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a b s t r a c t

Imitating the binary inducibility, a recently introduced invariant of binary trees (Cz-
abarka et al., 2017), we initiate the study of the inducibility of d-ary trees (rooted trees
whose vertex outdegrees are bounded from above by d ≥ 2). We determine the exact
inducibility for stars and binary caterpillars. For T in the family of strictly d-ary trees
(every vertex has 0 or d children), we prove that the difference between the maximum
density of a d-ary tree D in T and the inducibility of D is of order O(|T |

−1/2) compared
to the general case where it is shown that the difference is O(|T |

−1) which, in particular,
responds positively to a conjecture on the inducibility in binary trees. We also discover
that the inducibility of a binary tree in d-ary trees is independent of d. Furthermore, we
establish a general lower bound on the inducibility and also provide a bound for some
special trees. Moreover, we find that the maximum inducibility is attained for binary
caterpillars for every d.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The inducibility of graphs is an old topic in extremal graph theory. However, the inducibility of trees with a given
number of leaves is a novel concept that has been put forward recently in [6], inspired by a problem stemming from
phylogenetics. The specific problem that is addressed in [6] can be stated as maximizing the asymptotic density of
appearances of ‘small’ binary trees in binary trees with ‘large’ number of leaves. The present work is aimed at extending
the concept from binary trees to rooted trees with bounded degrees in which no vertex has degree 2 (except possibly for
the root).

The problem of maximizing the density of graphs in larger graphs is a key concept that has been explored starting
from the work [15] of Golumbic and Pippenger and has ever since been of interest to graph theorists. In [15], the authors
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introduced the subject for simple graphs: for finite and simple graphs G and H with k and n vertices, respectively, let
I(G,H) be the number of distinct subgraphs induced by k distinct vertices of H which are isomorphic to G. The limit

I(G) := lim
n→∞

(
max

|V (H)|=n
I(G,H)/

(
n
k

))
,

where the maximum runs over all finite and simple graphs H on n = |V (H)| ≥ k vertices, always exists and is called the
inducibility of the graph G. In this setting, it is the asymptotic behavior of the maximum number of appearances of G as
subgraph in an arbitrary n-vertex graph as n → ∞ which is captured by the inducibility I(G).

There have been numerous investigations on I(G) in special cases. The maximum number of induced subgraphs of H
isomorphic to the complete bipartite graph Kk,k has been studied in a 1986 paper [3] by Bollobás et al. A great deal of
work (see [2,4,10]) followed [3] afterwards. As such, Brown and Sidorenko [4] computed explicitly I(Kk,k+l) for all l ≥ 1
but under the restriction k ≥ l(l−1)/2. For k < l(l−1)/2, they stated the result as a function of the maximum over [0, 1]
of a certain polynomial in a single variable.

In 2014, Hirst [13] determined, employing Razborov’s flag algebra method and semi-definite programming techniques,
the inducibility of two 4-vertex graphs: the complete tripartite graph K1,1,2 and the so-called paw graph (graph
constructed from a triangle by appending a pendant edge). The concept of inducibility is still gaining consideration from
several research groups; see [9,12] for some recent results on blow-up of graphs and graphs on four vertices, respectively.
The language of flag algebras was also employed recently in [1] to derive the inducibility of the cycle on five vertices,
thereby settling a particular case of a conjecture formulated in [15].

Let us mention that there has also been interest in oriented graphs. For instance, in 2011, Sperfeld [17] explored, by
means of flag algebra, the inducibility of (monodirected) graphs with at most four vertices. Three years later, Huang [14]
determined, by means of a different approach, the maximum induced proportion of directed star graphs.

2. Inducibility of trees

One of the most widely used classes of graphs is the class of trees. Due to their prevalence in many situations, the
study of the inducibility of trees emerged in 2016 [5,6], and has been addressed in two different settings.

In [5], Bubeck and Linial investigated what they called k-profile of trees, which is the vector of induced proportions of
trees with k vertices classified according to their isomorphism type. At the end of their paper, Bubeck and Linial briefly
defined a notion of inducibility of trees in this specific situation. Analogously, originally motivated by a question from
phylogenetics, the recent paper [6] introduced a further variant of the concept by studying the inducibility for rooted
binary trees.

A natural related problem for further study is the inducibility of degree-bounded rooted trees. The special case of
binary trees is also known as phylogenetic trees—these trees are widely used in biology to describe how species are
evolutionarily linked [16]. The present work investigates the concept of inducibility for degree-bounded rooted trees.
Among other results, it provides an affirmative answer to a conjecture from [6].

Let d ≥ 2 be an arbitrary but fixed positive integer. A rooted tree will be called a d-ary tree in this paper if each of its
non-leaf vertices has between 2 and d children. For a rooted tree D, we write |D| for the number of leaves of D.

If S is a subset of the leaf set of a d-ary tree T , then the unique subtree obtained by

• first extracting the minimal subtree of T containing all leaves in S, and then
• contracting, except possibly for the root, the vertices of degree 2 in the induced tree, which means that the two

incident edges of each such vertex are merged and the vertex itself is suppressed,

is called a leaf-induced subtree of T ; see Fig. 1 for an illustration. We define the root of the resulting tree as the closest
common ancestor of the leaves in S.

