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The alternative oxidase pathway (AOP) is associated with excess energy dissipation
in leaves of terrestrial plants. To address whether this association is less important
in palustrine plants, we compared the role of AOP in balancing energy and
carbon metabolism in palustrine and terrestrial environments by identifying metabolic
relationships between primary carbon metabolites and AOP in each habitat. We
measured oxygen isotope discrimination during respiration, gas exchange, and
metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to
five families organized as pairs of palustrine and terrestrial species. We performed
a partial least square model combined with variable importance for projection to
reveal relationships between the electron partitioning to the AOP (τa) and metabolite
levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa,
together with stronger metabolic relationships between τa and sugars, important for
water conservation. Palustrine plants showed relationships between τa and metabolites
related to the shikimate pathway and the GABA shunt, to be important for heterophylly.
Excess energy dissipation via AOX is less crucial in palustrine environments than
on land. The basis of this difference resides in the contrasting photosynthetic
performance observed in each environment, thus reinforcing the importance of AOP
for photosynthesis.

Keywords: alternative oxidase pathway (AOP), cytochrome oxidase pathway (COP), electron partitioning to the
AOP (τa), primary metabolism, terrestrial species, palustrine species, heterophylly

INTRODUCTION

Current life on Earth would not be possible without the evolution of biochemical processes
that maintained energy entry in plants during land colonization (Delwiche and Cooper, 2015;
De Vries et al., 2016; De Vries and Archibald, 2018; Gago et al., 2019). The earliest terrestrial
plant ancestor, a charophycean alga, emerged from water approximately 500 million years ago
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(Bhattacharya and Medlin, 1998; Yoon et al., 2004; Harholt et al.,
2016; Morris et al., 2018; Reski, 2018), undergoing physiological,
structural, and biochemical changes to cope with the transition
from an aqueous to a gaseous medium (Kenrick and Crane, 1997;
Pires and Dolan, 2012; Vermeij, 2016). Among physiological
and structural modifications from the first colonizing vascular
land plants, specialized sexual organs, different kinds of leaves
and roots, stomata, vascular and structural tissues allowed
increases in plant size and water use efficiency (Kenrick
et al., 2012; Assouline and Or, 2013; Proctor, 2014; Arteaga-
Vazquez, 2016; Brodribb et al., 2020). At the biochemical
level, changes in metabolic pathways favored the synthesis of
phenolic compounds, lignin, plant hormones, isoprenes, heat
shock proteins or superoxide dismutase to favor photosynthetic
performance and plant growth under a highly stressful terrestrial
environment (Lowry et al., 1980; Kenrick and Crane, 1997;
Waters, 2003; Weng and Chapple, 2010; Bowman et al., 2017).
As plant gas exchange involves water loss, survival in the dry
atmosphere required that plants overcame desiccation forcing
the first colonizing terrestrial plants to be close to sources of
water, until new adaptations allowed their spread into the dry
atmosphere of terrestrial habitats (Brodribb et al., 2020). In
the meantime, the antioxidant systems were enhanced in land
plants allowing them to survive several deleterious types of
environmental stresses worldwide that induce oxidative stress
and damage to the photosynthetic apparatus (Asada, 2006;
Thomas et al., 2008; Gill and Tuteja, 2010; Zandalinas et al.,
2021).

Currently, several metabolic pathways are identified as major
energy-dissipating systems conferring metabolic adaptation
in response to a large entry of sunlight energy in leaves
(Niyogi, 1999; Raghavendra and Padmasree, 2003; Scheibe,
2004; Noguchi and Yoshida, 2008). Among these pathways,
mitochondrial metabolism stands out for its interaction with
photosynthesis, photorespiration and nitrogen assimilation
(Raghavendra and Padmasree, 2003; Florez-Sarasa et al., 2016;
O’Leary et al., 2020). In the mitochondrial electron transport
system, oxygen consumption takes place simultaneously through
the activities of cytochrome oxidase (COX) and alternative
oxidase (AOX). Several studies in genetically engineered AOX-
modified terrestrial model plants have suggested a role of
AOX activity in optimizing photosynthesis under stress (Dahal
and Vanlerberghe, 2018; Del-Saz et al., 2018a) by favoring the
dissipation of excess energy and thus balancing cellular redox
metabolism (Raghavendra and Padmasree, 2003; Del-Saz et al.,
2018a; Vanlerberghe et al., 2020). In fact, there is in vivo
evidence of a fine tuning of respiratory metabolism via AOX
activity in leaves of crops and model terrestrial plant species
exposed to abiotic stress as a mechanism to dissipate excess
energy (Florez-Sarasa et al., 2012, 2016; Del-Saz et al., 2018a,b).
Indeed, across the divergence of the plant kingdom, AOX is
widespread and conserved, and it is of vital importance for
plants (McDonald and Vanlerberghe, 2006; Del-Saz et al., 2018a;
Selinski et al., 2018). Notably, AOX is hypothesized to have
originated among anaerobic bacteria in an anoxic atmosphere,
being important for redox homeostasis during the transition to
an oxygen-rich atmosphere 2.45 billion years ago during the

Great Oxidation Event (Moore et al., 2002; Finnegan et al., 2003;
Catling and Claire, 2005).

Several clades that appeared during the diversification
of terrestrial plants, which include bryophytes, ferns and
angiosperms, returned to aquatic environments, necessitating
physiological, structural and biochemical modifications (Robe
and Griffiths, 2000; Rascio, 2002; Maberly, 2014). This transition
from terrestrial to aquatic habitats occurred gradually with
dynamic environmental changes that provided habitats in
the palustrine wetland system and emergent heterophyllous
amphibious plants, which are characterized by submerged and
aerial leaves, and are precursors of the fully submerged habit
(Maberly and Spence, 1989; Maberly, 2014). The fully submerged
habit led many aquatic leaves to display metabolic adaptations
to enhance carbon gain (Bowes and Salvucci, 1989; Keeley and
Santamaría, 1992; Maberly and Madsen, 2002; Huang et al., 2020)
and the aeration status to allow oxidative phosphorylation (Gibbs
and Greenway, 2003). It is unknown whether the transition
from land to the amphibious condition involved respiratory and
metabolic adjustments when oxygen was not a limiting factor.
Such adjustments could have happened due to the contrasting
redox conditions that characterize both environments. Terrestrial
plants are less often shaded by canopy trees and more often
exposed to drought events (Valladares and Niinemets, 2007;
Schlesinger and Bernhardt, 2020), resulting in vegetation adapted
to both different sunlight energy input and soil water conditions.
Indeed, variation in vegetation type is more affected by climate
in terrestrial habitats than in palustrine habitats (Schlesinger
and Bernhardt, 2020), which may support our idea of higher
potential risks for redox balance in terrestrial habitats. With this
in mind, comparisons of respiratory metabolism in terrestrial
vascular plants and their close amphibian relatives could provide
clues to different metabolic routes important for the leaf
biochemistry in each ecosystem under aerobic conditions. These
comparisons could be performed in leaves of amphibious plants
because part of their foliage photosynthesizes and respires in
the same gaseous medium as leaves of terrestrial plants. In
this sense, the combination of “omics” technologies together
with measurements of photosynthesis and respiration is optimal
for further understanding of the metabolic regulation of plant
physiological processes under different environmental conditions
(Florez-Sarasa et al., 2012, 2016, 2019; Del-Saz et al., 2016; Flexas
and Gago, 2018; Clemente-Moreno et al., 2019).

