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Abstract Transmission is a driver of tuberculosis (TB) epidemics in high-burden regions, with 
assumed negligible impact in low-burden areas. However, we still lack a full characterization of 
transmission dynamics in settings with similar and different burdens. Genomic epidemiology can 
greatly help to quantify transmission, but the lack of whole genome sequencing population-based 
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studies has hampered its application. Here, we generate a population-based dataset from Valencia 
region and compare it with available datasets from different TB-burden settings to reveal transmis-
sion dynamics heterogeneity and its public health implications. We sequenced the whole genome 
of 785 Mycobacterium tuberculosis strains and linked genomes to patient epidemiological data. We 
use a pairwise distance clustering approach and phylodynamic methods to characterize transmission 
events over the last 150 years, in different TB-burden regions. Our results underscore significant 
differences in transmission between low-burden TB settings, i.e., clustering in Valencia region is 
higher (47.4%) than in Oxfordshire (27%), and similar to a high-burden area as Malawi (49.8%). By 
modeling times of the transmission links, we observed that settings with high transmission rate are 
associated with decades of uninterrupted transmission, irrespective of burden. Together, our results 
reveal that burden and transmission are not necessarily linked due to the role of past epidemics 
in the ongoing TB incidence, and highlight the need for in-depth characterization of transmission 
dynamics and specifically tailored TB control strategies.

Editor's evaluation
This work presents insightful epidemiologic and phylogenetic analyses of tuberculosis cases across 
Valencia, Spain, and comparator low-burden (Oxfordshire, UK) and high-burden (Karonga, Malawi) 
regions. Findings reveal that the "low burden" observed in Valencia is not in fact reflective of low 
transmission in this setting, with detected lineages likely to have circulated locally over the course of 
decades and to have been transmitted in the community.

Introduction
Tuberculosis (TB) has been the first cause of death by an infectious disease for years surpassing HIV 
according to the World Health Organization (WHO). In 2019 were reported 10 million new TB cases 
and 1.4 million deaths, with these numbers likely to increase due to the COVID-19 pandemic (Glaziou, 
2020). Recognizing heterogeneity across settings in the population-level dynamics of TB is key to 
advance to new stages in local and global TB control (Mathema et al., 2017). Recent transmission 
significantly contributes to the global TB-burden mostly in the high incidence regions and its control 
is imperative to achieve the goal of the End TB Strategy (Auld et al., 2018; Guerra-Assunção et al., 
2015; Yates et al., 2016).

On the contrary, in low-burden countries the assumption is that transmission plays a minor role, 
supported by the fact that in countries close to the pre-elimination phase (<5/100,000 cases) TB cases 
are mainly contributed by re-activations of latent TB infection (LTBI) from recently arrived migrants 
(Menzies et  al., 2018). However, whether the minor role of transmission in pre-elimination phase 
countries can be extrapolated to other low-burden countries is currently unknown. Understanding 
the correlation between burden and transmission and country specific dynamics is key if tailor-made 
control strategies are needed.

Measuring transmission is still challenging. Genomic epidemiology, based on comparative 
pathogen genomics, has been successfully applied in some settings, but usually not at a population 
scale, needed to profile the transmission dynamics in a setting. Using genomic epidemiology is not 
exempt from limitation, e.g., as transmission cases associated with LTBI are missed as well as cases 
without culture (see López et al., 2020). However, it allows us to compare transmission clustering 
rates and dynamics across settings in a standard way. A common approach to characterize trans-
mission with whole genome sequencing (WGS) is to use pairwise single nucleotide polymorphisms 
(SNPs) distances (Gardy et al., 2011; Tagliani et al., 2021; Walker et al., 2013). The WGS displays 
higher resolution, provides accurate results tracking recent transmission (Jajou et al., 2018; Marais 
et al., 2017; Meehan et al., 2019; Nikolayevskyy et al., 2019), and reports greater agreement with 
epidemiological results than previous molecular markers (Diel et al., 2019; Meumann et al., 2021; 
Nikolayevskyy et al., 2016; Roetzer et al., 2013). In addition, Bayesian dating allows us to correlate 
genetic differences between strains and time of transmission clusters (Meehan et al., 2018). Even 
more, the higher resolution of genomic data also allows us to go beyond standard clustering of cases 
and can reveal individual transmission links (TLs) and timing of events (Xu et al., 2019).

https://doi.org/10.7554/eLife.76605
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Despite WGS reliability, there exists controversy regarding the SNP threshold employed to delin-
eate genomic clusters (gClusters). A cut-off of 5 SNPs has been widely accepted for the clustering of 
recently linked cases (Meehan et al., 2019; Nikolayevskyy et al., 2019) while an upper value of 12 
SNPs also incorporates older transmission events (Walker et al., 2013); however, the extent to which 
the identification of those cases can aid epidemiological investigations remains controversial (Bjorn-
Mortensen et al., 2016; Jajou et al., 2018). It is also unclear the extent to which those cutoffs apply 
to all settings given differences in social, host, and pathogen factors across settings. Even if universal, 
understanding transmission dynamics goes beyond recent transmission events, which have an action-
able value for public health, but that do not capture the long-term dynamics in a population.

The lack of WGS studies at the population level represents the main limitation to the validation 
of these thresholds across clinical settings, and to understand the transmission dynamics in different 
areas. Here we use available datasets from a low burden setting (Oxfordshire, incidence 8.4 cases per 
100,000 inhabitants) and from a high burden setting (Malawi, incidence 87 cases per 100,000 inhabi-
tants) and compare to a newly generated dataset in Valencia region (incidence ~8 cases per 100,000 
inhabitants).

In the Valencia region, the contribution of recent transmission to local TB burden remains largely 
unknown. First, we investigated the epidemiology and dynamics of TB transmission in the Valencia 
region, the fourth most populated region of the country, over 3 years. Second, we evaluated the 
general use of an SNP threshold in cluster definition and public health investigations, in this particular 
setting. Third, we compared the transmission dynamics in the Valencia region with similar population-
based studies from locations with different TB burdens (Guerra-Assunção et al., 2015; Walker et al., 
2014). Our results demonstrate that current TB incidence in Valencia region mainly derives from 
sustained transmission similar to a high-burden setting. Comparison among settings highlight little 
correlation between burden and transmission and suggest the need of tailor-made control strategies.

