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Climate changes modulated the history of Arctic
iodine during the Last Glacial Cycle
Juan Pablo Corella1,10✉, Niccolo Maffezzoli2,3,4, Andrea Spolaor 3,4, Paul Vallelonga2, Carlos A. Cuevas 1,

Federico Scoto 4,5, Juliane Müller 6,7, Bo Vinther2, Helle A. Kjær 2, Giulio Cozzi 3,4, Ross Edwards8,9,

Carlo Barbante 3,4 & Alfonso Saiz-Lopez 1✉

Iodine has a significant impact on promoting the formation of new ultrafine aerosol particles

and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate.

Therefore, understanding the long-term natural evolution of iodine, and its coupling with

climate variability, is key to adequately assess its effect on climate on centennial to millennial

timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic

iodine variability during the last 127,000 years. We find the highest and lowest iodine levels

recorded during interglacial and glacial periods, respectively, modulated by ocean biopro-

ductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high

frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events,

highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt cli-

mate changes. Finally, we discuss if iodine levels during past warmer-than-present climate

phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean.

We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing

Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may

lead to a near future scenario with the highest iodine levels of the last 127,000 years.
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Atmospheric iodine, primarily emitted from oceans,
forms new aerosol particles in the atmosphere1–7 and
efficiently destroys ozone in the troposphere and lower

stratosphere8–11, which reduces ozone radiative forcing12–15. In
the Arctic environment, iodine has recently been identified as a
significant source of cloud condensation nucleii (CCN), with the
potential to influence clouds formation3. Iodine in the atmo-
sphere is increasing globally (3-fold since the 1950s), as inde-
pendently evidenced by polar and alpine ice core and tree ring
measurements, following anthropogenic ozone pollution and
global warming16–18. In the Arctic, a coastal ice core from
Greenland revealed that ocean primary productivity controlled
atmospheric iodine variability during the Holocene (i.e., last
11,700 years)19. Before the climatically stable Holocene, the Arctic
underwent abrupt environmental changes featuring vast ice sheet
growth and marked climate events during the Last Glacial Period
(LGP) (115–11.7 kyr before 2000 CE (b2k)) and experienced
temperatures warmer than today during the Last Interglacial
Period (Eemian, 130–115 kyr b2k). However, to date, the natural
evolution of Arctic iodine before the Holocene, in the absence of
anthropogenic forcings, and its coupling with climate variability
remain unknown.

In this work, we report the iodine levels in the Arctic during
the Last Glacial Cycle (LGC) (last 127 kyr) using records from
two Greenland ice cores (NEEM and RECAP) drilled in north-
western and eastern coastal Greenland, respectively (Fig. 1). Both
ice cores provide continuous paleoenvironmental records back to
the Eemian interglacial period20–22. We provide evidence that
ocean-ice-atmosphere exchange of biogenic iodine in the Arctic
Ocean dominated the atmospheric iodine budget during periods
of rapid climatic changes. The results show that abrupt warming
and sea ice retreat in the Arctic preceded maximum iodine levels,
reaching peak concentrations during interglacial periods.

Results and discussion
Present-day iodine emission sources and depositional fluxes
over Greenland. Atmospheric iodine in Greenland is controlled by a
complex interplay involving iodine emissions from the oceans, as well
as particle-bound iodine compounds related to dust and/or sea spray
aerosol (ssa) variability23. The oceans, which are the largest reservoirs
of iodine on Earth24, are known to be the dominant source of
atmospheric iodine25–27. The major oceanic sources of gas-phase
iodine are (i) inorganic, ozone-induced, hypoiodous acid and mole-
cular iodine emissions and (ii) organic iodine from the metabolic
activity of primary producers (phytoplankton and macro- and micro-
algae). Furthermore, atmospheric iodine can also be related to
mineral dust by promoting iodate stability in the ice matrix and/or
favouring the adsorption of iodine gas-phase molecules to dust
particles during atmospheric transport10. On the other hand, ssa
expelled from the ocean surface during wave breaking incorporate
iodine in their composition and are a substrate where gaseous iodine
species undergo heterogeneous recycling reactions28–30.