No previous study has evaluated the in vivo respiratory
activities in ferns and palustrine angiosperms. In the present
study, we compared ten species of ferns and angiosperms
organized as pairs of palustrine and terrestrial species (from the
same family). The in vivo respiratory activities, photosynthesis,
and metabolite profiling of aerial leaves were determined
using the oxygen isotope discrimination technique, leaf gas
exchange and gas chromatography coupled to mass spectrometry
(GC-MS), respectively. Further, to outline the climatic space
occupied by these species, we overlapped values of mean annual
temperature (MAT) and annual precipitation with Whittaker’s
biomes classification (Whittaker, 1970; Wright et al., 2004). The
main objective was to assess respiratory differences between
terrestrial and palustrine plant species. In addition, relationships
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between metabolic routes and the AOX pathway were identified
given their importance for leaf biochemistry in terrestrial and
palustrine environments. We hypothesize that in terrestrial
plants, these relationships could be important for the regulation
of water conservation and redox state; whilst in palustrine plants,
these relationships could be important for non-stress roles related
to the adaptation to intermediate habitats between land and water
(e.g., heterophylly).

MATERIALS AND METHODS

Plant Material and Experimental Design
We selected five families of vascular plants, which consisted of
one terrestrial species and its palustrine counterpart: (1) Acanthus
mollis L. and Hygrophila stricta (Vahl) L. in Acanthaceae
(angiosperm); (2) Arum italicum Mill. and Anubias heterophylla
Engl. in Araceae (angiosperm); (3) Trachelium caeruleum L.
and Lobelia cardinalis L. in Campanulaceae (angiosperm); (4)
Polypodium cambricum L. and Leptochilus pteropus (Blume)
Fraser-Jenk, in Polypodiaceae (fern); and (5) Pteris vittata L.
and Ceratopteris thalictroides L. (Brongn) in Pteridaceae (fern)
(Table 1). In the middle of autumn, terrestrial plant species
were collected in the field with their underlying substrate
(soil) at various coordinates in Mallorca (Spain; Table 1),
and placed in plastic bags to be immediately transported to
the University of Balearic Islands (Mallorca) where they were
transplanted into plastic pots, using a sterile soil–peat mixture
(3: 1 v/v). Then, the pots were maintained in a growth chamber
under controlled conditions of 25◦C, moderate light intensity
of 350 µmol m−2 s−1 of photosynthetic photon flux density
(PPFD), relative humidity above 40%, 12 h photoperiod, and
watered to full soil capacity every 3–4 days. At the same
time, commercial amphibious plants were distributed inside
the same growth chamber as the terrestrial plants in different
34 × 45 cm water-tanks containing 20 ± 5 cm water-level,
rooted in gravel/substrate for aquarium plants, and maintained
under a moderate irradiance of 100 µmol m−2 s−1, according
to the low light demand required for growing aquarium species
as described in previous studies (Mommer et al., 2005; Koga
et al., 2020). Four to six plants per terrestrial and palustrine
species were maintained under different availability of light
energy and water in each habitat. By doing this, we generated
contrasting redox environments according to their different
predominance in biomes with contrasting canopy openness and
water availability as outlined in next subsection. All plants
developed aerial leaves under growth chamber conditions until
the beginning of experiments in the middle of winter. The
upper-most fully expanded aerial leaves of all species were
used for gas exchange, in vivo respiration, and metabolic
profiling analyses.

Species Spatial Distribution
In order to assess the abundance of both terrestrial and
palustrine plant species in locations and biomes with different
environmental conditions, we studied the spatial distribution
of these species considering data of MAT and mean annual

precipitation (MAP) from the years 1980 to 2010. Different
numbers of records among species were obtained from GBIF
(Global Biodiversity Information Facility1): A. italicum (32875),
P. cambricum (17980), L. cardinalis (5375), P. vittata (3906),
A. mollis (2628), T. caeruleum (2559), C. thalictroides (2037),
L. pteropus (196), A. heterophylla (55), and H. stricta (7).
For greater accuracy, we increased the number of records of
palustrine plants in Araceae and Acanthaceae, by substituting
Higrophylla stricta (7) for Higrophylla ringens (1264) and Anubias
heterophylla (55) for Anubias spp. Schott. (617) because of
their similar distribution records (Supplementary Figure 1).
Then, a random selection of records equalized the number of
samples in each family and habitat; 2000 in Campanulaceae;
1500 in Pteridaceae; 1000 in Acanthaceae; 600 in Araceae,
and 150 in Polypodiaceae. Finally, the spatial distribution of
records randomly selected was studied with QGIS, a GIS software
that combines species occurrences from GBIF with climate
layers from WorldClim2. QGIS rasterized species occurrences
and extracted MAT and MAP data across all grid cells of
the species occurrence region, at a spatial resolution of 30
arc-seconds (∼1 km). Then, species classification into biomes
was performed from a Whittaker diagram of MAT and MAP
(Wright et al., 2004).

Leaf Gas Exchange Measurements
Leaf gas exchange with Chla fluorescence measurements were
recorded every day from 10 am to 2 pm during the last
2 weeks of the experiment with an open infrared gas-exchange
analyzer system (Li-6400; Li-Cor Inc., Lincoln, NE, United States)
equipped with a leaf chamber fluorometer (Li-6400-40, Li-
Cor Inc.) using aerial leaves of terrestrial and amphibious
plants under light-saturating photosynthetic photon flux density
(PPFD) of 1000 and 400 µmol m−2 s−1, respectively (to avoid
photodamage as a consequence of a high PPFD), with 10% blue
light, a vapor pressure deficit (VPD) of 1.35 ± 0.32 kPa, a
CO2 concentration (Ca) of 400 µmol CO2 mol−1, and 25◦C air
temperature. Net photosynthesis (AN) and stomatal conductance
(gs) were determined after a steady state was reached (after c.
20 min). Once the gas exchange stabilized, five readings were
taken in four to six plants per species, and averaged to be
considered as the mean of the measured plant. Intrinsic WUEi
was calculated as the ratio between AN and gs. After a minimum
30 min under dark conditions, leaf dark respiration (Rdark) was
measured in three to five plants per species with at least five
readings per plant, and estimations of leaf carbon balance were
obtained from the ratio of Rdark to AN.

The quantum efficiency of the photosystem II (PSII)-driven
electron transport was determined using the equation
8PSII = (Fm

′ - Fs)/Fm
′, where Fs is the steady-state fluorescence

in the light (PPFD = 1000 and 400 µmol quanta m−2 s−1 for
terrestrial and palustrine plants, respectively) and Fm

′ is the
maximum fluorescence obtained with a light-saturating pulse
(8000 µmol quanta m−2 s−1). The electron transport rate (ETR)
was calculated as ETR = 8PSII × PPFD × αβ, where α is the

1http://www.gbif.org
2https://www.worldclim.org
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TABLE 1 | Classification, collection, and life histories of the different plant species used in this study.

Family Habitat Plant species Life span Description GPS Coordinates

Acanthaceae Palustrine Hygrophila stricta Perennial Angiosperm that reaches a height of 70 cm tall with lance-shaped
shade leaves that can be up to 10–15 cm long and 2 cm wide

-----

Terrestrial Acanthus mollis Perennial Clump-forming angiosperm that reaches a maximum 180 cm in height
with obovate leaves up to 40 cm long and 25 cm wide

39◦45′34.2′ ′N
2◦42′39.5′ ′E

Araceae Palustrine Anubias heterophylla Perennial Rhizomatous angiosperm that reaches 30 cm tall in height and
develops oval shade leaves that can be up to 38 cm long and 13 cm

wide

-----

Terrestrial Arum italicum Perennial Herbaceous angiosperm that reaches 30 cm tall in height with
arrow-shaped 20–30 cm long leaves

39◦45′34.2′ ′N
2◦42′39.5′ ′E

Campanulaceae Palustrine Lobelia cardinalis Perennial Herbaceous angiosperm that grows up to 1.2 m tall in height with
coarsely toothed shade leaves over 15 cm long and 4 cm wide

-----

Terrestrial Trachelium caeruleum Perennial Herbaceous angiosperm that grows 0.5–1 m tall with small
lance-shaped leaves over 7.5–10 cm long

39◦45′34.2′ ′N
2◦42′39.5′ ′E

Polypodiaceae Palustrine Leptochilus pteropus Perennial Rhizomatous fern that reaches 15–30 cm tall in height with narrow and
twisted shade leaves that can be up to 20 cm long

-----

Terrestrial Polypodium cambricum Perennial Rhizomatous fern that grows 60 cm tall with fronds over 5–30 cm in
length

39◦47′26.3′ ′N
2◦41′23.3′ ′E

Pteridaceae Palustrine Ceratopteris thalictroides Annual Shade-adapted rhizomatous fern that grows 15–30 cm high and
10–20 cm wide with finely branched leaves

-----

Terrestrial Pteris vittata Perennial Rhizomatous fern that grows up to 1 m and with fronds that are from
30 to 80 cm long

39◦45′51.3′ ′N
2◦42′33.6′ ′E

Note that amphibious species were obtained from commercial sources in Mallorca (Spain).

leaf absorptance, assumed to be 0.84, and β is the distribution of
absorbed energy between the two photosystems, assumed to be
0.5 (Gallé and Flexas, 2010). At least five readings in two to four
plants per species were taken and averaged to be considered as
ETR values of the measured plant. The average ETR value for
each species was used for estimations of the ratio of ETR to AN.