Materials and methods
Extended and detailed methods in Appendix 1.

Sample selection and study design
About 1388 TB cases were reported between 2014 and 2016 by the Valencian Regional Public Health 
Agency (DGSP), 1019 with positive culture. All the available (785) samples were collected from 18 
regional hospitals (Appendix 1—figure 1). Demographic, clinical, and microbiological records were 
obtained from the routine TB surveillance system, for 724 of the total samples. All diagnosed TB-posi-
tive patients completed a standardized questionnaire provided by the DGSP. In addition, conventional 
contact tracing is conducted for most cases as per WHO guidelines (https://www.sp.san.gva.es/Dgsp-
Portal/docs/GuiaTuberculosis2008.pdf).

M. tuberculosis structure and clustering analysis were performed with the total sequences. Epide-
miological and transmission dynamics analysis were carried on with the samples with available infor-
mation (724).

Approval for the study was given by the Ethics Committee for Clinical Research from the Valencia 
Regional Public Health Agency (Comité Ético de Investigación Clínica de la Dirección General de 
Salud Pública y Centro Superior de Investigación en Salud Pública). Informed consent was waived on 
the basis that TB detection forms part of the regional compulsory surveillance program of communi-
cable diseases. All personal information was anonymized, and no data allowing patient identification 
was retained.

DNA extraction and sequencing
Clinical isolates were cultured in Middlebrook 7H11 agar plates supplemented with 10% OADC 
(Becton-Dickinson) for 3 weeks at 37°C. After an inactivation step (90°C, 15 min), DNA was extracted 
using the cetyl trimethyl ammonium bromide method from a representative sample from each patient 
(four-time plate scraping). All procedures were conducted in a biological safety level 3 laboratory 
under WHO protocol recommendations. Sequencing libraries were constructed with a Nextera XT 
DNA library preparation kit (Illumina, San Diego, CA), following the manufacturer’s instructions. 
Sequencing was performed using the Illumina MiSeq platform.

https://doi.org/10.7554/eLife.76605
https://www.sp.san.gva.es/DgspPortal/docs/GuiaTuberculosis2008.pdf
https://www.sp.san.gva.es/DgspPortal/docs/GuiaTuberculosis2008.pdf
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Bioinformatics analysis
Data analysis was carried out following a validated previously described pipeline (http://tgu.ibv.csic.​
es/?page_id=1794, Meehan et al., 2019). Sequencing reads were trimmed with fastp (Chen et al., 
2018), and kraken software (Wood and Salzberg, 2014) was then used to remove non-M. tuberculosis 
complex (MTBC) reads. Filtered reads were mapped to an inferred MTBC common ancestor genome 
(https://doi.org/10.5281/zenodo.3497110) using BWA (Burrows-Wheeler Aligner, Li and Durbin, 
2009). SNPs were called with SAMtools (Li, 2011) and VarScan2 (Koboldt et al., 2012). GATK Haplo-
typeCaller (McKenna et al., 2010) was used for calling InDels. SNPs with a minimum of 10 reads (20×) 
in both strands and minimum base quality of 25 were selected and classified based on their frequency 
in the sample as fixed (>90%) or low frequency (10–89%). InDels with less than 20× were discarded. 
SnpEff was used for SNP annotation using the H37Rv annotation reference (AL123456.2). Finally, SNPs 
falling in genes annotated as PE/PPE/PGRS, ‘maturase,’ ‘phage,’ and ‘13E12 repeat family protein’; 
those located in insertion sequences; those within InDels or in higher density regions (>3 SNPs in 
10 bp) were removed due to the uncertainty of mapping. Next, variants were compared with recently 
published catalogs with validated association between mutations and phenotypic resistance (Ngo 
and Teo, 2019) in order to predict high-confidence resistance profiles to first- and second-line drugs. 
Lineages were determined by comparing called SNPs with specific phylogenetic positions established 
(Coll et al., 2014; Stucki et al., 2016). An in-house R script was used to detect mixed infections based 
on the frequency of lineage- and sublineage-specific positions (López et al., 2020). Read files were 
deposited in the European Nucleotide Archive (ENA) under the bioproject numbers PRJEB29604 and 
PRJEB38719 (Supplementary file 1). Sequences from two population-based studies in Oxfordshire 
(Walker et al., 2014), with 92% of culture-positive cases sequenced, and Malawi (Guerra-Assunção 
et al., 2015), with 72% of culture-positive cases sequenced, were downloaded from ENA and analyzed 
as for the sequences generated in this study. All the custom scripts used are available in https://gitlab.​
com/tbgenomicsunit/ThePipeline. (Copy archieved at swh:1:rev:a725827cb664e6d995823f3f30fcd-
1d7e16f63d2, Belda-Álvarez, 2022).

gClustering and phylogenetic analyses
The pairwise SNP distance was computed with the R ape package. The gCluster were constructed if 
the genetic distance between at least two patients’ isolates fell below a defined threshold. Cluster 
monophyly was confirmed in a maximum likelihood tree (50,184 SNPs).

Timed phylogenies were inferred with Beast v2.5.1 (Bouckaert et  al., 2014). Ancient TB DNA 
(Bos et al., 2014) and samples from a recent Spanish outbreak were included as calibration data. 
We constructed SNP alignments for each dataset, excluding known variants related to drug resis-
tance, then we corrected the ascertainment bias by adjusting the clock rate to incorporate invari-
ants sites (Supplementary file 2). Extended methodology and comparison with other ascertainment 
bias methods is detailed in Appendix 1. Dating was performed using GTR + GAMMA substitution 
model (General Time Reversible with gamma distributed rates heterogeneity) , a strict molecular 
clock model, and a coalescent constant size demographic model, as previously described (López 
et al., 2020). Three independent runs of Markov Chain Monte-Carlo length chains of 10 million were 
performed. Adequate mixing, convergence, and sufficient sampling were assessed in Tracer v1.6, 
after a 10% burn-in.

