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Abstract: Spatial analysis has become an increasingly used analytic approach to describe and analyze
spatial characteristics of disease burden, but the depth and coverage of its usage for health surveys
data in Sub-Saharan Africa are not well known. The objective of this scoping review was to conduct
an evaluation of studies using spatial statistics approaches for national health survey data in the
SSA region. An organized literature search for studies related to spatial statistics and national
health surveys was conducted through PMC, PubMed/Medline, Scopus, NLM Catalog, and Science
Direct electronic databases. Of the 4,193 unique articles identified, 153 were included in the final
review. Spatial smoothing and prediction methods were predominant (n = 108), followed by spatial
description aggregation (n = 25), and spatial autocorrelation and clustering (n = 19). Bayesian statistics
methods and lattice data modelling were predominant (n = 108). Most studies focused on malaria
and fever (n = 47) followed by health services coverage (n = 38). Only fifteen studies employed
nonstandard spatial analyses (e.g., spatial model assessment, joint spatial modelling, accounting
for survey design). We recommend that for future spatial analysis using health survey data in the
SSA region, there must be an improve recognition and awareness of the potential dangers of a naïve
application of spatial statistical methods. We also recommend a wide range of applications using big
health data and the future of data science for health systems to monitor and evaluate impacts that are
not well understood at local levels.

Keywords: spatial methods; disease mapping; health surveys; Sub-Saharan Africa

1. Introduction

Spatial analysis concerns the use of statistical methods to analyze spatial data by accounting for
location-specific information, elevation, distance, spatial relationships and association between the
data [1,2]. These methods are prominent statistical tools in the health and epidemiological sciences
where the study of the impact of geographical distribution with respect to health data and outcomes
is a major research undertaking. For example, the analysis may identify areas of elevated risk of a
disease incidence and prevalence. Such a finding could generate scientific questions and hypotheses
about the disease aetiology or provide enough supporting scientific evidence to guide public health
recommendations on the disease and geography.

In the context of the United Nation’s sustainable development goals (SDGs) to be achieved by
2030 [3], those related to ending poverty, terminating malnutrition and improving health in general are
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of interest here. A focus across the SDG goals and targets is on monitoring progress at the sub-national
level to avoid national-level statistics masking local heterogeneities. Increased focus on sub-national
assessments, efficient targeting of resources and improved accuracy for health and development
metrics have prompted an emphasis on the development of spatial analyses to provide estimates at
lower national levels [4–6]. To meet the need of supporting local-level policies, the implementation
and application of spatial techniques have grown exponentially in recent times. This has been made
possible by a rise in the availability of nationally representative household and health survey data and
high-performance computers to fit spatial statistics methods. Classic spatial statistics methods can
now be fitted to larger and more complex spatial datasets in several spatial analysis computer software
programs such as SaTScan [7], GeoDa [8] and ArcGIS [9]. Even Bayesian spatial inference, which
was intractable before, is now routinely being used to analyze complex spatial models and datasets.
Bayesian approaches rely on increased access to spatial statistics software, for example, BayesX [10],
WinBUGS/OpenBUGS [11] and Integrated Nested Laplace Approximations (INLA) [12], all freely
available applications.

On the other hand, health surveys such as demographic and health surveys (DHS), Malaria
Indicator Surveys (MIS), AIDs Indicator Surveys (AIS) and Multiple Indicator Cluster Surveys (MICS)
cover a wide range of health topics. Analyses of data from nationally representative households and
population health surveys have been done and the findings have provided enough evidence to track
the progress of health and socio-demographic indicators to meet local, national and international
goals. Even though these surveys are implemented at comparatively enormous costs, their usage has
remained sub-optimal since such analyses demand advanced data management and often complicated
statistical techniques [13]. A comprehensive analysis using appropriate spatial statistical methods
can provide appropriate supporting scientific evidence to guide policy recommendations on health
disparities and place.

Even though the application of spatial statistics to map health outcomes and processes have grown
in Sub-Saharan Africa (SSA) over the past two decades, reviews summarizing a body of research studies
that have employed spatial analysis methods based on nationally representative health survey data are
scarce. One previous review on spatial analysis methods on health issues in Africa only applied to
HIV research and was general in its coverage of data sources [14]. We set out to review all published
literature that employed spatial analysis techniques to nationally representative health survey data in
the SSA region. An identification and a description of the spatial analysis methods, software and health
discipline used in the applications of spatial statistics to health survey data would be useful to health
science researchers including spatial statisticians. We also wanted to identify knowledge gaps and
provide useful recommendations for carrying out improved spatial analysis using health survey data
in the SSA region. A useful methodology for qualitatively exploring the content of literature through
concepts and thematic mapping is conducted using scoping, as opposed to systematic, reviews [15].

