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Abstract 
This research has the explicit goal of proposing a reusable, extensible, adaptable, and 
comprehensive advanced analytical modeling process to help the U.S. Navy in quantifying, 
modeling, valuing, and optimizing a set of nascent Artificial Intelligence and Machine Learning 
(AI/ML) applications in the aerospace, automotive and transportation industries and developing a 
framework with a hierarchy of functions by technology category and developing a unique-to-
Navy-ship construct that, based on weighted criteria, scores the return on investment of 
developing naval AI/ML applications that enhance warfighting capabilities. 

This current research proposes to create a business case for making strategic decisions under 
uncertainty. Specifically, we will look at a portfolio of nascent artificial intelligence and machine 
learning applications, both at the PEO-SHIPS and extensible to the Navy Fleet. This portfolio of 
options approach to business case justification will provide tools to allow decision-makers to 
decide on the optimal flexible options to implement and allocate in different types of artificial 
intelligence and machine learning applications, subject to budget constraints, across multiple 
types of ships. 

The concept of the impact of innovative technology on productivity has applicability beyond the 
Department of Defense (DoD). Private industry can greatly benefit from the concepts and 
methodologies developed in this research to apply to the hiring and talent management of 
scientists, programmers, engineers, analysts, and senior executives in the workforce to increase 
innovation productivity. 

Introduction 
This research has the explicit goal of proposing a reusable, extensible, adaptable, and 

comprehensive advanced analytical modeling process to help the U.S. Navy in quantifying, 
modeling, valuing, and optimizing a set of nascent Artificial Intelligence and Machine Learning 
(AI/ML) applications in the aerospace, automotive and transportation industries and developing 
a framework with a hierarchy of functions by technology category and developing a unique-to-
Navy-ship construct that, based on weighted criteria, scores the return on investment of 
developing naval AI/ML applications that enhance warfighting capabilities. 

This current research proposes to create a business case for making strategic decisions 
under uncertainty. Specifically, we will look at a portfolio of nascent artificial intelligence and 
machine learning applications, both at the PEO-SHIPS and extensible to the Navy Fleet. This 
portfolio of options approach to business case justification will provide tools to allow decision-
makers to decide on the optimal flexible options to implement and allocate in different types 
of artificial intelligence and machine learning applications, subject to budget constraints, across 
multiple types of ships.  

The concept of the impact of innovative technology on productivity has applicability 
beyond the Department of Defense (DoD). Private industry can greatly benefit from the concepts 
and methodologies developed in this research to apply to the hiring and talent management of 
scientists, programmers, engineers, analysts, and senior executives in the workforce to increase 
innovation productivity.   
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Research Objective 
The primary objective of the proposed research is to provide a business case analysis 

and ROI estimates for AI and ML systems and applications that will improve their acquisitions 
life cycle. Currently, the DoD has a portfolio of nascent artificial intelligence and machine learning 
applications, both at the PEO-SHIPS and eventually extensible to the entire Navy Fleet. The 
main research problem is to create business case examples on how this portfolio of AI/ML 
applications is valued and optimized. The portfolio of options approach provides business case 
justification, providing tools to allow decision-makers to down select the optimal flexible options 
to implement and allocate in different types of AI and ML applications, subject to budget 
constraints, across multiple types of ships. 

Literature Survey 
For the DoD, acquiring artificial intelligence (AI) technology is a relatively new difficulty 

(DoD). Given the significant danger of AI system acquisition failures, it's vital for the acquisition 
community to look at new analytical and decision-making methodologies for controlling these 
systems’ acquisitions. Furthermore, many of these systems are housed in tiny, inexperienced 
system development firms, further complicating the acquisition process with insufficient data, 
information, and processes. The DoD’s well-known challenge of obtaining information 
technology automation will almost certainly be compounded when it comes to acquiring 
complicated and dangerous AI systems. To assist in minimizing costly AI system acquisition 
disasters, more powerful and analytically driven acquisition approaches will be required. To 
complement existing earned value management, this study identifies, reviews, and proposes 
advanced analytically based methods of integrated risk management (Monte Carlo simulation, 
stochastic forecasting, portfolio optimization, and strategic flexibility options) and knowledge 
value-added (using market comparables to determine the economic value of intangibles and 
non-financial government programs). 

The Real Options Valuation methodology is a new approach that has been effectively 
applied in a variety of commercial industries to measure the entire future worth of decisions taken 
when there is a significant degree of uncertainty at the time decisions are needed. PEO SHIPS 
needs a new methodology to assess the total future value of various combinations of nascent 
AI/ML applications and how they will enable affordable warfighting relevance over the full ship 
service life to successfully implement the Surface Navy's Flexible Ships concept. 

This research project will look at how the Integrated Risk Management technique may be 
applied in the Future Surface Combatant Analysis of Alternatives to estimate the entire future 
value and return on investment of artificial intelligence design characteristics (AOA). 
Defense Acquisition System 

The Defense Procurement System, which supervises national investment in 
technologies, projects, and product support for the U.S. Armed Forces, handles the acquisition 
of new systems for the DoD (DoD, 2003). Its main goal is to “acquire high-quality goods that 
meet user objectives while delivering measurable advances in mission capability and operational 
support in a timely and cost-effective manner” (DoD, 2003). The Joint Capabilities Integration 
and Development System (JCIDS), the Planning, Programming, Budgeting, and Execution 
(PPBE) process, and the Defense Acquisition System are three different but interrelated 
processes inside the DoD Decision Support System (DoD, 2017). Within the Defense Acquisition 
System, this study focuses on program management rather than contract management. 

ACATs are assigned to acquisition programs based on the type of program and the dollar 
amount spent or expected to be spent within the program (DoD, 2015a). Figure 1 depicts the 
Defense Acquisition System's numerous cost-based designations and categories. All ACAT 
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classification dollar amounts are determined in fiscal year 2014 dollars (DoD, 2015a). ACAT I is 
for big defense acquisition programs with a Research, Development, Test & Evaluation (RDT&E) 
budget of more than $480 million, or a total procurement budget of more than $2.79 billion (DoD, 
2015a). ACAT IA programs do not meet the criteria for ACAT I and will spend more than $835 
million in total procurement (DoD, 2015a) or more than $185 million in RDT&E. ACAT II programs 
do not meet the criteria for ACAT I and will spend more than $520 million in total life-cycle cost, 
$165 million in the total program cost, or $40 million for any single year of a program (DoD, 
2015a). Finally, ACAT III programs are those that do not meet the requirements for ACAT I or 
ACAT II (DoD, 2015a). Because each category has varied reporting requirements and 
designated decision-makers, the multiple designations allow for decentralized control of a 
program (DoD, 2017). 

There are five phases within the Defense Acquisition System: 

• Materiel Solution Analysis (MSA)  

• Technology Maturation and Risk Reduction (TMRR) 

• Engineering and Manufacturing Development (EMD)  

• Production and Deployment (PD)  

• Operations and Support (OS)  
The acquisition process is driven by requirements for new or better capabilities, which 

are delivered through the JCIDS process (DoD, 2015a). The relationship between the acquisition 
and capabilities needs processes, as well as their interaction in the various acquisition phases, 
is depicted in Figure 2. The capabilities required from the JCIDS procedure are assumed to be 
correct and necessary in this investigation. 

The Materiel Development Decision kicks off the MSA phase after an Initial Capabilities 
Document (ICD) has been validated (DoD, 2015a). Although an acquisition program is not legally 
constituted until Milestone B at the end of the phase, this choice kicks off the acquisition process 
(DoD, 2015a). The goals of the MSA phase are to select the most promising possible acquisition 
process solution that will meet the ICD’s demands and to define the system’s Key Performance 
Parameters (KPPs) and Key System Attributes (KSAs; DoD, 2015a). An Analysis of Alternatives 
(AoA) is used to assess the acceptability of proposed acquisitions based on “measures of 
effectiveness; important tradeoffs between cost and capacity; total life-cycle cost, including 
sustainment; timeline; the concept of operations; and overall risk” (DoD, 2015a, p. 17). During 
this stage, the PM is chosen and the Program Office is established (DoD, 2015a). After the 
necessary analysis is completed, the decision authority—usually the Defense Acquisition 
Executive (DAE), head of the DoD component, or Component Acquisition Executive (CAE), 
unless otherwise delegated—determines whether the program will proceed to the next phase 
based on the justification for the chosen solution, how affordable and feasible the solution is, and 
how adequate the cost, schedule, and other factors are (DoD, 2015a). Milestone A is the name 
given to this decision (DoD, 2015a). The MSA phase examines all possible solutions to a stated 
demand and, as a result, may be an opportune time to investigate strategic techniques like KVA 
or IRM. 
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Figure 1. Acquisition Categories 
(DoD, 2017) 

 

Figure 2. Interaction of Capabilities Requirements and Acquisition Process 
(DoD, 2015a) 

The program enters the TMRR phase after Milestone A approval to decrease the risk 
associated with the technology, engineering, life-cycle cost, and integration of the program 
before moving on to the EMD phase (DoD, 2015a). At this step, design and requirement trades 
are carried out based on the budget, timetable, and possibility of completion (DoD, 2015a). 
Contractors prepare early designs, including competing prototypes if practicable within the 
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program, to show the practicality of their proposed solutions to the program office, guided by the 
acquisition strategy authorized at Milestone A (DoD, 2015a). 

