

Institute of Space Sciences

Monitoring Arctic Sea Ice During One Year: Linearly Polarized GNSS-Reflectometry at the MOSAiC Campaign

E. Cardellach¹², W. Li¹², S. Ribó¹², A. Rius¹², J. Stroeve³⁴, V. Nandan³, P. Itkin⁵⁶, R. Tonboe⁷, S. Hendricks⁸, M. Huntemann⁹, G. Spreen⁹, T. Casal¹⁰, M. Martín-Neira¹⁰

¹ Institute of Space Studies (ICE, CSIC), Barcelona, Spain
 ² Institute for Space Studies of Catalonia (IEEC), Barcelona, Spain
 ³ Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB, Canada

 ⁴ CPOM, University of College London, UK
 ⁵ UiT The Arctic University of Norway, Tromsø, Norway

 ⁶ Cooperative Institute for Research in the Atmosphere, Colorado State U., Fort Collins, CO, USA

 ⁷ Danish Meteorological Institute, Copenhagen, Denmark
 ⁸ Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

 ⁹ Institute of Environmental Physics, University of Bremen, Bremen, Germany
 ¹⁰ European Space Agency, ESTEC, Noordwijk, The Netherlands

CSIC IEEC9

Institute of Space Sciences

- MOSAIC: Multidisciplinary drifting Observatory for the Study of Arctic Climate
- RV Polarstern, drifted with the sea ice across the central Arctic for one year (September 2019 - October 2020)
- Study of key aspects of the coupled Arctic climate system
- Led by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI)
- Sensors in a distributed network up to ~50km distance from Polarstern
- Nearby research camps, among others, ICE camp (snow and ice measurements) with a Remote Sensing site

 A system to collect signals emitted by the navigation satellites (GNSS) and reflected off the ice floe structure was deployed at the Remote Sensing site

 Our GNSS-R system captured, simultaneously, the H- and V-pol components of the direct and reflected L1 and L2 frequency bands signals transmitted by the GPS, Galileo, and GLONASS constellations.

To which parameters of the air+snow+ice+water system are GNSS-R signals sensitive?

CSIC IEEC

Institute of

Space Sciences

- Forward scattering in specular direction
- L-band (~1.5 GHz): penetration into snow and ice
- The splitted rays suffer **coherent scattering**
- These rays **interfere** with each other and with the direct line-of-sight signals: Observable Interferogram
- Do interferences depend on **snow and ice thickness and permittivities?**

Institute of Space Sciences

Examples for frequency band L2 (top) and L1-L2 interferograms (bottom)

L1-L2 interferogram, 2019-11-12 (blue) Model (red): 6cm snow thickness, 1.28 permitt snow, 0.52 m SIT, 3.21 permittivity

CSIC IEEC9

Cesa Sensitivity:

 Metrics to quantify mismatch between observables (obs) and parameterized model (mod(parameters)):

$$\textit{Misfit} = \vec{r}^T C^{-1} \vec{r} = (o\vec{b}s - m\vec{o}d)^T diag\{\frac{1}{\sigma^2}\}(o\vec{b}s - m\vec{o}d)$$

• Misfit evaluated at different parameters: Misfit(snow & ice parameters)

• Example: 2019-11-15 H-pol, using L1-L2 together with L2 interferograms as observables

MOSAIC

Mosaic Besa Sensitivity:

Example: 2019-11-15 V-pol, using L1-L2 together with L2 interferograms as observables

- Overall response of the floe \rightarrow effective values (e.g., reflectivity of the system rather than each layer) \rightarrow effective permittivity: $Envelope_{pol,freq}^{2}(\theta) = \Gamma_{pol,freq}(\theta) = |R_{pol}(\theta, \epsilon)|^{2}e^{-4k_{freq}\sigma_{rough}\cos(\theta)}$
- Example: effective permittivity assuming different surface roughness

Discussion:

- A GNSS-R equipment with linearly polarized antennas was deployed at the Remote Sensing site, ICE camp, of the MOSAiC expedition
- The collected EM fields present **interferograms**, compatible with a scattering model of multiple rays reflecting at multiple layers (snow, ice, water).
- The mismatch or misfit function is defined to analyze the sensitivity of the observables to snow and sea ice parameters
 - Sensitivity to snow thickness and permittivity
 - Sensitivity to sea ice thickness and permittivity, but multiple parameter combinations lead to a good match with the data → ancillary information would help breaking possible ambiguities
- Response of the overall snow+ice structure \rightarrow effective values

CSIC IEEC9