By a copy of D in T , we mean any leaf-induced subtree of T isomorphic (in the sense of rooted trees) to D. The total
number of copies of D in T will be denoted by c(D, T ), and the quotient

c(D, T )(
|T |

|D|

)
by γ (D, T ). In words, γ (D, T ) is the proportion of all subsets of |D| leaves of T that induce a copy of D.

We define the inducibility of a d-ary tree D in d-ary trees T as being the limit superior, taken over all d-ary trees, of the
density of all subsets of |D| leaves of T that induce a copy of D:

Id(D) := lim sup
|T |→∞

T d-ary tree

γ (D, T ) = lim sup
n→∞

max
|T |=n

T d-ary tree

γ (D, T ) . (1)

This novel concept of inducibility is, of course, in analogy to the very first one [15] for simple graphs. However, it is
not clear at this point whether the sequence(

max
|T |=n

T d-ary tree

γ (D, T )
)
n≥|D|
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Fig. 1. A ternary tree and the subtree induced by four leaves (ℓ1, ℓ2, ℓ3, ℓ4).

converges for every d-ary tree D, in which case we could simply write

Id(D) = lim
n→∞

max
|T |=n

T d-ary tree

γ (D, T ) .

Notice that Eq. (1) already tells us that the maximum number of copies of D in an arbitrary n-leaf d-ary tree is at most(
n

|D|

)(
Id(D) + o(1)

)
as n → ∞. In fact, we shall prove later that Id(D) is always a positive real number for every d-ary tree D—see Proposition 8.
For the particular case where d = 2, it was conjectured in [6] that the asymptotic formula

max
|T |=n

T binary tree

γ (B, T ) = I2(B) + O(n−1) (2)

holds for every binary tree B. In the present work, we affirm this conjecture, and even generalize the result to every d ≥ 2
(Theorem 3).

A d-ary tree in which every vertex has exactly 0 or d children will be called a strictly d-ary tree. It turns out that Id(D)
can also be computed by merely taking the limit superior in the family of strictly d-ary trees. Define the inducibility of a
d-ary tree D in strictly d-ary trees as being the limit superior, taken over all strictly d-ary trees, of the density of subsets
of |D| leaves that induce a copy of D. That is, we have

id(D) := lim sup
|T |→∞

T strictly d-ary tree

γ (D, T ) = lim sup
n→∞

max
|T |=n

T strictly d-ary tree

γ (D, T ) .

We note that 0 ≤ id(D) ≤ Id(D) ≤ 1 by definition. We demonstrate in Section 4 that the identity Id(D) = id(D) holds
for every d-ary tree D and every d—see Theorem 5. As counterpart of (2), we show in Corollary 6 that

max
|T |=n

T strictly d-ary tree

γ (D, T ) = id(D) + O(n−1/2).

In Section 5 we show that the inducibility of any fixed binary tree is the same among binary trees and d-ary trees, for
any d ≥ 2; in Section 6 we show that the inducibility of any d-ary tree is positive; in Section 7 we prove that the only
d-ary trees that have inducibility 1 are the binary caterpillars; and finally, we mention in Section 8 further problems on
the inducibility of d-ary trees.

From now we always assume that d ≥ 2 and |D| ≥ 2.

3. On stars and binary caterpillars

For technical reasons, it is consistent and convenient to treat the single vertex of a one-vertex tree as both leaf and root.
By joining leaves to a single vertex, one obtains a star. We denote the k-leaf star by Sk as suggested by Fig. 2. Obviously,
our definitions bring Id(S2) = id(S2) = 1 for every d.

A complete d-ary tree is a strictly d-ary tree in which all the leaves (dh in total) are at the same distance h from the
root; see Fig. 3 for the complete 4-ary tree of height 2.

For our next theorem, which characterizes the inducibility of stars, we need Muirhead’s inequality [11]: let (l1, l2, . . . ,
ld) and (m1,m2, . . . ,md) be two vectors of nonnegative real numbers. Assume that l1 ≥ l2 ≥ · · · ≥ ld and m1 ≥ m2 ≥ · · · ≥
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Fig. 2. Stars Sk .

Fig. 3. The complete 4-ary tree of height 2.

md in this order. The vector (l1, l2, . . . , ld) majorizes the vector (m1,m2, . . . ,md) if l1 + l2 +· · ·+ ld = m1 +m2 +· · ·+md,
and for every k ∈ {1, 2, . . . , d − 1},

k∑
i=1

li ≥

k∑
i=1

mi .

Muirhead’s inequality states that∑
π∈Sd

d∏
i=1

xliπ (i) ≥

∑
π∈Sd

d∏
i=1

xmi
π (i)

for all nonnegative real numbers x1, x2, . . . , xd whenever the vector (l1, l2, . . . , ld) majorizes the vector (m1,m2, . . . ,md).
The sums on both sides are taken over all permutations of the indices 1, 2, . . . , d.

Theorem 1. For every fixed positive integer d ≥ 2 and every k ∈ {2, 3, . . . , d}, the inducibility of the k-leaf star Sk in strictly
d-ary trees is

id(Sk) =
d!

(d − k)!(dk − d)
.

Moreover, id(Sk) is an increasing sequence in d for k ≥ 3, starting with d = k.

