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This study aimed to highlight the relationship between diet, animal performance
and mucosal adherent gut microbiota (anterior intestine) in fish fed plant-based
diets supplemented with an egg white hydrolysate (EWH) with antioxidant and anti-
obesogenic activity in obese rats. The feeding trial with juveniles of gilthead sea
bream (Sparus aurata) lasted 8 weeks. Fish were fed near to visual satiety with a
fish meal (FM)/fish oil (FO) based diet (CTRL) or a plant-based diet with/without EWH
supplementation. Specific growth rate decreased gradually from 2.16% in CTRL fish
to 1.88% in EWH fish due to a reduced feed intake, and a slight impairment of feed
conversion ratio. Plant-based diets feeding triggered a hyperplasic inflammation of
the anterior intestine regardless of EWH supplementation. However, EWH ameliorated
the goblet cell depletion, and the hepatic and intestinal lipid accumulation induced
by FM/FO replacement. Illumina sequencing of gut mucosal microbiota yielded a
mean of 136,252 reads per sample assigned to 2,117 OTUs at 97% identity
threshold. The bacterial diversity was similar in all groups, but a significantly lower
richness was found in EWH fish. At the phylum level, Proteobacteria reached the
highest proportion in CTRL and EWH fish, whereas Firmicutes were decreased and
Actinobacteria increased with the FM/FO replacement. The proportion of Actinobacteria
was restored by dietary EWH supplementation, which also triggered a highest
amount of Bacteroidetes and Spirochaetes. At a closer look, a widespread presence
of Lactobacillales among groups was found. Otherwise, polysaccharide hydrolases
secretors represented by Corynebacterium and Nocardioides were increased by the
FM/FO replacement, whereas the mucin-degrading Streptococcus was only raised in
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fish fed the plant-based diet without EWH. In addition, in EWH fish, a higher abundance
of Propionibacterium was related to an increased concentration of intestinal propionate.
The antagonism of gut health-promoting propionate with cholesterol could explain the
inferred underrepresentation of primary bile acid biosynthesis and steroid degradation
pathways in the EWH fish microbiota. Altogether, these results reinforce the central role
of gut microbiota in the regulation of host metabolism and lipid metabolism in particular,
suggesting a role of the bioactive EWH peptides as an anti-obesity and/or satiety factor
in fish.

Keywords: bioactive peptide, egg white hydrolysate, gut microbiota, bile salts, lipid metabolism, Sparus aurata

INTRODUCTION

European aquaculture is still dependent on marine ingredients
for feeds, though a high grade of replacement of marine feedstuffs
(more than 70%) has been currently accomplished in Norwegian
salmon feeds (Ytrestøyl et al., 2015). A high level of fish meal
(FM) and fish oil (FO) replacement has also been achieved
in a typically carnivorous marine fish, such as European sea
bass (Dicentrarchus labrax) (Kousoulaki et al., 2015; Torrecillas
et al., 2017). Likewise, plant-based diets with less than 10%
of marine ingredients have been proven to support maximum
growth from early life stages to completion of sexual maturity in
gilthead sea bream (Sparus aurata) (Benedito-Palos et al., 2016;
Simó-Mirabet et al., 2018). However, wide-serum metabolomics
profiling revealed nutritionally mediated effects in processes of
mucosal tissue repair and DNA stability (Gil-Solsona et al.,
2019). Furthermore, feeding gilthead sea bream with plant-based
diets induced negative effects at gut level, including changes
in the expression of mucins, mucosal immunoglobulins (IgT)
and other immune-relevant genes (Pérez-Sánchez et al., 2013;
Piazzon et al., 2016). This biomarker profile leads to a pro-
inflammatory condition, with drawback effects in gut integrity
and epithelial barrier functions (Estensoro et al., 2016; Piazzon
et al., 2017). However, most of these effects, including changes
in sex reversal from male to female, or in mucosal adherent
intestinal microbiota composition, were restored by dietary
sodium butyrate supplementation, resulting in an improved
disease outcome in fish exposed to bacteria or myxozoan parasites
(Piazzon et al., 2017; Simó-Mirabet et al., 2018).

Gut microbiota has the capacity to modify and possibly
activate food constituents, providing benefits for health (Brown
et al., 2015; Davis, 2016; Aoun et al., 2020). Certainly, the
persistent imbalance of the gut’s microbial community resulting
from exposure to diverse environmental factors, including
unhealthy diets, drugs, toxins, and pathogens, has a major impact
on health (Chávez-Talavera et al., 2017; Hasan and Yang, 2019;
Lee et al., 2020). Among them, diet micro- and macro-nutrients
are considered one of the main factors that modulate gut
microbiota (Zhang et al., 2018; Leeming et al., 2019). Therefore,
understanding the modulation of the gut microbiome by dietary
nutrients and vice-versa becomes essential for the development
of novel strategies to improve animal and human health. In
fact, the targeting of gut microbiota is a promising tool to
improve the health and welfare of farmed fish, and gilthead

sea bream in particular. Certainly, the intestinal gut microbiota
is highly modulated by age and sex reversal in a protandrous
hermaphrodite fish such as gilthead sea bream (Piazzon et al.,
2019). In addition, the gut microbiota of gilthead sea bream
families selected for fast-growth showed a high level of plasticity,
which makes them more flexible upon dietary changes, showing
at the same time, a better ability to deal with intestinal parasites
(Piazzon et al., 2020).

In other studies of this special issue of nutrition and
gut microbiota in aquaculture, we also analyzed the effect
of probiotics and alternative FM replacers on gilthead sea
bream gut microbiota (Moroni et al., 2021; Solé-Jiménez et al.,
2021). Meanwhile, bioactive peptides derived from food proteins
are considered important modulators of various biological
processes, which occur both systemically and locally within
the gastrointestinal tract (Moughan et al., 2014). Historically,
milk proteins have been considered a rich source of bioactive
peptides, but there is now evidence of a wide range of animal
and plant protein sources for production of biologically active
peptides, comprising meat, bone, eggs, cereals, legumes, yeast,
seaweed, and fungi (Brown et al., 2015). In particular, a bioactive
egg white hydrolysate (EWH) treated with pepsin showed
potent in vitro and in vivo antioxidant and anti-inflammatory
properties (Dávalos et al., 2004; Miguel et al., 2004; Garcés-Rimón
et al., 2016a), improving oxidative stress and inflammation
biomarkers on genetically and diet-induced obese rats (Garcés-
Rimón et al., 2016b; Moreno-Fernández et al., 2018a,b). The
antioxidant properties of EWH have also been associated with the
prevention of metabolic complications arising from the exposure
to heavy metals (Rizzetti et al., 2017; Martínez et al., 2019;
Gomes Pinheiro et al., 2020). Although earlier studies targeting
intestinal microbiota support that EWH has the potential to
revert microbial dysbiosis in a rodent model of genetic obesity
(Requena et al., 2017), the modulating effects of food-bioactive
peptides upon gut microbiota have been much less studied (Wu
et al., 2021). Thus, in an attempt to focus on the link between
mucosal adherent microbiota and the bioactive properties of
EWH in other animal model, we analyzed the potential benefits
of dietary EWH supplementation in farmed gilthead sea bream
juveniles fed plant-based diets. Special attention was also paid
to the evaluation of growth performance, allocation of body
fat depots, hepatic and intestinal histopathological scoring,
antioxidant status, and intestinal concentration of lactic acid and
short chain fatty acids (SCFAs).
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MATERIALS AND METHODS