Tracking historical TLs
Historical TLs were defined as nodes or tree bifurcations occurring over time phylogenies (Appendix 1—
figure 2). The rationale for this approach is based on the assumption that if few pathogen mutations 
are expected to be observed during a host’s infection, as is the case of M. tuberculosis, lineages split 
only at transmission (Hall et al., 2016). In addition, as M. tuberculosis is an obligate pathogen, every 
strain is by definition, linked to others by recent or historical transmission events. In this sense, each 
node in the phylogeny represents a minimum one, and likely many, person-to-person transmission. 
Tips in the tree are the result of decades of transmission or, which is the same, multiple transmission 
events occurring along the branch; however, most of the secondary cases generated are missing, as 
they do not develop active TB or were cured before sampling (among other reasons, Appendix 1—
figure 2A). Thus, only those lineages persisting until sampling time were recovered (Appendix 1—
figure 2B). Moreover, the greater the transmission and the more sustained over time, the greater the 

https://doi.org/10.7554/eLife.76605
http://tgu.ibv.csic.es/?page_id=1794
http://tgu.ibv.csic.es/?page_id=1794
https://doi.org/10.5281/zenodo.3497110
https://gitlab.com/tbgenomicsunit/ThePipeline
https://gitlab.com/tbgenomicsunit/ThePipeline
https://archive.softwareheritage.org/swh:1:dir:115b2aef41f207f8a43e5679125c955cef20f012;origin=https://gitlab.com/tbgenomicsunit/ThePipeline;visit=swh:1:snp:48d7ec3aa9d549f10810e3d83d2c9192adf95350;anchor=swh:1:rev:a725827cb664e6d995823f3f30fcd1d7e16f63d2
https://archive.softwareheritage.org/swh:1:dir:115b2aef41f207f8a43e5679125c955cef20f012;origin=https://gitlab.com/tbgenomicsunit/ThePipeline;visit=swh:1:snp:48d7ec3aa9d549f10810e3d83d2c9192adf95350;anchor=swh:1:rev:a725827cb664e6d995823f3f30fcd1d7e16f63d2
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chance of recovering secondary cases today. In addition, to estimate the time of the TLs, we used the 
time of the node, or the common ancestor, as this is the lower bound when the strain starts to circu-
late. Thus, each TL summarizes the number and time of the transmission along each tree branch. This 
analysis was conducted in the time trees generated with Beast, including both local and foreign cases; 
in order to avoid introductions we excluded nodes in which foreign samples appeared as ancestors, 
and only counted nodes including local-born tips occurring within 150 years before 2016 (yB 2016).

This analysis does not intend to define the direction of transmission or the exact moment when it 
occurred, as can be done with TransPhylo (Didelot et al., 2017), but instead to profile ancestral TLs 
through time and trace since when, the lineages recovered nowadays, have been circulating. Note 
that the concept ‘TL’ in this context does not indicate person-to-person contagion, instead it is the 
summary of multiple contagions occurring in a period of time, and indicates that a particular extant 
strain has been involved in transmission during that period.

Results
M. tuberculosis population structure and demographic characteristics 
in Valencia region
We sequenced 77% of the TB culture-positive cases reported between 2014 and 2016 in Valencia 
region with a 4.3 million population. Around 10 samples were removed as non-MTBC isolates or likely 

Figure 1. Genomic characterization of the study region. (A) Phylogeny of 775 tuberculosis (TB) isolates collected during the years 2014 and 2016. 
Each ring represents genomic clusters detected by different single nucleotide polymorphism (SNP) thresholds (0, 5, and 12 SNPs). Mycobacterium 
canneti was used as an outgroup. (B) Clustering percentage, i.e. percentage of samples within clusters for different SNP thresholds. (C) Number of 
genomic clusters by different cluster sizes. A 12 SNP threshold was used as a standard. Cluster sizes of 8–11 samples were not detected. *Nomenclature 
proposed by Comas et al., 2013.

The online version of this article includes the following source data for figure 1:

Source data 1. Genomic cluster types; Spanish: clusters including only Spanish-born cases; foreign: clusters including only foreign-born cases; mix: 
clusters including Spanish and foreign-born cases.

https://doi.org/10.7554/eLife.76605
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mixed infections (Supplementary file 1). We identified 6 different lineages (L) circulating in the region 
(Coll et al., 2014; Stucki et al., 2016), with L4 the most frequent (92.1%) (Figure 1A).

Characteristics of TB cases are summarized in Supplementary file 3, reporting the sequenced 
samples as a representative subset of the total culture-positive cases. TB incidence in the region 
ranged between 8.3 and 8.7 with higher incidence in migrants (mean 23.6) than in local born indi-
viduals (mean 6.9). Detailed epidemiological analysis of TB cases in Valencia region is presented in 
Supplementary file 3 and Supplementary file 4, remarkably 63% of all cases were Spanish-born 
patients, while 30% came from high-incidence countries, and 7% from other low-incidence countries. 
When we observed risk factors associated with TB, we found that diabetes was present in 10.4% of 
cases; although this was more prevalent in Spanish-born patients (OR 2.7, CI 1.5–5.4, p<0.001), values 
were similar to diabetes prevalence in the general Spanish population.

Epidemiological and gClustering
Conventional contact tracing investigations (see Methods) identified 66 epidemiological clusters, 
including 97 cases, accounting for 12.5% of transmission in the Valencia region (Figure 1B). Consid-
ering the widely used pairwise distance threshold of 12 SNPs for defining transmission, we identified 
112 gClusters, including 331 (42.7%) patients, with cluster size ranging from 2 to 12 cases (Figure 1C, 
Figure 1—source data 1). Although these clusters included foreign-born patients, Spanish-born 
patients were more likely part of genomically linked groups (OR 2, CI 1.44–2.79, p<0.001). In this 
regard, 42 gClusters exclusively comprised Spanish-born patients and 8 included only foreign-born 
patients.

