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A B S T R A C T   

The current great concern about plastic pollution opens up opportunities for the production of more sustainable 
polymers. Inverse vulcanization has emerged as a novel procedure to obtain inorganic-organic hybrid polymeric 
materials. Sulfur is attained as a by-product of oil refining production and makes inverse vulcanization a sus-
tainable process due to a large amount of sulfur without a useful life. In previous studies, vegetable oils were used 
as a comonomer with sulfur to form copolymers based on sustainable raw material. Nevertheless, compounds 
from agro-wastes, could be a third comonomer that improves new copolymers bio-applications. In this study, a 
new series of copolymers with castor oil as vegetable oil and sulfur was formulated by adding a third compound 
bearing double bonds or heteroatoms. A study was conducted to assess the antimicrobial capacity and antioxi-
dant activity of the copolymers obtained to demonstrate the benefits of adding a new comonomer to improve 
their bioactivity.   

1. Introduction 

Currently, there is a significant concern about the effect of plastics on 
the pollution of our planet due to the exponential increase in its world 
production, which has gone from 1.5 Mt in 1950 to 335 Mt in 2016 [1, 
2]. Plastics play an essential role in the packaging, agriculture, consumer 
electronics, and automotive sectors, and only 1% of the total annual 
production of plastics are bioplastics [3]. Nowadays, a significant social 
movement is committed to the production of bioplastics. This cause is 

because of the adverse effects of traditional plastics, which include their 
massive accumulation, contribution to global warming, and other 
environmental pollution problems that conventional plastics cause in 
their life cycle [4–7]. The preparation of more sustainable polymeric 
materials with novel structures and exciting properties is highly priori-
tized in modern polymer chemistry [8]. 

Chung et al. [9], developed the revolutionary inverse vulcanization 
concept. The concept efficiently used elemental sulfur (S8) as a reaction 
medium and as a comonomer with other compounds that have double 
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bonds. This process was established for the synthesis of new hybrid 
polymeric materials. Through inverse vulcanization, stable polymers 
with a very high sulfur content (50–90% sulfur by mass) can be ob-
tained. Currently, sulfur is the tenth most abundant element on Earth, 
and it is valuable as a chemical reagent with important uses in industry, 
agriculture, or material science [10]. Around 70 million tons of sulfur 
are obtained as a by-product each year. Therefore, refined crude oil is 
currently the largest source of sulfur production [11]. Although several 
uses for sulfur have been previously described, there is still a net excess 
of sulfur that offers few economic services. Thus, finding a new 
large-scale use would be an important development and advance. Sulfur 
has a certain chemical inertness, exhibiting limited solubility in many 
organic solvents, except for poor solubility in some aromatics such as 
toluene, carbon disulfide, and pyridine [12]. All of this makes it chal-
lenging to synthesize polymers directly from sulfur under slight reaction 
conditions. The main limitations are overtaken by inverse vulcanization 
through ring-opening polymerization reaction [12]. The use of this new 
type of copolymers has opened a promising field for studying new ma-
terials with beneficial chemical and optical properties since they have 
been used in such vital fields as materials science, polymer technology, 
adhesives, electrochemistry, or water treatment. The specific properties 
of the copolymers depend on the nature of the bonds formed between 
sulfur and another compound with a double bond [13–16]. 

The properties of the copolymers could be controlled by the selection 
of the polymerization reaction conditions and the use of an appropriate 
comonomer. Vegetable oils can be considered a practical option for their 
use as green comonomers. Taking advantage of their properties, they 
can be used to produce copolymers from highly cross-linked thermosets 
to linear thermoplastics, making them applicable in a wide range of 
materials for various uses [17,18]. Based on these precedents, other 
copolymers could also be formed from a natural origin, such as 
agro-wastes, a source of a great variety of bioactive compounds [19]. A 
recent example of using an agro-waste, such as limonene, as a source of a 
comonomer compound in the inverse vulcanization process has been 
reported in the literature [20]. The use of copolymers of natural origin 
that come from residues of the agro-food industry would lead to 
obtaining polymeric material that offers a high degree of biodegrad-
ability, antioxidant power, and antimicrobial properties, as can be found 
in the other examples recently described in the literature [12,21,22]. 