Respiration and Oxygen-Isotope
Fractionation Measurements
For respiratory measurements, the aerial leaves of terrestrial and
palustrine plants were harvested and cut into pieces after 30 min
in darkness to be placed in a 3 ml stainless-steel closed cuvette
maintained at a constant temperature of 25◦C. Air samples were
sequentially removed from the cuvette and fed into the mass
spectrometer (Delta XPlus; Thermo LCC, Bremen, Germany).
Changes in the 18O/16O ratios and O2 concentration were
obtained to calculate the oxygen-isotope fractionation and the
electron partitioning to the AOP (τa), allowing calculations of
the in vivo activities of AOP and cytochrome oxidase pathway
(COP) as described in Del-Saz et al. (2017a). Both end point
fractionation values of the AOP (1a) and the capacity of the
alternative pathway (Valt) were determined in leaves of terrestrial
and palustrine plants treated with a solution of 10 mM potassium
cyanide (KCN) for 30 min. For land plants, 1a values (n = 3)
of 29.9 ± 0.2h, 30.0 ± 0.2h, 30.2 ± 0.5h, 30.6 ± 0.2h
and 30.3 ± 0.4h were obtained for P. cambricum, P. vittata,
A. italicum, A. mollis, and T. caeruleum, respectively. For
palustrine plants, 1a values of 32.5 ± 0.3h, 30.8 ± 0.3h,
31.2 ± 0.8h, 31.4 ± 0.1h, and 29.6 ± 0.2h were obtained
for A. heterophylla, C. thalictroides, H. stricta, L. cardinalis, and
L. pteropus, respectively. On the other hand, an assumed value
of 20.0h for the end point fractionation values of the COP (1c)
was used for the electron partitioning calculations as this has been

shown to be fairly constant in most of the leaves and species
examined (Ribas-Carbó et al., 2005). Total mitochondrial ATP
production (ATPtotal) together with ATP production via COP
(ATPcop) and AOP (ATPaop) were modeled from the activities of
the COP and AOP of each measurement, assuming that electron
flow through the AOP drives the synthesis of 11 ATP for each 6
O2 consumed whilst 29 ATP are formed for each 6 O2 consumed
via COP (Del-Saz et al., 2017b). Values presented are the mean
of six to eight measurements performed in four to six plants per
species that were performed from 9 am to 6 pm on the same days
as gas exchange measurements were performed during the last
2 weeks of the experiment. In addition, the engagement of AOP
(ρ) was calculated as a percentage of the ratio of the in vivo activity
of AOP (valt) to Valt.

Metabolite Profiling
Terrestrial leaves of palustrine and terrestrial plants were
simultaneously sampled after 30 min in darkness on the last
day of the experimental period, immediately frozen in liquid
nitrogen, and stored at –80◦C until further analysis. Metabolite
extractions, derivatization and gas chromatography time of
flight-mass spectrometry (GC-TOF-MS) analyses were carried
out as previously described (Lisec et al., 2006). The GC-TOF-
MS system was composed of a CTC CombiPAL autosampler, an
Agilent 6890N gas chromatograph, and a LECO Pegasus III time-
of-flight mass spectrometer running in EI + mode. Metabolites
were identified by comparison with database entries of standards
(Kopka et al., 2005; Schauer et al., 2005). The data of each
terrestrial species were normalized to the mean of its respective
palustrine counterpart (i.e., the value of all metabolites for each
palustrine species was set to 1). The data represent averages of
three to six measurements corresponding to material harvested
from three to six individual plants per species.

Frontiers in Plant Science | www.frontiersin.org 4 November 2021 | Volume 12 | Article 752795

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-752795 November 1, 2021 Time: 11:14 # 5

Del-Saz et al. AOX Activity in Different Habitats

Statistical Analysis
Data of AN, WUEi, total respiration (V t), in vivo activity of
COP (vcyt), ATPcop, and ATPtotal, were log-transformed to meet
homoscedasticity. A two-way analysis of variance (p < 0.05) was
performed with habitat level (terrestrial, palustrine) and plant
family (Acanthaceae, Araceae, Campanulaceae, Polypodiaceae,
and Pteridaceae) as fixed factors (Table 2), and Tukey’s
post hoc test (p < 0.05) was used to determine differences in
each respiratory and photosynthetic parameter between species
(Figures 2, 3, Tables 3, 4, and Supplementary Tables 2, 3).
Student’s t-tests were used for statistical analyses in Table 5
in order to compare data from terrestrial species with data
from the respective palustrine counterpart in each family. To
generate individual fold change data from the physiological
parameters, we normalized each measurement of the terrestrial
counterpart to the mean of the respective palustrine species,
as for the GC-MS metabolite analyses, and Pearson coefficients
were obtained with JMP R©, Version 12.1.0 (SAS Institute Inc.,
Cary, NC, United States, 1989–2007; Table 6). Associations
between the respiratory parameters and the metabolite profile
were explored by applying the Partial Least Square (PLS) sparse
regression as defined previously (Saccenti et al., 2014). Missing
data in the metabolome dataset were imputed by employing a
random forest imputation method before PLS analysis (Gromski
et al., 2014). The “pls” package in R software was used to
develop the PLS regression analysis. Also, this package includes
a function to implement the variable importance for the
projection (VIP) for single-response orthogonal score plsr models
(Wehrens and Mevik, 2007).

RESULTS

Spatial Patterns
A species classification into biomes was obtained from
a Whittaker diagram of MAT and MAP (Figure 1 and

TABLE 2 | Significance of sources of variation after two-way analysis of variance
analyses for each parameter.

Habitat Family Habitat × Family

ETR *** ** ns

AN *** *** ns

gs ns *** **

Rdark ns ns *

WUEi *** *** ***

V t ns *** ***

τa *** *** ***

vcyt ** *** ***

valt ns *** ***

Valt * * ***

ATPcop ** *** ***

ATPaop ns *** ***

ATPtotal ns *** ***

The sources of variance were Habitat, Family, and their interaction
(Habitat × Family). ns, not significant effect. *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 3 | General characteristics of the studied terrestrial and palustrine plant
species: the ratio of electron transport rate (ETR) to net photosynthesis (AN), the
ratio of dark respiration (Rdark) to AN, and the ratio of valt to Valt (ρ).

