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Introduction
In early arthritis, a rapid identification of  prognostic signs before the disease progresses to the establish-
ment of  aggressive or established forms can be highly beneficial for patients. Undifferentiated arthritis 
(UA) is an inflammatory form of  the arthritis spectrum, in which patients cannot be diagnosed by definite 
disease classification criteria (1–3). A considerable proportion of  patients with early UA eventually devel-
op definite arthritis — rheumatoid arthritis (RA), psoriatic arthritis (PsA), or peripheral spondyloarthritis 
(pSpA), among others — while the rest either remain as UA or remit spontaneously, without the need for 
treatment with disease-modifying antirheumatic drugs (DMARDs; ref. 4).

In the past few years, identifying those patients with early arthritis with a higher probability of  develop-
ing severe courses of  the disease or worse responses to future therapy has become a major goal (5–7). The 
delay in DMARD administration for those patients who will eventually need it can lead to eventual erosive 
arthritis, resulting in joint damage, functional impairment, and poor quality of  life (8). For this reason, 
there is a need to discover novel biomarkers that are highly specific to those cases so that a rapid, tailored 
intervention can be provided before the patient’s well-being deteriorates further.

DNA methylation is an epigenetic modification that acts as a dynamic mediator of  the environ-
ment–genome interface, through which it has the potential to shape cell function and phenotype (9, 10).  

Identifying predictive biomarkers at early stages of inflammatory arthritis is crucial for starting 
appropriate therapies to avoid poor outcomes. Monocytes (MOs) and macrophages, largely 
associated with arthritis, are contributors and sensors of inflammation through epigenetic 
modifications. In this study, we investigated associations between clinical features and DNA 
methylation in blood and synovial fluid (SF) MOs in a prospective cohort of patients with early 
inflammatory arthritis. DNA methylation profiles of undifferentiated arthritis (UA) blood MOs 
exhibited marked alterations in comparison with those from healthy donors. We identified 
additional differences both in blood and SF MOs after comparing patients with UA grouped by their 
future outcomes, i.e., good versus poor. Patient profiles in subsequent visits revealed a reversion 
toward a healthy level in both groups, those requiring disease-modifying antirheumatic drugs and 
those who remitted spontaneously. Changes in disease activity between visits also affected DNA 
methylation, which was partially concomitant in the SF of UA and in blood MOs of patients with 
rheumatoid arthritis. Epigenetic similarities between arthritis types allow a common prediction of 
disease activity. Our results constitute a resource of DNA methylation–based biomarkers of poor 
prognosis, disease activity, and treatment efficacy for the personalized clinical management of 
early inflammatory arthritis.
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DNA methylation is frequently associated with the repression of  gene expression, although their specific 
mutual relationship varies depending on the genomic context (11). To date, methylome alterations have 
been associated with a range of  immune-mediated diseases (10, 12). Depending on the context, this asso-
ciation can be causal — either direct (13) or through intermediation of  genetic susceptibility (14) — or a 
consequence of  a pathogenic condition (15). This sensing capability makes DNA methylation especial-
ly useful for providing insights into the molecular alterations of  both general conditions and individual 
patient features. For this reason, its application as a biomarker for personalized diagnosis is gaining in 
importance (7, 16–18).

Myeloid cells have been widely studied in inflammatory diseases because of  their ability to sense and 
react to inflammatory cues in a variety of  contexts (19, 20). Among others, one of  the mechanisms through 
which these stimuli are integrated into their phenotype is DNA methylation (15, 21). For instance, mono-
cytes (MOs) undergo methylome alterations in immune-mediated inflammatory diseases, such as RA, 
multiple sclerosis, systemic lupus erythematosus, and Crohn’s disease (15, 22–24). In addition, they are 
terminally differentiated cells, which allows an unbiased interpretation of  their epigenetic features, which 
can be largely attributed to their immediate response to a particular context. For this reason, these cells pose 
as ideal candidates for evaluating patient molecular profiles through analysis of  their epigenome.

In this study, we characterized the DNA methylation profiles of  MOs from patients with UA and 
described their alterations when compared with healthy controls. Furthermore, monocytic populations 
were analyzed in the peripheral blood and the synovial fluid (SF), allowing for a comparative characteriza-
tion of  the 2 compartments. These data were further integrated with additional data of  MO-derived mac-
rophages (MACs), differentiated in vitro. Patients with UA were followed up in subsequent clinical visits, 
and the effects of  prognosis (good vs. poor), treatment choice (DMARD vs. non-DMARD) and changes in 
activity were studied in relation to their methylome profiles. Our analyses allowed us to identify candidate 
biomarkers of  poor prognosis in UA and monitor reversion of  DNA methylation alterations in relation to 
treatment and remission.

Results
Early, treatment-naive UA blood MOs display DNA methylation alterations in immune-related regulatory regions. We 
isolated blood MOs from treatment-naive patients with early UA to analyze DNA methylation. Samples 
from these patients were obtained at baseline (visit 1) and at follow-up visits scheduled every 6 months, for 
an average of  4 visits in total (Figure 1A and Supplemental Figure 1A; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.158783DS1). Descriptive and clinical infor-
mation of  each sample, including age, sex, autoantibody seropositivity, and disease activity, were collected 
simultaneously (summarized in Supplemental Table 1 and detailed in full in Supplemental Table 2). A total 
of  20 patients with UA and 15 age- and sex-matched healthy donors (HDs) were analyzed (Supplemental 
Table 1A). The comparison of  HDs and patients with UA (at baseline) revealed the presence of  620 dif-
ferentially methylated positions (DMPs) between the 2 groups (FDR < 0.05). The DMPs identified were 
mainly hypermethylated in UA (562 DMPs, 91%), though some were hypomethylated (58 DMPs, 9%). 
They were homogenously distributed across the autosomes (Figure 1B and Supplemental Table 3).

