
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-06

NEURAL NETWORK DISTRIBUTIONAL INITIAL
CONDITION ROBUSTNESS IN POWER SYSTEMS

Smith, Philip B.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/70761

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

NEURAL NETWORK DISTRIBUTIONAL INITIAL
CONDITION ROBUSTNESS IN POWER SYSTEMS

by

Philip B. Smith

June 2022

Thesis Advisor: Wei Kang
Co-Advisor: Thor Martinsen
Second Reader: Anthony J. Gannon

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
NEURAL NETWORK DISTRIBUTIONAL INITIAL CONDITION
ROBUSTNESS IN POWER SYSTEMS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Philip B. Smith

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 How can we measure and classify neural network robustness across differently distributed data to avoid
misuse of machine learning tools? This thesis adopts several metrics to measure the initial condition
robustness of feedforward neural networks, allowing the creators of such networks to measure and refine
their robustness and performance. This could allow highly robust neural networks to be used reliably on
untrained data distributions and prevent the use of less robust networks as a black box in a poor
environment. We test this measurement of robustness on a series of differently sized neural networks trained
to detect and classify microgrid power system faults, giving examples of both robust and nonrobust
networks, along with suggestions on how to maximize robustness. The analysis reveals that collecting data
from segments along trajectories enhances the robustness of neural networks. In such data sets, the
distribution of data points is dominated by the dynamics of the system, not the initial state distribution.

 14. SUBJECT TERMS
neural network, robustness, microgrid, feedforward 15. NUMBER OF

PAGES
 67
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

NEURAL NETWORK DISTRIBUTIONAL INITIAL CONDITION
ROBUSTNESS IN POWER SYSTEMS

Philip B. Smith
Ensign, United States Navy

BS, United States Naval Academy, 2021

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2022

Approved by: Wei Kang
 Advisor

 Thor Martinsen
 Co-Advisor

 Anthony J. Gannon
 Second Reader

 Francis X. Giraldo
 Chair, Department of Applied Mathematics

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 How can we measure and classify neural network robustness across differently

distributed data to avoid misuse of machine learning tools? This thesis adopts several

metrics to measure the initial condition robustness of feedforward neural networks,

allowing the creators of such networks to measure and refine their robustness and

performance. This could allow highly robust neural networks to be used reliably on

untrained data distributions and prevent the use of less robust networks as a black box in

a poor environment. We test this measurement of robustness on a series of differently

sized neural networks trained to detect and classify microgrid power system faults, giving

examples of both robust and nonrobust networks, along with suggestions on how to

maximize robustness. The analysis reveals that collecting data from segments along

trajectories enhances the robustness of neural networks. In such data sets, the distribution

of data points is dominated by the dynamics of the system, not the initial state

distribution.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Overview . 1
1.2 Motivations . 1

2 Literature Review 3
2.1 Feedforward Neural Networks 3
2.2 Applications of Machine Learning 5
2.3 Applications to Microgrids . 9

3 Methodology 11
3.1 Data Generation and Structure 11
3.2 Lower Dimensional Distances 13
3.3 Simulated Data . 15

4 Results 17
4.1 Network Construction . 17
4.2 Distributional Changes . 20
4.3 Depth and Width Changes . 22
4.4 Data Distribution of Dynamic Systems 29

5 Conclusions 33
5.1 Analysis . 33
5.2 Implications and Limitations . 34
5.3 Potential for Future Work . 35

Appendix: Matlab Code 37
A.1 Simulation Code . 37
A.2 Neural Network Training . 41

vii

List of References 47

Initial Distribution List 49

viii

List of Figures

Figure 2.1 An example neural network with two hidden layers and three nodes
per hidden layer. 4

Figure 3.1 A 9-bus power system model. Source: [17]. 11

Figure 3.2 The probability density functions of various considered initial con-
ditions, scaled onto the domain G = [−5, 5] for clarity. Significant
distributions are solid lines, while the rejected distributions are dotted
lines. 14

Figure 4.1 A visualization of our first optimum neural network, with four hidden
layers and eight nodes per layer. Bias terms have been omitted for
clarity. 18

Figure 4.2 Error histograms of our base network visualized in Figure 4.1 on val-
idation data with uniformly, normally, and log-normally distributed
initial condition variation. 19

Figure 4.3 Prediction errors of a neural network composed of four hidden layers
of eight nodes each on normally distributed data with ` = 0 and
f =

√
1/1200. 21

Figure 4.4 Error histograms of network performance on data with left- and
right-skew log-normal initial condition variation, with distribution
parameters matching training. This is accomplished by using param-
eters `. = log(0.05)−log(4/3)/2 andf. =

√
log(4/3), then shifting

to match the domain. 22

Figure 4.5 Error histograms of a network with three hidden layers of eight nodes
each on validation data with uniformly, normally, and log-normally
distributed initial condition variation. 23

Figure 4.6 Error histograms of a network with two hidden layers of eight nodes
each on validation data with uniformly, normally, and log-normally
distributed initial condition variation. 24

ix

Figure 4.7 Error histograms of a network with a single hidden layer of eight
nodes each on validation data with uniformly, normally, and log-
normally distributed initial condition variation. 25

Figure 4.8 Error histograms of a network with four hidden layers of four nodes
each on validation data with uniformly, normally, and log-normally
distributed initial condition variation. 27

Figure 4.9 Error histograms of a network with four hidden layers of two nodes
each on validation data with uniformly, normally, and log-normally
distributed initial condition variation. 28

Figure 4.10 Error histograms of a network with three hidden layers of four nodes
each on validation data with uniformly, normally, and log-normally
distributed initial condition variation. 29

Figure 4.11 Histogram of 20, 000 potential X1 choices at C = 0 and at a randomly
selected time, with uniform, normal, and log-normal distributions. 30

x

List of Tables

Table 4.1 Root mean squared errors of different sized neural networks on a
validation data set with uniformly distributed initial conditions, with
the chosen network bolded. 17

Table 4.2 Misclassification rate of differently sized neural networks on a vali-
dation data set with uniformly distributed initial conditions, with the
chosen neural network bolded. Note the upper triangular structure in
both this table and Table 4.1. 18

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

DOD Department of Defense

ML Machine Learning

NPS Naval Postgraduate School

RMSE Root Mean Squared Error

USN U.S. Navy

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

I owe special thanks to my advisors Professor Wei Kang and CDR Thor Martinsen for their
endless support and help focusing my thoughts. This thesis would not have been possible
without them.

Additionally, I would like to thank Visiting Professor Tron Omland of the Norwegian
National Security Authority for his assistance reviewing my work. His contributions signif-
icantly increased the quality of my work.

Finally, I would like to thank my friends for their continuous advice and aid, and my family
for their constant love.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

1.1 Overview
Machine learning has become ubiquitous in many fields, from computer vision, to enter-
tainment, to national defense. While we rely on these systems, not all of them are always
robust enough for real-world cases. Adversarial attacks, data poisoning, or unpredicted lev-
els or types of noise can lead to incorrect decisions, classifications, or predictions by the
machine learning system without raising any red flags. In this thesis, we examine the effects
of different types and levels of noise and uncertainties affecting both the initial conditions
of systems and the data itself, examining the robustness of a traditional feed-forward neural
network in an industrial setting.

Electrical microgrids were chosen as the field of study. As self-sufficient energy systems,
microgrids can operate disconnected from larger interconnected energy grids, making them
a popular choice for national defense, infrastructure, and other uses where reliability, re-
dundancy, and efficiency is a priority. Since a microgrid is relatively small compared to
traditional electric grids, its behavior is also easier to monitor and analyze.

Simulatedmodelsweremainly used, due to institutional constraints. Thesemodels simulated
the operation of the rotors in a power generator running with three potential faults, or with
no fault. Code for the simulations is included in Appendix A.1.

1.2 Motivations
This thesis attempts to both build feed-forward neural networks capable of monitoring and
drawing conclusions about the behavior of microgrids and to test the robustness of these
machine learning models against uncertainties of data distribution.

Attempting to monitor an electrical system’s power consumption and metrics to draw
conclusions about performance and system tasking is not new. The difference between a
system being on or off should be visible to a human observer, but as a power system becomes

1

more complex the pattern recognition and classification required for task assignment is
much more suited to machine learning. Machine learning tools able to identify tasks or
performance of a component in a microgrid would be very useful.