One sustainable and green option to obtain copolymers with sulfur 
by inverse vulcanization has been carried out with vegetable oils due to 
the easy interaction of sulfur with triglyceride unsaturation. Previous 
studies have shown that sunflower, linseed, and olive oils have been 
applied to develop of lithium-sulfur battery cathodes [15,23]. In the 
same way, some systems have been described elaborating new poly-
meric materials with natural origin, from vegetable oils as raw material, 
that take advantage of some properties of them, thus, obtaining products 
for many applications [17,17,17]. In another study, soybean oil was 
chosen to react with elemental sulfur to be investigated as a source of 
sulfur for plants, as a fertilizer with improved oxidation capacity [24]. 
Even in water remediation, sulfur-based polymers obtained by inverse 
vulcanization of elemental sulfur with canola oil and other recycled 
cooking oils were able to produce an efficient adsorbent for mercury 
capture [25]. Thus, these kinds of copolymers previously formed by the 
inversed vulcanization methodology that present good properties could 
be interesting base compounds to improve by adding new chemical 
compounds with specific properties for the industry. A new generation 
of polymers is desirable to have antioxidant and antimicrobial proper-
ties to form new plastic materials. Therefore, phenol compounds have 
been reported as bioactive compounds with antioxidant and antimi-
crobial properties [19,26]. Compounds derived from polyphenols, such 
as cinnamic acid or bisphenol A, could be used for this purpose, being 
used as raw material for the formation of copolymers with bioactive 
properties from agro-waste. In addition, the use of bisphenol A for this 
methodology is interesting to give a clean utility to this compound that, 
although it is found in fruit packaging, is well known that it can cause 

damage to human health [27,28]. 
Furthermore, incorporating of heteroatoms (oxygen and nitrogen) in 

the main chain of the copolymer with these new chemical compounds 
can favour different properties such as antimicrobial and antioxidant 
properties [29,30]. Based on this premise, other compounds that can 
provide exciting characteristics to the final polymer material could be 
imidazole, one of the most used catalysts in chemical synthesis, which 
was also proposed to increase the reaction rate in this kind of copoly-
merization [31]. Likewise, another candidate which could also favour 
the kinetics of the reaction and bear a heteroatom would be the tri-
allylamine [32,33]. In the same way, other compounds that carry double 
bonds and are suitable to have biological applications should be styrene, 
which has previously been used as a comonomer in other studies to 
obtain electric devices [8,34,35]. 

The aim of this work was the generation of new kinds of copolymers 
by inverse vulcanization, using elemental sulfur (S8) and natural prod-
ucts to formulate new antioxidant and antimicrobial polymeric 
materials. 

2. Experimental section 

2.1. Raw materials 

Castor Oil (CO) was supplied by Ginama (Valencia, Spain), and 
elemental sulfur (S8) 99% was provided by the refining petroleum 
company CEPSA (Huelva, Spain). The third group of compounds for the 
production of copolymers was composed of Styrene (STY), Bisphenol A 
(BPH), Triallylamine (TAA), Imidazole (IMI) (Sigma-Aldrich, Steinheim, 
Germany), and Cinnamic acid (CIN) (Acros Organics, Geel, Belgium) 
(Fig. 1). 

2.2. Synthesis of new materials by inverse vulcanization 

Inverse vulcanization of elemental Sulfur, Castor Oil (CO), and a 
third compound were prepared following a slight modification of 
Chalker’s preparation [16]. S8 and CO were heated and melted under 
vigorous stirring until 170 ◦C within an oil bath in a round bottom flask, 
covered with cooling reflux to minimize the evaporation of reactants, for 
60 min with a S/CO:80/20 weight ratio (Fig. 2A). For ternary co-
polymers, when blends S8 and CO were heated at 170 ◦C, the third 
compound was slowly added. Blends were stirred for 60 min keeping the 
temperature to finish the comonomers conversion. The previous pro-
cedure was continued to synthesize 20 g of new copolymers with the 
following weight ratios: S/CO/STY:80/14/6, S/CO/BPA:80/14/6, 
S/CO/TAA:80/14/6, S/CO/CIN:80/14/6, and S/CO/IMI:80/14/6 
(Fig. 2B). 

