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Summary 

 

The aim of this dissertation was to demonstrate the value of comprehensive narratives and 

elucidate critical steps in data handling in Oenology, while highlighting some common 

misconceptions and misinterpretations related to the process. This compilation was a journey 

through different stages of dealing with oenological data, with increasing complexity in both the 

strategies and the techniques used (sensory, chemistry, and statistics).  

To achieve this aim, different strategies and multivariate tools were used under two prime 

objectives. Firstly, several multivariate descriptive approaches were used to investigate two 

oenological problems and lay out the contextual foundations for the statistics-focused work 

(Chapters 3 and 5). Secondly, in increasing levels of complexity, statistical strategies of 

constructing comprehensive data fusion as well as pattern recognition models were investigated 

(Chapters 4 and 6). 

A comprehensive literature review (Chapter 2) examined and addressed common misconceptions 

in the different stages of data handling Oenology. 

The first oenological problem, described in Chapter 3, investigated the evolution of the sensory 

perception of aroma, as well as the antioxidant-related parameters and volatile compound 

composition of Sauvignon Blanc and Chenin Blanc wines stored under different conditions and 

durations. The study applied an appropriate sensory method for this research question, namely, 

Pivot©Profiling. The study was able to show the evolution of Sauvignon Blanc from ‘fruity’ and 

‘herbaceous’ and of Chenin Blanc from ‘fruity’ and ‘tropical’ both towards ‘toasted’, ‘oak’, and 

‘honey’ attributes. Chemically, the volatile composition did not show any trends. However, wines 

stored at higher temperatures for longer periods had relatively higher UV-Vis absorbance, colour 

density as well as higher b* (yellow) values and lower clarity in terms of L* index, compared to 

the control.  

The second oenological problem, described in Chapter 5, investigated the typicality of South 

African old vine Chenin Blanc perceptually and conceptually using a typicality rating and a flexible 

sorting task. The sensory methodology followed published strategies for investigating typicality. 

This study did not find a unique sensory space of the old vine Chenin Blanc due to a lack of 

perceptual consensus among the industry professionals for the wines included in the study. 

However, it did find that the industry professionals had unified ideas about the attributes of an 

ideal old vine Chenin Blanc wine.  

The first of the statistics-focused studies, described in Chapter 4, explored data fusion at low and 

mid-level using principal component analysis - PCA (low and mid-level) and multiple factor 

analysis - MFA (mid-level). The study looked at data pre-processing and matrix compatibility, 

which are important data handling stages for data fusion. Like the contextual chapters (Chapter 

3 and 5), and keeping with the aim of this compilation, this chapter gave a detailed descriptive 

narrative of the data handling. Through detailed examination of the process, the study found that 

MFA was the most appropriate data fusion strategy. The second statistics-focused study, 

described in Chapter 6, continued to exploit the multiple advantages of multiblock approach of 

MFA. Additionally, this chapter showed the reliability of fuzzy k-means clustering compared to 

agglomerative hierarchical clustering (AHC). 
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Opsomming 

 

Die doel van hierdie proefskrif was om die waarde van omvattende vertellings te demonstreer en 

om kritiese stappe in die hantering van data in die wynkunde toe te lig, terwyl enkele algemene 

wanopvattings en verkeerde interpretasies in verband met die proses uitgelig word. Hierdie 

samestelling was 'n reis deur verskillende stadiums van die hantering van wynkundige data, met 

toenemende kompleksiteit in beide die strategieë en die gebruikte tegnieke (sensoriese, chemie 

en statistieke). 

Om hierdie doel te bereik, is verskillende strategieë en meerveranderlike instrumente onder twee 

hoofdoelstellings gebruik. Eerstens is verskeie multivariate beskrywingsbenaderings gebruik om 

twee oenologiese probleme te ondersoek en die kontekstuele grondslae vir die statistiekgerigte 

werk uit te lê (hoofstukke 3 en 5). Tweedens, in toenemende vlakke van kompleksiteit, is 

statistiese strategieë vir die konstruering van omvattende datafusie sowel as 

patroonherkenningsmodelle ondersoek (hoofstukke 4 en 6). 

'N Omvattende literatuuroorsig (hoofstuk 2) het algemene misverstande in die verskillende 

stadiums van datahantering van wynkunde ondersoek en behandel. 

Die eerste wynprobleem, wat in hoofstuk 3 beskryf word, het die evolusie van die sintuiglike 

waarneming van aroma ondersoek, asook die antioksidant-verwante parameters en die vlugtige 

samestelling van Sauvignon Blanc- en Chenin Blanc-wyne wat onder verskillende toestande en 

duur gestoor is. Die studie het 'n toepaslike sensoriese metode vir hierdie navorsingsvraag 

toegepas, naamlik Pivot©Profiling. Die studie kon die evolusie van Sauvignon Blanc van 'vrugtige' 

en 'kruidagtige' en van Chenin Blanc van 'vrugtige' en 'tropiese' sowel as 'geroosterde', 'eikehout' 

en 'heuning'-eienskappe aantoon. Chemies het die vlugtige samestelling geen neigings getoon 

nie. Wyne wat vir langer tydperke by hoër temperature gestoor is, het egter relatief hoër UV-Vis-

absorbansie, kleurdigtheid sowel as hoër b * (geel) waardes en laer helderheid in terme van L * -

indeks, vergeleke met die kontrole. 

Die tweede wynprobleem, wat in hoofstuk 5 beskryf word, het die tipiesheid van die Suid-

Afrikaanse ou wingerdstok Chenin Blanc perseptueel en konseptueel ondersoek met behulp van 

'n tipiese klassifikasie en 'n buigsame sorteertaak. Die sensoriese metodologie het gepubliseerde 

strategieë vir die ondersoek na tipiesheid gevolg. Hierdie studie het nie 'n unieke sensoriese 

ruimte vir die ou wingerdstok Chenin Blanc gevind nie, omdat daar 'n gebrek aan konseptuele 

konsensus tussen die professionele persone vir die wyne wat in die studie opgeneem is, was. Dit 

het egter gevind dat professionele persone in die bedryf eenvormige idees gehad het oor die 

eienskappe van 'n ideale ou wynstok Chenin Blanc-wyn. 

Die eerste van die statistiekgerigte studies, wat in hoofstuk 4 beskryf word, het datafusie op lae 

en middelvlak ondersoek met hoofkomponentanalise - PCA (lae en middelvlak) en meervoudige 

faktorontleding - MFA (middelvlak). Die studie het gekyk na die voorverwerking van data en 

matriksversoenbaarheid, wat belangrike stadiums vir die hantering van data is vir die versmelting 

van data. Net soos die kontekstuele hoofstukke (Hoofstuk 3 en 5), en in ooreenstemming met die 

doel van hierdie samestelling, het hierdie hoofstuk 'n gedetailleerde beskrywende vertelling van 

die datahantering gegee. Deur middel van 'n uitvoerige ondersoek van die proses, het die studie 

bevind dat MFA die mees geskikte strategie vir data-fusie was. Die tweede statistiekgerigte 

studie, wat in hoofstuk 6 beskryf word, het voortgegaan om die veelvuldige voordele van 

multiblokke benadering van MFA te benut. Verder het hierdie hoofstuk die betroubaarheid van 

fuzzy k-middelgroepering vergeleke met agglomeratiewe hiërargiese groepering (AHC) getoon. 
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according to the style of the South African Journal of Enology and Viticulture.  
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Chapter 1: General introduction and project aims  

 

1.1 Introduction 

Background: Wine has a complex and dynamic chemical composition; this is the reason 

why there are so many different chemical techniques and sensory methods for evaluating its 

behaviour (Stevenson, 2005). This very often results in large amounts of data collected. A look at 

current trends in literature shows a growing interest to advance the informational value of large 

data sets through the use of advanced statistical modelling tools in sensory (Cariou & Qannari, 

2018; Valente et al., 2018; Cariou et al., 2019) and chemistry (Biancolillo et al., 2019). 

Bioinformatics, metabolomics, chemometrics, and sensometrics are all forms of statistical data 

handling in their respective fields (McKillup, 2012). There is field specificity and certain sets of 

rules when it comes to how statistics are applied in each of these fields. Regardless, every field 

follows the same process when it comes to handling the data: data collection/capturing, 

cleaning/pre-processing, modelling, and interpreting the data (Salkind. J. & Kristin. R., 2007; 

McKillup, 2012; Cocchi, 2019a).  

Contextualization of key terms and concepts: Data collection, when done intelligently, will 

be planned through the use of a design of experiments (DOE) (Kreutz & Timmer, 2009; Yu et al., 

2018; Ferreira, 2019). Oenological studies collect various chemical and sensory data to answer 

the research question and address the demands of the DOE. Nowadays, chemical data mostly 

involves automated collection and capturing, which can be in the form of targeted or untargeted 

measurements. Sensory data collection is based on the various types of methods, which including 

ordinal, intensity-based, and frequency of citation data.  Capturing of sensory data can be 

automated or done manually, depending on the availability of the specialised software. 

The collected data may require some clean-up and/or data pre-processing, depending on the 

nature (type) of the data. For instance, targeted chemical data usually only needs simple factor 

or scale or conversions while untargeted data may require complex mathematical pre-processing 

such as Fourier transformations (e.g. Infrared/IR and Nuclear Magnetic Resonance/NMR) and 

scaling such as multiple scatter correction for IR (Rinnan et al., 2009; Engel et al., 2013). Sensory 

pre-processing can be done through manual and statistical consolidation (McKillup, 2012). This 

step is critical for the handling of sensory data since only what is captured and is consolidated 

can be modelled. Descriptor consolidation mainly includes lemmatization, linguistic and semantic 

consolidation (Deneulin & Bavaud, 2016).  
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Data modelling can be only exploratory (unsupervised) or include elements for prediction, 

classification or discrimination (supervised) depending on the research question and DOE (Sohail 

& Arif, 2020). Generally, exploratory techniques are used for hypothesis-forming purposes while 

supervised techniques are used for hypothesis testing. The commonly used unsupervised 

multivariate techniques in Oenology include Cluster Analysis (CA), Multidimensional Scaling 

(MDS), Multifactorial Analysis (MFA), and Principal Component Analysis (PCA). As to when and 

how to use which technique, it depends on the type of data matrix captured (e.g. ordinal, 

correlation, co-occurrence) and on the research question. Commonly used supervised techniques 

include variants of Partial Least Squares (PLS vs. PLS-Discriminant Analysis or PLS-DA, 

Orthogonal-PLS or O-PLS, etc.) and Linear Discriminant Analysis (LDA) (Seisonen et al., 2016; 

De Carvalho Rocha et al., 2020). 

When it comes to making sense and assessing the significance of the outcomes of these 

models, it is necessary to apply both statistical and contextual interpretation. In doing so, there 

are various model performance parameters as well as visualization aids (graphs and illustrations) 

available. This manner of interpretation can help minimize misinterpretation or confirmation bias. 

It is at this point that critical thinking must be applied since, when using different approaches 

different types of information can be extracted from a single data set. This is especially critical 

when working with multi-way/multi-modal Oenological data that can be considered an information 

bank from which different currencies can be withdrawn (i.e. data of different informational value 

and scale). Visual aids are used for knowledge compression to aid in interpretation, but caution 

must be taken when applying them since they can alter perceptions. 

Motivation: Researchers need to understand that oenological data is generally multi-

way/multi-modal and it needs to be treated as such to solve issues of absolute vs relative 

significance. By highlighting gaps in the communication of the data handling for oenologists and 

pointing out the critical steps, it can be shown that this process is not a “black-box”. Both 

theoretical and executional limitations in data handling can be addressed by examining the 

process and the philosophy rather than simply focusing on the input and output elements. This 

means creating approaches that emphasize exploration of the problem by aligning multiple 

perspectives, rather than approaches which focus on perfecting the answer to a single problem.  

Problem statement: In Oenology, there are certain misconceptions about data handling due 

to the lack of articulation of the process.  This includes misconceptions about the way in which 

the data should be handled as well as how the process and the results should be communicated. 

This proliferates low confidence in handling and interpreting data in a critical manner. The lack of 

confidence and the misconceptions make it difficult to develop on the repertoire of data handling 

techniques in Oenology and move towards the age of artificial intelligence. Multi-way problems 
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mean evaluating the relative importance of different data. This means being specifically 

considerate of which data sets can and should be combined, and how. Applications of data fusion 

methods, which combine and integrate data sets, appropriately address the issue of relative 

importance between data sets by separately scaling them according to their variation (Cocchi, 

2019b). This critical thinking is important when trying to address questions related to combining 

sensory with chemistry data (Alañón et al., 2015; Seisonen et al., 2016; Cariou et al., 2019; 

Bokade et al., 2021). By developing a more “self-aware” approach to data handling process in 

Oenology, perhaps we can start asking the correct questions of the data and becoming more 

accustomed to both hypothesis-testing and hypothesis-forming results.  

 

1.2 Aim and objectives 

The aims of this dissertation were to demonstrate the value of a comprehensive narrative of the 

process of data analysis in Oenology and to elucidate critical steps in data handling while 

highlighting some common misconceptions and misinterpretations. This work is a journey through 

different stages, with increasing complexity, of dealing with Oenological data.  

To achieve the aims, different strategies and multivariate tools were used. Firstly, several 

multivariate descriptive approaches were used to investigate two oenological problems. Then, in 

increasing the complexity, strategies of constructing comprehensive data fusion models were 

investigated. As such, the objectives can be grouped under:  

1. Evolution of wine throughout different storage conditions  

a) To show that the evolution of wine aroma attributes, volatile and antioxidant compounds 

can be modelled and compared using unsupervised multivariate analysis on the 

experimental set-up of South African Chenin Blanc and Sauvignon Blanc wines stored at 

different temperatures for different periods 

b) To compare the use of PCA (low-level and mid-level) and MFA (mid-level) models for 

fusing multimodal data. The purpose was building comprehensive and representative data 

fusion models, while exploring critical troubleshooting. 

2. Investigation of the typicality of Chenin Blanc old vine wines  

a) To establish the concept and perception of old vine Chenin Blanc among industry experts 

using typicality rating, sorting, and free word association. 

b) To investigate the potential use of artificial intelligence (AI) strategies for pattern 

recognition. Classical multivariate statistical tools (by MFA) were used for creating 

representative data fusion models and classical clustering (agglomerative hierarchical 

clustering - AHC) and machine learning tools of fuzzy k-means cluster were explored.  
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Chapter 2:   Oenological data analysis: applications of 
chemometric and sensometric techniques 

 

2.1 Introduction 

Statistical analysis is used in applied sciences to evaluate experimental results and enhance 

the interpretation of their significance. The use of statistical analysis in Chemistry is referred to as 

chemometrics (Kowalski, 1980). Chemometrics has been used in several different natural science 

fields including food chemistry. In subsequent years, the term sensometrics was coined for the 

statistical analysis of sensory and consumer science data (Hunter, Dijksterhuis, Qannari, et al., 

1995). Chemometrics and sensometrics have been developed to handle large data, but the more 

information introduced into a model, the more complex assessing relationships between 

observations (e.g. samples) and variables (e.g. treatments) becomes (McKillup, 2012). In such 

cases, multivariate data analysis tools that reduce the dimensionality of large data in order to 

highlight and visualize the important features that describe the overall relationships are needed 

(Granato, de Araújo Calado & Jarvis, 2014).   

Data fusion (defined as combining and integrating different data sets) is important when 

working with complex systems such as natural products (Cocchi, 2019; White, 1991). Data fusion 

systems provide holistic and comprehensive data models (Handling & Science, 2019). These data 

models are holistic in the sense that they accommodate different perspectives (modalities) and 

comprehensive in that they create a representative picture of the entire natural system. Data 

integration systems are used in a wide variety of fields for information retention, interpretation, 

and decision-making (Borràs, Ferré, Boqué, et al., 2015; Handling & Science, 2019).  

Oenological evaluations look at a wine’s behaviour throughout the winemaking process under 

different stimuli such as temperature (Mafata, Brand, Panzeri, et al., 2019; Mafata, Buica, du Toit 

& van Jaarsveld, 2018; Serra-Cayuela, Jourdes, Riu-Aumatell, et al., 2014; Du Toit & Piquet, 

2014) and temporal changes (Coetzee, Van Wyngaard, Šuklje, et al., 2016; Pereira, Carvalho, 

Miranda, et al., 2016; Pereira, Reis, Saraiva, et al., 2011). The field has advanced to use holistic 

measurements that capture various sensory and chemical responses to the stimuli, resulting in 

the development of a variety of analytical chemistry techniques and several rapid sensory 

methods. More measurements result in generating more data and a more comprehensive profile, 

but some methods may be redundant in the information they provide. It is thus important to use 

techniques that are compatible and information-rich (Borràs et al., 2015; Cocchi, 2019). 

Evaluating the redundancy of measurements can be based on an understanding of the theoretical 

and practical principles behind each method.  

Data fusion approaches can be sectioned into four parts: input (what goes into the model), 

modelling (how data are treated), output (what comes out of the model), and interpretation (what 

it all means). The input involves acquisition and treatment of data to prepare it for modelling. The 

modelling is dependent on the research question and the type of data acquired. The output refers 

to tables of calculations of model parameters and related figures of merit. Interpretation of models 

for the application involves the use of visual aids and evaluation parameters generated from the 

various model outputs used to evaluate the model performance. Evaluating the success of a data 

fusion model is based on the statistical significance of the figures of merit and on the motivations 

behind the data fusion (in the applied sense). 

When the level of success reported when trying to integrate the multiple measurements is 

low, this can be attributed to a lack of statistically considerate strategies, highlighting a need for 
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more sophisticated thinking behind the proposed strategies. The motivations behind data fusion 

can be problem-focused if   the aim is to articulate the problem and analyse the problem space. 

This motivation leads to approaches that are unsupervised, explorative, and indirect - generally 

hypothesis forming -, but can be used as a stage in hypothesis testing approaches. The motivation 

can also be solution-centred in that it seeks to find the best possible answer to the problem. This 

motivation leads to the use of supervised and directed data analysis methods for prediction, 

classification, or discrimination, which are generally hypothesis testing. In both approaches, the 

appropriate method must be aligned to the motivation.  

 To evaluate the use of statistical strategies (especially data fusion) in Oenology, a descriptive 

bibliometric search was performed including documents published in the past decade (2010 - 

2020). The analysis used two credible academic databases, namely: Scopus (citation) and 

Commonwealth Agricultural Bureaux Index or Centre for Agriculture and Biosciences 

International (CABI). The Scopus database was used because of its up-to-date, diverse index 

systems from many publishers. CABI was used because it specifically indexes agriculture, 

forestry, and related disciplines. The search string “(wine OR enology OR oenology) AND (data 

AND fusion)” was used, based on terms found in the title, author or database supplied keywords, 

and abstract.  

As of October 2020, the CABI databased returned only 13 results for publications on data 

fusion. The Scopus search returned 279 results, of which 187 were research articles, 31 reviews, 

and 26 book chapters. The past ten years have seen a gradual increase in research publications 

using multivariate tools in wine-related research (an average increase of 20 articles per year). 

Most investigations that are Chemistry orientated refer to the use of statistics in wine science as 

‘chemometrics’, while those that focus on the oenological application often refer to it as ‘omics’ 

(‘metabolomics’ or ‘wineomics’) (Alañón, Pérez-Coello & Marina, 2015; Moyano, Serratosa, 

Marquez, et al., 2018). For sensory investigations in Oenology, most publications use the term 

‘multivariate analysis’; only some of the sensory investigations refer to the data handling as 

‘sensometrics’ (Brand, 2019; Cariou, Qannari, Rutledge, et al., 2018; Guld, Nyitrainé Sárdy, Gere, 

et al., 2020). The use of the term ‘data fusion’ explicitly (as author-supplied keyword) was returned 

only 20 times, with the focus of the approaches being split between application and statistics.  

Statistical investigations in Oenology can focus either on a specific application or on 

methodology development. In most reported cases, both use statistical analysis for hypothesis 

testing (Granato et al., 2014; Granato & Ares, 2013). The advantage of exploring approaches 

focused on hypothesis forming is that it can shed light on the underlying intricacies and difficulties 

of the data handling process in Oenology. In turn, this can underscore the aspects of the 

methodology that may need to be improved and can lead to better hypothesis-proving methods. 

In this context, the current literature review will examine the different stages of data fusion and 

elucidate the rules for data handling in Oenology. It will detail the differences between the 

chemometric and sensometric treatments of the data according to the literature, and comment on 

the impact decisions made at each stage have on the resulting data fusion model.  

 

 

Stellenbosch University  https://scholar.sun.ac.za



9 

2.2 Evaluation in Oenology and rationale behind the movement towards 

multivariate statistical analysis (MVA) 

 
2.2.1 Categories of Chemistry and Sensory methods 

The major modes of evaluation in Oenology are chemical and sensorial. Chemical methods 

can be broadly categorised under targeted and untargeted (Alañón et al., 2015). Targeted 

methods produce discreet measurements (usually concentrations of compounds translated 

mathematically from the detector response), whereas untargeted methods can produce 

continuous or discreet measurements (e.g. full chromatograms vs peak areas). An analysis 

technique can be used in either targeted or untargeted manner depending on the research 

question (Godelmann, Fang, Humpfer, et al., 2013). Chemical data used in Oenology can be 

further sub-categorized into volatile and non-volatile compounds, broadly corresponding to 

analysis done in liquid or gas phase, and can be linked to sensory stimulation. Investigations that 

use such categories do so with the intent to link the sensory perception to the chemical 

composition (Borràs et al., 2015; Lapalus, Wessel & Du Toit, 2016) of a sample or a set of 

samples. The compounds can be further sub-categorized according to their chemical properties, 

linked to the size of the compounds and their functional groups. Untargeted methods are widely 

used for authentication applications (Alañón et al., 2015; Borràs et al., 2015; Ríos-Reina, Callejón, 

Savorani, et al., 2019). Untargeted techniques use supervised data models for prediction or 

classification of samples (Versari, Laurie, Ricci, et al., 2014) and few have attempted to use 

untargeted techniques to predict sensory data (Niimi, Tomic, Næs, et al., 2018). 

Sensory methods can be categorized based on the information collected and the manner of 

execution, which has implications on the psychological aspects of the methodology (Valentin, 

Chollet, Lelièvre, et al., 2012). The broadest categories are verbal vs non-verbal methods and 

single vs multiple presentations (Brand, 2019). Verbal methods use attributes (sensory 

descriptors) to describe the samples and/or the relationship between samples. Descriptive 

Analysis (DA) and its variants are the  most widely used verbal methods (Campo, Ballester, 

Langlois, et al., 2009; Murray, Delahunty & Baxter, 2001; Torrens, Rlu-Aumatell, Vichi, et al., 

2010). The development of rapid methods saw the use of other verbal methods such as check-

all-that-apply (CATA) and flash profiling (Ares, Deliza, Barreiro, et al., 2010; Fleming, Ziegler & 

Hayes, 2015) and non-verbal methods such as rating, which measures a single sensory character 

of each sample (Ballester, Patris, Symoneaux, et al., 2008). Methods with multiple presentations 

can be similarity-based such as sorting and Projective Mapping (PM) or reference-based such as 

Pivot©Profiling (Valentin et al., 2012). Mixed method approaches  use a combination of verbal or 

non-verbal aspects where one task is primary, while the other is secondary (Brand, 2019). An 

example of a mixed method is sorting (primary) with a descriptive element to the grouping 

(Ballester et al., 2008; Mafata, Buica, du Toit & van Jaarsveld, 2018; Valentin et al., 2012).  

 

2.2.2 Statistical approaches taken in evaluating oenological experiments  

Advances in statistical data handling techniques have naturally progressed to analyse more 

variables simultaneously from univariate, bivariate, multivariate, to what is sometimes called 

megavariate data analysis (Eriksson, Johansson, Kettaneh-Wold, Trygg, Wikstr, et al., 2006). 

Univariate analysis looks at the variation in one or two variables across samples. Looking 

simultaneously at more than three variables created the need for multivariate techniques 

(McKillup, 2005). Univariate data treatment is still important even in the context of multivariate 

analysis (MVA) and can be used to look deeper into the MVA results (Granato et al., 2014). 
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Megavariate is often used for advanced multivariate techniques that use multiple sets of data 

acquired from different sources, requiring specialised statistical treatment (Eriksson, Johansson, 

Kettaneh-Wold, Trygg, Wikstr, et al., 2006). The multiple data sets are designated as blocks and 

used in multiblock and data fusion approaches (Cocchi, 2019).  Each have their merit, but the 

reasoning is, when looking at evaluating complex systems like natural products, holistic 

approaches must be taken on all fronts: methodology, execution, and data analysis. 

MVA is becoming more common in oenological approaches mainly due to an increase in the 

number methods from both Chemistry and Sensory (Alañón et al., 2015). Chemistry methods 

have increased in numbers and sophistication, in accordance with advances in technological and 

computing power (Alañón et al., 2015; Borràs et al., 2015; Gagolewski, 2012). The variety of 

methods have increased, leading to opportunities in measuring more wine-related chemical 

compounds. The increase in the number of sensory methods was due to the need to address 

shortcomings in the already existing methodologies, related to differences in panels used for 

evaluation, the time, and cost of the analysis (Valentin et al., 2012; Varela & Ares, 2014). Several 

rapid methods have recently been developed and have resulted in works using several sensory 

methods in a single study, something that was not always possible due to the limitations 

previously mentioned (Ballester, Mihnea, Peyron, et al., 2013; Hayward, Jantzi, Smith, et al., 

2020).  

From an applied perspective, multivariate statistical analyses can be categorised under 

supervised and unsupervised methods (Sohail & Arif, 2020). The motivation behind supervised 

methods is to target a specific outcome from the analysis, whether it be a grouping of samples 

according to similarities (classification) or differences (discrimination), or prediction. Unsupervised 

methods look for inherent patterns in the data without imposing a specific targeted outcome. Both 

approaches look to lower the number of dimensions and find the best-fit model for the purpose of 

the experiment (McKillup, 2005; Sohail & Arif, 2020). From a theoretical perspective, multivariate 

methods can be categorized as parametric (classical approach) and non-parametric (non-

classical/advanced approach) (Härdle & Simar, 2015; McKillup, 2005). Classical approaches 

assume a normal distribution of data around an average and fit the data according to how similar 

they are to this mean. Classical approaches include grouping (cluster analyses), regressions 

(least squares), similarity/dissimilarity (correspondence and generalised correspondence 

analyses). Non-parametric analyses such as machine learning techniques do not assume normal 

distribution or a fixed average (Härdle & Simar, 2015).  

Research in Oenology frequently seeks to understand what drives/contributes to predictions 

and classification, and hence use supervised data analyses to find the discriminating markers 

(Brand, Panzeri & Buica, 2020). Advanced data handling techniques such as k-nearest 

neighbours (kNN) have provided a good starting point to dig deeper into these types questions 

(De Carvalho Rocha, Do Prado & Blonder, 2020). In Oenology and Sensory research, Artificial 

Intelligence (AI) applications have been used in supervised strategies (De Carvalho Rocha et al., 

2020; Valente, Bauer, Venter, et al., 2018). Unsupervised advanced strategies as well as other 

simple machine learning strategies have seldom been explored indicating a possible lack of 

confidence in using these data analysis approaches (De Carvalho Rocha et al., 2020). 
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2.3 Model input 

Only what has been captured can be modelled; therefore, data collection and capturing are 

of outmost importance. The collection of data refers to the acquisition of the data related to the 

method and/or technique applied based on the experimental design. An experimental design that 

consolidates the sensory and chemistry data is most advised for data-orientated approaches in 

Oenology. Before the data captured can be modelled, several decision steps concerning the pre-

modelling processes of the data and the modelling specifications must be taken. Several 

standardised pre-modelling processes have been developed for Chemistry, but few are available 

for sensory data. Furthermore, due to the focus being mainly on the application, model 

specifications are seldom discussed in the literature, which creates a gap in knowledge from the 

statistical handling of oenological data perspective. There is an imbalance of greater detailing of 

the strategy behind the method compared to the data modelling. This section will cover how to 

convey important specifications and create a complete methodology based on important aspects 

of the data input stage.  

 

2.3.1 Data collection and capturing 

Prior to collecting and capturing experimental data, an intelligent design must be planned. An 

experimental design based on statistics determines the experimental execution and the data 

handling tools to be ultimately used (McKillup, 2005; Yu, Low & Zhou, 2018). Several 

experimental designs have been development from a statistical perspective (Ferreira, 2019), as 

well as for natural sciences perspective, including Chemistry (Kreutz & Timmer, 2009). Recently, 

design of experiments (DOEs) that are particularly sensitive to the structure and premise of 

sensory methods have been reviewed (Yu et al., 2018). DOEs are important in the natural 

sciences since they consider multiple (potentially) influential factors which may not always be 

possible to take into account for every experiment. Planning an intelligent DOE increases the 

chances of successful experimental outputs and data modelling, thus it is important to take time 

and create a DOE that is aligned with the research question.  

Analytical Chemistry instruments can have a single acquisition mode or multiple acquisition 

modes in which case they become hyphenated (Alañón et al., 2015). Hyphenated techniques 

measure several responses and capture them in a conjugated (syn: coupled/connected) manner. 

Software coupled to hyphenated techniques may capture the responses in independent channels 

and/ or in a conjugated matrix. For example, in liquid chromatography coupled with mass 

spectrometry (LC/MS) the data can be extracted as a chromatogram or a matrix (Versari et al., 

2014). A chromatogram can be extracted in two modes, selected ion monitoring (IEC - ion 

extracted chromatogram; SIM is a special way of exploiting the mass analyser in order to monitor 

a single m/z channel) or total ion current (TIC - resulting from the Full Scan exploitation of the 

mass analyser) which are two-dimensional representation of the retention time (RT) vs ion 

abundance. The matrix is extracted as RT_mass-to-charge pair (RT_m/z) vs ion abundance for 

each channel. The software generates automated outputs that, even in the case of hyphenated 

techniques, can provide the user with choices as to which information to capture. The hyphenated 

instruments are set-up in such a way that there is a single output, in which the different channels 

are captured as a single matrix aligned across a common array/dimension, usually the retention 

time. This is the case of multiple detectors such as fluorescence followed by MS (Terblanche, 

2017), or UV-Vis (Diode-Array Detection - DAD or Photodiode-Array Detection -PDA) followed by 

MS (Trikas, Papi, Kyriakidis, et al., 2016).  

Stellenbosch University  https://scholar.sun.ac.za



12 

Sensory data collection is related not only to the category of the method; the specific 

instructions given to a panel are also important. Instructions must be made clear and 

unambiguous to collect relevant data which is compatible with the experimental design. Some 

methods may have verbal and non-verbal aspects to them; one aspect will constitute the primary 

objective while the other will be secondary.  For methods using more than one task, panel fatigue 

must also be considered. Since sensory data cannot always be captured automatically, it is 

important to keep the different elements (panels, sessions, flights, judges, samples, attributes, 

and repeats) and the different aspects (verbal and non-verbal) separate until the consolidation 

stage, in order to have an accurate record of the raw data.  

Recent developments of rapid sensory methods can be likened to hyphenated chemistry 

methods since they do measurements in several different ways in one evaluation session (mixed 

methods). These methods result in increased data generation and informational value which can 

be gained. Barriers to this “hyphenated” consideration of sensory data is the number of samples 

that can be evaluated in one flight or session, due to panel fatigue. A common approach is multiple 

sessions with multiple/different methods. To ensure compatibility between the methods, there 

needs to be alignment along at least one dimension, usually the samples. Sensory methods which 

are directed (e.g. Descriptive Analysis, DA) rarely require data cleaning and consolidation since 

the attributes chosen are carefully selected through trained panels or sensory screening (Chollet, 

Valentin & Abdi, 2005; Faye, Courcoux, Giboreau, et al., 2013; Makhotkina, Pineau & Kilmartin, 

2012). In most sensory methods that are undirected (e.g. free-sorting and word association), 

some manual cleaning of results is needed; these aspects will be discussed in the next section.  

 

2.3.2 Pre-modelling processing and transformations 

Data pre-processing can be done automatically, manually, or based on statistical reasoning. 

In order to model data, it first needs to be fitted into the same scale (usually into a normal 

distribution) to limit any biases in calculations and models (McKillup, 2005). Chemistry data sets 

are generally pre-processed automatically based on certain mathematical reasoning. Sensory 

data is generally first pre-processed manually even if the data collection is done automatically. 

Statistical pre-processing methods such as centering and/or scaling are done for both chemistry 

and sensory data before modelling (McKillup, 2005).  

Chemical data processing is such that the data standardization can be obtained after the 

acquisition. The pre-processing of chemistry data is related to the modes (types) of acquisition 

and the dimensionality (Deneulin & Bavaud, 2016; Salkind. J. & Kristin. R., 2007). Targeted 

analyses tend to produce data sets with smaller dimensions/variables than untargeted data sets 

and generally are not pre-processed (Engel, Gerretzen, Szyman´ska, et al., 2013). Targeted data 

can, however, be converted to different units of measurement or indices.  For example, 

measurements of phenolics can use UV-Vis spectrophotometric absorbance units at different 

wavelengths, equivalents to appropriate standards such as gallic acid, or can be measured using 

indices such as CIELab or colour density (OIV, 2006; Ribereau-Gayon, Glories, Maujean, et al., 

2006; Waterhouse, 2002). Untargeted data sets often have associated pre-processing methods 

such as those developed for IR, NMR, Raman spectroscopy, and UV-Vis (Campos & Reis, 2020; 

Rinnan, Berg & Engelsen, 2009). Untargeted data sets have inherent issues related to their 

acquisition, and the nature of the sample for which the pre-processing is done to address these 

issues such as baseline offset and noise and saturated peaks often seen in NMR, IR, and UV-Vis 

spectra (Engel et al., 2013; Rinnan et al., 2009). 
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Sensory data cleaning involves linguistic and semantic reduction through consolidation, 

concatenation, and sometimes deletion.  Analyses such as DA, that use trained/analytical panels 

in which the attributes are chosen in such a way that they are representative of the group of 

samples, do not require data cleaning/pre-processing (Murray et al., 2001). Although no 

standardized rules for the consolidation of attributes exists, there is a theoretical framework 

(Valentin et al., 2012). Depending on the acquisition method, the general sensory components 

are colour/appearance, aroma, taste, mouthfeel/trigeminal sensations(Valentin et al., 2012). 

Further sub-categorization from this point becomes complex; it can be based for example on 

certain foodstuff groupings (e.g. ‘lemon’, ‘lime’, ‘orange’, ‘clementine’ belong to ‘citrus’) or on 

common sources for the sensation (e.g. ‘woody’, ‘planky’, ‘oaky’, ‘coconut’ are related to wood 

contact). Adjectives which give not only a specific descriptor (e.g. ‘apple’), but further describe it 

(e.g. ‘yellow’, ‘green’, ‘overripe’, ‘baked’) are often kept separate because they create a new 

attribute. This aspect is often not standardized, even though comprehensive lists exist, often in 

the form of aroma or mouthfeel wheels (Gawel, Oberholster & Leigh. Francis, 2000; Lawless & 

Civille, 2013; Pickering & Demiglio, 2008).  

In practice, the approach is from the lowest level upwards or a bottom-up approach 

(synonyms, lemmatisation, and grouping) where a descriptor can be eliminated due to low 

frequency of citation by a limited number of judges. Sensory methods are developed together 

with appropriate statistical analyses, which factor in the manner (verbal or non-verbal) and 

execution (single or multiple presentation) of the task (Valentin et al., 2012). The statistical pre-

processing may involve concatenation, merging different blocks such as sessions, verbal and 

non-verbal aspects, and tasting repeats (Cardello, Maller, Kapsalis, et al., 1982). Another element 

to consider is the panel used: expert vs consumer vs trained (analytical). When considering the 

semantic consolidation, differences among the panel members can change the meaning of the 

attributes due to their different use and understanding of the lexicon, for example the meaning of 

texture  (Chrea, Valentin, Sulmont-Rossé, et al., 2005; Deneulin & Bavaud, 2016) and perception 

of minerality (Ballester et al., 2013). 

Statistical consolidation of intensity and frequency-based data includes imposing a limit on 

the intensity or frequency and/or a cut-off for the number of citations per attribute. Caution needs 

to be taken when considering the rules for consolidating the data. The difficulties and intricacies 

mentioned show case specificity of sensory data consolidation, emphasising the reasons why it 

is difficult to standardize. Due to this, it is accepted that the semantic consolidation must be done 

in agreement by at least three specialists. It takes knowledge and experience to evaluate when 

exclusion of data constitutes data cleaning or a loss in information, for both chemistry and sensory 

data pre-processing.  

 

2.4 Data modelling and performance parameters 

When choosing how to model data, decisions are made based on the experimental question 

from which the design of experiment is derived and the data that is generated. The main aspects 

of choosing which data modelling to use is based on hypothesis testing or hypothesis formulating 

intent. The choice involves ensuring matrix compatibility and supervised or unsupervised 

purpose.  The chosen model must be able to properly address the research question, therefore 

the steps of data collection, capturing, and pre-processing must be executed in consideration of 

the modelling. Depending on the type of data available, some modelling opportunities may not be 

possible. In some cases, a pre-processing step may be enough to address issues related to 

compatibility between data matrix type and model, but a conversion into a compatible format may 
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not always be appropriate. Matrix compatibility concerns the type of data (values), the matrix 

dimensions, variability, and repeats, which will influence the modelling that can be done. Large 

data sets with high sample number (distinguishable samples, not including repeats), high sample 

variability, large number and diverse nature of measurements, can be modelled in different ways 

depending on the research question. Such a design is desirable for complex systems since the 

same data can be used to mine different information using various modelling tools.  

As previously mentioned, the algorithms that are used to model data can be either supervised 

or unsupervised (Sohail & Arif, 2019). The mathematical aspects related to these models will not 

be covered in this review, which will take a process-centred look at the aspects of modelling from 

an application point-of-view. In order to apply supervised models, the sample size must be large 

enough and contain enough variability to allow for classification, discrimination or prediction. 

These two factors (number and variability in samples) have been shown to impact the 

performance of the supervised models. Unsupervised models require a good sample size but not 

such an extensive variation in the data set. The main requirement in unsupervised data models 

is compatibility between the matrix and the type of model desired.  