Family Habitat Plant species ETR/AN Rdark/AN ρ (%)

Acanthaceae Palustrine Hygrophila stricta 8.58 0.190 57

Terrestrial Acanthus mollis 6.56 0.086 11

Araceae Palustrine Anubias heterophylla 8.49 0.124 9

Terrestrial Arum italicum 5.67 0.110 12

Campanulaceae Palustrine Lobelia cardinalis 9.79 0.135 14

Terrestrial Trachelium caeruleum 7.93 0.057 19

Polypodiaceae Palustrine Leptochilus pteropus 8.14 0.158 23

Terrestrial Polypodium cambricum 9.57 0.094 33

Pteridaceae Palustrine Ceratopteris thalictroides 11.27 0.256 24

Terrestrial Pteris vittata 10.77 0.088 22

Supplementary Table 1; Wright et al., 2004). We observed
species records in all biomes, especially in shrubland, temperate
forest, tropical seasonal forest, woodland, and desert (25.6,
24.0, 22.2, 12.6, and 9.89% total records). A low register was
found in tropical rainforest, grassland, temperate rainforest,
boreal forest, and tundra (4.06, 1.11, 0.48, 0.03, and 0.02% total
records). In general, palustrine species were more abundant than
terrestrial species in biomes with values of MAP ≥ 1000 mm,
such as temperate forest (33.0% palustrine vs. 15.1% terrestrial),
tropical seasonal forest (32.3% palustrine vs. 12.2% terrestrial),
and tropical rainforest (6.40% palustrine vs. 1.72% terrestrial).
In biomes with values of MAP ≤ 1000 mm, palustrine species
were more abundant only in woodland (19.3% palustrine vs.
5.96% terrestrial), whilst terrestrial species were more abundant
than palustrine species in arid biomes such as shrubland (46.4%
terrestrial vs. 4.72% palustrine) and desert (17.6% terrestrial vs.
2.16% palustrine). Specific abundances in each type of biome can
be found in Supplementary Table 1.

Leaf Gas Exchange
Regarding net photosynthesis (AN), comparisons between groups
showed no differences between angiosperms (Acanthaceae,
Araceae, Campanulaceae) and ferns (Polypodiaceae, Pteridaceae)
in terrestrial habitats; however among palustrine species, AN
was significantly lower in the two ferns species compared
to the angiosperm L. cardinalis (Campanulaceae; Figure 2A).
When comparing between counterparts in each family, AN
was significantly higher (by 2.5-fold) in terrestrial species
of Acanthaceae, Araceae, Polypodiaceae, and Pteridaceae.
Regarding gs among terrestrial species, this parameter was
significantly lower in the fern P. cambricum (Polypodiaceae)
only when compared with the angiosperm T. caeruleum
(Campanulaceae). Contrary to what was observed for AN,
no differences were found in gs when comparing between
counterparts in each family (Figure 2B).
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TABLE 4 | Total respiration (V t) and the in vivo activities of cytochrome oxidase (vcyt) and alternative oxidase (valt) in aerial leaves of ten different terrestrial and palustrine
plant species (see section “Materials and Methods”).

Family Habitat Plant species V t (nmol O2 g−1DW) vcyt (nmol O2 g−1DW) valt (nmol O2 g−1DW)

Acanthaceae Palustrine Hygrophila stricta 12.84 ± 2.12 ab 10.74 ± 1.83 abc 2.10 ± 0.298 bc

Terrestrial Acanthus mollis 15.17 ± 1.45 a 11.74 ± 1.09 ab 3.43 ± 0.373 ab

Araceae Palustrine Anubias heterophylla 7.03 ± 0.483 cd 6.34 ± 0.484 cd 0.694 ± 0.109 d

Terrestrial Arum italicum 11.77 ± 0.975 ab 9.00 ± 0.724 bcd 2.78 ± 0.264 abc

Campanulaceae Palustrine Lobelia cardinalis 15.39 ± 1.51 a 12.35 ± 1.54 ab 3.05 ± 0.419 abc

Terrestrial Trachelium caeruleum 14.86 ± 0.896 a 11.24 ± 0.708 ab 3.63 ± 0.310 a

Polypodiaceae Palustrine Leptochilus pteropus 8.37 ± 0.820 bc 6.21 ± 0.619 d 2.16 ± 0.210 bc

Terrestrial Polypodium cambricum 5.19 ± 0.559 d 3.33 ± 0.350 e 1.86 ± 0.222 cd

Pteridaceae Palustrine Ceratopteris thalictroides 20.03 ± 2.67 a 16.31 ± 2.35 a 3.71 ± 0.331 a

Terrestrial Pteris vittata 8.29 ± 0.760 bcd 6.44 ± 0.579 cd 1.84 ± 0.198 cd

Values are the mean of six to eight measurements obtained from 4 to 6 plants per species. Different letters indicate significant differences with a p-value < 0.05 determined
by post hoc Tukey–Kramer’s test.

With regard to WUEi, no major differences were observed
between ferns and angiosperms in terrestrial habitats; whilst
among palustrine species, the two ferns species showed a
significantly lower WUEi when compared to the angiosperm
A. heterophylla (Araceae; Figure 2C). Very similar to the trends
observed for AN, WUEi was significantly higher (by 3.7-fold)
in terrestrial counterparts of Acanthaceae, Polypodiaceae,
and Pteridaceae, with the terrestrial fern P. cambricum
(Polypodiaceae) showing the highest values of WUEi, and
both the palustrine angiosperm H. stricta (Acanthaceae) and
fern L. pteropus (Polypodiaceae) displaying the lowest values
of WUEi (Figure 2C). On the other hand, palustrine plants
showed higher averaged values of ETR/AN (9.25) and Rdark/AN
(0.173) than terrestrial plants (ETR/AN = 8.10, Rdark/AN = 0.087)
mainly because their small AN, and secondary, because the
lack of major variations in Rdark and ETR (Tables 2, 3 and
Supplementary Table 2).

Respiration and Electron Partitioning to
the Alternative Oxidase Pathway
A high heterogeneity was found in V t, vcyt, and valt among
all species. Considering that most of V t takes place via
COX activity, a similar heterogeneity was found in vcyt
and V t, with both varying significantly by 3.3 and 2.7-fold,
across species in the terrestrial and palustrine environments,
respectively. Both valt and τa showed less variability than
vcyt and V t across terrestrial species (2.0 and 1.6-fold,
respectively). In palustrine environments, higher variability was
found in valt, differing significantly 5.4-fold across species,
whilst τa showed similar variability to vcyt and V t (2.6-
fold). When comparing between counterparts in each family,
V t was significantly higher in terrestrial counterparts of
Araceae (by 1.7-fold), and in palustrine counterparts from
both fern families, Polypodiaceae and Pteridaceae (by 1.6-fold
and 2.4-fold respectively; Table 2), differing slightly from vcyt,

which was no different in terrestrial counterparts of Araceae
(Table 4). A different pattern was observed for valt, which was
significantly higher in the terrestrial counterpart of Araceae
(4.0-fold) and in the palustrine counterpart of Pteridaceae (2.0-
fold). A similar behavior was observed for ATP production
modeled from vcyt and valt (Supplementary Table 3). Regarding
τa, the terrestrial counterparts of Acanthaceae, Araceae, and
Polypodiaceae showed significantly higher values than their
palustrine counterparts, 1.4, 2.3, and 1.4-fold, respectively. It is
worth mentioning that in Polypodiaceae, the two ferns showed
the highest values of τa in each habitat (Figure 3). On the
other hand, leaves of H. stricta showed the highest engagement
of AOP (ρ) (57%) mainly because the low Valt, followed by
leaves of plants in Polypodiaceae and Pteridaceae (25.5%) that
showed variability in Valt and valt, and by leaves of plants
in Campanulaceae and of terrestrial plants in Araceae and
Acanthaceae (14%) that displayed large Valt. The palustrine
A. heterophylla showed the lowest ρ (9%) because the low valt
(Tables 3, 4 and Supplementary Table 2).

In order to better understand the changes in photosynthetic
parameters driving the species-specific response of the
respiratory parameters, fold changes of AN, gs and WUEi
values were correlated with fold changes of V t, τa, vcyt, and valt as
described in the statistical analyses section. The only significant
correlation (r = 0.75) can be found between AN and τa. Similarly,
to study whether AOP contributes significantly to ATP synthesis,
fold changes of τa and ATPtotal values were correlated with fold
changes of τa, ATPcop and ATPaop. Significant correlations can
be found between ATPtotal and energy synthesis by each pathway
(ATPcop and ATPaop; r = 0.98 and 0.87), and between τa and
ATPaop (r = 0.98; Table 6).