Technology Readiness Levels (TRLs) are a set of standards that show the level of risk 
involved with a solution maturing on time (DoD, 2015a). Technology Readiness Assessments 
(TRAs) are a metric-based technique for assessing the maturity and risk associated with 
important technology in an acquisition program (DoD, 2011). Each important technology in a 
program will be assigned a TRL by a TRA, ranging from 1 to 9 from lowest to maximum readiness 
level (DoD, 2011). Additional tools, such as IRM, to estimate the chances of a program remaining 
on schedule and on budget, may be useful at this stage. The Publication Decision Point for 
Development Requests for Proposals (RFP) permits the release of an RFP with firm and clearly 
specified program requirements for contractors to submit bids (DoD, 2015a). Unless the 
milestone decision authority waives it, the Preliminary Design Review (PDR) occurs prior to the 
completion of the TMRR phase (DoD, 2015a). Milestone B approves a program's entry into the 
EMD phase, awards a contract, and establishes the Acquisition Program Baseline (APB; DoD, 
2015a). The APB is a legal commitment to the milestone decision authority that outlines the 
authorized program, especially the cost and schedule over the program’s life (DoD, 2015a). 

Once Milestone B has been approved, EMD can commence. Prior to production, the 
material solution is conceived, produced, and tested to ensure that all requirements have been 
met (DoD, 2015a). The hardware and software designs have been finished, and prototypes have 
been developed to detect any design flaws that will be uncovered during developmental and 
operational testing (DoD, 2015a). Federal regulation requires DoD procurement projects with a 
contract value higher than $20 million to utilize EVM to track and report program progress, which 
begins during this phase (DoD, 2019a). The manufacturing or software sustainment methods, 
as well as production capabilities, must be appropriately proven once a stable design that meets 
the given requirements have been validated (DoD, 2015a). Milestone C verifies that these 
requirements have been met and authorizes the start of the PD phase (DoD, 2015a). 

The goal of the PD phase is to deliver a product that meets the standards established 
earlier in the process (DoD, 2015a). Low Rate Initial Production (LRIP) for manufactured systems 
or limited deployment for more software-intensive programs occurs first, with the system 
undergoing Operational Test[ing] and Evaluation (OT&E) to verify that stated criteria were 
satisfied (DoD, 2015a). Full-rate manufacturing occurs when the fielded systems have been 
approved and the product is deployed to operating units (DoD, 2015a). At this time, design 
changes are limited; however, some may still be made in response to identified flaws (Housel et 
al., 2019a). During this phase, contracts often revert to a fixed pricing strategy, lessening the 
PM’s focus on cost and schedule variance (Housel et al., 2019b). 

The operating system is meant to keep the product supported and performing well 
throughout its life cycle, which ends with the system’s disposal (DoD, 2015a). Because 
operational units are using the product while production is ongoing, the OS phase overlaps with 
the PD phase, starting after the production or deployment decision (DoD, 2015a). PMs will 
maintain the system running by following the Life Cycle Sustainment Plan (LCSP) set during the 
purchase phase and providing the appropriate resources and support (DoD, 2015a). 
Technological upgrades, modifications due to operational needs, process enhancements, and 
other activities that may necessitate LCSP updates are all examples of sustainment and support 
(DoD, 2015a). 

PMs employ six different models to develop their program structure, four of which are 
standard and two of which are hybrid, depending on the type of system being purchased (DoD, 
2015a). These standard models serve as templates for hardware-intensive projects, defense-
specific software-intensive programs, software-intensive programs that are incrementally 
deployed, and expedited acquisition programs (DoD, 2015a). The hybrid models, as seen in 
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Figure 3, combine the progressive character of software development with a hardware-centric 
program. Before attaining the Initial Operating Capacity, software development is arranged 
through a sequence of tested software builds that will climax with the completely required 
capability (IOC; DoD, 2015a). The incremental builds are timed to coincide with prototype 
hardware testing and other developmental requirements (DoD, 2015a). With the exception of the 
accelerated program, all other models use the same basic foundation across the five phases. AI 
and IT systems, as well as their connections to weapon systems, facilities, and Command, 
Control, Communications, Intelligence, Surveillance, and Reconnaissance (C4ISR), are 
becoming more common within the DoD (C4ISR; DoD, 2015b). As a result of the integration, 
enemies pose a greater security risk, emphasizing the significance of good cybersecurity skills 
and processes (DoD, 2015b). The DoD manages cybersecurity policy using the Risk 
Management Framework (RMF), which employs security measures based on risk assessments 
throughout a system’s life cycle (DoD, 2015b). “All DoD IT that receives, processes, stores, 
displays, or transmits DoD information” is covered by the RMF (DoD, 2014, p. 2). The RMF’s 
definition of cybersecurity goes beyond information security to include things like stable and 
secure engineering designs, training and awareness for all program users, maintainers, and 
operators, and the response, recovery, and restoration of a system after an internal or external 
failure or attack (DoD, 2015b). Figure 4 depicts the six steps of the RMF’s procedure, which 
occurs throughout the acquisition process. The first stage is to categorize the system, which 
includes assessing the possible impact of a breach and describing the system and its boundaries 
(DoD, 2014). The RMF team is formed, the security plan is implemented, and the system is 
registered with the DoD Component Cybersecurity Program (DoD, 2014). The ICD includes 
cybersecurity standards, which drive MSA concerns during the AoA phase (DoD, 2015b). A 
cybersecurity breach might have serious consequences for missions, according to the risk 
assessment (DoD, 2015b). The RMF provides a somewhat objective technique for determining 
the cybersecurity risk level, as well as the basic baseline security controls that must be 
incorporated in the system’s purchase strategy (DoD, 2015b). 

The RMF team determines security measures in step two, including those that are 
common to other DoD programs (DoD, 2014). A plan is designed and recorded for regularly 
monitoring the effectiveness of the controls (DoD, 2014). The security plan is subsequently 
submitted to the DoD Components, who examine and approve it (DoD, 2014). During the MSA 
phase, the acquisition and cybersecurity teams collaborate to ensure that the proper level of 
security is applied throughout the program’s life cycle, as well as in the system architecture and 
design (DoD, 2015b). During the MSA, the continuous monitoring strategy and security plan are 
also designed (DoD, 2015b). 

The approved security procedures are then implemented in accordance with DoD 
specifications (DoD, 2014). The implementation must be well documented in the security plan 
for the system (DoD, 2014). In the TMRR phase, cybersecurity requirements are included in the 
system performance requirements (DoD, 2015b). 
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Figure 3. Hardware-Dominant Hybrid Program 
(DoD, 2015a) 

 

Figure 4. Risk Management Framework Process 
(DoD, 2014) 

The RMF team must then create, review, and approve a Security Assessment Plan that 
will allow the security controls to be properly assessed (DoD, 2014). Following approval, the 
security of the system is evaluated in line with DoD assessment processes and the Security 
Assessment Plan, during which vulnerabilities are assigned severity levels and the security risk 
for both the controls and the whole system is established (DoD, 2014). This is documented in 
the Security Assessment Report, which is necessary before any system is authorized, and 
security control repair activities are carried out (DoD, 2014). Prior to issuing an RFP, the 
Capability Development Document’s cybersecurity criteria are evaluated throughout the TMRR 
process (DoD, 2015b). The cybersecurity parts of the Preliminary Design Review, which is also 
done during the TMRR process, will ensure that the authorized plan is executed in the chosen 
design and risks are reduced to an appropriate level (DoD, 2015b). All computer code follows 
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applicable standards and secure coding practices as the system grows in the EMD phase, with 
evaluations undertaken and documented in the Security Plan (DoD, 2015b). 

A Plan of Action and Milestones (POA&M) is produced based on the identified 
vulnerabilities, which identifies activities to mitigate the vulnerabilities, resources required to fulfill 
the plan, and milestones for completing tasks (DoD, 2014). The Security Authorization Package 
is given to the Authorizing Official who will decide whether the risk level is appropriate before 
authorizing the system (DoD, 2014). The POA&M is created during the MSA phase and 
continues throughout the system development process (DoD, 2015b). 

Finally, security controls must be monitored throughout the system's life cycle to ensure 
that any changes to the system or environment do not compromise cybersecurity (DoD, 2014). 
If vulnerabilities are discovered, the necessary remedy will be carried out, and the security 
strategy will be updated (DoD, 2014). The cybersecurity of a system is monitored in line with the 
continuous monitoring strategy and Security Plan once it has been approved and operationally 
implemented (DoD, 2015b). When the system, its surroundings, or the anticipated use of the 
system change, new risk assessments are done (DoD, 2015b). If a vulnerability is discovered, 
the PM changes the Security Plan and the POA&M to specify how the issue will be resolved 
(DoD, 2015b). 