Ethics Statement
Fish manipulation and tissue collection were carried out
according to the Spanish (Royal Decree RD53/2013) and
the current EU (2010/63/EU) legislations on the handling of
experimental fish. All procedures were approved by the Ethics
and Animal Welfare Committee of the Institute of Aquaculture
Torre de la Sal (IATS-CSIC, Castellón, Spain), CSIC (permit
number 869/2019) and “Generalitat Valenciana” (permit number
2020/VSC/PEA/0010).

Animals
Juveniles of gilthead sea bream (March 2020) were purchased
from a Mediterranean hatchery (Piscimar, Burriana, Spain) and
adapted for 2 months to the indoor experimental facilities
of IATS-CSIC under natural photoperiod and temperature
conditions (40◦5′N; 0◦10′E). Seawater was pumped ashore (open
system), oxygen content of water effluents was always above 85%
saturation, and unionized ammonia remained below 0.02 mg/L.
During the acclimation and experimental period (May–July
2020), water temperature increased from 18◦C in May to
25◦C in July.

Diets
Extruded isoproteic and isolipidic diets (2, 3 mm pellet size) were
formulated by Sparos Lda. (Olhão, Portugal), following current
industry practices with plant protein and oil sources as main
replacers of fish meal (FM) and fish oil (FO) (Table 1). The
inclusion level of FM (including fish protein hydrolysates) and
FO in the control diet (CTRL) was 35% and 5%, respectively.
In the diet named L-FM/FO, the FM and FO inclusion levels
were reduced to 12.5% for FM and fish protein hydrolysates,
and to 3% for FO, being this diet conveniently supplemented
with monocalcium phosphate, L-tryptophan and DL-methionine.
The EWH diet was formulated to be a L-FM/FO diet with
EWH added at 7.5% instead of plant proteins and fish protein
hydrolysates. The EWH was prepared by pepsin hydrolysis
of crude egg white as previously described by Garcés-Rimón
et al. (2016a). Briefly, commercial pasteurized egg white was
hydrolyzed for 8 h with BC Pepsin 1:3000 (E.C. 3.4.23.1; from
pork stomach, E:S:2:100 w:w, pH 2.0, 37◦C), purchased from
Biocatalysts (Cardiff, United Kingdom). Enzyme inactivation
was achieved by increasing the pH to 7.0 with 10 N NaOH.
The hydrolysate was centrifuged at 2,500 × g for 15 min and
the supernatants were frozen and lyophilized until use as fish
feed ingredient.

Feeding Trial
In May 2020, fish of 20–24 g body weight were randomly
distributed in nine 90 L tanks to establish triplicate groups of
20 fish each (initial rearing density, 4.8–4.9 kg/m3). All fish
were tagged with passive integrated transponders (PIT) (ID-100A
1.25 Nano Transponder, Trovan, Madrid, Spain) into the dorsal
skeletal muscle, and were individually weighed and measured at
initial, intermediate and final sampling points (every 4 weeks),

TABLE 1 | Ingredients and chemical composition of control and
experimental diets.

Ingredients CTRL
(%)

L-FM/FO
(%)

EWH
(%)

Fishmeal super prime 30 10 10

Fish protein hydrolysate 5 2.5

Soy protein concentrate 12.5 12.5 10

Pea protein concentrate 4.5 2.5

Wheat gluten 5 12.5 10

Corn gluten meal 5 10 10

Soybean meal 48 5 10 10

Rapeseed meal 5 5 5

Sunflower meal 40 5 10 10

Wheat meal 9.07 3.99 5.49

Whole peas 4 2 2

Vitamin and mineral premix* 1 1 1

Vitamin C35 0.03 0.03 0.03

Betaine HCl 0.2 0.2 0.2

Antioxidant powder 0.2 0.2 0.2

Sodium propionate 0.1 0.1 0.1

Monocalcium phosphate 0.6 2.5 2.5

L-Tryptophan 0.03 0.03

DL-Methionine 0.25 0.25

Fish oil 5 3 3

Soybean oil 5.3 8 8.6

Linseed oil 2 1.7 1.6

EGG hydrolysate 7.5

Chemical composition (proximate analyses)

Dry matter, % feed 92.9 93.2 92.8

Crude protein, % feed 47.9 47.9 47.9

Crude fat, % feed 16.1 16.1 16.1

EPA + DHA, % feed 2.4 1.2 1.2

Ash, % feed 8.7 8.0 7.6

*Vitamin and mineral premix: INVIVONSA Portugal SA, Portugal: Vitamins (IU or
mg/kg diet): DL-alpha tocopherol acetate, 100 mg; sodium menadione bisulfate,
25 mg; retinyl acetate, 20,000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg;
riboflavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 0.1 mg; nicotinic acid,
200 mg; folic acid, 15 mg; ascorbic acid, 500 mg; inositol, 500 mg; biotin, 3 mg;
calcium pantothenate, 100 mg; choline chloride, 1000 mg; betaine, 500 mg.
Minerals (g or mg/kg diet): copper sulfate, 9 mg; ferric sulfate, 6 mg; potassium
iodide, 0.5 mg; manganese oxide, 9.6 mg; sodium selenite, 0.01 mg; zinc sulfate,
7.5 mg; sodium chloride, 400 mg; excipient wheat gluten.

using a FR-200 Fish Reader W (Trovan) for data capture and pre-
processing. The trial lasted 8 weeks, and fish were fed by hand
once daily (12 a.m.), 6 days per week, near to visual satiety with
CTRL or experimental diets for the entire duration of the trial.
Feed intake was registered daily, and normal fish behavior was
assessed routinely by camera monitoring. No mortalities were
registered through the entire experimental period.