In addition, a new strategy to obtain copolymers to improve their 
future biological capacities is based on the elimination of vegetable oil 

Fig. 1. Different comonomers are used for the generation of copolymers.  
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as a comonomer and the use of the best possible activity compounds as 
the second comonomer. For this, the introduction of double bonds in its 
structure is necessary, being bisphenol A, in the present study, was 
tested as a comonomer, which previously had suffered an allylation. This 
procedure is based on precedent research published [36]. In the flask, 
20 g of BPA was added with a dissolution of 800 mL of 0.5 M NaOH 
(aq)/acetone (1:4). Then, 20 mL of allyl bromide was also added, and 
the mixture was allowed to heat for 5 h at 40 ◦C with continuous stirring. 
After that time, the solution was concentrated on leaving it in the 
extractor hood overnight. The remaining solution was acidified to pH 2 
by adding concentrated HCl (aq). The resulting fraction was introduced 

in a separating funnel and washed four times with distilled water and 
hexane. Finally, it was left to dry in a hood for 48 h, and the polymer was 
formed by inverse vulcanization with a S/BPA-allyl:80/20 ratio as pre-
viously described (Fig. 2C). 

2.3. Antioxidant activity assay 

The dissolution of the copolymers in different organic solvents was 
tested with pyridine, dichloromethane, acetone, dimethyl sulfoxide, 
carbon disulfide, and tetrahydrofuran, obtaining it only in carbon di-
sulfide and pyridine. 0.1 g of each material was dissolved in 25 mL of 

Fig. 2. a) Synthesis process of copolymer based on sulfur and castor oil by inverse vulcanization. b) (S/CO/X) copolymers generated with different chemical 
compounds. c) Allylation reaction of bisphenol A with allyl bromide, and methodology to obtain the desired copolymer by inverse vulcanization. 
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disulfide carbon to measure the antioxidant power. The antioxidant 
activity of the new material obtained was determined using the 2,2- 
diphenyl-1-picrylhydrazyl (DPPH) spectrophotometric method [37] 
and was expressed as milligrams of Trolox equivalents per g polymer (g 
TEAC/g polymer). 

2.4. Antimicrobial activity assay 

The antimicrobial activity of the polymers was tested against two 
bacterial strains pathogenic to humans, Escherichia coli (Gram − ) and 
Bacillus cereus (Gram +), and the yeast Saccharomyces cerevisiae. These 
microorganisms were grown in test tubes in an orbital shaker at 100 rpm 
until the cultures reached the stationary phase. Bacteria were cultured in 
LB medium at 37 ◦C, while yeasts were grown in YPD medium at 30 ◦C. 
An inoculum of 100 μL was added to 4 mL of culture medium containing 
100 mg mL− 1 of each copolymer. A culture without any polymer was 
used as a control of the microbial growth and, Castor Oil and S8 were 
used as controls of the specific activity of the copolymers. The micro-
organisms were cultured overnight in the presence of the different co-
polymers. The inhibition of growth was measured through the optical 
density of the cultures at 600 nm in a spectrophotometer (Ultrospec 
3100 pro, LabWrench) in comparison with the control culture without 
copolymers. 

2.5. Nuclear magnetic resonance spectroscopy 

Nuclear magnetic resonance spectroscopy (1H NMR) was used to 
determine the chemical structures of the copolymers. 1H NMR of co-
polymers samples was recorded at 500 MHz using a Varian Mercury 500 
spectrometer. Deuterated pyridine-d5 was used as a solvent (δ = 7.18, 
7.55, 7.70 ppm). 1H NMR shifts are reported relative to 
tetramethylsilane. 