We used a global chemistry climate model17 to understand
present-day iodine levels in Greenland (see Methods). Present
iodine depositional fluxes at the RECAP drilling site (71°18′N;
26°43′W; 2315m a.s.l.) are ~51% higher than at NEEM (77°45′N,
51°06′W; 2484m a.s.l.) (Supplementary Fig. 1). This is explained
by the different ocean iodine emission strengths at the source
regions of air masses that influence both sites (the Canadian Arctic,
Baffin Bay and Hudson Bay for NEEM31 and the North Atlantic
and Arctic Ocean for RECAP32). Note also that RECAP is closer to
the coast (30 km from the North Atlantic Ocean) than NEEM
(350 kms from the Baffin Bay). Our model results show higher
iodine emissions in the RECAP source regions (50N–80N,
45W–12E; mean iodine emissions of 9.1 × 10−14 kgm−2 s−1) than
in the NEEM source areas (50N–80N, 120W–45E; mean iodine
emissions of 3.5 × 10−14 kgm−2 s−1) (Fig. 1).
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Fig. 1 Present-day (CE 2014) total iodine emission fluxes from the oceanic regions influencing Greenland. Modelled mean annual total iodine emission
fluxes (CH3I+ CH2I2+ CH2IBr+ CH2ICl+HOI+ I2) from the North Atlantic and Arctic Oceans using the 3D chemistry-climate model CAM-Chem. The
figure includes the location of the NEEM and RECAP ice cores (red) and other ice cores and marine paleoceanographic archives in the Arctic and the
northern North Atlantic discussed in the text and figures.
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The Greenland iodine records. Total iodine and sodium ([I],
[Na]) concentrations from NEEM and RECAP ice core samples
were determined at 1.10 m and 0.55 m mean intervals of melted
ice, respectively (Supplementary Figs. 2-4). Calcium ([Ca]) con-
centrations were also used as proxies of mineral dust in Green-
land ice cores33,34. These geochemical measurements along with
other ice cores and marine paleoceanographic archives allow the
reconstruction of Arctic iodine variability and environmental
sources during the LGC.

Maximum iodine levels were found during the Eemian in the
NEEM ice core, with a total mean iodine depositional flux (Iflux)
of 9.6 µg m−2 yr−1 coinciding with the highest Arctic Ocean
primary productivity inferred from the phytoplankton biomarker
brassicasterol35 (Fig. 2). Our analysis suggests that these high
Eemian iodine levels resulted from the interplay of (i) enhanced
biogenic iodine emissions driven by primary productivity; (ii)
higher sea surface temperatures (SSTs) in the Arctic and the
North Atlantic36,37, which facilitates sea-air transfer of volatiles;
and (iii) dominant open water conditions in the Arctic, as
reflected by the low PBIP25 values. PBIP25 has been used as a
proxy of the intensity of sea ice cover in the Arctic38, as well as in
Baffin Bay31,39 since it accounts for the algal and phytoplankton
(brassicasterol) biomarkers activity, which allows to assess the
spatial and temporal extent of the sea ice cover40 (Fig. 2). The
Arctic sea ice extent was significantly reduced during the Eemian,
and minimum sea ice concentrations towards almost ice-free
summers occurred in wide areas as far north as the northern
Barents Sea as a consequence of the strong inflow of warm
Atlantic waters38, thus facilitating springtime blooms and oceanic
iodine production. Indeed, summer North Atlantic SSTs during
the Eemian were 2 °C greater than at present36,37. Furthermore, a
mean global sea level 6–8 m above the present level41–43 (Fig. 2)
triggered the flooding of most parts of the shallow Siberian
marginal seas, eventually resulting in more productive coastal
areas in the Arctic. At NEEM, the highest Iflux was recorded at
~122 kyr b2k concomitant with maximum levels of biological
productivity, sea level rise and SST. The coupling of all these
drivers during the Eemian would have eventually released large
amounts of iodine into the Arctic atmosphere, resulting in the
largest iodine emissions on record. The significant decrease in
NEEM and RECAP Iflux recorded during the last glacial inception
at ~120 kyr b2k is correlated with an increase in sea ice31,38 and a
decrease in both SST and brassicasterol (Fig. 2), as also indicated
by independent modelling experiments that resemble pre-
industrial scenarios41.

