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Abstract 

B- and T-cell receptor (immune) repertoires can represent an individual’s immune history. While current 

repertoire analysis methods aim to discriminate between health and disease states, they are typically based 

on only a limited number of parameters (e.g., clonal diversity, germline usage). Here, we introduce 

immuneREF: a quantitative multi-dimensional measure of adaptive immune repertoire (and transcriptome) 

similarity that allows interpretation of immune repertoire variation by relying on both repertoire features 

and cross-referencing of simulated and experimental datasets. immuneREF is implemented in an R package 

and was validated based on detection sensitivity of immune repertoires with known similarities and 

dissimilarities. To quantify immune repertoire similarity landscapes across health and disease, we applied 

immuneREF to >2400 datasets from individuals with varying immune states (healthy, [autoimmune] 

disease and infection [Covid-19], immune cell population). Importantly we discovered, in contrast to the 

current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly 

similar for certain immune states, suggesting that repertoire changes to immune perturbations are less 

pronounced than previously thought. In conclusion, immuneREF implements population-wide analysis of 

immune repertoire similarity and thus enables the study of the adaptive immune response across health and 

disease states. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.476436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.476436
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Introduction 

 

B- and T-cell receptor (BCR, TCR) repertoires (also called adaptive immune receptor repertoires, AIRR) 

are continually shaped throughout the lifetime of an individual in response to environmental and pathogenic 

exposure. As of yet, however, there exists only a limited quantitative conception of how immune receptor 

repertoires differ across individuals and cell populations (Brown et al., 2019; Miho et al., 2018; Raybould 

et al., 2021). This is primarily because a method for measuring inter-individual (inter-repertoire) similarity 

is lacking, thus greatly impeding the understanding of how health and disease shape immune repertoires 

and how disease contributes to the deviation of an individuals’ baseline repertoire (Cobey et al., 2015). 

Although it is generally thought that infection or disease induce measurable repertoire changes (even on 

the antigen-specific agnostic level), this belief remains unproven and, in fact, is counter to current evidence 

finding, using statistical learning, that even in systemic infections such as CMV only a comparatively very 

small number of TCRs are infection associated (DeWitt et al., 2018; Emerson et al., 2017; Pavlović et al., 

2021). As opposed to machine learning approaches that aim to detect the most differentiating factors (i.e., 

subsets of a repertoire) between, for example, two different immune states (Greiff et al., 2020; Pavlović et 

al., 2021; Pertseva et al., 2021; Shemesh et al., 2021; Widrich et al., 2020a, 2020b), we investigate here a 

method for quantitatively comparing any two repertoires in an unsupervised fashion. We thus seek to 

understand to what extent individuals differ with respect to their entire repertoire and not just class-

associated subsets.  

 

The need for comparing immune repertoires using a quantitative measure has recently been addressed by 

approaches based on single sequence-dependent and sequence-independent features, which vary in 

statistical dependency (mutual information) and immunological interpretability (Chiffelle et al., 2020; Miho 

et al., 2018; Olson et al., 2019). Sequence-dependent approaches range from the measurement of clonal 

overlap (Bolen et al., 2017; Greiff et al., 2015a; Miho et al., 2018; Yaari and Kleinstein, 2015) to more 

sophisticated algorithms that identify disease-specific enrichment of sequence clusters by testing against 

VDJ recombination models (Pogorelyy et al., 2019) or similarity networks of control datasets (Pogorelyy 

and Shugay, 2019; Shugay et al., 2015). Sequence-independent approaches are mainly represented by 

entropy-based diversity indices (Alon et al., 2021; Greiff et al., 2015a; Kaplinsky and Arnaout, 2016; Strauli 

and Hernandez, 2016), which have lately been augmented with a correction for sequence similarity (Arora 

et al., 2018; Vujović et al., 2021). None of the currently available comparative methods, which are based 

on single repertoire features, however, represent an integrated multi-feature measure of immune repertoire 

similarity that takes into account the complexity of information encoded in the ensemble of the existing 

immune repertoire features (Gupta et al., 2015; Heiden et al., 2014; Nazarov et al., 2020; Shugay et al., 

2015). Such an integrated measure, encoding per-feature similarity in one common mathematical structure, 

is needed to enable a representation of repertoire similarity. 

 

Here, we introduce immuneREF: a measure for quantifying immune repertoire similarity across multiple 

immune repertoire features. Our framework, implemented in an R package, measures immune repertoire 

similarity using a combination of features that are immunologically interpretable (clonal expansion, 

sequence composition, repertoire architecture, and clonal overlap) and that cover largely distinct 

dimensions of the immune repertoire spaces. Specifically, to interpret immune repertoire similarity scores, 

immuneREF establishes a self-augmenting dictionary of simulated and experimental datasets where each 

new dataset analyzed may be used as a comparative reference for scoring and biologically interpreting inter-
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individual variation (and thus the deviation) of immune repertoire features (Fig. 1, Supplementary Fig. 1). 

We applied immuneREF to >2400 immune repertoires from humans with varying immune states (healthy, 

virus infection, autoimmune disease) and found that the similarity of blood-derived immune repertoires is 

not consistently a function of the immune state.  

 

Overall, immuneREF enables the quantification of repertoire similarity at population scale while still 

providing single-individual resolution and enables answering of fundamental questions such as to what 

extent immune repertoires are robust to perturbations introduced by immune events. 

 

 

Methods 
 

immuneREF features 

For each dataset, we calculated six immune repertoire features and a per-feature similarity score. 

 

immuneREF Feature: Evenness profiles (state of clonal expansion) 

Evenness profiles were calculated as described previously (Greiff et al., 2015b) on the CDR3 nucleotide 

level. Briefly, we calculated the Hill-diversity for alpha values 0–10 in steps of 0.1 with alpha = 1 being 

defined as the Shannon evenness. Each entry in the profile varies between ≈0 and 1, where higher values 

indicate an increasingly uniform clonal frequency distribution. We determined evenness profiles for each 

repertoire and evaluated cross-repertoire evenness similarity by Pearson correlation of the repertoires’ 

evenness profiles as described previously (Amoriello et al., 2020; Greiff et al., 2015b, 2017a).  

 

immuneREF Feature: Positional amino acid frequencies 

The positional amino acid frequencies were calculated separately for each CDR3 sequence length. To 

decrease bias by extraordinarily short or long CDR3 sequences, we limited this analysis to a range of the 

most common lengths (8–20 amino acids) (Greiff et al., 2017a; Raybould et al., 2019). Briefly, per position 

amino acid frequencies are calculated for each length. Subsequently, the resulting per length frequency 

vectors of each repertoire were Pearson-correlated by length and the mean correlation was calculated. 

Unlike in the case of k-mer occurrences, no positions are excluded, making AA frequency more sensitive 

to VDJ usage perturbations. Relative frequencies were used for all positional amino acid frequency 

calculations. 