Proof. Fix d ≥ 2, and let us prove that for a strictly d-ary tree T with n leaves, we have

c(Sk, T ) ≤

(
d
k

)
·
nk

− n
dk − d

for every k ≥ 2, with equality if T is a complete d-ary tree.
For k = 2, the assertion is immediate as c(S2, T ) =

(
|T |

2

)
. For k ≥ 3, we use induction on n. The base cases with n < k

are trivial as there cannot be any copies of Sk in T . For the induction step, consider the d branches T1, T2, . . . , Td of T with
n1, n2, . . . , nd leaves, respectively. So we have n1 + n2 + · · · + nd = n. We distinguish possible scenarios that can occur
for a subset of k leaves:

• all k leaves belong to the same branch of T . The total number of these subsets of leaves that induce Sk is given by
c(Sk, T1) + c(Sk, T2) + · · · + c(Sk, Td),

• one of the branches of T contains more than one of the k leaves, but not all of them. In this case the leaf-induced
subtree is not isomorphic to Sk,

• k of the branches of T , say (without loss of generality) T1, T2, . . . , Tk, contain exactly one of the leaves each. In this
case, the k leaves always induce Sk, yielding n1 · n2 · . . . · nk copies of Sk.
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Therefore, we establish that

c(Sk, T ) =

d∑
i=1

c(Sk, Ti) +

∑
{i1,i2,...,ik}⊆{1,2,...,d}

k∏
j=1

nij .

The induction hypothesis gives

c(Sk, T ) ≤

(d
k

)
dk − d

·

d∑
i=1

(nk
i − ni) +

∑
{i1,i2,...,ik}⊆{1,2,...,d}

k∏
j=1

nij . (3)

On the other hand, the multinomial theorem yields the following decomposition:

nk
=

(
d∑

i=1

ni

)k

=

∑
l1,l2,...,ld≥0

l1+l2+···+ld=k

(
k

l1, l2, . . . , ld

) d∏
i=1

nli
i

=

∑
l1,l2,...,ld≥0

l1+l2+···+ld=k

(
k

l1, l2, . . . , ld

)
1
d!

∑
π∈Sd

d∏
i=1

nli
π (i)

=

d∑
i=1

nk
i +

∑
0≤l1,l2,...,ld<k
l1+l2+···+ld=k

(
k

l1, l2, . . . , ld

)
1
d!

∑
π∈Sd

d∏
i=1

nli
π (i) .

Since every vector (l1, l2, . . . , ld) of nonnegative integers with l1+l2+· · ·+ld = kmajorizes the vector (1, 1, . . . , 1, 0, 0, . . . ,
0) (k ones, followed by d − k zeros), we can apply Muirhead’s inequality to every term in the second sum of this
decomposition:∑

π∈Sd

d∏
i=1

nli
π (i) ≥

∑
π∈Sd

k∏
i=1

nπ (i) = k!(d − k)!
∑

{i1,i2,...,ik}⊆{1,2,...,d}

k∏
j=1

nij .

This gives us

nk
≥

d∑
i=1

nk
i +

∑
0≤l1,l2,...,ld<k
l1+l2+···+ld=k

(
k

l1, l2, . . . , ld

)
k!(d − k)!

d!

∑
{i1,i2,...,ik}⊆{1,2,...,d}

k∏
j=1

nij

=

d∑
i=1

nk
i + (dk − d)

k!(d − k)!
d!

∑
{i1,i2,...,ik}⊆{1,2,...,d}

k∏
j=1

nij ,

using the multinomial theorem in the opposite direction now. We can rewrite this as∑
{i1,i2,...,ik}⊆{1,2,...,d}

k∏
j=1

nij ≤

(d
k

)
dk − d

·

(
nk

−

d∑
i=1

nk
i

)
.

Plugging this into (3) yields

c(Sk, T ) ≤

(d
k

)
dk − d

·

d∑
i=1

(nk
i − ni) +

(d
k

)
dk − d

·

(
nk

−

d∑
i=1

nk
i

)
=

(d
k

)
dk − d

(nk
− n) ,

completing the induction. Furthermore, equality can only arise in this context if

n1 = n2 = · · · = nd .

Thus the inequality holds with equality if and only if, for every internal vertex v of T , the number of leaves in the
d branches of the subtree of T rooted at v are the same: in this case, T is a complete d-ary tree. The assertion on the
inducibility follows by passing to the density and taking the limit:

id(Sk) = lim
n→∞

{(d
k

)
·
(
nk

− n
)
/(dk − d)(n

k

) }
=

d!
(d − k)! · (dk − d)

.
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Fig. 4. Ternary caterpillars F 3
k .

We now turn to the second assertion of the theorem.

Claim: For every given positive integer k ≥ 3,

uk(x) =
(x − 1)(x − 2) · · · (x − k + 1)

xk−1 − 1
is an increasing function for x ≥ k.

Proof of the Claim: Indeed, we have

log uk(x) = − log(xk−1
− 1) +

k−1∑
i=1

log(x − i)

so that

d
dx

(
log uk(x)

)
= −

k − 1
xk−1 − 1

· xk−2
+

k−1∑
i=1

1
x − i

=

k−1∑
i=1

(
1

x − i
−

xk−2

xk−1 − 1

)

=
1

xk−1 − 1
·

k−1∑
i=1

(
−1 + i · xk−2

x − i

)
> 0

as x ≥ k ≥ 3. We conclude that
(
id(Sk)

)
d≥k is an increasing sequence as soon as k ≥ 3. □

By a d-ary caterpillar, we mean a strictly d-ary tree in which every non-leaf vertex has d − 1 children that are leaves,
except for the lowest, which has d children that are leaves. Note that the non-leaf vertices must lie on a single path
starting at the root. We denote the d-ary caterpillar with k leaves by F d

k (refer to Fig. 4 for ternary caterpillars).

