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Abstract
Purpose  Epidemiological studies and clinical trials support the association of nut consumption with a lower risk of prevalent 
non-communicable diseases, particularly cardiovascular disease. However, the molecular mechanisms underlying nut benefits 
remain to be fully described. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and play a pivotal 
role in health and disease. Exosomes are extracellular vesicles released from cells and mediate intercellular communication. 
Whether nut consumption modulates circulating miRNAs (c-miRNAs) transported in exosomes is poorly described.
Methods  Cognitively healthy elderly subjects were randomized to either control (n = 110, abstaining from walnuts) or daily 
supplementation with walnuts (15% of their total energy, ≈30–60 g/day, n = 101) for 1-year. C-miRNAs were screened in 
exosomes isolated from 10 samples, before and after supplementation, and identified c-miRNA candidates were validated 
in the whole cohort. In addition, nanoparticle tracking analysis and lipidomics were assessed in pooled exosomes from the 
whole cohort.
Results  Exosomal hsa-miR-32-5p and hsa-miR-29b-3p were consistently induced by walnut consumption. No major changes 
in exosomal lipids, nanoparticle concentration or size were found.
Conclusion  Our results provide novel evidence that certain c-miRNAs transported in exosomes are modulated by walnut 
consumption. The extent to which this finding contributes to the benefits of walnuts deserves further research.
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EVs	� Extracellular vesicles
miRNAs	� MicroRNAs
NTA	� Nanoparticle tracking analysis
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Introduction

Nuts are an energy-dense food composed by unsaturated 
fatty acids [1–3] and other phytochemicals such as vitamin 
E, phytosterols and polyphenols [1]. A robust body of evi-
dence from prospective studies suggests that sustained nut 
consumption (30–42.5 g/day [4, 5]) inversely relates to the 
risk of cardiovascular disease (CVD) and associated mor-
tality [6]. Also produces effects on hypertension [7], neu-
rodegenerative disorders [8], and all-cause mortality [9]. A 
consistent cholesterol-lowering effect of nut-enriched diets 
has also been observed in many feeding studies [10]. How-
ever, the molecular mechanisms underlying the benefits of 
nut consumption remain to be fully uncovered.

Extracellular vesicles (EVs) are stable nanovesicles 
released from cells and present in all biological fluids. 
Exosomes (a type of EVs with size between 50 and 150 nm) 
display an important role in intercellular communication 
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by carrying functional/relevant information to target cells 
[11, 12]. Exosomes are normally enriched in cholesterol, 
sphingomyelin, glycosphingolipids and phosphatidylser-
ine [13], and its cargo contains genetic material (includ-
ing microRNAs [miRNAs]), proteins and lipids, which are 
released into the intercellular space by exocytosis upon body 
requirements.

miRNAs are small RNAs (18–22 nucleotides) involved 
in post-transcriptional gene regulation. miRNAs circulate 
in plasma associated with lipoproteins, Argonaute protein 
family or exosomes [14, 15], which increases their resist-
ance to degradation by ribonucleases (RNases). Recently, 
the modulation of circulating-miRNAs (c-miRNAs) by dif-
ferent epigenetic factors has been described [16, 17] includ-
ing diet and dietary components [18, 19].

Previous data suggest that dietary supplementation with 
a mixture of nuts (almonds and walnuts) influences circulat-
ing levels of miRNAs, some of which are correlated to lipid 
levels [20]. However, their transport in exosomes has not 
been assessed. Moreover, previous studies have also sug-
gested that certain dietary polyphenols could promote exo-
some secretion [21] or interfere with the biogenesis of EVs 
[22]. Indeed, walnuts are a source of the dietary polyphenols 
ellagitannins [23]. The ability of exosomes to cross different 
barriers, i.e., blood–brain barrier could have implications 
on neurological health [12]. For that reason, the study of 
c-miRNAs after a dietary intervention could be a valuable 
tool to handle the progression of different diseases [19, 24].

The high stability of exosomal circulating miRNAs in 
biological samples highlight their validity as biomarkers 
[12]. Circulating miRNAs have been previously described 
to be modulated by dietary intervention [19]. Whether 
long-term walnut consumption influences the secretion of 
exosomes in humans is unknown. To address this issue, we 
explored long-term (1 year) changes in plasma exosome 
composition (content of miRNA, morphology, and lipidomic 
profile) in elders who added walnuts to their daily diet, com-
pared with those following a diet without walnuts.