State of the AI 
Machine Learning 

Intelligence is the ability to process a specific sort of data, allowing a processor to solve 
significant problems (Gardner, 1993). Beyond the traditional idea of a person’s analytic 
intelligence quotient (IQ), which can sometimes evaluate merely how well someone performs on 
an IQ test rather than their natural talents, psychologists have postulated many categories of 
intelligence. Howard Gardner (2003) proposed a theory of multiple intelligence, which suggests 
that traditional psychometric views of intelligence are too narrow and that intelligence should be 
expanded to include more categories in which certain processors, in this case, people, are better 
at making sense of different stimuli than others. Visual-spatial, linguistic-verbal, interpersonal, 
intrapersonal, logical-mathematical, musical, body-kinesthetic, and naturalistic intelligence are 
some of the categories of intelligence (Gardner, 1993). A counter-argument would be that these 
categories simply represent learned and disciplined habits that people develop through time as 
a result of their personality and environment. Regardless, both definitions of intelligence 
(traditional and many) are relevant to the stages involved in developing an artificial intelligence 
machine. 

A computer can execute computations depending on the input data and produce an a 
priori defined outcome. It can be built and reprogrammed to repeat particular stages or algorithms 
and even change its conclusions based on previously calculated results using error-correcting 
techniques. The underlying principle of machine learning is a combination of these two phases. 
A computer system is fed data that is structured in such a way that the algorithm can identify it, 
deduce patterns from it, and make assumptions about any unstructured data that is presented 
later (Greenfield, 2019). In an x-ray learning algorithm, this is shown in Figure 5. 
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The image shows the steps an AI algorithm goes through in order to make a recommendation to a physician on where a missing body part should be. It takes in structured 
data and develops its understanding of what “right” looks like. When given unstructured data, it compares the image against previously trained models and identifies the 
abnormality with a recommendation on where to apply a fix, such as a prosthetic.  

Figure 5. AI Training Algorithm  
(Greenfield, 2019) 

The basic concept of machine learning is illustrated in Figure 5, although the current 
research focuses on the many types of learning from the standpoint of procurement. The 
following are interpretations of different forms of learning in procurement algorithms provided by 
Sievo (2019), an AI procurement software business. 
Supervised Learning 

The patterns are taught to an algorithm using previous data, and it then recognizes them 
automatically in new data. Humans give supervision in the form of the right responses, which 
train the algorithm to look for patterns in data. This is a term that is widely used in procurement 
sectors like spend classification (Sievo, 2019). 
Unsupervised Learning 

The algorithm is set up to look for novel and fascinating patterns in brand-new data. The 
algorithm isn’t expected to surface specific accurate answers without supervision; instead, it 
hunts for logical patterns in raw data. Within important procurement functions, this is rarely 
employed (Sievo, 2019). 
Reinforcement Learning  

The algorithm determines how to act in specific scenarios, and the behavior is rewarded 
or punished based on the outcomes. In the context of procurement, this is mostly theoretical 
(Sievo, 2019). 
Deep Learning  

Artificial neural networks gradually develop their capacity to accomplish a task in this 
sophisticated class of machine learning inspired by the human brain. This is a new opportunity 
in the procurement world (Sievo, 2019). 
Natural Language Processing 

Anyone who has used devices that appear to be able to understand and act on written or 
spoken words, such as translation apps or personal assistants like Amazon’s Alexa, is already 
familiar with NLP-enabled AI. NLP is a set of algorithms for interpreting, transforming, and 
generating human language in a way that people can understand (Sammalkorpi & Teppala, 
2019). Speech soundwaves are converted into computer code that the algorithms understand. 
The code then translates that meaning into a human-readable, precise response that can be 
applied to normal human cognition. This is performed by semantic parsing, which maps the 
language of a passage to categorize each word and forms associations using machine learning 
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to represent not just the definition of the word, but also its meaning in context (Raghaven & 
Mooney, 2013). Figure 6 depicts this categorization and analysis process in the context of a 
procurement contract. 

 
Figure 6. Semantic Parsing in Procurement  

(Sievo, 2019) 

Robotic Process Automation 
Robotic Process Automation (RPA) is not AI; rather, it is an existing process that has 

been advanced by AI, as explained in the third section of this paper. RPA is defined as “the use 
of technology by employees in a firm to set up computer software or a robot to capture and 
interpret current applications for processing transactions, altering data, triggering reactions, and 
communicating with other digital systems” (Institute for Robotic Process Automation & Artificial 
Intelligence [IRPA & AI], 2019). When used correctly, robotic automation offers numerous 
benefits because it is not constrained by human limitations such as weariness, morale, discipline, 
or survival requirements. Robots, unlike their human creators, have no ambitions. Working 
harder will not get you more money or get you promoted, and being permanently turned off will 
have no effect because robotic automation just duplicates the practical parts of the human 
intellect, not the underlying nature of mankind (Zarkadakis, 2019). (Note, however, that machine 
learning relies on an incentive system to make judgments about positive or negative reactions.) 

A future AI-enabled RPA option is for a machine to learn how to control the source of 
positive reinforcement fully independent of the rules required to achieve its aim. Things that 
survive develop to do so because of positive reinforcement from their environment and the fact 
that they continue to act in a way that is considered survivable. This should be taken into account 
in any future AI efforts, and especially in the case of why a human must always be present when 
final judgments are made. Regardless of whether AI systems have a perfect track record or not, 
they should not be entirely trusted. 
Technology Trust 

The Turing Test was created to test the capabilities of AI, as detailed in the third section 
of this report. Google developers designed Duplex, a spoken-word NLP tool, in 2018 to interface 
with its AI assistant. Its goal is to make phone calls on behalf of humans, converse with other 
humans, and respond to inquiries in a natural manner, all while sounding human (Leviathan, 
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2018). The algorithm can search for the information required as if it were a human searching for 
it on Google, for example. The AI assistant then calls a restaurant, for example, to schedule an 
appointment with the assistant’s human. After being given oral information from a person hearing 
the orders, the software stutters, pauses, and elongates certain vowels as though it has to think 
about what it is saying, and responds with other recommendations within its limitations. 

The authors questioned an AI NLP program named 1558M about one of the research 
issues twice for the purposes of this paper, and the machine responded with an unusual “opinion” 
of a negative and cautionary character (Figure 7). This tool was built to allow users to experiment 
with Open AI’s new machine learning model (King, 2019). What’s noteworthy about these 
responses is that they’re all original, which means a search of the phrases turns up no copies. 
However, the language and tone make them sound like they’re coming from a knowledgeable 
source, with just enough small evidence on the topic to be credible. However, the program does 
not finish its last phrase, making it unfinished but noteworthy. Clearly, such AI capabilities have 
a lot of potential for helping someone integrate with the DoD. 

 

Figure 7. Two Separate Results from an AI Called 1558M  
(King, 2019) 

Explainable Reasoning 

One of the barriers to AI adoption is the ability to explain how the algorithm arrived at its 
conclusions, which is necessary for auditing (Knight, 2017). It would be irresponsible to utilize 
artificial intelligence for military or financial goals without the capacity to track how judgments 
were made. Figure 8 depicts how AI currently categorizes data. The AI programs that produce 
the required outcome come up with their own means of navigating its layer complexities to 
develop output for the plethora of training data that went into creating the program. 

Fortunately for the DoD, the Defense Advanced Research Projects Agency (DARPA), 
which is already ingrained in the defense ecosystem, is leading the charge on explainable AI 
research (Gunning, 2017). DARPA 

has taken the lead in pioneering research to develop the next generation of AI 
algorithms, which will transform computers from tools into problem-solving 
partners. DARPA research aims to enable AI systems to explain their actions, and 
to acquire and reason with common sense knowledge. DARPA R&D produced 
the first AI successes, such as expert systems and search, and more recently has 
advanced machine learning tools and hardware. DARPA is now creating the next 
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wave of AI technologies that will enable the United States to maintain its 
technological edge in this critical area. (DARPA, 2019) 
 

The mechanics of how a Deep Neural Network navigates its trained data to identify 
different photographs are shown in Figure 9. Photos can be used to train an AI software, and 
associations of these trained data can then be used in the neural network to classify an input 
and eventually reach a conclusion. As a result, if the DoD decided to pursue human-machine 
cooperation in areas like contracting, its organic system would enable it to do so. 

 

To identify the output layer, the Simple Neural Network uses a set of input data that only passes through one hidden layer. To better identify the output data, the Deep 
Learning Neural Network transmits the input data through numerous layers. The Deep Learning Neural Network goes through simple to more detailed layers of trained 
data that correspond with dog features to make a 90% confidence classification that the picture is a dog and a 10% possibility that it is a wolf to classify input data to 
determine if the given picture is a dog. 

