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ABSTRACT 

 Target pose estimation and aimpoint selection is crucial in direct energy weapon 

systems, as it allows the system to point to a specific and strategic area of the target. 

However, it is a challenging task because a dedicated attitude sensor is required. 

Motivated by new emerging deep learning capabilities, the present work proposes a deep 

learning model to estimate a target spacecraft attitude in terms of Euler angles. Data for 

the deep learning model were experimentally generated from 3D UAV models, 

incorporating effects such as atmospheric backgrounds and turbulence. The targets pose 

was derived from the training, validation, and prediction of 2D keypoints. With a 

keypoint detection model it is possible to detect interest points in an image, which allows 

us to estimate pose, angles, and dimensions of the target in question. Utilizing a 

weak-perspective direct linear transformation algorithm, the pose of a 3D object with 

respect to a camera from 3D to 2D correspondences could be determined. Additionally, 

from this correspondence, an aimpoint, mimicking laser tracking could be determined on 

the target. This work evaluates these methods and their accuracy against experimentally 

generated data with simulated real-world environments. 
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I. INTRODUCTION 

A. OVERVIEW 

Unmanned aerial vehicles (UAVs) have become a serious security threat to the 

military within the last decade. Counter offensive and defensive operations towards drones 

are paramount as the dynamic of warfare changes. Developments in drone detection and 

tracking are becoming a hallmark operation in the fleet for intelligence, surveillance, and 

reconnaissance (ISR). One of the most recent developments is the Navy’s high energy laser 

weapons system (LWS). The LWS has the potential to advance ship and battle aerial 

defense as it supports in the selection of targets for engagement. The challenges from the 

LWS are a consequence of a series of decisive factors. These factors include the target’s 

characteristics (range, position, velocity) and atmospheric conditions and their effect on 

the laser beam. Decision making for the LWS is dependent on these factors and can affect 

battle readiness.  

The use of artificial intelligence (AI) could support warfighters to address the 

challenges in weapon guidance systems. Researchers have been developing deep learning 

(DL) algorithms  within the last two decades, that have been able to imitate the functions 

of the human cortex and brain. However, the use of these types of autonomous systems 

within a military domain has not been thoroughly evaluated. There are several challenges 

that come with AI implementation. The development of autonomous cars exhibit the 

limitations of cognitive decision making for AI. The primary cause of these limitations is 

the high volume of data exposure that DL algorithms require to have a performance 

comparable to human functions. However, AI implementation has numerous counts of 

success that are now a part of daily life. AI and DL could be beneficial in advancing weapon 

guidance systems such as LWS in terms of autonomy and accuracy.  

The specific applications of the LWS that AI implementation could transform is 

aimpoint selection and tracking. The LWS system’s decision making involves detecting, 

tracking, and engaging an aerial target. This process is analogous to current DL detection 

and pose estimation algorithms. Although the majority of these algorithms were developed 
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for specific problems such as human pose or satellite imagery, they can be reconstructed 

to fit this problem domain. The goal of this research is to conduct experimentation in 

exploring the application of DL algorithms on weapon guidance systems against aerial 

targets. This goal was accomplished by evaluating two datasets that are comprised of 

synthetic imagery of the Mongoose UAV. These datasets factor in real world limitations 

such as atmospheric affects, target turbulence and detection ambiguity due to pose. This 

research focused on the use of a keypoint detection DL algorithm and weak-perspective 

direct linear transformation (WPDLT) pose estimation algorithm to determine aimpoint 

selection and tracking. This research studied various DL algorithms to obtain the most 

appropriate fit for the problem. Finally, this study evaluated the performance of the AI 

implementation for the purpose of identifying its potential effectiveness for systems like 

the LWS. 

B. OBJECTIVES 

The primary objective of this research was to evaluate if AI and DL methods could 

improve the target detection, pose estimation and aimpoint tracking of naval weapon 

guidance systems. Subsidiary research goals were: 

• To study DL methods to identify and evaluate algorithms suitable for 

improving Naval directed energy weapon system guidance 

• To study how DL algorithms developed for human pose can be transferred 

into tracking systems of aerial targets 

• To demonstrate the application of DL to this problem domain through 

algorithm training and modeling. 