3. Results and discussion 

3.1. Structural analysis of the new copolymers via solution NMR 
spectroscopy 

Nuclear magnetic resonance spectroscopy was used to determine the 
chemical structures of castor oil and the other copolymers synthesized. 
The representative 1H NMR spectra, taken by dissolving the samples in 
deuterated pyridine-d5 of castor oil and new copolymers, are shown in 
Fig. 3. As can be clearly observed in Fig. 3, the alkene = CH proton peaks 
at δ = 5.60 and δ = 5.80 ppm present in castor oil are completely absent 
or overhead by peaks for other copolymers. Similar behavior was ob-
tained in the inverse vulcanization process with castor oil, and sulfur 
recently carried out by Tikoalu et al., [16]. The new C–S bonds should 
appear at δ = 1.30 ppm in the 1H NMR spectra but were masked. Ac-
cording to previous studies, sulfur-based copolymers should present 
signals of the thiol group around 1.5 ppm [38]. The HOD peak appears 
around δ = 5 ppm belonging to the impurities of deuterated solvent 
[39]. 

Different peaks appear that belong to the aromatic region from new 
copolymers against castor oil and S/CO:80/20 copolymer (Fig. 3). 
Imidazole peaks appear in δ = 7.03, 7.55, and 8.16 ppm from the S/CO/ 
IMI copolymer, similar to that described by Butt et al., [40]. Cinnamic 
acid double peaks appear in δ = 6.91, 7.33, 7.60, and 8.03 ppm from the 
S/CO/CIM copolymer. A similar chemical shift of cinnamic acid was 
described in the study by Bezerra França et al., [41]. The S/CO/TAA 
copolymer does not appear any peak representative from triallylamine, 
it is masked with castor oil. Peaks from bisphenol A appear in δ = 7.12 
and 7.27 ppm in the S/CO/BPA copolymer similar to that described in 
another reaction by van den Hoek and Fossum [42]. Finally, multiple 
peaks appear around δ = 7.29 ppm from S/CO/STY in the aromatic 
region from styrene. Wręczycki et al. [8], described similar aromatic 
peaks suggesting that the phenyl groups were located randomly along 

with the macromolecules since the two peaks of the aromatic region 
observed in other copolymers not appear. 

3.2. Study of antioxidant activity from the new copolymers 

The antioxidant capacity of the new copolymers was calculated 
employing DPPH radical scavenging methods and compared with the 
antioxidant activity of castor oil and sulfur. As can be seen in Fig. 4, the 
S8 has an insufficient radical scavenging capacity concerning to the 
other substances measured. In a recent study with inorganic sulfur salts, 
Na2S and Na2S2 were used to observe if they had antioxidant activity, 
and reduction of DPPH was observed similar to what was observed with 
S8 [43]. On the contrary, castor oil has been observed to have antioxi-
dant activity that does not increase over time. This antioxidant activity 
of castor oil is attributed to the phenol compounds of the oil itself [44]. 
In the copolymer S/CO a minor increase of antioxidant activity was 
observed concerning to castor oil. Therefore, the addition of another 
compound that has antioxidant capacity in the copolymer could increase 
this property. 

Copolymers with STY, IMI, and CIM have increased their antioxidant 
activity against the copolymer with only CO. However, the antioxidant 
activity of the copolymers with BPA and TAA has decreased this activity 
with respect to copolymer S/CO. Higher antioxidant activity was 
observed when the copolymers had hydrophobic compounds such as 
styrene or imidazole [45]. The hydroxyl groups of S/CO/BPA respon-
sible for scavenging DPPH radicals could be connected to the network 
during polymerization, as a result of which their ability to scavenge 
DPPH radicals decreased [45]. Furthermore, the hydroxyl groups of 
bisphenol A were not detected at the 1H NMR of the S/CO/BPA copol-
ymer, as shown in Fig. 4. New polymeric materials from agro-wastes 
with high antioxidant capacity and moderate mechanical properties 
are an alternative to replace traditional plastic containers [46]. There-
fore, this new generation of copolymers synthesized with sulfur and 
compounds derived from agro-wastes could be very promising. 

3.3. Study of antimicrobial properties from the new copolymers 

Due to the increase of multi-factor resistant microbes, it is necessary 
to find new compounds with antibacterial and antifungal properties. In 
the present study, the antimicrobial activity of the new copolymers 
generated was assessed against two bacterial species, one Gram - (E. coli) 
and one Gram + (B. cereus), and one yeast (S. cerevisiae). 