Gene Ontology (GO) analysis showed the 620 DMPs to be significantly enriched in multiple functional 
categories related to both adaptive and innate immunity, response to stress, and cytokine signaling path-
ways (Figure 1C). We identified candidate genes of  established relevance to the arthritis spectrum (Sup-
plemental Figure 1B). Among these, we pinpointed FMS-like tyrosine kinase 3 (FLT3), the expression of  
which has been shown to be affected in blood MOs of  patients with RA (25); IFNGR2, which encodes sub-
unit 2 of  the IFN-γ receptor; IFN-response factor 4 (IRF4), which is involved in the inflammatory polariza-
tion during dendritic cell differentiation from MOs (26); IL12A, IL1RAP, and IL6ST, which are associated 
with cytokine signaling in the context of  immune cell activation; IL-1R–associated kinase 2 (IRAK2), the 
intermediary kinase in the TLR/IL-1R pathway; and TNF alpha–induced protein 3 (TNFAIP3), induced 
by TNF, which encodes a negative regulator of  the TNF pathway. Additionally, a differentially methylated 
region was identified in the TGFB2 locus, which spans 4 DMPs (Supplemental Figure 1C).

From this point onward, all analyses were exclusively performed on the hypermethylated DMPs (>90% 
of  the total). Transcription factor binding motif  enrichment (TFME) analysis of  these DMPs revealed 
significant enrichment of  motifs from the ETS (PU.1, SpiB, and ETS1, among others) and the IRF families 
(IRF1, 2, 3, 4, and 8; Figure 1D).
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Figure 1. DNA methylation differences between UA and HD blood MOs. (A) Flowchart summarizing the cohort timeline characteristics and the ana-
lytical workflow. (B) Manhattan plot depicting differential methylation significance results, by autosome. Colored dots indicate significant DMPs 
(limma FDR < 0.05) between UA (n = 20) and HD (n = 15). Blue indicates hypomethylation in UA, and red indicates hypermethylation in UA, relative 
to HD. (C) Significant GO categories selected from the analysis with GREAT of the hypermethylated DMPs. The number of CpGs, fold enrichment, 
and hypergeometric test P value are depicted for every category. (D) Significantly enriched TF motifs in the hypermethylated cluster regions, iden-
tified by HOMER. (E) Chromatin functional state enrichment analysis of the hypermethylated DMPs on CD14 primary cells ChromHMM public data 
from Roadmap Epigenomics Project. (F) Enrichment of MO histone mark ChIP-Seq public data around the hypermethylated DMP coordinates. P 
values are derived from Fisher’s exact tests. Arrows specify which histone marks are contained in each of the chromatin state categories in E. TssA, 
active TSS; TxFlnk, transcript at gene 5′ and 3′; Tx, strong transcription; EnhG, genic enhancers; Enh, enhancers; Het, heterochromatin; BivFlnk, 
flanking bivalent TSS/Enh; EnhBiv, bivalent enhancer; ReprPC, repressed PolyComb; ReprPCWk, weak repressed PolyComb; Quies, quiescent.

https://doi.org/10.1172/jci.insight.158783
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In addition, to contextualize the identified DMPs from a genomic standpoint, we analyzed the enrich-
ment in previously characterized chromatin states, defined by combinations of  distinct histone modifica-
tion marks in blood MOs (27). The readout of  this analysis makes it possible to characterize the putative 
impact of  the alterations in particular regions upon gene expression. The DMPs analyzed were mostly 
enriched in enhancer regions, and, to a lesser extent, in transcript-flanking regions (Figure 1E). These 
results were supported using ChIP-Seq public data of  histone marks from human MOs (see Methods). 
Signal distribution was plotted around the center of  the DMPs, and enrichment was calculated at the 
DMP coordinate by a Fisher’s exact test (Figure 1F). Histone modifications contributing to the significantly 
enriched states (H3K4me3, H3K4me1, and H3K27ac; ref. 27) showed significant enrichment relative to 
background regions in all cases, reinforcing the results presented in Figure 1E.

We then attempted to ascertain whether the alterations associated with UA were in close proximity to 
genomic positions previously associated with susceptibility to arthritis (see Methods). Of  note, a majority 
of  SNPs associated with disease risk in GWAS are located in noncoding regulatory regions (28), similar to 
the DNA methylation alterations found in UA. Interestingly, UA-associated DMPs were found to be sig-
nificantly close to SNPs previously associated with RA, juvenile idiopathic arthritis, and the anti-citrullinat-
ed protein Ab-positive (ACPA-positive) RA subtype (Supplemental Figure 1D). In summary, these results 
indicate that, in UA, dynamic DNA methylation mostly occurs in genomic regulatory regions related to the 
immune system function and potentially associated with the pathology of  arthritis.

DNA methylation alterations at baseline anticipate future prognosis. The evaluation of  patients over time 
enabled the classification of  patients with UA into 2 distinct prognostic levels. The first group of  patients 
(n = 10) was defined by an overall positive clinical and biological evolution, in which the disease achieves 
remission spontaneously or after treatment with an NSAID. The second group of  patients (n = 10) was 
characterized by cases with a generally worse outcome than the first, in which severe arthritis persisted 
despite treatment with an NSAID, there was a functional impairment (as evaluated by the Health Assess-
ment Questionnaire), or even a definite arthritis diagnosis of  RA, PsA, or pSpA was reached (Supple-
mental Table 2). Patients in this second group required treatment with DMARDs before their final visit 
(visit 4) in 9 out of  10 cases, although 1 patient (UA14) repeatedly refused to undergo DMARD treatment 
throughout the follow-up. An additional patient did not require DMARDs after the first visit but presented 
a gain in functional disability at the last visit (UA12). Retrospectively, those groups were regarded as “good 
prognosis” (GP) and “poor prognosis” (PP), respectively (Figure 1A and Supplemental Table 1B). Of  note, 
there were no significant differences in sex (P = 0.648, χ2 test) or age (P = 1, Wilcoxon’s test) distributions 
between both groups (Supplemental Table 1B).

The comparison of  the DNA methylation profiles at baseline of  patients based on their future classifi-
cation (GP, PP) and HDs identified 260 significant DMPs among the 3 conditions (Figure 2A and Supple-
mental Table 4). Of  those, 221 were hypermethylated and 39 hypomethylated in patients with UA (FDR < 
0.05). In a principal component analysis (PCA), these DMPs showed the most extreme overall methylation 
level in the PP group, while the GP group was situated between the HDs and the PP group, suggesting a 
cumulative degree of  alterations (HD to GP to PP) within these regions (Figure 2B).

TFME analysis of  the hypermethylated DMPs further revealed a presence of  motifs from the ETS and 
the IRF families (Figure 2C), similar to what was observed in the comparison of  HDs and patients with UA 
(Figure 1D). These results suggest a more pronounced activity of  those pathways in the PP group, which 
shows the most distinct profiles.

