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Abstract: In this paper, a lifting technique is employed 
to realize a single input single output linear (L,M) shift 
invariant plant as a filter bank system. Based on the 
filter bank structure, a controller is designed so that the 
aliasing components in the control loop are cancelled 
and the loop gain becomes a time invariant transfer 
function. Pole placement technique is applied to 
stabilize the overall system and ensure the causality of 
the filters in the controller. An example on the control of 
a linear (L,M) shift invariant plant with simulation result 
is illustrated. The result shows that our proposed 
algorithm is simple and effective. 
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I. INTRODUCTION 
 

A linear (L,M) shift invariant plant is a linear 
discrete-time single input single output (SISO) system 
in which the output will shift by L samples when the 
input shifts by M samples, where L and M form a pair of 
minimum values of positive integers [1, 2, 3]. A 
particular example is a linear time periodic varying 
(LTPV) system, which plays an important role in real 
world applications [4, 5]. 
 There are some control strategies to deal with 
those LTPV plants, such as employing the linear 
quadratic regulation (LQR) method [6]. However, it 
requires to solve the Riccati equation, which is quite 
complicated. Also, the dimension of the controller is, in 
general, higher than that of the plant. 

Besides, output stabilization via pole placement is 
proposed [7]. Although the poles of the system can be 
arbitrarily assigned except at the origin, there are a lot 
of constraints on the plant, and some LTPV systems 
cannot be controlled using this approach. 

An H sampled-data control method is also 
suggested [8]. However, it requires the Riccati equation 
corresponding to the Hamilton matrix to have a 
stabilizing solution, which is also complicated, and 
some plants do not satisfy this condition. 

There is not much research work on the control of 

a plant with different input and output data rates and this 
problem is studied in this paper. A lifting technique is 
reviewed in section II. A time invariance condition in 
the control loop, a stability condition for the overall 
system and a causality condition for the filters in the 
controller are stated in section III, section IV and 
section V, respectively. The formulation of the controller 
and the design procedures are discussed in section VI 
and section VII, respectively. An example on the control 
of a linear (L,M) shift invariant plant with simulation 
result is illustrated in section VIII. Finally, a concluding 
remark is discussed in section IX. 
 

II. REVIEW ON THE LIFTING TECHNIQUE 
 
 The input-output relationship of a linear (L,M) 
shift invariant system [1, 3] can be characterized by: 

      (1),                                                                 



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where g[n,k] is a two-dimensional kernel function of the 
system satisfying: 
g[n,k]=g[n-L,k-M] (2). 

Although this kernel function is an infinite 
dimension matrix, it has L independent rows and M 
independent columns. So by defining L different linear 
time invariant (LTI) filters, hj[n], where hj[n]=g[j,-n], 
for j=0,1,…,L-1, all linear (L,M) shift invariant systems 
can be realized via a filter bank structure as shown in 
figure 1. 
 

III. TIME INVARIANCE CONDITION IN THE 
CONTROL LOOP 

 
 Since the pole placement techniques are 
essentially for LTI systems, the overall control loop 
should be effectively time invariant. In the filter bank 
language, it should be free from aliasing. Since the plant 
is lifted as an analysis bank, the controller may be 
designed as a synthesis bank as shown in figure 2. 
 By constructing a closed loop feedback system as 
shown in figure 3, we have: 
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If the controller is designed in such a way that: 
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then the aliasing components, E(zWl), for l=1,2,…,M-1, 
are cancelled and the control loop becomes time 
invariant with transfer function T(z). 
 

IV. STABLITY CONDITION FOR THE 
OVERALL SYSTEM 

 
 Since the control loop is time invariant now, we 
have T(z)=P(z)/E(z). As E(z)=X(z)-P(z), we have: 
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  (6).                                                                          
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 The overall system becomes a new linear (L,M) 
shift invariant system with the corresponding filters in 
the filter bank structure having transfer functions 
Hj(z)/[1+T(z)], for j=0,1,…, L-1. The overall system is 
stable if and only if Hj(z)/[1+T(z)], for j=0,1,…, L-1, 
are all stable. 
 Suppose Hj(z), for j=0,1,…,L-1, and T(z) are 
rational, that is: 
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Hence, the overall system is stable if the unstable 
poles in Hj(z) are cancelled by that in T(z) and the sum 
of the numerator and the denominator of T(z) is stable. 
 