Theorem 2. Let k and d ≥ 2 be fixed positive integers. For the binary caterpillar F 2
k , we have

max
|T |=n

T strictly d-ary tree

c(F 2
k , T )(n
k

) = 1 − O(n−1).

In particular, id(F 2
k ) = Id(F 2

k ) = 1.

Proof. Fix d ≥ 2. We use a direct counting argument which gives us a lower bound on the number of copies of F 2
k in

F d
n . A binary caterpillar can be constructed by attaching exactly one pendant edge to all vertices of a path, except the last
one (that is furthest away from the root).

Thus, a copy of F 2
k in F d

n can be obtained by first choosing a subset of k vertices from the set of internal vertices of F d
n ,

and then for each of them, choosing one of its (at least) d − 1 children that are leaves. Since every strictly d-ary tree T
has exactly (|T | − 1)/(d − 1) internal vertices, we deduce that there are at least( n−1

d−1

k

)
· (d − 1)k

copies of F 2
k in F d

n . Therefore, we get

c(F 2
k , F d

n ) ≥

( n−1
d−1

k

)
· (d − 1)k =

nk

k!
− O(nk−1) .
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Hence, because we have c(F 2
k , F d

n ) ≤
(n
k

)
≤ nk/k! by definition, the assertion on the maximum density of F 2

k in strictly
d-ary trees and thus the inducibility id(F 2

k ) follows. In particular, we obtain id(F 2
k ) = Id(F 2

k ) = 1. □

It can actually be shown that

c(F 2
k , F d

n ) = (d − 1)k−1
( n−1

d−1

k − 1

)
·
2n − (d − 2)(k − 2)

2k

for k, n > 1, but this precision is not required if one is only interested in the inducibility id(F 2
k ).

4. Inducibility vs. Maximum density

Our first goal in this section is to prove a conjecture from [6] which states that the maximum of γ (D, T ) over d-ary
trees T with n leaves converges fairly quickly to the inducibility Id(D), namely at a rate of n−1. To be precise, the conjecture
was only made in the binary case.

Conjecture 1 ([6]). For a binary tree B, we have

max
|T |=n

T binary tree

γ (B, T ) = i2(B) + O(n−1) .

We prove:

Theorem 3. For every fixed positive integer d ≥ 2 and every d-ary tree D, we have

max
|T |=n

T d-ary tree

γ (D, T ) = Id(D) + O(n−1)

for all n ≥ |D|. In particular,

lim
n→∞

max
|T |=n

T d-ary tree

γ (D, T ) = Id(D) .

Moreover, the sequence given by

max
|T |=n

T d-ary tree

γ (D, T )

is nonincreasing in n.

Proof of Theorem 3. Fix d ≥ 2. Let D and T be arbitrary d-ary trees such that |D| ≤ |T |. Since c(D, T ) represents the
number of subsets of |D| leaves of T that induce a copy of D, we immediately deduce that the |T | leaves of T are contained
in |D| · c(D, T )/|T | copies of D on average. Thus, there exist leaves l1 and l2 of T satisfying the relation

cl1 (D, T ) ≤
|D| · c(D, T )

|T |
≤ cl2 (D, T ), (4)

where cl(D, T ) stands for the number of subsets of |D| leaves of T that contain l and induce a copy of D.

• We can assume |T | ≥ 2. The number of subsets of |D| leaves of T not involving the leaf l1 that induce a tree isomorphic
to D is exactly c(D, T )−cl1 (D, T ), which is therefore at least

(
1−

|D|

|T |

)
c(D, T ) in view of relation (4). One can construct

a new tree T ′ from T by deleting the leaf l1 and contracting the vertex adjacent to l1 if its degree in T ′ is 2 in the
same way as in the construction of leaf-induced subtrees. We have

c(D, T ′) = c(D, T ) − cl1 (D, T ) ≥

(
1 −

|D|

|T |

)
c(D, T ),

and it follows that

max
|T |=n−1

c(D, T ) ≥

(
1 −

|D|

n

)
max
|T |=n

c(D, T )

as T was taken to be an arbitrary d-ary tree. Hence, by passing to the density by dividing by
(n−1

|D|

)
, we obtain

max
|T |=n−1

T d-ary tree

γ (D, T ) ≥ max
|T |=n

T d-ary tree

γ (D, T )

for every n ≥ |D| + 1. So the sequence(
max
|T |=n

T d-ary tree

γ (D, T )

)
n≥|D|
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is nonincreasing and bounded from below, which means that the limit

lim
n→∞

max
|T |=n

T d-ary tree

γ (D, T )

exists and is Id(D).
• Denote by T+ the d-ary tree obtained by replacing the leaf l2 by an internal vertex with two leaves l2, l′2 attached

to it. That way, the number of copies of D in T+ not involving l′2 is just c(D, T ), whereas the number of copies of D
in T+ involving l′2 is no less than the number of copies of D in T involving l2. Therefore, by relation (4), the quantity(
1 +

|D|

|T |

)
c(D, T ) provides a lower bound on c(D, T+):(

1 +
|D|

|T |

)
c(D, T ) ≤ c(D, T+).