Sample Collection
At the end of the trial and following two fasting days, nine
fish per diet (three fish/tank) were anaesthetized with 0.1 g/L
of tricaine-methanesulfonate (MS-222, Sigma-Aldrich, St. Louis,
MO, United States). Blood was taken from the caudal vessels
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with heparinized syringes, centrifuged at 3,000 × g for 20 min
at 4◦C, and plasma samples were stored at−80◦C until analyzed.
Before tissue collection, fish were sacrificed by cervical section.
Liver, intestine (excluding the pyloric caeca) and mesenteric fat
were weighed and measured (intestine length) to calculate the
hepatosomatic index (HSI), mesenteric fat index (MSI), and
intestine weight (IWI) and length (ILI) indexes. Tissue portions
(∼0.4 cm) of liver, anterior intestine (AI; immediately after the
pyloric caeca) and posterior intestine (PI; immediately before the
anal ampoule) were fixed in 10% neutral buffered formalin for
subsequent histological analyses. The remaining AI was opened
and gently washed with sterile Hanks’s balanced salt solution to
remove non-adherent bacteria. Intestinal mucus was scrapped
off using the blunt edge of a sterile scalpel and collected into
sterile 1.5 mL tubes. The anterior intestine portion was selected
due to its importance in fish nutrient absorption and metabolism
(Sundell and Rønnestad, 2011). The autochthonous bacteria were
selected, because these populations are capable of colonizing the
mucosal surface, directly impacting the fish physiology (Hao and
Lee, 2004). Mucus samples were kept on ice and DNA extraction
was performed immediately after the sampling. Additional fish
(10 fish per diet) were sampled 8 h after feeding for the analysis of
intestinal SCFA. Briefly, animals were anesthetized and sacrificed
by cervical section, intestine was cut out, and the intestinal
content was collected by stripping. During the two sampling days
corresponding to fasting and postprandial sample collection, all
samples were obtained in a short-period lasting 2–3 h, alternating
among replicates of each dietary group to avoid biases due
to sampling time.

Histological Analysis
Formalin fixed pieces of liver, AI and PI were processed for
paraffin embedment, 4 µm-sectioned and stained with Giemsa
and periodic acid-Schiff (PAS) following standard procedures.
Sections were examined with a Leitz Dialux 22 light microscope
connected to an Olympus DP70 camera, and representative
microphotographs were taken. The histological alterations
observed were scored according to semiquantitative scales.
In intestinal sections, cell abundance of differentially stained
goblet cells (light- or dark-stained with Giemsa), intraepithelial
lymphocytes (IELs) and eosinophilic granular cells (EGCs)
were scored ranging from 0 (absence) to 3 (very abundant,
meaning 25–30 cells/microscope field at 500× magnification).
The degree of lipid vacuolization in enterocytes and the degree of
hyperplasia in the lamina propria-submucosa were scored from 0
(absence) to 3 (severe). In liver sections, the degree of lipid and
glycogen storage in hepatocytes was scored from 0 (absence) to 3
(pervasive) by Giemsa or PAS staining, respectively. In addition,
melanomacrophage centers were quantified in the liver.

Antioxidant Capacity
The oxygen radical absorbance capacity (ORAC) assay was used
to measure the total plasma antioxidant capacity as previously
described (Garcés-Rimón et al., 2016b). ORAC values were
quantified by a fluorimeter Polarstar Galaxy plate reader (BMG
Labtechnologies GmbH, Germany) with wavelength excitation
at 485 nm and wavelength emission measured at 520 nm.

Results were expressed as µmol of Trolox (Sigma, United States)
equivalent (eq)/mL of plasma.

Lactic Acid and Short Chain Fatty Acid
Determinations
Intestine content (200 mg) was homogenized with 0.1% peptone
solution with 0.85% NaCl (500 µL) and centrifuged at 10,000× g
for 5 min at 4◦C. The supernatant was filtered and 0.2 µL were
injected on a HPLC system (Jasco, Tokyo, Japan) equipped with
a UV-975 detector. Lactic acid and SCFA were separated using a
Rezex ROA Organic Acids column (Phenomenex, Macclesfield,
United Kingdom) following the method described by Sanz et al.
(2005). The mobile phase was a linear gradient of 0.005 M sulfuric
acid in HPLC grade water, and flow rate was 0.6 mL/min. The
elution profile was monitored at 210 nm, and peak identification
was carried out by comparing the retention times of target peaks
with those of standards. Calibration curves of formic acid, acetic
acid, propionic acid, butyric acid and lactic acid were prepared in
the concentration range of 1 to 100 mM.

DNA Extraction From Mucus Samples
Intestinal mucus samples (200 µl) were treated with 250 µg/mL
of lysozyme (Sigma) for 15 min at 37◦C. Then, DNA was
extracted using the High Pure PCR Template Preparation Kit
(Roche) following the manufacturer’s instructions. DNA
concentration, quality and purity were measured using
a Nanodrop 2000c (Thermo Scientific), and agarose gel
electrophoresis (1% w/v in Tris-EDTA buffer). DNA was stored
at−20◦C until sequencing.

Illumina MiSeq Sequencing and
Bioinformatic Analysis
The V3-V4 region of the 16S rRNA gene (reference nucleotide
interval 341–805 nt) was sequenced using the Illumina MiSeq
system (2 × 300 paired-end run) at the Genomics Unit from
the Madrid Science Park Foundation (FPCM). The details
on the PCR and sequencing of amplicons were described
elsewhere (Piazzon et al., 2019). Raw sequence data were
uploaded to the Sequence Read Archive (SRA) under Bioproject
accession number PRJNA705868 (BioSample accession numbers:
SAMN18105342-68). Raw forward and reverse reads were
quality filtered using FastQC1 and pre-processed using Prinseq
(Schmieder and Edwards, 2011). Terminal N bases were trimmed
in both ends and sequences with >5% of total N bases were
discarded. Reads that were <150 bp long, with Phred quality
score < 28 in both of the sequence ends and with a Phred average
quality score < 26 were excluded. Then, forward and reverse
reads were merged using fastq-join (Aronesty, 2013).

Bacteria taxonomy assignment was performed using the
Ribosomal Database Project (RDP) release 18 as a reference
database (Cole et al., 2014). Reads were aligned with a custom-
made pipeline using VSEARCH and BLAST (Altschul et al., 1990;
Rognes et al., 2016). Alignment was performed establishing high
stringency filters (ł90% sequence identity, ł90% query coverage).

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Taxonomic assignment results were filtered and data were
summarized in an operational taxonomic units (OTUs) table.
From the annotation obtained, the discussion and interpretation
of the results was based at the level of genus, as taxonomic
affiliations with 16S rRNA amplicon sequencing might not be
accurate enough at the species level (Winand et al., 2020).
Sample depths were normalized by total sum scaling and then
made proportional to the total sequencing depth, following the
recommendations previously described (McKnight et al., 2019).