Material and methods

Study population

The current study was conducted within the frame of Wal-
nuts And Healthy Aging (WAHA) study (https​://clini​caltr​
ials.gov/show/NCT01​63484​1). WAHA is a dual-center 
(Hospital Clínic, Barcelona, Spain; and Loma Linda Uni-
versity, CA), randomized, parallel-group, observer-blinded, 
controlled clinical trial aimed to assess whether a walnut-
enriched diet for 2  years would prevent or slow down 
age-related cognitive decline and macular degeneration 
compared with a control diet (abstention from walnuts) in 

cognitively healthy individuals aged 63–79 years. Detailed 
information on the project can be found in [25, 26]. Briefly, 
all participants were randomized to follow their usual diet, 
abstaining from walnuts (control group), or to add to their 
usual diet a daily amount of walnuts providing roughly 15% 
of their total energy intake (ranging from 30 to 60 g/day of 
walnuts depending on energy requirements; walnut group). 
Once randomized, we scheduled participants for a visit with 
the dietitians every 2 months, aimed at assessing compli-
ance, increasing retention, collecting data on tolerance, 
and delivering walnuts when appropriate. At baseline, in a 
face-to-face visit, a study dietitian measured height, weight, 
and waist circumference by standard methods. In the same 
visit, participants also completed a validated short version 
of the Minnesota physical activity questionnaire [27] and a 
3-day food record. At each visit, for participants in the wal-
nut group, dietitians provided 8-week allotments of pieced 
walnuts (in sachets for daily consumption), noted any side 
effects, and collected used walnut sachets as a measure of 
compliance. In addition, they monitored food consump-
tion through 3-day food records at the 0, 6-, and 12-month 
visits. We estimated energy requirements of each partici-
pant by using the World Health Organization formula for 
energy needs for adults > 60 years [28]. Dietitians obtained 
follow-up data on adiposity, physical activity and food con-
sumption through 3-day food records from all participants 
at the 12-month visit. We calculated the nutrient composi-
tion of the diets with Food Processor Plus software (ESHA 
Research, Salem, Oregon, USA) adapted to nutrient data-
bases of local foods when appropriate.

We collected overnight fasting blood samples at baseline 
and end of years 1 and 2, and we stored them at − 80 °C 
until analysis. The present sub-study was conducted only in 
statin-naïve participants completing the first year of inter-
vention in the Barcelona site (n = 211, Table 1).

Pool of samples

Previous data suggest that statins might influence the trans-
port of c-miRNAs and certain exosomal miRNAs [29], as 
well as exosomal release in certain cell types [30]. To avoid 
the possible modulatory effects of statins on exosomes and 
their c-miRNAs, participants remaining statin-naïve for the 
period of interest were selected. This resulted in n = 211 
participants (n = 110 control group, n = 101 walnut group). 
Plasma samples were pooled to identify robust differences 
between intervention arms and because of the sensitivity of 
lipidomic analysis, which was not sufficient to analyze single 
samples lipids within individual isolated exosomes. Pools of 
1.8 mL of plasma were prepared according to intervention 
group, gender and age range. Samples were pooled from 
about 10 participants (Fig. 1S-Online Resource). 40 pools 
were obtained: 7 pools of women and 3 pools of men × each 
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intervention (control group and walnut group) × each time-
point (baseline and 1 year of intervention).

Nanoparticle tracking analysis of exosomes

500 µL of 16 pooled samples (2 pools × each interven-
tion × each time-point × each gender) was employed for 
nanoparticle tracking analysis (NTA) (Fig.  1S-Online 
Resource). In brief, plasma was diluted 1.5 times with PBS 
and was sequentially centrifuged s at 300g twice for 4 min, 
2000 g for 4 min, and 10,000 g for 1 min at 4 °C, to remove 
large particles, dead cells and cellular debris. Then, the 
supernatants were centrifuged at 100,000g for 120 min at 
4 °C. After discarding the supernatant, pellets were rinsed 
with PBS and resuspended into 100 µL of filtered PBS. 
Then, samples were diluted 500 times for the analysis of 
exosome concentration and size by using DS500 nanopar-
ticle characterization system (NanoSight, Salisbury, United 
Kingdom) and NanoSight NTA 3.1. program and ZetaView® 
NTA system (Particle Metrix, Germany), respectively.

Screening of c‑miRNAs transported in exosomes

Screening of c-miRNAs was performed in 500 µL of 
the 20 pools of walnut group (10 from each time-point) 
(Fig. 1S-Online Resource). Briefly, exosomes were isolated 
with miRCURY​® Exosome Serum/plasma kit (Exiqon, Den-
mark) following the manufacturer’s instructions. Immedi-
ately, total exosome RNA was isolated using miRCURY™ 
RNA isolation kit—Biofluids (Exiqon)—adding RNA 

spike-in kit (UniSp2, UniSp4, UniSp5, UniSp6 and cel-
miR-39-3p) (Exiqon) following the manufacturer’s instruc-
tions. After that, cDNA was synthesized using miScript II 
RT kit (Qiagen, Denmark) following the manufacturer’s 
instructions. Then, miRNAs transported in exosomes were 
screened using miRCURY LNA miRNA miRNome PCR 
Human panel I + II, V4 using ExiLENT SYBR green master 
mix (Exiqon) by quantitative real-time PCR (qRT-PCR) on a 
7900HT fast Real-Time PCR System (Applied Biosystems, 
CA, USA). Ct values were normalized using GenEx software 
(MultiD Analyses AB, Sweden).