To evaluate the hypothesis that inflammatory pathways might induce the PP signature through soluble 
cues in the peripheral blood, we analyzed our team’s previously published DNA methylation data corre-
sponding to MOs purified from PBMCs after treatment with inflammatory cytokines (IFN-α, IFN-γ, and 
TNF-α) in vitro (15) and then inspected the methylation levels of  both DMP clusters under these conditions. 
The tendency of  PP in both DMP clusters was partially recapitulated by the stimulation with IFN-α, although 
the effect was more pronounced in the hypermethylated cluster (Figure 2D). These results are consistent with 
those of  previous studies describing an IFN signature in patients with arthritis with poor outcomes (6).

We then checked correspondence of  the obtained results in the synovial compartment by selecting the 
top 1000 most significant DMPs in the GP versus PP group comparison in each compartment (blood, SF) 
and calculating the overlap. The results in the 2 compartments displayed relatively low coincidence (32 
DMPs, 1.6% of  the total) (Figure 2E). Nevertheless, after unsupervised inspection of  the overall tendency 
of  the DMPs (GP vs. PP) identified in each compartment, we found a concomitant tendency of  the average 
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Figure 2. DNA methylation differences between GP, PP, and HD. (A) Heatmap showing DMPs (FDR 
< 0.05) between GP group (n = 10), PP group (n = 10), and HD group (n = 15). Blue and red indicate 
lower and higher methylation, respectively. (B) PCA of the DMPs in A. Ellipses show the 95% CI of 
the distribution of every sample group. (C) Significantly enriched TF motifs in the hypermethylated 
cluster regions, identified by HOMER. (D) Violin plots showing z-scored β values of the hypermeth-
ylated and hypomethylated clusters, in data from A and in public data from MOs purified after 
PBMC stimulation with cytokines for 4 days (n = 3). (E) Venn diagram showing overlap between 
the top 1000 most significant DMPs in the GP versus PP comparison, in blood (n = 10 patients in 
each group) and SF MOs (n = 8 patients in each group). (F) Violin plot showing the top 1000 most 
significant DMPs in GP versus PP comparison in blood and SF. The x axis indicates which data are 
contained in every violin plot, while column facets indicate the data set from which the top DMPs 
were selected. For the data sets not included in the DMP selection, differences in the medians 
were verified by a Wilcoxon’s test. ****P < 0.0001. In D and F, violin plots show density curves, and 
circles and vertical lines show the median and the 25th to 75th percentiles.

https://doi.org/10.1172/jci.insight.158783
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methylation levels of  the same regions in the other compartment (Figure 2F). These results suggest the 
existence of  common and independent effects of  future outcomes at the synovial and peripheral levels.

Synovial MOs display in vitro MAC epigenetic features. To further characterize the epigenetic profiles of  
UA MOs in peripheral blood (UA blood) and UA SF, we compared the DNA methylation profiles of  MOs 
from the 2 compartments, matched by patient, and found major differences between them. Specifically, 
compared with blood MOs, SF MOs exhibited hypermethylation in 1735 DMPs and hypomethylation in 
671 DMPs (FDR < 0.05 and an absolute difference in β value of  0.15; Figure 3A and Supplemental Table 
5). These results are consistent with previous reports indicating that differences in the environment (e.g., 
cytokines, growth factors, etc.) influence the DNA methylation status in MOs (15) and that myeloid cells 
isolated from the SF are, in essence, MACs (29). These DMPs were enriched in GO categories related to 
immune system functions, cytokine signaling, and wounding response (Figure 3B).

TFME analysis of  the hypermethylated DMPs revealed an enrichment of  TFs from the basic leucine 
zipper (bZIP) domain family, including C/EBP and activating TF4 (ATF4), among others. The hypometh-
ylated DMPs showed enrichment of  TFs from the IRF (IRF8), ETS (PU.1, among others), bZIP (activating 
protein 1 [AP-1], complex-related Fos-related antigen 1/2 [Fra1/2], bZIP ATF-like TF [BATF], JunB, and 
Fosl2, among others), and NF-κB families (Figure 3C).

Given that most of  these TFs have been involved in the differentiation of  MACs from MOs in vivo (20) 
and in vitro (30), we compared blood and SF data to those of  in vitro MO-derived MACs. The top 1000 
DMPs between blood (UA and HD) and SF (UA) MOs, as well as between MOs and MACs, differentiated in 
vitro with GM-CSF (M1-type MACs) and M-CSF (M2-type MACs), were plotted in the first 2 principal com-
ponents of  a PCA (Figure 3D). The DNA methylation values in these positions revealed an overlap of  the 
UA SF and MAC distributions, especially the M-CSF. This result was supported by the hierarchical clustering 
of  those DMPs, in which the UA SF and both MAC subtypes were aggregated in a cluster (Figure 3E). To 
address the hypothesis that differential signatures might determine prognosis in SF MOs, we then focused on 
the differences between GM-CSF and M-CSF and then plotted UA SF data, highlighting the prognosis group 
(GP or PP). Once again, the UA SF distribution was more proximal to that of  M-CSF than to GM-CSF, 
although we did not identify any distribution differences in association with the prognostic group (Figure 3F).

Finally, we performed a chromatin functional enrichment analysis, which again revealed an enrichment 
of  the identified DMPs in MO enhancer regions, for the hypermethylated and hypomethylated regions 
(Figure 3G). This result was further confirmed by histone mark ChIP-Seq data, in which DMPs revealed a 
gain in active enhancer marks (H3K4me1 + H3K27ac) in M-CSF MACs (Figure 3H). This effect was more 
marked in the hypomethylated cluster, which concomitantly showed an increase in chromatin accessibility 
in M-CSF when compared with MO (Figure 3H). Taken together, these results suggest the existence of  a 
MAC-like epigenomic profile in SF MOs in patients with UA.