 

immuneREF Feature: Sequence similarity network architecture 

As previously described (Miho et al., 2019), we constructed a sequence similarity network for each immune 

repertoire: nodes represent amino acid CDR3 sequences connected by similarity edges if they had a 

Levenshtein Distance of 1 (LD=1). The igraph R package was used to calculate networks (v.1.2.4.1, Csardi 

and Nepusz, 2006), that were analyzed with respect to four measures representing different aspects of 

network architecture: (i) cumulative degree distribution, (ii) mean hub score (Kleinberg hub centrality 

score), (iii) fraction of unconnected clusters and nodes and (iv) percent of sequences in the largest connected 

component. An LD = 1 network was constructed for each repertoire and the similarity between the 

repertoires’ resulting network was evaluated with respect to their differences in the cumulative degree 

distribution, mean hub-score, outlier sequence occurrence, and largest network components; these metrics 

have been shown to be defining repertoire characteristics that are robust to subsampling (Miho et al., 2019). 
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The similarity of the architecture between two repertoires A and B was calculated as the mean of four 

components: (i) the cumulative degree distribution (Pearson correlation between repertoires), (ii) mean hub 

scores (1 − |𝑀𝑒𝑎𝑛𝐻𝑢𝑏𝑆𝑐𝑜𝑟𝑒𝐴 − 𝑀𝑒𝑎𝑛𝐻𝑢𝑏𝑆𝑐𝑜𝑟𝑒𝐵|), (iii) the fraction of unconnected components, and 

(iv) the fraction of sequences in the largest component (1 − |𝑃𝑒𝑟𝑐𝐿𝑎𝑟𝑔𝑒𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝐴 −

𝑃𝑒𝑟𝑐𝐿𝑎𝑟𝑔𝑒𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐵|). Unlike many of the other features, the network feature combines multiple 

single measures, which rendered it difficult to perform Pearson correlation analysis involving all four 

investigated network measures. Therefore, we adopted the network feature comparison approach described 

above.  

 

immuneREF Feature: Repertoire overlap (Convergence) 

The pairwise repertoire clonal overlap (clones defined based on 100% similarity of CDR3 amino acid 

sequence), was calculated across repertoires, as previously described (Greiff et al., 2017b):   

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑋, 𝑌)  =  
|𝑋∩𝑌|

𝑚𝑖𝑛(|𝑋|,|𝑌|)
×  100 𝑤ℎ𝑒𝑟𝑒 𝑋 = 𝑟𝑒𝑝𝑒𝑟𝑡𝑜𝑖𝑟𝑒 𝑋, 𝑌 = 𝑅𝑒𝑝𝑒𝑟𝑡𝑜𝑖𝑟𝑒 𝑌.  

This clonal sequence overlap measure represents the similarity value between repertoires with respect to 

clonal convergence.  

 

immuneREF Feature: Germline gene diversity 

The relative frequency of germline genes (defined by the ImmunoGenetics Database, IMGT) (Giudicelli et 

al., 2004) across clones in each repertoire was calculated for each repertoire depending on species and 

immune receptor class (Ig, TR). The germline gene usage allows insight into deviations from a baseline 

recombinational likelihood and thereby captures the potential impact of disease, vaccine, or other events 

on the immune state (Avnir et al., 2016; Greiff et al., 2017a). To determine germline gene usage similarities, 

we examined the V- and J-gene frequencies across clones for each individual. The Pearson correlation 

coefficient was determined for each of the frequency vectors (V-, D-, J-gene) with entries of all IMGT 

variants in a pairwise fashion between samples as described previously (Greiff et al., 2017a; Weber et al., 

2019). Specifically, the correlations are calculated per germline gene, leading to separate V_cor, D_cor, 

J_cor values (and additionally VJ_cor for each V_J combination). The resulting correlation values are 

combined into a single value by calculating a weighted mean of these components. The weight vector used 

for the results in the manuscript is c(V=1,D=1,J=1,VJ=0). 

 

immuneREF Feature: Gapped k-mer occurrence 

For a given k-mer size k and maximal gap length m, the nucleotide-based gapped-pair-k-mer occurrences 

were counted for all gap sizes ≤ m (Palme et al., 2015). The parameters k and m were chosen based on 

previous research (Greiff et al., 2017b), where defining parameters k = 3, m ≤ 3 was shown to lead to an 

encoding sufficient for sequence classification. The counts were normalized by the total number of gapped 

k-mers found across all gap sizes such that short-gap gapped-k-mers were weighted higher than larger gap 

sizes. While the amino acid frequency distribution contains positional information, the gapped k-mer 

occurrence represents short- and long-range sequential information encoded in the repertoire. We counted 

the occurrence of gapped k-mers (k = 3, m ≤ 3) across all CDR3 sequences of a repertoire and correlated 

the resulting distributions between repertoire pairs using Pearson correlation as described previously 

(Weber et al., 2019). 
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immuneREF Feature: transcriptome integration  

In order to keep the most informative genes from the genes obtained in a transcriptome experiment, 

immuneREF firstly applies a low variation filter (Hackstadt and Hess, 2009). Specifically, the standard 

deviation (SD) is calculated per gene across samples, and all genes above a certain threshold (default, 

SD>1) are preserved for subsequent analysis. 

To construct the gene expression feature similarity matrix, the Pearson correlation was calculated between 

samples. Additional approaches for the calculation of the gene expression feature similarity matrix 

implemented in the immuneREF package (mutual rank, PCA) are described in the package documentation. 

 

Calculating repertoire similarities per feature 

The calculation of the similarity values between a pair of repertoires was performed in a feature-specific 

manner as described in the methods section of each feature.  

 

Repertoire similarity – Condensing features into a composite network 

The single-features are condensed into a multi-feature network by taking the mean of all single-feature 

similarity values resulting in a single repertoire similarity value. The resulting condensed network 

represents a weighted composite of the single-feature similarity networks. Additional approaches to obtain 

a composite network (max similarity, min similarity, SNF (Wang et al., 2014)) are implemented in the R-

package as described in the package documentation 

 

 

Mutual information 

Mutual information is a measure that quantifies to what extent one random variable explains another. 

Mutual information was defined as  

𝐼(𝑋; 𝑌)  = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = ∑𝑥,𝑦 𝑃𝑋𝑌(𝑥, 𝑦) 𝑙𝑜𝑔
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
, 

 

Where, H(X) is the marginal entropy, H(X|Y) the conditional entropy PXY the joint probability distribution 

of X and Y and PX and PY the respective marginals. Mutual information was calculated using the R packages 

entropy (v.1.2.1, Hausser, 2014) and infotheo (v.1.2.0, Meyer, 2014). The values were normalized to the 

range [0,1] by dividing the mutual information by the sum of the entropies H(X)+H(Y). This normalized 

mutual information, also known as redundancy, is zero when both are independent and maximal when 

knowledge of one of the variables becomes redundant given the other. 

 

Quantification of mutual information across ensembles of repertoire features 

The mutual information between two features was calculated across all values in the similarity matrix, 

whereas the similarity matrix represents all pairwise similarity values between repertoires for a given 

feature. For the V(D)J diversity feature, values were set to zero by definition (i.e., the similarity between 

repertoires of different species/receptors) and were excluded from this calculation.  

We ensembled immune information captured by the repertoire features (Fig. 2) as the extent to which 

repertoire features collectively cover immune repertoire complexity. Specifically, we evaluated the change 

in mutual information between subsequently added features. Features were added one by one (1-feature 

network → 2-feature network, 2-feature network → 3-feature network and so forth, where n-feature means 

n features combined into a composite network), with the next feature to be chosen randomly (500 

permutations of feature combinations per “n-features → n+1-feature” step). 
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Local repertoire similarity 

To determine a single value measure for how connected a repertoire is within a subgraph (e.g. the repertoires 

of healthy human IgH repertoires and the similarity values between them), we defined the local similarity 

measure. It is calculated by dividing the node strength of each repertoire within a subgraph (sum of all edge 

weights connecting it to the other nodes in the subgraph) by the sum of all node strengths in the subgraph. 

  

𝑙𝑜𝑐𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑟𝑒𝑝𝑒𝑟𝑡𝑜𝑖𝑟𝑒  =  
𝑁𝑜𝑑𝑒𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑟𝑒𝑝𝑒𝑟𝑡𝑜𝑖𝑟𝑒

∑𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑁𝑜𝑑𝑒𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
 

Local similarity gives the ratio of node strength that is connected to each repertoire in a subgraph and thus 

allows the identification of the most and least representative node of any category (the one most and least 

strongly connected within that category, respectively, see Figure 2C). Local similarity is dependent on the 

number of nodes within the subgraph and is therefore only used to compare repertoires within the subgraph. 