According to the growth inhibition data, the results reflect that the 
extracts showed relatively good inhibitors activity against the tested 
microorganisms (Fig. 5). The best results were obtained for B. cereus, 
against which the majority of the new copolymers presented a relevant 
growth inhibition. At the same time, sulfur and castor oil had practically 
no effect on their growth. Among the new copolymers, phenolic com-
pounds, such as BPA and CIM, showed a strong inhibitory effect (90%) 
on the growth of B. cereus. Furthermore, it was observed that IMI 
inhibited its growth by 93% and TAA by 61%. Finally, STY only pre-
sented 34% growth inhibition on B.cereus, and the S/CO polymer had no 
significant effects on its growth. In the case of E. Coli, no inhibition of 
growth was observed in the presence of sulfur. The new copolymers 
showed an inhibition ability similar to that of castor oil (44%), the most 
significant being for BPA with 49% (Fig. 5). 

In a recent study, it was shown that the hydrophobic ricinoleic acid 
chains of CO could pierce the bacteria attached to the copolymers, 
forming holes that cause leakage, lysis, and consequently, the death of 
the microorganism [47]. The hydrophobic chains of the copolymers 
might have less affected the growth of Gram over Gram + bacteria due 
to the different composition of their cell walls. Gram – bacteria contain 
an additional outer membrane with phospholipids and lipopolysaccha-
rides, while Gram + bacteria lack this outer membrane and possess a 
thicker peptidoglycan layer instead [47–49]. Concerning S. cerevisiae, 
the new copolymers showed considerable inhibition activity, as it was 
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Fig. 3. a) 1H NMR spectra of castor oil and hybrid copolymer structure. b) Comparative aromatic region of each copolymer and castor oil.  
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also observed with S8 (63%). It should be noted the action of CIM, which 
was the most active copolymer against S. cerevisiae, with growth inhi-
bition of 76% (Fig. 5). This susceptibility to copolymer observed in 
S. cerevisiae could be due to the composition of its cell wall, which is 
mainly formed by a layered meshwork of β-glucans, chitin, and 
mannoproteins. 

3.4. Promising strategy for a new generation of polymers with sulfur and 
phenol compounds 

A new study utilizing waste products such as lignin has also used the 
inverse vulcanization process to form new copolymers [36]. Starting 
from substituting the hydroxyl groups of the lignins with allyl bromide, 
it can be favored the reaction of allyl lignin with S8, whereby part of the 
sulfur forms cross-links polysulfide with lignin to produce a 
three-dimensional network. This research gives new avenues of studies 
of compounds with hydroxyl groups to form of new copolymers from the 
formation of allylic compounds and S8 by inverse vulcanization that 
could have a higher antioxidant and antimicrobial capacity from the 
contribution of phytochemicals [19]. 

A previous study with BPA was carried out to form the allylation of 
the hydroxyl of BPA (BPA-Allyl), and subsequently, the inverse 

vulcanization reaction was performed. The formation of the two syn-
thesized compounds (S/BPA-allyl:80/20) has been characterized by 1H 
NMR. The reaction of BPA with allyl bromide (BPA-allyl) is observed to 
have been carried out almost entirely since no signal is observed in δ =
11.30 ppm of the hydroxyl group concerning the unreacted BPA (Fig. 6). 
In addition, it is observed that the signs of the double bond of the allyl 
group appear in δ = 5.20, 5.44, and 6.06 ppm. Finally, when BPA-allyl 
reacts by inverse vulcanization with sulfur (S/BPA-allyl), the peaks of 
the double bond belonging to the allyl group disappear due to the union 
with sulfur (Fig. 6). These facts imply that this new strategy is valid for 
continuing the research with phenol compounds obtained from agro- 
wastes, offering new properties and applications to future polymers. 

4. Conclusions 

Different copolymers were prepared by inverse vulcanization with 
sulfur, castor oil, and a third chemical compound. These copolymers 
have been shown to have antioxidant power due to the heteroatoms of 
the third chemical compound. Furthermore, these copolymers have been 
antimicrobial activity, especially against Gram + bacteria such as Ba-
cillus cereus and yeasts such as Saccharomyces cerevisiae. It is concluded 
that inverse vulcanization is an excellent method to obtain new co-
polymers using agro-wastes and a good option for synthesizing of new 
bioactive compounds with antioxidant and antimicrobial properties. 
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