• To identify and evaluate the limitations of the DL through synthetic data  

C. APPROACH 

This thesis approached the research objective through a literature review, 

development of an open-source DL algorithms to fit the problem domain, and 

experimentation through training and evaluation of algorithm models. The research began 
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with a literature review to accumulate information on artificial intelligence (including 

machine learning (ML), DL and Convolutional Neural Networks (CNNs)), object detection 

algorithms and DL applications for Naval weapon systems. This information was the 

foundation for augmenting and evaluating a DL algorithm within the scope of the problem.  

This research used synthetic data developed and provided by Lockheed Martin. 

This data simulated current limitations faced in pose estimation and aimpoint tracking 

applications such as image noise or clutter, and target ambiguity. These datasets were used 

to train a DL algorithm to perform keypoint detection, and inference pose estimation and 

aimpoint tracking. The DL algorithm modeling process was conducted following the five 

phases: data augmentation, adaptation, training, improving, and validating. The research 

approach followed five primary steps: 

1. Identify DL methodology and techniques 

2. Augment datasets to fit DL algorithm format 

3. Train and evaluate a keypoint detection model on dataset 

4. Determine and evaluate 3D pose from 2D predicted keypoints 

5. Determine and evaluate aimpoint accuracy from predicted 3D pose 

D. EXPERIMENT INTRODUCTION 

The experimentation for this thesis followed three major phases based on the DL 

methodology discussed in Chapter III. 

• Phase 1 (Keypoint Detection): Developed an open-source DL algorithm 

for keypoint detection to fit provided datasets. Algorithm was trained to 

predict keypoints of aerial targets. Prediction accuracy was evaluated and 

compared to ground-truth keypoints of data.  

• Phase 2 (Pose Estimation): Implemented a pose estimation algorithm to 

determine the 3D-2D pose correspondences. Pose accuracy was evaluated 

and compared to ground-truth pose of data. 
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• Phase 3 (Aimpoint Tracking): Utilized pose estimation outcomes to 

determine aimpoint tracking capability and accuracy. 

E. SCOPE 

This research focused on the use of DL algorithms to improve acquisition, tracking, 

and pointing performance of Naval weapon systems that requires target detection and 

aimpoint determination. The scope of this thesis was intended to support the investigation 

of how AI methods can be applied to encourage autonomy and accuracy for the directed 

energy weapon system guidance. Autonomic target detection and pose estimation provide 

challenges that researchers in AI and DL have been evaluating for the last two decades. 

Implementation of AI into technology only advances capabilities which is mutually 

beneficial for military applications as the dynamic of warfare progresses. The training and 

evaluation of DL algorithms for target detection and pose estimation support this research’s 

demonstration of DL capability in military applications. The scope of this study covered a 

narrow methodology specifically for UAV targets, which is discussed in detail in  

Chapter III.  

F. THESIS ORGANIZATION 

This thesis is organized into five chapters. Chapter I provides the overview of this 

research, its objectives, and the general approach for experimentation. Chapter II addresses 

the background and theory of this research in a literature review. Chapter III details the 

methodology that was implemented to carry out the experimentation. Chapter IV presents 

the results of the research as well as a survey of the limitations found. Chapter V recounts 

the conclusion and findings of the research and discusses potential future work. 
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II. LITERATURE REVIEW  

This literature review presents the background information required for the 

foundation of this thesis research. There are three main topics that are pertinent to the study: 

(1) an overview of artificial intelligence, including ML, DL and CNNs, (2) a review of 

detection algorithms, and (3) a review of military applications for this research, including 

pose estimation and aimpoint tracking.  

A. ARTIFICIAL INTELLIGENCE  

1. Machine Learning 

ML is a subset of AI. The concept of ML was birthed in the 1950s, when 

psychologist Frank Rosenblatt cultivated a team to build a machine capable of recognizing 

the letters of the English alphabet [1]. His inspiration for this machine was the human 

nervous system. Within the next decade, Rosenblatt’s study transformed into 

computational learning and pattern recognition based on probability and statistics [1]. 

Since then, ML has only progressed and is now one of the most heavily researched areas 

within computer science.  

Present day ML algorithms are used to make predictions on data [2]. The 

significance of ML can be seen in its countless applications. ML has been used by the 

medical community for patient data analysis, predicting probabilities of diseases [2]. It can 

be utilized to survey and predict poverty in countries from satellite imagery [3]. ML has no 

bounds to its applications and is beneficial to all areas of interest as technology advances. 