Validation of c‑miRNAs candidates transported 
in exosomes

Top miRNAs candidates obtained from the screening were 
then validated in the whole population (n = 333), including 
participants who did not remain statin-naïve during the first 
year of intervention. Exosomal miRNA and cDNA from 
baseline and 1-year plasma samples were obtained as pre-
viously described. Validation of miRNAs candidates was 
performed by quantitative real-time PCR (qRT-PCR) using 
the ExiLENT SYBR green master mix (Exiqon) and LNA™ 
Oligonucleotides (Exiqon). The exosomal miRNA expres-
sion was calculated using the 2−ΔΔCt method [31].

Lipidomic analysis

In a random sub-sample of 81 participants (n = 42 in the 
control group and n = 39 in the walnut group), we objec-
tively assessed compliance by measuring changes in the red 
blood cell (RBC) status of alpha-linolenic acid (C18:3n3, 
ALA), an integral compound of walnuts, as described [25]. 
Exosomes isolated by miRCURY​® exosome Serum/plasma 
kit (Exiqon) from 500 µL of each pool of plasma samples 
were used for lipidomic characterization. Lipids from 
exosomes were extracted following the method of Folch 
et al. with minor modifications [32]. The relative quanti-
fication of individual lipid species was performed using an 
internal standard mixture composed by phosphatidyl cho-
line (PC) 28:2 (14:1/14:1), phosphatidylethanolamine (PE) 
(16:1/16:1), lysophosphatidylcholine (LPC) 17:0, dihy-
droceramide (dhCer) 35:0 (d18:0/17:0), ceramide (Cer) 37:1 
(d181/19:0), hexosylceramide (HexCer) 33:1 (d18:1/15:0), 
sphingomyelin (SM) 30:1(d18:1/12:0), triglyceride (TG) 
46:2(18:1/10:0/18:1), cholesteryl ester (CE): d7-CE 18:1 and 
free cholesterol (FC): d7-FC (Solna, Sweden). The exosome 
lipid extract was reconstituted in 200 μl of acetonitrile /iso-
propanol (1:1). Then 10 µL were injected on the LC–MS/
MS system (QTrap 4000, AB SCIEX) equipped with a Kine-
tex C18 column (100 × 2.1 mm, 1.7 μm; Phenomenex) at 
55 °C as previously described by [33]. Phospholipids (PC, 
PE and LPC), sphingolipids (Cer, dhCer, SM, HexCer and 

Table 1   Baseline characteristics of the studied population by inter-
vention group

Data are n (%) or mean (95% confidence interval), except for physical 
activity, expressed as medians [interquartile ranges]
* Physical activity is expressed in MET-min/day, minutes/day at a 
given metabolic equivalent level (units of energy expenditure in phys-
ical activity, 1 MET-min roughly equivalent to 1 kcal)

Variables Control diet (n = 165) Walnut diet (n = 166)

Women—no. (%) 110 (67.1) 114 (68.7)
Age—year 68.7 (68.2–69.2) 69.0 (68.5–69.5)
Ever smoking, yes—

no. (%)
47 (28.7) 46 (27.7)

Weight—kg 71.1 (69.1–73.1) 69.9 (68.1–71.7)
Body mass index—kg/

m2
27.4 (26.8–28.1) 26.8 (26.2–27.3)

Waist circumference—
cm

99 (97–101) 97 (96–99)

Hypertension—no. (%) 94 (51.4) 89 (53.6)
Type-2 diabetes—no. 

(%)
16 (9.8) 20 (12.0)

Dyslipidemia—no. (%) 87 (53.0) 89 (53.6)
Physical activity* 2412 [1562–3834] 2629 [1770–3909]
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dhHexCer) and TG lipid species were analyzed by ESI (elec-
trospray ionization) following specific multiple reaction 
monitoring transition for each class. The analysis of FC and 
CE species was done on a second injection of the same lipid 
extract, on the same system, employing APCI (atmospheric-
pressure chemical ionization) mode [34]. The annotation of 
lipid species followed published recommendations [35].

Bioinformatic studies

Validated target genes of differentially expressed miRNAs 
in exosomes supported by strong experimental evidence 
(reporter assay and Western blot) were obtained from the 
miRWalk 3.0 database [36]. Functional enrichment of tar-
get genes was performed with GeneCodis3 algorithm using 
Gene Ontology (GO) Biological Process annotation [37–39]. 
Prediction of possible sources of those miRNAs previously 
validated circulating in exosomes was performed using 
miRNA tissue expression data from the first version of the 
Human miRNA Tissue Atlas database [40].