Inferred Metagenome and Pathway
Analysis
Piphillin was used to normalize the amplicon data by 16S rRNA
gene copy number and to infer metagenomic contents (Iwai et al.,
2016). This analysis was performed with the OTUs significantly
driving the separation by diets in the PLS-DA analysis (described
in the “Statistics” section). For the analysis, a sequence identity
cut-off of 97% was implemented, and the inferred metagenomic
functions were assigned using the Kyoto Encyclopedia of Genes
and Genomes database (KEGG, October 2018 Release). Raw
KEGG pathway output from Piphillin was analyzed with the R
Bioconductor package DESeq2 using default parameters, after
flooring fractional counts to the nearest integer (Love et al., 2014;
Bledsoe et al., 2016; Piazzon et al., 2020).

Statistics
Data on growth were analyzed by one-way ANOVA using
SigmaPlot v14 (Systat Software Inc., San Jose, CA, United States).
Normality of the data was verified by Shapiro–Wilk test, and
Dunn’s post-test was used for multiple comparisons among
groups. Analysis of semiquantitative and quantitative histological
data was carried out with the non-parametric Kruskal–Wallis
test, followed by Dunn’s post-test for the multiple comparisons.
SCFA results were analyzed by one-way ANOVA followed by
Holm–Sidak post-test. Rarefaction curves (plotting the number
of observed taxonomic assignations against the number of
sequences), species richness estimates, and alpha diversity
indexes were obtained using the R package phyloseq (McMurdie
and Holmes, 2013). Differences in species richness, diversity
indexes and phylum abundance were determined by Kruskal–
Wallis test using the Dunn’s post-test, with a significance
threshold of P < 0.05. Beta diversity across groups was
tested with permutational multivariate analysis of variance
(PERMANOVA), using the non-parametric method adonis from
the R package Vegan with 10,000 random permutations. To study
the separation among groups, supervised partial least-squares
discriminant analysis (PLS-DA) and hierarchical clustering of
samples were sequentially applied, using EZinfo v3.0 (Umetrics,
Umeå, Sweden) and the R package ggplot2, respectively. Values
of normalized counts of OTUs present in five or more samples
were included in the analyses. The contribution of the different
genes to the group separation was determined by the minimum
Variable Importance in the Projection (VIP) values achieving the
complete clustering of the conditions with a VIP value ≥ 1.2.
Hotelling’s T2 statistic was calculated by the multivariate software
package EZinfo v3.0. All points in the current study were
within the 95% confidence limit for T2, thus no outliers were

detected and discarded. The quality of the PLS-DA model was
evaluated by the parameters R2Y (cum) and Q2 (cum), which
indicate the fit and prediction ability, respectively. To assess
whether the supervised model was being over-fitted, a validation
test consisting on 500 random permutations was performed
using SIMCA-P+ v11.0 (Umetrics). The inferred metagenomic
pathways were considered differentially represented using a FDR-
corrected significance threshold of 0.05.

RESULTS

Growth Performance and Antioxidant
Capacity
Data on growth performance are reported in Table 2. Final body
weight, feed intake and condition factor were significantly lower
(P ≤ 0.004) in EWH fish than in CTRL fish with intermediate
values in fish fed the L-FM/FO diet. Specific growth rates (SGR)
also varied significantly from 2.16 in CTRL fish to 1.88 in EWH
fish, again with intermediate values (2.03) in fish fed the L-FM/FO
diet. The opposite trend (not statistically significant, P = 0.06)
was found for the feed conversion ratio (FCR) that varied from
1.03 in CTRL fish to 1.10 in EWH fish. HSI, MFI, and IWI
were not significantly altered by dietary treatment. However, the
intestine length of L-FM/FO fish was larger, and the resulting

TABLE 2 | Effects of dietary treatment on growth performance and antioxidant
capacity of gilthead sea bream juveniles fed to visual satiety from May to July
(8 weeks) with control (CTRL), low fish meal/fish oil (L-FM/FO) diet, and EWH diets.

CTRL L-FM/FO EWH P1

Initial body weight (g) 21.93 ± 0.38 21.98 ± 0.43 21.95 ± 0.40 0.996

Final body weight (g) 71.75 ± 1.08a 66.89 ± 1.01b 61.41 ± 0.96c <0.001

Final condition factor2 2.67 ± 0.02a 2.68 ± 0.03a 2.58 ± 0.02b 0.004

Feed intake (g DM/fish) 51.09 ± 0.02a 45.84 ± 0.01ab 43.46 ± 0.16b 0.004

FCR3 1.03 ± 0.02 1.02 ± 0.02 1.10 ± 0.02 0.062

SGR (%)4 2.16 ± 0.02a 2.03 ± 0.02b 1.88 ± 0.02c <0.001

Liver weight (g) 0.73 ± 0.03 0.73 ± 0.03 0.67 ± 0.03 0.232

Mesenteric fat (g) 0.85 ± 0.13 0.77 ± 0.10 0.85 ± 0.11 0.970

Intestine weight (g) 2.60 ± 0.07ab 2.79 ± 0.14a 2.32 ± 0.08b 0.008

Intestine length (cm) 10.12 ± 0.53 11.56 ± 0.38 10.31 ± 0.35 0.042

HSI (%)5 1.06 ± 0.04 1.05 ± 0.03 1.13 ± 0.03 0.292

MFI (%)6 1.18 ± 0.14 1.11 ± 0.12 1.37 ± 0.15 0.380

IWI (%)7 3.75 ± 0.10 3.99 ± 0.14 3.91 ± 0.08 0.284

ILI (%)8 73.21 ± 3.86b 84.29 ± 2.34a 75.4 ± 2.68b 0.041

ORAC9 6.42 ± 0.6 6.02 ± 0.67 6.41 ± 0.67 0.881

Data on body weight, feed intake and growth indices are the mean ± SEM of
triplicate tanks. Data on organosomatic indices are the mean ± SEM of 18 fish.
Different superscript letters in each row indicate significant differences among
dietary treatments (Holm–Sidak post-test, P < 0.05, stated in bold).
1 Result values from one-way analysis of variance.
2 CF = 100 × (body weight/standard length3).
3 Feed conversion ratio = dry feed intake/wet weight gain.
4 Specific growth rate = 100 × (ln final body weight − ln initial body weight)/days.
5 Hepatosomatic index = 100 × (liver weight/fish weight).
6 Mesenteric fat index = 100 × (mesenteric fat weight/fish weight).
7 Intestinal weight index = 100 × (intestine weight/fish weight).
8 Intestinal length index = 100 × (intestine length/standard length).
9 Oxygen radical absorbance capacity = µmol eq Trolox/mL plasma.
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ILI was significantly higher in this group of fish in comparison
to CTRL and EWH groups. Intestine weight of L-FM/FO fish
was also larger, although this was not reflected in significant
differences in IWI among groups. No statistical differences in
plasma antioxidant capacity were observed between different
groups, with ORAC values around 6 µmol eq Trolox/mL plasma.