To enable comparison of local similarity values across different subgraphs, local similarity can be scaled 

by dividing by the number of nodes in the subgraph to correct for varying subgraph sizes in cases where 

the number of repertoires per subgraph differs. 

 

Simulation of adaptive immune receptor repertoires representing ground truth data 

We simulated 200 immune repertoire datasets where we controlled 40 parameter combinations over 

multiple replicates, thus allowing us to generate datasets where there is ground truth. Simulated repertoires 

were generated by the immuneSIM framework (R package) (v.0.8.7, Weber et al., 2019). Each simulated 

repertoire contained 12’000 sequences and varied with respect to species (mouse, human), receptor (BCR, 

TCR), germline gene distribution, clone count distribution, the occurrence of N1, N2 insertions and 

deletions in V, D, and J genes. Additionally, a subset of repertoires was modified post-simulation: in order 

to simulate motif occurrence, the motifs "YAY" ("tacgcctac") and "YVY" ("tacgtctac") were implanted 

with a probability of 2.5% each at a random position in the complementarity determining region (CDR3). 

To create repertoires with variation in sequence similarity network architecture, the top 5% sequences with 

the highest hub scores in a given repertoire were removed. In order to evaluate the sensitivity of the gapped 

k-mer occurrence feature, repertoires that differ in nucleotide composition, while retaining amino acid 

composition, were generated by introducing synonymous codons (“tat” → ”tac” for Tyrosine, “agt” → 

"agc" for Serine and ”gtt” → “gtg” for Valine) in 50% of VDJ sequences. Finally, the simulated and 

modified repertoires were subsampled to 10’000 sequences to ensure equal dataset size. The simulation 

parameters and their expected impact on each feature are summarized in Supplementary Tables 1 and 2. 

 

Immune repertoire sequencing datasets 

We conducted our analysis on 2’408 deep sequencing immune repertoires collected from four different 

studies: (i) a mouse immunization study of BCRs (flow cytometry-sorted B cells from different tissues: 

naive B cells from spleen (IgM), pre B cells (IgM) and IgG plasma cells from bone marrow, RNA-based 

high-throughput sequencing, preprocessed with MiXCR (Bolotin et al., 2015), for more details, please see 

(Greiff et al., 2017a)), (ii) a study of human TCRβ repertoires and signatures of cytomegalovirus, DNA-

based high-throughput sequencing (CMV+/-, unsorted PBMC) (Emerson et al., 2017), (iii) a study of TCR 

repertoires of patients recovered from mild cases of Covid-19 (Minervina et al., 2021)  and (iv) the 

PanImmune repertoire database (PIRD, unsorted PBMC, preprocessed with iMonitor) (Zhang et al., 2019) 

(see Supplementary Table 3). All sequences with stop codons were excluded and the naming of columns 
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and V,D,J calls was standardized according to AIRR-community standards (Rubelt et al., 2017). When 

larger, each dataset was subsampled to 10’000 sequences (top clones by descending clonal frequency). 

Quality and read statistics may be found in the respective publications. 

 

Statistical analysis and graphics software  

Statistical analysis was performed using R 3.6.1 (R Core Team). Graphics were generated using the R 

packages ggplot2 v3.2.1 (Wickham, 2009), ggbeeswarm v0.6.0 (Erik Clarke and Scott Sherrill-Mix, 2017), 

RColorBrewer v1.1-2 (Neuwirth, 2014), ComplexHeatmap v2.2.0 (heatmaps) (Gu, 2015), igraph v1.2.4.2 

(network plots) (Csardi and Nepusz, 2006), ggiraphExtra v.0.2.9 (radar plots) (Keon-Woong Moon, 2018), 

GGally v1.4.0 (parallel plots) (Schloerke et al., 2018). Parallel computing immuneREF analysis was 

performed using the R packages foreach v1.4.7 (Microsoft and Steve Weston, 2019) and doMC v1.3.6 

(Revolution Analytics and Steve Weston, 2019). Figure 1 was created using Biorender.com. 

 

immuneREF R-package and documentation 

The immuneREF analysis workflow is made available via the immuneREF R package hosted on GitHub 

(https://github.com/GreiffLab/immuneREF). Documentation of the immuneREF package is provided on 

readthedocs (https://immuneref.readthedocs.io). 
 

 

Results 
 

Reference-based comparison of immune repertoires based on immunological features: constructing 

a similarity atlas of immune repertoires 

To derive a similarity measure for immune repertoires, we devised a framework that calculates a repertoire 

similarity score based on six features that reflect immune repertoire biology (Fig. 1, Supplementary Table 

4). These features are (1) germline gene diversity (Greiff et al., 2015c; Yaari and Kleinstein, 2015), (2) 

clonal diversity (Greiff et al., 2015b; Stern et al., 2014), (3) clonal overlap (Greiff et al., 2015c; Yaari and 

Kleinstein, 2015), (4) positional amino acid frequencies (Mason et al., 2019), (5) repertoire similarity 

architecture (Bashford-Rogers et al., 2013; Ben-Hamo and Efroni, 2011; Miho et al., 2019) and (6) k-mer 

occurrence (Greiff et al., 2017b; Thomas et al., 2014) (see the Methods Section for a detailed immunological 

and mathematical description of these features). A similarity score is calculated for each pair of repertoires 

and each feature (six n x n symmetric matrices, n = number of repertoires), creating a similarity matrix for 

each feature. This matrix may be viewed as a weighted network, in which the nodes correspond to 

repertoires and the edges connecting the nodes are the similarity scores. The resulting six single feature 

similarity networks enable insight into per-feature similarity. Finally, a composite network of the six feature 

similarity networks represents an interpretable multidimensional picture of the repertoire landscape. 

Briefly, the single-features are condensed into a multi-feature composite network by taking the mean of all 

single-feature similarity values resulting in a single repertoire similarity value (for alternative approaches 

to computing composite networks, see Methods section). By virtue of representing a similarity matrix as a 

weighted network repertoire, similarity may be computed on selected levels such as one(repertoire)-to-

many (repertoires), many-to-one, and many-to-many (Fig. 1).  Interpretability stems from all repertoire 

features being transformed into a similarity measure on a 0–1 scale allowing for direct quantification of 

their individual contribution to multidimensional immune repertoire similarity. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.476436doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?aEc9ea
https://www.zotero.org/google-docs/?M1kgoQ
https://www.zotero.org/google-docs/?Tt73Eb
https://www.zotero.org/google-docs/?xOBXAT
https://www.zotero.org/google-docs/?Ppe2tK
https://www.zotero.org/google-docs/?oHqjB4
https://www.zotero.org/google-docs/?hLTZOb
https://www.zotero.org/google-docs/?mq5vuu
https://www.zotero.org/google-docs/?ES0Jpu
https://www.zotero.org/google-docs/?jRNekM
https://www.zotero.org/google-docs/?80Ag3R
https://github.com/GreiffLab/immuneREF
https://immuneref.readthedocs.io/
https://www.zotero.org/google-docs/?bUYmhf
https://www.zotero.org/google-docs/?PWsQkY
https://www.zotero.org/google-docs/?iYtc1Y
https://www.zotero.org/google-docs/?iYtc1Y
https://www.zotero.org/google-docs/?kgu2fk
https://www.zotero.org/google-docs/?txqWBC
https://www.zotero.org/google-docs/?Wt7Sc7
https://doi.org/10.1101/2022.01.23.476436
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

 
Figure 1 | Reference-based comparison of adaptive immune receptor repertoires (AIRRs).  