It follows that(
1 +

|D|

n

)
max
|T |=n

c(D, T ) ≤ max
|T |=n+1

c(D, T )

as T was assumed to be an arbitrary n-leaf d-ary tree. If we divide this inequality by
(n+1

|D|

)
, we obtain

max
|T |=n+1

T d-ary tree

γ (D, T ) ≥

(
1 −

|D|(|D| − 1)
n(n + 1)

)
max
|T |=n

T d-ary tree

γ (D, T )

for every n ≥ |D|, and by p-fold iteration

max
|T |=n+p

T d-ary tree

γ (D, T ) ≥ max
|T |=n

T d-ary tree

γ (D, T ) ·

p−1∏
j=0

(
1 −

|D|(|D| − 1)
(n + p − j)(n + p − j − 1)

)
for all n, p with p ≥ 1 and n ≥ |D|. Now, for n ≥ |D| and p ≥ 1, we have

0 ≤
|D|(|D| − 1)

(n + p − j)(n + p − j − 1)
< 1

for every 0 ≤ j ≤ p − 1. A simple induction on p yields
p−1∏
j=0

(
1 −

|D|(|D| − 1)
(n + p − j)(n + p − j − 1)

)
≥ 1 −

p−1∑
j=0

|D|(|D| − 1)
(n + p − j)(n + p − j − 1)

.

Letting p → ∞ instantly gives the estimate

Id(D) ≥ max
|T |=n

T d-ary tree

γ (D, T ) ·

(
1 −

∞∑
i=0

|D|(|D| − 1)
(n + i + 1)(n + i)

)
for every n ≥ |D|. Since

∞∑
i=0

1
(n + i + 1)(n + i)

=

∞∑
i=0

( 1
n + i

−
1

n + i + 1

)
=

1
n

,

this shows that

Id(D) ≥

(
1 −

|D|(|D| − 1)
n

)
max
|T |=n

T d-ary tree

γ (D, T ) .

Now we combine the two contributions to obtain

0 ≤ max
|T |=n

T d-ary tree

γ (D, T ) − Id(D) ≤
|D|(|D| − 1)

n

for every n ≥ |D|. The desired asymptotic formula follows immediately. □

We remark that the averaging argument employed in the proof of Theorem 3 does not work for strictly d-ary trees T .
For example, deleting one leaf (and the single edge incident to it) from a strictly d-ary tree yields a tree that is no longer
strictly d-ary as soon as d ≥ 3. Moreover, the error term O(n−1) is generally best possible, as e.g. the discussion of the
complete binary tree of height 2 (with four leaves) in [6] shows.
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Our next focus is to prove that id(D) and Id(D) are always equal for every d-ary tree D and every d.

Lemma 4. For a fixed positive integer k, we have(n
k

)(p+n
k

) = 1 − O(p/n)

as p ≥ 1 and n/p → ∞.

Proof. We have(n
k

)(p+n
k

) =

nk
(
1 − O

( 1
n

))
(p + n)k

(
1 − O

( 1
p+n

))
=

(
1 +

p
n

)−k
(
1 − O

(1
n

))
= 1 − O

(p
n

)
as p ≥ 1 and n/p → ∞. □

Theorem 5. Fix a positive integer d ≥ 2, and let D be a d-ary tree. For every positive integer n ≡ 1 mod (d − 1) and every
d-ary tree T with ⌊n

1
2 ⌋ leaves, there exists a strictly d-ary tree T ∗ with n leaves such that the asymptotic formula

γ (D, T ) = γ (D, T ∗) + O(n−1/2)

holds as n → ∞, and the O-constant depends on d and |D| only. In particular, we have

id(D) = Id(D) .

Proof. Consider an arbitrary d-ary tree T (not necessarily a strictly d-ary tree) such that |T | = ⌊n
1
2 ⌋ = n

1
2 − O(1) . We

describe an explicit construction for T ∗; the line of reasoning follows probabilistic ideas.

• For every r ∈ {2, 3, . . . , d − 1}, add d − r branches of one leaf each to every internal vertex of T whose number of
children is r . Call the augmented tree T ′, and denote by L̃(T ′) the set of the additional leaves added to T to obtain
the strictly d-ary tree T ′. If |T |r stands for the number of internal vertices of T with r children, then we have

|L̃(T ′)| =

d−1∑
r=2

(d − r)|T |r < (d − 2)|T |, thus |L̃(T ′)| = O
(
n

1
2
)
,

because it is easy to see that the total number of internal vertices of T is less than its number of leaves. Note that

|T ′
| = |T | + |L̃(T ′)| = Θ

(
n

1
2
)
.

• Consider the tree T ′. Let m be the greatest positive integer satisfying both m ≡ 1 mod (d − 1) and m ≤ n
1
2 . So we

have ⌊n
1
2 ⌋ − (d − 2) ≤ m ≤ ⌊n

1
2 ⌋. Since it suffices to prove the statement for sufficiently large n, we may assume

that m ≥ d. Choose an arbitrary strictly d-ary tree S with m − (d − 1) leaves so that

⌊n
1
2 ⌋ + 3 − 2d ≤ |S| ≤ ⌊n

1
2 ⌋ + 1 − d .

Append a copy of S to every leaf l of T ′ that does not belong to L̃(T ′) by identifying its root with l. Call the resulting
tree T ′′. We shall refer to the tree S as a ‘dangling’ tree of T ′′. Note that

|T ′′
| = |T | · |S| + |L̃(T ′)| = n − O

(
n

1
2
)

and that |T ′′
| < n in view of the inequalities

|T | ≤ n
1
2 , |S| ≤ n

1
2 − (d − 1), |L̃(T ′)| < (d − 1)|T | .