Ice core iodine showed reduced values throughout the LGP,
with mean NEEM and RECAP Iflux of 3.8 and 5.1 µg m−2 yr−1,
respectively (Fig. 2). The LGP is characterized by abrupt climatic
variability marked by Dansgaard/Oeschger (D/O) events. These
climatic phases consist of warm Greenland interstadials and cold
Greenland stadials that are well recorded in Greenland ice cores
and marine sediments from the North Atlantic region and the
Nordic seas44–49. To investigate in detail the iodine variability
across the rapid D/O transitions, additional high-resolution
iodine measurements were carried out in the NEEM ice core from
34 to 42 kyr b2k (D/O 7 to 10), with a 3- to 10-year resolution
(Fig. 3 and Supplementary Fig. 4). In order to differentiate the
main sources of iodine that determine Iflux variability, we have
decoupled oceanic iodine emissions (Iocean) from dust-related
iodine (Idust) (‘Methods’). The sub-decadal resolution measure-
ments of iodine during this period show the concomitant
evolution of Iocean, Arctic Ocean primary productivity and sea
ice variability46,48,49 (Fig. 3). Each D/O event showed a similar
sequence: (i) iodine emissions increased concurrently with a
reduction in sea ice at the onset of the interstadials; (ii) iodine
emissions decreased during the late interstadial periods as the

climate cooled and sea ice gradually increased; and iii) negligible
iodine was released from the oceans with the development of
thicker sea ice conditions during the cold stadial periods.

Interestingly, NEEM and RECAP Iflux and Iocean do not follow
the same trend during D/O events (Fig. 3). In the context of
strongly reduced iodine emissions during the LGP due to the
extensive development of perennial sea ice in the Canadian
Arctic31, a significant fraction of iodine registered in the NEEM
ice core was strongly controlled by dust and, to a lesser extent, by
ssa. This is corroborated by the robust statistical correlations
between [I] and [Ca] and between [I] and [Na] from D/O 7–10
(r > 0.75 and 0.78, respectively). These correlations are also seen
in RECAP during the LGP (r > 0.88 and 0.87, respectively). Sea
spray aerosol emissions (indicated by [Na] concentrations in both
ice cores) show a 50% increase during the LGP33 (Supplementary
Figs. 2 and 3), thereby contributing to higher deposition of ssa-
related iodine during this period. On the other hand, [Ca]
concentrations in Greenland ice cores show a major increase
during stadials33 (Supplementary Figs. 2 and 3) due to enhanced
mineral dust associated with increased aridity in East Asia and
enhanced atmospheric transport mechanisms33,50,51. The higher
Idust values found in NEEM and RECAP during the coldest
phases of the LGP are in agreement with the highest iodine fluxes
recorded in the Talos Dome ice core (eastern Antarctica) between
16.8 and 33.8 kyr b2k10. This Antarctic ice core reported a
correlation between iodate, the most stable iodine species in the
atmosphere, and atmospheric dust, indicating uptake of gas-
phase iodine molecules into fine dust particles during atmo-
spheric transport10.

The largest iodine variability occurred during the LGP-
Holocene transition when iodine emissions strongly fluctuated
following the main climatic phases of the Last Glacial Termina-
tion. NEEM and RECAP Iocean showed very similar evolution
patterns, with minimum Iocean values during Heinrich event
1 (H1, 16.8 kyr b2k) (Fig. 4), when surface waters cooled and a
thick perennial sea ice cover reached both the Norwegian Sea and
Baffin Bay31,46,52. The Iocean increased in both ice cores at the
onset of the Bølling (14.7–14.1 kyr b2k) warming in the Arctic,
slightly decreased during the Intra-Allerød Cold Period
(14.1–13.9 kyr b2k) and increased again during the Allerød
(13.9–12.9 kyr b2k) warm period (Fig. 4). The increase in Iocean
values during the Bølling-Allerød period was synchronous with
an abrupt increase in ocean productivity as far north as the Fram
Strait53. NEEM and RECAP Iocean moderately decreased during
the last cold spell of the Last Glacial Termination, the Younger
Dryas (12.9–11.7 kyr b2k).