(A) The complexity of AIRRs spans the frequency, motif, and feature space to each of which distinct repertoire features may be attributed: the 

immune information stored in AIRRs is multidimensional. A longstanding question in the AIRR field is how to quantitatively measure inter-sample 

(sample: e.g., individual, immune cell population) AIRR similarity by accounting for AIRR feature multidimensionality in the effort to understand 

the distribution of inter-sample AIRR similarity across different immune events or immune cell populations.  

(B) We set out to develop an AIRR similarity measure that is sensitive, captures maximal immune information, and is sufficiently flexible to allow 
future integration of additional repertoire features (extensibility).  

(C) Each AIRR is represented as a node in a similarity network. The edges connecting the nodes represent the similarity score between the AIRR 

based on the six repertoire features.  The immuneREF approach establishes interpretability on different levels: (i) from a single-feature perspective, 

the application of spider plots allows for an interpretable comparative analysis between repertoires, enabling the user to interpret the result observed 

in the condensed network on a per feature basis. (ii) From the condensed feature network perspective, a major novelty introduced by the immuneREF 
workflow is the ability to combine established repertoire features into a common coordinate system. This transformation allows the combination of 

trends across features into a single condensed network that represents pairwise-cross-feature similarities. These pairwise similarities allow for the 

identification of subsets of more similar or aberrant repertoires. Interpretability on both features means allowing comparison to other repertoires, 

and to simulated ones (of which we know the repertoire structure as ground truth) thus creating similarity equivalence classes. Equivalence classes 

create sets of reference repertoires, which enable interpreting the repertoire structures of other repertoires solely based on the immuneREF similarity 
score.  
 

immuneREF measures immune repertoire similarity with  high sensitivity  

We sought to quantify the sensitivity by which immuneREF can detect differences between immune 

repertoires with respect to the six repertoire features. The simulated repertoires, varying in a controlled 

manner, represent a ground truth reference map that enables a more precise assessment of immuneREF 

sensitivity.  For example, simulated repertoires may be used to guide the evaluation of variation between 

experimental repertoires with respect to each repertoire feature as well as multi-feature combinations. 

Simulations were performed using the immuneSIM repertoire simulation suite (Weber et al., 2019), which 

was used to create native-like repertoires that were varied across eight parameters. Native-likeness was 

demonstrated in (Weber et al., 2019). The parameters that were varied across simulated repertoires included 

clone count distribution, V-, (D-), J-gene frequency noise, insertion and deletion likelihoods, species 

(human and mouse), and receptor type (IgH, TRB). We constructed additional simulated repertoires with 

spiked-in motifs (mimicking antigen-binding motifs (Akbar et al., 2019)), excluded hub sequences in the 
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sequence similarity network (simulating network architecture variation (Miho et al., 2019)) and replaced 

nucleotide codons with synonymous codons (simulating biases in the k-mer occurrence that are relevant in 

detectable immunogenomic patterns of public clones (Greiff et al., 2017b)) (see Methods, Supplementary 

Table 1 lists the parameter variations used for the simulations, Supplementary Table 2 summarizes how 

each of the parameters is expected to influence the six immuneREF features). The parameter combinations 

were chosen such that each simulated repertoire varied only along one parameter dimension at a time, 

allowing us to determine the sensitivity of each feature to each parameter change.  

The mathematical structure of the single-feature similarity matrices enables their merging into a composite 

network that provides the opportunity for a condensed single-score representation of inter-sample repertoire 

similarity. The composite immuneREF network (which combines all six repertoire features) recovers major 

variation in the repertoires including noise introducing parameter changes (Figs. 2AB). immuneREF also 

clearly distinguishes repertoires from different receptors and species based on strongly distinguishing 

features such as V-, (D-), J-gene usage while allowing the identification of commonalities in amino acid 

usage, clonal diversity, and architecture across immune receptors and species. This sensitivity analysis also 

underlines a major advantage of immuneREF, namely its flexibility to accommodate both BCR and TCR 

repertoires from different species in one single analysis workflow.  

We quantified the sensitivity of immuneREF by detecting significant changes in similarity scores 

corresponding to the variation in simulation parameters across both the single feature (Supplementary Figs. 

2–4) and composite network (Fig. 2A) and found that each feature had a unique sensitivity profile to 

changes in the simulation parameters, underscoring the value of per-feature similarity evaluation. For 

example, a change in the alpha parameter of the Hill function (controlling clone count distribution) solely 

impacted the immuneREF diversity feature. As the immuneSIM parameter controlling the distribution of 

clone counts only affects the clone count simulation without impacting simulated sequences, the fact that 

only the feature targeted by the parameter change is impacted shows that immuneREF is robust to random 

noise in the simulation that is not introduced through parameter changes. An increase in the  V(D)J noise 

parameter, which modifies the frequencies of the germline genes used in the simulation, led to detectable 

and significant changes in similarities of the germline gene usage and k-mer occurrence features. 

Modification of the insertion/deletion patterns (dropout of deletions and or insertions) led to a consistent 

impact in the amino acid frequency feature and, more importantly, the architecture feature, where a lower 

diversity due to restricted insertions and deletions led to significant changes in network architecture. 

Implanting motifs at various frequencies led to a significant similarity change in the k-mer occurrence 

feature. The deletion of hub sequences led to an impact in the architecture feature and also changed the 

repertoire overlap similarity, thus underlining the importance of public clones in the network architecture 

as reported previously (Miho et al., 2019). Finally, we modified the repertoires by introducing synonymous 

codons at various percentages and found that the k-mer occurrence feature was the only one impacted. 

Therefore, we conclude that immuneREF features largely react as hypothesized to variation in simulation 

parameters (Supplementary Table 2). Taken together, we demonstrated that the immuneREF framework is 

sensitive to even comparatively small repertoire variations. 
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Figure 2 | immuneREF measures immune repertoire similarity with high sensitivity using features that capture immune repertoire 

biology. We simulated 200 immune repertoires using 40 different parameter combinations (in quintuplicate). (A) Hierarchical clustering 
visualizes the sensitivity of immuneREF by the successful grouping of immune repertoires that were simulated with slightly different parameters 

(composite network, see main text for details). (B) Network visualization with simulated repertoires as nodes and weighted edges between 

repertoires of similarity values above the upper quartile. (C) Quantification of  mutual information among immune repertoire features. (D) 

Change in mean similarity of composite networks of increasing number of features. 

 

Mutual information analysis demonstrates no to limited inter-dependence of immuneREF features  

While the examined features were initially chosen based on immunological criteria, we also wished to 

verify whether each feature provides a sufficiently different measurement of the immune repertoire 

information space Fig. 2C). Specifically, having integrated all features into a common coordinate system, 

we were able to compute  cross-feature mutual information and found that features show no to limited 

dependence (range=0.01–0.57, Fig. 2C) indicating largely non-overlapping and distinct spaces of  immune 

information captured. The highest mutual information was found between the positional and sequential 

sequence-derived features (i.e., positional amino acid frequency and gapped k-mer occurrence, 

respectively) while the lowest mutual information value was found between the diversity and convergence 

features (Fig. 2C). 

Complementarily, we sought to quantify to what extent the addition of new repertoire features leads to 

diminishing returns (sufficiency analysis). To this end, we computed the mean change in repertoire 

similarity values when increasing the number of features from 1 through 6. Thereby, we could show that 

each additional feature added increasingly less information, as shown by the diminishing change of the 

mean similarity value with each added feature. The saturation of the mean similarity change curve indicated 

information saturation independent of the order in which features were arranged (Fig. 2D, Supplementary 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.23.476436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.476436
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

Fig. 5). As discussed below, mutual information values behaved similarly for experimental repertoire data. 