Figure 8. Simple Neural Network Compared to Deep Learning Network  
(Golstein, 2018; Parloff, 2016) 

Human-Machine Partnership 
Because sensor, information, and communication technologies generate data at rates 

faster than people can digest, comprehend, and act on, DARPA believes AI integration is vital 
as a human-machine symbiosis (DARPA, 2019). Machines are better at certain things, as they 
were throughout the industrial revolution, and using machines for those activities frees humans 
to become more productive in other areas. Separate areas of processing are where humans and 
machines flourish. Consider the following contrasts between computers and humans: calculate 
vs. decide; compare vs. make judgments; apply logic vs. empathize; unaffected by tiresome 
repetition vs. preferences; deals with enormous data vs. intuitional concentration on the most 
important (Darken, 2019). And while AI is capable of performing some jobs on its own, it performs 
better when paired with a human partner. Without sufficient restrictions, AI is a trusting learning 
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system that can be manipulated by evil actors. According to certain studies, AI can be misled in 
ways that humans cannot owing to human intuition. Another study has been able to deceive a 
self-driving car into thinking a benignly tampered-with stop sign was a speed limit sign (Figure 
10), which would almost certainly result in collisions if the car was left unattended (Eykholt et al., 
2018). 

Many people are aware of contemporary intelligent machine relationships that they may 
encounter on a regular basis without even realizing it. Google is the most popular search engine 
on the Internet because it gives more user happiness than its competitors, as stated with its other 
apps (Shaw, 2019). Google is so widely used as the primary search engine that many refer to it 
as “Googling” while looking for something online. This is a good example of humans engaging 
organically with a Bidirectional Encoder Representation-based AI system (BERT; Nayak, 2019). 
This is a strategy that trains a machine to answer a user’s inquiry based on the meaning of the 
words in the context of the question rather than on individual phrases. For example, when asking 
what time it is right before lunch, the user is really asking when they can eat; the outright answer 
would give the actual time, and the asker would deduce eating time, which was the underlying 
meaning of the question; the outright answer would give the actual time, and the asker would 
deduce eating time, which was the underlying meaning of the question. Another example of 
human contact with intelligent machines is so-called self-driving autos. The user mostly sits in a 
supervisory role while the automobile takes over one of the most dangerous moments in their 
lives and handles all road tasks autonomously to drive (Darken, 2019). 

Contractors that rely on an AI system to make all of their decisions are vulnerable to 
deliberate misdirection by adversaries providing hostile information for competitive advantage or 
disruption. Fraudsters can learn how to manipulate computer algorithms, but only humans can 
assess the outcomes. AI software, on the other hand, can quickly extract data and explain 
contract content. It can swiftly gather and organize renewal dates and terms from a large number 
of contracts. It can help businesses evaluate contracts faster, organize and locate vast amounts 
of contract data more readily, reduce the risk of contract disputes and adversarial contract 
negotiations, and improve the number of contracts they can negotiate and execute (Rich, 2018). 

 

Figure 9. Visualization of Explainable AI  
(DARPA, 2019) 
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An AI program in a self-driving car has trained data about a stop sign in its algorithm. When a target sign is seen in its environment, it references the trained data. As a 
test, researchers attached benign interruption markers on the sign, which confused the AI program to think the stop sign was a speed limit sign.  

Figure 10. AI System Interpreting a Stop Sign  
(Eykholt et al., 2018) 

Case Study of Private Sector AI Application to Contracting 
To compare DoD procurement options, we look at analogous situations in the private 

sector in the United States. Lawgeex is an example of a startup that is integrating AI into the 
procurement process in the private sector. An example contract component, the Non-Disclosure 
Agreement (NDA), demonstrated that AI software could outperform U.S.-trained lawyers with an 
average accuracy of 94%, compared to 85% for humans (Lawgeex, 2018). Large firms that rely 
on contracts to engage with partners, suppliers, and vendors have an 83% dissatisfaction rate 
with their organization’s contracting processes, according to the report (Lawgeex, 2018). Another 
example is Icertis, which provides services to huge and well-known firms like 3M, Johnson & 
Johnson, and Microsoft, to name a few (Icertis, n.d.-a). Icertis offers a cloud-based AI platform 
that learns from the client’s contracts, as well as control measures, to generate and help in 
contract setup, contract operations, governance, risk, and compliance, and reporting (Icertis, 
n.d.-a). 

The fact that business is more acclimated to putting professional papers on digitally 
accessible storage infrastructure, whether local hard drives or the cloud, makes this practical 
now, rather than when it was initially theorized decades ago (Betts & Jaep, 2017). Nontechnical 
barriers to a completely automated contract review and analysis process now exist, such as the 
gathering of contract performance data, the disclosure of private contracts and their associated 
performance data, and changes in ethical limits on computer usage in legal practice (Betts & 
Jaep, 2017). The authors of these barriers also propose policy solutions to address them: begin 
using contract management software as a forcing function to create data in an AI teachable 
format, expand copyright protection for vendors to protect their intellectual property, and develop 
new rules to help mitigate AI risks so that it can work (Betts & Jaep, 2017). 
Cloud-Based AI 

We look at the concept of cloud computing to understand how AI may be disseminated 
throughout a system, update regulations, and learn from various human teachers in real-time. 
When it comes to DoD technology adoption, the term “speed of relevance” is frequently used. 
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The term “cloud” is used in the 2018 DoD Cloud Strategy to refer to an offsite physical IT 
infrastructure. This external infrastructure connects to a user’s PC through the Internet to access 
data servers that store information and run centrally managed operating systems like Microsoft 
Windows. This means that every user has the same software computing capacity and access to 
the most recent software, regardless of their organization’s IT professional talent or software 
budget. Organizations can have as much or as little access to what they need for projects as 
they need it, and they are unaffected by surges in demand or periods of inactivity, which now 
add to the cost of DoD systems (Shanahan, 2018). The DoD’s goal is to have AI-assisted rapid 
decision-making in a secure and visible data environment for increased operational efficiency. 

Data stored in an enterprise DoD cloud will be highly available, well-governed, and 
secure. Data will be the fuel that powers those advanced technologies, such as 
ML and AI. This critical decision-making data will be made available through 
modem cloud networking, access control, and cross-domain solutions to those 
who require access. Common data standards will be a key part of the Department’s 
methodology for tagging, storing, accessing, and processing information. Ensuring 
an enterprise cloud environment will increase the transparency of this data, and 
drive the velocity of data analysis, processing, and decision making. Leveraging 
advances in commercial cloud security technologies will ensure the Department’s 
information is protected at the appropriate level. (Shanahan, 2018, pp. 5–6) 

Methodologies 
Knowledge Value Added 
Benefits 

Knowledge Value Added (KVA) is a way for measuring the value produced by a system 
and its subprocesses that are objective and quantitative. Analysts can compare the obtained 
ratios to the ratios from other subprocesses to establish their relative efficacy because each 
process’ value measurements employ ratio scale numbers. KVA translates all process outputs 
into common value units, resulting in a consistent productivity performance ratio across all 
operations. PMs can compare the value added by IT processes to the value generated by the 
human component. PMs can use these measurements to build meaningful ratios in their study 
of the program’s performance thanks to the scales. Return on knowledge (ROK; i.e., a process’s 
common unit outputs) is divided by the process cost necessary to produce the outputs, and for 
ROI calculations, the ratio is monetized outputs minus cost divided by cost. The ROKs and ROIs, 
which are always 100% associated, inform managers about the amount of value a process 
provides versus the amount of money invested to achieve that value. Unlike any other 
methodology, KVA assigns these figures to both the process and subprocesses, not only the 
company as a whole (as is done in standard generally accepted accounting practice metrics 
used in standard financial ratios). 

Conducting a KVA analysis of a program will provide a PM with a clearer understanding 
of the value of the program’s operational components. While most firms utilize cost/schedule 
metrics to assess the success of a project or operation, ROK will provide them with additional 
value-based data to help them make better management decisions. The relative predicted 
baseline value of the program’s components can be determined using PMs. Knowing that a 
certain job or subprocess produces the same output value as another process but at a different 
cost can help you understand why the entire system is performing differently. As a result, 
experienced managers have the information they need to dedicate resources to specific program 
components that need improvement or should be used more frequently, resulting in increased 
value-added. It also enables for estimations of the potential value-added of an AI system feature 
that was not originally planned for the project. 
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While a KVA study can provide information to aid in program or project management, it 
does not necessitate significant changes to organizational structure or reporting systems. 
Without bringing complicated new measures into the system, the review can be carried out as 
part of standard reporting procedures. The learning time, process instruction (e.g., WBS can be 
used as a surrogate for this technique), and binary query method are all dependent on data from 
the project description and requirements documents. To validate the accuracy of the presented 
data, a modest amount of hands-on measuring may be required. As a result, the analysis can 
be completed faster than other standard assessment approaches (e.g., activity-based costing), 
providing PMs with more timely access to relevant data. 
Challenges 

The value of the components that produce the outputs of the subprocesses will be 
quantified using KVA, which is a ratio-scale number. It does this, however, only with processes 
that have known a priori outputs. The intangible objects that occur within the human brain, such 
as creativity and imagination, cannot be quantified using this method, or any other method for 
that matter. In reality, because there is no formula for creativity, no present method can 
effectively quantify these types of intangibles within a process. Because the creative process 
cannot be learned or described algorithmically, these factors are not common to the ordinary 
user and, hence, cannot be specified using any of the KVA methods—learning time, binary 
query, or process description. Once creativity has been used to create an AI capacity, KVA can 
be used to algorithmically describe its productivity. KVA assigns a process’s current value, but it 
can’t forecast the value of potential future additional outputs unless they can be described using 
one of the KVA methods. 