• Additionally, pick an arbitrary strictly d-ary tree SP with

1 + n − |T ′′
| = O

(
n

1
2
)

leaves and append the root of T ′′ to a leaf of SP . Denote by T ∗ the strictly d-ary tree that results from this construction.
Note that

|T ∗
| = |T ′′

| + |SP | − 1 = n .
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Now, let 1 ≤ k ≤ |T | be an arbitrary but fixed positive integer, and pick k leaves of T ∗ uniformly at random. The
probability that none of the k randomly chosen leaves of T ∗ lies in L̃(T ′) or SP and no two of them belong to the same
dangling tree of T ∗ is exactly(

|T |

k

)(
|T∗|

k

) · |S|k .

In words: since there are exactly |T | dangling trees in T ∗, we choose k of them and one leaf from each of the k chosen
dangling trees to obtain such a subset of k leaves of T ∗.

With Lemma 4 at our disposal, we obtain(
|T |

k

)(
|T∗|

k

) · |S|k =

(
|T | · |S|

)k(1 − O
(
|T |

−1))
nk
(
1 − O

(
n−1

))
= 1 − O

(
n−

1
2
) (5)

as n → ∞. Now let D be a d-ary tree with k leaves. To simplify matters, define the following events: E1 is the event that
the k distinct randomly chosen leaves of T ∗ induce a copy of D; E2 is the event that the k leaves are randomly chosen
from distinct dangling trees of T ∗.

Note that the tree induced by k leaves of T ∗ that belong to k distinct dangling trees is equal to the tree induced by
the k leaves of T to which these k dangling trees were attached. Hence the probability P(E1 ∩ E2) that k randomly chosen
leaves of T ∗ are from distinct dangling trees of T ∗ and induce a copy of D is given by

P(E1 ∩ E2) = P(E1|E2) · P(E2) =
c(D, T )(

|T |

|D|

) ·

(
|T |

k

)
· |S|k(

|T∗|

k

) =
c(D, T )(n

k

) · |S|k

(recall that T ∗ has n leaves). From this observation and the fact that γ (D, T ∗) is precisely the probability P(E1) that k
distinct randomly chosen leaves of T ∗ induce a copy of D, we deduce that

γ (D, T ∗) = P(E1) = P(E1 ∩ E2) + P(E1|EC
2 )(1 − P(E2))

=
c(D, T )(n

k

) · |S|k + P(E1|EC
2 ) ·

(
1 −

(
|T |

k

)
· |S|k(n
k

) )
by virtue of the law of total probability, where P(E1|EC

2 ) stands for the probability that k distinct leaves of T ∗ induce a
copy of D under the condition that the event E2 has not occurred.

This implies that

γ (D, T ∗) =
c(D, T )(

|T |

k

) +

(
1 −

(
|T |

k

)
· |S|k(n
k

) )
·

(
P(E1|EC

2 ) −
c(D, T )(

|T |

k

) )
,

and since P(E1|EC
2 ) and γ (D, T ) = c(D, T )/

(
|T |

k

)
are both between 0 and 1, it follows from the asymptotic formula (5) that

γ (D, T ∗) − γ (D, T ) = O(n−1/2) .

This finishes the proof of the first part of the theorem.
Finally, the immediate consequence we obtain is that

Id(D) = lim sup
|T |→∞

T d-ary tree

γ (D, T ) = lim sup
|T∗|→∞

γ (D, T ∗) ≤ lim sup
|T |→∞

T strictly d-ary tree

γ (D, T ) = id(D) .

In other words, this shows that Id(D) ≤ id(D). Thus, the proof of the second part of the theorem is completed as well
because we have Id(D) ≥ id(D) by definition. □

With Theorem 5 and its proof at hand, we can now prove an analogue of Theorem 3 for the maximum density in
strictly d-ary trees.

Corollary 6. For every fixed positive integer d ≥ 2 and every d-ary tree D, we have

max
|T |=n

T strictly d-ary tree

γ (D, T ) = id(D) + O(n−1/2)

for all n ≥ |D|. In particular, we have

lim
n→∞

max
|T |=n

T strictly d-ary tree

γ (D, T ) = id(D) .
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Proof. Using the identity id(D) = Id(D) from Theorem 5 together with the first claim of Theorem 3, we immediately
obtain

max
|T |=n

T strictly d-ary tree

γ (D, T ) ≤ max
|T |=n

T d-ary tree

γ (D, T ) = id(D) + O
(
n−1) . (6)

Also, the second part of Theorem 3 gives

id(D) = Id(D) ≤ max
|T |=⌊n1/2⌋

T d-ary tree

γ (D, T ) , (7)

while the first claim of Theorem 5 guarantees that we can construct a strictly d-ary tree T ∗ with n leaves from the tree
Tmax that attains the maximum in (7), such that

γ (D, Tmax) = γ (D, T ∗) + O
(
n−

1
2
)
. (8)

Formulae (7) and (8) immediately give

id(D) ≤ γ (D, T ∗) + O
(
n−

1
2
)

≤ max
|T |=n

T strictly d-ary tree

γ (D, T ) + O
(
n−

1
2
)
,

which, together with (6), completes the proof of the corollary. □

In certain cases, we suspect a stronger asymptotic result on the maximum density in strictly d-ary trees [8]. This, in
particular, happens when

max
|T |=n

T d-ary tree

c(D, T )

is attained by strictly d-ary trees for every n ≡ 1 mod (d − 1). Finally, a natural question to ask at this point is the
following:

Question 1. Can the O-term in Corollary 6 be improved further for general d-ary trees D?