Thus, we demonstrated that the immuneREF framework creates information-laden similarity networks, 

whose topologies capture the immunological similarity landscape of immune repertoires.  

The similarity landscape of simulated repertoires defines reference repertoires 

By calculating the similarity matrix for each of the six immune repertoire features, we embedded the six 

different immunological features into a common coordinate system, i.e., a network structure. This network 

(with nodes representing repertoires and weighted edges representing pairwise similarity) situates each 

repertoire within a similarity landscape allowing to quantify many-to-many repertoire similarity. 

Figure 3 | The similarity landscape of simulated repertoires defines reference repertoires. (A) Baseline similarity between replicates for 

repertoires simulated using default immuneSIM parameters (see Supplementary Table 1) is ≥0.96 for five of six features, the convergence feature 

being the exception by definition at ≤0.09. (B) Repertoire similarity distribution in a condensed network across the various evaluated parameter 

range. Across cohorts, similarity scores have a broad range, while within cohorts the range is more restricted. (C) Workflow to determine 
representative repertoires per cohort going from many-to-many to a one-to-one comparison. (D) Local similarity distribution per species/receptor 

combination enables situating each repertoire based on its connectivity with respect to neighbors in the same cohort. (E) Comparing repertoires 

with maximal local similarity in their cohort visualizes the commonalities between receptor types, here the Murine IgH repertoire with maximal 

local similarity serves as a reference repertoire. The plot visualizes the similarities of each non-reference repertoire to the Murine IgH reference. 

A more fine-grained image of the similarity landscape may be gained by examining the similarity from the 

perspective of every single repertoire (Figs. 3C,D). We define the local similarity of a repertoire to its 

neighboring repertoires as a scaled node strength (see Methods). This local similarity represents the position 

of the repertoire with respect to its direct neighbors in its cohort (defined by an application-dependent label, 

e.g., same species and disease) and allows us to distinguish between well embedded and aberrant 

repertoires. The local similarity measure further acts as a magnifying glass by elucidating finer differences 

between repertoires, which are diluted by population averages when examining repertoire similarity across 

the full similarity network. Using this perspective, repertoires that are most (locally) similar to other 

repertoires in their cohort can be identified, allowing the extraction of repertoires most representative for a 

given immune state. Such detailed one-to-one feature comparisons highlight, in the most simple case, which 
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features of the simulated repertoires are receptor-specific (amino acid frequency, k-mer occurrence, VDJ 

usage, and convergence) and which are more general to immune repertoire data showing higher similarity 

across different species and receptors (diversity, architecture)  (Fig. 3E, Supplementary Fig. 6). 

Having evaluated the similarity of simulated datasets, these may serve as a reference to interpreting 

similarity score variation of experimental repertoires (Fig. 3C), thus enabling the creation of equivalence 

classes of immune repertoires not only as previously performed based on clonal expansion (Greiff Genome 

Medicine 2015) but based on six repertoire features. Furthermore, any evaluated repertoire, be it of 

experimental or simulation origin, will become a new node in the similarity network and may serve as a 

valid reference point (just as any other node in the network). This network of self-augmenting repertoire 

similarity reference points is another source of interpretability as it allows the linking of the repertoire 

similarity of any number of repertoires with their underlying features.  In the next section, we provide such 

a repertoire similarity network on experimental datasets. 

Validation of immuneREF on experimental data: detection of differences between cell populations in 

mouse immunization and human Covid-19 datasets 

To validate immuneREF sensitivity on experimental data, we used antibody repertoire datasets generated 

from a mouse antigen immunization study, where differences in the similarity between antigen 

immunization cohorts are expected (Greiff et al., 2017b, 2017a; Miho et al., 2019). Notably, we were able 

to recover clear differences between isotypes and cell populations (both with higher within-cohort and 

lower across-cohort similarity), and additionally found that the antigen immunization cohorts have more 

distinct similarity profiles in the plasma cell populations (IgG) compared to the antigen-inexperienced cell 

populations (Supplementary Figs. 7, 8). The overall high similarity scores across the full immunological 

feature range are in agreement with our previous studies where we observed high similarity between these 

repertoires on a single feature basis (Greiff et al., 2017a). 

Similarly, applying immuneREF to TCR repertoires of patients recovered from mild cases of Covid-19  

(Minervina et al., 2021), revealed clusters of increased similarity within patients and cell populations 

(Supplementary Fig. 9). 

Application of immuneREF to >1500 experimental blood immune repertoires indicates only small 

similarity-based differences between health and autoimmune disease 

Having established the sensitivity of our approach in detecting a wide range of differences between 

simulated repertoires (Figs. 2,3) and between experimental repertoires of different B cell populations 

(Supplementary Figs. 7–9) with respect to immunologically relevant and interpretable repertoire features, 

we set out to determine the similarity landscape of large scale experimental TCR repertoire datasets. We 

evaluated 1,522 human TCR repertoires derived from peripheral blood mononuclear cells (PBMCs) of 

patients with varying and diverse immune states (PanImmune Repertoire Database (PIRD) dataset 

containing samples from Healthy, Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) 

patients, Supplementary Table 3). We found an even similarity landscape of overall high similarity scores 

(Fig. 4A). Similarity score distribution was also even in single features, which despite feature-specific 

differences, show overall high similarity scores between repertoires. We examined networks at three 

different similarity cutoffs (an edge is drawn between two repertoire nodes if their similarity is in 25, 50, 

and 75% top weights, respectively), and found that in all three cases no immune state-specific grouping 

could be observed (Fig. 4B).  
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The range of general and local similarities across all samples as well as within each disease cohort was 

evaluated using an analogous approach to that used for the simulated datasets (Figs. 4CD). While the 

similarity scores ranged between ~0.5–0.8 overall, the within-disease cohort spread varied, with the Healthy 

and RA cohorts showing a more restricted range of similarity scores compared to a broader range for SLE 

(Fig. 4CD).  

Figure 4 | Application of immuneREF to 1,522 experimental repertoires. (A) Similarity landscape of experimental (human, TCR) repertoires 

across three immune states (Healthy: 439 repertoires, Rheumatoid Arthritis: 206 repertoires and Systemic Lupus Erythematosus:  877 repertoires) 

(B) Network visualization of the 1,721 nodes and weighted edges between repertoires of similarity scores (at three cutoff levels, 25%, 50% and 

75% top edge weights). (C) Distribution of similarity score across the entire network and per immune state shows different degrees of within cohort 

homogeneity. (D) Distribution of local similarity values per repertoire, faceted by cohort. (E) Comparison of the repertoires with the highest local 

similarity per immune state and an immuneSIM reference repertoire (default immuneSIM parameters, see Supplementary Table 1). 

To quantify per feature similarity and dissimilarity with respect to a reference dataset, we compared the 

repertoires identified as the ones best-connected (highest local similarity) within their cohort, to an 

immuneSIM reference repertoire (human, TRB, standard parameters, see Methods) (Fig. 4E). The similarity 

scores of all tested immune states largely overlap with respect to the healthy reference repertoire, with 

convergence being the feature dimension with the largest dissimilarity, meaning there is almost no 

convergence between the RA or SLE samples and the reference. Comparing the single features of the so 

determined most and least ‘representative’ repertoires per immune state (Supplementary Fig. 10) further 

underlines the high similarity between repertoires of identical and different immune states.  