In addition to Spanish origin, pulmonary localization of TB (OR 2.5, CI 1.60–3.98, p<0.001), and 
younger age also appeared associated with clustering by Fisher’s exact test. After correcting for 
confounders using a logistic regression, Spanish origin remains significantly associated with clustering 
(p<0.001); younger age, pulmonary localization of TB, and male sex were also significant (p<0.05, 
Supplementary file 4). Finally, 90% of TB cases in Valencia region are susceptible to all antibiotics 
used in treatment, so resistance has no impact on clustering.

We also assessed gClusters considering lower SNP thresholds, and observed that independently 
of the cut-off considered, the clustering rate obtained by contact tracing was always lower than the 

Figure 2. Comparison between epidemiological and genomic clustering. (A) Clustered samples using different pairwise distance thresholds, bars 
denote the number of cases within clusters for each single nucleotide polymorphism (SNP) threshold. Gray dashed line separates the genomically linked 
samples (clustered) from those unlinked. (B) ROC (Receiver Operating Characteristics) curve for different pairwise distance thresholds between 0 and 
2000 SNPs, indicating the optimal SNP cut-off values with its correspondent specificity and sensitivity values, the area under the curve (AUC), and its 
confidence intervals.

https://doi.org/10.7554/eLife.76605
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genomic estimates (Figure 1B). A high number of genomic links were not detected by epidemio-
logical investigation, while some epidemiological links were not corroborated by any gClustering 
threshold (Figure 2A). Comparison of both approaches revealed that only 15.4% of the 331 patients 
within gClusters (12 SNPs) had an identified epidemiological link (Appendix 1, Supplementary file 5).

We benchmarked WGS as a tool to quantify transmission against contact tracing, using the latter 
as the gold standard (Diel et al., 2019). In general, as the SNP threshold decreases, sensitivity dimin-
ishes, but specificity and accuracy increases (Supplementary file 6). A ROC curve establishes 11.5 
SNPs as the optimal value for the SNP cut-off that maximizes the agreement between epidemiological 
investigation and genomic data, with an area under the curve higher than 0.9 (Figure 2B). Then, we 
used 12 SNPs threshold to define clusters in the following analyses.

Genetic thresholds for transmission are not universal across settings
Next, we calculated the percentage of Spanish-born cases clustered by a range of pairwise distances 
(0–150 SNPs) and compared with the clustering of local cases in other settings (Guerra-Assunção 
et al., 2015; Walker et al., 2014), where more than 70% of all culture-positive cases were sequenced. 
We observed a bimodal pattern for Oxfordshire, with the transmission groups clearly differentiated 
from the other unlinked cases with distances higher than 50 SNPs. These findings agree with the 12 
SNP value proposed as a means to identify recent transmission in low-burden settings (Walker et al., 
2014). For the Valencia region and Malawi, strains group in a large range of distance thresholds (SNPs 
0–150). Thus, there exists a continuous clustering throughout the distance values. The results strongly 
suggest that a strict transmission threshold of 12 SNPs (or any other threshold) does not apply to 
all the settings when analyzing transmission dynamics, particularly in those places with higher trans-
mission burdens (Figure 3A), and specially if we want to understand long-term transmission (i.e. the 
survival and expansion of particular clones/strains in a population). However, strict SNP thresholds are 
informative to health authorities (see Discussion).

Age of local gClusters at different SNP thresholds and impact on public 
health
Next, we evaluated how old are the gClusters identified by the standard 12 SNP threshold. Thus, we 
inferred the age of the local gClusters for the three settings. Dating results of the youngest and the 
oldest gClusters are summarized in Table 1, while complete results are detailed in Figure 3—source 
data 1–3. We can trace gClusters 31  years back from the most recent sample collected for both 
the Valencia region and Malawi; however, we only retrieved samples that formed part of gClusters, 
19 years before the most recent Oxfordshire sample. The alternative time calibration samples included 
(Appendix 1) displayed similar results, thereby allowing comparisons among datasets. Our inference 
of clusters’ ancestors are in agreement with previous studies, using a similar Bayesian approach, and 
defining a timespan of up to 10 years for 5 SNP cut-offs (Meehan et al., 2018). Thus many genomic 
links based on 12 SNP distance are beyond the action of public health interventions. Using data from 
Valencia region, we further investigated the role of genomic distances in public health by evaluating 
the age of epidemiologically linked cases. Most of the epidemiologically linked cases have a common 
ancestor less than 10 years before the most recent sample, and the distance between samples typically 
ranged between 0 and 4 SNPs, with only one individual link separated by 11 SNPs (Supplementary 
file 5). While the ROC curve indicated a 12 SNP threshold to capture most epidemiological links, the 
reality is that strains linked by more than 5 SNP are beyond the action of public health interventions as 
they involve too old TLs. Our results imply that events useful for public health investigations are better 
captured by a 5 SNP threshold even though some epidemiological links are missing. But the reverse is 
also true, and more dramatic. Even when using a 5 SNP threshold public health only identifies around 
15% of the cases in gClusters. This holds true even for pairs of isolates with 0 SNP differences. The 
many genomic links missed by public health investigations in Valencia region reminds of what is seen 
in high-burden countries, where contagion occurs outside the traditional household or work settings.