Secondly, we are concerned about the robustness of machine learning in general, and our
feed-forward neural network specifically. The desire for robustness includes the ability
of a machine learning system to retain an acceptable degree of accuracy across different
operating conditions. If an adversary influences the sampling, labelling, or probability
distribution of even a small proportion of training or testing data, the performance of a
model can be greatly affected. Robustness may also affect non-adversarial situations, such
as the applicability of a model to a new environment or maintaining accuracy after an
unanticipated shift in probability distributions. A robust model could be used as more of a
“black box” in multiple situations and probability distributions, while non-robust models
cannot be applied easily to different situations.

In this thesis, we will examine distributional robustness, which we define as the quantifiable
ability of a model to perform on a given distribution a measurable distance from the
distribution on which the model was originally trained. Distributional robustness can be
viewed as a proportion of original performance on the trained dataset. To accomplish
this, we will generate different data sets by sampling the initial condition variation of our
power system from different distributions. While maximizing robustness may seem ideal,
discovering that a model lacks robustness is also a very valuable finding, as it may prevent
future classification errors.

2

CHAPTER 2:
Literature Review

Machine learning, or the applications of algorithms to draw inferences from data or solve
problems without first principle models or explicit solutions, remains a widely popular
and useful field of study. This thesis mainly focuses on feedforward neural networks, a
basic yet useful machine learning tool, but the study of robustness can easily be extended
to other machine learning tools. This chapter explains the development and function of
feedforward neural networks, explores how distributional robustness applies, and examines
the importance and use of electrical microgrids.

2.1 Feedforward Neural Networks
Designed to mirror the structure of a brain, feedforward neural networks are machine
learning systems in which information moves from one set of neurons to another in a
series of linear functions and activations. In a feedforward network, information only moves
forward, without forming a cycle, thereby keeping the system much simpler than recurrent
networks, which contain cycles. The network attempts to find ~̂, an approximation of ground
truth ~, given G as an input. To construct this neural network, we choose hyperparameters
=; layers, with B; neurons in layer ;, with =; and B; derived empirically. The first layer draws
from the input G, and each neuron in all subsequent layers draw from the previous layer.
Mathematically, our 9 th neuron in layer ; + 1 outputs

5

(B;∑
8=1
,
(;)
98
0
(;)
8
+ 1 (;)

)
= 5 (I(;+1)

9
) = 0 (;+1)

9
,

where B; is the number of neurons in layer ;, 0 (;) is the set of outputs from layer ;, and
,
(;)
8 9

represents the weight of the connection between neuron 8 in layer ; and neuron 9 in
layer ; + 1. 1 (;)

8
is the bias layer connected to unit 8 in layer ; + 1. The function 5 is our

activation function, which is usually the sigmoid, hyperbolic tangent, or Rectified Linear
Unit (ReLU) function [1]. A neural network is constructed by linking collections of nodes
in layers, visible in Figure 2.1.

3

G1

G2

G3

Input
layer

0
(1)
1

0
(1)
2

0
(1)
3

Hidden
layer 1

0
(2)
1

0
(2)
2

0
(2)
3

Hidden
layer 2

~̂1

Output
layer

Figure 2.1. An example neural network with two hidden layers and three nodes per
hidden layer.

To find our matrix , of weights, we use a process called backpropagation [2], based on
gradient descent to reduce a cost function. For a training set of < examples, we define our
cost function as

� (,, 1) =
[

1
<

<∑
8=1

(1
2
| |ℎ,,1 (G (8)) − ~(8) | |22

)]
+ _

2

=;−1∑
;=1

B;∑
8=1

B;+1∑
9=1

(
,
(;)
98

)2
,

where ℎ,,1 (G (8)) is the final output of our neural network trained on a fixed training set
{(G (1) , ~(1)), . . . (G (<) , ~(<))} and _ is a regularization term for the weights, preventing
overfitting.

To determine the, and 1 which will minimize �, we first initialize each parameter, (;)
8 9

and
each 1 (;)

8
as a random value near zero to accomplish symmetry breaking. While there are

many ways to train neural networks, we chose to use the following gradient descent method
to illustrate the training process. We update the parameters, and 1 as

,
(;)
8 9

:= , (;)
8 9
− U m

m,
(;)
8 9

� (,, 1)

and
1
(;)
8

:= 1 (;)
8
− U m

m1
(;)
8

� (,, 1).

4

The partial derivatives are computed as follows. Letting 0 (1) = G, with G as our input data,
we compute our generalized forward propagation as

I(;+1) = , (;)0 (;) + 1 (;)

and
0 (;+1) = 5 (I(;+1)).

At the output layer of our network, we set

X(=;) = −(~ − 0 (=;)) ◦ 5 ′(I(=;)),

where ◦ represents the Hadamard product of two matrices. For ; = =; − 1, =; − 2, ..., 2, we
set

X(;) = ((, (;)))X(;+1)) ◦ 5 ′(I(;)).

We can then compute the partial derivatives

∇, (;) � (,, 1; G, ~) = X(;+1) (0 (;)))

and
∇1 (;) � (,, 1; G, ~) = X(;+1) .

These equations come together to give us a neural network like the one pictured in Figure
2.1.

2.2 Applications of Machine Learning
In recent years, machine learning has become one of the fastest growing fields. The ability to
use algorithms and statisticalmodels to analyze, learn from, and draw conclusions from large
quantities of data has proved useful across many different fields. Cybersecurity applications

5

include improvements to network routing decisions, identification of suspicious activity,
and protection of AI computer vision from data poisoning.

Machine learning systems have proven to be very useful in detecting irregular activities
on a network leading up to an attack. Lu, Mabu, Wang, and Hirasawa developed a class
association rule pruning system based on matching degree and genetic algorithms to unify
misuse detection—detecting the beginning of known attacks on a computer system—and
anomaly detection–detecting suspicious activity not connected to known attacks [3]. This
helped reduce the flaws of misuse detection and anomaly detection, which are weaknesses
in detecting new attacks and a high false positive rate, respectively.

Symmetric key cryptologic systems have also benefited from the application of machine
learning. Yu and Cao proposed using time varying delayed Hopfield neural networks to
form sufficiently pseudorandom binary strings used to encrypt large multi-media files [4].
Once the neural networks finish, this chaotic communication encryption has a much simpler
encryption and decryption process compared to public key encryption.

Machine learning has been extraordinarily useful in computer vision. Caelli and Bischof
provide an excellent in-depth overview of this complex field, discussing how to use complex
algorithms to encode images, extract important features, and accurately associate these
features with specific human knowledge. Machine learning was especially helpful for the
rule generation step, in which the systemmakes steps to generate descriptions of objects [5].
While both computing power and newmachine learning systems have developed in the years
sinceCaelli andBischof published this book, it still forms a very solid basis for understanding
the applications of machine learning to computer vision.

Additionally, machine learning can be used to protect machine learning from data poisoning.
Data poisoning occurs when an adversary tries to manipulate a machine learning system by
changing points in the training data set so the model will mislabel certain instances. Bar-
reno, Nelson, Joseph and Tygar explored several protections against such attacks, including
training a model to use the Reject On Negative Impact (RINO) defense, in which training
examples are discarded if they have a negative impact on performance [6]. There are still
several issues with defense, such as an increase in computational cost and a decrease in
accuracy, but machine learning systems can optimize these costs.

6

Machine learning has been implemented in protecting industry and infrastructure from
cyberattacks in recent years. Linda, Vollmer, and Manic tailored an intrusion detection
system for specific applications in critical infrastructures. Using neural networks for cluster
boundary modeling, their IDS-NNMmodel managed to capture all intrusion attempts using
previously unseen data rather efficiently [7]. They envisioned applications in nuclear plants,
power systems, or other supervisory control and data acquisition (SCADA) fields, especially
since neural network-based models may be able to detect new attacks that a trained person
would not.