Histological Scoring
The dietary replacement of FM/FO provoked a hyperplasic
inflammation in the intestines of both, L-FM/FO and EWH
fish, compared to the CTRL fish (Figures 1, 2). Inflammatory
cell infiltrates in the epithelium and lamina propria-submucosa
consisted mainly of lymphocytes and eosinophilic granular cells.
In the AI, a significant submucosal hyperplasia was found
in L-FM/FO and EWH fish, though the increase of EGCs
and IELs was not significant. In this segment, the abundance
of light-stained goblet cells was significantly reduced by the
L-FM/FO diet and this effect reverted by the EWH diet. This
goblet cell type presented a PAS+ staining pattern indicative
of neutral mucins. By contrast, the hyperplasic effect was
less severe (not significant) at the PI, where the increase of
intraepithelial lymphocytes was the only significant inflammatory

sign observed in L-FM/FO and EWH fish. The enterocytes
of the CTRL and L-FM/FO fish presented a medium degree
of lipid vacuolization, which was significantly reduced by the
EWH diet. Remarkably, this lipid depletion in EWH PIs co-
occurred with a decrease of lipid depots in the hepatocytes
of EWH fish, which were increased with L-FM/FO diets. No
differences in glycogen storage were found in the liver of fish
fed the different diets, though a significant increase of liver
melanomacrophage centers was observed in EWH fish, compared
to the other two diets.

Intestinal Content in Lactic Acid and
Short Chain Fatty Acid
Butyric acid could not be detected in any of the analyzed samples.
No statistically significant differences were found among groups
for the intestinal concentration of lactic acid, formic acid, acetic
acid, or total SCFA (Figure 3 and Supplementary Table 1).
The only difference was found in propionic acid, present in
significantly higher concentrations in the intestinal content of
fish fed EWH (7.40 µmol/g) when compared to the CTRL group
(4.14 µmol/g).

FIGURE 1 | Histological alterations in the AI (A–C), PI (D–F) and liver (G–I) of gilthead sea bream. Panels (A,D,G) correspond to CTRL fish; (B,E,H) to fish fed the
L-FM/FO diet; and (C,F,I) to fish fed the EWH diet. In AI, note the high abundance of light-stained goblet cells (white arrowheads) in CTRL (A) and EWH (C) fish, as
well as the submucosal hyperplasia (asterisks) in L-FM/FO (B) and EWH (C) fish. The upper insert in panel (C) shows the PAS-stained goblet cells. In the PI, note the
presence of lipid vacuolization in enterocytes (black arrows) in CTRL fish (D), which is intensified in L-FM/FO fish (E) and decreased in EWH fish (F). PI of EWH fish
presented high abundance of intraepithelial lymphocytes (white arrows). In livers, note the higher lipid storage in L-FM/FO fish (H) and the presence of early
melanomacrophage centers (black arrowheads) in EWH fish (I). Glycogen storage did not change among groups (PAS-stained inserts). Scale bars = 20 µm.
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FIGURE 2 | Scoring of histological alterations in fish fed CTRL (black bars), L-FM/FO (green bars) and EWH (red bars) diets. Mean semiquantitative scoring (+SEM)
from 0 (absence) to 3 (very abundant) is shown for presence of PAS+ goblet cells (GCs), eosinophilic granular cells (EGCs) and intraepithelial lymphocytes (IELs) in
two intestinal segments. Mean semiquantitative scoring (+SEM) from 0 (absence) to 3 (severe) is shown for the degree of hyperplasia in the submucosa (Hyp),
vacuolization of enterocytes (Vac) in two intestinal segments, and fat (Fat) and glycogen (Gly) storage in liver. Total melanomacrophage centers (MMCs) were
quantified in liver (mean abundance, right y-axis, +SEM). Different letters within each alteration indicate statistically significant differences among diets (P < 0.05).

Alpha Diversity and Microbial
Composition
Illumina sequencing of the 27 analyzed samples yielded 3,678,804
high quality reads, with a mean of 136,252 reads per sample
(Supplementary Table 2). The reads were assigned to 2,117
OTUs at a 97% identity threshold. Rarefaction analysis showed
curves that approximated saturation (horizontal asymptote), thus
a good coverage of the bacterial community was achieved and

FIGURE 3 | Concentration of intestinal propionic acid and total short chain
fatty acids (6SCFA) in fish fed CTRL (black bars), L-FM/FO (green bars), and
EWH (red bars) diets. Significant differences (one-way ANOVA, Holm–Sidak
post-test, P < 0.05) are indicated by different letters, which correspond to
pairwise comparisons within each dietary group.

the number of sequences for analysis was considered appropriate
(Supplementary Figure 1).

In a first attempt to unravel the effects of dietary intervention
on gut mucosal microbiota, we analyzed the bacterial diversity
of all dietary groups, and no significant differences were found
in Shannon and Simpson diversity indexes, but a significantly
lower richness (ACE value, P < 0.05) was found in EWH fish
(Table 3). At the phylum level (Figure 4), Proteobacteria were
the most abundant bacteria, significantly varying from more
than 55% in fish fed the L-FM/FO diet to 67.8% in EWH
fish. In parallel, a significant decrease in the phylum Firmicutes
was found both in L-FM/FO and EWH (16.6–16.8%) groups
in comparison to CTRL fish (26.5%). Conversely, the phylum
Actinobacteria raised up from ∼6% in CTRL and EWH fish to
18.2% in fish fed the L-FM/FO diet. Finally, in EWH fish, the less
abundant Bacteroidetes and Spirochaetes phyla were significantly
increased, with values of 2.8% and 2.2%, respectively.

Microbiota Discriminant Analysis
Permutational multivariate analysis of variance test highlighted
statistically significant differences in bacterial composition when
comparing animals fed different diets (P = 0.048, F = 1.115,

TABLE 3 | Species richness estimators (observed and ACE) and diversity indexes
(Shannon and Simpson) of fish fed CTRL, L-FM/FO, and EWH diets.

