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AIRC The context

e The focus is on recommendations contained in relevant Department of
Defense (DoD) and private sector studies on acquisition policies and
practices, including—

—the extent to which recommendations have been enacted into law by Congress;

—extent to which the recommendations have been adopted through the issuance
or revision of regulations;

—the extent to which the recommendations have been adopted through issuance
of an appropriate implementing directive or other form of guidance

e Recommendations can be hundreds, with lengths from few pages to

hundreds of pages

e Some recommendations or some parts of them may be more relevant

to the Defense Acquisition Workforce

D
clipizzi@stevens.edu STEVENS INSTITUTE of TECHNOLOGY | 2



AIRC Natural Language as source of Data

e 85-90 percent of all corporate data is in some kind of unstructured form, such
as text and multimedia [Gartner, 2019]

e Tapping into these information sources is a need to stay competitive

O Tractica

Natural Language Processing Total Revenue by Segment, World Markets: 2016-2025
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e Examples of application of Natural Language Processing: insurance (claim
processing); law (court orders); academic research (research articles); finance
(reports analysis); medicine (discharge summaries); technology (patent files);
marketing (customer comments)
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AIRC Challenges in Natural Language Processing

e Semantic ambiguity and context sensitivity
—automobile = car = vehicle = Toyota
—Apple (the company) or apple (the fruit)
e Syntactic/formal ambiguity
—Miisspelling
—Different words for the same concept (e.g.: street; st.)
e Implicit knowledge

—We talk about things giving for granted common or specific knowledge
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AIRC Implementing NLP - limitations

e Understanding Language is not “just” processing. Understanding is
a human characteristic, analyzed by philosophers as part of
Epistemology

e An accurate (by human standard) “understanding” can come only
from a model of human mind

e The current leading models in NLP/”NLU” are focused on the
algorithmic part, missing a real model representing how the
knowledge is created and used. It is basically representing the
brain, not the mind. The leading model for NLP (GPT-3 by Open-
Al) has 175 billion parameters, feeding a neural network providing
results as a black box
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AIRC Implementing NLP

e Language is changing constantly, and NLP is following the changes, going from
processing based on predefined structures (taxonomies/ontologies, syntax) to
structures deducted from the text itself

Limitations of the traditional-deductive- Machine Learning/inductive approach
“symbolic” approach e Employing complex "deep learning"
e Predefined structures (ontologies and systems inspired by the human brain
taxonomies) are used to extract semantic structure
elements e They do not consider how humans
e Today language is more fragmented, has represent their knowledge and how we
less structure, has more jargons achieve the understanding of a problem
e Different points of view may provide * They model the brain, not the mind/the
different interpretations way knowledge is created and used
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AIRC Our approach

e Qur approach is a combination of Symbolic and Machine Learning, with an
additional layer of user interface and visualization, to make the findings more
usable by the Defense Acquisition Workforce

e For the development of the prototype, we focused on 1. creating a symbolic
model for the text understanding and 2. design and implement the process to

apply it

e The prototype is based on previous projects we developed for the DoD over the
last few years, employing a team of 25 researchers and relying on theories and
components we developed. The algorithm/method we used is named “the
room theory”, that is a combination of symbolic and machine learning
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AIRC How the “room theory” works

context-subjectivity in the analysis of the
incoming documents

1 “Room™: Domain-specific «  “Room theory” enables the use of
Knowledge base

using * Context-subjectivity can be the point of

of view of a subject matter expert
< * The context-subjectivity in the analysis is
compared with

represented by a domain specific
cBenchmarke" Document(s) to numerical knf)wledg.e. base, created fr.om

Keywords defining analyze a large doméln specific & represgntatlve
target elements corpus that is then transformed into a

Proximity of each numerical dataset (“embeddings table”)
document to

keywords

 The key components are:

1. A point of view for the comparison (the “room”). This is represented by a table of vectors
extracted from a large/representative corpus from the specific domain

2. Alist of “extended” keywords (using synonyms and misspellings) to be used for the analysis
(the "benchmark”)
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AIRC

Room theory for Recommendations

i—8-

“Room”, representing the

)

e The “room”/knowledge base

==

Corpus/body of knowledge knowledge of the domain

Y

'

Documents -
Recommendations

e The Benchmarks is a list of keywords and
related weights put together with the SMEs in
our team (175 benchmark words/phrases)

e We used a total of about 30 pdf and word
documents, ranging from 1 to 500+ pages

* We rank the document using our
algorithms via the available Room

clipizzi@stevens.edu

\

has been generated from a
corpus collected for a
previous DAU project

Recommended
recommendations

* The corpus representing a
contracting officer’s
knowledge base is composed
by 537 documents, for a total
of 119,941 unique words

[N [

il

“Benchmarks”:
keywords defining the

points of interest Visualizations

* We provide graphic visualizations to help
user get insights from the results

A graphical user interface has been
created to get data and to deliver the
results
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AIRC Dealing with large documents

e Large documents cannot be considered either “recommended” or “not -
recommended”:

* [n 500 pages there could be some sentences that are relevant, (many) other
that may not be

e The same logical concept can be in multiple pages
e \We developed a method for “re-paragraphing” documents

Highlight the
" . Create a rearranged
. Transform the Cluster the Apply the "room sentences in the .
Split the document . . " o document with the
. sentences into sentences into theory" to the original document,
into sentences . " - paragraphs ordered
vectors virtual paragraphs paragraphs based on their

paragraph ranking by relevance
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The output — screenshots via Ul

AIRC
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AIRC The output — comparing multiple files

Similarity probability to benchmarks
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AIRC

The output — comparing multiple files

Level of similarity of each document to each benchmark
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e This is a representation of how individual benchmarks match individual documents.
There are 3 recommendation files + 1 control file (that is not related to

recommendation)

e Results are not yet weighted by a normalized percentage of interest by paragraphs
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AIRC Next steps

e Improve/expand the “room”/knowledge base with more problem-specific
corpora

e Expand the benchmarks with synonyms and misspellings

* Revise the “paragraphing” subsystem with better clustering and better trace
back to the original document

e Reevaluate the document recommendation level using the relevance of its
paragraphs

* Integrate the “paragraphing” with the graphs

e Improve the user interface

e Integrate the graphs in the user interface

e Optimize the system for larger scale of operation (more/larger documents)
e Continue the debugging and the testing on more documents
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Dr. Carlo Lipizzi
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