The incorporation of these models, however, can pose an additional threat. Recognizing that
these machine learning systems can provide an additional vector of attack into the system,
Anthi, Williams, Rhode, Burnap, and Wedgburry explored the different ways in which
machine learning could be used to attackmachine learning based intrusion detection systems
protecting industrial control systems such as power grids and manufacturing plants. Their
adversarial machine learning attacks decreased the performance of the systems protecting
simulated critical infrastructure by about 10%, but this loss was partially reversed by training
the detection systems to protect against adversarial attacks [8].

2.2.1 Distributional Robustness
Due to a variety of reasons, from operator error to adversarial influence or simply being the
best available option, neural networks may sometimes be used outside of the environment
in which they were trained. This will negatively impact their performance to an uncertain
degree. Quantifying this degree—measuring the robustness of the network—is essential.

More broadly, the desire for robustness includes the ability of a machine learning system to
remain stable across and outside of different probability distributions. Non-robust models
will react poorly to adversarial influence or probability shifts, with large performance
changes resulting from small shifts to the sampling, labelling, or probability distribution
of small proportions of training or testing data. In this paper, we will define distributional
robustness as the quantifiable ability of a model to perform on a given distribution a
measurable distance from the distribution on which the model was originally trained.
Distributional robustness can be viewed as a proportion of original performance on the
trained dataset.

7

Many attempts at creating robust learners and optimizers built on unknown data distributions
rely either on known moments (such as mean and covariance) or on making worst-case
estimates within a limited bound of possible data distributions. Gao and Kleywegt came
up with a statistical-distance-based Distributionally Robust Stochastic Optimizer (DRSO)
that allows consideration of otherwise unwieldy data distributions [9]. By considering the
Wasserstein metric described in Definition 1 [10], Gao and Kleywegt were able to obtain
precise structural descriptions of worst-case distributions, allowing model creators to hedge
bets against likely and unlikely statistical distributions.

Definition 1 Let (Ξ, 3) be a Polish space. For ? ≥ 1, let %? (Ξ) denote the collection of all
probability measures ` on Ξ with a finite ?th moment. Then, there exists some G0 in Ξ such
that ∫

Ξ

3 (G, G0)? 3`(G) < ∞.

The ?th Wasserstein distance between two probability measures ` and a in %? (Ξ) is defined
as

,? (`, a) :=
(

inf
W∈Γ(`,a)

∫
Ξ×Ξ

3 (G, ~)? 3W(G, ~)
) 1

?

,

where Γ(`, a) represents a collection of all measures on Ξ × Ξ with marginals ` and a
on the first and second factors, respectively. Here, a Polish space is a space homeomor-
phic to a complete metric space with a countable dense subset. This definition, however,
is too complex for this paper, as we will only be concerned with the second Wasserstein
distance between two one-dimensional probability distributions. Since all probability dis-
tributions integrate to 1, the 2nd Wasserstein distance between probability measures `1 and
`2 simplifies to

,2(`1, `2) =
(∫
|�−1

1 (G) − �
−1
2 (G) |

2 3G

)1/2

, (2.1)

where �−1
1 and �−1

2 are the inverse cumulative distribution functions, or quantile functions,
of `1 and `2, respectively.

Other choices in model development may increase robustness with regards to distribution.
While self-supervised models may be slightly less efficient and accurate than fully super-
vised models, Hendrycks, Mazeika, Kadavath, and Song demonstrated that self-supervision

8

increases robustness to both adversarial examples and dealing with near-distribution and
out-of-distribution data points [11]. When used in conjunction with a fully supervised sys-
tem, the self-supervised system had minimal impact on accuracy while improving robust
performance without requiring larger models or additional data.

Importantly, higher robustness is not always necessary or desired in machine learning
systems. Several papers found that an increase in adversarial robustness in the ML tool,
defined as resistance against adversarial attacks against the training or classification phase,
can also come with a decrease to performance on the original data set, since the model is
trained to prioritize more than simple performance [12]. Different machine learning systems
may require different levels of robustness—it is more important to have a level of robustness
appropriate for a specific scenario. It is unclear if this drop in performance will still present
itself when studying distributional robustness.

2.3 Applications to Microgrids
As countries and organizations try to modernize power grids, microgrids have shown great
potential. A microgrid is a small electrical network containing both power generators and
power consumers that is usually attached to a broader grid but able to function independently
if required. While microgrids are extraordinarily useful for small to medium scale electrical
system management, the changing nature of a microgrid under load leaves it particularly
vulnerable to electrical faults [13]. Machine learning seems like an appropriate solution for
fault detection, since it has the ability to quickly process and act on a large amount of data.

Traditional microgrid fault detection has not proven to be noise-immune or precise enough
for some microgrid applications. Already, efficient machine learning solutions have been
proposed. One of the newest and most promising solutions involves using multiple layers of
restricted Boltzmann machines to construct a new discrete-wavelet transform system [14].
While this is overly complex for inclusion in this thesis, it is worth noting that each restricted
Boltzmann machine is trained with an artificial neural network, and is significantly more
noise tolerant than currently used commercial models.

While simpler models are not always as noise tolerant, they can still be effective for fault
detection and mitigation. Neural networks by themselves have been shown to efficiently

9

detect faults in both data generated from models and real-world microgrids [13]. In fact,
some simple neural networks can detect faults fast enough to isolate affected areas before
damage is done to the rest of the microgrid [15]. It is therefore important to examine the
distributional robustness of such simple neural networks.

10

CHAPTER 3:
Methodology

3.1 Data Generation and Structure
Our data was simulated as a traditional IEEE 9-bus model with three power generators,
numbered 1, 2, and 3 [16]. An example is shown in Figure 3.1.

Figure 3.1. A 9-bus power system model. Source: [17].

Three fault types in this power system are possible. A fault between generators one and two
is designated Fault 1, between generators two and three is designated Fault 2, and between
generators three and one is designated Fault 3. The goal is to identify a fault using deep
learning with one second of data of the trajectories of angular velocities.

11

Rotor angle speed in radians per second, the rotor angle in radians, and time related according
to the following differential equations.

2�8
l'

3l8

3C
+ �8l8 = %<8 − %48, 8 = 1, 2, 3

3X8

3C
= l8 − l'

%48 = �
2
8 �88 +

=∑
9=1, 9≠8

�8� 9.8 92>B(\8 9 − X8 + X 9),

Here, �8 is the generators’ stored kinetic energy, l' is the angular velocity, l8 is the
angular velocity of the generator, �8 is a drag coefficient, and X8 is the generators rotor
angular position. The two power components, %<8 and %48, are the mechanical and electrical
energy, respectively, for generator 8. �8 is the generator’s constant excitation voltage. �88
is the conductance of each generator at term 8 [18]. The rotor angle equilibrium point for
generators 1, 2, and 3 are 0.0396, 0.3444, and 0.2300 radians, respectively. The angular
velocity of the system is 120c. Matlab data generation code is included in Appendix A.1.

A series of five-second trajectories of each generator measured at 10 Hz were generated in
Matlab, with the initial rotor angle of each generator chosen from a uniform distribution
between [−0.05, 0.05] around the equilibrium for each generator. Each trajectory had an
equal chance of experiencing Fault 1, 2, 3, or no fault at time C = 0, following a uniform
distribution.

From each trajectory, a one-second time window was chosen following a uniform distribu-
tion, giving 10 data measurements from each generator. These were concatenated, so our

12

final data structure for = trajectories is



l
(1)
1 (C1) l

(2)
1 (C1) . . . l

(=)
1 (C1)

...
...

. . .
...

l
(1)
1 (C10) l

(2)
1 (C10) . . . l

(=)
1 (C10)

l
(1)
2 (C1) l

(2)
2 (C1) . . . l

(=)
2 (C1)

...
...

. . .
...

l
(1)
2 (C10) l

(2)
2 (C10) . . . l

(=)
2 (C10)

l
(1)
3 (C1) l

(2)
3 (C1) . . . l

(=)
3 (C1)

...
...

. . .
...

l
(1)
3 (C10) l

(2)
3 (C10) . . . l

(=)
3 (C10)



,

where l(1)0 (C2) represents the angular velocity of rotor 0 during trial 1 at time C2 . After
normalization, this matrix is our input matrix to our neural network.

An output matrix of each trajectory’s fault classification was labeled as integers. Each fault
was represented by the number associated with it, and no fault was represented by the
number 0. This matrix was [

:1 :2 . . . :=

]
.