Methylome profiles of  patients with UA revert over time to different extents in relation to the prognosis. To eval-
uate the effect of  disease progression on DNA methylation, we compared the profiles of  patients with 
UA at baseline with those obtained after follow-up visits. In particular, we analyzed the last visit in which 
patient blood samples were collected (visit 4, 18 months after visit 1; Figure 1A). The profiles from the 
first and fourth visits were compared, paired by patient, in both prognosis groups (Figure 4A). Patient 
disease activity, measured by disease activity score 28 (DAS28) (see definition in Methods), was used as a 
covariate to account for the differences caused by variation in activity between the 2 visits (Supplemental 
Table 1, D and E, and Supplemental Figure 2A). The comparison between visits revealed 250 hyper-
methylated and 15 hypomethylated DMPs in the first visit of  the PP group (FDR < 0.05) (Supplemental 
Figure 2B and Supplemental Table 6). In the hypermethylated cluster, the GP and PP groups were both 
altered in the first visit, in a cumulative fashion, while on the fourth visit, their average methylation 
had reverted to levels comparable to that of  the HD group. In the case of  the hypomethylated cluster, 
DNA methylation alterations were slightly more specific to the PP group, since the HD and GP groups 
displayed more similar average methylation levels. Similar to the hypermethylated cluster, at the time of  
the fourth visit, both groups underwent a reversion in their average values, although the effect was more 
pronounced in the PP group, which experienced a higher range of  reversion (Figure 4A). Interestingly, 
at visit 4, the reversion in the average DNA methylation levels of  GP and PP was not correlated with 
their average activity levels (Supplemental Figure 2A), suggesting an activity-independent reversion of  
patient molecular alterations. The hypomethylated cluster tendency particularly discriminated the PP 
group, for which reason the DMPs in this cluster were considered robust biomarkers of  poor prognosis. 
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Figure 3. DNA methylation study in synovial MOs. (A) Heatmap showing DMPs between blood (n = 20) and SF (n = 16) MOs, paired by patient (FDR 
< 0.05, Δβ ≥ 0.15). (B) Significant GO categories selected from the analysis with GREAT of the DMPs. The number of CpGs, fold enrichment, and 
hypergeometric test P value is depicted for every category. (C) Significantly enriched TF motifs in the DMP regions, identified by HOMER. (D) PCA 
of the DMPs between the UA data set (HD, n = 15), UA blood (n = 20) and UA SF (n = 16), on one hand, and between conditions in the MAC in vitro 
differentiation data set (MO, n = 3), M-CSF (n = 3) and GM-CSF (n = 3), on the other (see Methods). (E) Heatmap of the DMPs in D for HD, UA blood, 
SF blood, M-CSF, and GM-CSF with hierarchical clustering. (F) PCA of the DMPs in the M-CSF versus GM-CSF. MAC subtypes and UA SF samples 
are displayed in different colors, and the prognostic group is indicated by shape. (G) Chromatin functional state enrichment analysis of the DMPs 
on CD14 primary cells public data from the Roadmap Epigenomics Project. (H) Enrichment of MO and MAC histone mark ChIP-Seq public data 
around the hypermethylated DMP coordinates. Cell types are indicated by colors. Arrows specify which histone marks are contained in each of the 
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The DNA methylation values, DAS28, and DMARD treatment of  every patient are depicted in Figure 
4B and Supplemental Figure 2B.

Considering that changes in DNA methylation mostly take place in distant regulatory regions rather 
than in genic promoters (31), we sought to investigate the effect of  methylation alterations on mRNA 
transcription by inspecting 3D chromatin conformation data using the promote-capture Hi-C (PCHi-C) 
technique. PCHi-C assays allow the identification of  the putative functional relationships between pairs 
of  genomic regions that display a spatial physical interaction. In this technique, 1 end of  the interacting 
pair is a gene promoter; thus, any molecular alterations in the partner of  the pair are proposed to have a 
potential effect on the gene with the interacting promoter (32). PCHi-C data of  blood MOs were integrated 
with the DMPs identified in Figure 4A (see Methods). Examples of  long-range interactions overlapping 
with a DMP from Figure 4A and previously associated with susceptibility to arthritis (33–35) are depicted 
in Figure 4C and Supplemental Figure 2, C and E. DNA methylation and gene expression of  the DMP-
gene pair were concomitantly measured by bisulfite pyrosequencing and quantitative reverse transcription 
PCR (qRT-PCR), respectively. In this analysis, the entire series of  samples from all 4 visits was included 
(Figure 4D and Supplemental Figure 2, D and F). Results from this analysis revealed a reversion over time 
of  the DNA methylation profile of  the selected genes toward HD levels, especially pronounced in the PP 
group, which was concomitant with the mRNA expression of  genes in the interacting loci. Reversion in 
DNA methylation was already significant between visit 2 (Figure 4D) and visit 3 (Supplemental Figure 2, 
D and F). In most cases, at visit 4, the expression of  the interacting genes in the PP group reverted to levels 
beyond HD, suggesting a further reduction in the immune activity of  those patients. The trend between 
DNA methylation and gene expression in the cg09277541/IFNAR pair was inverse, while the trends for 
cg11193201/FCGR2A and cg02421308/IL4R were positive. This result could be possibly explained by the 3 
DMPs overlapping functionally distinct genomic localizations, characterized by different combinations of  
epigenetic modifications (Figure 4C and Supplemental Figure 2, C and E, ChromHMM track), which may 
have disparate effects upon expression of  the interacting gene (36).

UA disease activity can be inferred from DNA methylation in blood and synovial MOs and in MOs from patients 
with RA. To identify CpGs associated with disease activity, we calculated the Spearman’s correlation coef-
ficient of  the DAS28, namely, the DAS28–C-reactive protein (DAS28-CRP) and the genome-wide meth-
ylome profiles of  all first-visit patient blood MO samples (correlation coefficient ρ cutoff  = 0.7, P cutoff  
= 1 × 10–3). DNA methylation distributions of  the correlated CpGs in every activity category (remission, 
low, moderate, and high; see Methods) are depicted in Figure 5A. HD distributions are shown in parallel, 
in an unsupervised manner. It is of  note that the correlated CpGs had no major overlap with the prog-
nosis-associated DMPs identified in Figure 2A and Supplemental Figure 3A, reinforcing the notion of  a 
methylation-based good and poor prognosis classification that is independent of  disease activity. To check 
for a translation of  blood MO results to SF MOs, we inspected the blood-correlated CpGs in the SF MO 
data. The correlative tendency of  the activity categories was recapitulated in the SF MOs (Figure 5B). 
Independently, the correlation was replicated in the SF data, and the results in both compartments were 
tested for concordance using a Fisher’s exact test (Supplemental Figure 3, B and C). The correlation in 
both compartments was significantly concurrent for the positively and negatively correlated CpGs (Supple-
mental Figure 3C). There were more significant CpGs that were negatively correlated with DAS28 (61% in 
blood, 56% in SF), and these overlapped more frequently between the 2 data sets (75% of  CpGs correlated 
in blood+SF; log2 odds ratio = 6.2, P = 2.1 × 10–55; Supplemental Figure 3, B–D). Examples of  CpGs cor-
related with DAS28 in both blood and SF are illustrated in Supplemental Figure 3E.