Statistical analyses

This study was initially conceived as an opportunistic 
WAHA sub-study to be conducted in participants of the 
Barcelona node. The power calculation of the parent study 
can be found in Sala-Vila et al. [26] No run power calcula-
tion was specifically conducted for this sub-study; we vali-
dated the miRNAs candidates in the whole cohort because 
sample size/power calculations should also consider other 
size effects (i.e., elderly, sex, other dietary habits, etc.) and 
estimate of an association obtained in the discovery phase 
may be inflated because of a “winner’s curse” phenomenon 
[41, 42].

Descriptive values are presented as means (interquartile 
range). We assessed between-group differences in ALA pro-
portion of RBC membranes by one-way ANOVA. Regarding 
the screening for c-miRNA in exosomes, paired ANOVA 
was used to compare baseline and end of intervention. Sig-
nificant levels were adjusted for multiple comparisons by 
Bonferroni’s correction (P < 0.00014) and false discovery 
rate (FDR q-value < 0.00286533). The GenEx Pro qPCR 
data analysis software (Exiqon) was used for all data pro-
cessing. One-way ANOVA followed by Tukey’s compari-
son post hoc test was used for miRNA validation in all four 
groups and to evaluate gender effects and establish lipidomic 
differences between groups, Differences at the p < 0.05 level 
were considered statistically significant. In addition, paired 
ANOVA was used to determine statistical significance of 
differences in miRNA expression from baseline to 1 year of 
intervention in the overall sample and by gender. All analy-
ses were performed with the GraphPad Prism software V.5 
(La Jolla, CA, USA).

Results

Dietary compliance and evaluation 
of the nutritional changes

First, to determine compliance, we determined changes 
in ALA levels in RBC in a randomly selected sub-sample 
of participants. Whereas we found no between-group dif-
ferences at baseline (Fig. 1a), significant differences were 
observed at the end of the intervention, with participants 
allocated to walnut group showing higher increase than 
those observed in the control group (Fig. 1b), indicating 
good compliance.

Baseline and 1-year changes in energy and nutrient intake 
and nut consumption by intervention group are presented in 
Table 2. No significant in-trial differences in walnut con-
sumption were observed in the control group, while the wal-
nut group increased consumption, as planned. At the end of 
the trial, participants in the walnut diet arm increased dietary 
energy and total fat and reciprocally decreased carbohy-
drate, translating into significant differences with changes 
observed in the control diet. 1-year increases in fiber, ALA, 
and polyunsaturated fatty acid intakes in the walnut group 
were also significantly higher than those observed in the 
control group, reflecting the nutrient composition of walnuts.

Walnut supplementation does not influence size 
and concentration of plasma exosomes

Exosomes were isolated from pooled samples before 
and after supplementation and subjected to NTA 
(Fig.  1S-Online Resource). Exosome size distribution 
and median size analyses demonstrated successful isola-
tion of circulating exosomes, but no between-group dif-
ferences in size or plasma concentration were observed 
(Fig. 2S-Online Resource and Table 3). Regarding the 
particle quantification, NanoSight NS300 and ZetaView 
NTA devices showed different particle quantification and 
nanosphere concentration (Fig. 2S).

Exosomal circulating miRNAs screening

Walnut-modulated exosomal c-miRNAs were screened in a 
subset of the statin-naïve participants of the walnut group 
before and after dietary supplementation (n = 20). The miR-
NAs analyzed were the most abundant 179 miRNAs present 
in human plasma. From the 179 miRNAs analyzed, 165 were 
detected in the exosomal samples of walnut group partici-
pants (Table 1S-Online Resource). 20 miRNAs were signifi-
cantly modulated by walnut consumption (Fig. 1c; Table 4).
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Walnut supplementation modulates exosomal 
miR‑32‑5p and miR‑29b‑3p

To determine if candidate c-miRNAs (Table 4) are also 
differentially modulated in a larger number of subjects, 
the top 10 significantly modulated exosomal c-miRNAs 
were validated by qRT-PCR in the whole cohort (n = 333). 
miR-194-5p was excluded from the validation set because 

of its absence in the first version of Vesiclepedia database 
[43], which lists miRNA transported in exosomes. Statis-
tical significance was observed for only two c-miRNAs: 
hsa-miR-32-5p and hsa-miR-29b-3p (Fig. 2). As we found 
a trend for certain c-miRNAs in the walnut group after 
1-year intervention, we searched for a possible effect of 
gender. We found some differences between males and 
females when miRNAs analysis was separated by sex. 

Fig. 1   Adherence to walnut supplementation and circulating miRNA 
screening. a Percentage of fatty acids, α-linolenic acid (ALA), in red 
blood cells (RBC) at baseline for the walnut and control groups. b 
Percentage of change of total fatty acids ALA in RBC after 1 year. 
*, significant different at P < 0.05 by one-way ANOVA. c Circulating 
exosomal miRNA screening of plasma samples assayed by qRT-PCR 
(n = 20 pools) after normalization using exogenous spike-in was per-
formed and 20 miRNAs were differentially expressed (FDR < 0.05). 