 

2.4.1 Matrix compatibility 

Chemical data generally has standardized outputs in compatible matrices, making various 

data modelling opportunities possible. Chemical instrumental analyses output data sets with 

single array correlation matrices of observations vs measurements. In the case of hyphenated 

techniques, depending on the number of modes, instruments output multiple array matrices. Even 

given the differences in number of arrays, the modes are still compatible if one of the arrays is 

kept similar and the values are normalized or scaled (e.g. LC-FLD-MS, where due to the serial 

setup there will be a constant delay between the RT in the FLD chromatogram and the RT in the 

MS chromatogram). The distribution of data in a discreet data set vs a continuous data set are 

different, making it difficult to combine the two. Since the data is scaled before modelling, the 

assumption in statistical context is that the distribution of the two are the same. Therefore, 

continuous data is often scaled differently from discreet data sets; to combine them, they are first 

scaled separately and then combined.  

In Sensory, methods are developed with the statistics as part of the design of experiments 

(Valentin et al., 2012; Yu et al., 2018). As previously discussed, the execution has implications 

on the data analysis. The sensory matrix captured is dependent on the method, including co-

ordinates (e.g. Projective Mapping), frequency (e.g. sorting, CATA), and correlation matrices (e.g. 

RATA and DA) (Valentin et al., 2012).  For methods that have two or more tasks, such as a sorting 

experiment with an additional verbal task, the data can be captured with two different matrices. 

The sorting data can be captured as a co-occurrence matrix of samples as well as a correlation 

matrix of samples vs attributes (Valentin et al., 2012). For Projective Mapping with Ultra Flash 

Profile, the data is captured as (x,y) coordinates for the position of the samples on the map, and 

frequency of citation for the sample description (Garrido‐Bañuelos, Panzeri, Brand, et al., 2020; 

Hayward et al., 2020). The implication is that the matrices are then modelled differently based on 

the different types of matrices captured.  
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2.4.2 Unsupervised modelling  

Unsupervised models are used to investigate inherent trends in the data without imposing 

any restrictions. These models mainly look for trends based on correlation or covariance, from 

which groupings can be found based on similarities or differences between samples. 

Unsupervised models are used for general exploration, pre-processing, or as a preceding step to 

supervised modelling or data fusion (Gagolewski, 2015; Handling & Science, 2019; Lahat, Adali 

& Jutten, 2015; Vera, Aceña, Aceña, et al., 2011).  

Since most chemical analysis output correlation matrices, the most common unsupervised 

MVA tool used in Oenology is principal component analysis (PCA), often accompanied by 

hierarchical cluster analysis (HCA). Correspondence analysis (CA) and multiple correspondence 

analysis (MCA) are generalised PCA used for categorical/frequency data where many counts of 

zero are present (Abdi & Valentin, 2007; McKillup, 2005; Valentin et al., 2012). Other common 

unsupervised data modelling tools used in Oenology include multidimensional scaling (MDS), 

multifactorial analysis (MFA), that can also be accompanied by HCA (Abdi, 2007a; Le Dien & 

Pagès, 2003; Kruskal, 1977; Pagès, 2004). PCA is commonly used for chemistry data because 

of the matrix compatibility, whereas due to the types of matrices in Sensory science, the other 

modelling tools mentioned are more appropriate (Valentin et al., 2012). 

 

2.4.3 Supervised modelling 

Supervised models are used for classification, discrimination, or prediction (Sohail & Arif, 

2020). These models are based on a measurable trend/regression which distinguishes one set 

of samples or variables from another (Sohail & Arif, 2020). The models then find the best-fit 

function (regression) which represents the trend. Classification models look at similarities within 

a group based on the relationships between variables. Discrimination models look at the 

differences between the regressions of each class. Both discrimination and classification models 

are qualitative. These models are used in Oenology to classify samples according to regionality, 

cultivar, and wine styles among others (Cuadros-Inostroza, Giavalisco, Hummel, et al., 2010; 

Edelmann, Diewok, Schuster, et al., 2001; Makris, Kallithraka & Mamalos, 2006). 

Prediction models are similar but look at groups of variables instead of sample sets; all the 

samples should ideally have a similar variable correlation to the overall regression. These models 

have a calibration, validation, and prediction stage. A set of samples is used as a calibration set 

to build a regression which is representative of the common relationship between all variables. 

Another group of new or existing samples is used to validate or cross-validate the calibration 

model. There are different ways to validate the calibration model (Engel et al., 2013; Moyano et 

al., 2018; Petrovic, Aleixandre-Tudo & Buica, 2019). The prediction set contains new observations 

(unknown samples) for which its membership to one of the calibrated classes can be predicted. 

Prediction models can also use the calibration set to predict an index which represent a certain 

phenomenon such as predicting total antioxidant capacity (TAC) (Versari, Parpinello, Scazzina, 

et al., 2010) or yeast assimilable nitrogen (YAN) (Petrovic et al., 2019) using untargeted infrared 

spectra. The variables (e.g. spectral data) used in the calibration set have an already known 

correlation for which an index (e.g. TAC, YAN) can be calculated. The calibration is then validated 

and used for the prediction of the index of an unknown sample.   

Most supervised modelling in Oenology uses least squares for classification (Borràs et al., 

2016; Silvestri et al., 2014; Vera, Aceña, Aceña, et al., 2011) and discrimination (Vera, Aceña, 

Guasch, et al., 2011). Some prediction models in Oenology have attempted to predict a set of 

sensory variables using chemical variables, with minimal success.  The rationale here is that the 
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sensory perception is caused by the presence of certain compounds, such as aroma derived from 

volatile compounds and thus a correlation can be calculated between the two types of data. The 

difficulty lies in that sensory analysis is holistic while the chemical analysis was based on samples 

that were altered through the sample preparation stage. Important interactions in the wine matrix 

are thus removed. Some attempts have then moved towards non-invasive sample preparations, 

untargeted chemical analysis, and data fusion strategies for coupling and ultimately predicting 

sensory perception from chemistry data (Brand et al., 2020; Seisonen, Vene & Koppel, 2016). 

Additionally, to address this shortcoming, studies have advocated for the use of advanced 

techniques such as artificial intelligence and machine learning (Seisonen et al., 2016). 

 

2.4.4 Performance parameters and model optimisation 

All models generated through unsupervised and supervised techniques can be evaluated 

using various performance parameters (model diagnostics) that are based on the size, distribution 

and purpose of the model (Härdle & Simar, 2015; Salkind. J. & Kristin. R., 2007). This section will 

address the parameters most often reported in Oenological applications.  

Although specific for every model, performance parameters include measurements of the 

model fit (e.g. regression coefficient,R2 and root mean square of error in calibration, RMSEC), 

prediction power (e.g. Q2, and root mean square of deviation/prediction – RMSD/P and validation 

RMSV), outliers (e.g. distance to model in X variables – DmodX, and misclassification tables), 

and residuals (Eriksson, Johansson, Kettaneh-Wold, Trygg, Wikstrom, et al., 2006; Härdle & 

Simar, 2015; McKillup, 2005; Salkind. J. & Kristin. R., 2007; Wheelock, 2002). 

Many of the performance parameters related to the model fit are calculated from the stress 

of the model, for example, the Eigenvalue used for analysis such as MFA and PCA, and Kruskal’s 

stress used for MDS (Härdle & Simar, 2015; Kruskal, 1977; McKillup, 2005; Robinson, Boss, 

Solomon, et al., 2014; Salkind. J. & Kristin. R., 2007). The stress is a relative measure of the total 

explained variation in the model (McKillup, 2005; Salkind. J. & Kristin. R., 2007). The distribution 

of the stress across the several dimensions (e.g. principal components for PCA, dimensions for 

MDS and CA, and factors for MFA and GFA) that the model is fitted over, is a relative measure 

of the efficiency of the model. 

The efficiency of a model is often described using a scree plot. The scree plot describes the 

decay of the stress and the cumulative explained variance (McKillup, 2005). This efficiency is 

often expressed as the cumulative percentage explained variance (%EV) (McKillup, 2005). The 

%EV is the most communicated performance parameter for multivariate analyses such as PCA, 

CA, and MFA in Oenology (Alañón et al., 2015; Valente et al., 2018; Valentin et al., 2012). The 

%EV is mostly used for unsupervised techniques, supervised techniques tend to report the 

goodness-of-fit for calibration (using R2 and RMSC), validation (RMSEV), and prediction (RMSP) 

using other performance parameters.  

Studies mostly use the first two dimensions to evaluate performance since they contain the 

highest %EV. Chemistry data models generally contain high %EV for the first two dimensions but 

sensory data usually contain less, depending on the sensory method. For example, DA and RARA 

have %EV similar to chemistry data because, similar to chemistry, their data is based on intensity 

(Brand, 2019; Valentin et al., 2012). Other sensory methods such as sorting, Pivot©Profile, and 

Projective Mapping have lower %EV because the data is not intensity- but rather frequency-based 

or ordinal (Brand, 2019; Valentin et al., 2012).   
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Targeted chemical data generally has lower %EV in the first few dimensions compared to 

untargeted analysis. Targeted data analyses have a lower number of variables than untargeted 

data. Increasing the number of variables generally results in increased %EV for the first few 

dimensions (McKillup, 2005). Although, since untargeted analyses can also include a significant 

amount of noise captured, data that is not pre-processed can have a low %EV compared to 

processed data (Rinnan et al., 2009). Additionally, the inclusion or exclusion of certain variables 

can result in a change in efficiency of the model (i.e. increase or decrease in the %EV) (McKillup, 

2005). Adding variables of different sources or which measure different stimuli increases the 

stress in a model resulting in a broader distribution of the stress over the dimensions and thus 

lowering the %EV over the first dimensions (McKillup, 2005).  This is often observed in data fusion 

and multi-modal strategies (Borràs et al., 2015; Lahat et al., 2015). When the %EV for the first 

two dimensions are low, the efficiency of the model can be communicated by looking at the first 

three dimensions (Parr, Ballester, Peyron, et al., 2015), narrating the distribution of the %EV 

throughout the entire model, and/or by calculating the steepness of the slope in the scree plot 

(Mafata, Brand, Panzeri, et al., 2020). The variables’ contribution to the %EV of each dimension 

can be seen in the contributions table, sometimes presented also as a bar graph output in 

multivariate analysis toolkits. If variables’ values remain relatively unchanged throughout an 

experiment, these variables will not greatly influence the %EV and will often lie close to the zero-

point intersection (origin) of the Cartesian plots (McKillup, 2005).  

Cluster analyses calculate groupings based on similarity or dissimilarity, which can be done 

in an agglomerative or hierarchical manner. The distance similarity matrix is calculated based on 

the proximity/distance of samples. The coefficients of these distances are calculated based on a 

variety of algorithms; for example, they can be based on weighted distance for unfitted data or 

given by the Euclidean distance in fitted data (Härdle & Simar, 2015). Due to the complexities of 

clustering unfitted (raw data), most studies use MVA to fit the data and then apply cluster analysis 

to similarity/distance matrices derived from them (Ivanisevic, Benton, Rinehart, et al., 2015; 

Kruskal, 1977; Naumann, Lasch, Diem, et al., 2007). These cluster analyses are derived from 

parametric algorithms for normal distribution and compute an average around which to cluster 

samples. These averages can be computed in various ways based on different types of linkages, 

e.g. centroid, complete, or single linkage (Härdle & Simar, 2015; Myhre, Mikalsen, Løkse, et al., 

2018). An assumption of similarity between samples can lead to using similarity methods where 

a convergent algorithm is applied (agglomerative). A research question based on an assumption 

of dissimilarity/discrimination may, for instance, use divergent strategy such as centroid linkage 

HCA. These cases tend to be open-ended and result in hypothesis formation, making them 

popular for incorporation in non-parametric cluster analyses (Edelmann et al., 2001; Myhre et al., 

2018; Radovanovic, Jovancicevic, Arsic, et al., 2016). 

Model optimization generally uses performance parameters as indicators for increasing the 

goodness-of-fit and performance. Improving the performance requires the use of latent variables. 

Variable contributions can be used to improve the efficiency (%EV) and variable weights can be 

used to improve sample clustering, both these and other parameters can be used for variable 

selection in the pre-processing stage (Eriksson, Johansson, Kettaneh-Wold, Trygg, Wikstrom, et 

al., 2006; Wheelock, 2002). Effective use of latent variables in pre-processing steps to improve 

model performance has been considered from an applications perspective (Iorgulescu, Voicu, 

Sârbu, et al., 2016) and a statistical method perspective (Engel et al., 2013). Considering the 

previous data handling steps discussed in this review, ensuring improved model performance 

requires attention to detail from both perspectives (Campos & Reis, 2020; Gerretzen, Szymańska, 

Jansen, et al., 2015).  
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Model optimization for unsupervised and supervised models can be done similarly from 

statistical and application perspectives (Iorgulescu et al., 2016). In the Oenology context, it is 

especially necessary to have both of these perspectives in mind when sensory evaluation is 

concerned. The number of samples that can be assessed by a specific method is often the limiting 

factor in Sensory (Fleming et al., 2015; Valentin et al., 2012). Optimizing the data handling steps 

(collection, capture, and pre-processing) can sometimes be enough for optimization. A better way, 

though, is to start with a smart experimental design, since the experimental design can address 

the issues related to model optimization if the data handling options is considered from the 

beginning (Gerretzen et al., 2015; Yu et al., 2018). Based on principles of experimental design, 

model optimization requires looking at the number of samples, the variation in samples, and the 

variables measured.  

Multivariate models (supervised and unsupervised) generally require the number of 

independent variables to be more than the number of samples, since the model is based on the 

correlations/covariance in the variables (McKillup, 2005). Similar for supervised models, the 

calibration set (independent and/or dependent variables) and the validation set must have more 

variables than samples to optimize the calibration and validation (Engel et al., 2013).  

Model optimization from an application perspective is also important. Although more 

measurements (variables) can result in the optimization of the calibration by increasing variation, 

the nature of the relationship between variables is more important since it creates variability. 

Variation in the samples selected must be representative, when extrapolating results for the 

prediction of unknowns beyond a case study. A pre-modelling optimization which requires 

variable selection can be done in supervised modelling strategies based on the application or 

iterative statistical assessment of the model performance parameters. The mathematical and 

statistical aspects concerning supervised model optimization and pre-processing have been 

previously published (Engel et al., 2013; Lahat et al., 2015; Rinnan et al., 2009). Supervised 

models are more often optimised compared to unsupervised; this goes hand in hand with more 

applications using supervised than unsupervised modelling. 

These principles for optimisation applied in Oenology include variable selection, feature 

selection, and using latent variables as pre-processing techniques coupled to supervised 

strategies such as PLS (Guld et al., 2020; Larsen, van den Berg & Engelsen, 2006; Pereira et al., 

2016; Petrovic, 2018; Seisonen et al., 2016). Variable selection has been used for choosing 

certain wavenumbers in IR modelling a priori (before the modelling based on the theoretical 

knowledge that  the analytes of interest give a signal in a certain region) but also a posteriori 

(based on variable contributions to the classification of samples) (Genisheva, Quintelas, 

Mesquita, et al., 2018). Feature selection has been done on similar data using IR, NMR, and UV-

Vis for the selection of principal components (Borràs et al., 2015; Pereira et al., 2016) and/or the 

use of latent variables for optimizing untargeted spectral data (Brand et al., 2020; Cuadros-

Inostroza et al., 2010; Godelmann et al., 2013).  

The impact/success of these optimization strategies is assessed statistically by looking at the 

improvement of the performance parameters (e.g. higher %EV, lower RMSEC/RMSD) and 

descriptively by looking at desirable sample clustering. The process is reiterative and may arrive 

at a point where the model can no longer be optimized, or the performance becomes 

compromised. It is at such a point that issues of overfitting can arise. It is then recommended to 

use at least two different types of parameters to track for this (e.g. %EV for better fit and 

regression vector coefficients, RV, for clustering). 
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2.5 Model output, visual aids, and interpretation 

Multivariate data can be difficult to interpret; it is thus important to use both statistical and 

contextual interpretation: contextual interpretation in the form of background knowledge of the 

application and experimentation, and statistical evaluation in the form of model performance and 

evaluation parameters. The statistical aspect is technical, and its significance must be interpreted 

not just using performance parameters, but also with the experimental context in mind. The use 

of visual aids provides a transition between the statistical and the contextual interpretation.  

Accompanying every model are sets of tables containing performance parameters and latent 

variables that are specific for the type of model used (supervised or unsupervised, similarity or 

dissimilarity, correlation or covariance, etc.) (McKillup, 2005). The latent variables are presented 

in tables of figures that show the relationship between variables, samples and/or both. These 

latent variables include ordinal model data, variable contributions, and variable weights among 

others (Eriksson, Johansson, Kettaneh-Wold, Trygg, Wikstrom, et al., 2006; McKillup, 2005; 

Wheelock, 2002). From the fitted model, the coordinates are calculated for each dimension and 

then the contributions and weights are calculated (McKillup, 2005). 

Ordinal data is usually represented in two-dimensional Cartesian plot intersecting the first 

and second dimensions with the highest explained variance. A Cartesian plot of either samples 

(e.g. scores in PCA, individual factors in MFA) or the variables (e.g. loadings in PCA, group factors 

in MFA) or a projection of the two (biplot) can be used for interpretation easier than the original 

tabulated data (Eriksson, Johansson, Kettaneh-Wold, Trygg, Wikstrom, et al., 2006; McKillup, 

2005; Wheelock, 2002). In oenological studies, the first two dimensions are usually sufficient for 

visualizing the trends in chemistry data. Sensory data sets that contain lower %EV in the first two 

dimensions require greater probing beyond the first two dimensions. Studies have thus shown 

ingenuity by expressing the distribution of the %EV across all dimensions and using the first three 

dimensions in either multiple 2D projections or as a 3D graph (Ballester, Dacremont, Fur, et al., 

2005). This approach minimizes chances of misinterpretation of descriptive data models. An 

opportunity for misinterpretation of Cartesian plots can arise when using secondary identifiers, 

creating false visual impressions of associations/groupings among samples without running a 

cluster analysis. To overcome this, Cartesian plots are coupled with confidence ellipses, cluster 

analysis, and regression vector (RV) coefficients (Auf Der Heyde, 1990; Radovanovic et al., 

2016). Confidence ellipses can be imposed onto the projections to infer grouping of samples. This 

is based on analysis of variance (ANOVA) where the mean of certain repeats is common among 

samples, clustering them together (Pagés & Husson, 2005). Confidence ellipses are applied on 

the Cartesian plot based on the distance to the model (e.g. using Hotelling or bootstrapping), 

usually set at 95% standard deviation from the mean (Härdle & Simar, 2015). Since repeats are 

not always possible, confidence ellipses often overfit the data depending on the variation between 

samples, this is especially the case for sensory data (Brand, 2019; Pagés & Husson, 2005). 

Cluster analysis can be applied to the Cartesian plots, containing as many dimensions as 

needed for pattern recognition, visualised using a dendrogram. A table of co-occurrence latent 

values such as sample correlation matrix and RV coefficients can be calculated between samples, 

variables or data blocks in multiblock analyses (Abdi, 2007b,a; Kruskal, 1977). These matrices 

can be visualised as the Cartesian plots, a dendrogram for scores and blocks or using heatmaps 

for larger data such as loadings. Heatmaps have been mostly used in metabolomics (Ivanisevic 

et al., 2015). Unlike the Cartesian plots, heatmaps often include projections of dendrograms of 

scores and/or loadings. This means that, without bias, the clusters can be visualised for a sample 

set and simultaneously, the differences between variables across the samples. Heatmaps have 
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been coupled with sensory methods for looking at the differences in sensory attributes across 

samples (Brand et al., 2020; Mafata et al., 2019). Other measurements of goodness-of-fit include 

distance to model (DModX), misclassification, and residuals which can be graphed to probe 

deeper into the model performance parameters (Eriksson, Johansson, Kettaneh-Wold, Trygg, 

Wikstrom, et al., 2006; Wheelock, 2002).  

In Sensory, when interpreting model output, it should be considered that experiments can 

result in the acquisition of primary and secondary data corresponding to primary and secondary 

tasks (Section 2.3.1). Primary data should be directly linked to the experimental/research question 

(hypothesis). Secondary data may be in the form of (tentative) annotations and often provides 

qualitative support to the main data. These data are often used as reasons for pattern recognition 

outcomes and, although they are important, it is necessary to understand their nature so as not 

to make inferences of correlation or causality. For example, sorting and Projective Mapping have 

the grouping and distances between samples respectively as the primary tasks and may 

incorporate annotations in the form of attributes using listing or ultra-flash profiling (Cariou & 

Qannari, 2018; Hayward et al., 2020; Mafata, Buica, du Toit, Panzeri, et al., 2018; Valentin et al., 

2012). 

The design of experiments in these cases prioritizes and optimizes the primary task (i.e. 

sorting and mapping) which directly addresses the research question. The statistical implications 

are that the sample variation for the primary task is based on the co-occurrence or ordinal matrix 

of samples, whereas for the secondary task it is based on the variability of attributes. These 

complexities of sensory data have significant implications on the statistical vs contextual 

interpretation of modelling results. Even though the secondary task may contribute contextual 

information to the research question, its results cannot be substituted with the primary task just 

because the results are more satisfactory. Secondary task may be forming a new hypothesis or 

be better suited to answer the research question, in such a case a new experimental design can 

be used to optimize and prioritize the task. For example, studies looking to profile sample sensory 

attributes may need to use a full-factorial DOE whereas those seeking to distinguish samples may 

not (Yu et al., 2018). Additionally, the manner (i.e. the intuitiveness/level of difficulty) and order of 

execution of the tasks may influence the success of the modelling (Brand, 2019; Valentin et al., 

2012). It can happen that the judges are better at executing the secondary task, in which case 

the contextual interpretation of the results have to take this into account.  

 

2.6 Data fusion and advanced data modelling in Oenology 

The most recent trends in data modelling for Oenology are towards the use of artificial 

intelligence (AI) (Garrido-Delgado, Arce, Guamán, et al., 2011; Valente et al., 2018) but there is 

an intermediary approach, which is data fusion. Data fusion is the combining of data sets from 

different sources into comprehensive and representative data models (Handling & Science, 

2019). Data fusion approaches can use algorithms from both classical multivariate modelling and 

AI at different levels of complexity using either supervised or unsupervised techniques (Cocchi, 

2019). 

Different data sets have different distributions and scale; they cannot always be simply 

combined. When data sets of different distributions (variable scale and distribution) are modelled 

together in a simple concatenation, the results are skewed in such a way that it gives a false 

representation of the correlations between variables/samples. Hence, principles of data fusion 

must be used to properly integrate the data sets. 
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2.6.1 Data fusion frameworks 

Data fusion is classified under low, medium, and high level (Figure 2.1) according to 

increasing levels of complexity (Borràs et al., 2015; Handling & Science, 2019; Lahat et al., 2015), 

taking both statistical (Handling & Science, 2019) and strategic approach (Lahat et al., 2015). 

Oenological data fusion strategies used for these levels have been reviewed by Borràs et al. 

(Borràs et al., 2015) in the context of food and beverages authentication.   

The simplest form of data fusion, low-level, is heavily reliant on the prerequisite of matrix 

compatibility between different data sets (Cocchi, 2019). It is for this reason that it is often not 

called data fusion but rather data aggregation or concatenation (Borràs et al., 2015; Cocchi, 

2019). The implications of data concatenation are that the data sets are dependent and vary 

similarly in scale and distribution (Härdle & Simar, 2015). In Oenology, low-level data fusion is 

commonly done on targeted measurements but keep the chemistry and sensory sets separate. 

For example, most low-level data fusion done on wine uses instrumental data and sensors as a 

proxy for sensory evaluation (Borràs et al., 2015; Seisonen et al., 2016). Concatenation is more 

common for chemistry data sets since they are of the same type (correlation matrices) and can 

be scaled using simple methods such as unit conversion.  

In Sensory, overcoming matrix compatibility issues requires more sophisticated solutions 

than simple conversions; that is why fusion of sensory data is often done through mid-level or 

high-level data fusion strategies  (Boccard & Rutledge, 2014). Studies that have attempted to do 

simple concatenation of sensory and chemistry data used techniques such as PLS, which keep 

the chemistry set as an independent variables and sensory set as dependent variable set (Hopfer, 

Ebeler & Heymann, 2012; Seisonen et al., 2016). One study has also attempted to use descriptive 

analysis profile of wine to predict typicality with good success (Coulon-Leroy, Poulzagues, Cayla, 

et al., 2018). The low-level approaches that did not do simple concatenation were limited for 

reasons such as incompatible matrix types between data sets, and differences in variable 

distributions (discreet vs continuous) and matrix arrays (e.g. 2D vs 3D); these are cases when 

the preceding steps in data handling (Section 2.3) must be re-assessed. 

Mid-level data fusion involves the use of pre-processing and multiblock approaches to ensure 

matrix compatibility (Figure 2.1) (Borràs et al., 2015; Cocchi, 2019; de Juan, Gowen, Duponchel, 

et al., 2019). Matrix compatibility, previously mentioned as a limitation to achieving low-level data 

fusion, is obtained through multiblock techniques such as factor analyses (MFA, GPA, PARAFAC, 

etc.) (Bro, 1997; Niimi, Boss & Bastian, 2018; Silvestri, Elia, Bertelli, et al., 2014). Pre-processing 

for matrix compatibility also includes mathematical transformations (rating converted to frequency 

data) and the use of exploratory modelling for scaling (Campos & Reis, 2020; Engel et al., 2013; 

Rinnan et al., 2009). Although supervised data fusion approaches are more common in Oenology, 

unsupervised approaches are gaining popularity.
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Figure 2.1: Example of theoretical framework for data fusion. Dotted line designates a ‘soft boundary’ between data sets (concatenation), while a full line designates 
a ‘hard boundary’ (multiblock). MFA – multiple factor analysis; PLS – partial least squares; CA – correlation analysis; k-NN – k-nearest neighbours; MDS – 
multidimensional scaling. 
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Since multiblock approaches (e.g. MFA) have become commonplace for treatment of sensory 

data (e.g. Projective Mapping), opportunities have risen where they are used for data fusion of 

multiple data sets. For example, MFA has been used for the fusion of chemical and sensory data 

related to volatile phenol compounds and smoke-related sensory descriptors (McKay, Bauer, 

Panzeri, et al., 2019) as well as furanmethanethiol (FMT) and coffee aroma in Pinotage wines 

(Garrido-Bañuelos & Buica, 2020). Supervised mid-level data fusion approaches have been of 

relevance to Oenology due to increased use of untargeted analysis. Variations of partial least 

square (PLS) have been used on data such as UV-Vis, IR, GC-MS, NMR, and to predict sensory 

descriptors and/or sensory classes such style, cultivar or regionality (Cayuela, Puertas & Cantos-

Villar, 2017; Cozzolino, Smyth, Lattey, et al., 2005; Culbert, Cozzolino, Ristic, et al., 2015; Fudge, 

Wilkinson, Ristic, et al., 2013; Gambetta, Cozzolino, Bastian, et al., 2019).  

High-level data fusion involves extensive pre-processing, dynamic use of techniques from 

parametric (classical statistics) to advanced techniques (non-parametric), and mixed multiblock 

approaches that usually involve big data (Borràs et al., 2015; Handling & Science, 2019). Also 

called decision-level data fusion, these approaches maximize informational value, precision, and 

accuracy (Borràs et al., 2015; Cocchi, 2019). The strategies generally require elements of both 

quantitative measures of variation (large sample size, biological, and/or instrumental repeats) and 

qualitative measures of variability (various equipment/types of measurements, sample variability 

in the form of representation within and outside the calibration ranges) (Petrovic et al., 2019). This 

means that model performance and optimization are very important aspects in these strategies. 

In Oenology, modelling mostly uses supervised methods of prediction and classification. 

Combinations of chemical data sets are used to create robust calibration models to predict wine-

related concepts such as cultivar, designation of origin, and authenticity (Alañón et al., 2015; 

Borràs et al., 2015). These high-level strategies involve process technology for acquisition, 

monitoring, and modelling process outcomes (Borràs et al., 2015; Cocchi, 2019; Ríos-Reina, 

Azcarate, Cami, et al., 2020). Examples include the use of infrared spectroscopy for accurate 

predictions of oenological parameters such as yeast assimilable nitrogen (YAN) (Petrovic et al., 

2019) and total antioxidant capacity (TAC) (Versari et al., 2010). Although process analytical 

technology (PAT) strategies are not always considered data fusion, they integrate multiple 

measurements from different sources modes for prediction purposes (Alañón et al., 2015; Borràs 

et al., 2015; Cavaglia, Schorn-García, Giussani, et al., 2020; Fourie, Luis Aleixandre-Tudo, 

Mihnea, et al., 2020).  

Even though the high-level data fusion strategies presented in the literature are generally 

hypothesis testing, due to the large data variation and variability, prospects of data exploration 

could lead to hypothesis formation. This is an approach worth considering for future Oenological 

applications. This is especially true for cases that have used advanced modelling techniques for 

data mining and pattern recognition, which are presented in the next section. 

In practice, the theoretical frameworks presented here are not always easy to distinguish. 

There are no hard borders between each level, and there may be some overlap. Since studies 

usually disclose the results of successful modelling strategies, the full process to the approach, 

which may contain elements of other levels of data fusion, are not always communicated. This 

can create misconceptions about the level of difficulty in fusing multimodal data, which can be 

especially misleading when dealing with sensory data. Omitting intermediary steps of pre-

processing creates gaps which are important for understanding the overall strategy and rationale 

behind choosing modelling types. There are so many modelling options that are available and 

interchangeable. Applications from a purely statistical approach can simply be based on the 
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methodology but because the applied sciences need to address the contextual interpretation, 

communicating the rationale behind the approach is very beneficial for progression in the field.  

 
2.6.2 Advanced data handling techniques 

Advancements in data handling are motivated by the need to improve 

mathematical/statistical algorithms to better model performance and developing analytical 

algorithms for more user-friendly software. Advancements of algorithms can be based on classical 

statistics or artificial intelligence (AI) systems. Using classical statistics, supervised modelling 

advancements have worked towards increasing the calibration and discriminative power of 

models (Eriksson, Johansson, Kettaneh-Wold, Trygg, Wikstrom, et al., 2006; Härdle & Simar, 

2015; McKillup, 2005). Both supervised and unsupervised modelling are advancing towards the 

use of nonparametric (non-classical) artificial intelligence techniques. These techniques have 

mostly been used to further pattern recognition in the form of clustering and classification, within 

the context of food analysis (De Carvalho Rocha et al., 2020).  

Classical multivariate analyses derive linear relationships and linear regression algorithms 

based on normal parametric distribution (Härdle & Simar, 2015; McKillup, 2005). Although some 

advances in mathematical algorithms have been developed to improve on these methods, their 

limitations in solving complex applied science research questions cannot be overcome so 

simplistically, especially given the increase in data size and in variations. Since large data size 

and variability is a prerequisite for running AI analyses, AI as an approach is intuitively better 

suited for analysing big data. Artificial intelligence is more nuanced in that it accommodates non-

binary (i.e. classifications) and non-linear (i.e. calibrations) relationships (De Carvalho Rocha et 

al., 2020). This AI approach is especially motivating for work on complex natural products such 

as wine and is compatible with the nuances of sensory data, an avenue that has yet to be 

exploited. Additionally, AI can solve issues related to overfitting and model performance in 

classical MVA (Arbara, De Andrade, De Gois, et al., 2020). In the wider field of food sciences, a 

recent review has also indicated a great advantage of coupling classical MVA with AI (De 

Carvalho Rocha et al., 2020). The review narrated some important behavioural barriers to the use 

of advanced techniques in food analysis and exemplified their use in food science, with only five 

of the 128 cases being wine related. With varying degrees of success, the review found that the 

AI approaches were better adapted for mapping the behaviour of complex products and thus 

obtained models with better performance compared to classical MVA.  

It is not just necessary to increase the discrimination power (classification, grouping, or 

prediction) of data analysis, it is also crucial ultimately to understand what drives/contributes to 

the observed patterns. Taking a non-classical approach to pattern recognition can result in 

extracting/obtaining greater information from the data (e.g. compounds or sensory attributes). The 

strategy behind the use of advanced techniques is analogous to how mid and high-level data 

fusion uses low-level modelling as pre-processing steps. The strategy has been to use classical 

MVA followed by AI analysis for pattern recognition (Figure 2.1), i.e. the data is first normalised 

using classical MVA and then AI is applied (Härdle & Simar, 2015; Myhre et al., 2018). In a proof 

of concept for the potential of non-parametric techniques, a few case studies have been 

documented for the successful use of artificial neural networks for mining unstructured/raw data 

(Myhre et al., 2018).  

The most common documented uses of AI in Oenology include support vector machines 

(SVM), self-organising maps (SOM), and k-nearest neighbours (k-NN) or k-means clustering (De 

Carvalho Rocha et al., 2020). Both generally and in Oenology, these techniques have been used 

in a supervised manner for prediction or classification, with either supervised or unsupervised 
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classical MVA used for exploratory preceding steps (De Carvalho Rocha et al., 2020). In 

Oenology, SVM and k-NN have been coupled with other classical MVA supervised techniques 

such as PLS to increase model performance. With varying degrees of success, they had better 

performance compared to classical MVA (Borràs et al., 2015; Gómez-Meire, Campos, Falqué, et 

al., 2014; Latorre, García-Jares, Médina, et al., 1994). SOM has previously been used for 

exploratory data mining of unstructured sensory data using Classification and Regression Trees 

(CART) coupled with CA to differentiate South African white wines styles; the study was 

successful in demonstrating mining of such data using advanced modelling techniques (Valente 

et al., 2018). Although these methods are theoretically and practically more complex compared 

to classical MVA, the examples and case studies presented have shown their potential in bettering 

data handling for Oenology. They could be capable of elucidating answers to big questions in 

Oenology such as sensory and chemistry markers of wine quality, as well as wine authenticity.  

 

2.7 Conclusions 

The aim of this review was to examine the different stages of the data handling process in 

Oenology and elucidate the rules and rationale behind the decisions made. It specifically focused 

on the differences and similarities between the chemometric and sensometric treatments of the 

data. As well as addressing some misconceptions concerning data handling in Oenology, this 

review identified the key decision-making aspects during the data input stage (capturing and pre-

processing), the modelling, and the model output (visualisation/interpretation). In terms of the 

success of a model in addressing the research question/hypothesis, what you put in is what you 

get out1. Hence, thorough data capturing chances of success increase since only that which was 

captured can be modelled. The pre-processing of the data was shown to impact on the 

performance of models as measured by the performance parameters. That is to say that the level 

of redundancies and “noise” in a model will be reflected in poor performance parameters such as 

the explained variance and calibration coefficients. Thus, as a reiterative process, model 

optimization techniques such as variable/feature selection and the choice of these were 

addressed. This review most importantly discussed the impactful nature of visual aids and offered 

rationale as to how to couple visual aids with each other and with performance parameters to 

enhance the interpretability of model outcomes. Furthermore, in this regard, the review 

rationalised the intertwining of statistical and applied reasoning for interpretation of modelling 

outcomes. The standing recommendation has thus been to have a design of experiments that is 

considerate of the stages of data handling and their impact on achieving the research question. 

The advantage of such a holistic approach is that it not only increases chances of successful 

hypothesis testing, but it can create opportunities for hypothesis forming scenarios. This would 

then encourage the advancement of data analysis in Oenology towards techniques in Artificial 

Intelligence. Applying advanced data analyses is very much possible given that there are means 

(instrumental and software availability), motivation (optimizing model performance and applied 

interpretations), and opportunity (large data already available). It is important to communicate the 

 

 

 

 
1 “Garbage in, garbage out: Used to express the idea that in computing and other spheres, incorrect or 
poor-quality input will always produce faulty output (often abbreviated as GIGO).” 
www.oxfordreference.com  
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strategies since this has critical contribution to the philosophy and progression of science and 

research. 
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Chapter 3:  A multivariate approach to evaluating the 
chemical and sensorial evolution of South African Sauvignon 
Blanc and Chenin Blanc wines under different bottle storage 

conditions 
 

Abstract 

Volatile compound composition contributes to the aroma profile of wine and is susceptible to 

change due to oxidation which may occur during storage and transportation, especially at high 

temperatures. Changes in sensory attributes may also occur, altering the sensory profile of wine. 

Classical univariate analysis only looks at the deviations for one factor at a time and may overlook 

the overall effect of treatments. In this study, changes in South African Sauvignon Blanc and 

Chenin Blanc wine sensory profile, volatile and antioxidant-related parameters resulting from 

storage under different temperatures (room temperature, 15 °C and 25 °C) and durations (0, 3 

and 9 months) were investigated using a multivariate approach. Bottled, unwooded wines of both 

cultivars from six wineries were used. As expected, the chemical evolution of the wines was 

characterised by increases in absorbance at 420 nm (browning), colour density and hue with 

prolonged storage at high temperatures. To be able to compare the evolution of the sample sets 

regardless of the initial (T0/control) wine profile and composition, multivariate regression analysis 

in the form of regression vector (RV) coefficients were used to assess the correlations in the 

sensory and chemical changes relative to the control in each set. Using Pivot© Profile for the first 

time in this type of stability assessment and applying a new algorithm for data handling in addition 

to the classical one, this study showed that prolonged exposure to higher temperatures resulted 

in the change from fruity to toasted aroma attributes. 

 

3.1 Introduction 

Wine matrix can be easily susceptible to change due to several factors resulting from 

influences originating from viticultural practices to storage and transportation of finished wines. 

The prescribed conditions of storage for white wines is to be chilled and refrigerated. Studies on 

New Zealand Sauvignon Blanc have shown that there is a significant change in the sensory 

attributes as well as an evolution in the colour and volatile compound composition with sub-

optimal storage conditions (Herbst-Johnstone, Nicolau & Kilmartin, 2011; Makhotkina, Pineau & 

Kilmartin, 2012).   