The advantages from ML come from its several techniques which are illustrated in  

Figure 1. 
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Figure 1. Machine Learning Techniques. Source: [1]. 

 ML is the art of designing algorithms that give a computer the ability to 

learn. The process for this is dependent on the input data and desired output of the specific 

problem [2]. The techniques of ML that are utilized in this thesis research are neural 

networks (NNs). NNs mimic the mechanisms of the brain [4]. They are comprised of node 

connections analogous to the brain’s web of neurons [4]. NNs can be created in a variety 

of ways depending on how the nodes are connected or layered. An example of a layered 

structure of nodes is shown in Figure 2. 

 
Figure 2. Neural Network Layered Node Structure. Source: [4]. 

The square nodes on the left Figure 2 represent the input and connect to the first 

layer of nodes [4]. The arrows represent signal flow, and the outer layer represents the 

result of the NN [4]. The layers in between these two are defined as hidden layers as they 
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are inaccessible outside of the network [4]. The node within each layer carries out the 

mechanism of collecting the information the NN learns from. The NN stores this 

information in the form of weights and bias [4]. To understand the function of a node in a 

neural network, Figure 3 illustrates an example of its relationships with weights and biases.  

 
Figure 3. Neural Network Node Function. Source: [4]. 

From the diagram above, the x variables are the input signals, the w variables are 

the weights, the b variable is the bias, and the y variable is the output [4]. The node, circle 

in figure, reads in the input signals multiplied by the weights [4]. They are then summed 

within the node with the bias. The weighted sum is them sent to the output. The output 

equation can be seen below [4]: 

𝑦𝑦 = 𝜑𝜑(𝑣𝑣) 

where y is the output, φ is the activation function and v is the weighted sum. The activation 

function depicts the node’s behavior [4]. There are a variety of activation functions for 

NNs depending on the problem it is solving. The overall result is a trained model on the 

input, based on weights minimizing the error between in its output and the correct output.  

2. Deep Learning 

DL is a ML technique that utilizes multi-layered NNs of two or more layers [4]. DL 

became a commonly used technique in the early 2000s as it solved the primary limitation 

seen from single-layered NNs, the lack of learning from incomplete training [4]. DL 

developments showed that by strategically layering NNs to increase the complexity of an 

algorithm, the performance could be improved during training [4]. These strategies 
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expanded the capabilities of NNs when it came to imitating human brain functions [5]. The 

capabilities that will be implemented in this study are in computer vision. 

3. CNNS 

Convolutional Neural Networks (CNNs) are a type of deep learning neural network 

(DLNN) that is specialized for image recognition [4]. CNNS are unique in the fact that 

they mimic the relationship between the visual cortex and the human brain for recognizing 

objects [4]. Image recognition for CNNs includes a set of tasks such as image classification, 

object localization and object detection. These tasks are seen every day from facial 

recognition in iPhones, to autonomous vehicles and self-service machines [6]. CNNs work 

by processing images to compare its features. Figure 4 provides an example of a CNN 

architecture. 

 
Figure 4. CNN Architecture Example. Source: [4]. 

The feature extractor in the example CNN is a special type of NNs, comprised of 

multiple convolutional or pooling layers [4]. The convolutional layer is a collection of 

filters whereas the pooling layer combines neighboring pixels into one [4]. The deeper the 

feature extraction network, the higher yield of accuracy for the CNN. The classification 

network in the example CNN determines the desired output for the CNN which is the task 

of classification. This is analogous to the eye and brain relationship of seeing an object and 

determining what kind of object it is. From the diagram, the object in question is the 

classification of a dog. The tasking of CNNs that is the focus of this thesis is object 

detection. Object detection is based on image classification and localization, which is 
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locating a known object within the given image. The algorithm must identify the class of 

the object as well as locate it by marking it with a bounding box [6] Object detection is an 

application that has been heavily improved in the last decade with a variety of available 

algorithms to use. The development of DL detection algorithms can be seen in Figure 5.  

 
Figure 5. Deep Learning Algorithms Timeline. Source: [6]. 