5. Inducibility of a binary tree in d-ary trees

Our aim in this section is to compare the inducibilities of a binary tree B in d-ary trees, for different values of d. It
turns out that id(B) is independent of d.

Theorem 7. Every binary tree B satisfies

id(B) = i2(B) = Id(B) = I2(B)

for every d.

Proof. The following correspondence is our stepping stone for proving the assertion. Let d ≥ 3 be fixed, and fix an arbitrary
total order ≺ on the set of strictly d-ary trees. For a strictly d-ary tree T , we always order the branches T1, T2, . . . , Td in
such a way that

T1 ⪯ T2 ⪯ · · · ⪯ Td .

From the tree T , we build a binary tree G(T ) by means of the recursive algorithm depicted in Fig. 5, starting with the
single leaf being invariant under G. More specifically, for |T | > 1, the tree G(T ) is obtained as follows:

• draw a path on d − 1 vertices v2, v3, . . . , vd in this order (v2 and vd are the endvertices of the path);
• attach a leaf li (by dropping a pendant edge) to every vertex vi of the path except for the lowest vertex v2;
• replace the vertex v2 of the path by an internal vertex with two leaves l1 and l2 attached to it;
• append the root of G(Ti) to leaf li for every i ∈ {1, 2, . . . , d}. The vertex vd is the root of G(T ).

For example, G maps the star Sd to the binary caterpillar F 2
d . With this transformation at hand, let us prove that the

inequality

c
(
B,G(T )

)
≥ c(B, T )

holds for every binary tree B and every strictly d-ary tree T .
The construction of G(T ) also yields a natural bijection between the leaves of T and those of G(T ). We can show by

induction that if a set of leaves of T induces a copy of a binary tree B, then so do the corresponding leaves in G(T ). This
is clearly true when |T | = 1. For the induction step, we have two cases:
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Fig. 5. T is a strictly d-ary tree, and G(T ) is its corresponding binary tree under the tree transformation G described in the proof of Theorem 7.

• If the leaves that induce B all lie in one branch Ti for some i ∈ {1, 2, . . . , d}, then the corresponding leaves lie in
G(Ti), and we are done by the induction hypothesis.

• Otherwise, they lie in exactly two branches Ti and Tj for some i ̸= j ∈ {1, 2, . . . , d}, and the two leaf sets induce the
two branches of B. By the induction hypothesis, this is also true for the corresponding leaves in G(Ti) and G(Tj), and
we are done again.

This shows that every subset of leaves of T that induces a copy of B corresponds to a unique subset of leaves of G(T )
that induces a copy of B. Therefore, there is an injection from the copies of B in T to the copies of B in G(T ), and we have
c(B, T ) ≤ c

(
B,G(T )

)
as claimed. Consequently, we arrive at

id(B) ≤ lim sup
|T |→∞

T strictly d-ary tree

γ
(
B,G(T )

)
≤ lim sup

|T |→∞

T binary tree

γ
(
B, T

)
= i2(B) .

On the other hand, we have both i2(B) = I2(B) and Id(B) ≥ I2(B) by definition, while Corollary 6 gives us id(B) = Id(B).
Hence, the statement of the theorem follows. □

We point out that the analogue of Theorem 7 for non-binary trees is not true in general: as Theorem 1 shows, the
inducibility id(Sk) of the k-leaf star is a strictly increasing function of d for k ≥ 3.

From here onwards, we shall use only id(D). Our next section deals with some bounds on the inducibility.

6. Some general results

Let us say something about how small id(D) can be:

Proposition 8. Let d ≥ 2 be an arbitrary but fixed positive integer. Every d-ary tree D with at least two leaves satisfies

id(D) ≥
(|D| − 1)!

|D|
|D|−1

− 1
.

In particular, every d-ary tree has positive inducibility.

Proof. We employ a tree construction similar to the one used for proving that id(D) = Id(D). Fix d ≥ 2. For two strictly
d-ary trees S1, S2, denote by F(S1; S2) the unique strictly d-ary tree that is formed by appending the root of S2 to every
leaf of S1. See Fig. 6 for a picture. So we have |F(S1; S2)| = |S1| · |S2|.

We define a sequence of strictly d-ary trees T [n] as follows: T [1] is just a single vertex, and T [n+1]
= F(D; T [n]) for n ≥ 1.

It is clear that T [2]
= D and |T [n]

| = |D|
n−1. In this fashion, there are |D| · c(D, T [n]) copies of D in the |D| copies of T [n]

that are attached to the leaves of D to obtain T [n+1]. Also, if one takes one arbitrary leaf from each of these |D| copies, one
obtains a total of another |T [n]

|
|D| copies of D. Thus, we get

c(D, T [1+n]) ≥ |D| · c(D, T [n]) + |T [n]
|
|D|

,

which gives

c(D, T [1+n]) ≥

n−1∑
j=0

|D|
j
· |T [n−j]

|
|D|
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Fig. 6. A rough picture of the tree F(S1; S2) defined in the proof of Proposition 8.

by iteration as c(D, T [1]) = 0. Since |T [n−j]
| = |D|

n−j−1, we establish the inequality

c(D, T [n]) ≥ |D|
(n−2)|D|

·

n−2∑
j=0

|D|
j(1−|D|) ,

which becomes

γ
(
D, T [n])

≥
|D|

(n−1)|D|
− |D|

n−1

(|D|
|D|

− |D|)
(
|D|n−1

|D|

) .