3.2 Lower Dimensional Distances
To test robustness, we began by attempting to find the furthest initial conditions from the
data on which our network was trained. Our simulated power system data uses a uniform
distribution in its initial condition variation. Our data, however, is highly dimensional, and
the Wasserstein distance defined in Definition 1 is not always computationally efficient in
high dimensions.

Instead, we illustrate the distance between distributions in one-dimensional space. Since our
simulated data uses a uniform distribution, we created a one-dimensional uniform distribu-
tion against which we tested many other statistical distributions, with several constraints,
including data concatenation at the bounds of the uniform distribution, calculating distances
numerically [19]. Within these constraints, we searched for distributions that were not close

13

to a uniform distribution on [−0.05, 0.05] when using the 2nd Wasserstein distance defined
in Definition 1 and Equation 2.1. Some probability distributions are visible in Figure 3.2.

Figure 3.2. The probability density functions of various considered initial conditions,
scaled onto the domain G = [−5, 5] for clarity. Significant distributions are solid
lines, while the rejected distributions are dotted lines.

Our first chosen distribution was a normal distribution with ` = 0 and f = 0.01, chosen
to minimize the amount of data concatenated at the edges. This distribution had a 2nd

Wasserstein distance of 13.49 from the uniform distribution on [−0.05, 0.05] . Its variance
is 0.1001. Our second chosen distribution was a log-normal distribution, created from
a normal distribution with ` = 0 and f = 0.1, then scaled onto [−0.05, 0.05] . This
distribution was slightly further from the uniform distribution than the normal distribution
was, with a 2nd Wasserstein distance of 18.01. Its variance was 0.1018. The covariance
between these two variables is −0.0002.

14

3.3 Simulated Data

3.3.1 Network Construction
We first generated data to construct and optimize an initial neural network. We began
with 5, 000 trajectories each for Faults 1, 2, 3, and no fault. Our data points were drawn
from the trajectories as described in Section 3.1. We studied a random one-second section
of each trajectory, taking measurements from all three generators at 10 Hz, giving us a
30 × 20, 000 input data set on which to train. Our predictions would attempt to match a
1 × 20, 000 vector of fault numbers. To find the optimal network size, we trained and tested
neural networks between one and five layers, between 1 and 16 nodes per layer, using
the hyperbolic tangent, sigmoid, and rectified linear activation functions. In this paper, we
will focus on the hyperbolic tangent function, the highest performing activation function.
Neural networks were constructed using the Matlab nntraintool, which allows users to
create a custom neural network with full control over hyperparameters, training method,
and activation function. Optimization was done with the Levenberg–Marquardt algorithm.
Our simplest optimum network was found with four hidden layers of eight nodes per layer
using the hyperbolic tangent function, which achieved perfect predictions over both the
training data set and a similarly sized, independently developed initial validation set. Code
for training all neural networks is included in Appendix A.2.

Next, we began to test our neural network on differently distributed data. Our original initial
condition was a uniform distribution of initial rotor angles between −0.05 and 0.05 radians
around the equilibrium. Based on the distances calculated in Section 3.2, we generated
more testing data sets using normal and log-normal distributions designed to be a large
distance from our training distribution. All distributions were then truncated to fit within
[−0.05, 0.05]. Once again, our normal distribution used ` = 0 and f = 0.01 and the
log-normal distribution used ` = 0 and f = 0.1, linearly transformed into the domain
of [−0.05, 0.05] . Generating a 30 × 20000 testing set for each of these, our initial neural
network performed perfectly again.

Next, we examined network performance on differently distributed testing sets. Our uniform
distribution we trained our network on had amean of 0 and a standard deviation of

√
1/1200.

Trying tomatch averages and standard deviations of our normal and log-normal distributions
to our training uniform distributions, our normal distribution used ` = 0 and f =

√
1/1200,

15

and the log-normal distribution used ` = log(0.05) − log(4/3)/2 and f =
√

log(4/3),
linearly transformed into the domain of [−0.05, 0.05] . Again, perfect performance was
achieved.

Finally, we varied the size of the network, studying both different depths and widths. Near
perfect performance was achieved here, with the only errors coming from massive changes
to our network. Results for this are included in Section 4.3.

While perfect performance on these sets may seem surprising at first, we thought this
may have been due to our initial choices of initial condition distributions and network
hyperparameters. Since we sample from a random one second interval in the trajectory
instead of directly at the initial condition, it is possible that our interval-based sampling was
the cause of the robustness.

3.3.2 Dynamics Analysis
How could we tell if the dynamic nature of our system was dominating the initial conditions
of our power system? To answer this question, we decided to analyze the initial conditions
of the one second portion of the trajectory we actually used in our neural network. To do
this, we compared histograms of the rotor angle of all three generators both at C = 0 and
at the beginning of a random one-second interval for uniform, normal, and log-normal
distributions.

Our theory was that the dynamic nature of our problem would force most trajectories to
behave similarly. If this was true, the rotor angle at C = 0 would follow the given distribution
around the equilibrium point of the rotor, but the beginning of a randomly selected window
for a given generator would look the same, regardless of initial condition distribution. If the
histograms were significantly different, however, this might suggest that the dynamics of
our microgrid do not dominate our initial condition variation, and that something else may
be the cause of our high level of distributional robustness.

16

CHAPTER 4:
Results

4.1 Network Construction
Our first task was to optimize our neural network’s parameters and hyperparameters to
achieve the best possible predictions. Our two performance metrics are root mean squared
error (RMSE), (the square root of the sum of the square of the difference between predictions
and ground truth divided by the number of samples) and misclassification rate, which is the
proportion of incorrectly classified trajectories. A misclassification rate of 0 means every
trajectory was correctly classified. For reference, the RMSE of random predictions is just
over 1.58. Iterating over the number of hidden layers and nodes per layer, we found the
RMSE and misclassification rates visible in Tables 4.1 and 4.2, respectively.

Nodes per Hidden Layer
2 4 6 8 10 12

1 0.2202 0.0173 0.0679 0.1684 0.1001 0.1815
Hidden
Layers

2 0.2643 0.0674 0.1489 0.2385 0.1142 0.0916
3 0.1797 0.2604 0.1471 0.1327 0.2291 0.0368
4 0.0381 0.0000 0.0227 0.0137 0.1421 0.0322
5 0.2226 0.0003 0.1946 0.1070 0.0009 0.0227

Table 4.1. Root mean squared errors of different sized neural networks on
a validation data set with uniformly distributed initial conditions, with the
chosen network bolded.

We can see an upper triangular pattern in Table 4.2, with higher performing networks
clustered in the upper right of the tables. This structure suggests any increase in hidden
layers should also be accompanied by an increase in nodes per layer to avoid an increase
in misclassification. To take full advantage of the upper triangular structure in both tables,
we chose to use a network with four hidden layers of eight nodes each as our base best
neural network, which consistently performed the best. This network is visualized in Figure
4.1, and performed very effectively on all data distributions. On the validation data set with
uniformly distributed initial conditions, the RMSEwas 3.72×10−2, and themisclassification

17

Nodes per Hidden Layer
2 4 6 8 10 12

1 0.04145 0 0 0 0 0
Hidden
Layers

2 0.0982 0 0 0 0 0
3 0.0364 0.10665 0 0 0 0
4 0 0 0.00065 0 0 0
5 0.04835 0 0.0432 0.01225 0 0

Table 4.2. Misclassification rate of differently sized neural networks on a
validation data set with uniformly distributed initial conditions, with the
chosen neural network bolded. Note the upper triangular structure in both
this table and Table 4.1.

rate was 0. TheRMSEwas 1.27×10−2 and themisclassification rate was 0 on validation data
with normally distributed initial conditions. On the validation data set with log-normally
distributed initial conditions, the RMSE was 1.26 × 10−2, and the misclassification rate
was 0. A histogram of error predictions for all three distributions is included in Figure
4.2. Examining these histograms, we see a pattern in all predictions across distributions.
Our model predicts no fault and Fault 1 cases with almost perfect accuracy across uniform,
normal, and log-normal distributions, but the error increases when it considers Faults 2 and
3.