2. Methods

2.1. Eligibility Criteria

Inclusion criteria: articles published in English during the period 1990–2018 employing spatial
statistic methods in the SSA region to analyze nationally representative household and health
survey data.

Exclusion criteria: articles published outside the 1990–2018 period and all publications based on
data from health surveys conducted outside the SSA region, systematic reviews and meta-analyses,
publications that only referenced health surveys but did not analyze the data obtained, studies that
used non-nationally representative local or regional health surveys data and those that had utilized
non-spatial statistical methods such as multilevel/random-effects models. Spatial analyses that used
surveillance data were also excluded.
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2.2. Search Methods

We conducted this scoping review according to the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) extension for Scoping Reviews (PRISMA-ScR) guidelines [16].
A Checklist for Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for
Scoping Reviews (PRISMA-ScR) is provided as supplementary material (Table S1). However, it has no
published protocol. An organized literature search for articles that applied spatial statistical methods
and that were published from 1990 to 2018 using data from household and population health surveys
was done through PubMed Central (PMC), PubMed/Medline, Scopus, NLM Catalog, and Science Direct
electronic databases. Three different searches were conducted for the three NLM literature resources
(PMC, PubMed/Medline and NLM Catalog). Our search strategy was formulated using the following
keywords to broaden the retrieval of relevant articles: spatial statistics; spatial modelling; spatial
variation; small areas estimation; demographic and health survey; AIDS indicator survey; malaria
indicator survey; multiple indicator cluster survey; health survey; Sub-Saharan Africa. The search
strategy was built using Boolean operators “AND/OR” with keyword combinations, e.g., “spatial
statistics” OR “spatial modelling” OR “spatial variation” OR “small areas estimation” OR “demographic
health survey” OR “AIDS indicator survey” OR “malaria Indicator survey” OR “multiple indicator
cluster survey” OR “health survey” OR “MIS” AND “sub-Saharan Africa”. Correspondingly, filters
were applied to restrict our search to the inclusion criteria. A rigorous search of the Cochrane library
was done to confirm whether there were existing or ongoing systematic reviews related to this review.

2.3. Study Selection

All potential studies retrieved were first imported to Mendeley and duplicates were removed.
The remaining articles were imported to Covidence, a web-based systematic review software-designed
process of screening, data extraction and analysis [17] for screening. Using the pre-specified inclusion
criteria, the article’s titles and abstracts were screened by two independent reviewers. Articles deemed
irrelevant were removed during the screening of abstracts and titles. For articles that could not be
clearly depicted as relevant or irrelevant during the screening of abstracts and titles, their full-text
articles were retrieved for further scrutiny. Full-text articles meeting the inclusion criteria were
assessed further, and the following information answering the review’s objectives were abstracted
from each paper: spatial statistical method and computer software packages used; data source; health
discipline and themes; demographic group studied; and study country or countries. Discrepancies
from independent reviewers were resolved through a discussion.

2.4. Data Extraction

Data extraction was performed using Microsoft Excel, which produced a master table with the
following information extracted from each paper: spatial statistical methods and software; data source;
public health outcomes and themes; and demographic focus groups. Spatial analysis techniques were
categorized as spatial descriptive or aggregation method; spatial autocorrelation and clustering; spatial
regression and interpolation and spatial modeling and prediction. The categories for health disciplines
and themes were health service coverage; mortality; malaria and fever; diarrhea; malnutrition;
non-communicable diseases; TB and HIV/AIDS; and others. Articles were permitted to be sorted
into more than one methodological class and public health themes deemed appropriate. Counts and
proportions were primarily used to summarize the study findings. The demographic focus groups
were categorized into children (<15 years old) or adults (≥15 years of age) and gender. The study
quality was not assessed.
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3. Results