The non-volatile matrix can be affected by improper storage conditions, which may lead to 

redox reactions that affect antioxidant related compounds such as phenolics (e.g. phenolic acids, 

hydroxycinnamic acids and flavanols), resulting in changes in colour causing it to brown 

(Waterhouse, 2002). These reactions are exacerbated by oxygenation, high temperatures, and 
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temperature fluctuations (Waterhouse, 2002). The visual differences between samples can be 

calculated based on their UV-Vis absorption. CIELab parameters are an approximation of the 

visual perception of colour through the human eye (OIV, 2006; Pérez-Caballero, Ayala, Federico 

Echávarri, et al., 2003). The colour can be approximated using the parameters a* (a*>0 red; a*<0 

green) and b* (b*>0 yellow, b*<0 blue) and the clarity of the wine can be approximated using the 

L* parameter (L* = 0 black; L* = 100 colourless).  

Varietal thiols, methoxypyrazines, and major volatile compounds (organic esters, acids, 

acetates and higher alcohols) contribute to fruity, floral, and herbaceous/vegetative aroma 

attributes. Oxygen intake of wine during bottling has been linked to decreases in varietal thiols 

throughout storage and consequently in fruity aromas (Coetzee, Van Wyngaard, Šuklje, et al., 

2016). Sub-optimal storage temperatures have also been shown to lead to decreased levels of 

volatile compounds in white wines, which lead to decreases in floral and fruity aromas as well as 

increases in ripe and toasted aromas (Pérez-Coello, González-Viñas, Garcı́a-Romero, et al., 

2003).   

The evolution of wine throughout storage can be evaluated using different sensory methods. 

Oenological studies commonly use descriptive and/or quantitative methods such as DA (Herbst-

Johnstone et al., 2011) and rating to evaluate wines (Pérez-Coello et al., 2003). These methods 

profile and/or quantify perceived attributes for each individual wine sample. When it comes to 

studies on the sensorial evolution of wine, methods that comparatively assess wines against one 

another should be better suited for the task. Methods such as polarized sensory positioning 

(PSP), projective mapping (PM), sorting, and triangle test compare samples to one another in 

either a directed or undirected manner (Valentin, Chollet, Lelièvre, et al., 2012). Using 

comparative rapid profiling methods such as sorting can elucidate the overall effect of treatments 

in an efficient manner without the need to individually profile wines. Several rapid profiling 

methods have been investigated against their effectiveness relative to DA (Lelièvre-Desmas, 

Valentin & Chollet, 2017). The latest method, Pivot©Profile (PP), comparatively assesses the 

sensory attributes of wine samples relative to a reference sample (the pivot). This frequency-

based method uses free description to profile wines, with each sample assessed one at a time 

against the pivot. This results in positive and negative frequencies which are translated to positive 

cumulative frequencies only (Thuillier, Valentin, Marchal, et al., 2015). Correspondence analysis 

is performed on the data to produce a sensory map or heatmaps to obtain a direct comparison of 

the sample to the pivot. The potential of this method to profile wines in studies related to their 

evolution is very promising.  

In order to assess storage effects, the classical statistical approach has often taken a more 

targeted experimental design. Using several repeats of targeted chemical measurements, with 

univariate statistical approaches such as ANOVA and/or multivariate approach such as MANOVA 

being used to handle the data (Granato, de Araújo Calado & Jarvis, 2014; Murray, Delahunty & 
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Baxter, 2001). This approach comes from the need to measure variations in natural systems, 

hence biological repeats are used to factor the deviations. In the case of oenological experiments, 

this often results in a focus on only one cultivar and/or a few geographical samples in order to 

accommodate biological repeats and vintages. 

Multivariate analysis has previously been used to investigate several contributing factors to 

variation in an experimental set-up for issues such as cultivar discrimination and for authentication 

(Borràs, Ferré, Boqué, et al., 2015; Silvestri, Elia, Bertelli, et al., 2014). Soft, unsupervised 

multivariate modelling methods such as principal component analysis (PCA) and cluster analysis 

have often been used for differentiation between treatments but still relied on univariate analysis 

for tracking evolution (Ugliano, Kwiatkowski, Vidal, et al., 2011). Recently, multivariate regression 

analysis such as partial least squares (PLS) have gained popularity in modelling the evolution of 

wine chemical properties. OPLS (orthogonal PLS) is able to give  additional information regarding 

class discrimination when taking into account multiple factors such as cultivar, vintage, and 

geographical location (Hopfer, Ebeler & Heymann, 2012).  

Unlike the targeted univariate approach, multivariate regression analysis can assess trends 

and/or groupings among treatments taking into account multiple factors as well as multiple 

variables whilst assessing the inter-relatedness of the relationships between sample groups for 

all given variables. It can also calculate the contribution the measured variables have to the overall 

effect in a given experiment. Multivariate approaches do not make assumptions based on the 

deviations between discreet samples and/or variables and can thus reveal subtle, inherent 

relationships concerning the behaviour of wine.  

Using South African Chenin Blanc and Sauvignon Blanc wines stored at different 

temperatures for different periods, this study aimed to show that the evolution of wine aroma 

attributes, volatile, and antioxidant compounds can be modelled using multivariate regression 

analysis. 

 

 

3.2 Materials and methods 

 
3.2.1 Wines and treatment 

Unwooded Chenin Blanc and Sauvignon Blanc wines were sourced from six wineries in 2016. 

The wines were stored at room temperature (RT), 15°C and 25°C for 3 months and 9 months (T3 

and T9), after which they were transferred into a -4°C cooling room until analysis. The control for 

each winery (T0) was stored at -4°C until analysis. Therefore, each experimental set consisted of 

seven samples (T0, T3/15, T3/25, T3/RT, T9/15, T9/25, T9/RT) per winery (AVN, CDB, DTK, 

FRV, KZC, PDB) for each cultivar (CB and SB), twelve sets in total.  

 

Stellenbosch University  https://scholar.sun.ac.za



35 

3.2.2 Sensory evaluation 
Pivot©Profile (PP) was performed in August 2017, according to the method by Thuillier, et al. 

(2015). A panel of 15 expert judges was used. The cultivars were tested separately. Three repeats 

were tasted in separate sessions, on a different day. One session consisted of three flights of 

samples belonging to different wineries. Each flight was an experimental set and additionally 

included the control (T0) as a blind duplicate. The evaluation was done against the respective T0 

as the pivot. The panellists took a 10-minute break between flights. The samples were 

randomised across judges and were presented according to William Latin Square design. 

Samples were coded with unique three-digit numbers. Different codes were assigned for all flights 

including the repeats. Judges were instructed as shown in Supplementary Figure 3.1.  

 

3.2.3 Chemical analysis 

3.2.3.1 Oenological parameters 
The pH, titratable acidity (TA), total (TSO2) and free (FSO2) sulphur dioxide were measured 

on a Metrohm 862 compact titrosampler (Herisau, Switzerland) using chemicals (sodium 

hydroxide (NaOH), potassium iodide/ potassium iodate (KI/KIO3) and sodium thiosulfate 

(Na2S2O3)) purchased from Cameron chemical consultants (Cape Town, South Africa).  

 

3.2.3.2 Thiol analysis 

Thiol analysis was performed according to the method by Mafata et al. (2018). The following 

compounds were measured (followed by abbreviations and codes): 3-mercapto-1-hexanol (3MH, 

C34), 3-mercaptohexyl acetate (3MHA, C35), 4-mercapto-4-methylpentan-2-one (4MMP, C36). 

The method is based on the derivatization of the thiols with DTDP (4,4′-Dithiodipyridine), followed 

by sample clean-up by SPE and injection. Quantitative analysis was performed on a Waters 

Acquity UPC² using a Waters Viridis BEH 2EP Column (130 Å, 1.7 µm, 3 mm X 100 mm, 1/pkg) 

and quantitative mass spectrometric detection was carried out using a Xevo TQ-S triple 

quadrupole mass spectrometer (Waters, Milford, USA). Data collection and analysis were 

performed using MassLynx 4.1 (Waters Corporation). 

 

3.2.3.3 Glutathione 
Analysis of glutathione (GSH) was performed according to the method by Kritzinger et al. 

(Kritzinger, Stander & Du Toit, 2013). Direct injection of the samples was done on a Waters 

Acquity UPLC fitted to a Waters Xevo triple-quadrupole mass detection in positive mode (Milford, 

MA, USA). 
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3.2.3.4 Major volatiles 
The determination of 32 volatile compounds was performed according to Louw (2009). The 

compounds measured were (followed by codes): ethyl_acetate (C1), methanol (C2), ethyl-2-

methyl-propanoate (C3), ethyl_butyrate (C4), propanol (C5), isobutanol (C6), isoamyl_acetate 

(C7), butanol (C8), isoamyl_alcohol (C9), ethyl_hexanoate (C10), pentanol (C11), hexyl_acetate 

(C12), acetoin (C13), 3-methyl-1-pentanol (C14), ethyl_lactate (C15), hexanol (C16), 3-ethoxy-1-

propanol (C17), ethyl_caprylate (C18), acetic_acid (C19), ethyl-3-hydroxybutanoate (C20), 

propionic_acid (C21), isobutyric_acid (C22), butyric_acid (C23), ethyl_caprate (C24), 

isovaleric_acid (C25), diethyl_succinate (C26), valeric_acid (C27), ethyl_phenethylacetate (C28), 

2-phenylacetate (C29), hexanoic_acid (C30), 2-phenylethanol (C31), octanoic_acid (C32), 

decanoic_acid (C33). Wine samples were extracted with diethyl ether and the organic layer was 

dried over anhydrous sodium sulphate prior to analysis by GC-FID (HP 6890, Hewlett Packard, 

Palo Alto, California, United States).  

 

3.2.3.5 Measurements of colour 
Spectrophotometric measurements were performed in triplicate from 280 nm to 780 nm on a 

Thermo Scientific Multiskan GO 1510-02586 microplate spectrophotometer. Colour intensity (CI, 

A520 + A420), colour hue (CH, A520 / A420), total phenolics (A280), hydroxycinnamic acids (A320) and 

browning (A420) were determined. Calculation of chromatic characteristics was done according to 

the method by Pérez-Caballero et al., (2003) which originated from the Commission Internationale 

de l’Eclairage (CIELab) method (OIV, 2006) and optimized for white wines. 

 

3.2.4 Statistical analysis 
Multivariate analysis was performed separately for each winery and each cultivar, in sets of 

seven samples. Correspondence Analysis (CA) was performed on sensory data and Principal 

Component Analysis (PCA) on the scaled and centred chemical data. The generated scores and 

loadings were submitted to additional statistical analysis. In order to assess the configurational 

similarity between sample sets, pair-wise regression vector (RV) coefficients were calculated 

separately from the first two dimensions of the CA results of the sensory data (scores) and the 

first two dimensions of the PCA results of the chemistry data (scores), based on the generalized 

Pearson correlation coefficient. Three dimensional representations of Multidimensional Scaling 

(MDS) plots were generated based on the RV coefficients.  Statistical calculations were performed 

using Statistica™ 13 (TIBCO, Dell software, Inc., Texas, United States) and R version 3.4.0 

(www.R-project.org) using personally tailored “R” scripts.  
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3.3 Results and discussion 

Since the sensory evaluation was performed separately for each winery and each cultivar, 

each experimental set has gone through statistical analysis separately. The same strategy was 

used for the chemical analysis results. Hence, for each cultivar, six CA and six PCA were 

performed. The results of this unsupervised statistical approach contributed to the descriptive part 

of the work. For the initial step of the evaluation, in addition to the CA, heatmaps were generated 

from the sensory data. In the next stage, in order to quantify the similarity of the patterns between 

the CA/PCA plots, multivariate regression analysis was performed separately for each cultivar 

and pair-wise RV coefficients generated (Supplementary Tables 3.1 to 3.5). This constituted the 

modelling part of the work, in which the patterns of evolution of the sample sets were the focus. 

The discussion of the results follows the same steps. 

 

3.3.1 Sensory evaluation 
As highlighted in the Introduction, PP data can be analysed using two different approaches: 

translating all frequencies in the contingency table to have only positive values (Thuillier et al., 

2015), on which CA can be performed, or leaving the values as they are in which case heatmaps 

can be used to visualise and analyse the data (Brand, 2019). The data analysis began with the 

capture of 180 forms for SB and 180 for CB. 240 Attributes were generated with little 

redundancies. Using semantic grouping led to 170 attributes from which cumulative frequencies 

were calculated for CB and SB separately. Attributes containing less than 95% “zero” citation 

were selected, which resulted in 29 attributes for CB and 33 for SB and used for the CA plots 

(Supplementary Figure 3.2) and heatmaps (Figure 3.1). Heatmaps are descriptive and intuitive 

(Figure 3.1). Horizontally, the profile of a sample is displayed relative to the rest of the samples; 

vertically, each attribute’s relative intensity is presented for each sample. Additionally, the 

dendrogram shows how the samples are related to each other using cluster analysis.  

The results showed that judges perceived the aroma of the control (T0) to be consistently 

different from the treatments in all wineries and for both cultivars. The controls were generally (as 

expected) most different from the extreme treatment (T9/25). The control samples, described 

mostly with ‘fruity’ and ‘floral’ attributes, were different from the T3 samples (described mostly with 

green attributes) and the T9 samples (described mostly as ‘toasted’, ‘oaky’ and ‘woody’ 

attributes). Regardless of the similarity between the individual attributes used for the wineries, the 

dendrograms of both SB and CB indicate that the frequency of citation for samples stored at lower 

temperatures for shorter periods of time are more similar to attributes used to describe the control 

and are different from attributes used for samples stored at higher temperatures for prolonged 

periods of time (Figure 3.1). The evolution of ‘floral’ and ‘fruity’ notes in the controls were more 

subtle in SB than CB wines. CB control wines, for most of the wineries, experienced a sharper 

decline in floral and fresh notes over time and at increased temperatures.  
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SB control wines were more ‘fruity’, ‘floral’ and ‘tropical’ than wines stored at elevated 

temperatures for longer which were more ‘toasty’, ‘oaky’ and ‘spicy’. This is similar to the results 

on New Zealand SB found by Makhotkina, et al. (2012). KZC SB sample set was an exception as 

the control had particularly higher ‘pineapple’, ‘green’ and less ‘fruity’ notes compared to the other 

wineries. ‘Fresh’ remained relatively unchanged, with only some wineries experiencing a slight 

decrease with elevated temperature and prolonged exposure.  

 

 
Figure 3.1: Heatmaps of the results from the Pivot©Profile of SB wines from AVN and KZC wineries. Wines 
were stored under the conditions: T0 = control/ pivot at -4°C; T3/RT= 3 months at room temperature; T3/15 
= 3 months at 15°C; T3/25 = 3 months at 25°C; T9/RT= 9 months at room temperature; T9/15 = 9 months 
at 15°C; T9/25 = 9 months at 25°C. 
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Even though the use of the CA means that the frequencies of citation have to be normalized 

to avoid the use of negative values, there are some advantages. For example, CA shows the 

value of the inertia for the dimensions considered for the analysis. The first two dimensions 

explained between 60 and 69 for SB and between 66 and 77 for CB. It was evident from the CA 

score plots that there was a gradual change from the T0 to T3 to T9 samples (Supplementary 

Figure 3.2). Similar to the heatmap approach, CA also includes associated dendrograms that 

show how the samples within a set are related to each other. The interpretation of the CA biplot 

(samples and attributes) though is more difficult than in the case of a heatmap, where each 

sample is presented with its own attribute profile. Overall, the results in this study are comparable 

to the findings on commercial New Zealand SB wines (Makhotkina et al., 2012)  and on Spanish 

white wines (Pérez-Coello et al., 2003). Both studies found significant increases in buttery, ripe 

and spicy attributes and decreases in fruity, fresh and floral attributes with higher storage 

temperatures. 

Even though there is a wealth of information that can be extracted, the same issue arises for 

both CA and heatmaps when working with more than one sample set. Careful inspection can lead 

to observing trends between sets looking at the sample configuration and attributes. However, 

the sets are dealt with separately so one can only notice trends and exceptions, not statistically 

measure similarities between sets. In this case, an additional statistical analysis such as pair-wise 

regression vector (RV) coefficients were calculated between each of the six sample sets for each 

cultivar, followed by MDS representation. In principle, RV coefficients can be calculated for both 

scores (samples) and loadings (attributes) from the CA results, as long as the new variables 

(samples and attributes) are the same between the sets. However, since the wines were not 

described using the same attributes, this step could only be applied to the scores (samples).  

For most of the wineries similar patterns of evolution were observed, with correlations greater 

than 50% (RV≥0.50 at p ≤ 0.05), with the exception of a few wineries. CB data sets had generally 

higher RV values (0.71±0.14) than SB (0.64±0.14).  For both cultivars, one of the wineries’ (KZC) 

evolution pattern generally differed from the rest, as reflected in the RV coefficients 

(Supplementary Table 3.1). For KZC CB, RV coefficients were between 0.46 and 0.55, while for 

KZC SB between 0.36 and 0.66. 

The addition of RV coefficient results to the descriptive heatmaps and the CA plots made it 

possible to see that for each cultivar and regardless of the initial (T0) wine profiles, the storage 

conditions had similar effects on the evolution of the wines with the exception of KZC CB and SB. 

This can be seen in the MDS plot for both CB and SB wines (Figure 3.2), showing KZC further 

placed from the rest of the wineries. 
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Figure 3.2: MDS from the RV coefficients of the six wineries, generated from the Pivot©Profile of CB (top) 
and SB (bottom) stored under different conditions.  
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3.3.2 Chemical evaluation 

3.3.2.1 Volatile compounds 
The variables used in the PCA featured 34 volatile compounds comprised of varietal thiols 

(3-MH, 3-MHA and 4-MMP), esters, organic acids, and higher alcohols (Supplementary Tables 

3.6 to 3.11). The first two PCs contained 73 to 80% for the explained variance for SB and 72 to 

83% for CB sample sets. Similar to the sensory results, T0 samples were consistently different 

from the other treatments and a gradual trend was observed from T0 to T3 and T9 samples.  

Among the volatile compounds measured, the varietal thiols concentrations were associated 

with storage time/temperature combination for both SB and CB (Figure 3.3). The controls had 

higher 3-MHA concentrations compared to the extreme treatment (T9/25), which has also been 

previously shown in New Zealand Sauvignon Blanc (Herbst-Johnstone et al., 2011). Samples 

stored at high temperatures for longer (T9/25 as the extreme) had higher 3-MH and 4-MMP which 

in previous studies  was found not to have changed throughout storage (Makhotkina et al., 2012).  

Major volatile composition was different between wineries and cultivars, in both levels and 

profile. A study on the evolution of Spanish white wines (Airén, Viura, and Macabeo) over a four 

year period did not show changes in volatile acids at the end of the first year of storage at sub-

optimal conditions (Pérez-Coello et al., 2003) which may explain the results found in the current 

study, since the storage was only over nine months. 

The RV coefficients calculated from the PCA scores for both SB (0.49±0.15; range 0.25 to 

0.83) and CB (0.49±0.12; 0.24 to 0.69) indicated that they had different patterns in evolution 

(Supplementary Table 3.2). This may be an indication that the treatment did not affect the volatile 

composition of the wines similarly. Additionally, the list of volatile compounds measured might not 

have been comprehensive enough to model the effect of the treatment, in which case an 

untargeted approach may be more appropriate.  

The RV coefficients for the loadings for both CB (0.36±0.17; range to 0.08 to 0.66) and SB 

(0.33±0.16; from 0.07 to 0.65) were very low (Supplementary Table 3.3). This may suggest 

another reason why the evolution was different, namely that the volatile composition of the 

controls was initially so different between the sets that their evolution through storage also 

differed. The MDS of the scores and the loadings for both the SB   and CB show most of the six 

wineries sitting far apart from one another further illustrating differences in evolution (Figure 3.4). 
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Figure 3.3: PCA (scores and loadings) based on the volatile compound results for CB (top graphs) and SB 
(bottom graphs) wines from AVN winery, stored under different conditions.  
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Figure 3.4: MDS from the RV coefficients generated from scores and loadings of volatile compounds results 
of CB (left) and SB (right) wines of the six wineries stored under different conditions.  

 

3.3.2.2 Antioxidant-related parameters 
Variables used for the PCA (Figure 3.5) of antioxidant-related compounds/parameters 

consisted of 11 measurements including reduced glutathione (GSH), total and free SO2 content 

(TSO2 and FSO2), spectrophotometric analysis at discrete absorption wavelengths (A520, A420, 

A320, A280, colour density and colour hue), as well as CIELab measurements of colour (L*, a*, b*, 

Cab* and hab*)(Supplementary Tables 3.12 and 3.13). The PCAs (Figure 3.5) showed a gradual 

distribution of samples according to duration of storage (from T0 to T3 and T9) with the first two 

PCs explaining 75 to 88% of the variation for SB and 80 to 94% for CB.   

Wines stored at higher temperatures for longer showed increased absorbance at 420 nm and 

higher b* (yellow). These wines also generally had higher UV-Vis absorption (A280, A320 and A520) 

and colour density. The clarity (L*) of these samples was lower compared to the control. Oxidation 

of samples stored at higher temperatures for longer was indicated by the decrease in reduced 

glutathione, total and free SO2. The results in this study are similar to that on New Zealand 

Sauvignon Blanc wines found a decrease in GSH and FSO2 within a few months after bottling and 

increases in absorbance at 420 nm after 7-months after bottling (Herbst-Johnstone et al., 2011).  
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Figure 3.5: PCA (scores- top and loadings-bottom) based on antioxidant-related parameters of SB (left) 
and CB (right) wines for AVN winery stored under different conditions.  

 

The similarity in the pattern of evolution of the sample sets (scores) throughout storage was 

generally observed in both cultivars. SB had an average RV coefficient of 0.75±0.13 (from 0.52 

to 0.91) excluding CDB with an RV ranging from 0.08 to 0.57 and an average RV of 0.2 

(Supplementary Table 3.4). CB had an average RV coefficient of 0.90±0.04 (from 0.81 to 0.97), 

indicating a more consistent response to the storage conditions in CB compared to SB. This is 

similar to the sensory response of CB wines discussed in section 3.3.1.  

The RV coefficients for the antioxidant-related parameters (loadings, Supplementary Table 

3.5) was higher for CB (0.78±0.14; from 0.61 to 0.93) with FRV and PDB pair having the lowest 

correlations with an RV of 0.43. In contrast, SB wines had low RV coefficients (0.31±0.16; from 

0.03 to 0.63). The possibility that the differences in chemical matrix of the control wines resulted 

in very different patterns of change throughout time and temperature is still valid. The CB MDS 

(Figure 3.6) showed very close relatedness in the pattern of evolution of the samples with that of 

the loadings being captured within the first two dimensions. The opposite was true for SB seeing 

as the CDB winery had such very low RV coefficients to the rest of the wineries (Figure 3.6).    
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Figure 3.6: MDS from the RV coefficients generated from scores (left) and loadings (right) of antioxidant-
related results of CB (top) and SB (bottom) wines for all six wineries stored under different conditions.  

 

3.4 Conclusion 

Using a multivariate regression approach, the evolution of the sensory perception of aroma, 

as well as the volatile and antioxidant-related composition of Sauvignon Blanc and Chenin Blanc 

wines under different storage conditions and durations was investigated. The wines investigated 

showed an aroma evolution from ‘fruity’ and ‘herbaceous’ for Sauvignon Blanc and from ‘fruity’ 

and ‘tropical’ for Chenin Blanc to ‘toasted’, ‘oak’, and ‘honey’. RV coefficients for the scores 

(samples) showed a significant correlation in the observed evolution among the six wineries. CB 

wines had higher RV coefficients, indicating that the evolution was more consistent across 

wineries compared to SB.  

The volatile compound analysis showed very little correlation between the patterns of 

evolution across wineries as measured by RV coefficients for both scores (samples) and loadings 

(compounds). This indicates a need to either increase the number and diversity of compounds 

measured or to perhaps take an untargeted analysis approach.  

The response of the antioxidant-related parameters to the treatment was similar to that 

observed for the sensory evaluation, with high RV coefficients between wineries. Samples stored 
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at higher temperatures for longer periods correlated with higher UV-Vis absorbance, colour 

density as well as higher b* (yellow) values and lower clarity in terms of L* index. Chenin Blanc 

control wines had very similar aroma and antioxidant-related profile which may have resulted in 

their uniform response to the treatments (high RV coefficients for both scores and loadings) as 

compared to Sauvignon Blanc. The large differences in chemical makeup of the wines may be as 

a result of the grapes themselves (clonal differences, ripening status at harvest, climatic 

conditions during growth) or winemaking practices (varied between the cellars). 

Although the multivariate analysis used in this study was able to elucidate the evolution 

pattern of the wines, it could not measure statistical significance in the evolution. The issue of 

statistical significance could be addressed by including biological repeats in the design. The would 

be the expansion of the sample sets to the level that the chemistry becomes extremely laborious 

and the sensory evaluation impossible.   
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Figure 3.1. Instructions to panellists for the Pivot©Profile of Sauvignon and Chenin Blanc 

wines stored under different conditions. 
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Figure 3.2: CA plots of the results on the Pivot©Profile of the aroma of CB and SB wines from 

AVN winery, stored under different conditions. T0 = control at -4°C; T3/RT= 3 months at 

room temperature; T3/15 = 3 months at 15°C; T3/25 = 3 months at 25°C; T9/RT= 9 months 

at room temperature; T9/15 = 9 months at 15°C; T9/25 = 9 months at 25°C.
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Table 3.1: RV coefficients of the scores from the Pivot©Profile (PP) on the aroma of CB and 
SB wines stored at different conditions.  

Chenin Blanc Sauvignon Blanc 

plot 1 plot 2 RV coefficient p-value plot 1 plot 2 RV coefficient p-value 

KZC PDB 0.54 0.07 KZC PDB 0.34 0.35 

KZC AVN 0.55 0.06 KZC AVN 0.58 0.05 

KZC CDB 0.55 0.06 KZC CDB 0.66 0.02 

KZC DTK 0.46 0.14 KZC DTK 0.48 0.12 

KZC FRV 0.50 0.09 KZC FRV 0.46 0.16 

PDB AVN 0.83 0.00 PDB AVN 0.74 0.01 

PDB CDB 0.84 0.01 PDB CDB 0.56 0.07 

PDB DTK 0.81 0.00 PDB DTK 0.78 0.01 

PDB FRV 0.86 0.00 PDB FRV 0.81 0.01 

AVN CDB 0.87 0.00 AVN CDB 0.60 0.05 

AVN DTK 0.78 0.01 AVN DTK 0.70 0.01 

AVN FRV 0.77 0.00 AVN FRV 0.67 0.02 

CDB DTK 0.78 0.01 CDB DTK 0.77 0.01 

CDB FRV 0.78 0.00 CDB FRV 0.65 0.03 

DTK FRV 0.70 0.02 DTK FRV 0.83 0.00  
mean 0.71 0.03 

 
mean 0.64 0.06  

dev 0.14 0.04 
 

dev 0.14 0.09 

Figures in red indicate RV coefficients corresponding to low similarity between paired sets (i.e. 
RV coefficients below 0.5 and/or p values greater than 0.05). 
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Table 3.2: RV coefficients of the scores of the volatile compounds of SB and CB wines stored 
at different conditions. 

Figures in red indicate RV coefficients corresponding to low similarity between paired sets (i.e. 
RV coefficients below 0.5 and/or p values greater than 0.5). 

 

Chenin Blanc Sauvignon Blanc 

plot 1 plot 2 RV coefficient p-value plot 1 plot 2 RV coefficient p-value 

AVN CDB 0.48 0.15 AVN CDB 0.51 0.10 

AVN DTK 0.49 0.12 AVN DTK 0.50 0.09 

AVN FRV 0.24 0.59 AVN FRV 0.42 0.20 

AVN KZC 0.56 0.06 AVN KZC 0.64 0.03 

AVN PDB 0.60 0.04 AVN PDB 0.33 0.30 

CDB DTK 0.52 0.10 CDB DTK 0.44 0.22 

CDB FRV 0.69 0.02 CDB FRV 0.83 0.00 

CDB KZC 0.43 0.20 CDB KZC 0.76 0.01 

CDB PDB 0.52 0.10 CDB PDB 0.34 0.40 

DTK FRV 0.39 0.24 DTK FRV 0.39 0.31 

DTK KZC 0.32 0.40 DTK KZC 0.54 0.07 

DTK PDB 0.56 0.05 DTK PDB 0.41 0.23 

FRV KZC 0.66 0.02 FRV KZC 0.41 0.23 

FRV PDB 0.44 0.16 FRV PDB 0.25 0.57 

KZC PDB 0.40 0.22 KZC PDB 0.56 0.06  
mean 0.49 0.17 

 
mean 0.49 0.19  

dev 0.12 0.15 
 

dev 0.15 0.16 
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Table 3.3: RV coefficients of the loadings of the volatile compounds of SB and CB wines stored 
at different conditions.  

Chenin Blanc Sauvignon Blanc 

plot 1 plot 2 RV coefficient p-value plot 1 plot 2 RV coefficient p-value 

AVN CDB 0.52 0.00 AVN CDB 0.19 0.01 

AVN DTK 0.24 0.00 AVN DTK 0.07 0.23 

AVN FRV 0.26 0.00 AVN FRV 0.15 0.04 

AVN KZC 0.28 0.00 AVN KZC 0.12 0.07 

AVN PDB 0.66 0.00 AVN PDB 0.20 0.01 

CDB DTK 0.22 0.01 CDB DTK 0.48 0.00 

CDB FRV 0.41 0.00 CDB FRV 0.50 0.00 

CDB KZC 0.44 0.00 CDB KZC 0.54 0.00 

CDB PDB 0.32 0.00 CDB PDB 0.45 0.00 

DTK FRV 0.07 0.27 DTK FRV 0.42 0.00 

DTK KZC 0.39 0.00 DTK KZC 0.65 0.00 

DTK PDB 0.49 0.00 DTK PDB 0.35 0.00 

FRV KZC 0.39 0.00 FRV KZC 0.43 0.00 

FRV PDB 0.08 0.22 FRV PDB 0.44 0.00 

KZC PDB 0.21 0.01 KZC PDB 0.43 0.00  
mean 0.33 0.03 

 
mean 0.36 0.02  

dev 0.16 0.0836 
 

dev 0.17 0.06 

Figures in red indicate RV coefficients corresponding to low similarity between paired sets (i.e. 

RV coefficients below 0.5 and/or p values greater than 0.5). 
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Table 3.4: RV coefficients of the scores of the non-volatile compounds of SB and CB wines 
stored at different conditions. 

Chenin Blanc Sauvignon Blanc 

plot 
1 

plot 2 RV 
coefficient 

p-
value 

plot 1 plot 2 RV coefficient p-value 

AVN CDB 0.81 0.01 AVN CDB 0.22 0.51 

AVN DTK 0.88 0.00 AVN DTK 0.91 0.00 

AVN FRV 0.90 0.00 AVN FRV 0.81 0.01 

AVN KZC 0.93 0.00 AVN KZC 0.73 0.01 

AVN PDB 0.95 0.00 AVN PDB 0.86 0.01 

CDB DTK 0.85 0.00 CDB DTK 0.13 0.71 

CDB FRV 0.90 0.00 CDB FRV 0.08 0.88 

CDB KZC 0.84 0.01 CDB KZC 0.51 0.11 

CDB PDB 0.89 0.00 CDB PDB 0.17 0.67 

DTK FRV 0.92 0.00 DTK FRV 0.89 0.00 

DTK KZC 0.88 0.01 DTK KZC 0.54 0.06 

DTK PDB 0.89 0.00 DTK PDB 0.74 0.01 

FRV KZC 0.94 0.00 FRV KZC 0.52 0.08 

FRV PDB 0.95 0.00 FRV PDB 0.81 0.01 

KZC PDB 0.97 0.00 KZC PDB 0.71 0.01  
mean 0.90 0.00 

 
mean 0.57 0.21  

dev 0.04 0.0012 
 

dev 0.28 0.30 

Figures in red indicate RV coefficients corresponding to low similarity between paired sets (i.e. 

RV coefficients below 0.5 and/or p values greater than 0.5). 
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Table 3.5:  RV coefficients of the loadings of the non-volatile compounds of SB and CB wines 
stored at different conditions. 

Chenin Blanc Sauvignon Blanc 
plot 1 plot 2 RV coefficient p-value plot 1 plot 2 RV coefficient p-value 
AVN CDB 0.89 0.00 AVN CDB 0.31 0.04 
AVN DTK 0.89 0.00 AVN DTK 0.26 0.07 
AVN FRV 0.74 0.00 AVN FRV 0.52 0.00 
AVN KZC 0.85 0.00 AVN KZC 0.22 0.15 
AVN PDB 0.71 0.00 AVN PDB 0.63 0.00 
CDB DTK 0.92 0.00 CDB DTK 0.03 1.00 
CDB FRV 0.72 0.00 CDB FRV 0.33 0.04 
CDB KZC 0.84 0.00 CDB KZC 0.16 0.36 
CDB PDB 0.88 0.00 CDB PDB 0.19 0.18 
DTK FRV 0.62 0.00 DTK FRV 0.52 0.00 
DTK KZC 0.93 0.00 DTK KZC 0.42 0.01 
DTK PDB 0.86 0.00 DTK PDB 0.20 0.14 
FRV KZC 0.61 0.00 FRV KZC 0.24 0.13 
FRV PDB 0.43 0.01 FRV PDB 0.42 0.01 
KZC PDB 0.82 0.00 KZC PDB 0.17 0.25  

mean 0.78 0.00 
 

mean 0.31 0.16  
dev 0.14 0.0035 

 
dev 0.16 0.25 

Figures in red indicate RV coefficients corresponding to low similarity between paired sets (i.e. 
RV coefficients below 0.5 and/or p values greater than 0.5). 
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Table 3.6:  Volatile compound composition of Sauvignon Blanc and Chenin Blanc wines from AVN winery. 

Sample ID Sauvignon Blanc AVN Chenin Blanc AVN 

Treatment Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 

Storage Time (months) 0 3 3 3 9 9 9 0 3 3 3 9 9 9 

Temperature (°C) -4 RT 15 25 RT 15 25 -4 RT 15 25 RT 15 25 

Ethyl_Acetate 106.70 121.92 115.63 98.33 119.66 110.99 123.66 82.14 96.05 96.37 91.28 83.63 86.18 85.44 

Methanol 344.21 115.16 105.86 82.26 89.64 113.29 103.95 105.06 138.72 145.24 144.53 111.40 135.34 125.06 

Ethyl-2-Methyl-Propanoate 0.00 2.19 2.16 2.19 2.24 2.19 2.25 2.10 2.12 2.12 2.13 2.16 2.14 2.19 

Ethyl_Butyrate 0.00 0.68 0.66 0.66 0.66 0.64 0.67 0.65 0.66 0.67 0.66 0.66 0.65 0.69 

Propanol 45.96 66.96 64.98 49.39 62.28 64.00 64.77 100.82 131.63 130.93 121.77 96.22 109.95 99.85 

Isobutanol 27.77 34.98 33.73 28.73 33.67 32.98 35.48 28.99 34.69 34.77 32.66 27.54 29.84 29.10 

Isoamyl_Acetate 6.92 6.09 6.22 5.74 5.01 5.39 4.74 6.34 5.86 6.08 5.64 5.07 5.35 4.88 

Butanol 0.00 1.11 1.06 0.92 1.09 1.06 1.15 1.28 1.51 1.51 1.43 1.23 1.32 1.29 

Isoamyl_Alcohol 208.77 242.87 229.53 220.34 242.55 233.82 253.49 195.33 220.71 222.01 214.01 197.48 198.19 213.18 

Ethyl_Hexanoate 1.72 1.71 1.64 1.68 1.70 1.65 1.68 1.36 1.38 1.38 1.39 1.44 1.43 1.54 

Pentanol 0.00 0.08 0.07 0.07 0.07 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.07 0.07 

Hexyl_Acetate 0.00 0.67 0.68 0.65 0.61 0.63 0.60 0.65 0.64 0.64 0.63 0.61 0.62 0.60 

Acetoin 0.00 5.74 0.00 0.00 0.00 5.19 0.00 0.00 5.14 0.00 4.78 4.19 0.00 4.20 

3-Methyl-1-Pentanol 0.00 0.52 0.51 0.51 0.52 0.51 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.52 

Ethyl_Lactate 20.53 29.89 27.33 23.96 33.03 32.32 37.56 18.74 28.97 27.04 28.42 25.62 27.34 27.92 

Hexanol 1.13 1.28 1.18 1.25 1.34 1.28 1.37 1.04 1.13 1.12 1.14 1.17 1.09 1.27 

3-Ethoxy-1-Propanol 0.00 7.29 6.91 5.23 6.66 7.29 7.23 6.66 8.90 9.01 8.32 6.65 7.68 6.83 

Ethyl_Caprylate 0.83 0.84 0.82 0.77 0.78 0.77 0.75 0.63 0.56 0.62 0.51 0.55 0.77 0.73 

Acetic_Acid 751.87 785.35 748.61 600.93 716.04 773.25 832.09 475.08 601.43 600.01 560.08 450.88 514.23 469.36 

Ethyl-3-hydroxybutanoate 0.00 0.00 0.00 0.56 0.67 0.68 0.71 0.81 0.96 0.91 0.90 0.77 0.84 0.79 

Propionic_Acid 0.00 2.65 2.51 2.07 2.26 2.65 2.89 2.54 3.21 3.42 3.15 2.75 3.08 2.76 

Isobutyric_Acid 0.00 1.75 1.65 1.51 1.65 1.69 1.71 1.05 1.17 1.16 1.11 0.97 1.02 1.03 

Butyric_Acid 0.00 1.79 1.69 1.59 1.84 1.78 1.93 1.48 1.66 1.66 1.60 1.43 1.47 1.56 

Ethyl_Caprate 0.00 0.18 0.19 0.15 0.15 0.16 0.13 0.16 0.15 0.17 0.14 0.14 0.24 0.20 

Isovaleric_Acid 1.23 1.37 1.28 1.27 1.34 1.32 1.36 1.19 1.26 1.26 1.23 1.18 1.14 1.27 

Diethyl_Succinate 0.97 2.27 1.70 2.53 4.74 3.24 6.05 1.96 3.59 3.09 3.95 6.88 5.12 8.85 

Valeric_Acid 0.00 0.14 0.15 0.09 0.08 0.11 0.20 0.20 0.21 0.23 0.18 0.10 0.15 0.08 

Ethyl_Phenethylacetate 0.00 1.03 1.04 1.00 1.00 1.01 1.00 1.11 1.08 1.10 1.05 1.01 1.03 1.01 

2-Phenylacetate 0.00 0.39 0.39 0.36 0.28 0.32 0.24 0.40 0.36 0.37 0.34 0.28 0.31 0.27 

Hexanoic_Acid 4.31 4.96 4.54 4.78 5.00 4.77 5.02 2.93 3.13 3.11 3.16 3.29 2.93 3.62 

2-Phenylethanol 21.02 26.34 24.76 23.85 26.56 25.73 27.55 21.32 23.71 23.62 23.09 21.52 21.33 23.38 

Octanoic_Acid 5.74 6.56 5.94 6.42 6.64 6.23 6.60 3.33 3.76 3.49 3.92 4.26 3.48 4.79 

Decanoic_Acid 2.55 2.34 2.18 2.26 2.41 2.21 2.45 1.22 1.35 1.28 1.44 1.48 1.36 1.71 

3-Mercapto-1-hexanol (3-
MH) 

574.37 112.19 373.91 775.83 1057.09 821.07 942.56 477.34 468.67 530.73 410.51 433.64 357.89 603.21 

3-mercaptohexyl acetate 
(3MHA) 

212.77 75.28 84.48 109.05 52.40 106.72 40.69 74.92 54.11 38.96 33.94 6.88 14.67 0.59 

4-mercapto-4-methylpentan-
2-one (4MMP) 

27.97 6.74 25.88 83.70 95.56 28.27 51.05 6.51 8.29 5.23 5.06 7.64 5.35 12.12 
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Table 3.7:  Volatile compound composition of Sauvignon Blanc and Chenin Blanc wines from CDB winery. 