G1

G2

G3

G30

...

0
(1)
1

0
(1)
2

0
(1)
8

...

0
(2)
1

0
(2)
2

0
(2)
8

...

0
(3)
1

0
(3)
2

0
(3)
8

...

0
(4)
1

0
(4)
2

0
(4)
8

...
~̂

...

Input
layer Hidden

layers

Output
layer

Figure 4.1. A visualization of our first optimum neural network, with four hidden
layers and eight nodes per layer. Bias terms have been omitted for clarity.

18

(a) Uniform distribution (b) Normal distribution, ` = 0, f = 0.1

(c) Log-normal distribution, ` = 0, f = 0.01, scaled

Figure 4.2. Error histograms of our base network visualized in Figure 4.1 on vali-
dation data with uniformly, normally, and log-normally distributed initial condition
variation.

We were rather surprised to see such high performance across distributions, but on closer
examination it seems tomake sense. Our network is able to perfectly predictmost trajectories
that have an initial condition variation of [−0.05, 0.05] around the equilibrium, and both
our normal and our log-normal distributions exclusively produce trajectories that begin in
that range. Another possible explanation for the network’s accuracy across initial condition
distributions comes from the sampling method and the dynamic nature of our problem.
Since each input comes from a random one second window from a five second trajectory, it

19

is possible the initial condition variation is dominated by the dynamics of the power system,
causing most trajectories to behave similarly to each other regardless of initial condition
variation.

We decided to change both our distributions and our network hyperparameters to try and
explain this accuracy. First, we will examine if our base network with four hidden layers
of eight nodes each loses performance as we apply it to distributions further and further
away from the uniform distribution it was trained on. Next, we will apply differently sized
networks to the three distributions our base network performed so well on, to see if our
network just happened to be robust, or if other networks perform similarly.

4.2 Distributional Changes
We tested the neural network visualized in Figure 4.1 against datawith different normally and
log-normally distributed initial conditions. If our network performed similarly on additional
distributions that are not close to the trained uniform distribution, this would suggest our
network was robust. Again, if an initial condition from a distribution was chosen above
or below of the allowed range of [−0.05, 0.05], it was assigned the value 0.05 or −0.05,
depending on which side of the range it fell.

Our first changed distribution was a normal distribution modeled off of our uniform distri-
bution. This normal distribution had the same mean and standard deviation as the original
training uniform distribution, with ` = 0 and f =

√
1/1200 u 0.0289. Using our original

network composed of four hidden layers of eight nodes each, our RMSE was 0.119 and our
misclassification rate was 0.

Next, we tried different log-normal distributions. We again matched the mean and standard
deviation to the training uniform distribution instead of choosing distribution parameters
empirically by distance. Since a log-normal distribution is skewed to the right, however,
we created two log-normal distributions, which were mirror images of each other, each
with ` = 0 and f =

√
1/1200 u 0.0289. To create a log-normal distribution -, we

considered a normal distribution . = ;>�(-), with `. = log(0.05) − log(4/3)/2 u −3.140
and f. =

√
log(4/3) u 0.536. This created a single, right skew log-normal distribution -

with a standard deviation that matches the original uniform distribution, but with ` = 0.05.

20

Figure 4.3. Prediction errors of a neural network composed of four hidden layers of
eight nodes each on normally distributed data with ` = 0 and f =

√
1/1200.

To compensate for the skew and center distributions around 0, we considered the two
distributions -1 = - − 0.05 and -2 = −- + 0.05, producing a right-skewed and a left-
skewed log-normal distribution, respectively, with the correct mean and standard deviation.

We ran each distribution through our base neural network composed of four hidden layers
of eight nodes each. On the right-skew -1 distribution, our RMSE was 0.117, and on our
left-skew -2 distribution, our RMSE was 0.131. The network had a misclassification rate
of 0 on both distributions. Histograms of error predictions are included in Figure 4.4.

To summarize, widening the standard deviation made our predictions slightly less accurate,
but a similar error pattern is still clearly visible in the histogram in Figure 4.3. While the
error groupings were somewhat condensed in Figure 4.4, the pattern of a section of near-
perfect predictions followed by a group of much less accurate predictions continues. Put
together, the increase in prediction error does suggest our network is slightly less robust
than we earlier thought, but a pattern is still visible.

21

(a) Left-skew lognormal distribution (b) Right-skew lognormal distribution

Figure 4.4. Error histograms of network performance on data with left- and right-
skew log-normal initial condition variation, with distribution parameters matching
training. This is accomplished by using parameters `. = log(0.05) − log(4/3)/2 and
f. =

√
log(4/3), then shifting to match the domain.

4.3 Depth and Width Changes
Our next consideration was to examine the influence of the depth or width of the neural
network on distributional robustness. A network’s depth is equal to the total number of
layers in the network, except for the input and output layers, and the width of a layer is the
number of nodes in that layer. Since we have the same number of nodes per layer in all our
networks, we can assign a specific width to each network. In this section, we will use the
normal and log-normal distributions discussed in Section 4.1.

4.3.1 Depth Changes
We first attempted to vary the depth of our network. Shallower networks are less complex,
and therefore not always as capable as their deeper counterparts, but are usually faster to
train. We began by cutting our network from a depth of 4 hidden layers to 3, with the
following results.

On the validation data set with uniformly distributed initial conditions, the RMSE was
3.01 × 10−2, and the misclassification rate was 0. The RMSE was 3.09 × 10−2, and the
misclassification rate was 0 on validation data with normally distributed initial conditions.

22

(a) Uniform distribution (b) Normal distribution

(c) Log-normal distribution

Figure 4.5. Error histograms of a network with three hidden layers of eight nodes
each on validation data with uniformly, normally, and log-normally distributed initial
condition variation.

On the validation data set with log-normally distributed initial conditions, the RMSE was
3.10 × 10−2, and the misclassification rate was 0. A histogram of error predictions for all
distributions is included in Figure 4.5.

This adjustment to depth, however, did not have enough of an effect on network robustness.
We next tried an even shallower network, using two hidden layers of eight nodes each. On
uniformly distributed initial conditioned data, this network had a RMSE of 0.205, and a
misclassification rate of 0. On normally distributed initial conditioned data, the network

23

(a) Uniform distribution (b) Normal distribution

(c) Log-normal distribution

Figure 4.6. Error histograms of a network with two hidden layers of eight nodes each
on validation data with uniformly, normally, and log-normally distributed initial
condition variation.

had a RMSE of 0.211 and a misclassification rate of 0. And on log-normally distributed
initial condition data, our network had a RMSE of 0.212 and a misclassification rate of 0.
A histogram of prediction errors is included in Figure 4.6.

We finally attempted to see the performance of a network consisting of only a single layer
of eight neurons. On data with a uniformly distributed initial condition, the RMSE was
0.187 and the misclassification rate was 5 × 10−5. On data with normally distributed initial
condition, the RMSE was 0.224 and the misclassification rate was 0. And on data with

24

(a) Uniform distribution (b) Normal distribution

(c) Log-normal distribution

Figure 4.7. Error histograms of a network with a single hidden layer of eight nodes
each on validation data with uniformly, normally, and log-normally distributed initial
condition variation.

log-normally distributed initial condition, our RMSE was 0.230 and the misclassification
rate was 0. Error prediction histograms are included in Figure 4.7.

As we cut the depth of networks, our misclassification rate remained almost perfect, which
means our predictions remained the same, but we did still experience a slight loss in
robustness. In our histograms, we are able to see that the predictions of shallower networks
tended to be less accurate, even if the rounded predictions were still perfect. Still, we wanted
to find a change to the network that would more broadly affect robustness.

25

Another interesting observation comes from the shape of the histograms. Similar to the base
network of four hidden layers of eight nodes, all networks predict no fault and Fault 1 cases
with a very high degree of accuracy, but Fault 2 and 3 predictions are less accurate, even if
they still round to the correct number. This produces the pattern visible in all histograms,
regardless of distribution or network structure, of one tall section of good predictions,
followed by two subsequent sections of deteriorating predictions. This suggests that the
error pattern is consistent across distribution and network hyperparameters, only increasing
as the validation distribution increases distance from the trained distribution and as the
network hyperparameters move away from the optimal choice.