3.1. Study Characteristics

A total of 4193 unique articles were identified after excluding 4318 duplicates. Out of the remaining
articles, 3992 were excluded because their abstracts and titles did not meet the eligibility requirements
(Figure 1). From a full-text review of the remaining 201 articles a total of 153 were identified for the final
review. The reasons for excluding 48 studies were that they had used non-spatial statistical methods
(29 articles) or local or regional health survey data (18 articles), while one article was a systematic
review (1 article).
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3.2. Spatial Methods Used

In the set of articles chosen for review, the spatial methods that were used for disease mapping are
shown in Table 1. Spatial smoothing and predictions were frequently employed (n = 108) and of which
32 and 76 articles made use of geostatistical data modelling and lattice data modelling, respectively.
Spatial description aggregation methods (n = 25) and statistical spatial autocorrelation or clustering
(n = 19) were the next most used spatial analysis methods.

Most of the articles included in this review used data from DHS (n = 93). Country-specific surveys
(n = 23), MIS (n = 17), MICS) (n = 5), AIDS Indictor Surveys (n = 4) were used in the other papers, and
11 articles used data from multiple surveys. All these surveys used multistage sampling designs that
encamps stratification, cluster sampling, and unequal selection probabilities. These three complex
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sample design considerations have implications for statistical analyses of the survey data. There were
37 multicounty studies and country-specific articles, Malawi and Nigerian each contributed 17 studies,
followed by South Africa with 11 studies, then Kenya with 10 studies.

3.3. Spatial Autocorrelation/Clustering

Nineteen (19) studies used at least one spatial autocorrelation or clustering technique to assess
non-random spatial patterns and quantify correlation of spatial observations (Table 1). Kulldorff’s
spatial scan statistics (n = 7), and Getis-Ord GI* statistic (n = 7) were most frequently used, followed by
Global Moran’s I, Local Moran’s I and Anselin Local Moran’s I that were each used in three studies.
K-function (n = 1) was also used (Table 2).

Table 1. Classification of the articles selected for review (n = 153).

Focus of the Publication Number Percentage Reference

Spatial Analysis Method

Description or Aggregation
methods 25 16.3% [4,18–41]

Autocorrelation/Clustering 19 12.4% [42–60]

Spatial Regression and Interpolation

Kriging 8 5.2% [61–68]
Inverse Distance Weighting 1 0.7% [69]
Weighted Kernel Regression 1 0.7% [70]
Geographically Weighted
Regression (GWR) 4 2.6% [71–74]

Spatial Smoothing and Prediction

Geostatistical data modelling 32 20.9% [6,41,61,62,64–68,72,75–96]
Lattice data modelling 76 49.7% [5,6,69–71,74,97–167]

Application Techniques

Nonstandard applications
(e.g., spatial analysis model
assessment, joint spatial modelling,
accounting for survey design)

15 9.8% [5,6,74,122,123,128,132,142,150,151,153,
155,157,159,160]

Survey design and inadequacy

Survey design 4 2.6% [74,122,153,160]
Non-response/missing 2 1.3% [122,159]

Computer Software Package

BayesX 32 20.9%
[88,108,110,113–120,123,124,127,129,131,
133,135,138,140,142–145,147–150,154,156,

161,167]

WINBUGS/OPENBUGS 23 15.0% [47,61,65,67,75,80,91,92,104,112,119,123,
128,130,134,142,146,147,155,159–161,165]

ArcGIS 29 19.9% [22,23,28,31,39,42–46,48,49,51,53,54,57,58,
71–73,75,76,98,101,103,105–107,109]

R-prev package 3 1.3% [5,6,102]
QGIS 1 0.7% [20]
GeoDA 4 2.6% [21,43,59,71]
SaTSCAN 9 5.9% [45,48,50–52,54,103,108,109]
R-survey and mgcv package 1 0.7% [34]
ArcView 1 0.7% [36]
MapInfo professional 2 1.3% [47,104]
GeoR 1 0.7% [59]

INLA 16 10.4% [4,46,74,82,89,93–95,122,126,132,134,136,
139,162,163]

Own code: Fortran 4 3.0% [63,64,68,78]
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Table 1. Cont.