Since epigenetic modifications are well-known reversible biological features, we decided to evaluate 
the reversibility of  DNA methylation levels with respect to variations in DAS28 in subsequent clinical 
visits (Supplemental Figure 3F). To this end, we calculated the Δ in mean DNA methylation (of  the pre-
viously identified DAS28-correlated CpGs) and the Δ of  DAS28 between the first and fourth visits, for 
every patient, and performed a Spearman’s correlation (Figure 5C). The great majority of  cases (19/20) 
experienced a decrease in activity between visits, except for 1 patient, who was not initially prescribed 
with DMARD therapy (UA12) throughout this period (Supplemental Figure 3F) and experienced an 

chromatin state categories in F. RHD, Rel homology domain; TssA, active TSS; TssAFlnk, flanking active TSS; TxFlnk, transcript at gene 5′ and 3′; Tx, 
strong transcription; TxWk, weak transcription; EnhG, genic enhancers; Enh, enhancers; Het, heterochromatin; TssBiv, bivalent/poised TSS; BivFlnk, 
flanking bivalent TSS/Enh; EnhBiv, bivalent enhancer; ReprPC, repressed PolyComb; ReprPCWk, weak repressed PolyComb; Quies, quiescent.
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Figure 4. Evolution of DNA methylation profiles in subsequent visits. (A) Box plots showing z-scored β values of DMPs between the first and fourth 
visits, by GP and PP, paired by patient and using DAS28 as a covariate (FDR < 0.05). (B) Heatmap of the DMPs in the hypomethylated cluster. Group, 
DAS28, and treatment are shown for every patient at the top, and the respective legend scales are shown to the right of the heatmap. Blue and red indi-
cate lower and higher methylation, respectively. (C) IFNAR locus with PCHi-C interaction public data. (D) DNA methylation of cg09277541 (left panel) and 
gene expression of IFNAR1 and IFNAR2 (right panel) in visits 1–4, by prognosis group. DMP and interacting HindIII fragments are shown below a genome 
browser annotation of transcripts and MO ChromHMM tracks (see Methods). DNA methylation and gene expression from D were analyzed by bisulfite 
pyrosequencing and qRT-PCR, respectively. RPL38 was used as the HKG. The number of samples analyzed for each group in every time point is indicated in 
Supplemental Figure 1A. In A and D, each box represents the 25th to 75th percentiles. The lines inside the boxes represent the median. The lines outside 
the boxes represent the 25th percentile minus 1.5 times the IQR and the 75th percentile plus 1.5 times the IQR. Pairwise group differences were evaluated 
by 2-tailed Wilcoxon’s tests. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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increase in the activity category. For both the positively and negatively correlated CpGs, there was a 
significant correlation between the change in mean methylation and the change in DAS28. Moreover, 
patients who experienced a shift in more activity categories also underwent a greater change in mean 
methylation between the 2 visits, highlighting the importance of  the activity category in addition to the 
numerical DAS28 value (Figure 5C).

Next, we tested the applicability of  the previous finding by generating predictive estimates of  disease 
activity in independent samples. To this end, we trained a multivariate linear regression (MLR) model 
with DNA methylation data from first-visit samples, with DAS28 as the independent variable. The model 
was validated using MO DNA methylation data from samples of  patients with UA at the follow-up visit 
(fourth visit) and in the SF (Supplemental Figure 3G, top row), where models including sequential numbers 
of  CpGs (from 1 to 7, see Methods) were tested. Models with 3 CpGs performed best on average, in an 
internal 5-fold cross-validation and in both UA validation data sets (Figure 5D and Supplemental Table 9), 
consistent with previously proposed MLR models to estimate the DAS28 in MOs of  patients with RA (15).

Figure 5. Correlation of DNA methylation and DAS28 in blood and SF of UA. (A) Violin plots showing z-scored β values of DAS28-correlated CpGs (P < 
0.001, ρ ≥ 0.7), by activity category, in blood MOs. (B) Violin plots showing z-scored β values of DAS28-correlated CpGs in blood, by activity category, in SF 
MOs. Color in A and B indicates mean DAS28 score of each group. The number of samples in every activity category is noted in parentheses. (C) Scatter 
plots showing the correlation between the Δ of DAS28 and the Δ of z-scored β values between the first and fourth visits, in blood. Color indicates changes 
in activity categories. (D) Linear regression prediction of DAS28 from DNA methylation. First-visit blood samples were used to train the model, and predic-
tion was performed on fourth-visit blood samples and first-visit SF samples. (E) Linear regression prediction of DAS28 on public data of MO samples from 
patients with RA, at first and second visits, after follow-up. In D and E, correlation coefficients (R2) and P values were calculated by Pearson’s correlation. 
Activity categories are defined as follows by the DAS28 value: remission (<2.6), low activity (2.6–3.2), moderate activity (3.2–5.1), and high activity (>5.1). In 
A and B, violin plots show density curves, and circles and vertical lines show the median and the 25th to 75th percentiles. The number of samples in D and 
E is indicated in Supplemental Figure 3G. In D and E, gray shades indicate the 95% CI of the value distributions.
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Given that DAS28 is considered a standard disease activity measure for both UA and RA, we decided to 
establish commonalities of  the effect of  DAS28 on DNA methylation between the 2 entities. Upon inspection 
of  the top 100 DAS28-correlated CpGs in UA and RA, respectively, we verified the existence of  a similar 
trend in those CpGs between patients from both diseases (Supplemental Figure 3H). We then applied the 
previously defined MLR model to predict activity values of  the samples of  patients with RA. The UA-derived 
model predicted DAS28 in 2 RA cohorts (first visit and follow-up second visit; Supplemental Figure 3G) with 
significant accuracy (Figure 5E). Overall, these results imply that disease activity can be predicted using a 
common approach in cells from distinct physiological compartments and in distinct types of  arthritis.