 From years of object detection competition, research teams have been able to build 

and expand off one another to create a family of open-source DL algorithms. This study 

determined the best algorithm for Phase 1 of this research was an extension of the Mask 

Region-based convolutional neural network (R-CNN): Keypoint R-CNN. 

B. DETECTION ALGORITHMS 

1. Mask R-CNN  

Mask R-CNN is a variant of R-CNN, a special type of object detection model. R-

CNN became a notable algorithm due to its feature extractor method of region  

proposals [7]. The method R-CNN use involves extracting a set number of proposed object 

regions within the image and evaluating the CNN independently for each region of interest 

(ROI) [8]. Mask R-CNN differs from the prototype model by having three outputs instead 

of two [8]. Formerly, object detection algorithms have two methods: one-stage or two-

stage [6]. R-CNN is a two-stage method by having an output of a class label and a bounding 

box for each object [7]. Mask R-CNN introduced a third branch that outputted the object’s 

mask. A mask for an object is its spatial layout [8]. Figure 6 shows examples of the mask 

output. 
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Figure 6. Mask R-CNN Output. Source: [8]. 

The colored overlays of the people within the example images are the mask encoded 

from Mask R-CNN. This algorithm can have this additional output by having a ROI-Align 

layer versus a ROI-Pooling layer which is seen in R-CNN. Additionally, Mask R-CNN has 

a Mask head that outputs the mask corresponding to a specific class [8]. This new layer 

was created due the need for higher accuracy in image segmentation [8]. 

2. Keypoint R-CNN 

The specific algorithm this thesis uses for Phase 1 of its experimentation is 

Keypoint R-CNN, which is an adaptation of Mask R-CNN. Keypoint R-CNN differs by 

one-hot encoding a keypoint instead of an object mask [8]. An example of this encoding is 

seen below in Figure 7.  

 
Figure 7. Mask Encoding Examples (Left: Mask R-CNN. Right: Keypoint 

R-CNN.). Source: [9]. 
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On the left side of Figure 7 is an example of how Mask R-CNN encodes its mask 

for training. There is a mask for the object class and for the background class, and the result 

is a channel for the two respectively [9]. This encoding method is the approach used in 

Keypoint R-CNN. However, it focuses on a specific point in the object rather than it 

entirely as a mask. On the right side of the diagram is the example of Keypoint R-CNN 

mask encoding. Each mask has its own keypoint class [9] resulting in a channel for each 

specific keypoint. Keypoint R-CNN is also originally trained for identifying keypoints in 

a person, so it is limited to only one object class for detection [8]. The architecture of 

Keypoint R-CNN is provided in Figure 8.  

 
Figure 8. Keypoint R-CNN Architecture. Source: [9]. 
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Keypoint R-CNN was originally developed to determine 17 keypoints for human 

pose. Therefore, this algorithm does not support multi-class object detection since it was 

developed for specifically the human class. The metric of Keypoint R-CNN is called Object 

Keypoint Similarity (OKS) [10]. This metric quantifies the error of the predicted keypoint 

location against its ground-truth keypoint location. OKS ranges from 0 to 1 [9]. The closer 

the prediction is to the ground-truth, the closer the OKS will be to 1. OKS is a factor of the 

object’s scale. Lower penalization should be for larger objects and hence its OKS will be 

better [9]. A visual example of how OKS works is illustrated in Figure 9. 

 
Figure 9. OKS Example. Source: [9]. 

From the figure above, the green dot is the truth keypoint, the brown dots are 

predicted keypoints; the dashed circles depict different strength values of OKS for 

prediction. As the OKS value increases to 1, the dashed circles shrink. This illustrates how 

Keypoint R-CNN measures prediction accuracy. The benefit of this algorithm is that as an 

object detection model it additionally provides keypoint detection and prediction. 

Keypoints can be utilized in applications of weapon guidance systems such as pose 

estimation and aimpoint tracking. The advantages and limitations of implementing 

keypoints in these applications will be evaluated in this study.  
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C. MILITARY APPLICATIONS 

The capability of AI, specifically DL is being applied to improve and advance 

technologies for all systems today. As the dynamic of military warfare progresses into a 

technologically advanced environment, implementation of DL systems could be beneficial 

for military readiness. Naval systems in development such as the LWS are analogous to 

the functions of DL algorithms. This section provides an overview of the applications of 

DL algorithms that can be applied to military weapon systems to improve performance and 

encourage autonomy.  