Relative Metabolite Levels
By using GC-MS-based metabolite profiling from the aerial leaves
of palustrine and terrestrial plants, we annotated 40 metabolites
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TABLE 5 | Relative metabolite levels in leaves of 10 terrestrial and palustrine plant species belonging to five families of ferns and angiosperms as measured by GC-MS
(see section “Materials and Methods”).

Acanthaceae Araceae Campanulaceae Polypodiaceae Pteridaceae

Hygrophila
stricta

Acanthus
mollis

Anubias
heterophylla

Arum
italicum

Lobelia
cardinalis

Trachelium
caeruleum

Leptochilus
pteropus

Polypodium
cambricum

Ceratopteris
thalictroides

Pteris
vittata

Amino acids

Alanine 1 ± 0.40 1.62± 0.30 1 ± 0.16 0.98± 0.47 1 ± 0.29 0.80 ± 0.22 1 ± 0.32 0.09 ± 0.05 1 ± 0.45 2.15± 0.65

Valine 1 ± 0.56 1.64± 0.32 1 ± 0.14 4.76 ± 1.53 1 ± 0.19 0.79 ± 0.29 1 ± 0.36 0.79 ± 0.28 1 ± 0.32 2.78± 1.07

Isoleucine 1 ± 0.40 1.27± 0.22 1 ± 0.13 2.57 ± 0.41 1 ± 0.39 0.67 ± 0.29 1 ± 0.32 0.96 ± 0.42 1 ± 0.30 3.25± 1.58

Glycine 1 ± 0.75 1.12± 0.57 1 ± 0.19 0.32 ± 0.10 nd nd 1 ± 0.75 0.69± 0.23

Proline 1 ± 0.38 5.35 ± 1.37 1 ± 0.13 0.26 ± 0.07 1 ± 0.27 0.33 ± 0.11 1 ± 0.48 0.20 ± 0.13 1 ± 0.42 2.83 ± 0.26

Serine 1 ± 0.42 1.98± 0.25 1 ± 0.10 0.80± 0.30 1 ± 0.32 1.03 ± 0.39 1 ± 0.19 0.37 ± 0.10 1 ± 0.30 2.49± 0.80

Threonine 1 ± 0.38 0.46± 0.11 1 ± 0.50 0.43± 0.04 1 ± 0.28 0.54 ± 0.16 1 ± 0.15 0.53 ± 0.15 1 ± 0.33 1.47± 0.51

Phenylalanine 1 ± 0.42 0.56± 0.02 1 ± 0.49 0.99± 0.20 1 ± 0.16 0.47 ± 0.13 1 ± 0.30 0.51 ± 0.07 1 ± 0.25 1.77± 1.08

Asparagine 1 ± 0.36 1.85± 0.71 1 ± 0.16 2.31 ± 0.05 *1 ± 0.38 0.47 ± 0.01 1 ± 0.12 0.01 ± 0.00 1 ± 0.26 1.93± 0.80

Tryptophan 1 ± 0.38 0.13 ± 0.02 1 ± 0.48 0.47 ± 0.11 *1 ± 0.20 0.36 ± 0.00 1 ± 0.35 2.58 ± 0.80 1 ± 0.26 2.02± 1.14

Glutamic acid 1 ± 0.39 9.04 ± 1.07 1 ± 0.12 1.97 ± 0.34 1 ± 0.23 1.14 ± 0.34 1 ± 0.35 0.52 ± 0.12 1 ± 0.52 4.08 ± 1.02

Organic acids

Glyceric acid 1 ± 0.31 7.39 ± 1.90 1 ± 0.20 1.88± 0.50 1 ± 0.19 0.20 ± 0.04 1 ± 0.17 0.33 ± 0.13 1 ± 0.19 0.18 ± 0.04

Pyruvic acid 1 ± 0.19 1.67± 0.39 nd 1 ± 0.21 0.60 ± 0.16 nd *1 ± 0.27 0.24± 0.05

Citric acid nd 1 ± 0.26 1.17± 0.45 nd nd 1 ± 0.29 6.59 ± 1.04

Succinic acid 1 ± 0.37 6.58 ± 0.79 1 ± 0.14 2.83 ± 0.55 1 ± 0.23 0.24 ± 0.02 1 ± 0.18 1.19 ± 0.29 1 ± 0.41 3.67 ± 0.19

Fumaric acid nd 1 ± 0.30 0.51± 0.08 1 ± 0.24 1.01 ± 0.49 1 ± 0.68 0.09 ± 0.03 1 ± 0.34 0.40± 0.03

Malic acid nd 1 ± 0.25 14.9 ± 3.56 1 ± 0.22 0.18 ± 0.05 1 ± 0.28 0.60 ± 0.16 1 ± 0.24 1.05± 0.60

2-Oxoglutaric acid 1 ± 0.19 46.9 ± 8.11 1 ± 0.19 0.30 ± 0.05 *1 ± 0.27 0.29 ± 0.10 nd 1 ± 0.35 0.25± 0.05

Nicotinic acid 1 ± 0.12 6.50 ± 1.95 1 ± 0.10 0.40 ± 0.08 1 ± 0.13 0.65 ± 0.07 1 ± 0.33 0.63 ± 0.12 1 ± 0.20 0.26 ± 0.03

4-Aminobutyric acid 1 ± 0.21 0.48 ± 0.05 1 ± 0.19 0.21 ± 0.06 1 ± 0.17 0.13 ± 0.04 1 ± 0.66 0.49 ± 0.13 1 ± 0.43 1.90± 0.28

Threonic acid 1 ± 0.24 1.66± 0.32 1 ± 0.19 14.6 ± 1.58 1 ± 0.22 0.27 ± 0.06 1 ± 0.37 1.32 ± 0.41 1 ± 0.25 10.5 ± 0.92

Antioxidants and secondary metabolism precursor

Quinic acid 1 ± 0.37 0.09 ± 0.02 1 ± 0.19 0.37 ± 0.06 1 ± 0.15 1.97 ± 0.17 1 ± 0.38 2.07 ± 0.28 1 ± 0.10 166 ± 8.37

Caffeoylquinic acid 1 ± 0.27 0.01 ± 0.00 nd 1 ± 0.11 544 ± 77.8 1 ± 0.16 1.37 ± 0.11 *1 ± 0.10 2.23± 0.24

Dehydroascorbic acid 1 ± 0.34 0.68± 0.08 1 ± 0.14 1.70 ± 0.20 1 ± 0.28 0.53 ± 0.04 1 ± 0.18 20.2 ± 3.79 1 ± 0.40 45.6 ± 8.01

Caffeic acid 1 ± 0.17 0.68± 0.11 1 ± 0.22 0.61± 0.15 1 ± 0.22 1.45 ± 0.26 1 ± 0.21 0.50 ± 0.03 1 ± 0.50 0.73± 0.04

Sugars

Maltose nd 1 ± 0.33 8.55 ± 1.47 nd 1 ± 0.08 2.16 ± 0.30 nd

Rhamnose 1 ± 0.14 1.11± 0.22 1 ± 0.22 6.33 ± 0.51 1 ± 0.13 2.47 ± 0.33 nd nd

1,6-Anhydroglucose 1 ± 0.20 0.28 ± 0.03 1 ± 0.11 1.42± 0.23 1 ± 0.16 13.5 ± 2.91 1 ± 0.28 4.70 ± 0.96 1 ± 0.53 1.77± 0.45

Fructose 1 ± 0.20 0.22 ± 0.05 1 ± 0.07 1.05± 0.06 1 ± 0.09 0.08 ± 0.00 1 ± 0.28 35.8 ± 5.56 1 ± 0.23 1.00± 0.05

Glucose 1 ± 0.29 8.35 ± 1.93 1 ± 0.48 1.98± 0.76 1 ± 0.29 0.04 ± 0.01 1 ± 0.38 183 ± 24.6 1 ± 0.64 26.5 ± 1.92