Discussion
Our results represent an invaluable resource for the application of  the identified DNA methylation dysreg-
ulation in early arthritis to uncover prognosis, progression, and impact of  the treatment. We have obtained, 
for the first time to our knowledge, the synovial and blood MO methylomes from patients with UA. Our 
results are in line with those of  previous studies of  inflammatory diseases in which DNA methylation chang-
es in MOs have been described (15, 22–24). The identified alterations preferentially occurred in MO regula-
tory regions that are functionally related to immune cell function and inflammation. A significant number of  
these positions were found to be located near genomic regions that were previously associated with suscepti-
bility to arthritis in GWAS. Hence, we propose that genetic and epigenetic variations in those positions may 
influence the pathological phenotype by affecting common pathways associated with disease.

The comparison of  patients based on their future outcome evaluation revealed additional alterations 
between GP and PP patients, with an additive tendency when compared with the healthy group (HD–GP–
PP). These prognosis-associated changes were shown to be partially recapitulated in vitro in MOs purified 
after stimulation of  PBMCs with the cytokine IFN-α. IFN signatures have recursively been linked to poor 
prognosis or bad responses to treatment in arthritis such as RA (6, 37). Although the exact mechanism 
by which a DNA methylation IFN signature is acquired by patients with UA with worse future outcomes 
is not known, we believe it is possible that either an acute or a continuous effect of  elevated circulating 
amounts of  type I IFN could contribute to severe prognosis or to the faster differentiation of  the disease. 
Actual efforts are set among our team and other research groups to confirm this mechanism and expand the 
findings in future studies with larger sample sizes. However, at this point, we cannot rule out the possibility 
that there is an underlying genetic predisposition toward a bad outcome in the PP group and that this may 
have an additional effect on DNA methylation.

When compared with blood MOs, the methylome profiles of  the SF MOs showed a similar trend in 
the response to the prognostic group, although there were also a considerable number of  changes that 
were nonoverlapping between the 2 compartments. This result suggests the existence of  both common and 
independent mechanisms between blood and SF MOs underlying the sensitivity to the prognostic status. 
A possible explanation for this is that SF MOs (differentiated, MAC-like) and blood MOs (naive, MO-like) 
are essentially distinct cell types, which display different reactive capabilities driven by the expression of  
disparate repertoires of  surface receptors (38). Also, differences between the inflammatory microenviron-
ment at the synovium and the peripheral blood are likely to have an influence in the disparity of  results 
from the 2 compartments. In fact, there is evidence for divergent phenotypic profiles between the blood and 
the synovial compartments, among subtypes of  early RA with distinct prognosis (39).

The subsequent evaluation of  patients in future visits revealed a reversion of  the UA- and prognosis-as-
sociated methylome profiles. That effect was more pronounced in the PP group, which after treatment with 
DMARDs reached a level comparable to that of  naturally remitting GP patients and similar to — or even 
exceeding — that of  healthy controls. Also, to study the potential effect of  DNA methylation alterations 
upon gene expression, we made use of  3D chromatin conformation data. In addition to the epigenetic 
dynamism, gene expression analysis of  the interacting genes unveiled a concomitant reversion to a healthy-
like profile in both groups. This tendency generally preceded the changes in activity in successive visits, 
further reinforcing the notion that molecular alterations anticipate clinical features in patients with UA (5).

The previously described association between DNA methylation and disease activity (15) was con-
firmed in the present study. Our results allowed us to derive a predictive model to estimate the activity in 
subsequent visits and in other physiological compartments, such as the SF, which showed a similar effect 
to that of  the activity identified in peripheral blood. This finding highlights the reliability of  peripheral 
blood MOs as bona fide sensors of  systemic inflammation. The predictive model also yielded significant 
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results when applied to blood MO samples from patients with RA (Figure 5E). These findings lead us to 
hypothesize the existence of  a reversible, activity-associated DNA methylation signature that potentially 
acts through a common mechanism, independently of  compartment or disease entity. We hope that it will 
be possible to identify a similar mechanism in other inflammatory diseases with poor disease activity indi-
cators to assist clinicians in the assessment of  prognosis factors and severity status of  the disease.

Overall, these results suggest that the MO phenotype can be interpreted as a readout of  the pathologi-
cal milieu that is present in the blood of  patients with UA, and that the results of  its analysis can be lever-
aged to provide both descriptive and predictive conclusions about a particular systemic disease.

Methods
Patient cohort. A total of  20 blood and 16 paired SF samples from patients with UA were obtained from the 
outpatient clinic of  the Department of  Rheumatology at the Hospital Clinic de Barcelona and 4 other univer-
sity hospitals from the Barcelona area: Hospital Santa Creu i Sant Pau, Hospital del Mar, Hospital Parc Taulí 
(Sabadell), and Hospital Mútua de Terrassa (Terrassa). Patient samples were collected at baseline (visit 1) and 
correspond to patients with no prior treatment with DMARDs (including antimalarial agents) or glucocor-
ticoids at a dose higher than 5 mg of  prednisone per day and who did not meet the 2010 American College 
of  Rheumatology/European League Against Rheumatism (ACR/EULAR) criteria (1) for RA, the Classifi-
cation for Psoriatic Arthritis (CASPAR) criteria (2) for PsA, or the ASAS Assessment of  Spondyloarthritis 
International Society (ASAS) criteria for pSpA (3). The clinical data of  the patients included in the study are 
summarized in Supplemental Table 1A. Additional blood samples from 15 HDs were obtained, matched by 
age and sex (Supplemental Table 1A). Patient samples were also collected during 4 follow-up visits at 6-month 
intervals (Figure 1A and Supplemental Figure 1A). Patient activity was measured with DAS28, a composite 
score derived from 4 measurements: the number of  tender joints (in 28 consensus joints), the number of  
swollen joints (in the same 28 joints), the concentration of  CRP in the blood serum, and an assessment of  
general health by the patient. Activity categories are defined as follows by the DAS28 value: remission (<2.6), 
low activity (2.6–3.2), moderate activity (3.2–5.1), and high activity (>5.1; ref. 40). After the final visit (18 
months), patient prognosis was defined as negative when any of  the following conditions, as defined by the 
clinician, were met: a) persisting disease, b) joint erosion or functional impairment, c) need for DMARD 
therapy, or d) definite arthritis diagnosis. The remaining patients remitted spontaneously (without DMARD 
therapy) before their fourth visit (after 18 months), and so their diagnoses were regarded as positive. Based 
on those evaluations, patient samples at the baseline visit were designated as GP and PP, respectively (Sup-
plemental Table 1B and Figure 1A). The size of  the patient cohort was determined by the challenge of  our 
restrictive inclusion criteria — early and untreated patients with UA. Indeed, we reached 20 included patients 
after the collaboration of  other university hospitals from our area.