Following our observations of high repertoire similarity within the PIRD dataset, we ran immuneREF on 

another large publicly available dataset (human, TCR) (Emerson et al., 2017) with yet another difference 

in immune state (CMV). The dataset contains 666 PBMC samples of which 289 are from CMV positive 

patients, 351 are from CMV negative patients and 26 are from patients with unknown CMV status. This 

dataset has previously been used to showcase immune state classification with high accuracy via the 

identification of CMV-associated public TCR sequences (sequences shared between individuals). In a 
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similar fashion, immune state-associated public sequences were used to successfully classify RA and SLE 

samples from the PIRD dataset (Liu et al., 2019). As with the PIRD dataset, we observed high within and 

across immune state repertoire similarity (Supplementary Figs. 11, 12). This is in line with the findings of 

Emerson and colleagues as they found that only a small subset of clones (CMV-associated in Emerson et 

al., 2017) significantly differed in abundance between immune states (CMV+, CMV-) and that that shared 

antigen exposure to CMV led to a reduced number of shared TCRβ clones, even after controlling for 

individual HLA type, indicating a largely private response to a major viral antigenic exposure (Johnson et 

al., 2021).  

In summary, the results of our analysis of human TCR repertoires strongly support the argument that the 

signal-to-noise ratios, where signal means repertoire features associated with disease status, is unfavorably 

tilted towards noise, where noise is defined as technological and immunological information, which cannot 

yet be linked to a given disease state. 

Extensibility of immuneREF: Integration of gene expression with immune repertoire data 

The mathematical structure of the composite network obtained from immuneREF allows the extensibility 

of the immuneREF framework to other features. As a proof of principle of this immuneREF capability, we 

show here an integrative analysis of immune repertoires and gene expression. This integration is of high 

interest to RNA-seq experiments that include both receptor and global transcript sequences, or even 

repertoire experiments paired with transcriptomics (Song et al., 2021). Integration of immune repertoire 

with gene expression is challenging due to the multidimensional nature of both kinds of datasets and the 

discrepancy in their data structure. Current attempts of integration are still over-simplistic, such as the 

calculation of correlation between the number of distinct CDR3 amino acid sequences and gene expression 

of some marker genes such as CD3, CD4, CD8, HLA Class I and Class II genes (Brown et al. Genome 

Medicine, 2015, 7:125). 

 

immuneREF includes the option to evaluate similarity based on a gene expression matrix and add it to the 

composite network. Briefly, immuneREF first filters all genes with low variation between experimental 

conditions and then calculates the pairwise correlation between observations to construct a single gene 

expression feature (similarity matrix). Once the seven features (six from immune repertoires and one for 

gene expression) are calculated, they may be condensed into a multi-feature network as described above. 

Our solution for integrating receptors with gene expression confers immuneREF the advantage of 

overlaying dual biological information (Supplementary Fig. 13A). 

 

As an example, we analyzed bulk RNA-seq gene expression of pre-B-cell line B3 from the published 

STATegra project (Gomez-Cabrero et al. Sci Data, 2019, 6: 256). This is a time-course experiment that 

collects samples at six time points using an inducible Ikaros system where B cell progenitors undergo 

growth arrest and differentiation (Supplementary Fig. 13B). PCA showed clear differences at gene 

expression level when control and Ikaros groups were compared but also within the Ikaros group across 

time, being t0 the nearest to controls (Supplementary Fig. 13B). To generate the single feature similarity 

matrix of gene expression that better collects these differences, we tested the 3 available correlation-based 

methods implemented in immuneREF (Supplementary Fig. 13C–E). All of them perfectly separated control 

(blue) and Ikaros (red) groups. Additionally, “Pearson correlation” and “PCA scores” nearly recovered 

correctly the time series pattern (purple to yellow degradation), while Mutual rank matched perfectly. 
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Discussion 
 

Combining methods from both immune repertoire and network analysis, we have provided a framework 

for flexible reference-based quantification of immune repertoire similarity. Using ground truth simulations, 

we show that immuneREF is sensitive to inter-repertoire differences in all immunological features. Taking 

advantage of information theory, we showed using both simulated and experimental data that the features 

selected for immuneREF cover a large extent of immune repertoire biology. We introduced the concepts of 

full-network repertoire similarity and local similarity, which allow complementary quantification of the 

impact of the differences in the repertoire similarity landscape. Specifically, while the more general 

repertoire similarity evaluated on the entire network provides insight into the range of similarity within and 

across conditions, local similarity shows a particular advantage of the network approach, as the embedding 

of a repertoire in its neighborhood can markedly differ from what can be expected by its pairwise 

connections.  

 

immuneREF not only provides a framework for measuring immune repertoire similarity but also for 

interpreting it (Supplementary Fig.1). Specifically, it enables the creation of equivalence classes of immune 

repertoires lacking from existing methods (Supplementary Table 4). For example, once the similarity 

observed within a given set of experimentally obtained immune repertoires has been computed, such 

repertoires may function as reference points that in turn enable the interpretation of relative similarity in 

other repertoires (Figs. 1,3C). Of note, the concept of diversity measures creating equivalence classes has 

been noted previously for Hill diversity measures (Greiff et al., 2015b) and is here extended to include 

additional repertoire features immuneREF unifies single and composite features, frequency-dependent, and 

sequence-dependent similarity measures into one computational framework. Beyond quantifying the 

repertoire similarity of experimental immune repertoires, immuneREF also enables the comparison of 

simulated (Han et al., 2021; Marcou et al., 2017; Safonova et al., 2015; Weber et al., 2020)(Marcou et al., 

2017; Safonova et al., 2015; Weber et al., 2019) and in vitro synthetic immune repertoires used for 

therapeutic antibody discovery (Mason et al., 2018). Furthermore, immuneREF may be used for data 

curation purposes in immune repertoire databases such as iReceptor (Corrie et al., 2018), VDJserver 

(Cowell et al., 2015), PIRD (Zhang et al., 2019), and Observed Antibody Space (Kovaltsuk et al., 2018). 

Specifically, upon the integration of an immune repertoire into a database, the similarity of the repertoire 

with all other stored repertoires may be computed. Beyond immunological insight, immuneREF may reveal 

unexpected variation, thus motivating follow-up inspection.  Since immuneREF has been built to work 

across species, cell populations, and receptor types, experimental or simulated data (all-in-one comparative 

framework), it enables rapid distinction of cohort-specific and cohort-unspecific features. This is also 

important for comparative immunological approaches not centered on health vs. disease comparison but, 

for example, the evolution of adaptive immunity (Pancer and Cooper, 2006). 

 

While we consider the usefulness of the six chosen features to be established (Fig. 2, Supplementary Fig. 

5), we concede that the asymptotic nature of the sufficiency calculation leaves the door open to the 

introduction of additional features. The proposed set of immuneREF features denotes in this sense a 

minimally sufficient set for the analysis of immune repertoire datasets. It ensures sufficient coverage of the 
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major variation-introducing aspects. It is for that reason we devised immuneREF as inherently modular, 

allowing single and multi-feature analysis as well as encouraging the addition of new features relevant for 

particular problems such as transcriptome analysis (Supplementary Fig. 13),  HLA typing for TCR studies 

(DeWitt et al., 2018; Emerson et al., 2017; Francis et al., 2021), single-cell omics information (Han et al., 

2021; Setliff et al., 2019; Sturm et al., 2020; Yermanos et al., 2021), gene-specific substitution profiles for 

somatic hypermutation analysis (Sheng et al., 2017), lineage-specific information (Hoehn et al., 2016, 

2021),  and antigen-specific and antigen-associated motifs identified by sequence clustering and machine 

learning (Akbar et al., 2019; Dash et al., 2017; Friedensohn et al., 2020; Glanville et al., 2017; Greiff et al., 

2017b; Horst et al., 2021; Mason et al., 2019; Mayer-Blackwell et al., 2021; Meysman et al., 2018; Sidhom 

et al., 2019; Wong et al., 2020; Yohannes et al., 2021). In particular, a future extension of immuneREF may 

be a feature that reliably identifies antigen-specific sequences thus increasing the amount of immune 

information recovered. More generally, adult repertoires are very complex and contain hidden information 

of many antigens at different time points that might have been shared by different individuals. For instance, 

repertoire fingerprints of influenza infection might be present on most studied individuals and could explain 

the difficulty to distinguish healthy and diseased individuals. New features including (single-cell-based) 

antigen specificity patterns may help separate shared infection marks on the immune repertoire. 