Xylose *1 ± 0.10 0.28± 0.05 1 ± 0.31 2.05 ± 0.23 1 ± 0.03 0.53 ± 0.13 nd nd

Sucrose 1 ± 0.26 1.92± 0.26 1 ± 0.16 1.14± 0.36 1 ± 0.23 0.91 ± 0.12 1 ± 0.37 1.17 ± 0.10 1 ± 0.60 5.73 ± 0.39

Raffinose 1 ± 0.23 1.69± 0.77 1 ± 0.18 0.29 ± 0.04 1 ± 0.16 0.07 ± 0.01 1 ± 0.07 2.19 ± 0.33 nd

Trehalose 1 ± 0.19 1.61 ± 0.06 1 ± 0.06 2.89 ± 0.37 1 ± 0.14 2.24 ± 0.68 1 ± 0.33 1.66 ± 0.36 1 ± 0.78 0.33± 0.04

Melibiose 1 ± 0.19 1.53± 0.44 1 ± 0.34 0.96 ± 0.02 nd nd 1 ± 0.53 2.10± 0.11

Sugar-alcohols

Erythritol 1 ± 0.38 0.62± 0.08 1 ± 0.19 8.21 ± 2.04 1 ± 0.13 1.64 ± 0.10 nd nd

Galactinol 1 ± 0.19 2.09 ± 0.09 1 ± 0.23 1.50± 0.56 1 ± 0.14 0.15 ± 0.01 *1 ± 0.51 1.56 ± 0.56 1 ± 0.17 0.68± 0.14

Glycerol 1 ± 0.14 1.01± 0.25 1 ± 0.29 0.71± 0.10 1 ± 0.16 2.53 ± 0.19 1 ± 0.21 0.33 ± 0.11 1 ± 0.16 0.84± 0.16

Myo-inositol 1 ± 0.21 2.18 ± 0.22 1 ± 0.22 19.6 ± 6.25 1 ± 0.05 1.35 ± 0.11 1 ± 0.13 0.20 ± 0.04 1 ± 0.42 25.8 ± 10.5

Other metabolites

Phosphoric acid *1 ± 0.34 20.6± 8.45 1 ± 0.17 0.18 ± 0.11 1 ± 0.76 0.89 ± 0.25 1 ± 0.41 0.37 ± 0.23 1 ± 0.23 1.57± 0.78

Data represent averages of 3–6 measurements obtained from 3 to 6 plants per species, with significant differences in relative expression between terrestrial and palustrine
plants per family in bold (p-value < 0.05). nd denotes primary metabolites in certain plant families that were not detected. *Denotes metabolites detected only in two
replicates in palustrine or terrestrial species in certain families.
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TABLE 6 | Pearson correlation coefficients between fold changes in
photosynthetic parameters levels (AN, gs, WUEi) and in vivo respiratory parameters
levels (V t, vcyt, τa, valt), and between fold changes in respiratory parameters (τa

and ATPtotal) and ATP synthesis through each pathway (ATPcop and ATPaop), in
leaves of ten species of palustrine and terrestrial vascular plants (Table 1).

AN gs WUEi

V t − 0.29 0.52 − 0.45

τa 0.75 0.23 0.27

vcyt − 0.44 0.55 − 0.55

valt 0.19 0.48 − 0.17

ATPcop ATPaop τa

ATPtotal 0.98 0.87 0.62*

τa 0.43 0.92 −

Fold change values were log10 transformed and then used for the Pearson
correlations. The same plants were used for all analyses, thus allowing 10-point
correlations using the 4–6 replicates and the 10 species analyzed. The value in
bold indicates a statistically significant Pearson coefficient with p value < 0.05.
*Denotes a p-value = 0.058.

(Supplementary Table 5), including sugars, amino acids, organic
acids, antioxidants and secondary metabolite precursors, as well
as sugar-alcohols (Table 5). Although the identification of 17
metabolites (glycine, asparagine, tryptophan, phosphoric acid,
pyruvic acid, citric acid, malic acid, fumaric acid, 2-oxoglutaric
acid, quinic acid caffeoyl, maltose, rhamnose, xylose, raffinose,
melibiose, erythritol, and galactinol) were only partly detected
(n = 2) or not detected at all (nd) in certain species, they
were considered for a general interpretation of the results.
Significant changes (Student’s t test, p < 0.05) in metabolite

levels were observed for each metabolite, in the comparison
between terrestrial and palustrine counterparts in each family,
with the exception of threonine, pyruvic acid, fumaric acid,
and caffeic acid.

Focusing on photosynthetic routes, we observed that
Campanulaceae, the only family which showed no significant
differences in AN between palustrine and terrestrial counterparts,
showed the largest number of metabolites (19), mainly sugars and
organic acids, with reduced levels in the terrestrial species when
compared to the palustrine counterpart (Table 5). In contrast,
terrestrial species of Acanthaceae, Araceae, Polypodiaceae, and
Pteridaceae, with higher values of AN than their palustrine
counterparts, showed higher levels of sugars such as sucrose,
fructose or glucose (Table 5), suggesting a higher energy status.
We also observed that Araceae, with significantly higher gs in the
terrestrial counterpart, was the only family also showing higher
levels of metabolites such as malate and maltose, which are
considered of interest due to their roles in determining stomatal
movement (Fernie and Martinoia, 2009; Araújo et al., 2011;
Gago et al., 2016).

Regarding respiratory routes, in Araceae, the only family
showing higher V t in the terrestrial counterpart, the lack
of change and decrease in citrate and 2-oxoglutarate
levels, respectively, together with increases in downstream
intermediates (succinate and malate) suggests a high TCA
cycle activity (Table 5). This pattern was significantly different
(increased citrate levels with no changes in 2-oxoglutarate and
malate) in the two terrestrial fern species that displayed lower
V t and vcyt, when compared to their palustrine counterparts,
presumably due to lower TCA cycle decarboxylation activity.

FIGURE 1 | The boundaries of global biome type in relation to the climate factors mean annual temperature (MAT) and mean annual precipitation (MAP; Whittaker,
1970; Wright et al., 2004). For each habitat (terrestrial and palustrine), 5250 plant records (randomly selected and equalized, see section “Materials and Methods”)
are overlaid on the climate envelopes of Whittaker’s biomes. Terrestrial and palustrine records are represented as brown and blue dots, respectively. (1) Tropical
rainforest; (2) temperate rainforest; (3) tropical seasonal forest; (4) temperate forest; (5) boreal forest; (6) tundra; (7) woodland, shrubland, and grassland; (8) desert.
Biome boundaries are only approximate. Specific abundances in each type of biome can be found in Supplementary Table 1.
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FIGURE 2 | (A) Net photosynthesis (AN), (B) stomatal conductance (gs), and
(C) intrinsic water-use efficiency (WUEi) in all palustrine and terrestrial species
tested in this study. In (C), values were calculated from mean values of AN and
gs. Four to six plants were used to characterize each species. Different letters
indicate significant differences with a p-value < 0.05 determined by a
post hoc Tukey–Kramer’s test.

In this comparison, pronounced differences in γ-aminobutyric
acid (GABA) levels – which are intimately connected to
TCA cycle activity – between ferns and angiosperms suggest
a different role for the GABA-shunt. In addition, the large
accumulation of sugars such as sucrose, glucose, and fructose in
ferns (Table 4) coincided with an accumulation of antioxidant
and secondary metabolism precursors such as quinic acid and
dehydroascorbic acid, likely indicative of a reduction in sugar
oxidation by glycolysis and the TCA cycle while also promoting

FIGURE 3 | Electron partitioning to the alternative pathway (τa) in all palustrine
and terrestrial species tested in this study. Values are the mean of six to eight
measurements obtained from 4 to 6 plants per species. Different letters
indicate significant differences with a p-value < 0.05 determined by a
post hoc Tukey–Kramer’s test.

the accumulation of antioxidant and secondary metabolism
precursors (Table 5). Notably, in Araceae, the only family
showing higher values of valt in the terrestrial counterpart, we
observed higher levels of metabolites such as valine, isoleucine,
and malate, which are considered of interest due to their positive
correlation with valt in previous studies (Florez-Sarasa et al.,
2012; Del-Saz et al., 2016).