4.3.2 Width Changes
To verify these observations, we next varied the width of our network. We began by cutting
the width to four nodes, still using four hidden layers and again tested on uniform, normal,
and log-normal validation sets. On uniformly distributed initial conditioned data, our RMSE
was 2.62 × 10−4 and our misclassification rate was 0. On data with a normally distributed
initial condition, our RMSE was 2.71 × 10−4 and our misclassification rate was 0. Finally,
on data with a log-normally distributed initial condition, our RMSE was 2.68 × 10−4 with
a misclassification rate of 0. Error histograms are included in Figure 4.8. While we were
somewhat surprised to see that this actually outperforms our original base network of
four layers of eight nodes, this trend should not continue when looking at narrower neural
networks.

We confirmed this by testing a network composed of four layers of two nodes each. On
uniformly distributed initial conditioned data, this network’s RMSE was 0.117 and the
misclassification rate was 0. On data with a normally distributed initial condition, our
RMSEwas 0.120 and our misclassification rate was 0.Whereas on data with a log-normally
distributed initial condition, our RMSE was 0.120 with a misclassification rate of 0. Error
histograms are included in Figure 4.9.

We were somewhat surprised to see the increased accuracy in the predictions from the
network of four layers and four nodes, visible in Figure 4.8. However, the conclusions
proposed when talking about network depth still tentatively hold when the width is changed,

26

(a) Uniform distribution (b) Normal distribution

(c) Log-normal distribution

Figure 4.8. Error histograms of a network with four hidden layers of four nodes each
on validation data with uniformly, normally, and log-normally distributed initial
condition variation.

and the normal pattern in the histograms reestablishes itself in Figure 4.9 as the network
gets narrower.

4.3.3 Depth and Width Changes
While we will not analyze multiple examples, it is worth considering what happens when
we vary both the depth and the width of a network at once, to see if these effects would
compound. To check this, we trained a network composed of three layers of four nodes each,

27

(a) Uniform distribution (b) Normal distribution

(c) Log-normal distribution

Figure 4.9. Error histograms of a network with four hidden layers of two nodes each
on validation data with uniformly, normally, and log-normally distributed initial
condition variation.

since the network using three layers performed the best when nodes were held constant and
the network of four nodes performed the best when layers were held constant.

In this case, our predictions were much worse. On data with a uniformly distributed initial
condition, our RMSE was 0.221 and our misclassification rate was 3.93 × 10−2. On data
with normally distributed initial condition, our RMSE was 0.247 and our misclassification
rate was 4.67 × 10−2.Whereas on data with log-normally distributed initial conditions, our
RMSE was 0.264 and our misclassification rate was a much higher 0.110. A histogram

28

(a) Uniform distribution (b) Normal distribution

(c) Log-normal distribution

Figure 4.10. Error histograms of a network with three hidden layers of four nodes
each on validation data with uniformly, normally, and log-normally distributed initial
condition variation.

of errors is visible in Figure 4.10. Despite our poor accuracy, however, the pattern of one
section of good predictions followed by two sections of progressively poorer predictions
was still visible in the normal and log-normal sections.

4.4 Data Distribution of Dynamic Systems
Our systems performed very well across different initial condition variation distributions.
We next asked ourselves if we were able to find the cause of this high performance, and see
if this was a feature of our choice of electrical microgrid fault analysis as our domain or if
this pattern may be visible across all forms of distributional robustness.

29

(a) Uniform distribution at C = 0 (b) Uniform distribution at random time

(c) Normal distribution at C = 0 (d) Normal distribution at random time

(e) Log-normal distribution at C = 0 (f) Log-normal distribution at random time

Figure 4.11. Histogram of 20, 000 potential X1 choices at C = 0 and at a randomly
selected time, with uniform, normal, and log-normal distributions.

30

Our conjecture is that our high performance is because our data point distribution is dom-
inated by the dynamics of the system, not the initial state distribution. As a reminder, we
generate a five-second trajectory for each case, and then only analyze a random one-second
window of data from all three generators with our neural network. This could mean that
our system has a chance to reach a steady state when we sample our one-second window of
data.

To see what this would look like, we analyzed our initial condition variation for the first
generator X1 at both the initial time C = 0, which would have a uniform, normal, or log-
normal distribution, and at the beginning of the random one-second window. Results are
included in Figure 4.11.

At C = 0, our initial condition variation was predictably centered around the equilibrium
for X1, which was 0.0396. But our randomly selected beginning of our windows of analysis
were almost identical, with a large number of samples at the equilibrium itself and the rest
following a similar pattern across all data distributions. This is due to the laws of dynamics
in our system, which force a certain behavior on our blade as time progresses.

Still, changing the distribution in Section 4.2 did have a noticeable influence on accuracy,
visible in our error histograms. In other domains less dominated by dynamics, it is likely
that the effects of distributional robustness could be even more visible in other applications
of machine learning.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

CHAPTER 5:
Conclusions

5.1 Analysis
This project aimed to introduce a new form of robustness for neural network users to
consider in the form of distributional robustness. Using faults in electrical microgrids as
our domain, we were able to see the impact of different distributions and network sizes on
distributional robustness and performance.

First, we achieved acceptable performance from a network composed of four hidden layers
of eight nodes each. While wider networks did have slightly better performance, it was not
computationally worthwhile to expand the network. Table 4.2 suggests an upper triangular
structure to this problem, where an increase in network depth should be paired with an
increase to network width to avoid an increase in misclassification rate.

In Section 4.2, we were able to see the impact of changing distributions on network per-
formance. As our initial condition variation for our generator rotor angular position moved
further from the variation we used for training, performance slightly decreased. While our
misclassification rates stayed low, Figures 4.3 and 4.4 showed a decrease in accuracy over
Figure 4.2a, which was the error histogram of performance on the distribution on which our
network was trained.

Additionally, we were able to see the impact of network hyperparameters on distributional
robustness in Section 4.3. Reducing the depth of the network while holding the width con-
stant led to a much more significant impact on accuracy than reducing the width while
holding the depth constant. Combining depth and width variations, however, led to a com-
pounding effect on robustness, visible in Figure 4.10.

An interesting observation comes from the shape of the error histograms across changing
distributions and network sizes. In almost all cases, our histograms are a similar shape,
with only the scale of the error changes. Regardless of the initial condition distribution or
network size used, our networks predict no fault and Fault 1 cases with a very high degree

33

of accuracy, followed by Faults 2 and 3 with increasing error. It would be interesting to see
if the similarities in error patterns persist in different applications of machine learning, or
if these are unique to power system applications.

Together, these results suggest that distributional robustness gains will be made through
a series of trade-offs, similar to other forms of robustness, and must be considered when
applying neural networks in real-world scenarios.

5.2 Implications and Limitations
One major limitation to this thesis comes from the dynamic nature of our application case.
In our microgrid system, the laws of dynamics are much more important than our initial
condition variation of rotor angle. Our distributions converge due to the convergence of
dynamics. This feature is amplified by our sampling method. By taking a random one-
second window of the whole five-second trajectory, we are much more likely to sample
similar looking data samples, since we are giving the rotor angle a chance to approach
a steady-state equilibrium. Indeed, while the initial distributions for X in our differential
equations are vastly different, Figure 4.11 demonstrates that the dynamic nature of our
microgrid causes most of our trajectories to begin very near the equilibrium of 0.0396
instead of depending on the initial condition distribution. If we were applying a neural
network to a real-world microgrid or other dynamics-dominated scenario, this could be
used as an advantage instead of a weakness, since our network would be mostly accurate
regardless of distributional changes. It is, however, worth noting that this feature will not be
visible in all other domains.

Another limitation of this thesis comes from the nature of machine learning itself. Currently,
the field of machine learning is not a deterministic science, depending instead on the choices
of tool and the domain on which they are applied. Because of this, this thesis is only able
to recommend the study of distributional robustness in other cases, not present a strong
conclusion on the effect of distributional changes on machine learning performance.

34

5.3 Potential for Future Work
Future study of machine learning robustness may focus on real-world data generated from
actual microgrids instead of simulated data. Actual changes to initial conditions could see if
the dynamic domination of initial condition distribution visible in Figure 4.11 is a product
of our simulations or a feature visible in real microgrids.