Sample ID Sauvignon Blanc CDB Chenin Blanc CDB 
Treatment Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 

Storage Time (months) 0 3 3 3 9 9 9 0 3 3 3 9 9 9 
Temperature (°C) -4 RT 15 25 RT 15 25 -4 RT 15 25 RT 15 25 

Ethyl_Acetate 105.72 117.80 109.29 122.88 120.76 123.08 118.06 76.39 84.29 90.12 79.40 79.55 82.89 64.02 
Methanol 133.31 105.17 112.01 112.04 119.16 117.40 120.80 86.44 105.13 113.06 85.17 98.81 98.63 85.18 

Ethyl-2-Methyl-Propanoate 0.00 2.09 2.09 2.11 2.13 2.12 2.13 0.00 0.00 0.00 0.00 2.10 0.00 2.11 
Ethyl_Butyrate 0.73 0.73 0.73 0.77 0.73 0.72 0.66 0.75 0.77 0.77 0.73 0.76 0.77 0.73 

Propanol 39.73 39.96 38.62 40.33 40.42 42.28 41.71 49.99 64.27 68.81 58.32 64.60 63.45 47.60 
Isobutanol 26.64 28.58 26.65 29.98 28.87 29.24 29.24 14.17 16.92 17.98 15.95 17.51 17.24 13.81 

Isoamyl_Acetate 9.96 8.91 9.32 8.93 7.11 7.87 6.07 8.69 7.82 8.23 7.13 6.16 7.09 5.67 
Butanol 0.83 0.92 0.85 0.95 0.99 0.97 1.02 1.25 1.53 1.61 1.42 1.60 1.57 1.25 

Isoamyl_Alcohol 176.35 190.39 181.72 206.30 197.85 190.89 188.38 124.51 143.84 149.30 135.42 152.06 148.86 130.73 
Ethyl_Hexanoate 1.75 1.75 1.75 1.82 1.75 1.69 1.56 1.65 1.62 1.64 1.57 1.62 1.65 1.62 

Pentanol 0.10 0.11 0.11 0.12 0.11 0.11 0.11 0.07 0.07 0.08 0.07 0.07 0.08 0.07 
Hexyl_Acetate 0.70 0.68 0.68 0.68 0.63 0.65 0.61 0.76 0.72 0.74 0.70 0.65 0.69 0.63 

Acetoin 4.91 4.58 0.00 4.86 0.00 4.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3-Methyl-1-Pentanol 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.50 0.51 0.50 0.50 0.51 0.51 0.50 

Ethyl_Lactate 6.12 8.94 7.82 10.20 13.55 11.85 15.69 7.07 11.94 11.39 12.06 16.57 14.15 13.38 
Hexanol 0.73 0.79 0.78 0.86 0.87 0.80 0.78 0.85 0.95 0.94 0.91 1.05 1.03 1.02 

3-Ethoxy-1-Propanol 5.81 5.29 5.36 5.37 5.67 5.67 5.97 5.22 6.65 7.08 5.89 6.76 6.64 4.99 
Ethyl_Caprylate 0.79 0.85 0.79 0.84 0.82 0.72 0.62 0.66 0.54 0.64 0.52 0.56 0.65 0.56 

Acetic_Acid 732.49 709.71 700.21 747.45 744.81 761.70 0.00 354.35 440.27 463.06 390.23 442.50 429.38 343.51 
Ethyl-3-hydroxybutanoate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.70 0.00 0.68 0.69 0.56 

Propionic_Acid 1.94 1.61 1.89 1.86 1.79 2.13 1.82 1.95 2.18 2.39 1.85 2.12 2.16 1.84 
Isobutyric_Acid 1.25 1.32 1.24 1.42 1.30 1.29 1.29 0.72 0.82 0.84 0.77 0.82 0.81 0.69 

Butyric_Acid 1.59 1.72 1.63 1.85 1.80 1.74 1.83 1.84 2.15 2.22 2.05 2.29 2.22 1.90 
Ethyl_Caprate 0.18 0.19 0.17 0.20 0.20 0.17 0.16 0.13 0.12 0.15 0.12 0.10 0.17 0.14 
Isovaleric_Acid 0.96 0.98 0.97 1.07 1.01 0.97 0.93 0.74 0.79 0.81 0.74 0.82 0.82 0.74 

Diethyl_Succinate 0.07 0.28 0.20 0.38 0.83 0.51 0.95 0.20 0.49 0.39 0.57 1.43 0.95 1.61 
Valeric_Acid 0.06 0.13 0.15 0.13 0.10 0.13 0.09 0.12 0.13 0.14 0.10 0.08 0.10 0.05 

Ethyl_Phenethylacetate 1.11 1.05 1.06 1.03 0.99 1.02 0.98 1.05 1.03 1.05 1.01 0.99 1.00 0.98 
2-Phenylacetate 0.57 0.51 0.53 0.52 0.40 0.44 0.32 0.37 0.33 0.35 0.31 0.27 0.31 0.26 
Hexanoic_Acid 5.24 5.43 5.47 5.98 5.79 5.44 4.99 4.24 4.62 4.59 4.26 4.76 4.84 4.61 

2-Phenylethanol 13.57 14.58 14.17 15.80 15.07 14.52 14.53 8.85 9.95 10.20 9.41 10.40 10.24 9.25 
Octanoic_Acid 5.58 5.54 5.68 6.29 6.21 5.77 5.27 4.39 5.13 4.91 4.71 5.03 5.33 5.46 
Decanoic_Acid 1.71 1.40 1.38 1.65 1.65 1.58 1.52 1.27 1.58 1.48 1.51 1.47 1.60 1.75 

3-Mercapto-1-hexanol (3-MH) 4596.26 6662.81 633.87 42.02 1495.19 655.69 1864.26 379.45 472.83 379.93 569.16 909.06 462.46 835.06 
3-mercaptohexyl acetate 

(3MHA) 
1255.15 2043.78 180.91 7.79 187.98 260.98 210.54 164.72 128.03 131.29 166.44 161.88 103.16 105.42 

4-mercapto-4-methylpentan-2-
one (4MMP) 57.63 80.40 7.20 0.29 16.90 13.42 19.24 4.54 1.72 2.57 2.17 1.32 1.68 0.77 
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Table 3.8:  Volatile compound composition of Sauvignon Blanc and Chenin Blanc wines from DTK winery. 

Sample ID Sauvignon Blanc DTK Chenin Blanc DTK 
Treatment Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 

Storage Time (months) 0 3 3 3 9 9 9 0 3 3 3 9 9 9 
Temperature (°C) -4 RT 15 25 RT 15 25 -4 RT 15 25 RT 15 25 

Ethyl_Acetate 43.23 36.85 40.72 42.20 36.65 47.62 38.50 62.51 62.91 53.49 57.96 57.98 59.97 52.51 
Methanol 77.07 57.48 82.89 96.26 86.59 101.16 88.99 105.54 108.99 102.55 122.07 99.83 110.18 93.66 

Ethyl-2-Methyl-Propanoate 2.10 2.11 2.10 2.11 2.13 2.12 2.14 2.10 2.11 2.10 2.12 2.13 2.12 2.14 
Ethyl_Butyrate 0.76 0.72 0.72 0.69 0.65 0.69 0.66 0.95 0.86 0.79 0.83 0.78 0.80 0.75 

Propanol 44.47 35.84 42.28 48.71 41.00 57.18 45.32 43.25 48.27 43.60 50.78 45.00 51.63 41.67 
Isobutanol 21.09 18.41 20.86 23.04 19.32 26.00 21.17 20.04 21.21 18.73 21.02 20.21 21.74 19.08 

Isoamyl_Acetate 6.72 5.61 5.86 5.23 4.57 4.97 4.36 7.47 6.19 5.75 5.41 4.69 5.09 4.39 
Butanol 0.79 0.68 0.79 0.86 0.74 0.93 0.78 0.97 1.05 0.94 1.05 1.00 1.08 0.95 

Isoamyl_Alcohol 154.76 142.78 151.82 161.59 143.81 170.91 153.38 161.65 157.16 138.63 154.56 151.05 155.16 148.26 
Ethyl_Hexanoate 1.58 1.52 1.51 1.47 1.50 1.49 1.47 1.75 1.71 1.59 1.67 1.63 1.63 1.55 

Pentanol 0.10 0.08 0.09 0.09 0.08 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 
Hexyl_Acetate 0.74 0.66 0.68 0.64 0.60 0.62 0.58 0.76 0.70 0.67 0.65 0.60 0.63 0.58 

Acetoin 3.99 4.95 5.25 0.00 3.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3-Methyl-1-Pentanol 0.49 0.49 0.49 0.49 0.49 0.50 0.49 0.50 0.50 0.49 0.50 0.50 0.50 0.50 

Ethyl_Lactate 17.07 17.15 19.74 26.24 23.19 30.53 26.15 25.70 33.37 30.84 37.44 35.39 38.37 34.24 
Hexanol 1.84 1.81 1.78 1.85 1.79 1.88 1.88 1.73 1.61 1.45 1.61 1.60 1.58 1.62 

3-Ethoxy-1-Propanol 3.12 2.55 2.95 3.60 2.95 3.92 3.15 1.63 1.87 1.81 2.02 1.67 1.92 1.62 
Ethyl_Caprylate 0.96 0.83 0.78 0.72 0.85 0.93 0.79 0.75 1.01 0.85 0.83 0.83 0.91 0.66 

Acetic_Acid 230.10 188.94 229.79 266.05 213.90 304.42 238.05 289.91 329.24 311.87 349.16 308.12 346.39 291.58 
Ethyl-3-hydroxybutanoate 0.57 0.50 0.58 0.60 0.52 0.00 0.56 0.57 0.00 0.00 0.65 0.00 0.65 0.62 

Propionic_Acid 1.45 1.26 1.77 1.46 1.22 1.67 1.38 1.39 1.59 1.58 1.60 1.38 1.57 1.37 
Isobutyric_Acid 0.88 0.83 0.87 0.92 0.79 0.98 0.83 0.85 0.84 0.75 0.81 0.78 0.81 0.76 

Butyric_Acid 1.77 1.66 1.79 1.96 1.72 2.10 1.87 2.55 2.59 2.31 2.58 2.56 2.63 2.51 
Ethyl_Caprate 0.20 0.16 0.15 0.16 0.17 0.17 0.18 0.16 0.24 0.20 0.17 0.18 0.21 0.13 
Isovaleric_Acid 0.77 0.70 0.72 0.74 0.67 0.75 0.70 0.77 0.70 0.63 0.68 0.65 0.67 0.65 

Diethyl_Succinate 0.53 0.99 0.83 1.27 2.12 1.68 2.69 0.63 0.93 0.87 1.28 1.99 1.56 2.52 
Valeric_Acid 0.15 0.07 0.09 0.08 0.13 0.07 0.14 0.07 0.11 0.10 0.11 0.10 0.11 0.10 

Ethyl_Phenethylacetate 1.01 0.98 0.99 0.98 0.97 0.98 0.97 1.01 1.00 0.99 0.99 0.98 0.98 0.98 
2-Phenylacetate 0.27 0.23 0.24 0.22 0.19 0.21 0.18 0.27 0.23 0.22 0.21 0.19 0.20 0.00 
Hexanoic_Acid 4.66 4.44 4.35 4.40 4.15 4.34 4.36 5.84 5.07 4.57 4.94 4.80 4.71 4.81 

2-Phenylethanol 11.56 10.90 11.43 12.06 10.89 12.36 11.49 8.36 8.14 7.28 7.88 7.85 7.89 7.76 
Octanoic_Acid 5.27 4.93 4.91 5.03 4.66 4.48 4.91 7.01 5.86 5.55 6.02 5.78 5.48 5.55 
Decanoic_Acid 1.29 1.16 1.18 1.27 1.17 1.12 1.19 1.70 1.47 1.57 1.67 1.60 1.56 1.55 

3-Mercapto-1-hexanol (3-MH) 394.21 343.69 351.73 339.89 360.48 770.82 817.09 175.44 163.48 121.91 225.70 370.30 173.89 1486.75 
3-mercaptohexyl acetate 

(3MHA) 
103.47 45.70 40.88 49.86 11.68 56.45 28.32 54.38 38.20 38.90 38.12 27.29 19.92 82.59 

4-mercapto-4-methylpentan-2-
one (4MMP) 1.33 0.86 1.34 0.92 1.21 2.25 2.64 1.13 1.15 0.97 0.80 1.54 2.00 2.45 

Stellenbosch University  https://scholar.sun.ac.za



59 

 

Table 3.9:  Volatile compound composition of Sauvignon Blanc and Chenin Blanc wines from FRV winery. 

Sample ID Sauvignon Blanc FRV Chenin Blanc FRV 
Treatment Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 

Storage Time (months) 0 3 3 3 9 9 9 0 3 3 3 9 9 9 
Temperature (°C) -4 RT 15 25 RT 15 25 -4 RT 15 25 RT 15 25 

Ethyl_Acetate 73.22 82.95 83.80 67.97 79.55 85.17 84.74 63.99 73.27 72.26 69.87 76.04 51.18 68.47 
Methanol 65.02 67.13 68.43 67.72 67.40 66.60 84.66 54.37 70.71 63.56 48.18 67.94 85.35 62.97 

Ethyl-2-Methyl-Propanoate 2.11 2.14 2.12 2.13 2.15 2.15 2.17 2.08 2.12 2.11 2.13 2.14 0.00 2.14 
Ethyl_Butyrate 0.66 0.68 0.66 0.64 0.62 0.64 0.64 0.75 0.77 0.78 0.77 0.74 0.62 0.71 

Propanol 53.31 56.82 60.10 43.12 55.34 58.40 61.86 42.75 56.90 52.55 45.83 58.92 60.89 50.21 
Isobutanol 22.44 23.50 24.40 19.02 22.63 23.80 24.68 19.70 24.29 22.94 22.02 25.13 25.91 22.08 

Isoamyl_Acetate 6.40 5.63 5.79 5.27 4.55 4.98 4.42 7.20 6.58 6.88 6.19 5.23 5.24 4.90 
Butanol 0.91 0.95 0.97 0.79 0.93 0.96 1.01 1.04 1.28 1.21 1.16 1.33 1.36 1.18 

Isoamyl_Alcohol 165.17 173.06 169.63 153.17 161.79 167.68 178.99 145.82 173.62 163.95 162.19 171.10 178.06 157.59 
Ethyl_Hexanoate 1.50 1.52 1.49 1.49 1.44 1.46 1.48 1.48 1.53 1.63 1.58 1.56 1.37 1.56 

Pentanol 0.11 0.11 0.11 0.10 0.11 0.11 0.12 0.07 0.08 0.08 0.08 0.09 0.09 0.08 
Hexyl_Acetate 0.74 0.68 0.71 0.66 0.60 0.64 0.59 0.69 0.66 0.68 0.66 0.61 0.62 0.61 

Acetoin 0.00 0.00 0.00 0.00 0.00 0.00 3.64 6.63 8.58 7.74 6.02 8.81 9.79 7.83 
3-Methyl-1-Pentanol 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.51 0.52 0.51 0.51 0.51 0.51 0.51 

Ethyl_Lactate 17.71 21.19 21.01 17.86 24.25 23.55 28.05 11.16 17.93 15.85 15.65 23.21 21.55 20.07 
Hexanol 2.38 2.60 2.38 2.46 2.38 2.42 2.63 1.34 1.54 1.47 1.47 1.51 1.56 1.47 

3-Ethoxy-1-Propanol 7.73 7.82 8.11 6.29 7.86 7.95 9.21 3.23 4.43 4.14 3.31 4.60 4.74 3.86 
Ethyl_Caprylate 0.45 0.45 0.38 0.46 0.48 0.45 0.45 0.42 0.39 0.59 0.55 0.49 0.34 0.48 

Acetic_Acid 460.23 464.21 489.83 374.17 462.64 473.91 527.83 313.16 403.45 365.58 321.04 422.00 448.81 361.30 
Ethyl-3-hydroxybutanoate 0.55 0.54 0.58 0.49 0.56 0.55 0.62 0.58 0.69 0.65 0.61 0.74 0.72 0.64 

Propionic_Acid 1.68 1.63 1.60 1.44 1.55 1.55 1.79 1.71 1.90 1.75 1.41 1.92 2.15 1.71 
Isobutyric_Acid 0.92 0.93 0.92 0.81 0.87 0.89 0.94 0.82 0.95 0.89 0.89 0.91 0.96 0.82 

Butyric_Acid 1.49 1.55 1.55 1.38 1.56 1.55 1.69 1.70 2.02 1.89 1.90 2.08 2.13 1.86 
Ethyl_Caprate 0.08 0.08 0.05 0.09 0.11 0.10 0.09 0.08 0.08 0.10 0.12 0.09 0.07 0.08 
Isovaleric_Acid 0.80 0.82 0.77 0.74 0.74 0.75 0.79 0.76 0.85 0.80 0.79 0.81 0.87 0.74 

Diethyl_Succinate 0.38 0.85 0.60 0.96 1.78 1.23 2.42 0.77 1.43 1.27 1.66 2.85 2.18 3.19 
Valeric_Acid 0.12 0.09 0.10 0.06 0.09 0.06 0.10 0.10 0.11 0.11 0.07 0.07 0.10 0.09 

Ethyl_Phenethylacetate 1.02 0.99 1.00 0.98 0.98 0.98 0.98 1.06 1.03 1.04 1.00 1.00 1.01 0.99 
2-Phenylacetate 0.31 0.27 0.28 0.25 0.20 0.23 0.19 0.36 0.33 0.34 0.30 0.25 0.29 0.23 
Hexanoic_Acid 4.38 4.74 4.25 4.46 4.21 4.26 4.57 4.54 5.09 4.77 4.75 4.71 5.05 4.51 
2-Phenylethanol 12.41 13.03 12.66 11.69 12.56 12.57 13.43 12.28 14.15 13.54 13.37 13.94 14.54 12.79 
Octanoic_Acid 5.11 5.59 5.17 5.54 5.16 5.19 5.69 4.55 5.24 4.63 4.99 4.88 5.29 4.89 
Decanoic_Acid 1.31 1.34 1.32 1.58 1.55 1.47 1.71 1.20 1.21 1.02 1.39 1.26 1.33 1.34 

3-Mercapto-1-hexanol (3-MH) 485.76 589.16 298.34 718.15 335.76 689.28 55.24 527.92 392.78 393.03 726.51 259.03 735.96 503.78 
3-mercaptohexyl acetate (3MHA) 294.24 155.59 58.01 56.99 10.99 35.01 0.00 165.60 65.68 58.12 93.07 51.14 63.14 23.44 

4-mercapto-4-methylpentan-2-
one (4MMP) 3.22 2.51 1.59 3.82 1.36 3.65 0.13 0.75 0.79 0.41 0.84 1.55 1.79 1.10 
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Table 3.10:  Volatile compound composition of Sauvignon Blanc and Chenin Blanc wines from KZC winery. 

Sample ID Sauvignon Blanc KZC Chenin Blanc KZC 
Treatment Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 

Storage Time (months) 0 3 3 3 9 9 9 0 3 3 3 9 9 9 
Temperature (°C) -4 RT 15 25 RT 15 25 -4 RT 15 25 RT 15 25 

Ethyl_Acetate 73.52 69.27 70.40 75.62 73.34 77.35 78.33 120.16 116.67 119.79 99.18 83.65 86.77 97.82 
Methanol 117.09 88.83 97.08 88.78 85.50 100.11 110.10 78.43 73.79 115.44 105.02 80.58 87.91 85.24 

Ethyl-2-Methyl-Propanoate 0.00 2.09 2.08 0.00 2.10 2.09 2.11 0.00 0.00 0.00 0.00 2.10 2.09 2.11 
Ethyl_Butyrate 0.69 0.66 0.68 0.63 0.62 0.66 0.63 0.66 0.67 0.65 0.62 0.60 0.58 0.61 

Propanol 42.10 35.79 37.40 40.77 38.54 41.46 41.47 36.41 34.41 40.61 36.48 27.38 30.44 35.59 
Isobutanol 22.22 19.01 20.60 21.05 20.39 21.85 21.58 29.04 28.86 31.47 28.99 23.92 24.48 28.87 

Isoamyl_Acetate 7.09 6.02 6.39 5.58 4.94 5.50 4.79 10.04 9.03 9.12 7.84 6.45 6.90 5.99 
Butanol 0.94 0.81 0.88 0.88 0.87 0.91 0.92 0.95 0.96 1.05 0.98 0.81 0.84 0.97 

Isoamyl_Alcohol 144.75 125.01 140.81 127.25 125.96 138.71 136.74 175.84 179.93 192.53 176.26 160.44 152.79 184.87 
Ethyl_Hexanoate 1.66 1.47 1.55 1.42 1.40 1.48 1.44 1.65 1.69 1.63 1.56 1.57 1.51 1.56 

Pentanol 0.09 0.08 0.09 0.08 0.07 0.08 0.08 0.08 0.08 0.09 0.08 0.07 0.07 0.08 
Hexyl_Acetate 0.78 0.68 0.70 0.65 0.61 0.64 0.60 0.81 0.76 0.76 0.71 0.65 0.66 0.64 

Acetoin 0.00 0.00 0.00 0.00 0.00 4.59 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3-Methyl-1-Pentanol 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.48 0.49 0.48 0.48 0.48 0.48 

Ethyl_Lactate 10.68 10.79 11.54 13.50 15.19 15.10 17.44 9.60 11.99 13.56 15.18 13.92 13.91 18.88 
Hexanol 1.15 1.09 1.19 1.05 1.08 1.19 1.20 1.19 1.26 1.31 1.21 1.24 1.12 1.35 

3-Ethoxy-1-Propanol 3.52 2.79 3.22 3.06 2.96 3.32 3.17 2.15 1.98 2.51 2.32 1.81 2.02 2.31 
Ethyl_Caprylate 1.06 0.60 0.71 0.60 0.57 0.65 0.54 0.61 0.75 0.76 0.60 0.80 0.81 0.58 

Acetic_Acid 489.20 370.84 421.70 422.31 401.22 447.89 452.96 549.93 504.84 0.00 0.00 0.00 499.14 0.00 
Ethyl-3-hydroxybutanoate 0.56 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 

Propionic_Acid 1.94 1.57 1.78 1.59 1.64 1.70 1.98 1.58 1.44 1.73 1.77 1.38 1.46 1.60 
Isobutyric_Acid 0.88 0.73 0.82 0.73 0.70 0.80 0.79 0.93 0.90 1.00 0.89 0.78 0.77 0.89 

Butyric_Acid 1.75 1.45 1.69 1.55 1.55 1.67 1.66 1.35 1.35 1.50 1.34 1.22 1.17 1.43 
Ethyl_Caprate 0.36 0.15 0.18 0.17 0.14 0.17 0.15 0.14 0.19 0.23 0.16 0.20 0.18 0.15 
Isovaleric_Acid 0.75 0.64 0.72 0.62 0.61 0.69 0.66 0.68 0.66 0.72 0.63 0.60 0.55 0.66 

Diethyl_Succinate 0.57 1.04 1.03 1.29 2.28 1.88 3.06 0.17 0.37 0.34 0.44 0.85 0.63 1.11 
Valeric_Acid 0.13 0.09 0.10 0.08 0.10 0.08 0.10 0.13 0.10 0.14 0.11 0.06 0.09 0.07 

Ethyl_Phenethylacetate 1.13 1.03 1.06 1.03 1.00 1.02 0.99 1.10 1.03 1.07 1.02 0.98 1.00 0.98 
2-Phenylacetate 0.39 0.31 0.34 0.28 0.24 0.28 0.23 0.74 0.66 0.68 0.55 0.43 0.46 0.39 
Hexanoic_Acid 4.47 4.06 4.46 3.73 3.72 4.28 4.18 5.03 5.18 5.37 4.73 4.70 4.16 5.11 
2-Phenylethanol 12.04 10.46 11.90 10.67 10.76 11.53 11.31 15.91 15.90 17.45 15.42 14.54 13.50 16.53 
Octanoic_Acid 4.92 4.51 4.77 3.95 4.00 4.46 4.63 6.24 6.32 6.33 5.57 5.28 4.37 6.17 
Decanoic_Acid 1.73 1.40 1.42 1.23 1.30 1.32 1.41 2.01 1.88 1.85 1.65 1.43 1.20 1.89 

3-Mercapto-1-hexanol (3-MH) 376.06 547.03 458.22 342.76 317.11 483.72 611.21 1199.16 3731.88 1454.57 2009.82 2563.13 1829.98 2162.48 
3-mercaptohexyl acetate (3MHA) 295.82 236.19 222.99 126.91 24.35 103.51 39.06 121.94 542.23 197.14 250.79 120.88 198.69 122.70 
4-mercapto-4-methylpentan-2-one 

(4MMP) 7.75 11.52 8.88 8.66 5.66 8.44 10.29 0.93 3.07 1.07 1.46 2.12 1.51 2.44 
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Table 3.11:  Volatile compound composition of Sauvignon Blanc and Chenin Blanc wines from PDB winery. 

Sample ID Sauvignon Blanc PDB Chenin Blanc PDB 
Treatment Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 Control T3/RT T3/15 T3/25 T9/RT T9/15 T9/25 

Storage Time (months) 0 3 3 3 9 9 9 0 3 3 3 9 9 9 
Temperature (°C) -4 RT 15 25 RT 15 25 -4 RT 15 25 RT 15 25 

Ethyl_Acetate 83.33 113.85 89.44 96.98 99.07 96.35 99.08 98.46 90.38 100.12 103.03 73.68 95.90 86.38 
Methanol 89.84 115.78 68.83 71.22 71.85 67.52 77.16 138.34 75.28 97.93 122.23 78.99 100.57 88.67 

Ethyl-2-Methyl-Propanoate 2.12 2.15 2.14 2.17 2.19 2.17 2.20 0.00 2.12 0.00 2.12 2.11 2.12 2.14 
Ethyl_Butyrate 0.63 0.65 0.65 0.67 0.64 0.64 0.61 0.61 0.63 0.61 0.62 0.55 0.60 0.58 

Propanol 40.51 60.14 37.89 39.79 40.98 38.78 38.93 39.20 27.26 33.66 34.16 28.29 31.95 26.35 
Isobutanol 20.88 29.07 20.92 21.93 21.92 21.65 21.10 24.67 19.62 22.70 23.23 19.68 21.76 18.79 

Isoamyl_Acetate 5.95 5.46 5.71 5.32 4.71 5.02 4.47 6.46 6.08 6.07 5.67 4.74 5.39 4.62 
Butanol 0.79 1.09 0.79 0.84 0.84 0.83 0.81 1.02 0.81 0.95 0.96 0.82 0.91 0.80 

Isoamyl_Alcohol 141.38 181.41 150.81 157.41 153.11 151.46 145.52 148.10 140.12 143.09 151.57 132.71 143.28 133.10 
Ethyl_Hexanoate 1.48 1.51 1.55 1.57 1.54 1.52 1.47 1.48 1.60 1.50 1.56 1.43 1.55 1.46 

Pentanol 0.08 0.11 0.09 0.09 0.09 0.09 0.08 0.09 0.08 0.08 0.09 0.08 0.08 0.08 
Hexyl_Acetate 0.67 0.63 0.65 0.63 0.60 0.61 0.59 0.68 0.66 0.66 0.64 0.60 0.63 0.59 

Acetoin 5.37 6.38 0.00 4.25 4.63 4.28 5.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3-Methyl-1-Pentanol 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.00 0.48 0.00 0.48 0.48 0.48 0.48 

Ethyl_Lactate 15.40 26.83 15.76 18.31 20.86 19.05 21.32 15.46 12.25 14.60 17.00 15.28 16.63 15.37 
Hexanol 1.25 1.45 1.37 1.44 1.41 1.37 1.33 1.20 1.34 1.22 1.35 1.25 1.30 1.30 

3-Ethoxy-1-Propanol 4.28 6.15 3.63 3.89 4.00 3.78 3.95 2.15 1.51 1.78 1.85 1.50 1.75 1.54 
Ethyl_Caprylate 0.55 0.46 0.59 0.53 0.50 0.52 0.48 0.58 0.62 0.62 0.62 0.51 0.61 0.43 

Acetic_Acid 575.65 0.00 515.99 540.40 540.07 526.77 547.57 0.00 0.00 673.77 0.00 0.00 0.00 0.00 
Ethyl-3-hydroxybutanoate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Propionic_Acid 1.65 2.23 1.49 1.50 1.54 1.51 1.58 1.97 1.26 1.56 1.58 1.26 1.56 1.28 
Isobutyric_Acid 1.16 1.51 1.19 1.23 1.18 1.17 1.11 1.21 1.08 1.15 1.19 1.03 1.12 1.00 

Butyric_Acid 1.39 1.87 1.44 1.53 1.52 1.48 1.46 1.68 1.52 1.61 1.71 1.51 1.63 1.49 
Ethyl_Caprate 0.11 0.07 0.11 0.10 0.09 0.10 0.09 0.14 0.13 0.14 0.13 0.12 0.14 0.10 
Isovaleric_Acid 0.85 0.99 0.88 0.90 0.86 0.85 0.81 0.78 0.79 0.76 0.81 0.73 0.77 0.74 

Diethyl_Succinate 0.58 1.25 0.96 1.44 2.37 1.71 2.80 0.30 0.62 0.46 0.76 1.24 0.90 1.58 
Valeric_Acid 0.11 0.11 0.08 0.07 0.12 0.06 0.11 0.10 0.06 0.07 0.06 0.08 0.09 0.08 

Ethyl_Phenethylacetate 1.04 1.04 1.01 1.00 0.99 0.99 0.98 1.08 1.01 1.03 1.01 0.99 1.00 0.98 
2-Phenylacetate 0.31 0.28 0.29 0.27 0.22 0.24 0.20 0.35 0.34 0.33 0.31 0.25 0.29 0.23 
Hexanoic_Acid 4.27 4.75 4.61 4.86 4.59 4.41 4.25 4.58 5.26 4.61 5.03 4.59 4.85 4.83 
2-Phenylethanol 11.86 14.74 12.59 13.25 12.90 12.52 12.25 11.04 10.86 10.80 11.56 10.42 10.99 10.61 
Octanoic_Acid 4.92 5.36 5.14 5.59 5.40 5.10 4.93 4.33 5.16 4.33 4.81 4.43 4.79 4.70 
Decanoic_Acid 1.43 1.50 1.33 1.45 1.52 1.39 1.38 1.16 1.25 1.10 1.23 1.15 1.28 1.15 

3-Mercapto-1-hexanol (3-MH) 197.27 180.95 218.04 229.83 199.55 320.48 235.23 330.53 279.22 267.17 313.42 247.77 209.05 234.71 
3-mercaptohexyl acetate (3MHA) 86.42 72.62 78.76 75.65 71.75 nd 69.68 116.39 nd 93.18 92.07 76.48 78.63 74.00 
4-mercapto-4-methylpentan-2-one 

(4MMP) 1.27 1.35 1.81 1.54 1.69 1.16 1.61 0.44 0.29 0.64 0.58 0.67 0.51 0.70 
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Table 3.12:  Antioxidant-related compound composition of Sauvignon Blanc wines stored at different conditions. 

Sample ID 
Storage Time 

(months) 
Temperatu

re (°C) 
FSO2 

(pppm) 
TSO2 
(ppm) 

Reduced 
GSH (ppm) 

A520 
(nm) 

A420 
(nm) 

A320 
(nm) 

A280 
(nm) 

Colour 
density 

Colour 
hue 

L* a* b* Cab* hab* 

AVN/SB/T0 0 -4 46 103 2.89 0.041 0.063 2.84 3.09 0.10 0.64 96.54 -0.31 1.92 1.95 -80.89 
AVN/SB/T3/RT 3 RT 28 98 0.97 0.041 0.065 2.90 3.16 0.11 0.63 96.42 -0.47 2.06 2.11 -77.23 
AVN/SB/T3/15 3 15 22 96 0.82 0.041 0.064 2.90 3.15 0.10 0.63 96.50 -0.32 1.98 2.00 -80.75 
AVN/SB/T3/25 3 25 27 93 0.15 0.041 0.066 2.89 3.15 0.11 0.62 96.45 -0.30 2.07 2.09 -81.80 
AVN/SB/T9/RT 9 RT 25 93 0.37 0.042 0.069 2.94 3.18 0.11 0.62 96.42 -0.35 2.28 2.30 -81.22 
AVN/SB/T9/15 9 15 25 92 0.30 0.043 0.068 2.93 3.17 0.11 0.64 96.36 -0.34 2.15 2.18 -81.05 
AVN/SB/T9/25 9 25 24 87 0.20 0.042 0.069 2.94 3.22 0.11 0.60 96.46 -0.37 2.33 2.36 -81.05 

CDB/SB/T0 0 -4 52 89 2.40 0.040 0.060 2.80 3.25 0.10 0.67 96.48 -0.31 1.65 1.68 -79.41 
CDB/SB/T3/RT 3 RT 51 89 8.12 0.072 0.093 2.92 3.34 0.17 0.77 94.21 -0.22 2.16 2.17 -84.09 
CDB/SB/T3/15 3 15 52 101 4.23 0.046 0.067 2.91 3.33 0.11 0.69 96.04 -0.38 1.74 1.78 -77.64 
CDB/SB/T3/25 3 25 50 99 6.74 0.046 0.065 2.94 3.33 0.11 0.71 96.27 -0.39 1.78 1.82 -77.70 
CDB/SB/T9/RT 9 RT 47 93 0.31 0.040 0.066 2.90 3.34 0.11 0.61 96.44 -0.38 2.00 2.04 -79.30 
CDB/SB/T9/15 9 15 27 95 3.12 0.041 0.063 2.86 3.29 0.10 0.65 96.51 -0.35 1.89 1.92 -79.44 
CDB/SB/T9/25 9 25 51 89 0.53 0.041 0.065 2.83 3.29 0.11 0.63 96.57 -0.45 2.08 2.13 -77.77 

DTK/SB/T0 0 -4 19 101 1.26 0.043 0.079 2.43 3.26 0.12 0.54 96.08 -0.55 2.71 2.76 -78.50 
DTK/SB/T3/RT 3 RT 17 88 0.35 0.042 0.069 2.30 3.11 0.11 0.60 96.12 -0.52 1.75 1.83 -73.36 
DTK/SB/T3/15 3 15 18 92 0.56 0.043 0.075 2.36 3.18 0.12 0.57 96.26 -0.51 2.56 2.61 -78.66 
DTK/SB/T3/25 3 25 18 90 0.35 0.041 0.070 2.33 3.15 0.11 0.59 96.40 -0.41 2.38 2.42 -80.31 
DTK/SB/T9/RT 9 RT 17 88 0.24 0.042 0.067 2.28 3.10 0.11 0.62 96.13 -0.21 1.94 1.95 -83.91 
DTK/SB/T9/15 9 15 18 87 0.72 0.042 0.068 2.27 3.08 0.11 0.62 96.01 -0.25 1.89 1.90 -82.46 
DTK/SB/T9/25 9 25 16 83 0.21 0.043 0.066 2.31 3.12 0.11 0.65 96.31 -0.26 2.02 2.04 -82.54 

FRV/SB/T0 0 -4 18 77 0.27 0.044 0.072 1.92 2.66 0.12 0.61 96.23 -0.45 2.35 2.39 -79.11 
FRV/SB/T3/RT 3 RT 17 67 0.64 0.040 0.063 1.83 2.51 0.10 0.65 96.30 -0.40 1.75 1.80 -77.25 
FRV/SB/T3/15 3 15 16 67 0.38 0.047 0.074 1.90 2.61 0.12 0.63 96.03 -0.39 2.47 2.50 -81.08 
FRV/SB/T3/25 3 25 17 68 0.72 0.040 0.062 1.84 2.53 0.10 0.65 96.20 -0.32 1.53 1.56 -78.30 
FRV/SB/T9/RT 9 RT 15 64 1.26 0.040 0.061 1.81 2.49 0.10 0.66 96.47 -0.47 1.60 1.66 -73.75 
FRV/SB/T9/15 9 15 15 65 0.96 0.041 0.062 1.80 2.48 0.10 0.65 96.46 -0.35 1.77 1.81 -78.80 
FRV/SB/T9/25 9 25 15 63 1.83 0.042 0.062 1.76 2.44 0.10 0.68 96.09 -0.29 1.57 1.59 -79.47 

KZC/SB/T0 0 -4 26 95 5.83 0.042 0.072 2.83 3.34 0.11 0.58 96.35 -0.42 2.53 2.56 -80.59 
KZC/SB/T3/RT 3 RT 25 97 2.60 0.069 0.070 2.70 3.23 0.14 0.99 96.34 -0.60 1.89 1.98 -72.54 
KZC/SB/T3/15 3 15 24 93 0.85 0.049 0.069 2.81 3.32 0.12 0.71 96.33 -0.79 2.12 2.26 -69.61 
KZC/SB/T3/25 3 25 23 95 1.96 0.041 0.066 2.87 3.33 0.11 0.63 96.43 -0.45 2.08 2.13 -77.73 
KZC/SB/T9/RT 9 RT 23 91 0.66 0.040 0.063 2.83 3.26 0.10 0.63 96.56 -0.31 2.03 2.06 -81.19 
KZC/SB/T9/15 9 15 22 95 3.25 0.043 0.067 2.87 3.28 0.11 0.64 96.37 -0.34 2.15 2.18 -81.08 
KZC/SB/T9/25 9 25 23 92 0.24 0.040 0.060 2.63 3.16 0.10 0.67 96.55 -0.37 1.63 1.67 -77.05 

PDB/SB/T0 0 -4 22 90 1.42 0.042 0.067 2.43 2.93 0.11 0.63 96.39 -0.55 2.14 2.21 -75.58 
PDB/SB/T3/RT 3 RT 22 85 0.83 0.041 0.068 2.51 3.00 0.11 0.61 96.37 -0.45 2.21 2.25 -78.45 
PDB/SB/T3/15 3 15 23 84 1.11 0.042 0.067 2.53 3.02 0.11 0.62 96.33 -0.49 1.99 2.05 -76.28 
PDB/SB/T3/25 3 25 22 84 0.67 0.043 0.070 2.55 3.04 0.11 0.61 96.43 -0.38 2.37 2.40 -80.83 
PDB/SB/T9/RT 9 RT 22 84 0.34 0.043 0.073 2.56 3.05 0.12 0.59 96.42 -0.37 2.63 2.65 -82.01 
PDB/SB/T9/15 9 15 21 87 0.69 0.042 0.071 2.55 3.04 0.11 0.60 96.43 -0.36 2.47 2.50 -81.70 
PDB/SB/T9/25 9 25 19 88 0.43 0.043 0.075 2.63 3.13 0.12 0.57 96.43 -0.43 2.79 2.83 -81.18 
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Table 3.13:  Antioxidant-related compound composition of Chenin Blanc wines stored at different conditions. 