Volcano plots were constructed using fold-change and P values. 
Dashed vertical lines indicate fold-change in miRNA expression 
threshold is 1.0-fold up and down, respectively. The horizontal red 
line represents a P value of 0.05, and the horizontal green line a P 
value of 0.01. Green points in the plot are significantly differentially 
expressed miRNAs (P < 0.01); meanwhile yellow points are signifi-
cant (P < 0.05)
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Table 2   Baseline and 1-year 
changes in energy and nutrient 
intake, and nut consumption by 
intervention group

Data are means (95% CIs). SFA, saturated fatty acids
MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, ALA alpha-linolenic acid
*Obtained by 1-way ANOVA

Variable Visit Control diet (n = 165) Walnut diet (n = 166) P value*

Energy—kcal/day Baseline 1643 (1596 to 1691) 1718 (1659 to 1777) 0.053
Change 12 (− 36 to 59) 140 (84 to 195) 0.001

Protein—% energy Baseline 18.5 (18.1 to 19.0) 18.1 (17.6 to 18.6) 0.199
Change 0.1 (− 0.5 to 0.7) − 1.1 (− 1.6 to − 0.5) 0.005

Carbohydrate—% energy Baseline 41.9 (40.9 to 42.9) 41.9 (40.8 to 43.0) 0.958
Change 1.3 (0.1 to 2.5) − 3.7 (− 4.8 to − 2.7)  < 0.001

Total fat—% energy Baseline 39.2 (38.4 to 40.1) 39.3 (38.3 to 40.2) 0.990
Change − 1.2 (− 2.4 to − 0.1) 6.1 (5.0 to 7.2)  < 0.001

SFA—% energy Baseline 9.8 (9.4 to 10.1) 9.9 (9.5 to 10.2) 0.656
Change − 0.3 (− 0.7 to 0.2) − 0.8 (− 1.1 to − 0.4) 0.073

MUFA—% energy Baseline 21.0 (20.4 to 21.6) 20.7 (20.0 to 21.3) 0.419
Change − 0.9 (− 1.8 to − 0.1) − 1.6 (− 2.4 to − 0.9) 0.228

PUFA—% energy Baseline 5.3 (5.0 to 5.6) 5.1 (4.9 to 5.4) 0.390
Change − 0.4 (− 0.7 to − 0.1) 8.6 (8.0 to 9.1)  < 0.001

ALA—% energy Baseline 0.44 (0.42 to 0.46) 0.42 (0.40 to 0.44) 0.362
Change − 0.01 (− 0.04 to 0.02) 1.78 (1.68 to 1.88)  < 0.001

Fiber—g/day Baseline 17.5 (16.6 to 18.3) 18.4 (17.3 to 19.5) 0.182
Change 0.4 (− 0.5 to 1.4) 2.1 (1.1 to 3.1) 0.025

Alcohol—g/day Baseline 5.4 (4.2 to 6.7) 6.4 (5.0 to 7.9) 0.218
Change 0.0 (− 1.0 to 1.0) − 0.5 (− 1.7 to 0.6) 0.522

Cholesterol—mg/day Baseline 247 (229 to 266) 251 (237 to 265) 0.764
Change − 21.5 (− 43.6 to 0.6) − 17.2 (− 34.9 to 0.6) 0.761

Walnuts—g/day Baseline 0.7 (0.4 to 1.0) 0.4 (0.2 to 0.7) 0.221
Change − 0.3 (− 0.8 to 0.1) 39.9 (37.9 to 41.9)  < 0.001

Total nuts—g/day Baseline 3.2 (1.9 to 4.5) 2.4 (1.5 to 3.4) 0.327
Change − 1.2 (− 2.7 to 0.4) 38.9 (36.8 to 41.1)  < 0.001

Table 3   Characterization of 
exosomes: size distribution 
of exosomes from walnut and 
control groups before and after 
intervention and gender effects 
measured with NanoSight NS 
300

♀ Female, ♂ male, s.d. standard deviation

Walnuts Control

Baseline 1-Year Baseline 1-Year

63–66 ♀ Mean (nm) 201.4 ± 11.9 196 ± 0.4 212.3 ± 1 197.5 ± 6.2
Mode (nm) 130.3 ± 6.9 135.5 ± 8.6 143.5 ± 9.6 140.9 ± 9.8
s.d. 87.1 ± 3.1 88.2 ± 1.5 98.6 ± 1.9 94.8 ± 3.2
Exosome 3.85*108 3.15*108 1.08*109 7.50*108