Additionally, future work could study the consideration of distributional robustness in other
fields besides electrical microgrids. It could be useful to see if the upper triangular nature
of Table 4.2 and the consistent pattern visible across our error histograms in Sections 4.2
and 4.3 are products of our microgrid application, choice of feed-forward neural networks
as a ML system, or a feature visible in other studies of distributional robustness.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

APPENDIX: Matlab Code

A.1 Simulation Code

A.1.1 Uniform Distribution
This Matlab code generates trajectories for data with uniformly distributed initial condi-
tions around the each generator’s equilibrium.

clear all

%%%%%% parameters %%%%%%%

BaseMVA=100;

Di=[0;0;0];

H2=[47.28;12.8;6.02];

wR=2*pi*60;

Ei=[1.0566;1.0502;1.0170];

YB0R=[0.8455 0.2871 0.2096;0.2871 0.4200 0.2133;0.2096 0.2133 0.2770];

YB0I=[-2.9883 1.5129 1.2256;1.5129 -2.7239 1.0879;1.2256 1.0879 -2.3681];

Pm=[71.6;163;85]./BaseMVA;

%%%%%%%%%%%

dt=1/10;

Nt=50; %the number of steps in each trajectory

t0=0;

tf=t0+Nt*dt;

w_eq=[wR;wR;wR]; %equilibrium

dlt_eq=pi/180*[2.2717;19.7315;13.1752]; %equilibriam

Nsample=5000; %number of sample trajectories

NN=Nt+1; %total number of time steps, including initial time t0

Ssample=zeros(NN,7,Nsample); %trajecotories 1:NN rows is a trajectory,

1-3 columns are w, 4-6 columns are delta, 7th column is time t

37

for isample=1:Nsample

w_perturb=[0;0;0]; %initial value variation

dlt_perturb=0.05*(2*rand(3,1)-1); %initial value variation

wdlt0=[w_eq+w_perturb;dlt_eq+dlt_perturb]; %initial condition

YB0R1=YB0R;

YB0I1=YB0I;

r=-0.05; %variation of Y matrix caused by fault

i1=1; %fault 3

i2=3;

YB0R1(i1,i2)=YB0R(i1,i2)+r*YB0R(i1,i2);

YB0R1(i2,i1)=YB0R1(i1,i2);

YB0I1(i1,i2)=YB0I(i1,i2)+r*YB0I(i1,i2);

YB0I1(i2,i1)=YB0I1(i1,i2);

hndl1=@(t,wdlt) fundyn(t,wdlt,H2,Di,wR,Pm,Ei,YB0R1,YB0I1);

%Power system model

options=odeset(’RelTol’,10^(-6),’AbsTol’,10^(-6));

[tt2 wdlt2]=ode45(hndl1,t0:dt:tf,wdlt0,options); %with fault

Ssample(:,:,isample)=[wdlt2 tt2];

end

close all

kk=randi(Nsample,1);

tt=Ssample(:,end,kk);

figure,plot(tt,Ssample(:,1,kk),tt,Ssample(:,2,kk),tt,Ssample(:,3,kk))

save data_trajectories_fault3_val

Ssample=zeros(NN,7,Nsample); %trajecotories 1:NN rows is a trajectory,

1-3 columns are w, 4-6 columns are delta, 7th column is time t

for isample=1:Nsample

w_perturb=[0;0;0]; %initial value variation

dlt_perturb=0.05*(2*rand(3,1)-1); %initial value variation

38

wdlt0=[w_eq+w_perturb;dlt_eq+dlt_perturb]; %initial condition

YB0R1=YB0R;

YB0I1=YB0I;

r=-0.05;

i1=1; %fault 1

i2=2;

YB0R1(i1,i2)=YB0R(i1,i2)+r*YB0R(i1,i2);

YB0R1(i2,i1)=YB0R1(i1,i2);

YB0I1(i1,i2)=YB0I(i1,i2)+r*YB0I(i1,i2);

YB0I1(i2,i1)=YB0I1(i1,i2);

hndl1=@(t,wdlt) fundyn(t,wdlt,H2,Di,wR,Pm,Ei,YB0R1,YB0I1);

%Power system model

options=odeset(’RelTol’,10^(-6),’AbsTol’,10^(-6));

[tt2 wdlt2]=ode45(hndl1,t0:dt:tf,wdlt0,options); %with fault

Ssample(:,:,isample)=[wdlt2 tt2];

end

kk=randi(Nsample,1);

tt=Ssample(:,end,kk);

figure,plot(tt,Ssample(:,1,kk),tt,Ssample(:,2,kk),tt,Ssample(:,3,kk))

save data_trajectories_fault1_val

Ssample=zeros(NN,7,Nsample); %trajecotories 1:NN rows is a trajectory,

1-3 columns are w, 4-6 columns are delta, 7th column is time t

for isample=1:Nsample

w_perturb=[0;0;0]; %initial value variation

dlt_perturb=0.05*(2*rand(3,1)-1); %initial value variation

wdlt0=[w_eq+w_perturb;dlt_eq+dlt_perturb]; %initial condition

YB0R1=YB0R;

YB0I1=YB0I;

r=-0.05;

39

i1=3; %fault 2

i2=2;

YB0R1(i1,i2)=YB0R(i1,i2)+r*YB0R(i1,i2);

YB0R1(i2,i1)=YB0R1(i1,i2);

YB0I1(i1,i2)=YB0I(i1,i2)+r*YB0I(i1,i2);

YB0I1(i2,i1)=YB0I1(i1,i2);

hndl1=@(t,wdlt) fundyn(t,wdlt,H2,Di,wR,Pm,Ei,YB0R1,YB0I1);

%Power system model

[tt2 wdlt2]=ode45(hndl1,t0:dt:tf,wdlt0,options); %with fault

Ssample(:,:,isample)=[wdlt2 tt2];

end

kk=randi(Nsample,1);

tt=Ssample(:,end,kk);

figure,plot(tt,Ssample(:,1,kk),tt,Ssample(:,2,kk),tt,Ssample(:,3,kk))

save data_trajectories_fault2_val

Ssample=zeros(NN,7,Nsample); %trajecotories 1:NN rows is a trajectory,

1-3 columns are w, 4-6 columns are delta, 7th column is time t

for isample=1:Nsample

w_perturb=[0;0;0]; %initial value variation

dlt_perturb=0.05*(2*rand(3,1)-1); %initial value variation

wdlt0=[w_eq+w_perturb;dlt_eq+dlt_perturb]; %initial condition

YB0R1=YB0R;

YB0I1=YB0I;

r=0.0; %if 0, there is no fault

i1=3; %no fault

i2=2;

YB0R1(i1,i2)=YB0R(i1,i2)+r*YB0R(i1,i2);

YB0R1(i2,i1)=YB0R1(i1,i2);

YB0I1(i1,i2)=YB0I(i1,i2)+r*YB0I(i1,i2);

YB0I1(i2,i1)=YB0I1(i1,i2);

40

hndl1=@(t,wdlt) fundyn(t,wdlt,H2,Di,wR,Pm,Ei,YB0R1,YB0I1);

%Power system model

[tt2 wdlt2]=ode45(hndl1,t0:dt:tf,wdlt0,options); %with fault

Ssample(:,:,isample)=[wdlt2 tt2];

end

kk=randi(Nsample,1);

tt=Ssample(:,end,kk);

figure,plot(tt,Ssample(:,1,kk),tt,Ssample(:,2,kk),tt,Ssample(:,3,kk))

save data_trajectories_normal_val

A.2 Neural Network Training
This Matlab code trains neural networks built from one to five hidden layers consisting of
one to sixteen nodes each.

clear all

n_layers=1:5;

nodes_per_layer=1:16;

train_results=zeros([5,16]);

train_results=train_results+1;

train_proportion_wrong=train_results;

val_results=train_results;

val_proportion_wrong=train_results;

for layer=n_layers

for node=nodes_per_layer

fprintf("Start %d layers and %d nodes \n", layer, node)

41

%

TRAINING DATA

X=[];

Y=[];

Error=0

load(’train_data_trajectories_normal_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

y=zeros(1,n_samples)+0;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

X=[X x];