Oceanic iodine emissions increased in both ice cores at the
onset of the Holocene (~11 kyr b2k; Fig. 4) resulting from the
interplay of different factors: (i) enhanced marine primary
productivity in the Arctic46,54–56; (ii) dominant open water
conditions in the subpolar North Atlantic46; (iii) abrupt sea level
rise (~120 m) during the Last Glacial Termination57,58 resulting
in more shallow oceanic domains increasing iodine emission
from coastal areas; and iv) maximum levels of solar irradiance in
the Arctic that would have also increased oxidative stress in algae,
leading to an enhancement of biological iodine production in the
ocean and subsequent release into the Arctic atmosphere59. Iflux
strongly increased in RECAP from 11 to 9 kyrs b2k, while the
NEEM Iflux increase was significantly more gradual at that time
(Fig. 2), most likely due to the lower productivity and delayed sea
ice retreat in Baffin Bay during the early Holocene60 (Fig. 4).
Indeed, this area remained densely sea ice covered until ~7.4 kyr
b2k, when warmer North Atlantic waters penetrated Baffin
Bay, increasing regional bioproductivity61 (Fig. 4). The mean
Holocene iodine flux in NEEM is 57.9% of that in RECAP
(mean iodine fluxes of 5.1 and 8.8 µg m−2 yr-1, respectively), in
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agreement with present-day reactive iodine deposition at both
sites obtained from atmospheric chemistry transport model
results (Supplementary Fig. 1).

Environmental implications. Ocean-emitted iodine leads to new
particle formation (NPF) in the atmosphere5,6. Recent field
observations have demonstrated that iodine is a significant driver
of NPF in the central Arctic3 and is currently considered a

potentially relevant source of CCN3—from which marine clouds
originate—that scatter incoming radiation and can contribute a
cooling effect to the Earth´s radiation budget62. The significant
present-day contribution of iodine to NPF leads us to speculate
that, in the absence of other human-induced NPF nucleation
drivers during pre-industrial times63, oceanic iodine may have
played an even larger relative role in total NPF nucleation in a
pristine Arctic during the LGC.

raloslatoT
noitalosni

m
W()IST(

-2
)

400

440

480

520

560

ev italer
citnalt

A
htro

N
)

m(
segnahclevel

aes
089-261

eroc -100

-50

0

50 N
G

R
IP

 
te

m
pe

ra
tu

re
 

)
Cº(

noitcurtsnocer

-60

-50

-40

-30

-20

cit nal t
A

htro
N

)
Cº(

TSS re
m

mu s
M
23
41
4

5

10

15

lo retsacissar
B

g
gµ(

1-
)

C
O

CP91-I F-11
MJ

0

100

200

300

P B
PI

25
CP91 -IF-11

MJ

0,0

0,5

1,0

P B
IP

25
PS
21
38
-2

0,0

0,5

1,0

loretsacissar
B

(µ
g 

g-1
 O

C
) 

PS
21
38
-2

0

20

40

I
P

A
CE

R
xulf

m
gµ(

-2
ry
-1

)

0

10

20

30

Age (yrs b2k)

0 20000 40000 60000 80000 100000 120000

N
EE

M
 I flu

x

(µ
g 

m
-2

 y
r-1

)

0

10

20

30

Last Glacial Period EemianHolo
cene

Last Glacial Cycle

a)

b)

c)

e)

d)

f)

g)

h)