♂ Mean (nm) 226.1 ± 3 228.2 ± 4.2 193 ± 3.8 214.4 ± 4.1
Mode (nm) 138.6 ± 4.2 142.4 ± 11.1 137.5 ± 8.7 128.7 ± 13
s.d. 109.7 ± 2.3 116.5 ± 6.8 90.5 ± 5.4 108.7 ± 4.4
Exosome 7.23*108 6.54*108 7.41*108 4.39*108

67–69 ♀ Mean (nm) 193.4 ± 6.1 172 ± 15.8 238.8 ± 7.1 154.9 ± 2.5
Mode (nm) 119.1 ± 7.9 132.4 ± 19.7 152.4 ± 7.4 102.8 ± 5.1
s.d. 81.8 ± 2.7 96 ± 23.4 111.7 ± 3.3 76.9 ± 3.9
Exosome 4.16*108 1.34*107 1.77*109 6.94*108

♂ Mean (nm) 203.6 ± 2.6 189.4 ± 3.9 165.8 ± 0.6 187.8 ± 2.9
Mode (nm) 132.6 ± 14.4 126.8 ± 11.6 109.1 ± 2.8 124 ± 5.2
s.d. 94.6 ± 3.8 100.2 ± 4.3 77.1 ± 1.5 90 ± 0.4
Exosome 6.17*108 9.1*108 7.23*108 7.32*108



2005European Journal of Nutrition (2021) 60:1999–2011	

1 3

Indeed, a greater effect of walnuts in women for hsa-miR-
32-5p, hsa-miR-29b-3p and miR-144-3p (Fig. 3S-Online 
Resource) was observed. Compared to the whole popula-
tion, miR-144-3p was only induced in females after walnut 
supplementation.

Functional analysis and possible origin 
of walnut‑modulated miRNAs

We next performed a bioinformatic pathway analysis using 
validated target genes obtained from the miRWalk data-
base [36]. Gene Ontology analysis suggested the involve-
ment of targets genes in biological process of regulation 
of transcription (GO: 0006355), nervous system develop-
ment (GO: 0007399), positive regulation of transcription 
(GO: 0045944), and positive regulation of cell proliferation 
(GO: 0008284) (Fig. 3a and Online Resource Table S2) for 
hsa-miR-32-5p. Panther pathway analysis of miR-29b-3p 
targets suggested their involvement on the integrin sign-
aling pathway (P00034), p53 pathway (P04398), apopto-
sis signaling (P00006), inflammation (P00031), hypoxia 
response (P00030), angiogenesis (P00005), and Alzheimer 
disease–presenilin pathway (P00004), among others (Fig. 3b 
and Online Resource Table S3). To determine the possible 
origin or contribution of tissue miRNAs to exosome circu-
lating levels, we analyzed their expression pattern using the 
TissueAtlas database [40] (Fig. 4S-Online Resource). We 
found that miR-32-5p is enriched in the thyroid, muscle and 
epididymis, while miR-29b-3p is enriched in the thyroid, 
muscle and brain.

Walnut supplementation does not change the lipid 
profile of exosomes

No previous studies of lipidomics of circulating exosomes 
after long-term dietary supplementation have been con-
ducted to date. To address this issue, 126 lipid species were 
analyzed (Fig.  5S-Online Resource) in pooled samples 
(n = 10 pools) of participants of both intervention groups. 

Table 4   List of circulating exosomal microRNAs differentially 
expressed (FDR < 0.05) after 1 year of walnut consumption compar-
ing with basal levels in the screening phase (n = 20 pools)

Candidates in bold were selected for downstream validation

(Group-2) vs (Group-1) Fold change P value FDR

1 hsa-miR-15b-5p 6.77858 0.000106 0.00065
2 hsa-miR-106b-5p 13.73081 0.001089 0.01469
3 hsa-miR-151a-3p 3.74096 0.002266 0.0229
4 hsa-miR-424-5p 9.07264 0.002291 0.0229
5 hsa-miR-32-5p 6.99093 0.002917 0.02628
6 hsa-miR-107 6.00084 0.003703 0.02957
7 hsa-miR-148a-3p 5.93548 0.004716 0.02957
8 hsa-miR-194-5p 3.93065 0.004987 0.02957
9 hsa-miR-15a-5p 8.61543 0.005017 0.02957
10 hsa-miR-29b-3p 7.37336 0.005088 0.02957
11 hsa-miR-144-3p 16.17018 0.006645 0.03932
12 hsa-miR-331-3p 4.96418 0.007268 0.0409
13 hsa-miR-451a 3.71696 0.007935 0.04269
14 hsa-miR-130a-3p 4.30391 0.008836 0.04459
15 hsa-miR-425-5p 10.53997 0.009584 0.04459
16 hsa-miR-660-5p 5.5079 0.010022 0.04459
17 hsa-miR-145-5p 5.49845 0.010312 0.04459
18 hsa-miR-142-5p 5.61277 0.010389 0.04459
19 hsa-miR-484 3.66003 0.010773 0.04459
20 hsa-miR-590-5p 6.51234 0.011368 0.0456