Isolation of  blood and SF MO populations. SF samples were diluted in PBS solution and thoroughly resus-
pended through a serological pipette to ensure proper homogenization. Fresh blood and homogenized 
SF samples were diluted in PBS and centrifuged in a Ficoll-Paque gradient to isolate mononuclear cells. 
Mononuclear cells of  both compartments were processed in parallel, and the MO population was isolated 
by FACS, following the previously described protocol (15).

DNA methylation data generation. Infinium MethylationEPIC BeadChips arrays (Illumina) were used to 
analyze DNA methylation. MO genomic DNA was extracted, modified, and analyzed on arrays by the 
procedure described (5). Inferential analyses and data visualization were performed on M and β values (41), 
respectively. Distributions of  β values are heteroskedastic and, thus, not recommended for statistical purpos-
es (41). New DNA methylation data presented in this paper are deposited in the National Center for Biotech-
nology Information’s (NCBI) Gene Expression Omnibus (GEO) database (GSE189426 and GSE189422).

Quality control, data normalization, and differential methylation analysis. DNA methylation data quality 
control and exploratory and inferential analyses were conducted with the shinyÉPICO application (42), 
which relies on functions from the minfi (43), lumi (44), and limma (45) R libraries, among others. Probe 
detection was determined by a cutoff  value of  P < 0.01 and normalization of  the raw methylation values 
was performed using the Noob method followed by the Quantile method. CpGs coinciding with an SNP 
locus were excluded from the analysis. Additionally, sex chromosomes (X and Y) were excluded from the 
analysis to avoid data discordancy between samples. Significant DMPs with respect to groups were identi-
fied using an empirical Bayes-moderated t test method with defined empirical array weights (46), included 
in the limma package (45). For the DMPs depicted in Figures 1, 2, and 4, the only threshold applied was 
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an FDR less than 0.05. In Figures 1, 2, and 4, the cutoff  for the difference of  DNA methylation was an 
absolute Δβ greater than 0, and, therefore, hypermethylated genes are those for which the β value in UA is 
higher than in HDs and the other way around for those hypomethylated. In Figure 3, thresholds of  FDR 
less than 0.05 and an absolute β value difference (blood minus SF) of  0.15 were used. DMPs illustrated in 
Figures 3 and 4 were identified in a paired fashion, including the patient as a covariate. Additionally, to 
remove the effect of  the activity, the individual DAS28 value was also used as a covariate in the analysis of  
the data illustrated in Figure 4.

Functional analyses: GO, motif  enrichment, and chromatin features. GO analysis was performed with the 
Genomic Regions Enrichment of  Annotations Tool (GREAT; ref. 47) in the basal plus extension mode, 
using the rGREAT package in R. GO categories with an FDR less than 0.05 in the hypergeometric test were 
considered significantly enriched.

TFME analysis was conducted with HOMER software (48). A flanking window of  250 bp was 
added to the DMP coordinates before calculating the enrichment. The most highly enriched TFs are 
shown in the figures.

Chromatin functional state enrichment of  the identified DMPs was analyzed using public CD14 pri-
mary cells data taken from the NIH Roadmap Epigenomics Project (http://www.roadmapepigenomics.
org) generated with the ChromHMM software (49). A core 15-state model — primary HMM — construct-
ed with data from 5 histone modification marks was used for this analysis. Enrichment and significance 
were estimated by Fisher’s exact tests. Significantly enriched states are shown in the figures.

MO and M-CSF MO-derived MAC genome-wide chromatin accessibility (DNaseI) and histone modi-
fication data (H3K4me1 and H3K27ac) were downloaded from the Blueprint consortium database (http://
dcc.blueprint-epigenome.eu). GM-CSF MO-derived MAC histone modification data (H3K4me1 and 
H3K27ac) were obtained from a previous study (50). All these data were used to calculate enrichments 
around the DMP coordinates in 100 bp windows for the entire indicated ranges around the DMP (1 or 2 
kb). Odds ratios and significance values were estimated with a Fisher’s exact test, and visual representa-
tions were produced using in-house R functions.

For all the aforementioned analyses, the EPIC array annotation was used as the background for calcu-
lating the enrichments.

Heatmaps, PCA, and plots. DMP heatmaps were generated using functions from the gplots and Com-
plexHeatmap R packages. Heatmap row-ordering was carried out using average-linkage hierarchical clus-
tering. In all cases, red and blue indicate high and low normalized levels of  DNA methylation, respec-
tively. PCA coordinate matrices were obtained with the prcomp function, and PC-pair representations 
were plotted using functions in the ggfortify package in R. The heatmap in Figure 3A was derived from 
β values corrected for the patient covariate with the removeBatchEffect function from the limma package. 
Manhattan, bar, violin, bubble, line, box, scatter, and tile plots were generated using functions available 
in the ggplot2 and ggpubr packages.

SNP enrichment analysis. SNPs associated with disease in GWAS were downloaded from the GWAS 
Catalog (51) (https://www.ebi.ac.uk/gwas). The following traits, including diseases from the arthritis spec-
trum and others (mostly non-inflammation-mediated diseases, used here as a negative control) were que-
ried in the database: “Psoriatic arthritis,” “Ankylosing spondylitis,” “Rheumatoid arthritis,” “Rheumatoid 
arthritis (ACPA-positive),” “Rheumatoid arthritis (ACPA-negative),” “Osteoarthritis,” “Myocardial infarc-
tion,” “Schizophrenia,” “Osteoporosis,” “Juvenile idiopathic arthritis”, “Type 1 diabetes,” “Alzheimer’s 
disease,” and “Systemic lupus erythematosus.” SNPs with a significantly associated risk allele were subset-
ted, and the coincidence between the SNP coordinate and a 1 Mbp window around the DMP coordinate 
was calculated. Estimates of  the enrichment (odds ratio) and its significance were computed with a Fisher’s 
exact test, using the EPIC array annotation as background regions. P values of  every enrichment statistics 
were adjusted using the Benjamini-Hochberg method.