Although KVA will supply ratio-scale data to assist in analyzing processes inside a 
program, the ratios are frequently only useful for comparisons between projects. Benchmarking 
the raw figures against other organizations or other divisions within the same organization will 
give a useful benchmark for assessing predicted ROK performance. The resulting ROK and ROI 
measurements will be comparable among organizations (for business and non-profit) that create 
diverse products or services, regardless of the language used to describe outputs. Because 
these output descriptions are in standard units, they can be viewed as a value constant across 
all processes, with the value of a component subprocess or core process determined solely by 
the number of outputs. The end outcome of any correctly completed research will yield similar 
ROK and ROI estimations, which is KVA’s ultimate purpose. 
Integrated Risk Management 

To forecast when various projects will be completed, all organizations rely largely on 
project planning software. Completing projects on schedule, on budget, and to a set value is 
crucial to the effective operation of a business. Many factors can influence a timetable in today’s 
high-tech world. When it comes to technical capabilities, they frequently fall short of expectations. 
In many circumstances, requirements may be insufficient and require more elaboration. Tests 
might produce unexpected results, both good and harmful. Cost rises, timetable lapses, and 
value variations can all be caused by a variety of factors. In rare circumstances, we may be 
blessed with good fortune, and the schedule can be accelerated without jeopardizing the 
project’s productivity. 

Project timelines are inherently insecure, and changes are expected. As a result, we 
should anticipate changes and devise the best strategy for dealing with them. So why do projects 
take so much longer than expected? The inaccuracy of timetable estimation is one of the 
reasons. The following discussion describes the flaws in standard timetable estimation 
approaches, as well as how simulation and advanced analytics can be used to remedy these 
flaws. 
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It’s crucial to first comprehend the Integrated Risk Management (IRM) process and how 
the various methodologies are related in the context of risk analysis and risk management. From 
a qualitative management screening process to provide clear and concise reports for 
management, this framework contains eight separate steps of a successful and complete risk 
analysis implementation. The author (Johnathan Mun) established the process based on past 
successful risk analysis, forecasting, real options, valuation, and optimization projects in both 
consultancy and industry-specific settings. These phases can be completed independently or in 
order for a more thorough integrated study. 

The procedure can be broken down into eight easy steps (Mun, 2016): 

• Qualitative Management Screening 
• Forecast Predictive Modeling 
• Base Case Static Model 
• Monte Carlo Risk Simulation 
• Real Options Problem Framing 
• Real Options Valuation and Modeling 
• Portfolio and Resource Optimization 
• Reporting, Presentation, and Update Analysis 

Qualitative Management Screening 
The first stage in every IRM process is qualitative management screening. In accordance 

with the firm’s mission, vision, goal, or overall business strategy, management must determine 
which projects, assets, initiatives, or strategies are viable for further analysis, which may include 
market penetration strategies, competitive advantage, technical, acquisition, growth, synergistic, 
or globalization issues. That is, the initial list of initiatives should be qualified in terms of how well 
they would achieve management’s objectives. When management frames the entire problem to 
be solved, the most important insight is often generated. The numerous dangers to the firm are 
identified and flushed out in this step. 
Forecast Predictive Modeling  

If historical or comparable data is available, the future is projected using time-series 
analysis or multivariate regression analysis. Other qualitative forecasting methods may be 
employed instead (subjective guesses, growth rate assumptions, expert opinions, Delphi 
method, etc.). Future revenues, sale price, quantity sold, volume, production, and other key 
revenue and cost drivers are projected at this stage in the financial process. Time series, 
nonlinear extrapolation, stochastic process, ARIMA, multivariate regression forecasts, fuzzy 
logic, neural networks, econometric models, GARCH, and other methods are examples of 
methodologies. 
Base Case Static Model  

A discounted cash-flow model is generated for each project that passes the initial 
qualitative tests, whether it is for a single project or numerous projects under consideration (KVA 
analysis, using the market comparables approach, can be used to monetize value for this model). 
Using the anticipated values from the previous phase, a net present value is generated for each 
project using this model as the base case analysis. The traditional approach of modeling and 
forecasting revenues and expenses, then discounting the net of these revenues and costs at an 
appropriate risk-adjusted rate, yields this net present value. Here are calculated the return on 
investment, as well as other profitability, cost-benefit, and productivity indicators. 
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Monte Carlo Risk Simulation 
Because the static discounted cash flow only provides a single-point estimate, there is 

often little trust in its accuracy, especially given the significant uncertainty surrounding future 
events that affect expected cash flows. Next, Monte Carlo risk simulation should be used to 
better evaluate the actual worth of a project. The discounted cash-flow model is normally 
subjected to a sensitivity analysis first; that is, by designating the net present value as the 
outcome variable, we can vary each of the previous variables and see how the resulting variable 
changes. As they go through the model, revenues, costs, tax rates, discount rates, capital 
expenditures, depreciation, and other prior factors all have an impact on the net present value 
number. By tracing back all of these previous variables, we can change each of them by a 
predetermined amount and assess the effect on the resulting net present value. Due to its shape, 
the most vulnerable preceding variables are depicted first, in descending order of magnitude, on 
a graphical depiction that is frequently referred to as a tornado chart. With this information, the 
analyst can evaluate which crucial aspects are deterministic in the future and which are very 
uncertain. The uncertain important variables that drive the net present value and, thus, the 
decision are known as critical success drivers. For these critical success criteria, Monte Carlo 
simulation is an excellent fit. Because several of these critical success determinants are linked—
for example, operational costs may rise in proportion to the quantity sold of a particular product, 
or prices may be inversely associated to quantity sold—a correlated Monte Carlo simulation may 
be required. The majority of the time, historical data can be used to make these relationships. 
When you run correlated simulations, you get a lot closer to the real-world behavior of the 
variables. 
Real Options Problem Framing 

The dilemma now is what to do after quantifying hazards in the previous stage. The risk 
data gathered must be transformed into actionable intelligence in some way. So what, and what 
do we do about it, just because risk has been estimated as such and such using Monte Carlo 
simulation? The solution is to apply actual options analysis to mitigate these risks, value them, 
and position yourself to profit from them. The act of defining the problem generates a strategic 
map, which is the first stage in real possibilities. Certain strategic options for each project would 
have been obvious based on the overall problem identification that occurred during the initial 
qualitative management screening phase. The strategic options could include, for example, the 
ability to expand, contract, abandon, switch, choose, and so on. The analyst can then choose 
from a list of choices to investigate further based on the identification of strategic options that 
exist for each project or at each stage of the project. Real options are incorporated into projects 
to protect against downside risks and to profit from upswings. 
Real Options Valuation and Modeling 

The resulting stochastic discounted cash-flow model will have a distribution of values 
thanks to Monte Carlo risk simulation. As a result, simulation models, analyzes, and quantifies 
each project’s unique risks and uncertainties. As a result, the NPVs and project volatility are 
distributed. We assume that the underlying variable in real options is the project’s future 
profitability, which is represented by the future cash-flow series. The results of a Monte Carlo 
simulation can be used to calculate the implied volatility of the future free cash flow or underlying 
variable. Usually, the volatility is measured as the standard deviation of the logarithmic returns 
on the free-cash-flow stream (other approaches include running GARCH models and using 
simulated coefficients of variation as proxies). Furthermore, in real options modeling, the present 
value of future cash flows for the base case discounted cash-flow model is used as the initial 
underlying asset value. Real options analysis is used to determine the strategic option values for 
the projects using these inputs. 
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Portfolio and Resource Optimization 
Portfolio optimization is a step in the analysis that can be skipped. Because the projects 

are usually associated with one another, management should view the results as a portfolio of 
rolled-up projects if the analysis is done on numerous projects. Viewing them individually will not 
offer the actual picture. Because businesses don't just have one or two initiatives, portfolio 
optimization is essential. Because certain projects are interconnected, there is potential for risk 
hedging and diversification through a portfolio. Portfolio optimization takes all of these factors 
into account to build an optimal portfolio mix because firms have limited budgets, as well as time 
and resource constraints, while also having needs for particular overall levels of returns, risk 
tolerances, and so on. The research will determine the best way to allocate funds across multiple 
projects. 
Reporting, Presentation, and Update Analysis  

Until reports can be created, the analysis is not complete. Not only should the results be 
communicated, but so should the process. A complex black box set of analytics is transformed 
into transparent processes by clear, simple, and exact explanations. Management will never 
accept outcomes from black boxes if they don't know where the assumptions or data come from 
or what kind of mathematical or financial manipulation is going on. Risk analysis presupposes 
that the future is uncertain and that management has the authority to make mid-course 
corrections when these uncertainties or risks are resolved; the analysis is typically performed 
ahead of time and, therefore, ahead of such uncertainty and risks. As a result, if these risks are 
identified, the analysis should be updated to integrate the decisions made or to revise any input 
assumptions. Several iterations of the real options analysis should be undertaken for long-
horizon projects, with future iterations being updated with the newest data and assumptions. 