Fig. 2   Variation of c-miRNA expression of miRNAs candidates in 
each individual (n = 333) selected from screening. a–d indicate the 
levels that contain a significant difference at the 95.0% confidence 
level compared with others in the same row. In addition, *indicates 
statistically significant differences in the same intervention group 

(control or walnuts) between basal and after 1-year of intervention 
(p < 0.05) by paired t-test. C-B control individuals at baseline, C-1Y 
control individuals after 1 year of intervention. WN B Walnut group 
individuals at baseline, WN 1Y Walnut group individuals after 1 year 
of intervention
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Fig. 3   Gene Ontology (GO) analysis of over-represented pathways for a hsa-miR-32-5p and b hsa-miR-29b-3p

Fig. 4   Lipidomic composition of different families in exosomes from 
participants in the walnut group or control group. Exosomes were 
isolated from pooled samples (n ≥ 6 subjects per pool). Levels of 
lipids classes containing different lipids as lateral chains. C-B control 

individuals at baseline, C-1Y control individuals after 1 year of inter-
vention. WN B Walnut group individuals at baseline, WN 1Y Walnut 
group individuals after 1 year of intervention
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No statistically significant differences were found for the 
major lipid families analyzed (Fig. 4), so we were not able 
to validate in the whole cohort.

Discussion

Previous experimental studies suggest that certain dietary 
polyphenols (i.e., curcumin) could promote exosome secre-
tion in vitro [21] acting on signaling pathways that interfere 
with the biogenesis of EVs [22]. Whether this phenomenon 
can be observed upon long-term consumption of a certain 
food is unknown. We first evaluated whether consumption 
of walnuts, a food naturally rich in polyphenolic compounds, 
could influence the size and concentration of exosomes. 
Unfortunately, the supplementation level of nearly 15% of 
energy, walnuts or their polyphenols do not influence exo-
some characteristics (Fig. 2S-Online Resource and Table 3). 
Maybe, the lack of differences could be attributed to the use 
of pooled plasma samples, if very small changes are pro-
duced by interindividual differences they cannot be identi-
fied. In addition, we did not find differences in particle quan-
tification between treatments (Fig. 1S). A recent comparison 
between NanoSight NS300 and ZetaView suggest that NTA 
devices differ strongly in their hardware and software, which 
influences measurements [44].

miRNAs are found in almost all biological fluids [15] 
and are mainly transported in EVs [45], lipoproteins [46] or 
associated to Ago2 proteins [47]. Exosomes as transporter 
of circulating miRNAs and their ability to cross different 
biological barriers, including the blood–brain barrier have 
special relevance [48]. Interestingly, no previous studies 
have evaluated the influence of walnut supplementation 
on c-miRNAs transported in exosomes. However, Ortega 
and colleagues [20] evaluated the profile of 192 common 
miRNAs in response to a 8-week trial with a normocaloric 
diet enriched in polyunsaturated fatty acids (PUFAs) (30 g/
day of almonds and walnuts) in a smaller population sample 
(n = 10 in the screening phase and n = 30 in the full cohort). 
Interestingly, two miRNAs (hsa-miR-106 and hsa-miR-130) 
were commonly modulated (upregulated) in both studies; 
however, only miR-32-5p and miR-29b-3p were validated in 
the whole cohort (n = 210). The small number of validated 
miRNAs in our study might be influenced by the limited 
variety of miRNAs content in exosomes (compared to that 
of whole plasma), larger number of subjects analyzed, and 
its common in free-living population studies researching on 
biomarkers.

PUFAs have been also reported to modulate the expres-
sion of certain tissues miRNAs, both in  vitro [49] and 
in vivo [50]. Walnuts are not only rich in PUFAs, but are 
also a source of the dietary polyphenols ellagitannins [23]. 
Increasing evidence suggest that polyphenols can modulate 

the expression of miRNAs [18]. Indeed, in vivo studies 
wherein ellagitannins or food containing ellagitannins were 
administered showed modulation of certain tissue miRNAs, 
both in animal models [51, 52] and humans [51]. Whether 
the changes observed are due to walnut PUFAs or polyphe-
nols or due to bioactive synergy cannot be ascertained from 
our results and deserves further investigation.

Recently, the number of studies reporting the possibility 
that miRNAs may be transfer horizontally across species 
and kingdoms and induce gene silencing in trans, because 
they are deeply conserved over long evolutionary distances, 
has increased [53, 54]. However, to regulate the host gene 
expression dietary miRNAs (xenomiRs) should resist the 
gastrointestinal digestion process, cross the intestinal barrier, 
arrive at the appropriate target cell, and in the enough copy 
numbers to surpass the threshold required for a biological 
effect [55]. These difficulties support the hypothesis that this 
transference does not exist [56, 57]. By contrast, recent evi-
dences suggest that exosomes from edible plants may protect 
their miRNA content during gastrointestinal digestion [58]. 
In addition, plant miRNAs are methylated on the 3′-nucleo-
tide ribose which confer protection against hard conditions 
like cooking and gastrointestinal digestion [55]. Although in 
the present paper we did not evaluate the possible passage 
of walnuts miRNAs to the human circulation, we cannot 
discard this possibility and it deserves further investigation.