CTRL L-FM/FO EWH P-value

Observed 278.78 ± 75.29 243.78 ± 55.77 193.56 ± 88.21 0.06

ACE 394.13 ± 81.16a 377.09 ± 70.49a 266.12 ± 115.75b 0.046*

Shannon 2.78 ± 0.26 2.50 ± 0.32 2.60 ± 0.51 0.23

Simpson 0.89 ± 0.04 0.87 ± 0.09 0.86 ± 0.10 0.67

Values are mean ± SEM of 9 fish. Asterisk (*) and bold font indicates significant
differences among groups (Holm–Sidak, P < 0.05) denoted by different superscript
letters.
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FIGURE 4 | Relative abundance of bacterial phyla in the anterior intestine of
fish fed CTRL (black bars), L-FM/FO (green bars), and EWH (red bars) diets.
Significant differences (Kruskal–Wallis, Dunn’s post-test, P < 0.05) are
indicated by different letters, which correspond to pairwise comparisons
within each phylum among dietary groups. The numbers above each bar
represent the mean abundance in percentage for each group.

R2 = 0.085). Although R2 values detected were quite low,
they were in line with what was reported in other microbiota
studies (He et al., 2018) due to the complexity and variability
of microbiota samples. To validate and study these differences
in more detail, a PLS-DA model (R2Y = 99%, Q2 = 70%)
with three score components was constructed and statistically
validated (Figure 5A and Supplementary Figure 2). The first
two components explained more than 80% of total variance,
clearly separating CTRL fish from fish fed L-FM/FO diets along
x-axis (component 1, 37.4%), whereas component 2 (43.2%)
separated the L-FM/FO diets with/without EWH along y-axis.
To determine which groups of bacteria were driving these
separations at a high level of confidence, the minimum VIP
value driving the correct separation of groups in the model was
determined throughout a heatmap representation (Figure 5B).
Such approach disclosed 165 OTUs (VIP ≥ 1.2), which can be
accessed in Supplementary Table 3.

Figure 6 shows the list of most abundant bacteria (at least
1% in one of the groups; 46 OTUs out of the 165 with
VIP ≥ 1.2) that exclusively drove the separation by dietary
groups. For these abundant bacteria, a first type of response was
mediated by 16 OTUs that were increasing with the FM/FO
replacement and decreasing again in EWH fish. In this group,
the presence of Neisseriaceae family and species of Ralstonia,
Lactobacillus, Streptococcus, Corynebacterium, and Nocardioides
genera was remarkable. A second type of response grouped 15
OTUs present in a significant proportion in the CTRL group,
but decreasing in fish fed the two L-FM/FO diets. In this
case, dietary plant ingredients produced the decrease of the
Comamonadaceae family and Novosphingobium, Mesorhizobium,
Klebsiella, Acinetobacter, Brochotrix, Bacillus, Clostridium sensu
stricto, and Exiguobacterium genera. The remaining 15 OTUs

FIGURE 5 | (A) Two-dimensional PLS-DA scores plot constructed using the
variable diet. The validation by the permutation test can be found in
Supplementary Figure 2. (B) Heatmap representing the abundance
distribution (Z-score) of the OTUs identified to be driving the separation by diet
among all dietary groups.

increased their proportion in fish fed the EWH diet, being in
a very low proportion in the other two dietary groups. This
response triggered the presence of Bacteroidetes and Spirochaetes
phyla, and more specifically of the Flavobacteriaceae family and
Cloacibacterium genus. The Rhodospirillales order also increased
with the addition of EWH, as well as Granulicatella, Serratia,
Bradyrhizobium, Propionibacterium, and Photobacterium genera.

Inferred Metagenome and Pathway
Analysis
With the aim of assessing the biological significance of the diet-
induced differences in the microbiota of the different groups, a
pathway analysis was conducted with the inferred metagenomes
of the 165 OTUs that drove the separation by diet (Table 4). The
results showed that 15 pathways could be significantly changing
in the comparison between fish fed CTRL and the L-FM/FO diet
without EWH, whereas the comparison between EWH and CTRL
groups rendered 28 pathways. In both comparisons, pathways
related to signaling pathways of rat sarcoma (RAS), sphingolipids,
GnRH, cAMP, and Fc gamma R-mediated phagocytosis were
strongly overrepresented in the two groups of fish fed
L-FM/FO diets, whereas Staurosporine biosynthesis, neuroactive
ligand–receptor interaction and cholesterol metabolism were
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FIGURE 6 | Dotplot map depicting the most abundant genera (more than 1% of the total microbiota in at least one dietary group) from the 165 significant OTUs
identified in Figure 5B. The size of the dots represents the normalized counts in each dietary group (CTRL, L-FM/FO, and EWH). The color scale represents the
mean abundance, in percentage, of each genus within each group. OTUs above the blue dotted line showed an increased abundance in L-FM/FO groups; OTUs
between the dotted lines showed an increased abundance in the CTRL group; OTUs below the red dotted line showed an increased abundance in the EWH group.
The numbers after the genus names correspond to different OTUs assigned to the same genus that probably belong to different species.

underrepresented. By contrast, only two pathways corresponding
to primary bile acid biosynthesis and steroid degradation
were consistently underrepresented in the microbiota of EWH
fish when comparisons are made with the other two groups.
This was coupled to an overrepresentation of the longevity
regulating pathway.

DISCUSSION

Enzymatic hydrolysis of animal and plant proteins has been
used as a basic method for the conversion of underused

protein products into highly digestible peptides (Benjakul et al.,
2014; Egerton et al., 2018a). Additionally, protein hydrolysates
containing antioxidant peptides possess a high therapeutic
potential for the management of chronic diseases, but also as
safe additives to halt lipid peroxidation, improving the quality
and consumer satisfaction of several food products (Auwal
et al., 2017; Cicero et al., 2017). Thus, the antioxidants and
anti-inflammatory properties of EWH have shown beneficial
effects in different experimental rat models (Requena et al.,
2017), and we discussed herein the potential benefits of dietary
EWH supplementation in fish fed experimental diets with a high
replacement of marine feedstuffs by alternative plant ingredients.
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TABLE 4 | Pathway analysis from predicted metagenome.

Generic Process 1 2 3

Cellular process Endocytosis 4.63

Flagellar assembly −1.7

Environmental
information
processing

Ras signaling pathway 5.47 7.1

Sphingolipid signaling pathway 6.97 4.73

cAMP signaling pathway 6.72 4.51

Neuroactive ligand–receptor
interaction

−3.41 −2.69

Genetic
information
processing

Proteasome 4.73 4.28

Basal transcription factors 4.19 3.13

Ribosome biogenesis in eukaryotes 0.8

Sulfur relay system 0.75

Metabolism Flavonoid biosynthesis 5.24

Stilbenoid, diarylheptanoid and
gingerol biosynthesis

5.24

Secondary bile acid biosynthesis 4.19

Vitamin B6 metabolism 0.63

Nitrogen metabolism 0.52

Aminobenzoate degradation −1.01

Dioxin degradation −1.56

Bisphenol degradation −2.81

Primary bile acid biosynthesis −3.22 −3.02

Steroid degradation −4.16 −3.41

Steroid biosynthesis −6.17

Staurosporine biosynthesis −5.35 −6.72

Photosynthesis – antenna proteins 8.23

Arginine and proline metabolism −0.61

Organismal
systems

Fc gamma R-mediated
phagocytosis

6.16 5.58

GnRH signaling pathway 6.14 5.58

Cholesterol metabolism −3.42 −2.7

Renin secretion −4.83

Regulation of lipolysis in adipocytes −5.48

Retrograde endocannabinoid
signaling

−3.55 −5.85

Longevity regulating pathway –
multiple species

0.62

Parathyroid hormone synthesis,
secretion and action

4.14

Bile secretion 4.24

Values represent the log2FC of the comparisons: 1 = L-FM/FO vs. CTRL; 2 = EWH
vs. CTRL; 3 = EWH vs. L-FM/FO (FDR < 0.05).