1. Pose Estimation 

Pose estimation is a popular application researched in DL for computer vision [11]. 

Pose estimation is the process of detecting and tracking 2D semantic keypoints to 

determine 3D pose of an object in imaging data [12]. This concept has been heavily 

researched for human pose estimation to understand human behavior and improve the 

limitations of autonomous driving [11]. However, this can be applied to any object or 

system. The problem of pose estimation is commonly known as the Perspective-n-Point 

problem (PnP) [12]. The PnP problem originates from calibrated camera pose; the goal is 

to estimate the 6 degrees of freedom (DOF) pose of the camera with respect to a world 

frame from 3D pose of an object and its 2D image corresponding points [13]. 

Developments of solutions for PnP are current [13, 14, 15], and widely reviewed. The 

solution approach this research is adapting on is WPDLT. WPDLT is based on 3D 

projection theory, specifically orthographic projection. Orthographic projection is the 

mathematical formulation for projection 3D objects into a 2D space. The difference is that 

WPDLT requires a scaling factor to ensure object appear the correct size in the  

projection [16]. For example, a closer object would appear larger in the projection. WPDLT 

is advantageous for cases where the scale of the object with respect to line of sight is  

small [13]. This data of study utilizes 3D models of UAVs therefore WPDLT is most 

efficient solution method to adopt. Figure 10 shows a visual depiction of WPDLT. 
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Figure 10. Weak-Perspective Direct Linear Transformation Diagram. 

Source: [17]. 

The 3D pose angles expressed in the world frame are casted in the image plane 

using a projection matrix and the cameras parameters [13]. The projection matrix is 

determined from known 3D pose of the object, UAV model, and its 2D image 

correspondences [13]. These 2D points would be the predicted keypoints from the detection 

algorithm mentioned above. The limitations in this method are due to scene clutter or 

texture ambiguity of the object in the image. These challenges make it more difficult for 

the target to be separated from its background which lowers accuracy [12]. However, the 

implementation and evaluation of DL algorithms in this military application could benefit 

tracking systems by receiving real-time pose data of aerial targets.  

2. Aimpoint Tracking 

Selection of a desired point on an aerial target to ensure tracking is essential to 

weapon guidance accuracy [18]. This application is commonly recognized in missile 

guidance. Aimpoint selection and tracking works in conjointly with pose estimation. From 

pose estimation, the resultant projection matrix can be applied to that desired point and 
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project the aimpoint onto the target in the imaging data. DL implementation into this 

application would be the most beneficial to weapon guidance systems such as the LWS. 

Incorporating image processing techniques into weapon guidance systems could lead to 

autonomy in target determination of position and velocity, and target interception [19]. The 

limitations for aimpoint tracking from DL are homogenous to pose estimation. Image noise 

or clutter limits performance as it causes errors in computing the target aimpoint [19]. The 

primary goal of this research is to evaluate these two applications mentioned above through 

DL efforts and maximize their performance.  
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III. PROBLEM FORMULATION AND METHODOLOGY 

The beginning of this section describes the software components and the 

implementation of them for the experimental approach. After the overview of the software 

design, the data utilized in the experimentation is detailed as well as the steps of 

augmenting it to fit the software. There are two datasets, both provided from Lockheed 

Martin. The last section expresses the three-phase method of the experiment outlined in 

section 1.C Approach: Phase 1 keypoint detection, Phase 2 pose estimation and Phase 3 

aimpoint selection.  

A. SOFTWARE 

1. PyTorch 

As stated above in section 2.A, the AI community has developed a library of open-

source ML and DL algorithms and implementations. The software utilized for Phase 1 of 

the experimentation is PyTorch. PyTorch is an open-source framework based on the Torch 

library. This framework was developed by Facebook’s AI Research lab and its primary 

used for computer vision applications [20]. Implementation of this software only requires 

installation on a computer from its repository on GitHub. PyTorch is versatile in all 

programming languages. Python was the chosen language for its application in Phase 1.  