Historical TLs between clinical settings highlight distinct epidemic 
dynamics
In order to evaluate transmission dynamics in a setting over time, we defined historical TLs as the 
common ancestor of two circulating strains up to 150 yB 2016. To notice, we did not try to quantify 

https://doi.org/10.7554/eLife.76605


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Cancino-Muñoz, López et al. eLife 2022;11:e76605. DOI: https://​doi.​org/​10.​7554/​eLife.​76605 � 8 of 23

Figure 3. Historical transmission dynamics analysis. (A) Distribution of local-born cases clustered by different pairwise distance SNP thresholds. Cases 
are expressed as the percentage of the plotted samples. Pie charts represent the proportion of local-born (color) and foreign-born (gray) cases in each 
dataset. (B) Age of local transmission links over time in each setting. Circles represent median time, and lines represent 95% high probability density for 
each transmission link counted. Circle size represents the number of samples included in the corresponding link. Red denotes those transmission links 
including only samples within the same genomic transmission clusters (gClusters), green denotes links involving samples from different gClusters, blue 
denotes samples within gClusters and unique, and purple denotes unique cases. All links were obtained from Figure 3—figure supplements 1–6 and 
are summarized in Figure 3—source data 1–6.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Bayesian dating results for all clusters (CL) from Oxfordshire.

Source data 2. Number of transmission links (TLs) traced back to 150 years before 2016 for Oxfordshire dataset.

Source data 3. Bayesian dating results for all clusters (CL) from Valencia region.

Source data 4. Number of transmission links (TLs) traced back to 150 years before 2016 for Oxfordshire dataset.

Source data 5. Number of transmission links (TLs) traced back to 150 years before 2016 for Malawi dataset.

Source data 6. Number of transmission links (TLs) traced up to 150 years before 2016 for Valencia dataset.

Figure supplement 1. Bayesian time tree for Oxfordshire dataset.

Figure supplement 2. Bayesian time tree for Malawi dataset.

Figure supplement 3. Bayesian time tree for Valencia region dataset.

Figure supplement 4. Bayesian time tree for Velncia Region dataset.

Figure supplement 5. Bayesian time tree for Valencia Region dataset.

Figure supplement 6. Bayesian time tree for Valencia Region dataset.

https://doi.org/10.7554/eLife.76605
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how many transmission events have happened over the last 150 years. Our rationale is that many 
person-to-person transmission events likely occurred along branches between nodes or nodes and 
terminals, they are impossible to quantify, but we can summarize all these events as one TL, as we 
are confident that at least one transmission event occurred along the branch. The exact time of the 
transmission is not possible to estimate either, instead our rationale is that when two circulating strains 
had a common TL in the past, this ancestor represents a lower-bound for when the strains started to 
circulate. Thus, we compare how many links have occurred during a period of time among different 
settings, as an approach of long term transmission dynamics analysis. In our approach, we only consid-
ered genomic data from local-born patients to avoid the influence of imported genotypes in our 
analysis.

Then, we counted the TLs in different time windows, in the three settings evaluated. In the case 
of Oxfordshire, we identified 14 links between 5 and 25 yB 2016, with the next TL being inferred 
between 100 and 150 yB 2016 (Figure 3B, Figure 3—figure supplement 1, Figure 3—source data 
4). Thus, a gap of 75 years occurs between the most recent and the oldest TLs, explaining why the 
12 SNP threshold performs well in this setting as a transmission marker. In the case of Malawi, we 
counted 70 links dating back to 50 yB 2016 and 46 dated between 50 and 150 yB 2016 (Figure 3B, 
Figure 3—figure supplement 2, Figure 3—source data 5). For the Valencia region, we counted 143 
links that dated back 50 yB 2016 and 43 between 50 and 150 yB 2016 (Figure 3B, Figure 3—figure 
supplements 3–6, Figure 3—source data 6). The gap detected in Oxfordshire is not observed in 
Malawi or Valencia.

In the above analysis we had two strong assumptions. First, that the historical link shared by two 
strains happened in the setting under study and not elsewhere. We do believe this is the case as we 
only considered links involving local-born cases, thus minimizing the impact of importation/expor-
tation in the analysis. In addition, a local origin is the most likely geographic location of historical 
TLs when analyzed in the context of a representative sample of global diversity (Figure 3—source 
data 6). Second, that two strains not only shared a historical link but also their sampling today reflect 
continuous transmission, not reactivation from a remote infection. Recent reanalysis of annual risk of 
infection in TB settings (Dowdy and Behr, 2022) as well as the incubation period (Behr et al., 2018) 
suggests that most cases of TB are due to recent transmission. Likewise, we reasoned that if old reac-
tivations contribute to strains in the Valencia region, we should see an increment in the age of the 
TB patients belonging to the older clusters (i.e. patients infected 20 years ago and have reactivated 
recently). We found no difference when comparing the age of the patients belonging to a gCluster 
with the inferred age of the cluster (Welch two-samples t-test, p-values>0.1, Appendix 1—figure 3, 
Supplementary file 7), suggesting that the strains included in this study do not represent reactiva-
tions and that uninterrupted transmission is the most likely explanation for the old links observed.

Discussion
Here, we present the first population-based study of TB transmission in Spain based on WGS. We 
sequenced the whole genome of a representative proportion of all the TB notified cases in the Valencia 
region that provides an accurate picture of the bacterial population structure, during 3 years. We 

Table 1. Dating of local genomic clusters (gCluster).
Times of the oldest and youngest local gClusters obtained by a Bayesian analysis are presented, 
with values in years (AD) and 95% highest posterior density given in brackets. The number of 
gClusters and clustering percentage is provided for each dataset. The median distance ranges for all 
gClusters are also detailed.

Dataset
Sampling 
period

Local 
samples

N local 
gCluster

Local 
clustering

Median 
distance 
range Oldest gCluster

Youngest 
gCluster

Oxfordshire 2006–2012 74 6 27% 0–7 1993 (1982–2003) 2009 (2003–2012)

Malawi 2008–2010 106 40 49.80% 0–14 1979 (1968–1988) 2009 (2004–2010)

Valencia region 2014–2016 456 65 47.40% 0–11 1985 (1972–1996) 2015 (2012–2016)

https://doi.org/10.7554/eLife.76605
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exhaustively researched TB transmission linked to local epidemiological data and, by comparing to 
other settings, highlighted four main characteristics defining dynamics and influence on TB incidence.