Focus of the Publication Number Percentage Reference

Study Population

Age group

Children (<15 years old) 82 53.6%

[19,21,25,27,29,31,33,35,37,40,42–45,54–57,
60–62,64–68,70,71,75,76,79,81,84,86,87,89,
91,92,94,95,98,101,104,106,110–113,115,
117–122,125–127,131–146,154–157,161–

163,167]

Adults (≥15 years old) 50 32.7%

[4–6,18,22,23,28,30,32,34,36,39,43,46–50,
52,58,63,65,69,74,83,85,96,97,99,100,102,

105,107–109,114,116,123,124,128,129,147–
151,153,158–160]

All age groups 17 11.1% [20,24,26,38,53,72,77,80,82,88,90,103,130,
152,165–167]

Gender

Male 1 0.7% [34]

Female 23 15% [18,23,28,32,36,46,58,59,74,88,96,99,100,
107,109,114,116,124,128,148,150,154,160]

Both genders 125 81.6%

[4–6,19–22,24–27,29–31,33,35,37–45,47–57,
60,62–73,75–79,81–87,89–95,97,98,101–
106,108,110–113,115,117–123,125–127,
129–146,149,151–153,155–159,161–167]

Health Surveys

Demographic Health Survey 93 60.8%

[4,5,18,20–23,25–28,30,33,36,38–40,42,44,
45,48–50,52,54–62,68,69,71,76,81,82,85–88,

95,97–100,102,103,105,106,109–111,113,
115,116,118,120–124,127,129,131,133,135,
137,140–144,146–148,150,151,153–159,162,

163,167]

Malaria Indicator Survey 17 11.1% [31,37,60,63,64,67,70,77–80,89,92,93,101,
107,136]

Multiple Indicator Cluster Survey 5 3.3 [75,113,125,140,145]
AIDS Indicator survey 4 2.6% [74,153,160,166]
Multi-Surveys 12 7.8% [6,20,24,53,66,90,96,108,119,130,159,165]

Country-Specific Surveys 23 15.0% [29,32,43,46,47,51,65,72,73,82,83,91,96,104,
112,126,128,132,134,139,149,152,164]

Country of Study

Angola 1 0.7% [78]
Burkina Faso 3 2% [88,89,134]
Cameroon 2 1.3% [103,119]
Democratic Republic of Congo 9 6.5% [30,38,42,69,98,114,120,127,138]
Ethiopia 7 4.6% [45,50,55,58,105,109,167]
Equatorial Guinea 1 0.7% [51]
Egypt 1 0.7% [140]
Ghana 2 1.3% [4,29]
Kenya 10 6.5% [20,31,34,46,72,74,90,122,153,160]
Lesotho 2 1.3% [22,97]
Madagascar 1 0.7% [136]

Malawi 17 11.1% [77,102,110,113,114,120,121,123,133,134,
145,154,156–158,161,162]
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Table 1. Cont.

Focus of the Publication Number Percentage Reference

Mali 1 0.7% [68]
Mozambique 2 1.3% [32,43]

Multi-Country 37 24.2%
[5,6,10,19–22,24–26,28,33,37,39,40,44,48,
49,53,54,60–62,66,71,76,83,84,86,87,91,95,

96,119,144,163,165]
Namibia 2 1.3% [101,155]

Nigeria 17 11.1% [32,46,77,83,87,97,111,114,125,126,130,134,
136,138,139,143,144]

Rwanda 3 2.0% [97,100,116]
Senegal 2 1.3% [81,82]
Somalia 5 3.3% [75,126,132,139,164]
South Africa 11 6.5% [47,52,73,104,123,128,146,147,150–152]
Sudan 1 0.7% [130]
Tanzania 4 2.6% [63,70,106,166]
Uganda 6 3.9% [56,57,65,67,92,108]
Zambia 5 3.3% [80,93,96,107,129]
Zimbabwe 2 1.3% [36,119]

INLA: Integrated Nested Laplace Approximations.

Table 2. Main spatial analysis techniques used in data analysis.

Method Category Method No. of References Reference

Spatial
Clustering and
regression

Global Moran’s I 3 [42,44,45]
Local Moran’s I (LISA) 3 [30,46,47]
Kulldorff’s spatial scan statistic 7 [45,48–50,52–54]
Getis-Ord GI* statistic 7 [43,45,51,55–58]
Anselin Local Moran’s I 3 [44,45,59]
K-function 1 [60]
Spatial Prediction and
Interpolation 10 [61–70]

Generalized Weighted Regression 4 [71–74]

Spatial modelling and
prediction

Bayesian geostatistical models 32 [6,41,61,62,64–68,72,75–96]
Bayesian conditional
autoregressive (CAR) models 76 [5,6,69–71,74,97–167]