The ease of use of the immuneREF approach opens up new possibilities for large-scale comparative studies 

as shown on the PIRD dataset, which may yield additional insight into the challenges of predicting immune 

state based on repertoire profiling. Indeed, we found that the population average quantified by immuneREF 

may ''conceal'' relevant immunological phenotype signals – despite the fact that the sensitivity of 

immuneREF was shown to be high in simulated and experimental data (Fig. 2, Supplementary Figs. 7, 9). 

Given the lack of large-scale (antigen-specific) data, it remains unclear how the information of the immune 

state is distributed across immunological features. Specifically, our finding – that repertoire similarity does 

not differ across immune states – is strictly only valid for unsorted PBMC TCR repertoire data as examined 

in this study. As known from previous studies (Amoriello et al., 2020, 2021; Csepregi et al., 2021; Ghraichy 

et al., 2021; Greiff et al., 2017b; Li et al., 2020; Ota et al., 2022; Riedel et al., 2020; Rosati et al., 2021)r, 

different cell populations (in different lymphoid organs) may behave in a highly different manner 

(Supplementary Figs. 7, 9). On the other hand, it did not escape our attention that this broad similarity in 

human blood samples might suggest the maintenance of lymphocyte homeostasis even in the event of 

chronic disease.  

Our results reinforce the notion that while some diseases may introduce abnormalities into the immune 

repertoire, others result in a comparatively normal one (Bashford-Rogers et al., 2019), a result that suggests 

the absence of a signature unique to health. If this is true, then blood-based immune repertoire diagnostics 

will require even more advanced methodologies to be developed (Widrich et al., 2020c). For example, for 

simulated repertoires, motif implants in ≥ 10% of sequences were required to affect the amino acid 

frequency and architecture features, suggesting that even in the case of high clonal expansion, the impact 

on the repertoire might not be sufficient to significantly change major repertoire features. This is reinforced 

by results showing that the disease-driving response in multiple autoimmune diseases is only to a small part 

antigen-specific (Christophersen et al., 2019). More generally, our paper advances the state-of-the-art of 

the immune repertoire field by changing the null hypothesis. Specifically, currently, the predominant 

thinking is that any immune state changes measurably the immune repertoire in a systematic fashion. Our 

paper challenges this view by finding that, a priori, we should not expect to see differences (Fig. 4, S10) 

and any substantial change must be proven. This change of perspective is highly valuable to the field as it 
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pushes it towards more sensitive and robust approaches to immune repertoire and machine learning analysis 

(Kanduri et al., 2021; Slabodkin et al., 2021). Specifically, the usefulness of global features for diagnostics 

is severely limited and to detect single sequence-level differences (Emerson et al., 2017; Kanduri et al., 

2021; Widrich et al., 2020a), single-sequence level statistical and machine learning approaches are needed 

(Greiff et al., 2020; Schattgen et al., 2021).  

In the future, ultra-deep (Briney et al., 2019; Soto et al., 2019, 2020) and population-wide large-scale 

immune repertoire projects such as Human Vaccines Project (Crowe Jr. and Koff, 2015) may benefit from 

using immuneREF for identifying immune event-driven aberrations from a baseline repertoire similarity. 

Furthermore, large-scale database initiatives such as the iReceptor gateway (Corrie et al., 2018) may benefit 

from immuneREF functionality for on-the-fly computation of inter-dataset similarity. 
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Supplementary Tables and Figures 

  

Supplementary Table 1. Parameters for simulated datasets 

Parameter Values/range 

Alpha (clone count distribution) 2, 3, 4 

Species Human (hs), Mouse (mm) 

Receptor chain IgH, TRB 

VDJ noise  
(introduces noise into germline gene frequencies) 

0, 0.5 

Insertion Deletion Dropout  
(modifies inclusion of insertion and deletions) 

ins_and_del, no_ins_n1, no_del_d_5, 
no_insertions_n1&no_deletions_d_5 

Motif implantation True (implant “YAY” and “YVY” at a 

random position in 2.5% of sequences 

each), False 

Hub deletion True (Top 0.5 %), False 

Synonym codon introduction True (“tac" for “tat”, ”ggg” for “ggt" and 

“agc" for “agt”, in 50% of sequences), 

False 

Supplementary Table 1 | ImmuneSIM parameters for simulated datasets. The repertoires were simulated to differ across eight parameters. (In 

bold: Default parameters.) Please refer to immuneSIM documentation (https://immunesim.readthedocs.io/en/latest/parameters.html) for parameter 

definitions. 
 

Supplementary Table 2. Hypothesized impact of parameter variation on immuneREF features. 

Parameter Hypothesized Impact (Feature) 

Alpha (clone count distribution) Diversity feature only 

Species All except diversity 

Receptor chain All except diversity 

VDJ noise  
(introduces noise into VDJ frequencies) 

Germline gene usage, kmer, A.A. frequency, 
Architecture 
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Insertion Deletion Dropout  
(modifies inclusion of insertion and deletions) 

Germline gene usage, kmer, A.A. frequency, 
Architecture 

Motif implantation Convergence, (minor: architecture) 

Hub deletion Architecture, Convergence 

Synonym codon introduction K-mer, (minor: Convergence) 

Supplementary Table 2 | Hypothesized impact of parameter variation on immuneREF features. Theorized impact of each parameter variation 

on immuneREF features. 
. 

 

 

Supplementary Table 3. Quantitative description of high-throughput sequencing datasets. 

Data Origin Cell Type No. of unique CDR3 sequences 
(mean±std.error) 

Mouse (C57BL/6J), B cell  (Greiff et 
al., 2017a) 

preBC (IGM) (19) 
nBC (IGM) (19) 
PC (IGM) (19) 
PC (IGG) (19) 

172’262 ± 9’394 
395’558 ± 18’341  

28’762 ±11’443 
147 ± 18 

Human (CMV-dataset), T cell 
(Emerson et al., 2017) 

PBMC (CMV positive) (289) 
PBMC (CMV negative) (351) 
PBMC (CMV unknown) (26) 

177’095 ± 4’235 
186’951 ±  4’029 
154’478 ± 14386 

Human (Covid-dataset), T cell 
(TCRbeta) (Minervina et al., 2021) 

CD4 (mild Covid) (10) 
CD8 (mild Covid) (10) 
Mem (mild Covid) (28) 
PBMC (mild Covid) (24) 

321’827 ± 34’100 
189’289 ± 29’240 

36’233 ± 6’232 
623’003 ± 46’519 

Human (Covid-dataset), T cell 
(TCRalpha) (Minervina et al., 2021) 

CD4 (mild Covid) (10) 
CD8 (mild Covid) (10) 
Mem (mild Covid) (28) 
PBMC (mild Covid) (24) 

233’948 ± 32’085 
141’119 ± 20’064 

29’073 ± 5’253 
425’560 ± 28’554 

Human (BGI), T cell 
(Zhang et al., 2019) 

PBMC (Healthy) (439)) 
PBMC (RA) (206) 
PBMC (SLE) (877) 

74’195 ± 25’364 
123’292 ± 68’630 
84’582 ± 52’944 

Supplementary Table 3 | Quantitative description of high-throughput sequencing datasets. Overview of the number of unique CDR3 

sequences of the experimental datasets analyzed using immuneREF. Where the number of clonal sequences exceeded 10’000, the immune repertoire 

was subsampled by extracting the 10’000 clonal sequences with the highest clone count. 
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Supplementary Table 4. Comparison of immuneREF and other methods for AIRR comparison 

 immuneREF Diversity profiles ALICE TCRNET sumrep 

Publication This publication. (Greiff et al., 2015b) (Pogorelyy et al., 
2019) 