Sample ID 
Storage Time 

(months) 
Temperat
ure (°C) 

FSO2 
(pppm) 

TSO2 
(ppm) 

Reduced 
GSH (ppm) 

A520 
(nm) 

A420 
(nm) 

A320 
(nm) 

A280 
(nm) 

Colour 
density 

Colour 
hue 

L* a* b* Cab* hab* 

AVN/CB/T0 0 -4 22 71 3.20 0.047 0.084 3.02 3.55 0.13 0.56 96.09 -0.47 3.35 3.38 -81.98 
AVN/CB/T3/RT 3 RT 19 76 1.78 0.045 0.087 3.09 3.53 0.13 0.52 96.23 -0.51 3.64 3.68 -82.07 
AVN/CB/T3/15 3 15 21 87 1.77 0.045 0.084 3.06 3.54 0.13 0.54 96.21 -0.46 3.49 3.52 -82.52 
AVN/CB/T3/25 3 25 22 84 1.24 0.046 0.088 3.11 3.55 0.13 0.52 96.19 -0.55 3.68 3.72 -81.52 
AVN/CB/T9/RT 9 RT 21 80 0.40 0.047 0.092 3.12 3.55 0.14 0.50 96.12 -0.59 4.00 4.05 -81.59 
AVN/CB/T9/15 9 15 21 82 0.56 0.046 0.088 3.08 3.53 0.13 0.52 96.16 -0.54 3.72 3.76 -81.75 
AVN/CB/T9/25 9 25 20 80 0.34 0.048 0.097 3.17 3.57 0.14 0.49 96.05 -0.65 4.27 4.32 -81.35 

CDB/CB/T0 0 -4 57 107 18.99 0.037 0.059 2.03 2.80 0.10 0.63 96.77 -0.43 1.74 1.80 -76.31 
CDB/CB/T3/RT 3 RT 58 138 9.35 0.037 0.060 2.08 2.85 0.10 0.62 96.78 -0.46 1.83 1.89 -75.90 
CDB/CB/T3/15 3 15 57 174 12.00 0.037 0.060 2.10 2.87 0.10 0.61 96.78 -0.44 1.84 1.89 -76.43 
CDB/CB/T3/25 3 25 56 198 6.70 0.037 0.061 2.11 2.88 0.10 0.61 96.75 -0.45 1.88 1.94 -76.46 
CDB/CB/T9/RT 9 RT 58 247 1.89 0.037 0.062 2.10 2.86 0.10 0.60 96.75 -0.49 1.97 2.03 -76.07 
CDB/CB/T9/15 9 15 59 102 4.94 0.039 0.063 2.11 2.87 0.10 0.61 96.61 -0.47 1.92 1.98 -76.37 
CDB/CB/T9/25 9 25 55 100 1.09 0.038 0.065 2.17 2.94 0.10 0.59 96.72 -0.52 2.11 2.17 -76.19 

DTK/CB/T0 0 -4 33 106 3.83 0.039 0.069 2.43 3.26 0.11 0.57 96.60 -0.47 2.47 2.51 -79.29 
DTK/CB/T3/RT 3 RT 33 100 2.24 0.040 0.072 2.47 3.28 0.11 0.55 96.53 -0.47 2.65 2.70 -79.94 
DTK/CB/T3/15 3 15 33 102 2.57 0.041 0.072 2.48 3.29 0.11 0.56 96.52 -0.48 2.61 2.66 -79.55 
DTK/CB/T3/25 3 25 26 102 1.32 0.043 0.078 2.52 3.32 0.12 0.56 96.33 -0.53 2.85 2.90 -79.51 
DTK/CB/T9/RT 9 RT 29 107 0.59 0.041 0.079 2.57 3.35 0.12 0.53 96.45 -0.57 3.06 3.11 -79.46 
DTK/CB/T9/15 9 15 40 112 1.07 0.040 0.075 2.52 3.33 0.11 0.54 96.52 -0.51 2.81 2.85 -79.61 
DTK/CB/T9/25 9 25 34 93 0.40 0.042 0.082 2.60 3.39 0.12 0.52 96.40 -0.62 3.24 3.30 -79.11 

FRV/CB/T0 0 -4 23 84 2.63 0.044 0.069 2.44 3.36 0.11 0.63 96.35 -0.21 2.20 2.21 -84.58 
FRV/CB/T3/RT 3 RT 22 84 1.97 0.042 0.071 2.45 3.35 0.11 0.60 96.40 -0.36 2.38 2.40 -81.41 
FRV/CB/T3/15 3 15 22 81 2.25 0.043 0.070 2.45 3.34 0.11 0.62 96.43 -0.33 2.30 2.33 -81.80 
FRV/CB/T3/25 3 25 18 82 1.29 0.042 0.072 2.48 3.37 0.11 0.59 96.41 -0.40 2.48 2.51 -80.79 
FRV/CB/T9/RT 9 RT 23 84 0.60 0.042 0.074 2.49 3.35 0.12 0.57 96.42 -0.47 2.64 2.68 -79.93 
FRV/CB/T9/15 9 15 22 87 0.94 0.042 0.072 2.49 3.38 0.11 0.59 96.31 -0.39 2.42 2.45 -80.81 
FRV/CB/T9/25 9 25 21 86 0.37 0.043 0.077 2.54 3.40 0.12 0.56 96.39 -0.47 2.84 2.88 -80.58 

KZC/CB/T0 0 -4 25 96 1.80 0.044 0.070 2.11 3.17 0.11 0.62 96.41 -0.34 2.28 2.31 -81.42 
KZC/CB/T3/RT 3 RT 24 95 0.96 0.044 0.076 2.14 3.20 0.12 0.58 96.24 -0.46 2.61 2.65 -79.94 
KZC/CB/T3/15 3 15 25 95 1.26 0.043 0.072 2.11 3.17 0.11 0.59 96.41 -0.37 2.41 2.44 -81.15 
KZC/CB/T3/25 3 25 24 88 0.79 0.043 0.077 2.17 3.22 0.12 0.56 96.34 -0.50 2.85 2.90 -79.98 
KZC/CB/T9/RT 9 RT 22 90 0.32 0.045 0.084 2.24 3.30 0.13 0.53 96.25 -0.59 3.34 3.39 -79.97 
KZC/CB/T9/15 9 15 24 87 0.45 0.043 0.079 2.17 3.22 0.12 0.54 96.35 -0.51 2.83 2.88 -79.71 
KZC/CB/T9/25 9 25 22 83 0.16 0.045 0.089 2.27 3.34 0.13 0.50 96.25 -0.68 3.75 3.81 -79.80 

PDB/CB/T0 0 -4 22 87 2.48 0.042 0.072 2.88 3.34 0.11 0.58 96.46 -0.41 2.43 2.47 -80.35 
PDB/CB/T3/RT 3 RT 20 86 1.28 0.041 0.074 2.92 3.37 0.12 0.56 96.49 -0.45 2.68 2.72 -80.53 
PDB/CB/T3/15 3 15 21 87 1.63 0.041 0.072 2.88 3.35 0.11 0.57 96.53 -0.42 2.56 2.59 -80.69 
PDB/CB/T3/25 3 25 21 87 0.96 0.042 0.076 2.92 3.36 0.12 0.55 96.45 -0.46 2.79 2.83 -80.68 
PDB/CB/T9/RT 9 RT 19 83 0.57 0.043 0.080 2.93 3.38 0.12 0.54 96.38 -0.50 3.01 3.05 -80.62 
PDB/CB/T9/15 9 15 21 85 0.74 0.043 0.077 2.92 3.37 0.12 0.56 96.39 -0.45 2.82 2.85 -80.89 
PDB/CB/T9/25 9 25 20 78 0.28 0.045 0.085 2.97 3.41 0.13 0.53 96.23 -0.53 3.29 3.33 -80.89 
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Chapter 4:  Exploration of data fusion strategies using 
Principal Component Analysis (PCA) and Multiple Factor 

Analysis (MFA) 
 

Abstract 

In the field of oenology, statistical analyses are used for descriptive purposes, in the majority 

of cases sensory and chemistry data sets are kept separate. Cases that combine the different 

data sets are mostly supervised, usually seeking to optimize discrimination, classification or 

prediction power. Unsupervised methods are used as preliminary steps that work to refine the 

predictive/discriminant/classification power of supervised models. However, there is potential for 

unsupervised methods to combine different data sets into comprehensive, information-rich 

models. In this study, stepwise strategies for creating data fusion models at different levels of 

complexity were explored. Principal component analysis (PCA) and multiple factor analysis (MFA) 

were used to combine five data blocks (four chemistry – antioxidant related parameters, infrared, 

UV-Vis, volatile compound composition and one sensory – pivot profile). The efficiency of the 

models was evaluated using the explained variance, the slope of the eigenvalue exponential 

decay, while the configuration similarity between the models generated was evaluated using 

regression vector (RV) coefficients. At both low- and mid-level data fusion, the PCA approach 

resulted in a skewed sample configuration. The MFA models were less efficient than the PCA 

models, having a gradual distribution of the eigenvalue across the different model dimensions. As 

indicated by high RV coefficients between MFA and the individual blocks, the sample 

configurations resulting from the MFA were more representative than the PCA. 

 

Abbreviations: CA (correspondence analysis), PCA (principal component analysis), MFA   

(multiple factor analysis), %EV (percentage explained variance), MSC (multiplicative scatter 

correction), 1st deriv (first derivative), IR (infra-red), UV-Vis (ultra-violet visible light), ARP 

(antioxidant-related parameters), VCC (volatile compound composition), RV (regression vector) 

coefficient, iTOP (inferring topology) RV. 
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4.1 Introduction 

The fields of metabolomics, engineering, and chemistry have a long history of working on 

data-orientated approaches to combining data sets from different sources, termed chemometric 

data fusion (Cocchi, 2019a; Gagolewski, 2015; Lahat, Adalı, & Jutten, 2015). Chemometric data 

fusion has a long history in other fields but is recent for agricultural sciences, and more so for the 

oenology field.  

In order to compile a comprehensive account of the response of a wine to a certain 

phenomenon or influence, data from different sources is gathered; for example, wine can be 

profiled chemically and sensorially. Due to the complexity of sensory data matrices, the two are 

commonly discussed separately from one another and similarities are inferred. This has been the 

case for wine authenticity studies, whereby several measurements are taken and discussed 

separately (Arvanitoyannis, Katsota, Psarra, Soufleros, & Kallithraka, 1999). Although this works 

well for contained cases that have an application-based approach, cases that require collection 

of multiple responses across different stimuli or time require a data-orientated approach. 

Combining data sets from different sources creates a comprehensive profile of the behaviour of 

a product (in this case, wine) in response to said stimuli. This is in alignment with the motivation 

for the fourth industrial revolution which requires not just gathering large amounts of different data 

but looking at the data in smarter ways.  

Putting together chemistry and sensory data has its own set of challenges. Data outputs for 

analytical chemistry instruments have made strides to develop standardized matrix arrangements 

for two to four-dimensional data (e.g. hyphenated techniques such as LC-MS/MS-TOF used in 

wine metabolomics, which uses multiple detectors)  (Alañón, Pérez-Coello, & Marina, 2015). This 

required consolidation of statistical treatments (normalization of peak intensities for each peak) 

and alignment across the different detectors.  On the contrary, the complex, and very often 

qualitative nature of sensory data is usually communicated through descriptive narratives. 

Although there are standardised statistical treatments for certain methods (Granato, de Araújo 

Calado, & Jarvis, 2014; Valentin et al., 2012), there is still a way to go to reach consensus on 

standardised matrix arrangements and outputs that encourage data consolidation. Due to the 

qualitative nature of many sensory evaluations, the assumptions made through statistical 

treatment of data are continuously debated and tend to be misconstrued as over-reaching or over-

fitting (Valentin et al., 2012).  

Data fusion is defined not simply as putting together, but rather as “integrating multiple data 

sources to produce more consistent, accurate, and useful information than that provided by any 

individual data source” (isif.org). Data fusion is classified under low-level, mid-level, and high-

level, based on increasing complexity of the models and depending on the number of steps 

between the capturing of the raw data and the final fused model (Cocchi, 2019b). Low-level data 

fusion is the simplest form which usually uses the raw data with little pre-modelling processing. 
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Issues and challenges related to pre-modelling processing have previously been described for 

sensory (Brand, 2019; Valentin et al., 2012) and chemical analysis (López-Rituerto et al., 2012; 

Ragone et al., 2015; Rinnan, Berg, & Engelsen, 2009) in oenological applications. Low-level data 

fusion requires data sets to have compatible matrices, with compatible matrix order (2D, 3D, etc.) 

and at least one of the dimensional arrays (observations or variables) being the same (Cocchi, 

2019b). Low-level data fusion models are often used as a pre-modelling step in mid- and high-

level data fusion. From the low-level model, pre-modelling processing used include selection of 

variables or features, and the new matrix is then modelled. Mid-level data fusion is a systematic 

approach comprised of steps between the raw data and the final model. This may be due to 

differences in matrix dimensions, directed goals requiring feature selections, and/or pre-modelling 

processing. High-level, also called decision-level, data fusion, is the most complex and involves 

several directed steps. High-level data fusion strategies use both classical statistical analysis and 

machine learning techniques (Biancolillo, Boqué, Cocchi, & Marini, 2019). High-level supervised 

models have been used in oenology for prediction and calibration of oenological processes, such 

as the case of modelling ageing (Pereira et al., 2016). Recently, machine leaning techniques such 

as text-mining for qualitative sensory data (Valente, Bauer, Venter, Watson, & Nieuwoudt, 2018) 

and fuzzy logic (Ballabio, Todeschini, & Consonni, 2019; Silvestri et al., 2014) have been used 

for information mining in food applications.  

In each of the three levels of data fusion, unsupervised modelling strategies in which the 

objective is data exploration may be used. These unsupervised modelling strategies look for 

patterns of grouping, similarity, or for the best-fit model. The objective of the data fusion may have 

a specific target in mind, in which case supervised modelling strategies are used. In the field of 

oenology, most reported cases of data fusion are supervised, with unsupervised methods being 

used as preliminary explorative steps that work to refine the final model (Biancolillo et al., 2019; 

Borràs et al., 2015). Supervised data fusion approaches are goal-orientated, by targeting and 

selecting only certain features from data blocks related to the phenomenon under investigation, 

reducing dimensionality and increasing predictive, discriminant, or classification power (Cocchi, 

2019a). In trying to refine these supervised models, the data that does not contribute to increasing 

the regression coefficients is discarded. Conversely, unsupervised data fusion approaches retain 

most of the information captured whilst reducing the dimensionality.   

The most commonly used unsupervised data fusion methods in oenology are principal 

component analysis (PCA) and multiple factor analysis (MFA) (Borràs et al., 2015; Pagés & 

Husson, 2005b). PCA is one of the most popular multivariate statistical tools in applied science 

(Salkind. J. & Kristin. R., 2007) which can be used for low or mid-level data fusion (by matrix 

concatenation), or as a pre-processing model. The focus of PCA is efficiency, accomplished by 

reducing the dimensions of a data set into more manageable dimensions called principal 

components, which make it easier to interpret complex data (McKillup, 2012). These principal 

components standardize the raw data to capture the essence of the correlations or covariance 
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between the variable and the observations (the common vectors). It is because of these functions 

that PCA is an appropriate low-level data fusion model of choice in applied food science (Borràs 

et al., 2015). The disadvantages of PCA are its inability to handle data with high counts of zero or 

‘missing data’ which can be an issue for certain sensory data and chemical instrument outputs 

(Borgognone, Bussi, & Hough, 2001; McKillup, 2012). In such cases, the raw data is revisited, 

and pre-processed manually or through statistical exclusions of some data before being modelled 

again. This rigorous approach can result in overfitting/ overcorrection that disregards the 

unsupervised intent of PCA modelling (Borràs et al., 2015).  

MFA is another popular multivariate tool in applied food science, that goes beyond the simple 

matrix concatenation approach of PCA (Pagés & Husson, 2005a; J. J. Pagès, 2005). MFA has a 

multiblock data fusion approach that retains and standardizes each block before fusion, retaining 

the weight and contributions of the variables in each block to avoid any skewing by one data block 

(Abdi & Valentin, 2007). MFA is used for solving issues around the combining of sensory data, 

such as differences in variation between panels. Combinations of qualitative and quantitative data 

sets can thus be handled using pre-processing steps such as PCA and correspondence analysis 

(CA) before MFA modelling (J. Pagès, 2004). Rapid sensory methods capture data as ordinal, 

rating, or frequency matrices (Valentin et al., 2012), for which MFA is usually recommended to 

overcome the issues related to matrix compatibility (J. Pagès, 2004; Valentin et al., 2012).  

The question still remains: which model is best? The performance of unsupervised data 

fusion models are evaluated comparatively and descriptively by looking at the distribution of the 

explained variance over different dimensions, grouping of samples when using cluster analysis 

or confidence ellipses (Le Dien & Pagès, 2003; J. Pagès, 2004; Pagés & Husson, 2005a). 

Recently, in order to compare the similarities between the sample configurations of different 

models, regression vector coefficients have been used (Abdi, 2007; Antúnez et al., 2015; Cadena 

et al., 2013; Fleming, Ziegler, & Hayes, 2015; Mafata, Brand, Panzeri, Kidd, & Buica, 2019).  

This study explored data fusion strategies using low-level PCA and mid-level PCA and MFA 

models. The aim was to detail the rationale behind the different steps of data fusion, from data 

set curation to the evaluation of the final fused models. The data used in this study was based on 

the response of white wine to different storage conditions (Mafata et al., 2019). The data was 

captured and grouped under five blocks: antioxidant-related parameters (ARP), volatile 

compounds composition (VCC), UV-Vis spectrum, infra-red spectrum (IR), and sensory. The 

purpose of building these models was to create efficient, comprehensive, and representative data 

fusion models. The performance of the models was evaluated by looking at the distribution of the 

percentage explained variance (%EV) and the slope of the exponential decay of the eigenvalue 

across the different model dimensions, as a measures of information distribution. Comparisons 

between model sample configurations were evaluated using pair-wise regression vector (RV) 
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coefficients. Issues surrounding model efficiency and redundancies between data blocks, and the 

representativeness of the data fusion model will be discussed. 

 

4.2 Materials and Methods 

4.2.1 Experimental design 

The materials and methods related to the winemaking, wine treatments, sensory evaluation, 

and chemical analysis (oenological parameters, thiols, glutathione, major volatiles) have been 

previously published by Mafata, et al. (Mafata, Brand, Panzeri, et al., 2019). In brief, the 

experiment focused on the stability of wines at various temperatures and for different time periods. 

Samples belonged to two cultivars (Chenin Blanc and Sauvignon Blanc) from six wineries each 

(twelve sample sets in total). Each sample set consisted of seven wines corresponding to the 

experimental storage conditions (i.e. no storage time/control, three- and nine-months storage; 

three temperatures: 15°C, 25°C and room temperature). 

4.2.2 Sensory data methodology 

The descriptive part of the sensory data methodology (panel parameters and instructions) 

was previously published in Mafata et al. (Mafata et al., 2019). For the purpose of the current 

study, some relevant aspects are described here. The sensory method chosen for this experiment 

was Pivot© Profile (PP) (Thuillier, Valentin, Marchal, & Dacremont, 2015). PP is a verbal, 

reference-based method that collects information about the attributes, per sample, relative to the 

pivot (Valentin et al., 2012), in this case the control sample. The data was captured as a rating of 

either +1 (more than pivot) or -1 (less than pivot) and for attributes that were not mentioned, a 

rating of zero was given. The raw data were captured per data set, with judges and repeats kept 

separate and not concatenated further (Lelièvre-Desmas, Valentin, & Chollet, 2017).  

Linguistic and semantic reduction of terms were performed manually resulting in a total of 

200 attributes. Statistical consolidation was then done for each sample set separately. Each 

attribute was summed across judges and repeats, translated into positive ratings, and zero-sum 

terms excluded. The positive translation was done to convert the data from rating to frequency so 

that the modelling could be done by CA (Thuillier et al., 2015). Terms with less than 5% citations 

were removed, resulting in 29 to 36 attributes per sample set. 
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4.2.3 Chemical data collection and capturing  

The chemical data categorised under volatiles (VCC data set: thiols, major volatiles) and 

antioxidant-related parameters (ARP data set:  Colour intensity (CI, A520 + A420), colour hue 

(CH, A520/A420), total phenolics (A280), hydroxycinnamic acids (A320) and browning (A420), 

CIElab parameters, glutathione, total and free sulphur dioxide) were previously discussed (Mafata 

et al., 2019). Ultraviolet-visible light spectrophotometric scans (UV-Vis data set) were run from 

280 nm to 780 nm (in 1 nm increments) in triplicate on a Thermo Scientific Multiskan GO 1510-

02586 microplate spectrophotometer. Infra-red spectra measurements (IR data set), in the mid-

infrared range (4000-600 cm-1) were collected on the Alpha-P ATR FT-MIR spectrometer (Bruker 

Optics, Ettlingen, Germany). Each sample was scanned at a resolution of 4 cm-1 and at a 

scanning velocity of 7.5 kHz, averaged over 64 scans to give a final reading. Instrumental control 

and data capturing were carried out using OPUS software (OPUS v. 7.0 for Microsoft, Bruker 

Optics, Ettlingen, Germany). 

 

4.2.4 Statistical analysis  

Multivariate analysis was performed separately for each winery and each cultivar, each 

sample set consisted of seven wines (2.1). The data were divided into five blocks based on 

properties and modality of acquisition: volatile compounds (VCC), antioxidant-related parameters 

(ARP), UV-Vis spectra (UV-Vis), infra-red spectra (IR), and sensory data (Table 4. 1). In other 

words, each block consisted of twelve data sets and each data set contributed to five blocks. The 

raw sensory data was submitted to Correspondence Analysis (CA) and the standardised deviates 

matrix was used for data fusion. All PCA analyses in this study were based on the generalized 

Pearson correlation coefficient with standard univariate scaling applied to all measurements 

before modelling. MFA was performed on correlation matrices of the chemistry data sets 

(observations vs. variables) and the latent variables of the sensory data. The data blocks were 

first standardised by PCA and then MFA was performed (Abdi & Valentin, 2007). For each model, 

an exponential decay curve was plotted using eigenvalues for each dimension and the slope 

calculated using Microsoft Excel (Excel Office 365, version 2002, Microsoft Corp., United States). 

Configurational similarities for all score plots were calculated using pair-wise regression vector 

(RV) coefficients (Abdi, 2007) and infer topology (iTOP) RV between the PCA and MFA data 

fusion models (Aben et al., 2018) (Figure 4.1). Statistical calculations and modelling were 

performed using Statistica™ 13 (TIBCO, Dell software, Inc., Teas, United States). 
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Table 4.2: Five block low-level and mid-level data fusion approaches using principal component analysis (PCA) and multifactorial analysis (MFA).  

Level Blocks 
Input (raw data) 
  Pre-processing 

  

Modelling Model output Interpretation 

    Description Matrix type Values 
Modelled 

matrix 
Model New matrices 

New matrix 
row 

New matrix 
column 

Evaluation 
parameter 

Visualization aids 

Individual 
data 

blocks 

Antioxidant-
related 

parameters 
(ARP) 

Discreet 
measurements 

Correlation Concentration none raw data PCA Scores Observations 
Principal 

components 

Pair-wise RV 
coefficients of 

scores 

Scores 
plot 

Loadings 
plot 

Infra-red (IR) Spectral Continuous Transmittance 
MSC + 1st deriv 
transformations 

raw data PCA Scores Observations 
Principal 

components 

Pair-wise RV 
coefficients of 

scores 

Scores 
plot 

Loadings 
plot 

Ultra-violet 
visible light 
(UV-Vis) 

Spectral Continuous Absorbance none raw data PCA Scores Observations 
Principal 

components 

Pair-wise RV 
coefficients of 

scores 

Scores 
plot 

Loadings 
plot 

Volatile 
compound 

composition 
(VCC) 

Discreet 
measurements 

Correlation Concentration none raw data PCA Scores Observations 
Principal 

components 

Pair-wise RV 
coefficients of 

scores 

Scores 
plot 

Loadings 
plot 

Sensory 
Pivot profile 
reference-

based method 
Rating Rating 

Conversion to 
frequency 

matrix 
Positive FoC CA Scores Observations 

Principal 
components 

Pair-wise RV 
coefficients of 

scores 

Scores 
plot 

Loadings 
plot 

              
Standardized 

deviates 
Observations Variables       

Low-level 
ARP + IR + 
UV-Vis + 

VCC  
Data fusion Mixed Mixed 

matrix 
concatenation 

Concatenated 
matrix 

PCA Scores Observations 
Principal 

components 

Pair-wise RV 
coefficients of 

scores 

Scores 
plot 

Loadings 
plot 

Mid-level  

ARP + IR + 
UV-Vis + 
VCC + 
sensory  

Data fusion Mixed Mixed 
matrix 

concatenation 
Concatenated 

matrix 
PCA Scores Observations 

Principal 
components 

Pair-wise RV 
coefficients of 

scores 

Scores 
plot 

Loadings 
plot 

      

*Sensory latent 
variables 

(standardized 
deviates) from 

CA 

          

ARP + IR + 
UV-Vis + 
VCC + 
sensory  

Data fusion Multiblock Mixed PCA per block 

Multiblock 
standardized 
deviates from 
individual PCA 

MFA Scores Observations 
MFA 

dimensions 

Pair-wise RV 
coefficients of 

scores 

Scores 
Factor 
Map 

Scores 
cluster 

plot 

       

*Sensory latent 
variables 

(standardized 
deviates) from 

CA 

  Loadings Blocks 
MFA 

dimensions 

Pair-wise RV 

coefficients of 
loadings 

Block 

Factor 
Map 

Block 

cluster 
plot 

                

iTop-RV 
coefficients 

between the data 
fusion models 
(PCA vs MFA)  
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4.3. Results and discussions 

 The fusion of the five data blocks in this study (VCC, ARP, IR, UV-Vis, and sensory) was 

unsupervised and explorative, from low-level to mid-level data fusion strategies in increasing 

complexity (Table 4.1). This section is arranged according to both the complexity of the 

conceptualisation of the approach as well as the operational order taken in fusing the data blocks. 

4.3.1 Curation of data blocks 

4.3.1.1 Assessment of pre-modelling processing 

It is important to first inspect the data blocks specifically for the purposes of data fusion since 

this will dictate which type and which level of fusion is needed; the decisions taken might be 

different to the ones when data fusion is not the purpose (Engel et al., 2013). When looking at 

pre-modelling processing methods in view of data fusion, two criteria were considered in this 

study, namely matrix compatibility and signal correction.  

Matrix compatibility is an important eligibility criterion for low-level data fusion strategies 

(Smilde & Van Mechelen, 2019). If matrices are incompatible, then pre-modelling processing must 

be done. The chemistry data sets (ARP, VCC, UV-Vis, and IR) were captured as compatible 

correlation matrices (Table 4.1) and, thus, could be combined using either low-level or higher-

level data fusion strategies. In contrast, in order to obtain a compatible matrix for the sensory 

data, the standardised deviates matrix was obtained from the CA model (Table 4.1). The raw 

sensory data was captured as rating data, the matrix of which consisted of 0, 1, and -1 ratings. 

These types of data sets cannot be modelled using PCA since they contain large counts of zero 

measurements (Salkind. J. & Kristin. R., 2007).  

With regards to signal correction, spectral pre-processing is often considered for UV-Vis and 

IR spectral data blocks, and included as toolkits for most software (Gishen, Dambergs, & 

Cozzolino, 2005; Umetrics, 2012). In the case of the UV-Vis data block, high model efficiency 

(%EV) was taken as good indicator for proceeding with the raw UV-Vis data for the fusion without 

the need for pre-processing.  

Since IR had lower %EV and pair-wise RV coefficients (i.e. between scores of the PCA 

models with vs. without pre-processing), pre-modelling processing was considered to try and 

better these model evaluation parameters. Infra-red spectral data are prone to spectral 

irregularities which are categorised under two phenomena, namely scattering and base line 

irregularities (Rinnan et al., 2009). The mathematical conversions done to correct these 

phenomena fall under these two categories. Infra-red data regularly use multiplicative scatter 

correction (MSC) for scatter, first derivative transformations for baseline corrections, and 

combinations of the two (Rinnan et al., 2009). In this section, the raw data, MSC, 1st derivative, 

and combinations of MSC with 1st derivative were investigated as potential methods of pre-

processing infra-red data.  

Stellenbosch University  https://scholar.sun.ac.za



73 

The impact of the transformations on the efficiency of the PCA models were evaluated by 

%EV (Table 4.2) and any effect on the sample set configuration was evaluated through pairwise 

RV coefficients between the PCA models of the raw and the transformed data (Table 4.1). The 

raw data produced PCA models with the highest efficiency, with an average cumulative %EV for 

the first two principal components 84±9 for CB and 70±6 for SB. All other pre-processing 

transformations lowered the efficiency of the models, with some exceptions; the MSC increased 

the efficiency of the PCA models of PDB and KZC CB sample sets by 7% and 4%, respectively. 

The KZC CB sample set model efficiency was increased by the pre-processing methods, except 

for the first derivative transformation. KZC had the second highest %EV of all the wineries; the 

4% increase was thus relatively negligible, and inspection of the spectra showed no obvious 

faults.  

 

Table 4.2: Cumulative percentage explained variance (%EV) for the first two principal components of infra-
red spectral raw data and its mathematical transformations using multiplicative scatter correction (MSC) 
and first derivative (1st deriv), and their combinations.  

  
raw 1st deriv MSC 1st deriv MSC MSC 1st deriv 

Chenin 
Blanc 

AVN 82 52 73 51 53 

CDB 72 57 61 52 52 

DTK 97 62 97 72 73 

FRV 76 52 68 50 53 

KZC 96 79 100 100 100 

PDB 81 54 88 50 60  
average 84 59 81 63 65  
stdev 9 9 15 18 17 

Sauvignon 
Blanc 

AVN 72 43 55 40 39 

CDB 74 54 63 51 51 

DTK 63 45 46 39 40 

FRV 74 50 51 40 41 

KZC 62 43 51 38 39 

PDB 77 45 52 38 39  
average 70 47 53 41 42 

  stdev 6 4 5 5 4 

Overall low 62 43 46 38 39  
high 97 79 100 100 100  
average 77 53 67 52 53  
stdev 10 10 18 17 17 
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RV coefficients showed high configurational similarities between the different pre-processed 

models vs. the raw data, except for the KZC CB sample set (Supplementary Table 4.1), meaning 

that generally the pre-processing had very little effect on the sample configuration. The raw data 

set had the lowest RV coefficients, ranging from 0.73 to 0.95 for CB (0.84±0.06, ave±SD) and 

0.70 to 0.90 for SB (0.78±0.06). This means that the configurations of the transformed spectra 

were more similar to each other than to the raw data. However, this was a negligible difference in 

configurations, with a maximum 15% increase in RV coefficients on average. 

For the KZC CB sample set, RV coefficients between the MSC vs. raw data (0.37), and vs. 

1st deriv (0.44) were the lowest. Overall, the MSC transformation resulted in increased model 

efficiency (%EV) and relatively unique sample configurations (low RV coefficients) in the KZC CB 

sample set. If the purposes of the data fusion in this study were to gather information that would 

increase the discrimination power between the sample sets, the MSC pre-processing would be 

suitable. Since this study was explorative and unsupervised, such measures were not considered 

necessary and the decision was made to continue with the raw data for data fusion. 

 

4.3.1.2 Performance of individual block models 

The chemistry data blocks had each a set number of variables (UV-Vis 501 wavelengths, 

ARP 14 parameters, VCC 34 compounds, and IR 879 wavenumbers); the sensory data had a 

varying number of variables since the number of attributes was different for each data set after 

pre-processing. A comparative exploration of the models’ packing efficiency was done using the 

%EV (Supplementary Table 4.2) and the configurational similarity of the scores (seven samples 

per set) was calculated through pairwise RV coefficients between the data sets (Supplementary 

Table 4.3). Overall, the UV-Vis models were the most efficient, with cumulative %EV ranging from 

78 to 99, and an average of 91±7 for the first two PCs. ARP was the second most efficient (75 to 

94 %EV, 84±5) followed by IR (64 to 98%EV, 78 ±10) and VCC (72 to 83%EV, 77±3). Sensory 

had the lowest cumulative %EV (55 to 78%EV, 68 ±6) for the first two dimensions of the CA, 

which is an inherent characteristic of holistic techniques such as sensory analysis (Valentin et al., 

2012).   

The sample configurations of UV-Vis and ARP were the most similar, with RV coefficients 

ranging from 0.78 to 0.93 for CB and 0.73 to 0.93 for SB. This is understandable since compounds 

with antioxidant properties can absorb UV-Vis energy (Stevenson, 2005). Additionally, the CIE 

lab and other colour indices listed in the ARP data block were calculated from specific 

measurements in the UV-Vis spectrum. RV coefficients for ARP vs. VCC were the second highest, 

ranging from 0.55 to 0.83 for CB and 0.45 to 0.82 for SB. RV coefficients for UV-Vis vs. VCC were 

lower compared to those of ARP vs. VCC, ranging from 0.31 to 0.81 for CB and 0.33 to 0.62 for 

SB. RV coefficients were very low between IR and the other chemistry data blocks (UV-Vis, ARP, 

and VCC), ranging from 0.10 to 0.71 for CB and 0.21 to 0.79 for SB. RV coefficients between IR 
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and sensory were higher, ranging from 0.38 to 0.86 for CB and 0.51 to 0.72 for SB. RV coefficients 

between sensory and UV-Vis were poor, ranging from 0.59 to 0.74 for CB and 0.43 to 0.79 for 

SB. RV coefficients were higher between sensory and VCC ranging from 0.60 to 0.87 for CB and 

0.60 to 0.85 for SB. Since the sensory method evaluated only the aroma of the wines, it is 

understandable that it resulted in higher configurational similarity with the VCC data set. 

 

4.3.2 Low-level data fusion  
Low-level fusion involves the simple concatenation of raw data with compatible matrix 

dimensions (Cocchi, 2019b; Ríos-Reina, Callejón, Savorani, Amigo, & Cocchi, 2019). The ARP, 

VCC, UV-Vis and IR data blocks had compatible observations vs. variables correlation matrices, 

and thus could be fused using low-level strategies. In order to fuse the sensory with the chemistry 

data, a mid-level data fusion strategy had to be employed; this is explored in the next section. 

The four chemistry data blocks were first concatenated into one correlation matrix of seven 

observations (for each sample set) vs. 1428 variables (corresponding to the sum of variables for 

the chemistry data blocks) and modelled by PCA.  

It has previously been shown that the individual models for the four chemistry data blocks 

were highly efficient, with most of the explained variance captured within the first two principal 

components (Section 4.3.1.2, Supplementary Table 4.2). Comparatively, the low-level PCA fusion 

model was less efficient (Table 4.3), hence a more in-depth exploration of the data distribution 

was needed to assess the model performance. The overall stress in the model and the slope of 

the exponential decay in the stress across the principal components (Table 4.3) were used to 

evaluate the model efficiency (Salkind. J. & Kristin. R., 2007).  

The 1428 variables were fitted over six principal components and the stress onto an 

exponential curve with R2 of between 0.81 and 0.99. CB had more efficient models compared to 

SB as measured by the slope, which ranged from 0.44 to 0.88 for CB and 0.38 to 0.55 for SB 

(Table 4.3). Approximately 80% of the explained variance was achieved within the first three 

principal components, which was less efficient than the individual models (Supplementary Table 

4.2). This is characteristic of multimodal data fusion, due to the increased number of variables 

and the different types of data sources (Cocchi, 2019a). KZC CB data set had the highest 

performance indicators again, with a slope of 0.87 (R2=0.95) and a cumulative %EV of 89 for the 

first two principal components (Table 4.3).  
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Table 4.3: Performance parameters and stress distribution for the low-level data fusion of ARP, VCC, UV-
Vis, and IR chemical data by principal component analysis (PCA).  