Fig. 2 Iodine levels measured in the NEEM and RECAP ice cores together with other paleoenvironmental proxies for the last 130 kyr b2k. From bottom
to top: a, b iodine depositional fluxes (Iflux) from NEEM and RECAP ice cores; c, d Arctic primary productivity and sea ice evolution (brassicasterol and
PBPIP25 profiles, respectively38,46); e North Atlantic summer sea surface temperature (SST)36; f North Atlantic relative sea level changes88; g Greenland air
temperature reconstruction from NGRIP64,65; h solar irradiation reconstruction in July at 77° (NEEM) and 71°N (RECAP)89.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27642-5

4 NATURE COMMUNICATIONS |           (2022) 13:88 | https://doi.org/10.1038/s41467-021-27642-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


We find that the time lag between temperature changes and
iodine maximum emission values recorded in Greenland ice cores
throughout the LGC strongly depends on the atmosphere-ice-
ocean interactions driving warming SST, sea ice thinning rate and

algae metabolic activity that eventually control biogenic iodine
emissions. Indeed, the highest iodine emission periods during the
LGC were preceded by the highest air temperatures that would
have first enhanced SST and ocean biological activity and later
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favoured the transfer of volatile iodine compounds from the
ocean to the atmosphere. Together with the efficiency of iodine to
destroy ozone and activate CCN in the polar atmosphere, this
points to a possible contribution of iodine to ozone loss and new
particle formation, and to their associated radiative impacts,
during past abrupt climate change periods, such as D/O events
and the onset of interglacials. However, this potential contribu-
tion of iodine to past ozone loss and atmospheric NPF is
currently unknown and warrants further research.

We now turn to the use of past warm intervals recorded in
Greenland ice cores as analogues to evaluate potential feedback and
thresholds in the Arctic climate system and their implications for
future warming impacts. The rate of ongoing atmospheric
warming resembles only the abrupt climate changes and sea ice
retreat that occurred during the D/O events64, with climate
warming of 5–16.5 °C occurring within a century65. The high
resolution NEEM iodine dataset during D/O 7–10 show empirical
evidence of a fast response of iodine emissions synchronously with
the rapid North Atlantic sea ice retreat preceding abrupt Greenland
warming during D/O events48. Therefore, one question arising is if
Arctic iodine levels are facing this scenario in the near future?

Iodine emissions and depositional fluxes during the Eemian
and/or Holocene Thermal Maximum shed light on the possible
environmental conditions in an expected ice-free Arctic Ocean
and thus remain useful as an observational constraint on
projections of future impacts. Thus, while atmospheric iodine
depositional fluxes recorded in RECAP during the Holocene
Thermal Maximum19 mirror present-day conditions17, iodine
levels recorded in NEEM during the mid-Eemian tripled present-
day values at this location. Similar trends might be expected in
near future environmental scenarios including (i) predicted ice-
free summertime conditions in the Arctic Ocean by 2050 CE66

and (ii) 3–4 °C warmer global temperatures with a three- to four-

fold amplification in the Arctic by 2100 CE67. However, one
important point to consider is that the predicted iodine emissions
in the Arctic in the near future based on past analogues represent
only the biogenic fraction of the total foreseen atmospheric iodine
concentrations in the Arctic. Ozone-induced inorganic iodine
emissions during these past warm periods could be considered
negligible in the context of the very low ozone concentrations
before industrialization19,68. In contrast, at present, ocean release
of inorganic iodine is estimated to account for 75% of the total
source of atmospheric iodine, with the remaining 25% coming
from biogenic emissions69. Furthermore, ozone-related inorganic
iodine emissions are predicted to increase during the 21st
century15. Therefore, we argue that the future combined
(inorganic+ biogenic) ice-free Arctic Ocean iodine emissions
might not have analogues in the past, which could potentially lead
to a near future scenario with the highest iodine levels of the last
127,000 years.