Understanding the processes required to complete the IRM process is critical because it 
reveals not only the technique itself but also how it differs from previous analyses, indicating 
where the traditional approach finishes and the new analytics begin. 
Benefits 

IRM is a great tool for improving the quality of information accessible while making 
decisions because it combines multiple proven strategies. When applied to the examination of 
potential initiatives and investments, dynamic Monte Carlo simulation depicts the risks connected 
with the projects in a more realistic manner than traditional methodologies. Static forecasting 
based on assumptions and past performance provides a restricted view of a project’s potential 
outcomes. Decision-makers can acquire a more full understanding of the project’s uncertainty 
by running thousands of simulations or more while altering the variables within realistic 
possibilities. Increasing the amount of relevant and correct information available to managers 
will increase the quality of the leadership team’s decisions. 

IRM takes a methodical strategy to deal with AI investments. Following the eight phases 
is a simple procedure that aids in the quantitative decision-making process. While the functions 
within each phase can be sophisticated and require additional training, the overall process is 
straightforward and simple to follow. Because the IRM approach is fully defined, it may be 
integrated into existing procedures without requiring a complete reengineering. IRM will use data 
from existing approaches and expand it to improve the scope of a project’s evaluation. The true 
possibilities were quantified, and the outcome diverged from what was expected. The systemic 
design of IRM allows different members or teams to finish the process without having to re-collect 
data and start from the beginning. Analysts should be able to continue the procedure from any 
point in the approach after completing IRM training. 

Real options analysis provides managers with the probability of certain project results, 
allowing them to select the best way to proceed with a project. Real options were offered not 
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only at the start of the program, with three different routes in which the program may go, but also 
at each stage of the chosen strategy. By drafting a contract that allows an organization to modify 
its course of action as more information becomes available, the corporation can reduce losses 
from failing programs while maximizing gains from initiatives that are succeeding or showing 
promise. Fortunately, many viable possibilities are already ubiquitous in DoD buys. Contracts 
are frequently canceled by the government due to changes in budgetary policy, inability to satisfy 
requirements, or other factors. Including other genuine choices in contracts isn’t an entirely new 
concept. 

The use of common units to make strategic decisions about a system’s value is a core 
component of the IRM methodology. Leadership can see a statistical range reflecting the 
potential value of a project by incorporating KVA values into the static and dynamic IRM models. 
The present values of the genuine option strategies were calculated using the market 
comparable prices produced by the value analysis. The effectiveness of most other ways is 
determined only by the program's cost, presuming that the value is inherent owing to the needs 
that were produced. IRM can provide decision-makers with information on both the expenses of 
a proposed investment in an initiative and the value of that project in comparable units.  
Challenges 

While IRM is a very useful analytical tool, it does have some disadvantages. The 
method’s multiple techniques might be challenging to master (Housel et al., 2019). To do a full 
study, it is a hard process that necessitates a solid understanding of both finance and statistics. 
While computing tools can help with the analysis, the inputs are more involved than simply typing 
a few numbers into a program and receiving the results. An analyst can generate the essential 
information to enable decision-makers access to the proper comparison material to make an 
informed decision if they have a good understanding of the core principles, enough training, and 
the right tools (Housel et al., 2019). The amount of data gathered during statistical analysis can 
be overwhelming. The simulations and their conclusions appear to originate from a quantitative 
black box to individuals without a strong statistics background (Mun, 2016). If decision-makers 
don't comprehend why an analyst makes a recommendation, it’s simple to dismiss the advice 
and fall back on tried-and-true methods. To tackle this possible issue, create detailed and 
complete reports for management review, as well as knowledgeable presentations to allay 
worries about the unfamiliar procedures. To take advantage of actual options, they must be 
reviewed before a decision is made to implement any of them. When writing contracts, leadership 
must consider the future option to ensure that certain alternatives stay available. Some 
alternatives, such as expanding, can be implemented very easily by building a new project based 
on the first investment’s success. However, if the contract does not include relevant conditions, 
project managers may not have as much flexibility in abandoning the project. Vendors must be 
willing to accept the possibility of subcontract cancellation when they are not at fault, which may 
increase the cost of completing a task. Managers must perform a careful study of which 
prospective options may be exercised in the future before signing contracts with vendors, due to 
the potential increased cost associated with contracting genuine options. 

IRM, like all financial forecasting, makes projections based on previous data. Decision-
makers can gain more insight from predictions that incorporate current information rather than 
relying just on historical trends. Meteorologists, for example, compile weather forecasts from a 
variety of sources: Current weather conditions are monitored using Doppler radar, satellites, 
radiosondes (weather balloons), and automated surface-observing systems (National Oceanic 
and Atmospheric Administration [NOAA], 2017). The data from multiple sources is run in models 
based on known historical patterns for the region using numerical weather prediction (NOAA, 
n.d.). Knowing the present conditions is just as crucial to a meteorologist as knowing the past 
models (NOAA, n.d.). Similarly, the models would deliver even more precise information if the 
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project analyst could add pertinent information that is up to the minute (or to the requisite quality). 
Because of previous projects with historical data, outsourcing, lowering manning and retaining 
the current structure all offer statistics that could be used in simulations. Despite the fact that this 
weakness is not exclusive to the IRM technique, executives should be aware of it in any financial 
forecast. 

Finally, the DoD not currently reward PMs who reap the rewards of risk. The risk 
framework in DoD acquisitions is intended to reduce project costs and schedule overruns. DoD 
contracts are structured in such a way that they do not incentivize vendors or the project as a 
whole to improve their capabilities or performance. When a for-profit company invests in an 
initiative that may fail, it does so because the potential upside gain outweighs the risk of failure. 
For example, if an aircraft's design target is to attain 250 knots and the design threshold is 200 
knots, the budget will be allocated to the threshold rather than the objective. Unless the PM is 
able to reallocate resources internally, the program will not be able to meet its objectives. The 
acquisitions process considers the cost of achieving the goal rather than the worth of the goal. 
Performance is rewarded in for-profit businesses, which is evaluated by revenue. The DoD’s 
implicit surrogate for revenue is cost reductions, which has a different value than improving a 
project's worth. Acquisitions by the DoD, on the other hand, are only made when the negative 
implications have been mitigated to the maximum extent practicable. The upside risk is 
unimportant to the PMs; all that matters is that the program is finished on time and on budget. 
Although it is still important to look at how potential projects fit into the DoD’s broader collection 
of acquisitions and current assets, the contract structure limits certain IRM portfolio optimization 
features. 
Comparison of Key Attributes 

The type of methodology to use should be determined by the nature of the project at 
hand, including the level of commitment required from the organization, the organization’s desire 
to align strategic goals with the project, the methodology’s predictive capability, the flexibility 
required, and the amount of time available. While others in the business must understand 
concepts in order to comprehend status reports, EVM just requires the management team to 
track the project’s cost and schedule against the baseline because there is no pre-determined 
goal alignment with the organization. While the CPI and SPI can assist in estimating the ultimate 
cost and schedule, EVM has no true predictive potential because it is assumed that the schedule 
would follow the baseline regardless of historical performance volatility. In EVM, sticking to the 
baseline is critical, and altering requirements can substantially affect the baseline, lowering the 
methodology’s effectiveness. For an AI project with its many unknown components and 
capabilities a priori, setting up, monitoring, and reporting the cost/schedule performance of each 
work item inside the WBS can be a time-consuming and costly operation. 