     
Cumulative %EV per PC 

Cultivar Winery Total stress 
(eigenvalue) 

Slope R² F1 F2 F3 F4 F5 F6 

Chenin 
Blanc 

AVN  589 0.55 0.989 41 68 84 92 97 100 

CDB 591 0.46 0.970 41 69 82 90 95 100 

DTK 742 0.88 0.966 52 85 93 98 99 100 

FRV 688 0.44 0.926 48 69 81 88 95 100 

KZC 962 0.87 0.947 67 89 95 98 99 100 

PDB 837 0.56 0.910 59 78 86 92 97 100 

Sauvignon 
Blanc 

AVN  617 0.47 0.962 43 70 82 90 95 100 

CDB 716 0.54 0.966 50 74 84 92 97 100 

DTK 541 0.38 0.932 38 65 78 86 93 100 

FRV 556 0.55 0.934 39 76 85 92 97 100 

KZC 800 0.41 0.813 56 70 79 88 95 100 

PDB 653 0.46 0.946 46 70 82 89 95 100 

Range min 541 0.38 0.813 38 65 78 86 93 100 
 

max 962 0.88 0.989 67 89 95 98 99 100 

VCC – volatile compounds composition, ARP – antioxidant-related parameters, UV-Vis – ultraviolet visible 
light, IR – infrared, PCA – principal component analysis, %EV – percentage explained variation.  

 

Due to the concatenated (one matrix) nature of the PCA data fusion strategy, it is difficult to 

attribute the performance of the model to any one of the data blocks. In order to try and address 

issues of redundancy between the data blocks in this low-level strategy, the sample configurations 

resulting from the PCA on the concatenated data were compared to the individual data sets’ PCAs 

using RV coefficients (Supplementary Table 4.4). Although previously the KZC CB sample set 

was an exception in the individual PCA models, the low-level PCA data fusion model is not since 

it has similar RV coefficients patterns described for the other sample sets. 

It may be misconstrued that the concatenated model is likely to be skewed by the most 

variable dense data block, in this case the IR (879 variables); and, since this data block had the 

highest RV coefficients (IR vs. low-level PCA), the hypothesis seemed to have some support. IR 

vs. low-level PCA had RV coefficients ranging from 0.88 to 0.96 for CB and 0.83 to 0.95 for SB 

data sets. As previously discussed, the sample configuration of the IR data block was different 

from the other data blocks (Section 4.3.1.2, Supplementary Table 4.3). A look at the RV 

coefficients between the low-level PCA model and the other data blocks, showed that the sample 

configurations were mainly case-specific, no one-fits-all generalization of the patterns could be 

applied for VCC and ARP data sets. Although UV-Vis data block had the second highest number 

of variables (507), it did not always have the second the highest RV coefficient. This meant that 

the number of variables was not the most influential factor on the sample configuration of the 

fusion model, but rather the amount of information the technique carries. As previously discussed, 
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IR is an information-rich technique and infra-red activity is a more general property of organic 

molecules than UV-Vis (Robinson, 2017). 

 

4.3.3 Mid-level data fusion 

4.3.3.1 Principal Component Analysis (PCA) 

In order to incorporate the sensory results into fused models, the data had to be in a format 

compatible with the rest of the data blocks (Cocchi, 2019a; McKillup, 2012). To achieve this, the 

standardized deviates (standardized co-ordinates) from the CA model of the sensory data were 

used. These were added to chemistry data blocks by concatenation and the new matrix was 

modelled by (mid-level) PCA (Table 4.1). The distribution of the stress and performance indicators 

of the model are listed in Table 4.4. As expected, the increased dimensionality due to the addition 

of sensory data resulted in decreased model efficiency compared to both the individual data 

blocks and the low-level fusion PCA. The CB models were the most efficient, with the slope of the 

exponential decay curves ranging from 0.43 to 0.83 (R2 > 0.90) compared to those for SB ranging 

from 0.37 to 0.53 (R2 > 0.80). The KZC CB mid-level PCA model was the most efficient, with a 

slope of 0.82 (R2 = 0.94) and a cumulative %EV of 89 for the first two principal components. 

In the data curation section (Section 4.3.1.2), it was noted that the sensory data model was 

the least efficient, having the lowest cumulative %EV of all the data blocks. However, the 

concatenation of the sensory data with the chemistry data sets did not lower the cumulative %EV 

compared to the low-level PCA. On average, the cumulative %EV across the model dimensions 

decreased by 1% from low-level to mid-level PCA. As the addition of the sensory data block is 

valuable to the overall information, a compromise in model efficiency was acceptable.  

The similarity in sample configurations were again assessed using RV coefficients (Table 

4.5). The addition of sensory data resulted in lower RV coefficients between the mid-level PCA 

vs. the PCA for individual blocks compared to the RV coefficients between the low-level data 

fusion PCA vs. individual data blocks. 
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Table 4.4: Performance indicators and stress distribution of the mid-level PCA data fusion model of infra-
red, antioxidant-related, UV-Vis, volatile compounds, and sensory data sets. 

      
Cumulative %EV per PC 

 
Winery Observations Total stress 

(eigenvalue) 
Slope R² F1 F2 F3 F4 F5 F6 

Chenin 
Blanc 

AVN 1458 601 0.45 0.97 41 68 81 89 95 100 

CDB 1463 595 0.53 0.99 41 67 83 91 97 100 

DTK 1461 747 0.83 0.96 51 84 92 97 99 100 

FRV 1463 698 0.43 0.92 48 68 80 88 95 100 

KZC 1458 968 0.82 0.94 66 89 95 97 99 100 

PDB 1461 847 0.54 0.90 58 77 85 91 97 100 

Sauvignon 
Blanc 

AVN 1459 661 0.45 0.94 45 69 81 89 95 100 

CDB 1457 721 0.53 0.97 50 73 84 92 97 100 

DTK 1464 544 0.37 0.93 37 64 77 86 93 100 

FRV 1463 561 0.53 0.93 38 75 84 92 97 100 

KZC 1464 805 0.40 0.80 55 69 78 87 95 100 

PDB 1458 661 0.45 0.94 45 69 81 89 95 100 

Range min 1457 544 0.37 0.80 37 64 77 86 93 100 
 

max 1464 968 0.83 0.99 66 89 95 97 99 100 

VCC – volatile compounds composition, ARP – antioxidant-related parameters, UV-Vis – ultraviolet visible 
light, IR – infrared, PCA – principal component analysis, %EV – percentage explained variation. 

Since the fusion model is a composition of different data blocks coming from measurements 

of the different properties of wine, a resulting model that has a unique sample configuration was 

expected. Although for a concatenated matrix the within-model redundancy cannot be calculated, 

the RV coefficients (mid-level PCA vs. individual blocks range 0.52-0.88) could be considered an 

indicator of relatively low redundancy. The exception was once more the IR data block. As 

previously discussed in section 4.3.1.2, the IR data block provided the most unique sample 

configuration pattern compared to the other data blocks, indicated by low RV coefficients (IR vs. 

other data blocks, Supplementary Table 4.3). The IR sample configuration was the most similar 

to that of the mid-level PCA fusion model, indicated by high RV coefficients (mid-level PCA vs. 

IR) ranging from 0.88 to 0.96 for CB and 0.83 to 0.96 for SB data sets. The pattern of RV 

coefficients between the mid-level PCA data fusion model and the other individual data blocks 

could not be generalized. The patterns were case-specific and unique for each data set. Much 

like the IR data block, due to it nature the sensory data contains a unique profile of the wine, but 

although the sensory experience is holistic, given to the method used the data captured was not. 

Pivot profile is a comparative method, and not a profiling method such as CATA, that includes a 

comprehensive list of attributes (Valentin et al., 2012). Compared to IR, which is unique and 

information-rich, sensory in this case in unique but not as information-rich. 
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 Table 4.5: Pairwise regression vector coefficients (p ≤ 0.01) for the PCAs of the individual data vs the mid-
level PCA fused model of all five data blocks. 
 

  Chenin Blanc Sauvignon Blanc 

AVN IR 0.90 0.88 

ARP 0.67 0.61 

VCC 0.80 0.45 

UV-Vis 0.76 0.82 

Sensory 0.73 0.68 

CDB IR 0.88 0.86 

ARP 0.75 0.83 

VCC 0.60 0.72 

UV-Vis 0.78 0.76 

Sensory 0.84 0.74 

DTK IR 0.88 0.93 

ARP 0.57 0.68 

VCC 0.65 0.64 

UV-Vis 0.56 0.86 

Sensory 0.66 0.73 

FRV IR 0.95 0.83 

ARP 0.85 0.75 

VCC 0.74 0.72 

UV-Vis 0.86 0.72 

Sensory 0.84 0.71 

KZC IR 0.96 0.96 

ARP 0.53 0.79 

VCC 0.52 0.46 

UV-Vis 0.78 0.93 

Sensory 0.63 0.61 

PDB IR 0.92 0.93 

ARP 0.88 0.86 

VCC 0.69 0.55 

UV-Vis 0.88 0.86 

Sensory 0.82 0.75 

VCC – volatile compounds composition, ARP – antioxidant-related parameters, UV-Vis – ultraviolet visible 
light, PCA – principal component analysis. *Cumulative percentage explained variance of the first two 
dimensions of the correspondence analysis.   
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4.3.3.2 Multiple Factor Analysis (MFA) 

Unlike the PCA which aims to reduce the dimensionality and produce the most efficient 

model, the MFA seeks to create/build the most representative model of the relationships between 

blocks of data (Abdi & Valentin, 2007). The figures of merit related to the performance of the MFA 

models are shown in Table 4.6. As a multiblock analysis, the stress calculated on the MFA is 

relative to the different blocks and not the individual variables within each block (Abdi & Valentin, 

2007); as such, the eigenvalues are lower than those of the PCA data fusion models. The 

exponential decay curves had R2 ranging from 0.84 to 0.99, except for PDB SB that had an R2 

of 0.71. Generally, the models had low efficiency; CB had higher efficiency as evaluated by the 

slopes (0.35 to 0.47) than SB (0.27 to 0.37). For all models, the stress was distributed gradually 

across the different dimensions with less than 80 %EV accumulated over the first three 

dimensions.  

Table 4.6: Stress distribution over components in the MFA data fusion of multimodal data in sets of several 
for six different wineries. 

  
    

 
Cumulative %EV per PC 

  Winery Total stress 
(eigenvalue) 

Slope R² C1 C2 C3 C4 C5 C6 

Chenin 
Blanc 

AVN 9.8952 0.43 0.96 40 67 79 89 95 100 

CDB 9.7308 0.35 0.94 40 61 75 86 93 100 

DTK 9.0578 0.43 0.99 41 64 78 89 96 100 

FRV 9.7637 0.38 0.96 42 63 77 87 94 100 

KZC 8.9517 0.47 0.97 42 68 82 90 96 100 

PDB 9.0879 0.37 0.84 49 64 76 86 95 100 

Sauvignon 
Blanc 

AVN 9.3392 0.30 0.85 39 60 72 82 92 100 

CDB 10.6642 0.37 0.99 33 58 76 86 94 100 

DTK 10.3854 0.33 0.94 38 57 75 85 93 100 

FRV 9.3328 0.35 0.93 39 63 75 85 94 100 

KZC 10.7258 0.32 0.98 33 58 73 84 93 100 

PDB 9.21612 0.27 0.71 43 56 70 82 93 100 

Range min 8.9517 0.27 0.71 33 56 70 82 92 100 
 

max 10.7258 0.47 0.99 49 68 82 90 96 100 

 

An MFA model generates new weights for the different data blocks, relative to each other, 

and can thus show the correlations between different data blocks. This means that the MFA 

sample configuration is most representative of all the data blocks and is not skewed by any 

individual data block (as might be the case with low/mid-level data fusion PCA). RV coefficient 

values can be calculated between the sample configurations of the data blocks after weighing 

(Supplementary Table 4.5). The RV coefficients for the MFA (vs. individual data blocks) were 

higher than those of the mid-level data fusion PCA (vs. individual data blocks), ranging from 0.52 
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to 0.95 for CB and 0.64 to 0.92 for SB. RV coefficients between MFA vs. IR data block (ranging 

from 0.55 to 0.88 for CB and 0.64 to 0.87 for SB) were lower compared to the other data blocks 

(ranging from 0.76 to 0.95 for CB and 0.69 to 0.92 for SB). This is unlike the results for the PCA 

data fusion models (low and mid-level) in which the RV coefficients between the PCA data fusion 

model vs. IR data block were the highest compared to the other data blocks (Tables 4.5 and 

supplementary Table 4.4). This is indicative of how the number and nature of the variables from 

the IR data block had a skewing effect on the PCA data fusion models. This means that in the 

concatenated matrices, the IR data block influenced the sample configuration the most. This could 

not be directly demonstrated in the case of PCA due to the nature of the statistical analysis. 

The sample configurations of the mid-level PCA and MFA fusion models were calculated 

using the conventional RV coefficient and infer topology (iTOP) calculation of the RV (Table 4.7). 

The infer topology (iTOP) RV reportedly takes into account the redundancy between data blocks 

and skewing by any one data block (Aben et al., 2018). Although the iTOP RV coefficients were 

slightly lower than the conventional RV coefficient, they were similar. All RV coefficients were 

higher than 0.70 indicating very high similarity between the two approaches (iTOP vs. 

conventional) but since the two data fusion models contain the same original data this was 

expected. The burden now shifts to the 30% dissimilarity between the data fusion approaches. 

 

Table 4.7: Pairwise regression vector coefficients (p ≤ 0.01) between PCA and MFA for the mid-level data 
fusion of five-modal data sets.  

  
RV coefficient iTOP (inferred topology) RV 

Chenin Blanc AVN 0.82 0.70 

CDB 0.82 0.75 

DTK 0.80 0.62 

FRV 0.94 0.93 

KZC 0.85 0.80 

PDB 0.96 0.95 

Sauvignon Blanc AVN 0.78 0.77 

CDB 0.93 0.92 

DTK 0.81 0.70 

FRV 0.89 0.85 

KZC 0.84 0.79 

PDB 0.81 0.81 

PCA – principal component analysis, MFA - multiple factor analysis, RV – regression vector.  
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4.4 General discussion 

The case chosen to illustrate the stepwise approach to data fusion had its particularities 

originating from the type of sensory method that generated the data and the fact that data sets 

were first considered separately due to the original experimental design. However, these types of 

results are quite common in wine evaluation, where one or more analytical chemistry techniques 

are used in addition to (usually) one sensory method. Different steps and levels of data modelling 

for the purposes of data fusion have been presented, from individual data blocks, low-level, mid-

level data fusion to multiblock data fusion. In assessing the different models, it is important to use 

multiple evaluation parameters that take into account different aspects of the models. In this study, 

the models’ performance were evaluated by looking at the distribution of the data over dimensions 

and the slope of the exponential decay as indicators of model efficiency; the RV coefficients were 

used to evaluate the representativeness of the fusion models and evaluate redundancy in the 

cases where other parameters could not be used. 

Low-level data fusion is generally appropriate for data blocks with only a small number of 

variables, since finding patterns in correlations between a large number of variables can be 

tedious and the visual aids offer very little assistance with the complex interpretations (McKillup, 

2012). The low-level and mid-level PCA fusion models did not offer any information on the within-

model correlations between data blocks. Although the models were highly efficient, they were not 

representative. Due to the incompatibility of the sensory data matrix with the four chemistry data 

blocks, low-level PCA data fusion was not as comprehensive as the mid-level strategies. Although 

the addition of the sensory data block resulted in slightly lower model efficiency, the sensory 

aspect is adding to the overall informational value and comprehensiveness of the data fusion 

model; thus, the compromise in model efficiency must be made. For cases where the model 

efficiency is drastically lowered by the inclusion of a data block, the influence of the additional 

block must be further investigated. This can be done by revisiting the pre-modelling processing 

to “clean” the data.  

Mid-level PCA data fusion models were skewed by the information dense IR data block. This 

was revealed by lower RV coefficients between for PCA vs individual blocks compared to PCA vs 

IR data block. Mid-level PCA sample configuration was thus an unrepresentative data fusion 

model of all blocks. Mid-level MFA models were less efficient than PCA models but were more 

representative of the commonality between data blocks, indicated by high RV coefficients (the 

models had sample configurations more representative of all the data blocks). Although the PCA 

fusion models were highly efficient (high %EV and slope), this was rather indicative of overfitting 

of the data since the models were also found to be unrepresentative due to skewing by the 

information-rich IR data block. Hence, by comparison, MFA proved to be less biased and more 

representative of the individual data blocks. 
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4.5 Conclusion 

The aim of this study was to explore low-level PCA and mid-level PCA, and MFA data fusion 

strategies. The study evaluated model efficiency (%EV and slope of the exponential decay in 

stress) and model representativeness (within-model and between-model pairwise RV 

coefficients). Using these parameters, issues of overfitting of data and redundancy between the 

different data blocks were inferred. Adding more data, especially data of a different nature, 

resulted in reduced model efficiency. Since the addition of more data of different variation is the 

motivation of data fusion, the model efficiency was found to an ineffective evaluation parameter 

for data fusion models. The RV coefficients were a more effective parameter for evaluating data 

fusion model performance. However, RV could not be used within low/mid-level PCA data fusion 

models; only the MFA multiblock strategy offered this feature. 

It is for these reasons, that for large data sets such as those presented in this study, MFA should 

be considered a more appropriate unsupervised data fusion strategy. 
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Table 4.1: Pairwise regression vector coefficients (p ≤ 0.01) for infra-red spectral raw data and 
its mathematical transformations using multiplicative scatter correction (MSC) and first 
derivative (1st deriv), and their combinations. 

 
 Chenin Blanc Sauvignon Blanc 

  
  

1st 
deriv 

1st 
deriv 
MSC 

MSC 
MSC 
1st 

deriv 
raw 

1st 
deriv 

1st 
deriv 
MSC 

MSC 
MSC 
1st 

deriv 
raw 

AVN 

1st deriv 1 0.99 0.81 0.98 0.83 1 0.97 0.89 0.97 0.84 

1st deriv 
MSC 

0.99 1 0.82 0.99 0.78 0.97 1 0.90 0.99 0.74 

MSC 0.81 0.82 1 0.87 0.88 0.89 0.90 1 0.92 0.83 

MSC 1st 
deriv 

0.98 0.99 0.87 1 0.82 0.97 0.99 0.92 1 0.74 

raw 0.83 0.78 0.88 0.82 1 0.84 0.74 0.83 0.74 1 

CDB 

1st deriv 1 0.98 0.92 0.98 0.89 1 0.98 0.91 0.98 0.86 

1st deriv 
MSC 

0.98 1 0.94 1.00 0.78 0.98 1 0.90 0.99 0.76 

MSC 0.92 0.94 1 0.95 0.75 0.91 0.90 1 0.93 0.77 

MSC 1st 
deriv 

0.98 1.00 0.95 1 0.78 0.98 0.99 0.93 1 0.76 

raw 0.89 0.78 0.75 0.78 1 0.86 0.76 0.77 0.76 1 

DTK 

1st deriv 1 0.88 0.81 0.89 0.89 1 0.98 0.92 0.97 0.89 

1st deriv 
MSC 

0.88 1 0.95 1.00 0.89 0.98 1 0.97 1.00 0.78 

MSC 0.81 0.95 1 0.94 0.95 0.92 0.97 1 0.97 0.70 

MSC 1st 
deriv 

0.89 1.00 0.94 1 0.88 0.97 1.00 0.97 1 0.76 

raw 0.89 0.89 0.95 0.88 1 0.89 0.78 0.70 0.76 1 

FRV 

1st deriv 1 0.97 0.88 0.95 0.88 1 0.95 0.91 0.94 0.90 

1st deriv 
MSC 

0.97 1 0.90 1.00 0.75 0.95 1 0.93 1.00 0.72 

MSC 0.88 0.90 1 0.92 0.77 0.91 0.93 1 0.94 0.74 

MSC 1st 
deriv 

0.95 1.00 0.92 1 0.73 0.94 1.00 0.94 1 0.71 

raw 0.88 0.75 0.77 0.73 1 0.90 0.72 0.74 0.71 1 

KZC 

1st deriv 1 0.44 0.37 0.46 0.98 1 0.97 0.91 0.97 0.88 

1st deriv 
MSC 

0.44 1 0.99 0.99 0.38 0.97 1 0.93 1.00 0.76 

MSC 0.37 0.99 1 0.99 0.31 0.91 0.93 1 0.94 0.73 

MSC 1st 
deriv 

0.46 0.99 0.99 1 0.41 0.97 1.00 0.94 1 0.76 

raw 0.98 0.38 0.31 0.41 1 0.88 0.76 0.73 0.76 1 

PDB 

1st deriv 1 0.98 0.82 0.96 0.92 1 0.96 0.91 0.95 0.85 

1st deriv 
MSC 

0.98 1 0.90 0.99 0.89 0.96 1 0.94 1.00 0.74 

MSC 0.82 0.90 1 0.94 0.86 0.91 0.94 1 0.93 0.76 

MSC 1st 
deriv 

0.96 0.99 0.94 1 0.90 0.95 1.00 0.93 1 0.73 

raw 0.92 0.89 0.86 0.90 1 0.85 0.74 0.76 0.73 1 

average overall 0.85 0.88 0.84 0.89 0.79 0.93 0.91 0.88 0.91 0.78 

 without 
KZC 0.91 0.92 0.88 0.92 0.84 --- --- --- --- --- 

Stdev Overall 0.17 0.16 0.16 0.15 0.17 0.04 0.10 0.08 0.10 0.06 

 without 
KZC 0.06 0.08 0.06 0.07 0.06 --- --- --- --- --- 

Overall min 0.37 0.38 0.31 0.41 0.31 0.84 0.72 0.70 0.71 0.70 
 max 0.99 1.00 0.99 1.00 0.98 0.98 1.00 0.97 1.00 0.90 

Without 
KZC min 0.81 0.75 0.75 0.73 0.73 --- --- --- --- --- 

 max 0.99 1.00 0.95 1.00 0.95 --- --- --- --- --- 
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Table 4.2: Cumulative percentage explained variance (%EV) of the first two principal 
components of the PCA (VCC, ARP, UV-Vis, and IR), first two dimensions of the CA (sensory). 

Cultivar Winery VCC ARP UV-Vis Infra-red Sensory 

Chenin Blanc 

AVN  82 84 93 79 65 

CDB 83 80 91 74 78 

DTK 72 85 97 96 66 

FRV 74 83 78 76 71 

KZC 76 94 93 98 76 

PDB 74 92 95 83 72 

average 77 86 91 84 71 

stdev 4 5 6 9 5 

Sauvignon Blanc 

AVN  79 82 92 68 64 

CDB 73 75 97 71 68 

DTK 76 81 80 64 71 

FRV 76 86 99 80 66 

KZC 80 79 97 65 55 

PDB 74 88 82 77 62 

average 76 82 91 71 64 

stdev 2 4 8 6 5 

Overall low 72 75 78 64 55 

 high 83 94 99 98 78 

 average 77 84 91 78 68 

 stdev 3 5 7 10 6 
VCC – volatile compounds composition, ARP – antioxidant-related parameters, UV-Vis – ultraviolet visible light, 
PCA – principal component analysis, CA – correspondence analysis, stdev – standard deviation. *Cumulative 

percentage explained variance of the first two dimensions of the correspondence analysis 

 

 

Stellenbosch University  https://scholar.sun.ac.za



89 

 

Table 4.3: Pairwise regression vector coefficients (p ≤ 0.01) for the scores of the individual data blocks. 

 Chenin Blanc Sauvignon Blanc 
 

 ARP UV-Vis IR Sensory VCC ARP UV-Vis IR Sensory VCC 

AVN 

ARP 1 0.80 0.38 0.85 0.83 1 0.73 0.31 0.80 0.82 

UV-Vis 0.80 1 0.39 0.73 0.81 0.73 1 0.46 0.63 0.50 

IR 0.38 0.39 1 0.51 0.56 0.31 0.46 1 0.51 0.27 

Sensory 0.85 0.73 0.51 1 0.81 0.80 0.63 0.51 1 0.66 

VCC 0.83 0.81 0.56 0.81 1 0.82 0.50 0.27 0.66 1 

CDB 

ARP 1 0.79 0.47 0.87 0.63 1 0.93 0.47 0.60 0.50 

UV-Vis 0.79 1 0.39 0.67 0.39 0.93 1 0.31 0.43 0.33 

IR 0.47 0.39 1 0.71 0.54 0.47 0.31 1 0.72 0.75 

Sensory 0.87 0.67 0.71 1 0.72 0.60 0.43 0.72 1 0.85 

VCC 0.63 0.39 0.54 0.72 1 0.50 0.33 0.75 0.85 1 

DTK 

ARP 1 0.82 0.20 0.79 0.66 1 0.90 0.40 0.82 0.62 

UV-Vis 0.82 1 0.10 0.70 0.48 0.90 1 0.62 0.79 0.62 

IR 0.20 0.10 1 0.38 0.45 0.40 0.62 1 0.55 0.51 

Sensory 0.79 0.70 0.38 1 0.79 0.82 0.79 0.55 1 0.73 

VCC 0.66 0.48 0.45 0.79 1 0.62 0.62 0.51 0.73 1 

FRV 

ARP 1 0.90 0.71 0.78 0.55 1 0.83 0.38 0.73 0.60 

UV-Vis 0.90 1 0.67 0.73 0.58 0.83 1 0.21 0.46 0.45 

IR 0.71 0.67 1 0.78 0.69 0.38 0.21 1 0.61 0.62 

Sensory 0.78 0.73 0.78 1 0.73 0.73 0.46 0.61 1 0.73 

VCC 0.55 0.58 0.69 0.73 1 0.60 0.45 0.62 0.73 1 

KZC 

ARP 1 0.78 0.33 0.62 0.57 1 0.72 0.74 0.69 0.58 

UV-Vis 0.78 1 0.56 0.74 0.52 0.72 1 0.79 0.43 0.34 

IR 0.33 0.56 1 0.47 0.41 0.74 0.79 1 0.66 0.46 

Sensory 0.62 0.74 0.47 1 0.60 0.69 0.43 0.66 1 0.66 

VCC 0.57 0.52 0.41 0.60 1 0.58 0.34 0.46 0.66 1 

PDB 

ARP 1 0.93 0.67 0.63 0.76 1 0.92 0.68 0.71 0.45 

UV-Vis 0.93 1 0.62 0.59 0.66 0.92 1 0.62 0.67 0.51 

IR 0.67 0.62 1 0.86 0.58 0.68 0.62 1 0.66 0.42 

Sensory 0.63 0.59 0.86 1 0.67 0.71 0.67 0.66 1 0.63 

VCC 0.76 0.66 0.58 0.67 1 0.45 0.51 0.42 0.63 1 

VCC – volatile compounds composition, ARP – antioxidant-related parameters, UV-Vis – ultraviolet visible light. 
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Table 4.4: Pairwise regression vector coefficients (p ≤ 0.01) for the PCA scores of the 
chemistry data blocks and the low-level PCA fused model. 

Winery Data blocks Chenin Blanc Sauvignon Blanc 

AVN 

IR 0.90 0.88 

ARP 0.66 0.61 

VCC 0.80 0.47 

UV-Vis 0.75 0.82 

CDB 

IR 0.88 0.85 

ARP 0.74 0.83 

VCC 0.60 0.72 

UV-Vis 0.78 0.76 

DTK 

IR 0.88 0.94 

ARP 0.56 0.67 

VCC 0.64 0.63 

UV-Vis 0.56 0.85 

FRV 

IR 0.95 0.83 

ARP 0.85 0.75 

VCC 0.73 0.72 

UV-Vis 0.86 0.72 

KZC 

IR 0.96 0.95 

ARP 0.53 0.78 

VCC 0.51 0.46 

UV-Vis 0.77 0.94 

PDB 

IR 0.92 0.93 

ARP 0.88 0.86 

VCC 0.69 0.54 

UV-Vis 0.88 0.86 
VCC – volatile compounds composition, ARP – antioxidant-related parameters, UV-Vis – ultraviolet 
visible light, IR – infrared, PCA – principal component analysis, %EV – percentage explained variation. 
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Table 4.5: Pairwise regression vector coefficients (p ≤ 0.01) between the multifactorial analysis 
(MFA) and individual principal component analysis (PCA) data blocks. 

   Chenin Blanc Sauvignon Blanc 

AVN 

IR 0.90 0.88 

ARP 0.67 0.61 

VCC 0.80 0.45 

UV-Vis 0.76 0.82 

Sensory 0.73 0.68 

CDB 

IR 0.88 0.86 

ARP 0.75 0.83 

VCC 0.60 0.72 

UV-Vis 0.78 0.76 

Sensory 0.84 0.74 

DTK 

IR 0.88 0.93 

ARP 0.57 0.68 

VCC 0.65 0.64 

UV-Vis 0.56 0.86 

Sensory 0.66 0.73 

FRV 

IR 0.95 0.83 

ARP 0.85 0.75 

VCC 0.74 0.72 

UV-Vis 0.86 0.72 

Sensory 0.84 0.71 

KZC 

IR 0.96 0.96 

ARP 0.53 0.79 

VCC 0.52 0.46 

UV-Vis 0.78 0.93 

Sensory 0.63 0.61 

PDB 

IR 0.92 0.93 

ARP 0.88 0.86 

VCC 0.69 0.55 

UV-Vis 0.88 0.86 

Sensory 0.82 0.75 

VCC – volatile compounds composition, ARP – antioxidant-related parameters, UV-Vis – ultraviolet 
visible light, IR – Infra-red. 
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Chapter 5:  Investigating the Concept of South African Old 
Vine Chenin Blanc 

 

Abstract 

Although South African vineyards are still young by European standards, there is a belief 

in the industry that vines aged 35 or more years produce grapes and wines with specific 

characteristics (“old vine wines”). The aim of this study was to investigate the existence of the 

concept of old vine Chenin Blanc wines using a typicality rating and sorting tasks. Chenin 

Blanc wines were made from grapes harvested from vines aged five to 45 years old. 

Winemaking was standardised, with no wood contact. Typicality rating and sorting tasks were 

performed on young (first-stage) and two-year bottle-aged (second-stage) wines. Principal 

component analysis (PCA) on rating data demonstrated judge consensus, but no correlation 

was found between vine age and typicality rating. Sorting results were submitted to 

agglomerative hierarchical clustering (AHC) performed on the correspondence analysis (CA) 

and multidimensional scaling (MDS) results for grouping and attributes resulting from the 

sorting task. The clusters were different for the young wines and two-year bottle-aged wines. 

The verbal aspect of the sorting demonstrated the judges’ agreement on the concept of old 

vine Chenin Blanc, shown by the annotation of the old vine group as ‘complex’, ‘balance’, ‘rich’ 

and ‘good mouthfeel’. However, because the judges did not sort the wines according to vine 

age, the perceptual aspect of the concept could not be confirmed, its features could not be 

tested further, and the sensory space could not be built. 

 

Abbreviations: RV (regression vector); PCA (principal component analysis); MDS 

(multidimensional scaling); CA (correspondence analysis); AHC (agglomerative hierarchical 

clustering); DA (descriptive analysis); CATA (check all that apply) 
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5.1 Introduction 

In comparison to the long history of European and Middle Eastern vines (Stevenson, 

2005), South African vineyards are young, with the first vines planted in the 17th century. 

According to recent statistics, 64% of the Chenin Blanc planted (by area under vine) is less 

than 20 years old and 36% is older than 20 years (SAWIS, 2018). The “old vine” designation 

has been used as a heritage mark to support the conservation of these vines and was 

established by the South African Old Vine Project (OVP) in 2017. The OVP demarked South 

African “old vines” as being 35 years or older, based on information gathered from years of 

collaborative input from industry experts, including viticulturists and winemakers (Crous, 

2016).  

Old vines (vineyards, grapes and wines) tend to receive special treatment with regard to 

viticultural and winemaking practices, documented by several surveys and interviews with 

industry experts. This special treatment is actively encouraged by the OVP, as it is believed 

that it will harness the full potential of the old vine and impart the character to the resulting 

wine. Some of the guidelines include a “holistic approach to weed control”, “movement from 

inorganic fertilisers to organic fertilisers”, “a minimalistic approach towards winemaking” for 

the wines to “be given the chance to reflect their specific terroir”, etc. (Old Vine Project [OVP], 

n.d.). Worldwide, it has been shown that any special treatment of a product (wine or other 

foodstuff) creates an emotional attachment to the product, along with expectations 

(Schouteten et al., 2015; Niimi et al., 2019).  

The agreement among experts, which is reinforced through the OVP and its experience, is 

that old vine wines are less intense in fruity attributes but have more complex sensory 

attributes focused on mouthfeel; additionally, the full potential of the wine is reached after 

some years in the bottle, with the wines not being released in the harvest year (SASEV, 2018). 

Anecdotal evidence collected by the authors concerning old vine character (SASEV 2018) has 

created an interest in substantiating these ideas. In defining and testing the concept of “old 

vine character”, evidence needs to be collected and hypotheses have to be formulated and 

tested. 

Currently, there is little scientific support for the anecdotal evidence, as only one study 

profiled 16 Chenin Blanc wines from vines older than 40 years using descriptive analysis 

(Crous, 2016). The study evaluated multiple sensory modalities, namely odour and in-mouth 

sensations, with a focus on mouthfeel. It also used calibrated standards and, where standards 

were not available, conceptual consensus was established based on discussions among 

judges. The reasoning for the mouthfeel approach was based on the anecdotal evidence 

mentioned above (OVP, n.d.; SASEV, 2018). In the work by Crous (2016), when panellists 

described old vine Chenin Blanc wines, the terms body, concentration, complexity, length, 
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acidity, heat, balance and integration featured prominently. Since the samples were 

commercial wines made using different protocols, Crous (2016) noted that the effects of 

winemaking outweighed any possible correlations with the vine age. 

One approach to studying old vine character is through establishing its associated 

typicality features. Wine typicality refers to a group of sensory attributes that, together, become 

the defining features describing a concept; typicality may be categorised under cultivar, 

winemaking style, regionality (appellation) or, in this case, old vine character. In this context, 

typicality is defined as the level (or “degree of representativeness”) of a sample to a category, 

measured against a prototype (Chrea et al., 2005). In the case of a sensory concept, the 

prototypes or “established references” (Perrin & Pagès, 2009) can be different for each 

assessor due to differences in experience and exposure; hence, typicality judgments may 

differ among experts. Consistency among assessors suggests the homogeneity of the 

prototypes, or even the existence of a common prototype and possible conditions for 

demonstrating a typicality concept (Casabianca et al., 2006). In practice, it was demonstrated 

that wines that are less representative of the prototype belong to neighbouring categories 

(Perrin & Pagès, 2009) and it is possible for instances of borders between categories to arise 

(Ballester et al., 2005). 

There are four stages to testing concepts of typicality and, according to the methodology 

proposed by Perrin and Pagès (2009), these have to be followed in sequence. Firstly, panel 

agreement has to be established, followed by conceptual agreement, perceptual agreement 

and, finally, measuring the feature/drivers can be considered. Each step is dependent on the 

previous one. If at any point agreement is not achieved, the investigation cannot be continued 

and the methods or panels have to be revisited. 

Typicality can be investigated sensorially in different ways using verbal and/or non-verbal 

methods (Perrin & Pagès, 2009). The reasoning behind this is that the differences between 

wines considered to be most and least representative of the concept under investigation 

should manifest both intuitively (as seen in non-verbal methods) and through verbal cues. It is 

important to understand when to use which type of method (verbal, non-verbal or a 

combination), how to choose the mode of assessment (gustatory, olfactory or global) and 

which type of panel to use (experts or trained). Elements to consider when making these 

decisions are whether or not the concept has been well established previously, whether there 

are known features that contribute to the concept, and whether these features have standards 

that can be used for calibration (Perrin & Pagès, 2009). 

Stellenbosch University  https://scholar.sun.ac.za



96 

Verbal methods used for typicality studies include descriptive analysis (DA) for the colour 

of Provence Rosé wines (Coulon-Leroy et al., 2018) and check all that apply (CATA) for the 

minerality of Burgundy Chardonnay (Ballester et al., 2013). Non-verbal methods include 

sorting for demonstrating the existence of a Chardonnay wine concept (Ballester et al., 2005), 

typicality and hedonic rating for minerality in French vs New Zealand Sauvignon Blanc (Parr 

et al., 2015), and other various combinations. 

As mentioned previously, the evaluation can be used to investigate the contributions of the 

features to the concept through gustatory, olfactory or global assessment. Studies have found 

the differences in the success of the mode of assessment to be based on the dominant 

features related to the concept. If, for example, the prominent features are known to manifest 

in the aroma, then the assessment will be on the olfactory stimuli. If, however, a concept has 

not previously been annotated with features, then a global assessment is used. This type of 

systematic investigation is illustrated by Ballester et al. (2008) in testing the concept of 

Chardonnay by both expert and consumer panels. The study found a clear distinction between 

Chardonnay wines and Melon de Bourgogne (used as a non-Chardonnay example to establish 

the borders of the concept) by an expert panel. The borders of representativeness were then 

tested in two ways using rating (to look at the degree of representativeness) and sorting (to 

look at the membership in the designated groups). 

The use of trained and expert panels has also been investigated in the literature. If a 

concept has features that can be calibrated for using standards and/or definitions, a trained 

panel may be used (Ballester et al., 2008). Concepts that include features that could not be 

calibrated, and thus rely on experience, favour expert panels. In this case, it is possible that 

the conceptual agreement when defining terms and the perceptual agreement when 

consistently assessing the features in wine are not unified, as was the case with the minerality 

of Burgundy Chardonnay (Ballester et al., 2013); although the investigation achieved both 

panel consensus and conceptual agreement on minerality, perceptual agreement could not 

be reached and hence the features could not be verified. 

In this context, the aim of the current study was to investigate the concept of old vine Chenin 

Blanc using typicality rating, sorting, and free word association. Compared to the previous 

study by Crous (2016), in which the intrinsic features of each wine were measured by DA 

using a bottom-up approach that is experimentally directed (Lindsay & Norman, 1977), the 

current work proposes a top-down approach in which the understanding of the concept is first 

developed before trying to measure its features (Lindsay & Norman, 1977; Brochet & 

Dubourdieu, 2001). A combination of non-verbal (rating and sorting) and verbal (the added 

annotation of sensory attributes in the sorting exercise) methods was used. The sensory panel 

was constituted of industry professionals. Since the previous study noted the potential 
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influence of winemaking (Crous, 2016), the same winemaking protocol was used in this study 

for all the grapes sourced from vineyards aged five to 44 years. In addition, the wines were 

evaluated young (first evaluation stage approximately three months after bottling) and after 

two years of ageing in the bottle (second evaluation stage). 