In summary, this study uncovers how past climate changes
modulated the variability of the ocean-atmosphere exchange of
iodine in the Arctic during the LGC. We show that ocean
productivity was the dominant source of Arctic iodine during
interglacial periods, leading to highest levels during the Holocene
and the Eemian, while dust-related iodine constituted a
significant source of iodine in the Arctic atmosphere during the
coldest phases of the Last Glacial Period. The mirrored trends of
iodine emissions and ocean primary productivity proxies during
different past environmental scenarios highlight the key role of
ocean biology and sea ice cover in driving iodine variability in the
Arctic region. Finally, we conclude that understanding the past
variability of iodine as a key environmental element is important
to further comprehending the evolution of Arctic atmospheric
chemistry on centennial to millennial timescales and its coupling
to climate changes.
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Methods
Ice core chronologies and sampling resolution. NEEM age-depth model was
achieved by transferring the annual layer counting from the NGRIP to the NEEM
ice cores using 787 tie points (mainly volcanic layers)21. NEEM samples were
collected at 1.10 m mean intervals of melted ice where 10 mL of meltwater was
collected in an acid-cleaned polyethylene bottle and immediately frozen. Chron-
ological resolution between samples (n= 84) ranges from 4 to 267 years during the
Holocene. There is a sampling gap between 3-9 ky b2k where the ice was not
analysed due to the poor quality of the core in the “brittle ice” section31. The mean
sampling frequency during the Glacial Period (n= 247) is ~400 years, where the
highest resolution achieved was between 25 and 50 kyrs b2k with sampling reso-
lution ranging from 60 to 150 years during warmer interstadial periods and colder
glacial stadial periods, respectively. Additional sampling was carried out during the
intervals 34.5–35.8, 37.6–38.8 and 39.4–41.6 (n= 1304) providing a time resolution
ranging from 3 to 10 years during those intervals to better resolve the rapid stadial-
interstadial transition.

RECAP age-depth model is based on (i) annual layer counting from the last
four millennia using the StratiCounter algorithm70 constrained by volcanic
eruption markers and synchronized to the GICC05 Greenland Ice Core
Chronology framework71; (ii) a modified Dansgaard-Johnsen ice flow model72

constrained to well-dated age markers from 4048 to 11,703 ka b2k and (ii) linear
interpolation between 73 GICC05-modelext age markers between 11,703 and
120,215 years b2k32. Each RECAP sample integrated a 55 cm depth interval, where
the resolution in the Holocene (n= 1035) ranged from sub-annual in the upper
metres to decadal or centennial resolution during the mid to early Holocene
(average resolution of 12 years per sample). Due to the thinning of annual layers
according to depth, each sample integrates approximately 470 years during the
glacial period (n= 218)32. For details on the age model we refer the readers to
Simonsen et al.22.

Geochemical analyses. Samples from NEEM and RECAP ice cores were collected
using continuous flow analysis systems. NEEM samples were sent to the Envir-
onmental Analytical Chemistry laboratory of the CNR-ISP and Ca’ Foscari Uni-
versity of Venice for iodine and sodium analyses. Total iodine and sodium
concentrations were determined by inductively coupled plasma mass spectrometry
(ICP-MS). Sodium and iodine detection limits were 1 ppb and 0.005 ppb,
respectively. RECAP samples were sent to ISP-CNR and to Curtin University of
Technology (Perth, Australia). Total iodine and sodium concentrations in Perth
were determined by inductively coupled plasma-sector field mass spectrometry
(ICP-SFMS) with sodium and iodine detection limits of 1.1 ppb and 0.002 ppb,
respectively. The analytical procedure for both records was performed following
Vallelonga et al.73 and Maffezzoli et al.32. Instrumental errors for iodine and
sodium concentrations were 5%.