Differentiation of  MACs from peripheral blood MOs. We obtained buffy coats from healthy, anonymous 
donors through the Catalan Blood and Tissue Bank (CBTB). The CBTB follows the principles of  the World 
Medical Association Declaration of  Helsinki. Before providing the first blood sample, all donors received 
detailed oral and written information and signed a consent form at the CBTB. PBMCs were isolated by 
Ficoll-Paque gradient centrifugation. MOs were isolated from PBMCs using positive selection with MACS 
magnetic bead–coupled CD14 Ab (Miltenyi Biotec catalog 130-050-201). Purified MOs were cultured in 
RPMI Medium 1640 + GlutaMAX (Gibco, Thermo Fisher Scientific) containing 10% FBS, 100 units/mL 
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penicillin and 100 μg/mL streptomycin. For M-CSF and GM-CSF MAC differentiation, the medium was 
supplemented with 25ng/mL M-CSF (Peprotech) and 10ng/mL of  GM-CSF (Peprotech), respectively. 
MOs were differentiated to MACs for 5 days.

Joint analysis of  MO and MAC data. Data from GSE189426 and GSE189422 were quality controlled and 
analyzed jointly using the previously described methods. Since both data sets were analyzed in different batch-
es, technical bias was removed with the ComBat function contained in the sva R package. After ComBat, differ-
ential methylation was performed and to further avoid batch-associated biases, only intra-batch comparisons 
were performed. Comparisons were conducted with limma between the following conditions: HD versus UA 
blood; UA blood versus UA SF; MO versus GM-CSF; MO versus M-CSF; and M-CSF versus GM-CSF. The 
top 1000 most significant DMPs in any of  the comparisons were selected, and β values were scaled (z-scored) 
in every independent batch. PCA and heatmaps in Figure 3, D and E, were performed on the scaled β values 
of  the selected DMPs. In Figure 3F, only the top 1000 most significant DMPs in M-CSF versus GM-CSF 
comparison were used.

Integration and visualization of  methylation and PCHi-C data. We obtained previously generated PCHi-C 
data from healthy peripheral blood MOs (36). The PCHi-C technique and bioinformatic analysis of  the 
obtained data are described (52). Significant PCHi-C interaction coordinates were overlapped with DMP 
coordinates using functions available in the GenomicRanges R package (53). Fragments mapping on a TSS 
on 1 end of  the interaction were filtered, and arthritis-related genes were selected based on bibliography. 
Selected interactions were visualized using the WashU Epigenome Browser (54). The following tracks are 
shown, from top to bottom: reference genome (hg19 assembly), CD14 primary cells ChromHMM, UCSC 
RefSeq mRNAs, DMP coordinate, interacting genomic fragments obtained after digestion with HindIII 
enzyme (52), and MO PCHi-C interaction hit.

Bisulfite pyrosequencing. Genomic DNA was converted using the EZ DNA Methylation Gold kit (Zymo 
Research). PCR was performed using the bisulfite-converted DNA as input and primers were designed for each 
amplicon (Supplemental Table 8) using the PyroMark Assay Design 2.0 software (QIAGEN). PCR amplicons 
were sequenced using the PyroMark Q48 system and analyzed with PyroMark Q48 Autoprep software.

qRT-PCR. Total RNA was subjected to reverse transcription with the Transcriptor First Strand cDNA 
Synthesis Kit (Roche) following manufacturer’s instructions. qRT-PCR was performed in 3 technical repli-
cates using LightCycler 480 SYBR Green Mix (Roche) and 5 ng of  cDNA per replicate. The ΔΔCt method 
was used to determine the relative quantities of  target genes, and RPL38 was used as a housekeeping gene. 
qRT-PCR primers for the selected genes are described in Supplemental Table 8.

Predictive regression models. First, Spearman’s correlation coefficients between DNA methylation data 
of  UA blood MOs from the first visit and DAS28 were calculated. Then, all the significantly correlated 
CpGs (correlation coefficient ρ cutoff  = 0.7, P < 0.001) were used to build a linear model with DAS28 as 
the response variable, using the base R lm function. All significant coefficients in the resulting model were 
ordered by relative importance (lmg metric) with the help of  functions available in the relaimpo R package 
(55). Starting from this ranked importance, the ideal combination of  predictor CpGs (n = 7) was identified 
by a stepwise selection algorithm, implemented in R’s step function, the direction parameter being set to 
“both,” thereby enabling forward and backward stepwise model selection. Autocorrelation was discarded 
(Pearson’s r < 0.5) between all possible pairs of  the finally selected 7 CpGs. Models spanning from 1–7 
CpGs were then used to predict DAS28 a) in all discovery cohort samples (blood, visit 1); b) in 5-fold 
cross-validations within the discovery cohort samples; c) in visit 4 samples; and d) in SF samples. The coef-
ficient of  determination (R2) was calculated for all models, and the model containing 3 CpGs was selected 
for its best average performance among all the predicted data sets.

Data sharing. Methylation array data for this publication have been deposited in NCBI’s GEO database 
and are accessible through GEO Series accession number GSE189426.

Statistics. Unpaired 2-tailed Wilcoxon’s tests were used to compare median distributions among groups. 
Fisher’s exact tests were used to calculate enrichments of  the DMPs over public ChIP-Seq data and dis-
ease-associated SNP coordinates, and to evaluate the concordance between blood and SF for the correla-
tion of  DNA methylation and activity. Activity and DNA methylation were correlated by applying a Spear-
man’s correlation. Prediction accuracy was evaluated by the coefficient of  determination (R2) and the P 
value, computed by Pearson’s correlation. All significance values were computed with functions from R’s 
stats package and adjusted by the FDR method, when indicated. Significance values were summarized as 
follows: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Study approval. The Committee for Human Subjects of  the Hospital Clinic (Barcelona) approved the study 
(HCB2017/0562), which was conducted in accordance with the ethical guidelines of  the 1975 Declaration of  
Helsinki. All samples were in compliance with the guidelines approved by the local ethics committee and all 
donors signed the informed consent form after they received oral and written information about the possibili-
ty that their blood would be used for research purposes.
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