 

5.2 Materials and Methods 

5.2.1 Grape sources and winemaking 
Chenin Blanc grapes were sourced from 23 vineyards across the Western Cape province 

of South Africa. Grapes were harvested in 2017 at commercial maturity according to the 

growers, ranging from 23°Brix to 25°Brix, with two exceptions at 17.3°Brix (sample 765) and 

19.2°Brix (sample 769). Twelve young vines (< 35 years old) and 11 old vines (≥ 35 years old) 

were included in the project; vine ages ranged from five to 45 years. Grapes were treated with 

30 mg/L sulphur dioxide (SO2) at crushing. The juice was settled overnight at 4°C, racked and 

allowed to come to room temperature. Juice was inoculated with Vin7 yeast (Zymasil, AEB 

Group SpA, Bologna, Italy) according to the manufacturer’s instructions. The fermentation was 

allowed to proceed in a temperature-controlled room at 15°C to 18°C. The SO2 levels were 

adjusted to 50 mg/L post-alcoholic fermentation, and 50 mg/L bentonite was added before 

cold stabilisation, which took place over two weeks at -4°C. The wine was then racked and 

bottled without filtration in 750 mL screw cap green bottles (Consol, South Africa). The wines 

were stored in the vinoteque under controlled temperature and humidity conditions until their 

evaluation: first as young wines (three months after bottling), then as bottle-aged wines (two 

years after bottling). Grape juice and wine oenological parameters (Table 5.1) were measured 

on a Metrohm 862 compact titrosampler (Herisau, Switzerland) using chemicals (sodium 

hydroxide, potassium iodide/ potassium iodate and sodium thiosulfate) purchased from 

Cameron Chemical Consultants (Cape Town, South Africa). 

 

5.2.2 Sensory evaluation 
The approach used in this study is based on the methodology published by Ballester et 

al. (2008). The analysis was performed in a quiet, well-ventilated and odour-free room with 

the temperature set at 20 ± 2°C. Samples were presented in black ISO glasses, covered with 

a Petri dish and labelled with a three-digit code. Samples were randomised across judges 

prior to analysis according to a William’s Latin square design. An expert panel of 32 judges in 

2018 and 14 in 2019 assessed the 23 wines; the judges were industry professionals with more 

than five years’ experience in the production and evaluation of old vine Chenin Blanc. The 

experimental design was done using Compusense cloud (Compusense, Guelph, Canada). 

Two sensory tasks, namely rating and sorting (Valentin et al., 2012), were performed in one 
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session with a 15-minute break and a free word association exercise between them. The first 

task was a typicality rating on a 100 mm unstructured line scale, ranging from “very bad 

example” anchored at 0 to “very good example” anchored at 100 (Garrido-Bañuelos et al., 

2020) and samples were presented monadically. The experts were instructed to rate each 

sample on the scale according to their judgement for an old vine Chenin Blanc wine. Before 

beginning the second task, judges were asked to list three to five words that came to mind 

when “typical old vine Chenin Blanc wine” was mentioned. The second task was a flexible 

sorting exercise with all 23 wines presented at once. This was considered a flexible sorting 

since the judges were instructed to sort the wines into two groups, namely “young vine CB” or 

“old vine CB”, but they were allowed to create a third group if the samples did not fit either of 

the two groups. Judges were also asked to give three to five attributes associated with each 

group. The terms generated during the sorting task were consolidated based on their semantic 

and synonymous relationship by agreement among the researchers. 

 

Table 5.3: Oenological parameters for Chenin Blanc grapes (mass, NOPA, ammonium, YAN, and ̊ Brix) 
harvested from old and young vines in 2017 and resulting wines (pH and TA).  

Sample 
code 

Vine 
age 

(years) 

Class 
designation 

Mass 
(kg) 

NOPA 
(mg 
N/L) 

NH4 

(mg 
N/L) 

YAN 
(mg 
N/ 
L) 

˚Brix pH TA 
(mg/ 
L) 

YV751 29 Young 17 180 50 230 21.7 3.25 6.57 
OV752 **n/s Old 18 160 30 190 22.2 3.30 5.51 

YV753 5 Young 20 200 60 260 21.8 3.35 5.66 
OV754 **n/s Old 20 170 30 200 23.6 3.34 6.56 

OV755 **n/s Old 22 180 60 240 22.4 3.42 4.59 

OV756 39 Old 20 170 50 220 24.1 3.46 5.53 
YV757 34 Young 19 130 30 160 24.6 3.34 6.24 
YV758 34 Young 19 150 40 190 21.8 3.36 6.99 
YV759 28 Young 34 - - - 20.0 3.41 6.06 
OV760 39 Old 24 - - - 24.6 3.53 5.22 
YV761 34 Young 18 120 30 150 24.2 3.50 6.53 
YV762 **n/s Young 18 150 50 200 23.8 3.64 4.71 

YV763 6 Young 19 140 30 170 23.9 3.60 5.59 
YV764 24 Young 20 130 50 180 23.0 3.43 5.70 
OV765 39 Old 21 210 80 290 17.3 3.17 10.35 
YV766 33 Young 17 160 50 210 21.6 3.57 4.38 
OV767 37 Old 23 210 50 260 22.1 3.68 5.88 
OV768 41 Old 20 190 150 340 21.5 3.75 4.34 
YV769 31 Young 38 160 50 210 19.2 3.35 8.16 
OV770 37 Old 18 150 40 190 22.7 3.46 5.03 
OV771 35 Old 19 220 50 270 22.5 3.63 5.58 
YV772 27 Young 21 140 40 180 24.5 3.55 5.03 
OV773 44 Old 17 - - - 23.0 3.54 6.03 

Young – vines 34 years and younger, Old – vines 35 years and older.  Mass means the mass of grapes 
as measured before crushing.  NOPA - nitrogen by o-phthaldialdehyde assay; NH4 – chemical formula 
for ammonium, YAN - yeast assimilable nitrogen; TA – total acidity; n/s – not specified.  
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5.2.3 Statistical analysis  
Rating data was captured as a judge vs wines correlation matrix. Principal component 

analysis (PCA) was performed on the correlation matrix to evaluate judge consensus (Perrin 

& Pagès, 2009). The data was averaged over the judges and PCA was performed on the 

resulting correlation matrix to investigate correlations between the different wines (Perrin & 

Pagès, 2009). Data groupings on the basis of the sorting were captured as a co-occurrence 

matrix and the attributes used to describe the groups were captured as a correlation matrix of 

wines and attributes. Multidimensional scaling (MDS) was performed on the co-occurrence 

matrix and correspondence analysis (CA) on the correlation matrix (Salkind, 2012). 

Regression vector (RV) coefficients were calculated among the CA and MDS biplot co-

ordinates for each year, and between the young and the two-year bottle-aged wines (Abdi, 

2007). Unweighted pair-average agglomerative hierarchical clustering (AHC), using a 

similarity-based, Pearson correlation coefficient, was performed on the MDS and on the CA 

for both the wines’ and the attributes’ correlation matrices. Statistical analyses were performed 

in XLSTAT2018 (Addinsoft, Paris, France). 

 

5.3 Results 

5.3.1 Judge consensus  
In order to evaluate panel consensus, PCAs were conducted on the rating scores for both 

the young and bottle-aged wines (Figure 5.1). The results for the young wines show a 

cumulative explained variance of 16% for the first three dimensions. Full explained variance 

(100%) was achieved over 22 dimensions, with all dimensions contributing almost equally 

(from PC1 with 5.8% to PC22 with 3.7%). Results from the bottle-aged wines showed a 

cumulative explained variance of 17% for the first three dimensions of the PCA, with the full 

explained variance being achieved over 21 dimensions (from PC1 with 6.1% to PC21 with 

3.7%). 

Although the cumulative explained variance for both years of the evaluation was less than 

20% for the first three dimensions (Figure 5.1), the linear correlation across the first dimension 

was an indicator of good consensus between the judges. The correlation between judges 

varied linearly along the first dimension, with judges 12 and 24 being the exception for the first 

evaluation stage (young wines) and judge 10 for the second (bottle aged). The judges who 

were not in consensus with the rest of the panel were not excluded from further analyses, 

because they were within the 95% confidence interval and thus not statistical outliers. 
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Figure 5.1: Principal component analysis (PCA) of rating data collected from young wines (top) and 
wines aged for two years in the bottle (bottom) based on experiments on old and young vine Chenin 
Blanc wines. 
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5.3.2 Non-verbal typicality assessments  

5.3.2.1 Typicality rating  

In order to see if there was a correlation between vine age and the typicality rating, the 

average scores per sample were plotted against the vine age. If the old vine concept was to 

be observed, the old vine wines should have been rated higher on the typicality scale than the 

young vine wines, according to their degree of representativeness of the concept. This was 

not the case, as linear regression analysis showed no correlation between the average rating 

score and the vine age for either young wines or bottle-aged wines.  

The results for both evaluation stages show a wide distribution of the average typicality 

scores. Judges used the entire scale (from 0 to 100), with the average scores ranging from 20 

to 66 for young wines and 29 to 67 for bottle-aged wines. This result indicates that the judges 

did not have a unified perception of the wine typicality with regard to the old vine status. 

Statistically, the score distribution of each sample was not always normal, as some samples 

had a bimodal distribution whereas others had a random distribution (Figure 5.2). For young 

wines, the wine rated the lowest was OV765, which was made from a 39-year-old vine. 

Surprisingly, the wine made from the oldest vines (OV773, 44 years old) and youngest vines 

(YV753, five years old) were rated similarly (56 and 49 for OV773 and YV753, respectively). 

For bottle-aged wines (second stage), the sample with the lowest rating was the wine from the 

oldest vines in the set, OV773, which was rated even lower than the wine made from the 

youngest vines in the sample group (YV753, five-year-old vines). 

In order to investigate any relationship between the two years’ results, the average scores 

for each year were plotted against each other. The regression coefficient (R2 = 0.5852) 

indicated only a trend between the young and bottle-aged wines. This means that any changes 

that occurred during ageing could neither be correlated with vine ageing nor typicality rating. 

Given the random distribution of samples, no borders could be imposed based on vine age, 

and thus no classifications could be made according to age. This means that there was no 

perceptual agreement between judges when it came to old vine South African Chenin Blanc 

typicality as measured by the rating task. 
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Figure 5.2: Box-and-whisker distribution plot of typicality rating scores for young wines (a) and two-year 
bottle-aged wines (b) of old vine Chenin Blanc grapes vines of different ages.  Young vines coded with 
YV (green) and old vines with OV (red) before the unique three-digit code.

a) 

b) 
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5.3.2.2 Multidimensional scaling (MDS) on typicality sorting data  

The second non-verbal assessment of the typicality of old vine Chenin Blanc wine was the 

sorting task. Unlike the rating task, in which the presentation of the samples is monadic, in this 

second task wines were judged together and grouped according to their similarity under the 

groups old vine and young vine. The first three dimensions of the MDS were considered enough 

for assessing significant relationships between samples based on Kruskral’s stress indices 

(results not shown) for both evaluation stages (young wines and two-year bottle-aged wines). 

MDS and agglomerative hierarchical clustering (AHC) were then performed on the first three 

dimensions, and the results are shown in Figs 3 and 4 for the two evaluation stages. 

Cluster analysis of the MDS gave three main clusters and showed no grouping of samples 

according to vine age for either evaluation stage. The wine from the oldest vine (wine OV773, 44-

year-old vine) and the youngest vine (YV753, five-year-old vine) were in two separate clusters. 

For both stages, the distribution within each cluster was random, the distances between the 

members of each cluster (i.e. samples or branches) was also random and not related to vine age. 

It can be concluded that clustering was related to neither the categories “old vine”/ “young vine” 

nor to any observable trends according to vine age. 

 

5.3.2.3 Correspondence analysis (CA) on typicality sorting  

Correspondence analysis of the sorting data provided a biplot that showed the correlation 

between samples (presented in this section) and between attributes (presented under Verbal 

assessments below). CA showed the distribution of the total inertia (0.327 and 0.494 for the first 

and second evaluation stage, respectively) over 22 and 21 dimensions, respectively. The first 

three dimensions had cumulative percentages of 61% and 64% of the inertia respectively for the 

two stages. AHC was done only on these first three dimensions (Figs 5 and 6). Three clusters 

were formed in each case; the clusters contained samples from different vine ages. The clustering 

of samples was related neither to the “old vine”/“young vine” categories, nor to vine age. Unlike 

in the MDS, the wine from the oldest vines (OV773, 44 years old) and the wine from the youngest 

vines (YV753, five years old) belonged to the same cluster for the first evaluation stage and to 

the same cluster for the second.  
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Figure 5.3: Multidimensional scaling (MDS) on sorting task of old (red) and young (green) vine Chenin Blanc wines analysed in the first year. Different shading indicates 
the groups according to agglomerative hierarchical clustering (AHC) performed on the first three dimensions of the MDS.  
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Figure 5.4: Multidimensional scaling (MDS) on sorting task of old (red) and young (green) vine Chenin Blanc wines analysed after two years of ageing in the bottle. 
Different shading indicates the groups according to agglomerative hierarchical clustering (AHC) performed on the first three dimensions of the MDS.  
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Figure 5.5: Correspondence analysis (CA) on sensory analysis from old (red) and young (green) vine Chenin Blanc wines analysed in the first year. Samples with the 
same box shading belong to the same cluster, analysed using agglomerative hierarchical clustering (AHC) on the first three dimensions.  

 

YV751

OV752

YV753

OV754

OV755

OV756

YV757

YV758

YV759

OV760

YV761

YV762

YV763

YV764

OV765

YV766

OV767

OV768

YV769

OV770

OV771

YV772

OV773

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3

F
2

F1

YV751

OV752
YV753

OV754

OV755

OV756

YV757

YV758

YV759

OV760
YV761

YV762

YV763

YV764

OV765

YV766

OV767

OV768

YV769OV770

OV771
YV772

YV773

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3

F
3

F1

YV751

OV752 YV753

OV754

OV755

OV756

YV757

YV758

YV759

OV760
YV761

YV762

YV763

YV764

OV765

YV766

OV767

OV768

YV769OV770

OV771 YV772

OV773

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

-3 -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

F
3

F2

Stellenbosch University  https://scholar.sun.ac.za



107 

 
Figure 5.6: Correspondence analysis (CA) on sensory analysis from old (red) and young (green) vine Chenin Blanc wines analysed after two years of ageing in the 
bottle. Samples with the same box shading belong to the same cluster, analysed using agglomerative hierarchical clustering (AHC) on the first three dimensions.  
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5.3.2.4 Comparison of sample configurations 

RV coefficients were calculated in order to assess any differences or similarities between 

sample configurations generated in the two stages through MDS and CA. The comparison was 

two-fold: within a stage, MDS to CA, and between the stages, CA to CA and MDS to MDS 

configurations. The data captured from the rating task also generated one PCA for each 

evaluation stage that contained sample configurations. However, as one of the samples was not 

included in the second-stage evaluation, RV coefficients could not be calculated for the rating 

results. 

MDS and CA plots were generated for the verbal and non-verbal aspects of the sorting data. 

The main difference in these analyses is that the MDS relies only on the associations between 

samples, whereas the CA uses the attributes to generate the correlation between samples. Since 

these were done within one task, although looking at different aspects, they should result in a 

similar relationship between samples. As such, RV coefficients were used to measure the 

configurational similarity between the CA and MDS plots. 

For sorting, the results for young wines showed CA vs MDS RV coefficients of 0.68 and 0.60 

for the first two and three dimensions, respectively. The second stage (bottle-aged wines) results 

showed CA vs MDS RV coefficients of 0.68 and 0.71 for the first two and three dimensions, 

respectively. Looking at correlations between the two years of evaluation, RV coefficient were 

calculated for MDS vs MDS (0.37 and 0.34, first two and three dimensions, respectively) and CA 

vs CA (0.47 and 0.39, first two and three dimensions, respectively). These values were low, 

meaning that the samples were sorted differently for the different evaluation stages. Although 

three clusters were formed for both the evaluation stages, the members belonging to each of the 

clusters were different. 

Looking for any similarity between the two datasets (rating and sorting), the configurational 

space was assessed using RV coefficients. The wine samples were considered observations in 

the rating data and modelled by PCA; the resulting configuration was used to generate the RV 

coefficients against the CA and MDS results. 

In the case of the evaluation of the young wine, the results showed poor correlation between 

the configurations for rating by PCA and sorting by MDS (first two dimensions, RV = 0.44; first 

three dimensions, RV = 0.41) and between rating by PCA and sorting by CA (first two dimensions, 

RV = 0.52; first three dimensions, RV = 0.474). This could be because of the non-normal 

distribution of the rating scores for each sample, as discussed above. The membership of the 

same sample to different groups (young vine and old vine) in the sorting could also contribute to 

the differences in configurations (i.e. low RV coefficient values). Since sample 764 was excluded 

from the rating of the bottle-aged wines, the RV coefficients for the second evaluation stage could 

not be calculated. 
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5.3.3 Verbal assessment of typicality 

5.3.3.1 Verbal aspects of the sorting task 

 The sorting resulted in three groups for both the young wines and the two-year bottle-aged 

wines. The groups young vine and old vine were allocated to them, but the judges collectively 

generated the teenager and outlier group identities for the first and second evaluation stages, 

respectively. The consolidation of attributes resulted in 46 terms for young wines and 68 for bottle-

aged wines, which were used to generate the CA. The first three dimensions of the CA contained 

61% and 64% of the explained variance for the two evaluation stages, respectively. AHC done 

on the three-dimensional space resulted in the formation of two main clusters (Figure 5.7). The 

members of each cluster, their weight and their contributions to the explained variance in the first 

three dimensions are listed in Tables 5.2 and 5.3. The old vine cluster had associated terms that 

are mouthfeel-related and support the findings of Crous (2016). Some examples are ‘robust’, 

‘texture, ‘good mouthfeel’ and ‘complex’ for the young wines, and ‘structure’, ‘dense palate’, 

‘texture’ and ‘rich mouthfeel’ for the bottle-aged wines. 
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Figure 5.7: Agglomerative hierarchical clustering (AHC) on the first-year results on CA attributes for the first 
year (top), and two-year bottle aged (bottom) wines.      
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Table 5.2: AHC groups for the first three dimensions of the CA for the analysed during the first year.  

CLUSTER 1 CLUSTER 2 CLUSTER 3 

  41.88% 11.19% 8.46% 61.53%  2018 41.88% 11.19% 8.46% 61.53%   41.88% 11.19% 8.46% 61.53% 

Attribute 
Weight 
(relative) F1 F2 F3 Sum Attribute 

Weight 
(relative) F1 F2 F3 Sum Attribute 

Weight 
(relative) F1 F2 F3 Sum 

Old 0.123 0.108 0.013 0.003 0.124 Young 0.105 0.092 0.020 0.014 0.126 Structured 0.010 0.009 0.008 0.094 0.112 

Textured 0.027 0.030 0.025 0.004 0.059 Wood 0.002 0.001 0.039 0.006 0.046 Ripe 0.034 0.014 0.002 0.024 0.039 

Robust 0.008 0.011 0.000 0.002 0.013 Low fruitiness 0.009 0.005 0.019 0.001 0.026 Concentrated 0.014 0.009 0.002 0.001 0.011 

Rich 0.028 0.032 0.021 0.000 0.054 Fresher 0.052 0.024 0.044 0.003 0.071 Yellow fruit 0.008 0.023 0.000 0.041 0.065 

Nutty 0.016 0.020 0.031 0.020 0.070 Medium intensity 0.003 0.003 0.076 0.010 0.089 Aggressive 0.004 0.001 0.000 0.000 0.001 

Complex 0.027 0.010 0.000 0.005 0.014 Citrus 0.024 0.011 0.033 0.007 0.050 Balanced 0.028 0.035 0.000 0.027 0.062 

Crispy 0.010 0.010 0.000 0.097 0.106 Tropical 0.034 0.002 0.006 0.001 0.009 Well rounded 0.013 0.007 0.000 0.011 0.019 

Stone fruit 0.010 0.012 0.016 0.000 0.027 Peach 0.013 0.000 0.024 0.121 0.145 Straw 0.008 0.011 0.010 0.048 0.069 

Good mouthfeel 0.009 0.011 0.002 0.009 0.022 Short AT 0.014 0.005 0.006 0.021 0.032 Elegant 0.013 0.013 0.005 0.005 0.023 

Warm mouthfeel 0.005 0.000 0.013 0.004 0.017 Linear 0.013 0.011 0.004 0.011 0.025       
Long AT 0.040 0.036 0.002 0.036 0.075 Medium bodied 0.003 0.000 0.021 0.005 0.026       
Full bodied 0.019 0.012 0.000 0.005 0.017 Teenager 0.017 0.035 0.001 0.006 0.042       
Faulty 0.013 0.031 0.086 0.033 0.150 Low flavour 0.005 0.002 0.003 0.001 0.006       
Mineral 0.029 0.000 0.059 0.024 0.084 Fruity 0.057 0.027 0.030 0.013 0.070       
Acidic 0.024 0.170 0.206 0.045 0.422 Green fruit 0.007 0.017 0.005 0.057 0.078       
Bitter 0.005 0.030 0.053 0.001 0.083 Subtle/ delicate 0.019 0.000 0.007 0.016 0.023       
Natural 0.004 0.003 0.012 0.073 0.089 Unbalanced 0.016 0.023 0.003 0.000 0.026       
Premium quality 0.004 0.005 0.001 0.004 0.011 Sweet 0.017 0.021 0.038 0.045 0.104       

      Light bodied 0.042 0.044 0.001 0.006 0.051       

      Vegetative 0.004 0.002 0.041 0.013 0.056       

      Easy drinking 0.005 0.023 0.002 0.004 0.028       

      Vibrant/ lively 0.010 0.001 0.011 0.024 0.036       
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Table 5.3: AHC groups for the first three dimensions of the CA wines aged for two years in the bottle. 

CLUSTER 1 CLUSTER 2 CLUSTER 3 

  38.18% 15.37% 10.88% 64.43%   38.18% 15.37% 10.88% 64.43%   38.18% 15.37% 10.88% 64.43% 

Attributes 
Weight 
(relative) F1 F2 F3 sum Attributes 

Weight 
(relative) F1 F2 F3 sum Attributes 

Weight 
(relative) F1 F2 F3 sum 

Old 0.077 0.046 0.002 0.000 0.048 Young 0.074 0.073 0.020 0.010 0.104 Outlier 0.012 0.107 0.177 0.111 0.394 

Less fruity/ subtle 
fruit 0.012 0.008 0.016 0.011 0.035 

Less intense aroma/ 
subtle nose 0.020 0.020 0.001 0.001 0.022 Ripe 0.027 0.001 0.033 0.007 0.042 

Lime 0.005 0.009 0.003 0.009 0.020 Fruity 0.056 0.002 0.042 0.010 0.053 Yellow fruit 0.008 0.008 0.004 0.000 0.012 

textured 0.019 0.000 0.006 0.008 0.014 Fresh 0.011 0.004 0.008 0.014 0.026 Guava 0.021 0.014 0.042 0.019 0.075 

Rich mouthfeel 0.014 0.017 0.009 0.013 0.039 Less ripe 0.002 0.044 0.015 0.050 0.110 Tropical 0.018 0.001 0.001 0.029 0.031 

Full/ Full body/ Full 
mouthfeel 0.040 0.018 0.009 0.003 0.030 Banana 0.005 0.003 0.040 0.045 0.088 Quince 0.010 0.009 0.016 0.027 0.052 

Well-rounded 0.014 0.013 0.009 0.007 0.028 Litchi 0.005 0.003 0.040 0.045 0.088 Pineapple 0.012 0.002 0.016 0.015 0.033 

dense palate 0.012 0.007 0.011 0.004 0.022 Citrus 0.005 0.003 0.040 0.045 0.088 Sweet 0.030 0.001 0.003 0.052 0.056 

broad palate 0.026 0.021 0.001 0.000 0.022 Peaches 0.032 0.003 0.011 0.000 0.014 
Balanced/ 
balanced acidity 0.041 0.042 0.006 0.002 0.049 

Smooth 0.011 0.013 0.002 0.016 0.031 Granadilla 0.007 0.003 0.005 0.005 0.012 Creamy 0.011 0.000 0.039 0.050 0.090 

Length 0.051 0.036 0.003 0.007 0.047 Floral 0.023 0.000 0.001 0.001 0.002 Tannic 0.008 0.008 0.004 0.000 0.012 

Structure 0.019 0.002 0.001 0.000 0.004 Bitter 0.007 0.002 0.010 0.002 0.014 No mid-palate 0.003 0.003 0.000 0.051 0.054 

Complex 0.019 0.027 0.003 0.021 0.051 Crisp acidity 0.006 0.008 0.004 0.014 0.026 Concentrated 0.012 0.003 0.022 0.011 0.036 

Savoury 0.006 0.008 0.001 0.011 0.020 Acidic 0.018 0.115 0.002 0.002 0.119 Tension 0.005 0.001 0.006 0.032 0.040 

Herbal 0.006 0.008 0.001 0.011 0.020 Light texture 0.011 0.009 0.004 0.002 0.014 Faulty 0.006 0.018 0.072 0.016 0.107 

Flint 0.014 0.001 0.004 0.009 0.014 Watery 0.012 0.013 0.065 0.018 0.095       
Mineral 0.016 0.020 0.003 0.016 0.038 Thin body/ Low body 0.026 0.035 0.006 0.060 0.101       
Earthy 0.004 0.007 0.000 0.002 0.009 Thin/ Thin mouthfeel 0.018 0.057 0.001 0.022 0.080       
Oily 0.010 0.013 0.000 0.004 0.017 Unbalanced 0.022 0.053 0.014 0.000 0.066       
Elegant 0.006 0.006 0.000 0.002 0.009 Short AT 0.004 0.001 0.050 0.003 0.055       

      Low alcohol 0.002 0.044 0.015 0.050 0.110       

      high alcohol 0.013 0.000 0.001 0.000 0.001       

      Small yield 0.005 0.000 0.038 0.009 0.047       

      Mature 0.005 0.000 0.038 0.009 0.047       

      Vibrant 0.005 0.007 0.003 0.006 0.016       
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5.4 Discussion 

The original idea of the project was to explore the sensory space typical of the OV Chenin 

Blanc wines. As required by the methodology used when testing a typicality concept, the process 

was laid out in steps in such a way that multiple checks were put in place. The systematic 

approach taken in establishing and understanding an oenological concept requires a reliable 

panel (judge consensus), as well as conceptual and perceptual agreement (Perrin & Pagès, 2009; 

Maitre et al., 2010). The establishment of a sensory space unique to a concept (in this case the 

OV Chenin Blanc) would constitute the final step in the process, which can be reached only once 

all the previous stages have been demonstrated. 

In the current study, the panel agreement was proven from the rating results, even if the 

explained variance was distributed almost equally over a large number of dimensions. Scalar data 

with a single measurement has an approximately equal distribution of the explained variance 

across the multiple dimensions of the PCA; in other words, all dimensions have an almost equal 

input into the distribution of data (Granato & Ares, 2014), as observed for the results of the current 

work. Conversely, even if the explained variance is high, the experiment stops if panel consensus 

is not reached. This was the case in the study by Ballester et al. (2013), in which no correlations 

were observed in the agreement between judges assessed by PCA; in that case, there was no 

consensus and the investigation did not proceed further. 

Only after the reliability of the panel was confirmed could the perceptual agreement be tested. 

The borders of the perceptual agreement can be gradual, referred to as the “degree of 

representativeness”, and are tested using rating tasks (Ballester et al., 2005; Chrea et al., 2005). 

These borders can also be categorical, referred to as membership in the concept group, and are 

tested using sorting (Ballester et al., 2005). This means that the samples selected to test the 

concept need to cover the range of representativeness, including their borders (Ballester et al., 

2005; Chrea et al., 2005). 

The focus of a sorting task is the grouping of samples according to the given criteria (Valentin 

et al., 2012), in this case old vine/young vine. The instruction to describe the groups provided a 

secondary (verbal) aspect to the task. The flexible sorting task, as designed in this study, had 

both bottom-up and top-down elements to it (Lindsay & Norman, 1977; Brochet & Dubourdieu, 

2001). To decide whether a sample belonged to the old vine group, a judge had to think first of 

the characteristics that qualify the sample for that category (top-down thinking). To describe the 

group based on the samples included, the judge had to consider the attributes of the wines 

themselves (bottom-up thinking). 

Since these two aspects are intertwined, both the grouping and the descriptors were used to 

give an indication of the conceptual space related to old vine Chenin Blanc typicality. The values 

of the RV coefficients supported the hypothesis that the verbal and non-verbal aspects of the 

sorting task were in agreement. 
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In line with the idea related to the origin of the old vine character coming from the grapes, 

this study covered sample variability in terms of vine age, but limited variability from a winemaking 

perspective. The wines were tested as young and bottle aged. Although the same number of 

clusters resulted from the analysis of the sorting results for both evaluation stages, the members 

belonging to each of the clusters were different. Using vine age as the single source of variability 

may have resulted in wines being too similar to each other for the judges to be able to distinguish 

between them. Unlike in this study, the previous study by Crous (2016) included variability in 

winemaking, but not in vine age. This may have created a greater variability between the wine 

samples but, as often seen, highly involved winemaking practices may outweigh other factors (in 

this case, vine age). 

Conceptually, the experts agreed on the attributes associated with the OV concept. 

Perceptually, the experts could not agree on a set of wines whose only variable was vine age. At 

this point, the process could not be taken further. 

It is only once the perceptual agreement and the borders are elucidated that the attributes 

associated with the concept can be tested (Perrin & Pagès, 2009). This would have resulted in 

building and describing a sensory space unique to OV Chenin Blanc wines. The correct samples 

have to be consistently associated with the attributes in order for them to be considered features 

of the tested concept. This was not the case in the current study, where the last stage in the 

investigation could not be carried out due to the lack of perceptual agreement. As such, the 

features and the drivers of the concept could not be identified. In addition to the possible lack of 

variation in the resulting wines coming from a standardised winemaking, one other possible cause 

for the lack of perceptual agreement could be linked to the “expertise” and “exposure” factors 

related to the expert judges, factors highlighted in the literature in similar cases of testing complex 

concepts (Chrea et al., 2005; Perrin & Pagès, 2009). Even though the industry professionals 

participating in this experiment were experts in the topic, their reference (or “prototype”, as 

described by Chrea et al. (2005)) most probably was built on repetitive exposure to a variety of 

old vine wines, with common but also very different characters. This aspect is one of the most 

difficult ones in relation to ensuring consistency in concepts, in contrast to attributes or features 

for which the researchers can use standards and calibrate analytical panels or even experts. 

Previous studies have used predictive models, such as partial least squares (PLS) (Coulon-

Leroy et al., 2018) and multiple linear regression (MLR) (Ballester et al., 2005; Parr et al., 2015), 

to explore the relationship between the rating and sorting data in the case of typicality. These 

models work when there is both panel consensus and perceptual consensus, so that the features 

of the typicality concept can be correlated or predicted. Since perceptual agreement on vine age 

or the categories of old vine/young vine was not reached in the current study, predictive or linear 

regressions could not be used. 
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5.5 Conclusion 

The South African old vine Chenin Blanc typicality was tested perceptually and conceptually. 

The perception of a Chenin Blanc wine as having “old vine character” was evaluated using a 

typicality rating and a flexible sorting task. The conceptual understanding of old vine Chenin Blanc 

was investigated by allowing judges to describe the old vine and young vine sorted groups. 

As shown by the results, a unique sensory space of the OV Chenin Blanc could not be 

demonstrated because the results indicated a lack of perceptual consensus among the industry 

professionals during the sorting task. However, the industry professionals did demonstrate a 

conceptual alignment/ agreement, as demonstrated by the rating results, which was the 

foundation on which the rest of the work was built. 

If similar work were to be repeated with commercial wines (from YV and OV), the existence 

of a unique sensory space of commercial OV wines could be demonstrated. However, such an 

experiment would still not answer the question: where is this character coming from? Researchers 

could get closer to answering the question by finding the features/drivers of the concept and 

maybe backtrack them to the origin. However, the source of the OV character could be multiple 

– interactions between the vineyard conditions, winemaking techniques, and vineyard and cellar 

flora. Even if experiments were to be designed around these factors, excluding them one by one, 

the interaction aspect would be lost. 

The sensory space characteristic of OV Chenin Blanc wines can also be re-created by better 

understanding the opinions of the wine industry professionals. Qualitative approaches such as 

interviews and surveys would be insightful. 

These results show that, conceptually, the experts agreed on the attributes of old vine Chenin 

Blanc wines, although they could not align perceptually. Since variability in winemaking was 

factored out, the unique properties gained by the wine during winemaking and the inclusion of 

viticultural and microbiome elements (wild fermentations) have been lost. However, if the 

guidelines of the OVP to take the minimalistic approach are to be followed, it is put into perspective 

how the various approaches taken in winemaking practices influence the final product. 
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Chapter 6:  Data fusion using Multiple Factor Analysis 
coupled with non-linear pattern recognition (fuzzy k-means)  

 

6.1 Introduction 

Pattern recognition in complex natural systems such as wine requires gathering not just a large 

amount of data (and corresponding data variation) but diverse and informational rich data (and 

corresponding variability of measured parameters). Oenological studies hence include variation 

by measuring several categories of chemical (e.g. volatile and non-volatile composition) and 

sensory (verbal and non-verbal) data (Stevenson, 2005; Valentin et al., 2012). Data variability 

can be included through the use of both targeted and untargeted chemistry data and/or the 

combination of sensory with chemistry results. Combining these different sets requires 

appropriate  data integration using statistical methods of data fusion and intelligent strategic 

approaches (Borràs et al., 2015; Biancolillo et al., 2019; Cocchi, 2019). Methods of data fusion 

for Oenology are usually supervised, seeking to find optimal discrimination of samples based on 

cultivar, origin, age, among others (Borràs et al., 2015; Biancolillo et al., 2019; De Carvalho Rocha 

et al., 2020). The previous chapter (Chapter 4 – Exploration of data fusion strategies using 

Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)) presented the different 

strategies and advantages of constructing unsupervised data fusion models. It is not only the 

methods (chemistry, sensory, and statistical) chosen that are important, but the strategy (data 

handling process) itself.  

When it comes to discrimination problems in Oenology, some limitations are related to the type 

of information used and incorporated into the models. Fingerprinting techniques are highly 

effective for discriminating samples in Oenology for problems such as cultivar (Figueiredo-

González et al., 2012), origin (Versari et al., 2014), authentication (Garrido-Delgado et al., 2011), 

and ageing (Pereira et al., 2010). Techniques such as infrared (IR), nuclear magnetic resonance 

(NMR) (Ghasemi et al., 2013; Godelmann et al., 2013; Silvestri et al., 2014; Alañón et al., 2015; 

Amargianitaki & Spyros, 2017), liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

(Alañón et al., 2015), and gas chromatography-tandem mass spectrometry (GC-MS/MS) (Alañón 

et al., 2015; Seisonen et al., 2016) have previously been used. These techniques give results that 

are complex to model and require pre-modelling treatments (Rinnan et al., 2009; Engel et al., 

2013). 

In addition to these chemical fingerprinting techniques, sensory data can be used to model the 

behaviour of the wine from the sensorial perspective. Although profiling sensory methods such 

as descriptive analysis (DA) can suffice in discriminating samples (Vannier et al., 1999; Cayuela 

et al., 2017), this is not always the case and thus sensory data may need to be combined with 

chemistry data. In these cases, the problem then becomes how to combine the different data sets 

appropriately - specifically, chemistry with sensory data. Solving this problem requires methods 

of data fusion which combine data sets and integrate them to create representative, information-

rich data models (Borràs et al., 2015; Seisonen et al., 2016; Cocchi, 2019).  

Once properly combined, assessing patterns of behaviour can be done in different ways, i.e. using 

classical (parametric) and non-classical (non-parametric) methods (Figueiredo-González et al., 

2012; Radovanovic et al., 2016; Myhre et al., 2018). Classical methods of pattern recognition are 

based on linear regression or multiple linear regressions in the case of multivariate techniques 

(Salkind. J. & Kristin. R., 2007; McKillup, 2012; Granato et al., 2014). The assumption with 

classical methods is that there is a normal distribution, but in complex cases of high variation, a 

normal distribution is not always observed (McKillup, 2012; Granato et al., 2014). 
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Parametric techniques used for pattern recognition include variants of cluster analysis 

(agglomerative hierarchical clustering/AHC, hierarchical cluster analysis/HCA,), linear regression 

analysis (linear discriminant analysis/LDA and multiple linear regression/MLR), and discriminant/ 

classification analysis (partial least squares/PLS –and discriminant analysis/DA) (McKillup, 2012). 

Non-parametric groups of methods for pattern recognition such as k-nearest neighbours (kNN), 

artificial neural networks (ANN), and support vector machines (SVM) consider non-binary 

relationships (Härdle & Simar, 2015; Radovanovic et al., 2016; Myhre et al., 2018; De Carvalho 

Rocha et al., 2020). 

These non-parametric pattern recognition methods are generally used in a supervised manner. 

Previously studies used kNN for classification of wine age and found better results compared to 

the use of parametric linear discriminant analysis (LDA) (Pereira et al., 2010). An unsupervised 

ensemble approach has previously been described to generate robust and reliable clustering 

results (Myhre et al., 2018). The method looked at the effects of the pre-processing step 

(fitting/scaling the data), the clustering method itself (e.g. meanshift vs kernel density), and 

adjusting the parameters (e.g. number of clusters and bandwidth) on the reliability of the kNN 

clustering. Before kNN analysis, data were first scaled and modelled according to the appropriate 

technique, then the clustering was applied to the model or its features (Myhre et al., 2018).  