Iflux, Idust and Iocean calculation. Total iodine depositional fluxes (Iflux) in the ice
cores were calculated following Corella et al.19. To estimate Iflux in the RECAP ice
core, we re-scaled NGRIP accumulation rates65 by a factor of 436/174 since it is the
modern accumulation ratio at the NGRIP and RECAP drilling sites74–76. Dust-
related iodine (Idust) and oceanic gas-phase iodine emissions (Iocean) were calcu-
lated according to Eqs. (1) and (2)

Idust ¼ nssCaXð½I�=½Ca�ÞcrustÞ=½I� ð1Þ

Iocean ¼ ðnssI� ðnssCaXð½I�=½Ca�ÞcrustÞÞ=½I� ð2Þ
with non-sea salt iodine (nssI) representing the excess iodine production beyond
the iodine production related to ssa. It is calculated as nssI= [I] − [Na] × ([I]/
[Na])seawater with a [I]/[Na] seawater concentration ratio of 5.6 × 10−6 77. Non-sea
salt calcium (nssCa) represents the non-sea spray aerosol fraction of calcium and
is representative of mineral dust input. It is calculated as nssCa= [Ca] − ssCa,
where ssCa= [Na] × ([Ca]/[Na])seawater with a [Ca]/[Na] seawater concentration
ratio of 0.0391. ([I]/[Ca])crust represents the ratio of both elements in the con-
tinental crust (4.75 × 10−5 78). Both, Iocean and Idust correspond to unitless frac-
tional proxies.

Atmospheric chemistry modelling. We also used the global 3-D chemistry-
climate Community Atmospheric Model with chemistry (CAM-Chem) version 4
to estimate (i) oceanic iodine emissions from different source areas in the Arctic
and North Atlantic Oceans (Fig. 1) and (ii) the deposition fluxes of reactive
iodine (HI+HOI+ I2O2+ I2O3+ I2O4+ INO2+ IONO2) in Greenland (Sup-
plementary Fig. 1). CAM-Chem includes a comprehensive benchmark chemistry
scheme to simulate the evolution of trace gases and aerosols in the troposphere
and stratosphere79,80. The model implements a halogen chemistry scheme for
chlorine, bromine and iodine12,81,82. This includes the photochemical break-
down of five very short-lived bromocarbons (VSLBr= CHBr3, CH2Br2, CH2BrCl,
CHBrCl2, CHBr2Cl) and four iodocarbons (VSLI= CH3I, CH2ICl, CH2IBr,
CH2I2), which are naturally emitted from the ocean into the atmosphere83.
Additionally, abiotic oceanic sources of HOI and I2 were included in the lowest
layer of the model26 based on laboratory studies of the oxidation of aqueous
iodide by atmospheric ozone deposited on the ocean surface25,84. In this

simulation, the model was configured with a horizontal resolution of 1.9° lati-
tude by 2.5° longitude and 26 levels, from the surface to ∼40 km (with eight
levels above 100 hPa)17,29,82. At the lower boundary, the time-varying zonally
averaged distributions of CO2, CH4, H2, N2O and long-lived halocarbons (CFC-
11, CFC-12, CFC-113, HCFC-22, H-1211, H-1301, CCl4, CH3CCl3, CH3Cl and
CH3Br) are specified following their observed distribution for 2000 CE85.
Monthly mean time variations observed for sea surface temperature and sea ice
distribution are also prescribed. To obtain a reasonable representation of the
overall stratospheric circulation, the integrated momentum that would have
been deposited above the model top is specified by an upper boundary condition.
We used the output of a previous work17 for CE 2010. This simulation was run
in free-running mode79 with prescribed sea surface temperatures, sea ice and
meteorological fields from 1950 to 201086. The simulated dynamics and trans-
port therefore represent the daily synoptic conditions of the observations in CE
2010, allowing the online coupling between the ocean, ice and atmospheric
modules of the CESM model79. Abiotic oceanic sources of iodine (HOI and I2)
are modelled according to the meteorology (temperature, winds, sea surface
temperature and surface pressure) in CE 2010 based on MacDonald et al.84

parameterization. The authors would like to remark that a quantitative assess-
ment of the role of iodine in aerosol radiative forcing (through its influence in
NPF in the past) is yet not feasible mainly because there are still remaining
chemical mechanistic gaps in our knowledge of the iodine particle formation and
growth4,87.

Data availability
The ice core iodine data generated in this study have been deposited in the Zenodo
database (https://doi.org/10.5281/zenodo.5721369).

Code availability
The software code for the CESM model is available from http://www.cesm.ucar.edu/
models/.
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