From our results, it is conclusive that dietary EWH
supplementation triggered a reduced feed intake and a slight
impairment of feed conversion ratio in gilthead sea bream. In
rodents, EWH administration reduced body weight gain in obese
animals, and this decrease was related to a reduced deposit of
fat in different tissues, especially white adipose tissue, but no
effects on growth or food intake were observed in obese or control
rats fed EWH (Miguel et al., 2006; Moreno-Fernández et al.,
2018a). It should be also noted that proteins in their natural state
do not contribute to the flavor of food, but hydrolyzed derived
peptides can modify the sensory quality of proteins causing food
rejection (Iwaniak et al., 2019). Therefore, we cannot exclude
a taste effect on the apparent satiety effect of the EWH in our

experimental gilthead sea bream model. Moreover, fish protein
hydrolysates, absent in EWH diet, are known feed attractants in
aquaculture, which could enhance the feed palatability of CTRL
and L-FM/FO diets (Kasumyan and Døving, 2003; Aguila et al.,
2007). Alternatively, the modulation of the intestinal microbiota,
particularly with respect to production of SCFA, might also
contribute to explain the observed effects on growth and feed
intake. SCFA, such as butyrate, propionate and acetate, are end
products of microbial fermentation implicated in a multitude of
physiological functions (Morrison and Preston, 2016), but similar
to fiber, protein fermentation also produces SCFA (Macfarlane,
1992). However, while propionate production remains relatively
stable, the rate of acetate and butyrate production is lowered
when they are generated from protein fermentation (Aguirre
et al., 2016). In agreement with this, the intestinal concentration
of propionate was much higher than for other SCFA in
our model of a carnivorous fish fed hyperproteic diets. It is
difficult to categorize individual SCFA into purely obesogenic
or anti-obesogenic, though acetate seems to be predominantly
obesogenic, whereas butyrate and propionate are broadly anti-
obesogenic (Chakraborti, 2015). The beneficial effects of butyrate
have been reported in a large extent in gilthead sea bream as
a highly promising additive to counteract undesired effects of
plant-based diets at the local and systemic level (Robles et al.,
2013; Benedito-Palos et al., 2016; Piazzon et al., 2017; Simó-
Mirabet et al., 2018). However, we found than intestinal butyrate
was below the detection limit in all the studied groups, whereas
the highest concentration of propionate was achieved in EWH
fish, and its relevance is further discussed later on.

Gut microbiota studies are emerging as effective approaches
for promoting farmed fish health, contributing to improve the
productivity of the aquaculture sector (Brugman et al., 2018;
Egerton et al., 2018b; Egan et al., 2020). In this regard, it is
noteworthy that measurements of gut microbiota diversity are
considered a good indicator of animal health, becoming dietary
factors one of the main regulators of intestinal microbial diversity
(Moschen et al., 2012). Thus, the ability of replacement diets
and/or feed additives to retain a gut microbiome composition
close to that of fish fed diets with high contents of FM and
FO is envisaged in gilthead sea bream (Fontinha et al., 2021),
as well as in other fish species of interest in aquaculture
(Egerton et al., 2020; Niu et al., 2020). Though it exists a high
variability of response to protein supplements across different
animal models (Clarke et al., 2014; Liu et al., 2014; Butteiger
et al., 2016; Beaumont et al., 2017), we did not detect changes
in gut microbiota diversity of gilthead sea bream fed EWH
diet. Regarding gut microbiota richness, a negative correlation
with obesity has been largely reported in humans (Turnbaugh
et al., 2008; Le Chatelier et al., 2013; Sze and Schloss, 2016;
Peters et al., 2018). However, recent evidence suggests that
this association cannot be considered as widespread among
the population (Stanislawski et al., 2019). Similarly, the lower
microbiota richness of our EWH fish with a reduced feed intake
was mainly driven by three animals with extreme low richness
values (Supplementary Figure 1).

Despite all the above findings, changes in the composition
of mucosal adherent bacterial communities are already found
at the phylum level (Figure 4). Proteobacteria, Firmicutes,
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Actinobacteria, and Bacteroidetes Phyla dominated the
autochthonous microbiota of the intestine of fish, as it has
been also observed in previous studies in this species (Kormas
et al., 2014; Estruch et al., 2015; Piazzon et al., 2019), with a fifth
phylum, Spirochaetes, increasing in EWH fish. Furthermore,
discriminant analysis (Figure 5) helped to disclose 46 dominant
bacteria (VIP ≥ 1.2, >1% in abundance) (Figure 6) with a
significantly higher presence associated to a particular diet, and
a decrease in the other groups. This fact revealed a specific
organization of the gut microbiota in response to each dietary
treatment, which allowed to discover differences at all taxonomic
levels. Firstly, Proteobacteria (facultative anaerobic organisms)
were presented in all analyzed fish, as it is considered one
of the most abundant symbionts in marine fish because of
their highly flexible metabolic properties (Tarnecki et al., 2017;
Ikeda-Ohtsubo et al., 2018). Within this phylum, high abundance
values were found for the Vibrionaceae family in all dietary
groups. Species of this family help to digest organic substances
due to the production of lipases, amylases and proteases, but
some of those species can also produce harmful enzymes like
neuraminidases and act as causative agents of fish pathologies
(Egerton et al., 2018b).