Letting n → ∞ produces

lim sup
n→∞

γ
(
D, T [n])

≥
(|D| − 1)!

|D|
|D|−1

− 1
and, in particular, the assertion of the proposition. □

The bound obtained in Proposition 8 seems to be weak in general. Possibly, Sd is even the only d-ary tree that attains
this bound (see Theorem 1).

The tree F(S1; S2) (as constructed in the proof of Proposition 8) offers another special result:

Theorem 9. Let d ≥ 2 be an arbitrary but fixed positive integer. For two d-ary trees S1, S2, let F(S1; S2) be as defined in the
proof of Proposition 8. Then we have

id
(
F(S1; S2)

)
≥

(|S1| · |S2|)!
(|S2|!)|S1| · |S1||S1|·|S2|

·
(
id(S2)

)|S1|
.

Proof. Fix d ≥ 2. For a d-ary tree T , it is easy to see that a copy of F(S1; S2) in F(S1; T ) can be obtained by taking one
copy of S2 in T for each of the |S1| copies of T planted in F(S1; T ). Thus, the inequality

c
(
F(S1; S2),F(S1; T )

)
≥ c

(
S2, T

)|S1|

is valid so that we obtain

max
|T ′ |=|S1 |·|T |

T ′ d-ary tree

c
(
F(S1; S2), T ′

)(
|S1|·|T |

|S1|·|S2|

) ≥

(
|T |

|S2|

)|S1|(
|S1|·|T |

|S1|·|S2|

) · γ
(
S2, T

)|S1|
.

Now we choose T in such a way that

|T | = n, c(S2, T ) = max
|T ′ |=n

T ′ d-ary tree

c
(
S2, T ′

)
.

Letting n → ∞ yields

lim sup
n→∞

max
|T ′ |=|S1 |·n

T ′ d-ary tree

γ
(
F(S1; S2), T ′

)
≥

(|S1| · |S2|)!
(|S2|!)|S1| · |S1||S1|·|S2|

·
(
id(S2)

)|S1|
.

Consequently, we obtain the desired inequality. □

In some special cases, there is an upper bound that asymptotically matches the lower bound on id
(
F(S1; S2)

)
as

|F(S1; S2)| gets large—see [8].
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7. The trees with the maximal inducibility

The first natural question to pose regarding a graph invariant concerns its extreme values and the extremal graphs. In
our case, we have already proved that every tree has positive inducibility (Proposition 8) and that id(F 2

k ) = 1 for every
k and every d (Theorem 2). But besides binary caterpillars, are there other d-ary trees with inducibility 1? The answer
turns out to be negative. This extends the result for binary trees in [6].

Theorem 10. Let d ≥ 2 be an arbitrary but fixed positive integer. Among all d-ary trees, only binary caterpillars have (d-ary)
inducibility 1.

Proof. Fix d ≥ 2 and let us prove that for any fixed positive integers k > 1 and n > dk−2, every d-ary tree with n leaves
contains a copy of the k-leaf binary caterpillar F 2

k .
The key observation is that if a d-ary tree has height at least k − 1, then it must have F 2

k as a leaf-induced subtree.
So fix k > 1, n > dk−2, and consider a d-ary tree T with n leaves. It is easy to see by induction on h that for every fixed
integer h ≥ 0, a d-ary tree with height at most h can never have more than dh leaves. Since T has more than dk−2 leaves,
its height must be at least k− 1, so it contains F 2

k . In conclusion, for k > 1, every n-leaf d-ary tree must contain a copy of
the binary caterpillar F 2

k as soon as n > dk−2.
Now, consider a d-ary tree D that has at least three leaves. If D is different from F 2

|D|
, then we obtain c(D, T ) <

(
|T |

|D|

)
for

every d-ary tree T with n leaves provided that n > dk−2. Therefore, fixing n > dk−2, we get

max
|T |=n

T d-ary tree

γ (D, T ) < 1 .

On the other hand, from the second part of Theorem 3, we have

id(D) ≤ max
|T |=n

T d-ary tree

γ (D, T ) ,

which now completes the proof of the theorem. □

As one might expect, the limit

lim inf
|T |→∞

T d-ary tree

γ (F 2
k , T )

is positive for every d and every k. An exact formula is available in [7].

8. Concluding comments

It seems appropriate to close with further problems on the inducibility of d-ary trees. Since we already have a general
lower bound on id(D), it would be nice to have a better understanding of the following general problem:

Problem 1. Given positive integers d ≥ 2 and k ≥ 5, find

min
|D|=k

D d-ary tree

id(D) ,

and furthermore, characterize the d-ary trees that attain this minimum.

We conjecture that except for binary trees, the inducibility in d-ary trees always depends on d (in contrast to binary
trees, where it does not; see Theorem 7 and the discussion thereafter).

Conjecture 2. Let d ≥ 2 be an arbitrary but fixed positive integer. Among all d-ary trees D, only binary trees satisfy

id(D) = id+1(D) = id+2(D) = · · · .
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