Joint modelling 12 [5,74,126,128,132,142,150,151,
155,157,159,160]

3.4. Spatial Modelling and Prediction

Of the 153 studies included in this review, most—138(90.1%)—used a standard or routine
application of spatial methods. These involved studies that used spatial analysis methods embedded
in GIS or spatial statistics software to measure spatial clustering and cluster detection and perform
spatial modelling and predictions. Numerous studies (122 articles) used spatial modelling to describe
relationships between the spatial health data and contextual factors to model and predict health data in
space (Tables 1 and 2). Out of these 122 studies, 76 (62.3%) concentrated on lattice data modelling, while
32 (26.2%) dealt with geostatistical data modelling. Almost all lattice and geostatistical analyses were
implemented using Bayesian statistics. Only 15 studies endeavored to perform the spatial analysis
using nonstandard methods (including joint spatial models and model assessment) or accounted for
the survey design. Regarding spatial statistics software packages, BayesX was commonly used (n = 32)
for modelling and prediction, followed by ArcGIS (n = 29), WINBUGS/OPENBUGS (n = 23), Integrated
Laplace Approximation package (n = 16), and SaTSCAN (n = 9).

3.5. Spatial Methods Used

In this scoping review, several spatial statistical methods have been used in the extracted
publications. These methods include descriptive spatial methods where features within a given area



Int. J. Environ. Res. Public Health 2020, 17, 3070 8 of 20

are simply summarized as totals or averages and then presented on that area (these are aggregation
methods). These methods pose a challenge in the choice of the underlying population exposed, which
may be problematic in SSA where data on population totals could be inadequate. Several forms of
identifying specific observations or areas exhibiting spatial autocorrelation or clustering with their
neighbors have been identified in the extracted articles. The spatial autocorrelation statistics methods
employed included classic global statistics, such as Moran’s I, Geary’s C and Getis’s G [168,169], which
estimate the overall degree of spatial autocorrelation in a dataset. They test for the presence and
absence of non-random spatial patterns across the whole studied geographic area. On the other hand,
local spatial autocorrelation analysis (also known as hotspot analysis) provides estimates disaggregated
to the level of the spatial analysis units to identify local regions of strong autocorrelation. These are
often identified by equivalent local spatial autocorrelation measures of Moran’s I, Geary’s C and Getis’s
G. However, the most commonly used hotspot analysis is based on Anselin’s local indicator of spatial
association (LISA) [168] and Kulldorff’s spatial scan statistic [170].

The widely used spatial statistics methods are the spatial regression (e.g., spatial lag in observed
data and error terms, and geographically weighted regression (GWR)), spatial smoothing, and spatial
interpolation, often employed by spatial epidemiologists to improve the estimation of health outcomes
and burden. These methods have tools for deriving spatial surfaces from sampled data points or to
smooth across polygons to create more robust estimates. Spatial interpolation or spatial prediction
methods incorporate geographic information and values at a network of observed locations to estimate
values at unobserved locations. In the traditional spatial analysis, the main spatial interpolation
techniques include inverse distance weighting (IDW), Kriging, spline interpolation, and interpolating
polynomials [171,172]. However, as the evidence shows, Bayesian spatial hierarchical modelling is
becoming more effective than the conventional classical spatial analysis method, thanks to advanced
computing power and Markov chain Monte Carlo (MCMC) methods [173]. They are now routinely
being applied to model complex spatial relationships in large and multiple datasets using Bayesian
statistical packages, which are freely available [10–12]. Most of the applications of disease mapping have
been based on modelling lattice and “geostatistical” data. The former uses the so-called convolution
model of Besag, York and Mollie (BYM) [174] and the latter uses the distance-based geostatistical
model as expounded Diggle et al. [175].

3.6. Health Discipline and Themes

Before reviewing the articles included in this review, a list of research topics reflecting major health
problems or themes in the SSA region was drawn. Eight major research themes were identified (Table 3).
Some publications included at least two public health themes. Malaria or fever were predominately
studied (n = 47), followed by health services/interventions coverage (n = 38), HIV/AIDS (n = 24), and
mortality (n = 21).

Table 3. Application areas of spatial methods.