Y=[Y y];

Error=1

load(’train_data_trajectories_fault1_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

y=zeros(1,n_samples)+1 ;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

X=[X x];

Y=[Y y];

Error=2

load(’train_data_trajectories_fault2_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

42

y=zeros(1,n_samples)+2;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

X=[X x];

Y=[Y y];

Error=3

load(’train_data_trajectories_fault3_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

y=zeros(1,n_samples)+3;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

X=[X x];

Y=[Y y];

XY=[X;Y];

XY=XY(:,randperm(size(XY,2)));

X=XY(1:end-1, :);

Y=XY(end,:);

lbX_train=min(X,[],"all");

lbY_train=min(Y,[],"all");

ubX_train=max(X,[],"all");

ubY_train=max(Y,[],"all");

a=2.0*(X - lbX_train)./(ubX_train - lbX_train) - 1.0;

setup=zeros(1,layer);

setup=setup+node;

net=feedforwardnet(setup);

43

net.trainParam.epochs=10000;

net=train(net,a,Y);

yy=sim(net,a);

RMSE = rms(yy - Y);

RMSE_rounded=rms(round(yy) - Y);

one_if_wrong=round(yy)~=Y;

sum_wrong=sum(one_if_wrong);

proportion_wrong=sum_wrong/length(one_if_wrong);

train_results(layer, node)=RMSE;

train_proportion_wrong(layer,node)=proportion_wrong;

network_save_name=sprintf(’%d_layer_%d_node_nn.mat’,layer,node);

save(network_save_name,"net")

fprintf("Train RMSE: %9.8f \n

Train proportion wrong: %9.8f \n ",RMSE, proportion_wrong)

%

Validation data

X=[];

Y=[];

Error=0

load(’data_trajectories_normal_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

y=zeros(1,n_samples)+0;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

X=[X x];

44

Y=[Y y];

Error=1

load(’data_trajectories_fault1_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

y=zeros(1,n_samples)+1 ;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

X=[X x];

Y=[Y y];

Error=2

load(’data_trajectories_fault2_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

y=zeros(1,n_samples)+2;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

X=[X x];

Y=[Y y];

Error=3

load(’data_trajectories_fault3_val.mat’)

n_samples=size(Ssample,3);

x=zeros(30,n_samples);

y=zeros(1,n_samples)+3;

for i=1: n_samples

r=randi(42);

x(:,i)=[Ssample(r:r+9,1,i) ; Ssample(r:r+9,2,i) ; Ssample(r:r+9,3,i)];

end

45

X=[X x];

Y=[Y y];

XY=[X;Y];

XY=XY(:,randperm(size(XY,2)));

X=XY(1:end-1, :);

Y=XY(end,:);

X_val=X;

a=2.0*(X_val - lbX_train)./(ubX_train - lbX_train) - 1.0;

yy=sim(net,a);

RMSE = rms(yy - Y);

RMSE_rounded=rms(round(yy) - Y);

one_if_wrong=round(yy)~=Y;

sum_wrong=sum(one_if_wrong);

proportion_wrong=sum_wrong/length(one_if_wrong);

val_results(layer, node)=RMSE;

val_proportion_wrong(layer,node)=proportion_wrong;

network_save_name=sprintf(’%d_layer_%d_node_nn.mat’,layer,node);

save(network_save_name,"net")

fprintf("Validation RMSE: %9.8f \n

Validation proportion wrong: %9.8f \n ",RMSE, proportion_wrong)

end

end

46

List of References

[1] A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, and C. Suen, “UFLDL tutorial,” Chapters avail-
able at http://deeplearningstanford. edu/wiki/index. php/UFLDL_Tutorial, 2012.

[2] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward
neural network,” Neural networks, vol. 2, no. 6, pp. 459–473, 1989.

[3] N. Lu, S. Mabu, T. Wang, and K. Hirasawa, “An efficient class association
rule[U+2010]pruning method for unified intrusion detection system using genetic
algorithm,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 8,
March 2013.

[4] W. Yu and J. Cao, “Stability and Hopf bifurcation analysis on a four-neuron bam
neural network with time delays,” Physics Letters A, vol. 351, no. 1-2, pp. 64–78,
2006.

[5] T. Caelli, W. F. Bischof, and W. F. Bischof,Machine Learning and Image Interpreta-
tion. New York, NY, USA: Springer Science & Business Media, 1997.

[6] M. Barreno, B. Nelson, A. Joseph, and J. Tygar, “The security of machine learning,”
Machine Learning, vol. 81, pp. 121–148, November 2010.

[7] O. Linda, T. Vollmer, and M. Manic, “Neural network based intrusion detection sys-
tem for critical infrastructures,” Proceedings of the International Joint Conference
on Neural Networks, pp. 1827–1834, June 2009.

[8] E. Anthi, L. Williams, M. Rhode, P. Burnap, and A. Wedgbury, “Adversarial attacks
on machine learning cybersecurity defences in industrial control systems,” Journal
of Information Security and Applications, vol. 58, p. 102717, 2021. Available: https:
//www.sciencedirect.com/science/article/pii/S2214212620308607

[9] R. Gao and A. J. Kleywegt, “Distributionally robust stochastic optimization with
wasserstein distance,” 2016. Available: https://arxiv.org/abs/1604.02199

[10] S. S. Vallender, “Calculation of the wasserstein distance between probability dis-
tributions on the line,” Theory of Probability & Its Applications, vol. 18, no. 4, pp.
784–786, 1974. Available: https://doi.org/10.1137/1118101

[11] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self-supervised learn-
ing can improve model robustness and uncertainty,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

47

https://www.sciencedirect.com/science/article/pii/S2214212620308607
https://www.sciencedirect.com/science/article/pii/S2214212620308607
https://arxiv.org/abs/1604.02199
https://doi.org/10.1137/1118101

[12] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal, “Enhancing robustness of
ma-chine learning systems via data transformations,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2018, pp. 1–5.

[13] H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive pro-
tection combined with machine learning for microgrids,” IET Generation, Transmis-
sion & Distribution, vol. 13, no. 6, pp. 770–779, 2019.

[14] S. Rahman Fahim, S. K. Sarker, S. M. Muyeen, M. R. I. Sheikh, and S. K. Das,
“Mi-crogrid fault detection and classification: Machine learning based approach,
com-parison, and reviews,” Energies, vol. 13, no. 13, 2020. Available: https://
www.mdpi. com/1996-1073/13/13/3460

[15] I. Almutairy and M. Alluhaidan, “Fault diagnosis based approach to protecting dc
microgrid using machine learning technique,” Procedia Computer Science, vol.
114, pp. 449–456, 2017.

[16] P. M. Anderson and A. Fouad, Power System Control and Stability. Piscataway, NJ,
USA: IEEE Press, 2003.

[17] K. Sun, J. Qi, and W. Kang, “Power system observability and dynamic state estima-
tion for stability monitoring using synchrophasor measurements,” Control
Engineer-ing Practice, vol. 53, February 2016.

[18] V. Vittal, J. D. McCalley, P. M. Anderson, and A. Fouad, Power System Control and
Stability. Hoboken, NJ, USA: John Wiley & Sons, 2019.

[19] N. Kolbe, “Wasserstein distance code for matlab,” 2022. Available: https://github.
com/nklb/wasserstein-distance

48

https://www.mdpi.com/1996-1073/13/13/3460
https://www.mdpi.com/1996-1073/13/13/3460
https://github.com/nklb/wasserstein-distance
https://github.com/nklb/wasserstein-distance

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

49

	22Jun_Smith_Philip_First8
	22Jun_Smith_Philip
	Introduction
	Overview
	Motivations

	Literature Review
	Feedforward Neural Networks
	Applications of Machine Learning
	Applications to Microgrids

	Methodology
	Data Generation and Structure
	Lower Dimensional Distances
	Simulated Data

	Results
	Network Construction
	Distributional Changes
	Depth and Width Changes
	Data Distribution of Dynamic Systems

	Conclusions
	Analysis
	Implications and Limitations
	Potential for Future Work

	Appendix: Matlab Code
	Simulation Code
	Neural Network Training

	List of References
	Initial Distribution List