V. CAUSALITY CONDITION FOR THE 
FILTERS IN THE CONTROLLER 

 
 By applying a polyphase decomposition on Hj(z) 
and Fj(z), for j=0,1,…,L-1, we have: 
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 The control loop can be simplified as in figure 4. 
If Hj(z) and Fj(z), for j=0,1,…,L-1, are all causal, then 
the polyphase matrices Q(z) and R(z) are also causal. 
Because the delay chain in the filter bank structure 
causes a delay of M-1, the minimum delay of T(z) is 
M-1. Hence, we should design T(z) in the form of 
T(z)=z-(M-1)T0(z), for some causal T0(z). 
 
VI. FORMULATION OF THE FILTERS IN THE 

CONTROLLER 
 
 As T(z) is designed, Fj(z), for j=0,1,…,L-1, can be 
solved by equation (5), which consists of a system of M 
linear equations and L unknowns. If M=L and the 
aliasing matrix does not drop rank, then there is a 
unique solution for Fj(z), for j=0,1,…,L-1, as follows: 
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If M<L, there are infinitely many solutions. By 
selecting FM(z),FM+1(z),…,FL-1(z) properly, we can solve 
F0(z),F1(z),…,FM-1(z) as follows: 
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VII. DESIGN PROCEDURE OF THE 

CONTROLLER 
 
 Our proposed design procedure of the controller is 
as follows: 
Step 1: Employ a lifting technique to realize a linear 

(L,M) shift invariant plant as a filter bank 
structure as figure 1. 

Step 2: From the filter bank structure, highlight all the 
unstable poles of Hj(z), for j=0,1,…,L-1. Then 
put those unstable poles into the denominator 
of T(z). 

Step 3: Design the roots of the sum of the numerator 
and the denominator of T(z). Then employ pole 
placement techniques to solve the numerator of 
T(z) such that the roots of the sum of the 
numerator and the denominator of T(z) are the 
desirable ones and the minimum delay of T(z) 
is M-1. 

Step 4: Solve Fj(z) for j=0,1,…,L-1 by equation (10) or 
(11). 

Step 5: Construct the controller in a filter bank structure 
as figure 2 and connect the controller and the 
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plant together as shown in figure 3. 
 

VIII. EXAMPLE 
 

Consider a linear (L,M) shift invariant plant with 
L=3, M=2, and with kernel function as follows: 
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Step 1 
 Applying the lifting technique to the plant, we 
have: 
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Step 2 
 Since H0(z) is unstable with unstable pole at z=2 
and H1(z) and H2(z) are stable, the denominator of T(z) 
is 1-2z-1. 
Step 3 
 As M=2, the minimum delay of T(z) is 1. We can 
let the numerator of T(z) be T1z-1(1-dz-1). Since the 
order of the numerator is 2 and that of the denominator 
is 1, we can place two poles arbitrarily. By selecting two 
stable poles at z=0.6 and z=0.8, then we have: 
T1z-1(1-dz-1)+1-2z-1=(1-0.6z-1)(1-0.8z-1), 
T1=0.6 and d=-0.8 (14). 
That is: 
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are all stable. 
Step 4 

Since 
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 It can been seen that the filters in the controller 
are causal, FIR and stable. The simulation result is 
based on a unit step input. Figure 5 shows the output 
without any controller. Figure 6 shows the output with a 
controller designed by our proposed algorithm. 
 

IX. CONCLUDING REMARKS 
 
 In this paper, a control method on a linear (L,M) 
shift invariant plant is proposed. The algorithm is based 
on the lifting technique. The time invariance condition 
in the control loop, the stability condition for the overall 
system and the causality condition for the filters in the 
controller are discussed. Based on those conditions, a 
detail design procedure of the controller is proposed and 
an example is illustrated. The proposed algorithm is 
simple and effective, and can be applied not only to 
LTPV plants, but also linear (L,M) shift invariant plants. 
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Fig. 6. Step response of the plant with our proposed controller 