Health Discipline Frequency

Mortality 21

Malaria and fever 47

HIV/AIDS 24

Non-communicable diseases 9

Malnutrition 12

Diarrhoea 7

Health services coverage 38

Other * 5

* birth intervals; sexual debut; schistosomiasis; pneumonia.
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3.7. Demography

More than half (54.9%) of the articles focused on populations aged less than 15 years, about
34.6% were aged above or equal to 15 years and 10.5% of the articles included all age groups (Table 1).
We found limited literature items focusing on public health issues concerning males (<1%) and females
(15%) exclusively, as most articles (84.3%) did not differentiate between the genders.

4. Discussion

This scoping review has demonstrated a variety of applications of spatial analysis techniques
to household and health survey data in the SSA region. Spatial smoothing and prediction using
Bayesian spatial statistics were predominantly used. Spatial autocorrelation and cluster detection were
mostly fitted using frequentist methods and routines in GIS software. The most frequently studied
health disciplines were malaria and fever followed by health services coverage and HIV/AIDS and
health-related to mother and child health.

Despite the wide application of spatial methods in SSA, studies that only concentrated on
men were scant (<1%). Additionally, there was a lack of studies concentrating on health program
evaluation, possibly because data in this field might be sparse or not well captured in nationally
representative health surveys. Most studies failed to account for complex survey design and data
insufficiency, possibly due to data inadequacy about non-response, defective sampling frames, and
missing information in addition to adjustments for clustering to ensure data representativeness and
unbiased inferences. Few studies have developed and applied spatial statistics methods accounting for
health survey design, but these were for data outside of SSA [176–179]. There is a lack of systematic and
rigorous interrogation of spatial statistics, survey data, and software despite the need for new spatial
analysis methods for validation, diagnostics, and predictions. Thus, the utilization of rich survey data
sets remains sub-optimal because optimal analyses of such data demand in-depth assessment and the
process and design collection of this kind of data must first be further developed. Most have tended to
base their study papers with a “data analysts” mindset, with a heavy reliance on the implementation of
developed biostatistics techniques in the widely available statistical software. Seldom have the authors
thought critically around the development and validation of methods relevant to the problem being
investigated. There will be a need for biostatistical expertise in analytical and innovative research, as
well as adaptive skills to manage, analyze, and generate the data needed, including the use of existing
data, to inform policymakers and local health service implementers [180]. A lack of these biostatistical
skills could adversely affect the extent to which analyses and formulation of locally relevant scientific
questions have been undertaken [5].

4.1. Limitations

Though the review was conducted adhering to PRIMSA-ScR guidelines, the search strategy used
strategy might have missed studies that focused on some countries in SSA because our research
included the term SSA only. We excluded studies that analysed health survey data, but the surveys
were not nationally representative. We also did not interrogate sufficiently the methods used and
the resulting findings. Most of the studies failed to account for the complex sampling design, which
could have influenced the findings and conclusions drawn because standard spatial analyses generally
underestimate the estimated variance of spatial estimates. Indeed, blind usage of available packages
may adversely affect the extent to which analyses follow PRIMSA-ScR guidelines, and our search
strategy might have missed studies that deployed spatial analysis techniques because we excluded
papers published in languages other than English. There might also have been a risk of publication bias,
which we did not assess. This review also excluded published research work that used spatial analyses
on sentinel surveillance data. For example, spatial autocorrelation and inverse distance-weighted
interpolation were used in [171–183] when spatial statistics were used to analyze HIV data of pregnant
women attending antennal clinics (not health surveys).
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4.2. Strengths

To the best of our knowledge, this is the first review to provide the range and depth of published
studies using spatial analysis techniques to analyze the rich data obtained in nationally representative
health surveys conducted in the SSA region. It includes health disciplines, themes and demographic
information covering almost 30 years (1990–2018). Our findings demonstrate a wide range of
applications of spatial analysis techniques dominated by modelling and prediction approaches based
on Bayesian geostatistical and lattice data modelling.

4.3. Recommendations

Sample survey software should be used, especially for estimation of population parameters, and
for descriptive and analytical analyses. Under certain circumstances, standard statistical packages can
be used to provide results approximately equal to the results obtained from sample survey software.
However, recognition of prevailing circumstances and an awareness of the potential pitfalls of using
standard statistical packages require detailed information about the characteristics of the survey dataset
used (e.g., sampling plan, weighting scheme, intra-cluster correlation) as well as a knowledge of the
formulas and default options in standard software packages for weighted analyses. In the end, it seems
easier and less time consuming to use a sample survey software package throughout.