2. Jupyter Notebook 

Jupyter Notebook is another open-source prototype in the AI community [21]. It is 

commonly used for being a web-based computer environment. The environment’s 

interface, or known as a notebook, allows for real-time manipulation and execution of 

algorithms by being connected to a kernel [21]. Kernels handle the user’s request by 

executing and replying. The advantage of this interface is the capability of having 

immediate results which improves efficiency in code implementation. An example of a 

notebook in the Jupyter Notebook interface is shown in Figure 11.  
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Figure 11. Jupyter Notebook Interface. 

The conjunction of Jupyter Notebook and PyTorch provided the design to execute 

Phase 1 of the experimentation. Jupyter Notebook is also versatile in all programming 

languages. Using Jupyter Notebook as the environmental interface, the repository of 

Pytorch was able to be accessed. From the repository, the Keypoint R-CNN algorithm, 

mentioned in Chapter II, was implemented in a notebook. There were adjustments to the 

original source code of this algorithm to fit the bounds of the experimentation. These 

adjustments will be further explained in sections below on Phase 1 of experimentation. 

While Keypoint R-CNN is utilized and implemented for its applications, the design of 

Phase 1 results in an authentic coding program specifically for this research. 

3. MATLAB 

The Matrix Laboratory (MATLAB) was the software utilized for Phase 2 and 3 of 

experimentation. Similar to Jupyter Notebook, MATLAB is a computational environment. 

However, this software is numeric-based while Jupyter Notebook was web-based. 

MATLAB was developed by MathWorks with the original intent of being an interactive 

matrix calculator [22]. Recent developments in AI have transformed MATLAB into one 
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of the most common computer environments for ML and DL applications. MATLAB is 

equivalent to Jupyter Notebook in terms of operating and executing code. However, its 

programming languages are limited to C or C++ [22]. Figure 12 shows an example of the 

MATLAB interface. 

 
Figure 12. MATLAB Interface. 

Phase 2 and Phase 3 of experimentation are based on pose estimation, mentioned 

in section 2.C above. The method chosen for pose estimation is derived from WPDLT. 

WPDLT determines the 3D-2D point correspondences from given pose of a camera. This 

method was the center of the coding program designed for Phase 2 and 3. All 

implementation and execution of program was carried through MATLAB.  

B. DATASETS 

The data for the experiment was synthetically created to simulate real-world 

expectations. UAV models were captured at different poses in a testbed. The resulting 

images were then altered to simulate different imaging limitations that are expected for 

real-world applications. There limitations include but are not limited to atmospheric effects 

such as weather and lighting and blurring of the model to simulated turbulence. There are 

two sets of data that were evaluated in the experimentation. Both datasets were provided 
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by LM. This section details the format of the datasets, their characteristics. Steps taken to 

augment the data for experimentation will be discussed in the Phase sections.  

1. No Atmospheric Effects Dataset 

This dataset will be referenced to as the no atmospheric effects (NOAT) dataset. 

This dataset is comprised of 100,000 synthetic images of a modeled Mongoose UAV in an 

unaffecting background. All images are in grayscale. Each image is a size of 255x255 

pixels. The Mongoose UAV model is at different poses but consistent sizing throughout 

the images. Figure 13 shows examples of the NOAT dataset. 

 
Figure 13. NOAT Dataset Images. 

Along with every image is an annotation file. These files are JavaScript Object 

Notation (JSON) files, a common format for DL algorithms. In them contains the required 

pixel data for training the DL algorithms. A visual example of the dataset’s annotation files 

can be seen in Figure 14. 
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Figure 14. NOAT Dataset Annotation File. 

The image id is the image number. For the example above, this JSON file is 

associated with image 85,008. The bbox is the parameters of the bounding box for object 

detection. Typical bounding box formats provide the x-y pixel coordinates for two 

opposing corners on the bounding box, lower left, and upper right. The parts component is 

comprised of the keypoints for the NOAT dataset. This dataset has 7 keypoints: nose, right 

wing, left wing, tail, tail top, right horizontal stabilizer and left horizontal stabilizer. Each 

keypoint has a x-y pixel coordinate. The pose component of the JSON file describes the 

2D pose correspondence for this specific image which will be utilized in Phase 2 and 3. 

The data provided in the JSON files are the ground-truths for the experimentation models 

and the baseline when assessing the algorithms’ performance. 