Given the observed general tendency of several physiological
parameters to correlate with several metabolites (Figures 2A, 3
and Table 5), we further investigated the observed respiratory
patterns for each habitat group employing PLS statistical
modeling combined with variable importance for projection
(VIP) as a criterion to elucidate metabolite relevance from the
generated models (Gago et al., 2016). This modeling helps to
highlight putative metabolic networks that differentially drive
the respiratory processes in the terrestrial as compared to
the palustrine species studied. We used V t, vcyt, valt, and τa
as response variables and, after cross-validation (CV) of the
generated models by the PLS, only models for τa can be
considered robust due to the display of a R2 higher than
0.6, for both terrestrial (R2 = 0.62) and palustrine (R2 = 0.7)
habitats. For palustrine species, significant associations with
phosphoric acid, proline, glucose, malic acid, glyceric acid, quinic
acid, quinic acid caffeoyl, fructose, GABA, and threonine were
observed (Figure 4 and Supplementary Table 4). For terrestrial
species, associations with τa were observed for trehalose, sucrose,
glucose, threonic acid and glycerol (Supplementary Table 4).
Interestingly, sugar metabolism was importantly related to τa
for both lifestyle strategies, glucose being the only metabolite
significantly associated in both; despite sugar metabolism in each
family differing in the other metabolite associations. Terrestrial
species associated mostly with levels of trehalose and sucrose,
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FIGURE 4 | Schematic representation of the TCA cycle and its connection with metabolites, related to sugar metabolism, photorespiration and secondary
metabolism, showing significant relationships with τa identified with a PLS approach through multivariate regression modeling. Brown and blue colors denote
significant relationships with τa in terrestrial and palustrine environments, respectively. 2-PG, 2-Phosphoglycolate; 3-PGA, 3-Phosphoglyceric acid; RuBP, RuBisCO;
TP, triose phosphate; Suc, sucrose; Tre, Trehalose; Glc, Glucose; AA, Ascorbic acid; Fru, fructose; Thr, threonic acid; Gly, glycine; Glyc, glycerol; G3P, glycerol
3-phosphate; SHKA, shikimate; Trp, tryptophan; Phe, phenylalanine; CA, caffeic acid; Qui, quinic acid; CQA, caffeoylquinic acid; Pyr, pyruvate; Cit, citrate; OOA,
oxaloacetate; Mal, malate; Thn, threonine; Fum, fumarate; Suc, succinate; 2-OG, 2-oxoglutarate; Pro, proline; GABA, γ-aminobutyric acid; Glu, glutamate.

while palustrine species were mainly associated with phosphoric
acid and proline.

DISCUSSION

Habitats Are Associated With Different
AN, Water Use Efficiency and Electron
Partitioning to Alternative Oxidase
Pathway
In order to characterize terrestrial and palustrine species under
the contrasting redox conditions that broadly differentiate both
habitats, we decided to maintain plants under different light

intensities to fall close to an optimum for each lifestyle. This
is because palustrine plants are more often covered by dense
canopy trees in humid forests than terrestrial plants in semi-arid
Mediterranean forests, according to spatial distribution of plant
records and sample collection coordinates of terrestrial plants
(Figure 1 and Table 1). Besides, in humid forest, ground
layer plant species may display shade adaptations like low light
saturation and light compensation points (Chazdon and Pearcy,
1991; Meng et al., 2014), which led us to photosynthetically
characterize these species at different PPFD. We did not expose
plants to changing light intensities because it is well known
that changes in growth light intensity does not affect oxygen
isotope discrimination or τa as observed in leaves of Arabidopsis
thaliana (Florez-Sarasa et al., 2011) and of sun and shade species
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(Noguchi et al., 2001). However, we ensured that experimental
conditions were non-stressful, and enough to allow ETR/AN
values typical of irrigated plants, positive leaf carbon balance
and low AOP engagement (and enough overcapacity) in all
species (Table 3).

As leaves of terrestrial plants have large energy input because
in air the light level is high, the terrestrial species A. mollis,
A. italicum, P. cambricum, and P. vittata showed higher AN
than their palustrine counterparts H. stricta, A. heterophylla,
L. pteropus, and C. thalictroides in Acanthaceae, Araceae,
Polypodiaceae, and Pteridaceae, respectively (Figure 2A). This
coincided with higher levels of sugars (e.g., sucrose, fructose,
and glucose; Table 5), which were considered as markers of
high photosynthetic activity (Gago et al., 2016). In contrast,
no differences in AN were found between T. caeruleum and
L. cardinalis in Campanulaceae, which coincides with important
reductions in sugars and organic acids in T. caeruleum with
respect to L. cardinalis (Table 5). Because the higher AN,
WUEi, the ratio between AN and gs, was found to be larger
in Acanthaceae, Polypodiaceae, and Pteridaceae (Figure 2C),
which could be in line with previous studies describing a
differential regulation of ecosystem (WUE) among biomes. In
arid ecosystems, WUE is primarily controlled by evaporation;
whilst in sub-humid regions, WUE is mostly regulated by
assimilation (Yang R. et al., 2016), which could be partly due
to a different predominance of palustrine and terrestrial records
displaying contrasting values of WUEi (Figure 1 and Figure 2C)
agreeing with the idea of water losses acting as a driving force
for the evolution in land plants of gas exchange regulation system
(Raven, 2002; Berry et al., 2010; Assouline and Or, 2013).

Contrary to AN, total respiration (V t) was not higher in the
terrestrial species of Acanthaceae, Araceae, Polypodiaceae, and
Pteridaceae than in their palustrine counterparts. Differences in
V t were found among families in each habitat and between ferns
and angiosperms (Table 4), similar to previous studies (Choy-
Sin and Suan, 1974; Boyce and Mohamed, 1987; Davey et al.,
2004; Hilman and Angert, 2016; Zhu et al., 2021). Variability
was also found regarding valt and vcyt (Table 2). Respiration in
leaves is highly variable among species as it depends on leaf
characteristics such as leaf lifespan, nitrogen content, growth
forms, and differential nutritional requirements, regardless of
lifestyle or biome (Grime and Hunt, 1975; Reich et al., 1998;
Lusk and Reich, 2000; Millenaar et al., 2001; Wright et al., 2004;
Atkin et al., 2015). Moreover, the carbon cost for leaf growth and
maintenance may differ among species (Lambers et al., 2008).
This is why τa, which represents the contribution of AOX to
V t, represents a better proxy to evaluate the importance of AOX
activity for plant respiration when comparing among different
plant species. In vivo AOX activity accounted for 10-36% of V t
in both palustrine and terrestrial species considered here, which is
within the range of values observed under both stressful and non-
stressful conditions in terrestrial species (10–50%; Del-Saz et al.,
2018a), and here, it was strongly influenced by habitat (Table 2).
The contribution of AOX to V t was significantly higher in
terrestrial species from Acanthaceae, Araceae, and Polypodiaceae
(Figure 3). In model terrestrial plants, previous studies reported
τa increases under abiotic stressors mainly due to reductions in

vcyt because the COX pathway is more sensitive to stressors than
the AOX pathway (Del-Saz et al., 2018a), which helps to explain
the different effect of habitat on both vcyt and valt (Table 2).
Considering the highest values of AN and τa observed among
terrestrial species (Figures 2A, 3) and the significant Pearson
coefficient between these parameters (Table 6), the AOP is likely
more important for the dissipation of excess energy in terrestrial
plants than in palustrine plants, which is in line with previous
studies describing higher oxygen isotope discrimination in sun
leaves than in shade leaves (Noguchi et al., 2001). Moreover, this
coincided with metabolic increases in the levels of several sugars
and AN (Figure 2A and Table 5). Interestingly, τa was variable
among terrestrial and palustrine species (Figure 3), suggesting
that valt is coupled to fundamental metabolic processes under
non-stress conditions that may differ among species (Florez-
Sarasa et al., 2016). Regarding the differences observed between
groups, previous studies suggested that the post-translational
regulation of AOXs in ferns may differ from those of angiosperms
because of the presence of a SerI residue instead of a CysI residue
in the majority of the AOX protein sequences analyzed, which
could presumably affect valt (Neimanis et al., 2013).