Transmission can play a significant role in low-burden countries, 
especially among local-born patients
The percentage of genomically linked cases (12 SNPs) of around 43% in the total population, increases 
to 47% among the Spanish-borns being 31% among imported cases, suggesting that transmission 
among locally born patients majorly contributes to disease burden. These percentages remain high 
when considering a stricter threshold of 5 SNPs for clustering (35 vs. 39%, respectively). We found 
higher transmission in the Valencia region compared to other population based studies conducted in 
low-burden settings, where clustering rates ranged between 14 and 16% (Jajou et al., 2018; Walker 
et al., 2014) and somewhat closer to that reported in mid and high TB-incidence settings (39–85%) 
(Guerra-Assunção et al., 2015; Gygli et al., 2021; Khan et al., 2019; Saavedra et al., 2022; Walker 
et al., 2022; Yang et al., 2022; Yates et al., 2016). High transmission among Spanish-born individuals 
is a major contributor to disease burden in Valencia. By contrast, reactivation of infections in imported 
cases from high-burden settings is the significant driver in other low-burden settings (Jajou et al., 
2018; Kamper-Jørgensen et al., 2012; Meumann et al., 2021; Walker et al., 2014). Thus, our results 
reveal the heterogeneity of the TB epidemic among settings, highlighting the lack of correlation 
between a region’s TB burden and the level of local transmission.

Community transmission can majorly contribute to TB cases in a low 
burden setting
In low-burden TB settings, comparison between contact tracing and WGS revealed that between 38 
and 57% of genomically linked cases had also an epidemiological link (Diel et al., 2019; Jajou et al., 
2018; Walker et al., 2014). In high-burden settings, which suffer from rampant community transmis-
sion (Yates et al., 2016), the agreement between both approaches is significantly lower (8–19%) (Auld 
et al., 2018; Middelkoop et al., 2015; Verver et al., 2004). In the Valencia region, we observed an 
agreement similar to high-burden settings (15.4%), meaning that almost 80% of transmission is missing 
by the health system, despite contact tracing being conducted in 78% of cases. As has suggested for 
high-burden settings, contact tracing among household close contacts will not have a significant effect 
on TB incidence at a community level (McCreesh and White, 2018; Surie et al., 2017), since much of 
transmission may result from casual contact in community settings between individuals not known to 
one another (Auld et al., 2018; Guerra-Assunção et al., 2015) and also, transmission associates more 
with social drivers, including the ways in which individuals interact and congregate (Andrews et al., 
2014; Mathema et al., 2017). Thus, our results support that community transmission is behind the 
lack of agreement between genomic and epidemiological clusters observed in the Valencia region, 
and highlights its relevance in low burden settings.

Genomic links are older than epidemiological links
The Valencia region’s oldest gClusters dated to around 30 years before the sampling period. When 
considering only strains epidemiologically linked, the oldest most recent common ancestor can be 
traced less than 10  years. Thus, a 12 SNP threshold identifies both recent and older transmission 
events. A 5 SNP threshold dates clusters between 1999 and 2015 in agreement with recent trans-
mission rendering more actionable results for public health, as was previously shown (Jajou et al., 
2018; Meehan et al., 2018). However, a 5 SNP threshold still misses a percentage of cases linked by 
epidemiological data and vice versa, highlighting transmission complexity and the relevance of under-
standing its dynamics in each setting. Thus, a strict threshold has limitations and communicating a 
range, incorporating degrees of confidence, will be more valuable for public health interventions. This 
is particularly true in settings where transmission still has a prominent role. Communicating different 
thresholds allows to reveal not only very recent links, but also older TLs, which allows to evaluate 
the transmission burden, the impact of transmission control programmes, as well as, reveal transmis-
sion hotspots and unanticipated risk factors or community transmission, beyond the limits of contact 
tracing.

https://doi.org/10.7554/eLife.76605
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Continuous pairwise genetic distance distributions reflect sustained 
transmission over the last decades
The evaluation of local-born cases in the Valencia region revealed continuous clustering across genetic 
distances, similar to Malawi. In both settings, differentiation between linked and unlinked cases seems 
arbitrary, as a clear SNP cut-off to delineate genomic transmission could not provide precise results 
(Figure 4A). This contrasts with the results of Oxfordshire, where clustering does not change in the 
range of 12–150 SNPs (Figure  4B). In this sense, the SNP threshold choice used to differentiate 
transmission from unrelated cases remains challenging even in low-burden settings and provides only 
tentative information (Meehan et al., 2019). An in-depth evaluation of clustering in each setting is 
needed to understand its particular transmission dynamics. Furthermore, the Valencia region and 
Malawi also display continuous and sustained TLs over time (Figure 4C). Those events outside the 
genomic transmission clusters likely reflect older contagion chains that still contribute to TB incidence 
today, as a consequence, clustering is continuous in settings exhibiting this transmission dynamics. 
The lack of effective past efforts to halt transmission may represent a plausible explanation. Epide-
miological data demonstrates that Spain will likely attain a country profile similar to the UK and other 
low-burden, high-immigration countries. The higher transmission and the older age of transmission 
chains likely reflects a situation in which Spain suffered from higher disease incidence for most of the 
20th century, reflecting its lower socioeconomic status than neighboring countries. The current control 
strategies in place in the Valencia region meet the WHO’s target to reduce TB, including active case 
findings of close contacts since the 1990s. Improved TB control has led to a continuous drop in case 
numbers and to an incidence from 22 to 6.4 in the last 20 years. By contrast, Oxfordshire displays a 
bimodal distribution of clustering across pairwise distances, and also lacked transmission events other 
than those involving 12 SNP gClusters (Figure 4). These results agree with the robust reduction in 
both disease incidence and transmission that occurred until the beginning of the 1990s in the UK; 
after that, increased HIV infections, immigration and the emergence of TB drug resistance fueled the 
expansion of TB (Glaziou et al., 2018). In accordance with this data, we dated ongoing transmission 
in Oxfordshire back to 1993. Our results imply uninterrupted transmission of TB in Valencia region and 
Malawi and not in Oxfordshire and offer an explanation for the differences in SNP distributions across 
settings (Figure 4A and B).