Advanced analytical, innovative, and adaptive skills in spatial statistics should be used to manage
and analyze existing survey data to better inform policymakers and local health service implementers.
Indeed, new spatial methods might need to be developed for applications. We recommend a wide
range of implementation examples from big health data, data future science and health systems
to monitor and evaluate health program impacts, which are not well understood at the local level.
Gender-specific studies focusing on an assessment of health interventions need to be conducted in the
SSA region to provide further insights and enable profoundly informed decisions to improve public
health concerning new areas of direction and research in SSA. Other obstacles in the region include the
financial costs to obtain new data, the prolonged time before data become available for public use due
to slow publication and/or bureaucratic processes that hinder data access and use.

Rigorous and coherent quality assessment of survey data is highly important, including design
and coverage of sampling. Survey comparisons were often made when sample sizes, item measurement
and context varied across years and were at times substantially and not necessarily congruent with
national population numbers. Also, age ranges of respondents for the same data items differed across
surveys, or across years within a survey. More could have been gained in studies had attempted to
tackle key issues including data quality, data and methods triangulation and validation. A challenging,
but potentially very fruitful undertaking could come from integrating household surveys with data
from routine health information gathering, monitoring and surveillance systems. A focused agenda is
recommended for data triangulation and contestability via linkage and validation studies that would
allow drawing on complementary properties of different sources, assist in completeness estimations
and improve our understanding of the accuracy attribution in the phenomena being studied. Such
improved understanding holds clear gains for improved small area estimates, enhanced resource and
service distribution, and, eventually, better meeting the health needs of the population.

Refinements of spatial methods and mapping levels are needed, e.g., by updating accessibility
layers to include more recent and detailed road networks and settlement layers. This could also involve
modelling key driving factors of the phenomena under study, such as poverty or access to sanitation,
and then using these as covariates themselves. The effect that a country-specific focus, tailored as
much as possible to a specific indicator, can have on mapping accuracies rather than using globally
consistent covariates should be explored. Also, many socio-economic factors, not captured by the
suite of covariates used, and often available at aggregate levels such as administrative units, could
be obtained and their ability to improve mapping accuracy tested. The rising international focus on
inequalities in the SDG-era requires a detailed and strong evidence base with an explicit quantification
of uncertainties. Some studies provided sufficiently accurate prediction at an administrative unit that
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is relevant for policymaking and the allocation of resources. However, none of the studies looked at
the issue of the Modifiable Areal Unit Problem (MAUP) in spatial analyses where an analysis based
on a grouping unit may accidentally misrepresent or overstate actual risk variations [184]. Even if
the data are grouped at the same level for analysis, the way the grouping scheme is used for spatial
analysis may accidentally lead to misinterpretation of the spatial patterns. We recommend that studies
consider, as part of sensitivity analysis, changing boundaries of levels to assess changes to the overall
spatial patterns in the estimated phenomena.

Finally, we have already discussed at length how non-response, missing data, and self-reporting of
health conditions pose statistical challenges when estimating small area spatial health variation. Missing
data reduces the representativeness of the sample and can, therefore, distort the spatial inferences about
a health measure. Perhaps a major feature of these survey data is their representativeness at national and
regional levels, but not at the lower geographic level, which may not have been systemically covered
sufficiently. Reliable estimates are highly associated with the number of observations falling into these
lower levels. Conducting surveys that could generate representative data at the desired geographic
level would be highly costly (due to an increase in sample sizes). Others have recommended choosing
an appropriate spatial model after performing a systematic evaluation and validation of several spatial
models for generating small area estimates [3–6]. Yet others have been novel by developing and
validating non-standard spatial models, for example, those based on multivariate spatial models to
model multiple health phenomena [95,105,153,154].

5. Conclusions

Comparisons and assessments of public health interventions and control programs at the
sub-national level based on health survey data should consider survey design aspects when
undertaking spatial analyses. Additionally, future research should focus on developing and evaluating
spatial methods that leverage survey data in providing local estimates of health burdens. Several
recommendations are made in this scoping review but most of them require strong skills and analytic
capacity. Thus, further expansion and strengthening of analytic capacity in the development and
application of spatial analysis methods relating to health survey data constitute the main message of
our critical and overarching recommendation.
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