(Shugay et al., 
2015) 

(Olson et al., 2019) 

Single-score: 
1-to-1, 1-to- 
many 

Yes, repertoire 
similarity network 

No (only 1-to-1) No (detection of 
immune receptor 
enrichment) 

No (detection of 
immune receptor 
enrichment) 

No (comparison via 
summary statistics) 

Immune 
repertoire 
features taken 
into account 

- Clone frequency 
- Amino acid frequency 
(positional information) 
- Nucleotide gapped k-
mer occurrence 
(sequential information)  
- Clonal overlap 
- Germline gene usage 
- Sequence similarity 
architecture 

Clone frequency 

- Generation 
probabilities 
- Sequence 
similarity 
architecture 

Sequence 
similarity 
architecture 

- VDJ recombination 
parameters 
- Phylogenetics parameters 
- Diversity   
- CDR3 length 
- Physicochemical 
properties 
- Mutability and 
substitution models 
- Sequence similarity 

Computed 
statistical 
dependency of 
features 

Yes NA (single feature) No No No 

Platform R Platform-independent R Java (part of 
VDJtools 
package (Shugay 
et al., 2015)) 

R 

Supplementary Table 4 | Comparison of immuneREF and other comparative methods. This table provides an overview of immuneREF 
features compared to previous comparative methods. Notably, immuneREF is the first instance of a comparative framework that takes into account 

multiple features of moderate to low statistical dependency to calculate a single repertoire score. 
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Supplementary Figure 1 | Flowchart of immune receptor repertoire analysis in the R package immuneREF. A database of repertoires  

(BCR/TCR, human/murine, simulated/experimental) is analyzed with respect to the six immuneREF features and their similarity scores are 
calculated. Repertoires that show the highest local similarity may be identified as representative for their cohort. The resulting similarity network 

may be analyzed in a many-to-many, one-to-many and one-to-one comparison. 
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Supplementary Figure 2 | Every single feature of the similarity network shows a unique topology. (A–F) Heatmaps represent the similarity 

score landscape for each of the six features. 
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Supplementary Figure 3 | The similarity landscape of simulated repertoires defines a reference map for immune repertoire similarity. (A) 

Per feature differences for a range of immuneSIM parameters (red bar indicates default parameters) (see also SuppFig 3B,C) (B) Similarities in 

each feature across different parameters (see also Fig 3A) (C) Sensitivity of condensed similarity scores (y-axis) in response to different parameters 

(x-axis) faceted by species/receptor combination. 
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Supplementary Figure 4 | Sensitivity analysis per feature demonstrates the impact of each parameter change is feature specific.  (A–F) The 

impact on pairwise similarity scores (y-axis) of parameter changes (x-axis) is shown for each parameter. Faceted by species/receptor combination 

and feature.  
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Supplementary Figure 5 |  Diminishing marginal utility of additional features (A) The mean change in similarity values after the addition of 

the next similarity feature (feature to be added is chosen randomly, 500 iterations) (B) The mean change in similarity values for the addition of 
each feature during various stages of the construction of the multi-feature network. (C) Boxplots of mean change in similarity values for the addition 

of each feature during various stages of constructing a multi-feature network. (D) Beeswarm representation of Fig. 2D. 
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Supplementary Figure 6 | Within-cohort variability of simulated repertoires varies by receptor cohort (human and murine simulated 

repertoires). The amino acid frequency (first row), VJ usage (middle row,  bottom left), and evenness (bottom right) are compared between the 
most and least locally similar repertoires of human (hs) (A) IgH and (B) TRB simulated repertoires as well as mouse (mm) (C) IgH and (D) TRB 

simulated repertoires. 
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Supplementary Figure 7 | Application of immuneREF to 76 experimental repertoires from mouse immunization study (Greiff et al. 2017a) 

finds differences in cell population/isotype cohorts. (A) Similarity landscape of experimental (murine, BCR) repertoires from four immunization 
cohorts (Healthy, HBsAg, NP, OVA) and four cell populations (pre-B cell IgM, naïve B-cell IgM, bone marrow plasma cell IgM and IgG) (B) 

Network visualization of the 76 nodes and weighted edges between repertoires of similarity scores (top 25% edge by edge weights). (C) Distribution 

of similarity scores across the entire network and per cell population shows variation within and across cell populations. (D) Distribution of local 

similarity values per repertoire for each cell population. (E) Comparison of most locally similar repertoires of the healthy and NP cohort for each 

cell population and an immuneSIM reference repertoire (standard immuneSIM parameters). 
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Supplementary Figure 8 | IgM isotype repertoires of the mouse B-cell dataset (Greiff et al., 2017a) have high within-cell population 

similarity. The amino acid frequency (first row), VJ usage (middle row,  bottom left), and evenness (bottom right) are compared between the most 

and least locally similar repertoires of each cell population in the healthy cohort. 
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Supplementary Figure 9 | Application of immuneREF to 72 T-cell repertoires from various cell populations of two Covid patients 

(longitudinal). (A,E) Similarity landscape of experimental (human, TCR, alpha and beta) repertoires for four cell populations (B,F) Network 
visualization of the 72 nodes and weighted edges between repertoires of similarity scores (top 25% edge by edge weights). (C,G) Distribution of 

similarity scores across the entire network (top) and local similarity scores (bottom) per patient. (D,H) Comparison of most and locally similar 

repertoires of each patient from the CD4 and CD8 subsets. 
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Supplementary Figure 10 | Within and cross-immune state similarity of repertoires is high (Healthy, RA, SLE) for the PIRD human T-cell 

dataset (Zhang et al.,2019). The amino acid frequency (first row), VJ usage (middle row, bottom left) and evenness (bottom right) compared  (A–

C) between the most (left amino acid plot, red bars, and lines ) and least (right amino acid plot, blue bars, and lines) locally similar repertoires of 

each immune state. (D–F) between the most locally similar repertoires of each immune state pair. 
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Supplementary Figure 11 | Application of immuneREF to 666 experimental, CMV-serotyped repertoires (human, TCR, Emerson et al., 

2017) finds even similarity distribution across repertoires of CMV+ and CMV- status. (A) Similarity landscape of experimental (human, TCR) 

repertoires of CMV+ (289), CMV- (352) and unknown serotype (25) (B) Network visualization of the 666 nodes and weighted edges between 
repertoires of similarity scores (top 25% edge by edge weights). (C) Distribution of similarity score across the entire network and per immune state 

shows similar distribution CMV+ and CMV- population. (D) Distribution of local similarity values per repertoire for each serotype. (E) Comparison 

of most and least locally similar repertoires of the CMV+ and CMV- cohort. 
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Supplementary Figure 12 | Within and across immune state similarity of repertoires is high for the CMV dataset (human, TCR, Emerson 

et al. 2017). The amino acid frequency (first row), VJ usage (middle row,  bottom left), and evenness (bottom right), compared between (A) the 
most and locally similar repertoires of CMV+ and CMV- cohorts. (B) CMV+ and (C) CMV- repertoires with the lowest and highest local similarity. 
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Supplementary Figure 13 | Gene expression and immune repertoire integration. Gene expression can be added as an additional single feature 

to obtain the multi-feature network. (A) Pipeline overview. (B) Example of analysis using STATegra dataset (mouse pre-B cell line B3, RNA-seq, 

Gomez-Cabrero et al. 2019). (C) Heatmap representing co-expression patterns between samples. 
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