The Electron Partitioning to the
Alternative Oxidase Pathway Is Linked to
Habitat-Specific Metabolic Routes
A PLS approach through multivariate regression modeling
identified significant relationships only between τa and several
metabolites in each habitat (Figure 4 and Supplementary
Table 4). In terrestrial plants, significant relationships were
identified only between τa and metabolites related to sugar
metabolism (sucrose, glucose, and trehalose). All of these
carbohydrates are closely linked to glycolytic activity or sucrose
synthesis that are highly dependent on leaf ATP synthesis or
requirements (Lunn et al., 2006; Dimroth and von Ballmoos,
2008; Lim et al., 2020). In addition, the accumulation of these
sugars likely confers osmotolerance and redox homeostasis
in both ecosystems (Robe and Griffiths, 2000). Sucrose is a
metabolic precursor of trehalose, via trehalose-6-phosphate,
which acts as a signal for high carbon availability in the form
of sucrose (Schluepmann et al., 2004; Lunn et al., 2006; Paul
et al., 2010; Fichtner and Lunn, 2021), which is in line with
the high rates of AN observed in terrestrial plants (Figure 2A).
Trehalose is hydrolyzed by trehalase into glucose, and together
with fructose (a product of the reactions catalyzed by both
invertase and sucrose synthase) are metabolic precursors of
ascorbic acid (AA), one of the most abundant antioxidants
in plants (Smirnoff and Wheeler, 2000; Hossain et al., 2017).
AA can be metabolized to compounds like threonate (Hancock
and Viola, 2005; DeBolt et al., 2006; Smirnoff, 2018) which
showed a significant relationship with τa in terrestrial plants.
Notably, previous studies under salinity conditions highlighted
a relationship between the AOP and erythronic acid (Del-Saz
et al., 2016), a degradation product of AA (Green and Fry, 2005),
reinforcing the role of the AOP in mitochondrial AA synthesis
(Millar et al., 2003; Bartoli et al., 2006; Del-Saz et al., 2016).
In addition, threonate is also a precursor of osmoprotectants
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(Guerrier et al., 2000; Jouve et al., 2004; Muscolo et al., 2015). On
the other hand, τa in terrestrial plants also showed a significant
relationship with glycerol, which is a lipid precursor, that similar
to trehalose, is thought to be produced as a consequence of an
enhanced CO2 assimilation in the Calvin-Benson cycle and/or
from starch degradation (Liska et al., 2004), which corresponds
to the highest values of photosynthesis, foliar carbon balance
and oxygen isotope discrimination observed in terrestrial plants
(Figures 1A, 3 and Table 3).

Palustrine plants displayed a higher energy efficiency of
respiration bearing in mind their lower τa, the significant Pearson
coefficient between ATPaop and ATPtotal (Table 6), and the
highest VIP value obtained from the relationship between τa
and phosphate (Supplementary Table 4), perhaps indicative of
a tendency to save phosphorus during oxidative phosphorylation
for the benefit of ATP synthesis via COX. Besides, we identified
relationships between τa and primary metabolites related to
sugar metabolism, photorespiration, secondary metabolism, the
TCA cycle and ammonium assimilation. Precisely, we found a
significant relationship between τa and glycerate, corresponding
to the described role of AOP in dissipating reducing equivalents
from photorespiration (Watanabe et al., 2016; Timm and
Hagemann, 2020), and suggesting a role of photorespiration in
palustrine plants as previously described (Maberly and Spence,
1989). The relationships between τa and acyl-quinic acids (Qui,
CQA; Figure 4) in palustrine plants suggest a participation of
the AOP in modulating carbon supply for these chlorogenic
acids, whose accumulation is associated with enhanced tolerance
to oxidative stress (Tamagnone et al., 1998; Niggeweg et al.,
2004), and competes with the accumulation of shikimate and
derived metabolites (Marsh et al., 2009), such as phenylalanine
and tryptophan. The reversible esterification of caffeoyl-CoA
(whose metabolic precursor is CA) with Qui produces CQA.
By the conversion of Qui to shikimate (Clifford et al., 2017),
the shikimate pathway provides precursors for the synthesis
of tryptophan that in turn is a metabolic precursor for the
biosynthesis of auxins. In heterophyllous amphibious plants,
auxin synthesis may be enhanced due to alterations in the
perception of blue light in submerged leaves. This is part of a
mechanism to coordinate, together with other plant hormones,
phenotypic plasticity in leaf form or heterophylly (Nakayama
et al., 2012, 2014, 2017; Li et al., 2019, 2021). On the other hand,
the significant relationships between τa and malate, GABA, and
proline suggest that the AOP could also be related to the carbon
supply for both the TCA cycle and ammonium assimilation.
Through the mitochondrial 2-OG/malate transporter, malate
can facilitate GABA transport (Ramesh et al., 2018; Bown and
Shelp, 2020), whose synthesis mainly occurs from glutamate
by the cytosolic glutamate decarboxylase, alternatively through
polyamine degradation (Yang Y. et al., 2016), or by the oxidation
of proline to glutamate in mitochondria (Fait et al., 2008;
Shelp et al., 2012). Moreover, both GABA and proline may act
as osmoprotectants and their catabolism in mitochondria can
provide reducing equivalents as substrates for the AOP (Studart-
Guimarães et al., 2007; Michaeli et al., 2011; Florez-Sarasa et al.,
2021), which is in agreement with the relationships identified
between τa and these metabolites in palustrine plants (Figure 4

and Supplementary Table 4). On top of this, GABA can act
as a transducer of environmental stress signals leading to the
activation of genes for ethylene and abscisic acid biosynthesis
(Kinnersley and Turano, 2000; Forde and Lea, 2007). Overall,
the relationships between τa and metabolites related to hormone
biosynthesis and signaling in palustrine environments could be
especially relevant for heterophyllous amphibious plants. All
these signaling metabolites, together with gibberellins, mediate
perception and responses to fluctuations of water levels, and
control the synthesis of new developing aerial leaves in the
transition from a submerged to an aerial habit (Cox et al., 2004;
Jackson, 2008; Chater et al., 2014; Kim et al., 2018). Whilst some
evidence has suggested that plant hormones such as abscisic acid,
ethylene, gibberellins, and auxins are part of signaling networks
controlling AOX expression (Ivanova et al., 2014; Berkowitz et al.,
2016), their control of in vivo AOX activity remains, even in
model terrestrial plants, to be tested.

CONCLUSION

Here we performed a comparative study of photosynthesis,
WUEi, and respiration in palustrine and terrestrial species of
angiosperms and ferns widely distributed across biomes, and
maintained at different availability of energy and water in
their habitats. Our experimental design does not allow the
identification of the most important primary force (light or
water) driving associations between the respiratory parameters
and the metabolites. However, under different redox conditions
that broadly characterize their habitats in nature, we found
evidence of a large entry of energy into leaves of terrestrial plants
considering their higher values of AN, WUEi, and τa, as well as
their significant relationships between τa and metabolites related
to both sugar metabolism and osmotolerance. In palustrine
plants, changes in τa could modulate the supply of carbon
skeletons from sugars to metabolic routes involved in the
production of hormones and signaling molecules important for
heterophylly (e.g., the shikimate pathway and GABA shunt).
Further experiments are needed in amphibious plants in order
to study the precise regulation of the AOX pathway during
the development of new aerial leaves during their emergence
from water. In addition, the low τa observed together with
the identification of τa relationships with phosphoric acid
and other respiratory parameters suggests that mitochondrial
electron partitioning contributes to maximizing the ATP yield of
respiration in palustrine plants.
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