Regarding the target genes modulated by exosomal 
c-miRNAs affected by the dietary intervention, miR-32-5p 
targets are involved in the regulation of apoptosis [59], and 
their overexpression is associated with reduced apoptosis 
[60]. Nuts contain a plethora of components with recognized 
bioactivity and some of them (phenolic compounds, vitamin 
E, choline and arginine) are associated with increased neuro-
genesis [61]. miR-29b contributes to osteoblast differentia-
tion [62] via regulating IGF-1 secretion and is responsive for 
the mechanical tensile strain [63]. Epidemiological studies 
suggest that the incidence of CVD and postmenopausal oste-
oporosis is low in the Mediterranean area [64]. As recently 
reviewed [65], dietary patterns based on fruit and vegetables, 
whole grains, poultry and fish, nuts and legumes, and low-fat 
dairy products are beneficial for bone health [65]. Thus, it 
is feasible that the consumption of nuts (i.e., walnuts) in the 
Mediterranean area may contribute to decrease osteoporo-
sis and fracture risk through the upregulation of circulating 
miR-29b. Indeed, higher levels of miR-29b has been strongly 
associated to increased calcification [66] and osteogenic dif-
ferentiation [67]. Whether these tissues directly contribute to 
the secretion of these miRNAs cannot be ascertained from 
our study and deserves further investigation. Indeed, walnut 
supplementation in animal models has been reported to exert 
protective effects on age-related neurodegenerative disorders 
via a reduction of oxidative stress [68, 69]. Other tissues 
might also contribute to the secretion of these miRNAs. For 
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example, walnut supplementation has been shown to induce 
the expression miR-29b in colorectal cancer model [70].

Exosomes and other EVs transport a myriad of molecules, 
including nucleic acids, proteins, lipids, and different metab-
olites [71], most of them can be employed as biomarkers of 
disease [72]. Regarding the exosomal lipidomic hallmark, 
after long-term dietary supplementation with walnuts none 
of the 126 species analyzed showed statistical difference 
between the 4 groups analyzed (Fig. 5S-Online Resource). 
Although a unique lipid signature has been found in EVs 
(i.e., exosomes) from different cell types [73] both in health 
and disease [74], highlighting their possible role as bio-
markers of disease [72]. At this stage, we cannot ascertain 
whether this finding is either due to a real lack of effect of 
the tested walnut doses or to methodological issues, namely 
the limited amount of circulating exosomes compared to 
those derived from cell lines. Whether a higher dose of wal-
nuts can modify the lipid composition of exosomes deserves 
further investigation.

Limitations and future perspectives

Although almost 180 highly expressed circulating miR-
NAs were analyzed during the screening phase, screening 
did not include other miRNAs reported to be transported in 
exosomes. The validation of c-miRNAs in the whole cohort 
was performed only for a reduced number of miRNA can-
didates (n = 10). The lipidomic and nanoparticle tracking 
analyses were performed in pooled samples, as discovery 
phase, which may mask a small effect on these parameters 
at an individual level. The reduced amount of plasma used 
for lipidomic analysis of exosomes is also a limiting factor 
for the individualized analysis. Despite these limitations, 
the effect of foods on the modulation of gene expression by 
epigenetic mechanisms is little known, thus our work con-
tributes to this concept and opens up new perspectives for 
understanding the mechanisms of regulation. Further studies 
are needed, not only to validate more exosomal c-miRNAs, 
but also to better delineate their putative role in mediating 
the benefits ascribed to sustained walnut consumption.

Conclusions

In summary, we provide novel insights into the biology 
underlying the effect of walnut consumption on the concen-
tration, size, miRNA, and lipidomic content of exosomes. 
Our results show that long-term (1 year) consumption of 
walnuts, a food rich in PUFA and polyphenols, affects the 
signature of miRNAs transported in circulating exosomes. 
Modulation of miRNAs by dietary factors provides adjuvant 
to the ongoing therapy against miRNA function. Moreo-
ver, the use of miRNAs in circulating exosomes provides 

potentially useful biomarkers to predict dietary effects in dif-
ferent tissues, including those protected by the blood–brain 
barrier. Future studies of the tissue of origin and fate of the 
secreted exosomes containing miRNAs and whether changes 
in miRNAs correspond to transcriptome changes of specific 
pathways connecting disease outcome are clearly needed. 
Our results provide additional evidence on the potential 
mechanism of the beneficial effects of walnut consumption.
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