To assess the value of a process or component output, KVA simply requires the KVA 
analyst and the process owner, who serves as the SME, supporting the requirement to match 
the project with an organization’s productivity goals. They can model the present baseline as-is 
process ROK and compare it to the proposed to-be process model ROK using this approach, 
resulting in a straightforward forecast of the improvement between the models. Because KVA 
can be used with any description language that defines process outputs in common units, 
analysts can choose the method that is most helpful for the system in question, allowing for 
flexibility. This analysis may be conducted fast, with a rough assessment available in a few days. 
To assess how a project fits into an organization’s portfolio, the project’s present value (PV), and 
potential real possibilities, IRM requires organizational leadership, portfolio and project 
managers, and the analyst. IRM gives a prediction of a project’s anticipated performance by 
analyzing and simulating alternative situations, allowing managers to build in flexibility via 
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genuine options at the right spots within the project. Assuming that the data required for the 
analysis is available, the process can be done quickly. 
Methodologies in AI Acquisition 

As previously stated, each methodology has strengths and weaknesses that make it more 
appropriate for certain applications than others. The iterative nature of software development is 
the most difficult aspect of adopting EVM when gaining AI. To be most successful, EVM requires 
well-stated, specific requirements for intermediate phases. While software program outputs are 
well specified, the methods required to produce the software are not, causing challenges when 
estimating cost and schedule. EVM can adequately monitor the progress if the software is not 
complex or comprises well-known operations. Integrating software and hardware is also difficult 
with EVM since there are various elements of the program that must be merged to achieve the 
objectives, requiring additional debugging and recoding. When used to manage the physical 
production of systems or infrastructure, EVM is more efficient. It can track the cost and schedule 
progress of software work packages, but it’s not as good at determining their worth. 

Any IS system can use KVA to offer an objective, ratio-scale measure of value and cost 
for each core process and its subprocesses or components. Managers can then examine 
productivity ratios information, such as ROK and ROI, using the two factors to determine the 
efficiency of a process in relation to the resources utilized to create the output. This can assist 
the manager in deciding how to allocate resources for system updates or estimating the future 
value of a system that is being purchased. Managers can iterate the value of system real options 
analysis using simulation and other ways by combining KVA and IRM data. IRM can also use 
past data to evaluate risks and anticipate performance probability for metrics of potential success 
for programs and program components. It’s a tool that can help with investment strategy and can 
be used to acquire any form of AI. It is not, however, intended to assist in the procurement of an 
AI program or in determining how to meet the program’s specific criteria. 
Summary 

The scope, capabilities, and limitations of various AI systems are demonstrated by 
examining the benefits and challenges of the proposed approaches. It also aids in determining 
which areas and phases of the Defense Acquisition System life cycle the methodologies or 
components of the methodologies should be included. The following section offers suggestions 
based on the findings. 

Conclusion 
Simply put, how might certain advanced analytical decision-making processes be applied 

in the acquisition life cycle to supplement existing procedures to ensure a successful acquisition 
of AI technologies? 

As previously stated, EVM is the sole program management methodology that the U.S. 
government requires for all DoD acquisition initiatives worth more than $20 million. Regardless 
of this necessity, EVM is a methodology that offers a systematic approach to IT acquisition 
through program management processes that can assist in keeping an acquisition program on 
track and below estimated cost estimates. However, there are substantial drawbacks to utilizing 
EVM for AI acquisitions, the most prominent of which is that it was not built to manage AI 
acquisitions that follow a highly iterative and volatile course. Organic AI acquisitions necessitate 
a high level of flexibility in order to deal with the unknowns that surface during the development 
process, as well as value-adding opportunities that were not anticipated. Furthermore, EVM lacks 
a uniform unit of value metric that would allow typical productivity metrics like ROI to be 
calculated. When a program’s worth is determined by how closely it adheres to its initial cost and 
schedule projections, the program’s performance may suffer in terms of output quality when 
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intended program activities become iterative, as in the development of many AI algorithms. EVM 
is not designed to recognize disproportionate increases in value if an AI acquisition program is 
going toward cost and schedule overruns, but the ensuing value-added of the modifications to 
the original requirements offers disproportionate increases in value. 

To address EVM’s shortcomings in AI acquisitions, the methodology should be combined 
with KVA and IRM, which can be useful during the EVM requirements and monitoring phases by 
ensuring that a given AI acquisition is aligned with organizational strategy and that a baseline 
process model has been developed for establishing current performance prior to the acquisition 
of an AI system. After the AI has been obtained, a future process model that forecasts the value-
added of incorporating the AI can be used to set expectations that can be tested against the 
baseline model. IRM can be used to anticipate the value of strategic real choices flexibility that 
an acquired AI might bring, allowing leadership to choose the alternatives that best meet their 
desired goals for AI in defense core activities. 

KVA should be utilized in AI acquisitions because it gives an objective, quantitative 
measure of value in common units, allowing decision-makers to better comprehend and compare 
different strategic options based on their value and cost. Only by employing KVA to determine 
the value inherent in the system can AI systems be given a return on investment. PMs benefit 
from this information since it gives them a more full picture of the current and future systems’ 
performance. 

When obtaining AI through the Defense Acquisition System, it's also a good idea to use 
IRM. The risk estimates associated with the components and subcomponents of a program, in 
terms of potential cost overruns, value variabilities, and schedule delays, can be improved by 
using dynamic and stochastic uncertainty and risk-based modeling techniques to predict likely 
and probabilistic outcomes. Analyzing multiple real-world options in the context of the models’ 
outputs will assist PMs in making the best decisions possible when defining the future of a 
program. 

As is now done, PMs should only employ EVM throughout the Engineering and 
Manufacturing Development (EMD) phase. EVM, on the other hand, will operate best in 
hardware manufacturing solutions with fully mature technology prior to the program’s start. EVM 
is not well suited for AI development because many AI acquisition efforts involve upgrading 
current technology and generating new software solutions to meet requirements. Nonetheless, 
PMs can employ a variety of agile EVM strategies to complete projects on time and on budget if 
the proper procedures are done when establishing the baseline. Requirements must be broken 
down into tiny, simply defined tasks, with risk and uncertainty elements appropriately accounted 
for in the timetable. Other approaches, such as KVA and IRM, should be used in conjunction 
with EVM to guarantee that these elements are based on verifiable measurements rather than 
assuming how much more time, money, and value may be required to execute complex tasks. 

KVA and IRM will assist in determining the value of the various options evaluated in the 
analysis of alternatives (AoA) process during the Materiel Solution Analysis (MSA) phase. KVA 
can objectively assess the value of the current, as-is system as well as potential future systems. 
Then IRM can leverage other aspects like cost, value, complexity, and schedule to value the 
alternatives in terms of their respective parameter values. As the chosen solutions mature during 
the TMRR phase, a revised KVA analysis will reassess initial estimations and provide a predicted 
ROI that may be incorporated into an IRM risk and actual alternatives analysis for the AI solution 
before entering the EMD phase, if necessary. 
Limitations and Future Research 

This study looked into whether the various methodologies—EVM, KVA, and IRM—could 
be used to improve AI acquisition inside the Defense Acquisition System. Future research should 
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look at how these approaches interact with or improve other acquisition system components. 
This comprises the specific procedures of JCIDS and PPBE, as well as the interactions between 
JCIDS, PPBE, and the Defense Acquisition System as a whole. Certain approaches, such as 
IRM, may be more useful when applied to the full acquisition process rather than just a part of it. 
Future research might also look into how these diverse methods could be utilized to acquire 
things that aren’t related to AI or IT. 

The study focused on AI as a whole, rather than individual types of AI. Future research 
should look into whether acquisition methods, strategies, and methodologies differ depending 
on the type of AI being acquired. This is particularly relevant when it comes to artificial intelligence 
and its subsets. Based on their complexity, intricate nature, developing technology, and amount 
of risk, machine learning, intelligence with a specific emphasis or field of specialty, and general 
or universal intelligence will likely use different ways in the acquisition process. 

Another area of prospective investigation is the use of these approaches in commercial 
AI acquisition. The focus of this study was solely on the application of the strategies in the DoD 
acquisition process. Commercial entities, on the other hand, face challenges when adopting 
extensive or complicated AI and IT systems, especially when the technologies are used at the 
enterprise level. Further research may reveal whether these same techniques could be useful to 
private-sector decision-makers during the development, adoption, or customization of 
commercial AI. The hype cycle for AI and automation is on the rise, as highlighted in the literature, 
and the demand to buy such technology is as relevant for the private sector as it is for the DoD. 
In addition, the current pandemic triggered by Coronavirus Disease 2019 (COVID-19) has 
compelled a permanent shift in society toward permanent distant labor. Because these trends 
are expected to continue in the near future, more automation tools will be needed to support this 
workforce. As part of the Fourth Industrial Revolution and Industry 4.0, these developments could 
be investigated for their consequences. 

Finally, this study looked at only the most promising approaches out of a wide range of 
options. Other program management tools, management philosophies, analytic tools, or other 
approaches, as well as their benefits while adopting AI, should be investigated in future research. 
While the approaches investigated were chosen because they are likely to enhance the process 
and assist EVM improvements, other systems may be more appropriate in certain phases or 
provide additional benefits not seen in this study. 

References 
Betts, K. D., & Jaep, K. R. (2017). The dawn of fully automated contract drafting: Machine learning 

breathes new life into a decades-old promises. Duke Law and Technology Review, 15(1), 216–
233. 

