23 19 26 22 16 19 427

Decile 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 9 7 9 8 13 25 24 31 24 25 18 23 31 24 27 23 25 19 22 34 23 21 18 29 21 537

Decile 1 0 1 1 0 1 1 2 1 5 7 3 7 5 14 17 15 12 18 14 16 16 18 27 24 25 16 24 19 24 30 18 28 24 21 24 20 19 31 19 18 585

ALL p = 0.65 0 1 1 0 1 1 2 1 5 7 3 7 6 15 20 25 19 27 22 32 48 50 92 74 94 82 97 103 105 106 97 141 135 130 171 151 148 157 157 151 2484
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Table D.10 Table of GIP Indicated Guesses for p = 0.70 by Ability Quartile and Item Difficulty 

 

As mentioned in the Conclusion, Chapter 11 Section 11. 6 the arithmetic adjustment of the RP value is not the sole consideration in the development of an effective and efficient 

protocol. It is considered that although the increasing value of the RP provides higher recovery rates of the defined guesses in the simulated data in authentic live data, other psychometric 

factors also should be considered. Section D.2 below addresses some of these issues. 

δ -2.23 -1.91 -1.9 -1.88 -1.7 -1.68 -1.68 -1.4 -1.27 -1.06 -1.06 -0.98 -0.89 -0.78 -0.59 -0.37 -0.37 -0.36 -0.22 0.078 0.369 0.375 0.542 0.567 0.841 0.876 0.88 0.953 1.005 1.051 1.07 1.085 1.337 1.426 1.51 1.531 1.56 1.636 1.795 1.84 Total

Decile Q03 Q02 Q07 Q05 Q01 Q04 Q09 Q11 Q06 Q10 Q13 Q08 Q12 Q15 Q17 Q18 Q16 Q14 Q19 Q20 Q21 Q22 Q24 Q23 Q26 Q25 Q27 Q28 Q30 Q31 Q29 Q32 Q34 Q33 Q38 Q35 Q36 Q37 Q40 Q39

Decile 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decile 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 3 4 9 10 31

Decile 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 1 3 6 5 3 16 20 15 23 19 22 30 26 198

Decile 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 4 10 10 9 12 11 11 14 31 25 23 31 36 22 23 17 292

Decile 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 4 10 15 20 18 29 19 21 29 26 22 27 18 20 25 22 23 353

Decile 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 12 7 20 29 17 19 24 19 22 19 25 21 31 26 20 20 19 21 378

Decile 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 2 9 14 24 28 18 23 22 23 22 26 24 26 33 23 19 23 19 26 22 16 19 466

Decile 2 0 0 0 0 0 0 0 0 0 0 2 1 2 4 3 16 17 18 15 17 27 25 31 24 25 18 23 31 24 27 23 25 19 22 34 23 21 18 29 21 585

Decile 1 0 2 2 1 7 6 4 2 10 18 6 15 7 22 19 17 15 24 17 16 16 18 27 24 25 16 24 19 24 30 18 28 24 21 24 20 19 31 19 18 655

ALL p = 0.7 0 2 2 1 7 6 4 2 10 18 8 17 9 26 23 34 33 43 34 42 64 71 100 79 109 113 121 119 142 136 126 151 165 151 179 161 164 164 167 155 2958
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D.2  Consideration of Alternate Response Probabilities 

Given that this study is grounded in an assumption that a probability of success on an item with a four-

distractor structure is 25% (0.25) the difference between item difficulty location and person ability estimate 

that is the limiting value for that threshold is 1.1 logits in a Rasch measurement scale. This difference 

represents the equivalent of approximately two years and two months of learning in a student’s learning 

progression (Cohen, 1985). 

Table D11 shows the interaction between the adjustment of the RP and the residual difference in learning 

age for different p value. It can be seen that the impact of increasing the p value reduces the contribution to 

the response that reflects learning of the student. 

Table D.11 Consideration of Impact of Alternative RP values 

RP  

Ability 

Adjustment  Other factors  

Approximate Effective 

learning difference (yrs, mths)  

0.50 0 1.100 2 years, 2 months 

0.60 0.405 0.695 1 year, 6 months 

0.62 0.490 0.610 1 year, 4 months 

0.65 0.619 0.481 11 months 

0.70 0.847 0.253 6 months 

The issue that requires qualitative research beyond the scope of this study would be to investigate the 

optimal RP that provides consistent and reliable indicators of guessing in a student population. This study 

as submitted provides a conceptual outcome that shows definite changes in outcomes with an arbitrary 

difference in learning age of approximately one-and-a-half years between the anticipated response for an 

item of a given difficulty and the observed ability of the student. 
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