The main limitations of our analysis are (I) methodological, since only cases with positive cultures 
can be sequenced. However, we showed that cases included are an accurate representation of the 
epidemiological characteristics of the populations under study. On the other hand (II), in our analysis 
of historical transmission, we use tree nodes as ‘TLs'’ to summarize the number and time of historical 
transmission. Since both are impossible to quantify, we assume that these TLs represent an estimation 
of the moment when the strain started to circulate and, at least, one person-to-person transmission 
event. We also assume that the strains were circulating in the region and not elsewhere and later 
imported. Finally, we have not attempted to quantify the number of person-to-person transmission; 
which can only be done using approaches like TransPhylo (Didelot et al., 2017; Xu et al., 2019). 
However, this approach is suitable only for recent transmission, i.e. cases within transmission clusters. 
Thus, TransPhylo is not applicable in our study.

Finally (III), differences in the absolute number of cases in each dataset are irrelevant for compar-
ison, since they all represent population-based studies with the same time-window sampling, thus the 
majority culture positive cases were included in the analysis. In this sense, the distribution of cases in 
clusters likely reflects the whole transmission dynamics of the settings.

Our results underscore a primary role for continuous transmission in fueling TB incidence in the 
Valencia region. Likewise, our results strongly suggest that in this particular setting, community trans-
mission is occurring more frequently rather than in household contacts. All these features are similar 
to some high-burden settings (Bjorn-Mortensen et al., 2016; Guerra-Assunção et al., 2015; López 
et al., 2020; Yang et al., 2018).

The opposite scenario occurs in other low-burden countries (Jajou et al., 2018; Walker et al., 
2014) where transmission is limited and immigration from high-burden countries, also involving reac-
tivation of the disease, represents the primary driver of incidence (Meumann et al., 2021). In addi-
tion, reported meta-analysis from historical epidemiological studies suggests that, contrary to current 
assumptions, MTB infection may not be lifelong, and most people are able to clear it (Behr et al., 
2019). This further suggests that the prevalence of LTBI is much lower than assumed, and most of the 

https://doi.org/10.7554/eLife.76605
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Figure 4. Hypothetical time trees indicating transmission links (TLs). (A) (Left) The complete phylogeny, including all bacterial isolates and displaying 
multiple transmission events over time (located at nodes for simplification). This scenario allows the reconstruction of a tree (middle) with several tips 
and multiple TLs (as the summary of all the events). A continuous distribution of clustered cases by different pairwise distances is retrieved (right) as 
observed in the Valencia region and Malawi. (B) A complete phylogeny (left) in which transmission is either too old or recent and few (or no) transmission 

Figure 4 continued on next page
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TB cases we see today are coming either from recent contagion or imported depending on the TB 
setting.

We demonstrate that low burden does not translate to low transmission, highlighting how low-
burden TB locations can entail very distinct scenarios that require specifically tailored management 
in order to eliminate TB, and that general guidelines should not be applied to all the areas based 
solely on incidence rate (Lönnroth et al., 2015). In areas where incidence is mainly contributed by 
transmission, actions beyond passive case finding strategies are likely to be more successful. Different 
forms of active case finding to cut community transmission have been implemented in low income 
countries that can be transferred to high and middle income ones (Ho et al., 2016). Those strategies 
can be designed not only based on the presence of social and host risk factors (Dowdy et al., 2012) 
now there is the opportunity to move toward genomics-informed infection control programmes, e.g., 
by identifying transmission hotspots or highlighting unanticipated risk factors. Active case finding 
also has the potential to tackle subclinical TB transmission, which we estimated using high resolution 
transmission mapping in our setting (Xu et al., 2019), and its impact on global and local TB control is 
still unknown (Kendall et al., 2021).

Our key message is that understanding heterogeneities in TB transmission dynamics is essential to 
define tailor-made interventions to halt transmission with a population-level impact, which is key to 
reducing the incidence of TB worldwide.
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Appendix 1

Supplemental methods
Sample selection and study design
Between 2014 and 2016, the Valencian Regional Public Health Agency (DGSP: Dirección General 
de Salud Pública) reported 1388 TB cases (https://www.sp.san.gva.es/), of which 1019 (78.9%) were 
culture-positive, as tested by liquid Mycobacteria Growth Indicator Tube (MGIT) or solid-media 
Löwenstein-Jensen in 18 regional hospitals. 785 single-patient samples were available for further 
analysis, representing 77% (785/1019) of all culture-positive cases and 60.7% of all active TB cases 
reported in the region (Supplementary file 1, Appendix 1—figure 1).

Demographic, clinical, and microbiological records were obtained from the routine TB surveillance 
system. All diagnosed TB-positive patients completed a standardized questionnaire provided by 
the DGSP that collected information that included current resident address, country of birth, close 
contacts, and health status. Census data were obtained from (http://pegv.gva.es/en/noticias/-/​
asset_publisher/CWK0IEKbs79H/content/padron-municipal-de-habitantes-2016).

Genomic cluster definition and WGS phylogenetic inference
A multisequence alignment (MSA) file with the variant positions from all samples was constructed, 
discarding well-known drug resistance positions. Then, the pairwise SNP distance between all strains 
was computed with the R ape package. Genomic transmission clusters were constructed if the 
genetic distance between at least two patients’ isolates fell below a defined threshold. A customized 
script was used, and different SNP thresholds considered. To confirm cluster monophyly, a maximum 
likelihood tree was constructed with the MSA file (50,184 SNPs) using RAxML v8 (Stamatakis, 2014), 
the GTR GAMMA model, 1,000 bootstrap replicates, and including M. canetti as an outgroup.