Darken, R. (2019, October 21). Human–machine teaming AI. Naval Postgraduate School. 
DoD. (n.d.). PALT. https://DoDprocurementtoolbox.com/site-pages/palt 
DoD. (2003, May 12). The defense acquisition system (change 2, DoD Directive 5000.01). 

https://www.esd.whs.mil/Directives/issuances/DoDd/  
DoD. (2005). Work breakdown structures for defense materiel items (MIL-HDBK-881A). 

http://www.acqnotes.com/Attachments/MIL-Hand%20Book-881.pdf  
DoD. (2011, April). Technology Readiness Assessment (TRA) guidance. Assistant Secretary of Defense 

for Research and Engineering.  
DoD. (2014, March 12). Risk management framework (RMF) for DoD information technology (IT) 

(change 2, DoD Instruction 8510.01). https://www.esd.whs.mil/Directives/issuances/DoDi/  
DoD. (2015a, January 7). Operation of the defense acquisition system (change 4, DoD Instruction 

5000.02). https://www.esd.whs.mil/Directives/issuances/DoDi/  
DoD. (2015b, September). DoD program manager’s guide for integrating the cybersecurity risk 

management framework (RMF) into the system acquisition lifecycle.  
DoD. (2017, February 26). Defense acquisition guidebook. https://www.dau.mil/tools/dag 



Acquisition Research Program 
Department of Defense Management - 85 - 
Naval Postgraduate School 

DoD. (2018, April 16). Agile and earned value management: A program manager’s desk guide.  
DoD. (2019a, January 18). Earned value management implementation guide (EVMIG).  
DoD. (2019b, February 12). Summary of the 2018 Department of Defense artificial intelligence strategy: 

Harnessing AI to advance our security and prosperity. 
https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-
STRATEGY.PDF 

Eykholt, K., Evitimov, I., Fernandes, E., Li, B., Rahmati, A., Xia, C., & Song, D. (2018). Robust physical-
world attacks on deep learning visual classification. Cornell University. 

Gardner, H. (1993). Multiple intelligences. Basic Books. 
Golstein, B. (2018, October 10). A brief taxonomy of AI. SharperAI. https://www.sharper.ai/taxonomy-ai/ 
Greenfield, D. (2019, June 19). Artificial intelligence in medicine: Applications, implications, and 

limitations. Harvard University. http://sitn.hms.harvard.edu/flash/2019/artificial-intelligence-in-
medicine-applications-implications-and-limitations/ 

Gunning, D. (2017, November). Explainable artificial intelligence. DARPA. 
https://www.darpa.mil/attachments/xaiprogramupdate.pdf 

Housel, T., & Bell, A. H. (2001). Measuring and managing knowledge. McGraw Hill. 
Housel, T., & Kanevsky, V. A. (1995). Reengineering business processes: A complexity theory approach 

to value added. Infor, 33(4), 248. https://doi.org/10.1080/03155986.1995.11732285 
Housel, T., & Kanevsky, V. (2006). Measuring the value added of management: A knowledge value 

added approach. Naval Postgraduate School. 
Housel, T. J., Mun, J., Jones, R., & Carlton, B. (2019a, May). A comparative analysis of advanced 

methodologies to improve the acquisition of information technology in the Department of 
Defense for optimal risk mitigation and decision support systems to avoid cost and schedule 
overruns [Paper presentation]. Sixteenth Annual Acquisition Research Symposium, Monterey, 
CA, United States.  

Housel, T. J., Mun J., Jones, R., & Carlton, B. (2019b, October). A comparative analysis of advanced 
methodologies to improve the acquisition of information technology in the Department of 
Defense for optimal risk mitigation and decision support systems to avoid cost and schedule 
overruns (NPS-AM-20-002). Naval Postgraduate School. 
https://dair.nps.edu/handle/123456789/2774 

Icertis. (n.d.-b). Customers. Retrieved October 11, 2019, from https://www.icertis.com/customers/ 
Icertis. (2019a). Icertis customer profile: Mindtree. https://www.icertis.com/customer/mindtree/ 
Icertis. (2019b, April 2). Microsoft streamlined its contract management. 

https://www.icertis.com/customers/microsoft-information-exchange-agreements-case-study/ 
Institute for Robotic Process Automation & Artificial Intelligence. (2019, November 16). What is robotic 

process automation? https://irpaai.com/what-is-robotic-process-automation/ 
King, A. D. (2019, November 16). Talk to transformer. https://talktotransformer.com/ 
Knight, W. (2017, April 11). The dark secret at the heart of AI. Technology Review. 

https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ 
Lawgeex. (2018, February). Comparing the performance of artificial intelligence to human lawyers in the 

review of standard business contracts. Law.com. 
https://images.law.com/contrib/content/uploads/documents/397/5408/lawgeex.pdf 

Leviathan, Y. (2018, May 8). Google Duplex: An AI system for accomplishing real-world tasks over the 
phone. Google AI Blog. https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-
conversation.html 

Mun, J. (2015). Readings in certified quantitative risk management (CQRM) (3rd ed.). Thomson-Shore 
and ROV Press. 

Mun, J. (2016a). Real options analysis (3rd ed.). Thomson-Shore and ROV Press. 
Mun, J. (2016b, October). Empirical cost estimation tool [Paper presentation]. Naval Acquisitions 

Research Conference, Monterey, CA, United States. 
Mun, J. (2019). Empirical cost estimation for U.S. Navy ships. Universal Journal of Management, 7, 152–

176.  
Mun, J., & Anderson, M. (2021, January). Technology trust: System information impact on autonomous 

systems adoption in high-risk applications. Defense Acquisition Research Journal, 28(1), 2–39. 
https:// doi.org/10.22594/10.22594/dau.19-841.28.01 



Acquisition Research Program 
Department of Defense Management - 86 - 
Naval Postgraduate School 

Mun, J., George, K., & Ledbetter, E. (2020). Total ownership with life-cycle cost model under uncertainty 
for surface ships’ electro-optical-infrared-sensors [Unpublished manuscript]. 

Mun, J., & Housel, T. (2010). A primer on applying Monte Carlo simulation, real options analysis, 
knowledge value added, forecasting, and portfolio optimization. Calhoun. 

Mun, J., Housel, T., & Wessman, M. D. (2010). PEO-IWS ACB insertion portfolio optimization. In 
Proceedings of the Seventh Annual Acquisition Research Symposium (Vol. 2, No. NPS-AM-10-
069-VOL-2). Naval Postgraduate School. 
https://my.nps.edu/documents/105938399/108624025/NPS-AM-10-069.pdf/c71c6830-853a-
448b-beac-242bea4cba8b?version=1.0 

Nayak, P. (2019, October 25). Understanding searches better than ever before. Google. 
https://blog.google/products/search/search-language-understanding-bert 

Parloff, R. (2016, September 28). From 2016: Why deep learning is suddenly changing your life. 
Fortune. https://fortune.com/longform/ai-artificial-intelligence-deep-machine-learning/ 

Raghaven, S., & Mooney, R. J. (2013). Online inference-rule learning from natural-language extractions. 
The University of Texas. 

Rich, B. (2018, February 12). How AI is changing contracts. Harvard Business Review. 
https://hbr.org/2018/02/how-ai-is-changing-contracts 

Sammalkorpi, S., & Teppala, J. P. (2019). AI in procurement. Sievo Oy.  
Shanahan, P. (2018). DoD cloud strategy. Department of Defense. 
Sievo. (2019, November 16). AI in procurement. https://sievo.com/resources/ai-in-procurement 
Zarkadakis, G. (2019, September 11). The rise of the conscious machines: How far should we take AI? 

Science Focus. https://www.sciencefocus.com/future-technology/the-rise-of-the-conscious-
machines-how-far-should-we-take-ai/ 



 



 
 

 
Acquisition Research Program 
Naval Postgraduate School 
555 Dyer Road, Ingersoll Hall 
Monterey, CA 93943 

www.acquisitionresearch.net 

 


	Introduction
	Research Objective

	Literature Survey
	Defense Acquisition System

	State of the AI
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Deep Learning

	Natural Language Processing
	Robotic Process Automation
	Technology Trust
	Explainable Reasoning
	Human-Machine Partnership
	Case Study of Private Sector AI Application to Contracting
	Cloud-Based AI


	Methodologies
	Knowledge Value Added
	Benefits
	Challenges

	Integrated Risk Management

	 Qualitative Management Screening
	 Forecast Predictive Modeling
	 Base Case Static Model
	 Monte Carlo Risk Simulation
	 Real Options Problem Framing
	 Real Options Valuation and Modeling
	 Portfolio and Resource Optimization
	 Reporting, Presentation, and Update Analysis
	Qualitative Management Screening
	Forecast Predictive Modeling
	Base Case Static Model
	Monte Carlo Risk Simulation
	Real Options Problem Framing
	Real Options Valuation and Modeling
	Portfolio and Resource Optimization
	Reporting, Presentation, and Update Analysis
	Benefits
	Challenges
	Comparison of Key Attributes
	Methodologies in AI Acquisition
	Summary

	Conclusion
	Limitations and Future Research

	References