Firmicutes are also some common intestinal symbionts in fish
and mammals (Lozupone et al., 2012; Ghanbari et al., 2015).
In our farmed fish, Firmicutes ranged from 26.5% in the CTRL
group to ∼17% in the L-FM/FO and EWH groups. Both plant-
based diets shared important proportions of Lactobacillales,
known to inhibit fish pathogens due to the natural production
of bacteriocins (Balcázar et al., 2007; Sugita et al., 2007; Shahid
et al., 2017; Ringø et al., 2018). This abundance of Lactobacillales
in plant-based diets is caused by their ability to use indigestible
fiber and fermentable polysaccharides for their metabolism and
growth (Gajardo et al., 2017; Theilmann et al., 2017). In the last
decade, Lactobacillales have been extensively studied due to their
potential use as probiotics (Gillor et al., 2008; Heo et al., 2012),
with particular importance to aquaculture, where the avoidance
of the use of antibacterial drugs for facing fish pathogens is
one of the main challenges (Sahoo et al., 2016). Bacteria of
the family Carnobacteriaceae and of the genera Lactobacillus
and Streptococcus, all of them present in our plant-based
dietary groups, are prone to produce these antimicrobial agents
(Elayaraja et al., 2014). However, the remarkable proportion
of Streptococcus in L-FM/FO can also display negative effects
as this genus has been described among the reduced group
of bacteria capable of producing all the enzymes needed for
complete mucin degradation (Derrien et al., 2010). Hence, the
goblet cell depletion observed on the L-FM/FO fish could be
partly explained by the higher abundance of this genus, which is
practically not present in the CTRL and EWH groups. Protective
mucus at the intestinal mucosa consists of a gel overlying the
epithelium based on the production and secretion of mucins,
mostly by goblet cells but also by enterocytes (Pelaseyed et al.,
2014). The amount of goblet cells of the AI was altered by
FM/FO replacement, but interestingly the profile of CTRL fish
was restored by EWH supplementation, suggesting that EWH
could be re-stimulating mucus secretion in the AI. In a similar
manner, milk-derived peptides have already demonstrated to
stimulate rat intestinal mucus secretion and improve intestinal

barrier (Giromini et al., 2019). Here we hypothesize that these
effects could be, at least in part, induced by the modulation of
mucin degrading bacterial populations.

The phylum Bacteroidetes increased in EWH fish, with
a predominance of bacteria assigned as Cloacibacterium. In
gilthead sea bream, fermentation produced by species of this
genus is a major process for the metabolism of glucose in SCFA
that might be used later in other chemoautotrophic processes
(Kormas et al., 2014). The Firmicutes/Bacteroidetes (F/B) ratio is
a widely documented factor correlated with obesity in mammals.
Changes in these phyla proportions are regarded as dysbiosis
(Stojanov et al., 2020), and an increased F/B ratio has been related
with obesity in humans (Ley et al., 2006) and rats (Requena
et al., 2017). However, the correlation between obesity and F/B
ratio in mammals can be controversial (Magne et al., 2020) and
has not been demonstrated in fish. In any case, in our fish
model, Firmicutes suffered a decrease from 26.5% in CTRL group
to ∼17% in the plant-based diets, whereas Bacteroidetes were
only increased in the EWH group. Thus EWH fish showed the
lowest F/B ratio (6 in EWH fish vs. 18.9 and 55.3 in CTRL
and L-FM/FO fish, respectively). Firmicutes and Bacteroidetes
represent more than 90% of the total bacterial communities in
mammals (Magne et al., 2020), whereas, in fish, Proteobacteria
are among the most abundant. Thus, although our results are
in agreement with previous studies in mammals, further works
are needed to determine the validity of this ratio in fish, and the
possible implication of Proteobacteria in these correlations.

A wide range of Spirochaetes is found in aquatic habitats,
but this phylum usually comprises a low proportion (<1%) of
fish intestinal microbiota (Givens et al., 2015; Le and Wang,
2020). In mammals, the presence or increase of Spirochaetes
has been associated to lean individuals in fecal microbiomes
of captive cynomolgus monkeys (Koo et al., 2019) and in oral
microbiomes of diabetes mellitus type 2 patients (Tam et al.,
2018). Concordantly, in this study, the addition of EWH in the
diet significantly increased the abundance of this phylum up to a
2.2%, pointing to a potential role of these bacteria in the reduced
feed intake and decreased weight gain of this group of fish.

The phylum Actinobacteria significantly increased in the
L-FM/FO group, mainly due to the increase in Corynebacterium
and Nocardioides, which represented ∼10% of the overall
bacterial population in this dietary group. These bacteria
have been described to produce polysaccharide hydrolases
(Anandan et al., 2016), which is compatible with the higher
fiber content of our plant-based diets. Lastly, 73% of the total
Actinobacteria found in the EWH group belongs to the genus
Propionibacterium, present in significantly lower proportions in
the other two groups. Since Propionibacterium is the best natural
producer of propionate (Zárate, 2012; González-Garcia et al.,
2017), this observation supported the higher concentrations of
intestinal propionic acid in fish fed the EWH diet. Microbial
production of propionate has been related to a healthier gut
state (Hosseini et al., 2011; Louis and Flint, 2017), lowering
lipogenesis (Weitkunat et al., 2016) and triggering the secretion
of satiety peptides, such as glucagon-like peptide-1 and peptide
YY (Chambers et al., 2015). Moreover, propionate acts as an
inhibitory factor of food intake via its antagonism with the
cholesterol synthesis (Harris et al., 2012; Chakraborti, 2015).
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In agreement with this, we found herein that primary bile
acid biosynthesis and steroid degradation were consistently
underrepresented in the inferred metagenome of EWH fish
in comparison to the other two groups (Table 4). To clarify,
these results do not imply that bacteria are expressing primary
bile acid biosynthesis genes, but that some bacteria within the
detected populations might be expressing molecules that could
affect such pathway. Indeed, bile acids represent a significant
host factor that modulates the microbiome of obese mice and
the digestion and absorption of dietary lipids (Zheng et al.,
2017). Likewise, in the present study, the down-regulation of
bile acids biosynthesis, together with the decreased F/B ratio and
the increased Spirochaetes phylum in the EWH group could be
describing the link between the bioactive egg white hydrolysate
and an anti-obesogenic response. This assumption is supported
by the reduced lipid vacuolization in intestines, and by the
restoration of normal liver fat deposition in association with an
increase in the number of hepatic melanomacrophage centers,
as already found during feed restriction in lesser guitarfish
(Zapteryx brevirostris) (Neyrão et al., 2019). Studies addressing
the gut metatranscriptome in close association to host changes
of metabolism and intestinal transcriptome should be conducted
to validate this hypothesis and unravel the molecular interactions
behind the effects.

In summary, altogether, these results reinforce the central role
of gut microbiota in the regulation of host metabolism and lipid
metabolism in particular, which might suggest a role of the EWH
derived bioactive peptides as an anti-obesity and/or satiety factor
in fish, although the ultimate mechanisms of action still remains
to be established. From a practical point of view, the potential
use of this functional food ingredient in finishing diets, and the
role of gut microbiota in tuning filet fatty acid composition of
marketable fish merits further research.
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