Dating recent common ancestors (MRCA) of local transmission clusters
Timed phylogenies for datasets from Malawi (2008–2010), Oxfordshire, and the Valencia Region 
were inferred with Beast v2.5.1 (Bouckaert et al., 2014). First, an MSA file for each dataset was 
constructed without drug resistance-related SNPs. Since the Valencian dataset was too large, four 
subsets were defined by considering major clades from the whole phylogeny. Sequences from ancient 
TB DNA obtained from archeological bones with radiocarbon dating information (Bos et al., 2014) 
and three samples from a recent Spanish outbreak with known time origin (Pérez-Lago et al., 2019) 
were included in all three datasets. Ascertainment bias was corrected by adjusting the clock rate to 
each alignment length as highlighted in Supplementary file 2. A correlation analysis between height 
median estimated by our correction method and by other commonly used for ascertainment bias 
correction (https://groups.google.com/g/beast-users/c/QfBHMOqImFE), was performed. As shown 
in Appendix 1—figure 4, correlation between both correction methods is high and significant for 
each of the dataset analyzed, suggesting that dates on the branch are correctly estimated and 
comparable between the independent analysis.

The following priors were used for dating (López et  al., 2020): GTR  +GAMMA substitution 
model, a strict molecular clock model, and a coalescent constant size demographic model. A log-
normal prior was used for the clock model with a mutation rate of 4.6×10–8 (0.20 SNPs per genome 
per year), reflecting the previously estimated mutation rate of MTBC (Bos et al., 2014). Radiocarbon 
dates were used as prior for ancient samples’ tip date, and the Spanish outbreak was included as a 
calibration node; both cases used a log-normal prior distribution. Three independent runs of Markov 
Chain Monte-Carlo (MCMC) length chains of 10 million were performed. The runs were combined 
via logcombiner v2.4.8. Tracer v1.6 was used to determine adequate mixing, convergence of chains 
and sufficient sampling for every parameter (effective sample sizes, ESS >200), after a 10% burn-in. 
Trees were annotated with the TreeAnnotator tool. The trees were visualized with FigTree v1.4.4, and 
the estimated time of the MRCA of every local-born genomic cluster was identified.

Statistical analysis
Epidemiological information was available for 92% of sequenced samples (724/785). Those cases 
were used to evaluate associations between risk factors and genomic transmission (clustered cases 
vs. unique cases) using Fisher’s exact test in R. The performance of WGS for detecting transmission 
was compared against classic contact tracing – to this end, sensitivity, specificity, accuracy, positive 
predictive values (PPV), and negative predictive values (NPV) were calculated (Parikh et al., 2008). 
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Following the definitions of Diel et  al., 2019, sensitivity was calculated as the probability of 
clustering epidemiologically linked cases (true positive value) by WGS. Specificity was calculated 
as the probability of classifying as unique those epidemiologically unlinked cases (true negative 
value) by WGS. PPV was calculated as the percentage of patients within a WGS cluster who had 
an epidemiologically confirmed link. NPV was calculated as the percentage of unique WGS cases 
without an epidemiologically confirmed link.

A ROC curve was calculated from a subset of the pairwise distance file, including pairwise 
distances from 0 to 2000 SNPs. We named as a ‘cluster’ those pairs defined as epidemiologically 
linked cases by contact tracing and ‘unique’ those pairs without a link. Data were analyzed and 
plotted using the pROC R package (Robin et al., 2011).

Logistic regression was calculated with R, including all the risk factors and considering clustering 
as response. Cluster condition was recodified as ‘1’ and unique as ‘0’. All missing values were 
eliminated. Model assumptions, including linearity; influential values and multicollinearity were tested 
and verified in R. Goodness of fit of the logistic regression was tested with Hosmer-Lemeshow test. 
The best model was defined with the stepwise method, implemented in MASS library; it includes 
age, gender, place of birth, imprisonment, disease type and homelesness. The Akaike Information 
Criterion (AIC) indicates that the reduced model is better (AIC = 717.08) than the complete one (AIC 
= 726.42).

Supplemental results
Comparison between epidemiological and genomic clustering
Epidemiological contact tracing was performed for 78% of study cases by DGSP with 97  cases 
identified as involved in transmission chains (66 epidemiological clusters). Genomic clustering 
was calculated for all the available sequences, based on a pairwise distance of 12 SNPs for this 
comparison.

Comparison of both approaches revealed that only 51 (15.4%) of the 331 patients within genomic 
clusters had an identified epidemiological link. From those, 18 patients displayed complete agreement 
between both methods, meaning that same clustering was observed for both approaches; and the 
remaining 33 patients belong to larger genomic clusters, including links not detected by contact 
tracing.

On the other hand, for the remaining 46 cases with epidemiological links, 27 cases exhibiting 
disagreement between both methods, either because epidemiological links were different from 
genomic links (4  cases) or not detected (4  cases). The remaining 19 genomic links could not be 
evaluated since only one sample from the cluster was sequenced Supplementary file 5.

Appendix 1—figure 1. Workflow for sample selection. MTBC, Mycobacterium tuberculosis complex; WGS, whole 
genome sequencing.

https://doi.org/10.7554/eLife.76605
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Appendix 1—figure 2. Hypothetical time tree. (A) Complete phylogeny, including all bacterial isolates. Dashed 
lines represent missing samples that could not be retrieved during the sampling period (gray dashed lines). 
Transmission events are indicated as red circles, always in the tree node for simplification; multiple events occurred 
widely distributed across time phylogeny. (B) The tree was reconstructed with the collected samples. Most, but not 
all, transmission events can be recovered, they were summarized as ‘transmission links’. Letters indicate samples 
collected.

Appendix 1—figure 3. Boxplots of ages of cases from spanish-born genomic clusters in the Valencia region vs. 
the inferred ancestor of the clusters. Bars represent the percentage of cases in gClusters (by 12 SNPs) for each time 
period. Boxplots represent the age distribution of patients within the clusters. Differences between the age cases 
for each time period against the most recent clusters (pink) are not significant (Welch two-samples t-test, p-value < 
0.1 detailed in Supplementary file 7). Sample size of each category is indicated in x-axis label.

https://doi.org/10.7554/eLife.76605
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Appendix 1—figure 4. Correlation between the height median estimated by two ascertainment bias correction 
approaches; ‘adjusting clock rate’ and ‘including invariant positions’. Correlation was calculated for each dataset.

https://doi.org/10.7554/eLife.76605
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