Fuzzy k-means, originally referred to as fuzzy c-means (Bezdek, 1981), is a variant of k-NN that 

uses fuzzy algorithms for clustering observations (samples). The partitioning (grouping) of the 

clusters can be based on an average centroid, class membership (group designation), or random 

assignment of centroids (Bezdek, 1981). This is different from hard clustering techniques such as 

AHC and classification techniques such as PLS which impose strict partitioning (McKillup, 2012; 

Härdle & Simar, 2015). Of the available machine learning algorithms and based on the case 

studies by Myher et al., (2018) and studies on fuzzy c-means (Khang et al., 2020), fuzzy k-means 

was the most appropriate technique for this study. 

The current study explored an unsupervised strategy consisting of data fusion coupled with 

pattern recognition. It included variation in the form of combinations of data sets (i.e. chemistry 

and sensory) and information-rich techniques (i.e. fingerprinting by NMR and HRMS). MFA was 

used for the fusion of sensory (verbal and nonverbal flexible sorting) and chemistry (NMR and 

HRMS) data. Pattern recognition was done using AHC and fuzzy k-means. Fuzzy k-means was 

explored by varying coefficients of fuzziness and the number of clusters. The effectiveness of the 

different strategies of cluster analysis were evaluated using coefficients of variance in optimal 

classification (i.e. Wilks’ Lambda and cophenetic correlation coefficient).  

 

 

6.2 Materials and Methods 

6.2.1 Experimental design: winemaking and sensory analysis 

The winemaking, wine treatments as well as sensory evaluation have been previously published 

(Mafata et al., 2020). In brief, the experimental design consisted of 23 wines made from grapes 

harvested from vines aged 5 to 45 years old and made using the same vinification protocol. The 

wines were evaluated twice: three months in the bottle (Year 1) and two years in the bottle (Year 

2). Sensory analysis consisted of a flexible sorting task with a non-verbal (grouping) and a verbal 
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(group description) aspects4. Full details are given in Chapter 5 – Investigating the Concept of 

South African Old Vine Chenin Blanc. 

 
6.2.2 Chemical analysis 

6.2.2.1 High resolution mass spectrometry (HRMS)  

Sample preparation: The 23 wine samples were clarified through centrifugation at 3,000 rotations 

per minute (rpm) and sampled into a 2 mL HPLC vial.  

Instrumental acquisition: This was done according to a published method (Garrido-Bañuelos et 

al., 2019; Panzeri et al., 2020) using a UPLC (Waters Corporation, Milford, MA, USA) equipped 

with a Synapt G2 quadrupole time-of-flight mass spectrometer (Q-TOF-MS, Waters Corporation, 

Milford, MA, USA). Separation was done on an Acquity UPLC HSS T3 column (1.8 µm internal 

diameter, 2.1 mm x 100 mm, Waters Corporation, Milford, MA, USA) using 0.1% formic acid 

(mobile phase A) and acetonitrile (mobile phase B) and a scouting gradient Mass spectrometric 

acquisition was done using an electrospray ionization probe in positive (150 to 600 m/z) and 

negative (40 to 600 m/z) mode. 

Data processing: Using the MarkerLynx software (Waters Corporation, Milford, MA, USA) the data 

was integrated and extracted as a (RT_m/z, ion abundance) matrix.  

 

6.2.2.2 Nuclear magnetic resonance (NMR) spectroscopy 

Sample preparation: The wine pH was adjusted to 3 using 10M HCl and 10M NaOH solutions. In 

a 5 mm Wilmad NMR tube (Rototec-Spintec GmbH, Bad Wildbad, Germany), 50 µL of a 1M 

Tetramethylsilane standard (TMS in D2O) and 500 µL of the pH adjusted wine were added. 

Nitrogen gas was passed over the headspace for preservation until analysis.  

Instrumental acquisition: NMR was performed using a Varian Unity Inova 600MHz liquid state 

NMR Spectrometer and based on methods by López-Rituerto et al., (2012) and Godelmann  et 

al., (2013). All spectra were acquired at 298.0 K. Manual tuning, matching, locking, and shimming 

were performed for each sample analysis. Two 1-H NMR analyses were performed, a pre-

saturation for suppression of the water and ethanol signals followed by 1-D NOESY experiment 

at 256 scans per sample (Figure 6.1).  

Data processing: was done offline using MestreNova software version 12.1.0 (Mestrelab 

Research S.L., Santiago de Compostela, Spain). The spectra were aligned using the TMS 

reference peak at 0.0 ppm. Cuts were done for the saturated peaks for ethanol alkyl groups (1.036 

to 1.200 ppm and 3.610 to 3.670 ppm) and the water peak (4.735 to 4.880 ppm). The chemometric 

toolset was used to extract the spectra as untargeted data. The data were scaled according to 

the intensity of the TMS peak and 0.04 ppm spectral bins applied on the sum of the data points. 

A data matrix where the bins were the variables and the wines the observations was extracted 

and used for statistical analysis.  

 

 

 

 

 
4 The typicality rating results were excluded from this study because one of the samples from Year 2 was 
missing which made the data set incompatible with full data fusion. 
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Figure 6.2: Nuclear Magnetic Resonance (NMR) spectral overlay for the 23 experimental wines analysed in Year 2.  

 
6.2.3 Statistical analysis 

The repeatability of the analyses was confirmed by using instrumental repeats (HRMS) and 

quality assessment using a known reference sample (NMR). 

Exploratory data analysis consisted of Principal Component Analysis (PCA), Correspondence 

Analysis (CA), and Multidimensional Scaling (MDS). PCA was performed on the correlation 

matrices for HRMS (samples vs features) and NMR (samples vs bins) data sets based on 

Pearson correlation. CA was done on the verbal sorting results and MDS was done on the non-

verbal sorting results of the sensory analysis.   

Data fusion was performed by multiple factor analysis (MFA) on four data sets (HRMS, NMR, 

verbal and non-verbal sorting tasks). The exploratory data analyses were used as the first step in 

the MFA analysis. From the MFA, ordinal data of the group factor map (data sets), individual 

factor maps (samples), loadings factor maps (variables), and projected biplot maps (samples and 

variables) were extracted.  

Pattern recognition was done on the ordinal matrix from the MFA, by AHC and fuzzy k-means 

using XLSTAT software (version 2020, Addinsoft, New York, USA). AHC followed the Ward’s 

method of agglomeration based on the Euclidean distance. Fuzzy k-means clustering was done 

using the Wilks’ Lambda based on the Euclidean distance. Partitioning was done randomly with 

repetitions set at n = number of samples. Additional visualisations (graphical illustrations of the 

model output) were built using Statistica™ 13 (TIBCO, Dell software, Inc., Texas, United States). 

 

 

 

Water Ethanol Ethanol

TMS
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6.3 Results and discussion 

This section is discussed following the manner of statistical execution, in which each step builds 

on the preceding step. The initial data analysis was done to explore the individual data sets for 

the purposes of data fusion; the data sets were scrutinised to elucidate any irregular patterns that 

may be associated with noise that might need to be corrected before fusion. The final models of 

the individual data sets were then fused by MFA and features of the data fusion models extracted 

for pattern recognition by AHC and fuzzy k-means clustering.  

 
6.3.1 Exploratory data analysis  

The sensory data sets (non-verbal and verbal aspects of sorting) were explored in a previous 

chapter (Chapter 5 – Investigating the Concept of South African Old Vine Chenin Blanc). Here, 

the performance of the models of the chemistry data sets will be discussed. This section will also 

include remarks on the application.  

 

6.3.1.1 High resolution mass spectrometry (HRMS) 

The HRMS fingerprint for wine is commonly acquired in the positive mode since more compounds 

present in wine can be ionised in positive mode and thus give an MS signal  but metabolomic and 

untargeted studies use both ionisation modes (Alañón et al., 2015). Thus, in this study, the 

fingerprint included acquisition in the negative mode since it too contains discriminating features, 

although fewer than the positive mode. The two modes contain important information that can be 

used to discriminate samples in supervised modelling strategies. A block PCA analysis which 

keeps the two modes separate can elucidate the relationship between the two.  

The configuration of the samples (Figure 6.2) for the two modes can be used an indication of the 

different information the acquisition modes contain. The configurations derived from the positive 

and negative mode have an RV coefficient of 0.64 (Figure 6.2A1 vs 6.2A2) and 0.62 (Figure 6.2B1 

vs 6.2B2) for Year 1 and Year 2, respectively.  

The complete HRMS fingerprint was a combination of both MS ionisation modes (positive/Pos. 

and negative/Neg.). The full fingerprint consisted of 187 and 257 unique features for Year 1 and 

Year 2, respectively (Supplementary Figure 6.1). These were then treated as the new variables 

and modelled by PCA (Figure 6.3). The new combined models were configurationally more similar 

to each mode than they were to each other. This was indicated by high RV coefficient, 0.98 and 

0.80 (combined vs Pos. and vs Neg.), and 0.99 and 0.73 (combined vs Pos. and vs Neg.) for Year 

1 and Year 2, respectively.  

The scree plot (Supplementary Figure 6.2) is an indication of the efficiency of the data model. A 

steep decline of the stress in Year 2 results implied greater efficiency, a consequence of the 

higher number of unique features compared to the Year 1 data set. The inflection point (the point 

at which the stress begins to plateau) was around the fifth dimension for both years, for which 

61% and 69% of the total variation can be explained for each year, respectively.  

In the context of the original application, although both the separate modes and the combined 

HRMS data sets provide unique fingerprints, neither were able to distinguish the old vine samples 

from the young vine samples. Due to this, there were no markers that were linked to or could be 

used to discriminate the samples according to vine age or class designation (young vine and old 

vine). As an exploratory analysis, the unsupervised PCA revealed no problematic issues with the 

HRMS data set and thus no corrective pre-processing was done. Therefore, the combined modes, 

without any feature selection will be used for the data fusion.   
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Figure 6.2: Block PCA analysis on HRMS data acquisition for Year 1 in positive mode (A1) and negative mode (A2), and Year 2 in positive mode (B1) and negative mode (B2).  
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Figure 6.3: PCA scores of HRMS in combined (Pos. and Neg.) acquisition modes for Year 1 (top) and Year 2 (bottom). 
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6.3.1.2 Nuclear magnetic resonance (NMR) spectroscopy 

NMR data was processed to extract the spectra as untargeted data in the form of new variables 

(“bins’’). This resulted in 390 and 392 variables for Year 1 and Year 2, respectively. These new 

variables were then modelled by PCA, and the efficiency of the model is illustrated by the scree 

plot in supplementary Figure 6.3. The plot shows high efficiency in the models, with the inflection 

at F3 corresponding to 90% of the cumulative variance for both years. The NMR configuration 

map of the samples (Figure 6.4A1 and 6.4B1) shows a particularly unique distribution for samples 

analysed during Year 1. With the exception of two samples (OV754 and OV756), there is an 

element of linearity diagonally across the first and second dimensions (at Y=X). The loadings 

indicate that the linearity may be due to intensity variations (McKillup, 2012). However, this 

phenomenon was not observed for Year 2.  

To try and find reasons for the linear variation in Year 1 data set, and for further exploration of the 

NMR data, the spectra were submitted to block analysis. Three important spectral regions were 

identified and processed separately: the alkyl region (≤3.61 ppm), carbohydrate region (3.67 to 

4.74 ppm), and aromatic region (≥4.88 ppm). PCA on the carbohydrate region for Year 1 (Figure 

6.5) is the only region that exhibited the linearity seen in the full NMR spectra. Correlated with the 

linear trajectory are 6 bins: (2.998 to 3.038ppm, malic acid), (3.08 to 3.078, citric acid), (3.518 to 

3.558, glycerol/fructose), (4.398 to 4.438, tartaric acid), (4.438 to 4.478, lactose), and (4.598 to 

4.638, fucose) tentative assignment based on literature (López-Rituerto et al., 2012; Mascellani 

et al., 2021). The other regions (alkyl and aromatic) showed no discernible patterns in the spectra 

(observationally) or PCA (statistically). Year 2 results showed no discernible patterns, with high 

similarity between all three regions (RV ranging from 0.70 to 0.91). 

Looking at the high RV coefficient values for the full NMR spectra vs the carbohydrate region for 

Year 1, an additional exploratory approach was considered – namely MFA. MFA is a multiblock 

approach that first builds individual PCAs for each block (i.e. NMR region) and then separately 

scales them according to their eigenvalues before building the final model. By doing this, the 

method avoids skewing by any one block (Abdi & Valentin, 2007). Since the data fusion strategy 

in this study is also MFA, the NMR scaling issue was explored in two ways, namely, doing data 

fusion with the regions separate and first fusing the regions by MFA and using the MFA as the 

representative NMR fingerprint. The latter resulted in increased RV coefficients (RV>0.85 regions 

vs MFA) indicating that the issue may have been differences in scale between the regions 

(Supplementary Table 6.1). For an unsupervised exploratory aim, the MFA approach would have 

been optimal; in order to advance the aims of the current study in devising a systematic approach 

to coupling data fusion with pattern recognition, the full spectra were used further without prior 

block analysis. 

Contextually, similar to the HRMS results, neither the scores nor the loadings gave discriminating 

patterns based on vine age or class designation (young and old vine wine) for both years even 

when scaling by MFA was applied.  
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Figure 6.4: PCA models of NMR data for Year 1 (A1 – scores, A2 - loadings) and Year 2 (B1 – scores, B2 - loadings).  
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Figure 6.5: Carbohydrate region of the NMR for Year 1 (top) and Year 2 (bottom) showing scores (left) and loading plots (right).
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6.3.2 Data fusion by Multiple factor analysis (MFA) 

The performance of the data fusion models is indicated by the decay in stress, visualised using 

the scree plots (Supplementary Figure 6.4). Year 1 saw a total of 649 observations modelled, 

while Year 2 had 743 observations, due to more HRMS features and verbal sorting terms. 

Conversely, the Year 1 stress (2.54 eigenvalue) is relatively higher compared to Year 2 (2.18 

eigenvalue). This means that there are factors influencing the efficiency of the data fusion models 

other than the obvious number of observations. The scree plots show that the inflection point for 

Year 1 (F8, corresponding to 53% cumulative variance) and Year 2 (F9, corresponding to 59% 

cumulative variance) are similar. Year 2 had better performance in terms of lower stress 

(eigenvalue) and higher efficiency (% cumulative variance) since 28% is packed in the first three 

dimension compared to 24% for Year 1.  

As a multiblock approach, the performance of the MFA data fusion models is determined by the 

blocks and their relationships to one another. The relationship of the four blocks in this case 

(HRMS, NMR, verbal sorting/VSorting, and non-verbal sorting/NVSorting) can be seen in the 

three-dimensional representation of the group factor map (GFM) from the MFA (Figure 6.6). There 

was little overlap between the four data sets, indicating that they contain different information. 

Accompanying the GFM are pairwise RV coefficients (Table 6.1) calculated on the scores of each 

data set. Emphasising the point, the RV coefficients were low between the data sets, the highest 

being HRMS vs NVSorting (0.69) for Year 1 and NVSorting vs verbal sorting (0.60) for Year 2.  

The low RV coefficients between the individual data sets indicate unique information contained in 

each data set and are a positive result for unsupervised data fusion. In data fusion it is preferable 

to have not only informational density but also informational variability. Informational variability 

guarantees low redundancies in the configurational maps of the samples and observations 

lowering incidences of false correlations. The MFA data fusion models were representative, 

indicated by high RV coefficients between the MFA and the individual data sets for both years 

(Table 6.1). However, NMR exhibited low RV coefficients vs the MFA for both Year 1 (0.42) and 

Year 2 (0.45), due to the scaling issues previously discussed in Section 6.3.1.2).  

 

 
Figure 6.6: MFA group factor map for Year 1 (left) and Year 2 (right) depicted in the first three dimensions.  
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Table 6.4: Pairwise RV coefficients for MFA scores configurations between the four individual data sets and the MFA 
data fusion models for both Year 1 and Year 2 of the study.  

Year 1 Year 2 

 HRMS NMR VSorting NVSorting MFA  HRMS NMR VSorting NVsorting MFA 

HRMS 1 0.178 0.439 0.695 0.817 HRMS 1 0.165 0.264 0.508 0.649 

NMR 0.178 1 0.109 0.266 0.419 NMR 0.165 1 0.166 0.277 0.455 

VSorting 0.439 0.109 1 0.524 0.657 VSorting 0.264 0.166 1 0.604 0.714 

NVSorting 0.695 0.266 0.524 1 0.943 NVSorting 0.508 0.277 0.604 1 0.94 

MFA 0.817 0.419 0.657 0.943 1 MFA 0.649 0.455 0.714 0.94 1 

 

 

The advantage of data integration is that inferences on discriminating or unique elements can be 

made using the various compilation of data sets, facilitating comprehensive problem identification 

and description. This can be exemplified by the identification of the unique samples OV765 (Year 

1 and Year 2) and YV769 (Year 1) (Figure 6.7). The partial axes from the MFA data fusion model 

showed the data sets from which the difference comes. The graphs show that in both years, the 

sensory analysis (V and NVSorting) consistently discriminated the unique samples from the rest 

of the samples. The same differences were noted in the analysis of the sensory results (Chapter 

5, Sections 5.3.2 and 5.3.3). The contextual meaning of these results was also discussed in those 

sections. 
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Figure 6.7: MFA results showing the scores (A1 and B1) and the coordinates for the projected points (A2 and B2) for Year 1 (top) and Year 2 (bottom).  
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6.3.3 Pattern recognition 

6.3.3.1 Exploratory pattern recognition strategy by classical statistics and fuzzy k-means 

A few patterns have already been highlighted in the previous sections of this chapter; they were 

based on exceptions and not on discernible differences/patterns between samples according to 

the vine age or class designation. In order to try to identify these patterns, an extensive pattern 

recognition strategy was evaluated next. As previously discussed, fuzzy clustering is best 

recommended for attempting to discriminate samples for data with high similarity due to its 

sensitivity (Radovanovic et al., 2016; Myhre et al., 2018).  

Pattern recognition in the form of parametric (AHC) and non-parametric (fuzzy k-means) cluster 

analyses was done on the correlation matrix of the MFA samples. Figure 6.7 shows two-

dimensional representations of the MFA factor maps of the samples. The stress distribution of the 

MFA was gradual, having 50%EV over eight factors for both years (Supplementary Figure 6.4). 

In order to get a fair representation of the relationship between samples, AHC dendrogram was 

plotted for all factors (Figure 6.8). From the dendrograms, it is evident that sample OV765 for year 

1 and samples OV765 and YV769 for year 2 are outliers. Due to the sensitivity of the fuzzy k-

means method and the fact that the strategy used in this study is unsupervised (using random 

partitioning instead of supervised clustering such as centroid or class membership), these outlying 

samples were removed before any further clustering was applied. The random partitioning was 

chosen because:  

1. from the descriptive study (Chapter 5 – Investigating the Concept of South African Old 

Vine Chenin Blanc) it was shown that there was no prototype that could be used as the best 

average example for classification;  

2. the exploratory stages (Section 6.3.1) showed no distinguishable pattern between the 

samples;  

3. random partitioning was the most compatible approach to unsupervised clustering.  

The outlying samples had a big effect on the clustering; removing the outliers resulted in the 

cophenetic correlation coefficient decreasing from 0.637 to 0.403 in year 1 and 0.813 to 0.464 in 

year 2. The percentage of the total variation within-class was 91% for year 1 and 95% for year 2. 

Both the high variation and the low cophenetic correlation coefficient mean that the assignment 

of members of each cluster was unreliable (Bezdek, 1981). Fuzzy k-means is more reliable than 

AHC at assigning cluster membership. 
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Figure 6.8: Agglomerative hierarchical clustering (AHC) dendrogram on the MFA of Year 1 (left) and Year 2 (right). 

 

The fuzzy k-means was explored by varying the fuzzy partition coefficient (Fk) as well as the 

number of clusters (k). Since this study is using an unsupervised approach, reasonable Fk at the 

upper-limit (1.05) and lower-limit (1.001) were explored (Figure 6.9). Various degrees outside 

these parameters (i.e. Fk>1.05) were also investigated and these values were chosen because 

they illustrated the sensitivity of the fuzzy k-means technique (data not shown).  

The objective function of the clustering, from which the goodness-of-fit criterion is based, is to 

maximize the discrimination between clusters based on Euclidean distance in this case (Bezdek, 

1981). The goodness-of-fit criterion in this analysis is analogous to the R2 used for goodness-of-

fit used for PCAs, for instance (Härdle & Simar, 2015). Both Year 1 and Year 2 results showed 

high goodness-of-fit criterion at k<9 (Figure 6.9) but the Wilks’ Lambda coefficient values were 

poor. This means that although the data was well fitted, the class membership was unreliable. 

The Wilks’ Lambda coefficient was lower (i.e. λ<1) at k≥12 for both Year 1 and Year 2, and the 

percentage goodness-of-fit criterion increased (Figure 6.9). When Fk was set at 1.001 both the 

goodness-of-fit criterion and Wilks’ Lambda coefficient improved (λ=0.085 for both years) 

(Supplementary Table 6.2). Hence, the optimal clustering was with twelve clusters at a fuzzy 

coefficient of 1.001 for both years. Although the λ values reported in this study were relatively 

high compared to the parametric AHC, the fuzzy k-means clustering was more reliable.  
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Figure 6.9: Evolution of the goodness-of-fit criterion in the fuzzy k-means analysis of Year 1 (top) and Year 2 (bottom) 
with Fk set at the upper-limit of 1.05 (left) and the lower-limit of 1.001 (right). 

 

Correspondence analysis (CA) was done on the membership probabilities at the optimal 

clustering by treating them as categorical/  frequency-based data (Figure 6.10) (McKillup, 2005), 

analogous to the use of CA in sensory sorting tasks (Valentin et al., 2012; Cariou & Qannari, 

2018). The discrimination between samples was better at Fk set at 1.001 than at 1.05. Cluster 

analysis on the CA showed improved clustering compared to the parametric AHC without fuzzy 

k-means.  Year 1 showed an increase in the cophenetic correlation coefficient, from 0.403 to 

0.869 and the within-class variation decreased from 96% to 16% (Supplementary Table 6.3). For 

an unsupervised approach, these are markers of reliable clustering and discrimination between 

samples when using fuzzy k-means (Bezdek, 1981). Similarly, Year 2 showed an increase in the 

cophenetic correlation coefficient, from 0.464 to 0.835 but minimal decrease in the within-class 

variation (from 95% to 87%) (Supplementary Table 6.3).  
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Figure 6.10: Correspondence analysis (CA) biplots on the membership probabilities at optimal clustering 
conditions for Year 1 (top) and Year 2 (bottom) with Fk set at 1.001 (left) vs 1.05 (right). 

 

6.3.3.2 Contextual interpretation of the cluster analysis 

The contextual sensory perspective elements related to this application were investigated based 

on the typicality of old vine South African Chenin Blanc from class designation and age of vines 

(Mafata et al., 2020). The discussion of the results in the previous study showed no indication of 

suitable prototypes (typical of old vine wine) or distinguishable age-defined border between the 

classes (young vine wine vs old vine wine). Based on these findings, the fuzzy clustering 

approach could not use class membership or centroid partitioning. If a cluster analysis was to be 

performed for the four individual data sets used in the data fusion (NMR, HRMS, Non-verbal, and 

Verbal sorting), it would, much like the AHC, show the random distribution of samples that 

demonstrates the high similarity between samples.  

Both statistical and contextual random effects of grouping were observed in this case. Statistically, 

by varying the different parameters in the fuzzy clustering (i.e. Fk and k), although the 

discrimination power was improved, there were no observable core centroids (average sample 

representative for each cluster). Hence, the algorithm could only exclude the most dissimilar 

sample at a time (Figure 6.11). The fuzzy k-means dendrograms show that the wines examined 

during Year 1 are more discriminable from one another than the aged wines of Year 2 (Figure 
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6.11).  

 
 
Figure 6.11: AHC dendrogram on the parametric clustering (left) and fuzzy k-means clustering (right) results for Year 
1 (top) and Year 2 (bottom) with optimal clustering at 12 clusters and the fuzzy coefficient (Fk) set at 1.001. 

The random associations inherent in this data was demonstrated at the individual data set 

explorations (Section 6.3.1) and most importantly in the data fusion models (Table 6.1) where 

Year 2 had higher RV coefficients between the individual data sets and the MFA model. Although 

not shown here, when partitioning at Fk>optimal (i.e. approximately two members per cluster), 

there was random assignment of memberships supporting the previously reported lack of a 

representative centroid sample. By varying the number of clusters, the analysis looks at how well 

the samples can be “pulled apart” and still be reliably closely associated. By varying the partition 

coefficient (Fk) the analysis looks at how wide the bandwidth around each centroid (using random 

assignment/partitioning) can be while retaining reliable clustering. The bandwidth would be 

comparable to borders in typicality assignment in sensory typicality experiments (Ballester et al., 

2013). Although the discrimination between samples and hence the clustering was improved by 

using the fuzzy algorithms, it carried little contextual applicability in this case. This strategy could, 

however, be applied to cases such as the different styles of South African Chenin Blanc to 

improve on the previous use of parametric statistical techniques (Lawrence, 2012; Buica et al., 

2017; Valente et al., 2018).  
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6.4 Conclusion 

The aim of this study was to use an unsupervised strategy that consisted of data fusion coupled 

with an exploration of pattern recognition (comparing parametric and non-parametric clustering). 

This study used MFA to fuse four data sets, namely, HRMS, NMR, verbal and non-verbal sorting. 

The NMR fingerprint produced unique sample configurations indicated by low RV coefficients vs 

other data sets. The nature of the discrimination (noise or legitimate uniqueness) in the NMR was 

investigated by using alternative scaling by MFA or blocking. Identifying the cause of the 

discriminant results of the NMR was not the objective in this study, thus this was not explored 

further. As a result, all four data sets were fused without any pre-processing or alternative scaling 

methods. To try and elucidate any further patterns, cluster analysis was applied on the MFA 

samples configurations using AHC and fuzzy k-means clustering. Through a series of exploratory 

steps which included outlier sample exclusion, varying the coefficient of fuzziness (Fk) and the 

number of cluster (k), optimal clustering conditions were found. At the optimal clustering 

conditions (Fk =1.001 and k=12), Fuzzy k-means clustering was more reliable than AHC, indicated 

by higher cophenetic correlation coefficient and lower within-class variation. This meant that fuzzy 

k-means was sensitive to small variations between samples and could reliably discriminate 

samples between and within classes.  

The data fusion did not elucidate any obvious patterns related to the applied context: are South 

African old vine Chenin Blanc wines chemically and/or sensorially discriminable from young vine 

wines? The multi-layered approach demonstrated that the old vine Chenin Blanc samples in this 

study were too similar to the each other and to the young vine wines to obtain any class or age 

discrimination. However, discrimination power of fuzzy k-means can be used for cases where 

AHC shows some discrimination but the borders between classes are too small. 
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Figure 6.1: PCA loadings of HRMS in combined (Pos. and Neg.) acquisition modes for year 1 (top) and year 2 
(bottom). 
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Figure 6.2: Scree plot for the PCA of the combined HRMS (Positive and negative) of Year 1 (a) and Year 2 (b) 
chemical data. 
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Figure 6.3: Scree plot of the PCA for Year 1 (A) and Year 2 (B) of NMR analysis.  
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Figure 6.4: Scree plot for the MFA data fusion of Year 1 (left) and Year 2 (right) 
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Table 6.1: Pairwise RV coefficients between the three NMR regions (Arkyl, Aromatic and carbohydrate) for Year 1 
and Year 2 data exploration. 

Year 1 Year 2 

  Alkyl Carbs Aromatics MFA   Alkyl Carbs Aromatics MFA 

Alkyl 1 0.716 0.554 0.852 Alkyl 1.000 0.813 0.807 0.924 

Carbs 0.716 1 0.769 0.943 Carbs 0.813 1.000 0.914 0.960 

Aromatics 0.554 0.769 1 0.864 Aromatics 0.807 0.914 1.000 0.956 

MFA 0.852 0.943 0.864 1 MFA 0.924 0.960 0.956 1.000 
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Table 6.2: Fuzzy k-means clustering at Fk set at 1.001 and the number samples at  22 for Year  and 21 fro Year 2 

Year 1 Year 2 

Number of 
clusters 

Criterion 
Between-
classes 

Within-class 
variance 

Wilks' Lambda 
test 

Number of 
clusters 

Criterion 
Between-

classes 

Within-class 

variance 

Wilks' 

Lambda test 

1 1.000 0.000 487.658 1.000 1 1.000 0.000 399.889 1.000 

2 0.996 218.181 269.478 0.553 2 0.995 177.728 222.160 0.556 

3 0.988 284.711 202.947 0.416 3 0.986 234.489 165.399 0.414 

4 0.976 316.788 170.871 0.350 4 0.975 260.357 139.532 0.349 

5 0.961 336.322 151.337 0.310 5 0.957 274.137 125.751 0.314 

6 0.945 352.778 134.880 0.277 6 0.943 289.119 110.769 0.277 

7 0.932 369.635 118.023 0.242 7 0.925 300.846 99.043 0.248 

8 0.922 385.240 102.418 0.210 8 0.916 315.501 84.387 0.211 

9 0.923 402.286 85.372 0.175 9 0.924 329.859 70.030 0.175 

10 0.944 416.330 71.329 0.146 10 0.961 340.511 59.378 0.148 

11 0.998 423.323 64.335 0.132 11 0.998 362.560 37.329 0.093 

12 0.998 446.013 41.646 0.085 12 0.998 365.707 34.181 0.085 
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Table 6.3: Variance decomposition for the optimal classification for Year and Year 2 clustering using parametric 
(Agglomerative hierarchical clustering - AHC) and non-parametric (Fuzzy k-means) methods.  

 Year 1 Year 2 

   Absolute Percent   Absolute Percent 

AHC with 
all samples 

Within-
class 

22.308 90.95% 
Within-
class 

19.96 88.57% 

Between-
classes 

2.219 9.05% 
Between-
classes 

2.575 11.43% 

Total 24.528 100.00% Total 22.535 100.00% 

   Absolute Percent   Absolute Percent 

AHC 
without 
outliers 

Within-
class 

22.308 96.07% 
Within-
class 

19.051 95.28% 

Between-
classes 

0.913 3.93% 
Between-
classes 

0.944 4.72% 

Total 23.222 100.00% Total 19.994 100.00% 

   Absolute Percent   Absolute Percent 

Fuzzy k-
means 
clustering 

Within-
class 

1.835 15.93% 
Within-
class 

10.084 87.30% 

Between-
classes 

9.688 84.07% 
Between-
classes 

1.466 12.70% 

Total 11.524 100.00% Total 11.55 100.00% 
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Chapter 7: General discussion and conclusions 
 

General discussion and conclusions 

Oenology is the study of the behaviour of wine, from the processing of grapes to the 

enjoyment of the final wine (Stevenson, 2005). Thus, Oenology is multidisciplinary, composed of 

different disciplines including winemaking/cellar technology and microbiology (creation of the 

wine), chemistry (chemical composition of wine), and sensory (sensorial composition and human 

perceptions/enjoyment of the wine). Studying the behaviour of wine requires a variety of chemical 

and sensory techniques (Stevenson, 2005). By applying a broad spectrum of these techniques, 

different measurements can be taken, generating large amounts of data. Making sense of all the 

data can be difficult, and this is where statistics are needed. In terms of nomenclature, applied 

statistics is referred to as: bioinformatics, chemometrics, or sensometrics (Hunter, Dijksterhuis, 

Qannari, et al., 1995; Kowalski, 1980; McKillup, 2012; Sohail & Arif, 2019). Since there are already 

a host of disciplines involved in Oenology as well as various techniques, incorporating statistics 

is complicated and is often done collaboratively with statisticians/bioinformaticians. This can 

create a gap between experimental data acquisition and statistical data results, sometimes 

considered as a “black-box”(Cortez & Embrechts, 2011). It is important to remove uncertainties 

surrounding statistics in Oenology and unpack this “black-box”. Addressing the gap requires 

integrating the different disciplines through transdisciplinary approaches in Oenology. However, 

a limitation to this is that being specialized in any of the three disciplines is difficult, and true 

transdisciplinarity is even harder since it would require integrated contextual and technical 

knowledge. The first step to achieving true transdisciplinary ability is to understand the sequence 

of stages for problem solving in each discipline and consolidate them. 

The aim of this dissertation was to elucidate critical steps in data handling while highlighting 

some common misconceptions and misinterpretations, and to demonstrate the value of 

comprehensive narratives of the process of data analysis in Oenology. This compilation was a 

journey through different stages of dealing with oenological data, with increasing complexity in 

both the strategies and the techniques (sensory, chemistry, and statistics). The work devised 

several systematic approaches for solving complex oenological problems, which focused on 

creating strategies, rather than finding a particular statistical solution. 

Overall, the statistics-focused work identified the key decision-making aspects during the 

data input (capturing and pre-processing) and the model output (visualisation and interpretation) 

stages. The pre-processing of the data was shown to affect the performance of models as 

measured by performance parameters such as the explained variance (%EV) and calibration 

coefficients (Engel, Gerretzen, Szyman´ska, et al., 2013). Pre-processing was investigated for 

infrared data, since many options are available (Rinnan, Berg & Engelsen, 2009), but this was 

unnecessary for an unsupervised approach. The need for pre-processing was investigated again 

for nuclear magnetic resonance (NMR) data, where blocking of different NMR regions and 
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statistical treatment by MFA was used. Owing to the reiterative nature of the data handling 

process, model optimization techniques such as variable/feature selection or exclusion were 

addressed, such as the exclusion of outlier samples, which resulted in better clustering (i.e. 

increased goodness-of-fit criterion and lower within-class variation). 

Since this work exclusively used unsupervised techniques, models and their optimization 

were based on their compatibility with the strategies employed rather than trying to solve a single 

question. This was a novel approach for Oenology, since – to date – most studies use supervised 

techniques. Taking an unsupervised approach is open-ended and requires an open mind for the 

outcome and interpretation, creating more opportunities for hypothesis formation. On the other 

hand, an unsupervised approach also comes with the need to understand not only the limits of 

the statistical techniques, but also the context of the data generated.  

Interpretation of model outcomes (statistical) and study outcomes (contextual) should never 

be compromised by misleading visual aids, which can perpetuate confirmation bias. Hence, this 

work discussed the impactful nature of visual aids and offered a rationale as to how to couple 

them with each other and with performance parameters. For example, this work used 

comprehensive descriptions of multivariate model distributions (model dimensionality, stress 

distribution and rate of decay, and inflection points) rather than the more standard description of 

only the first two dimensions in multivariate data model outputs. This work also habitually coupled 

model Cartesian plots with dendrograms from cluster analysis to avoid biased visualised 

perceptions of grouping.  

Heatmaps were proposed as a novel approach to visualizing Pivot©Profile data. 

Pivot©Profile data is commonly analysed using correspondence analysis (CA) after translating 

the raw data into frequency data (Thuillier, Valentin, Marchal, et al., 2015). This work showed 

that, by keeping the data as positive and negative ratings and understanding the different types 

of statistical analysis available, the data could be represented by heatmaps instead of scores and 

loadings plots from the CA. This was most appropriate since Pivot©Profile is a reference-based 

method and heatmaps show the relative change of attributes across samples, both negative and 

positive. By committing to the strategy of differentiating samples from the reference (pivot), an 

appropriate statistical method could be applied.  

‘Double-checks’ were also used throughout by evaluating multiple performance parameters 

– for example, comparing the goodness-of-fit criterion (%EV) with coefficients of fit such as R2 

and Wilks’ λ and evaluation parameters such as regression vector (RV) and cophenetic 

correlation coefficients, in order to enhance the interpretability of model outcomes. This meant 

weighing the relative importance of every parameter used against the strategy and the research 

question. This was important since, without an appropriate strategy, it would be difficult to have a 

marker for optimal model outcomes for the unsupervised approaches used, in stark contrast to 

supervised models.  
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The main limitation to unsupervised approaches was the sacrifice of optimal coefficients in 

favour of optimal goodness-of-fit. This was the most appropriate approach since it is best to have 

confidence in the objective function for addressing the hypothesis rather than to optimize 

coefficients (e.g. discrimination, classification) for ill-fitted data. For example, it would be 

analogous to a futile attempt to optimize the p-value (error in calculation) for a poor R2 (coefficient 

of goodness-of-fit) with little contextual meaning.  

This work also discussed why the contextual significance can be more important than the 

statistical significance of the model outcomes. Contextual significance is not just based on the 

absolute values but their relative importance and meaning. This was important since the work 

indirectly addressed an important Oenological problem of combining chemical data with sensory 

data (Seisonen, Vene & Koppel, 2016). Methods of data fusion combine and integrate data sets 

to create comprehensive and representative models where appropriate. Data fusion methods 

address the scaling issue by making it relative, i.e. in absolute values sensory data is lower 

dimensionality than chemistry data, similarly, targeted chemistry data is lower in dimensionality 

than untargeted chemistry data. This is a limitation since many statistics/omics issues can be 

overcome by having a larger data set, but this is not always possible, especially in Sensory.  

Another novelty in this work comprised of the first published study on the systematic 

evaluation of the South African old vine Chenin Blanc typicality concept. Although the concept 

was not confirmed, the study found success in the use of sensory and chemistry strategic 

approaches. The limitations were a lack of perceptual consensus on the typicality of old vine 

Chenin Blanc wines, possibly due to the wines included in the evaluation as the experimental 

wines were all made in a standardized manner. In future, the issue could be overcome by using 

these now-developed strategies on commercial wines. 

Looking at the journey, through developing descriptive narratives for data handling process 

of the oenological problems and the statistical investigations, it was shown that there is no “black-

box” but perhaps a gap in critical thinking and full engagement with the data handling. One needs 

to keep the ‘long game’ in mind. From the research question, design of experiments, data 

acquisition, statistical strategy, to the interpretation of models in context. This is especially true 

when using unsupervised approaches and/or in view of data fusion as the treatment is not the 

same, but dependent on the intent of the strategy. 

For this reason, this study recommends the following:  

o Creating a descriptive narrative of the data handling process (from input to the 

interpretation of results) in order to minimize misinterpretations of data modelling and its results 

o Intertwining statistical and applied contextual reasoning for interpretation of modelling 

outcomes  

o Experimenting with the use of Artificial Intelligence/Machine Learning in Oenology, since 

many user-friendly and accessible software now offer the opportunities to experiment with these 

advanced techniques.  
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