2. Atmospheric Effects Dataset 

This dataset will be referenced as the atmospheric effects (AT) dataset. It has the 

same general format at the NOAT dataset since both are provided from LM. Example 

images of the AT dataset can be seen in Figure 15.  
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Figure 15. AT Dataset Images. 

The difference between the NOAT and AT datasets are the synthetic atmospheric 

effects applied to alter the image and UAV model. From the figure, these effects include 

lighting, object blurring, simulated weather, and differing model sizing. These effects 

present the challenge of training in-disguisable pixels between the object and background. 

Inconsistent model sizing presents the challenge of different perspectives of ranges for the 

algorithms. The AT dataset is comprised of 100,000 images of the mongoose UAV model. 

The image size is the same as the NOAT dataset. Figure 16 shows an example of the JSON 

files associated with this dataset. 

 
Figure 16. AT Dataset Annotation File. 

The general format is the same as seen above with the NOAT JSON files. The 

difference is the keypoints. For the AT dataset, there are five keypoints provided: nose, 
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center, right wing, left wing and tail. This dataset provides a keypoint for the center of 

gravity of the UAV model and removes keypoints of features such as the tail top and 

stabilizers. Similar to above, the data provided in each JSON file is the ground-truth data 

to evaluate against the accuracy of the algorithms in the experimentation. 

The implementation of these datasets are separated into the task of training and 

evaluating. The datasets were split 85–15 for training and testing. As mentioned above in 

Chapter II, the larger the volume for training, the higher the accuracy of the resultant model. 

The next section breaks down the specific methodology of each phase in the 

experimentation including data augmentation and implementation, and design overview.  

C. PHASE 1: KEYPOINT DETECTION 

Phase 1 of the experiment developed the keypoint detection model for this study. 

The data augmentation methodology discusses the implementation of the datasets to fit the 

format of Keypoint R-CNN. The algorithm implementation section is an overview 

breakdown of the adaptation of Keypoint R-CNN to fit the scope of the study. Two unique 

models resulted in the training of the DL algorithm on the LM datasets. Training was 

conducted for multiple iterations to optimize the models. Training results determined two 

scenarios of predictions, keypoints and heatmaps. The evaluation and predictions section 

discusses the methodologies of obtaining the predictions and evaluating the performance 

of the models against the ground-truth keypoints. 

1. Data Augmentation 

To fit the datasets into the format of Keypoint R-CNN, tools from Pytorch were 

utilized. Pytorch has an object called the Dataset class which allows for easy manipulation 

to alter data into its expected format. The Dataset class object for Keypoint R-CNN is 

broken down below [20, 23, 24]: 

• boxes ([N, 4]): a channel of the pixel coordinates of the N number of 

bounding boxes in [x0, y0, x1, y1] (lower left, upper right) format. 

• area ([N]): a channel of the pixel area of the N number of bounding boxes. 
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• keypoints ([N, K, 3]): a channel for each one of the N number of objects in 

an image. This channel contains the K number of keypoints in [x, y, v] 

pixel coordinate format. 

• labels ([N]): a channel of the class label for each N number of bounding 

boxes. 0 always represents the background class. 1 represents the object 

class which in this case is “Mongoose.” 

• image_id ([1]): a channel of the image number. 

Keypoint R-CNN has a unique visibility factor for keypoint detection. This 

visibility factor, denoted as v above, can be the number: 0, 1 or 2. Denoted as 0 dictates 

that the keypoint is not visible and is not marked in the image [24]. Visibility denoted as 1 

dictates that the keypoint is marked but is not visible and denoted as 2 dictates that it is 

both marked and visible in the image [24]. Since both datasets were provided and not 

generated as a part of the experimentation, assumptions had to be made about this visibility 

factor. For the NOAT dataset, all keypoints were denoted as 2 expect the tail top, and right 

and left horizontal stabilizers; those keypoints were denoted as 1. The factor that made this 

decision is due to these three keypoints are not always visible in each image due to the pose 

of the object. For the AT dataset, visibility was denoted as 2 for all keypoints. The task of 

going through each image and editing its associate JSON file to have complete accuracy of 

the visibility factor was not determined necessary for the experimentation. Additional code 

was added to The Dataset class object source code to fit the LM datasets to this format. 

The next step taken for data augmentation was altering the original source code of 

Keypoint R-CNN to fit its OKS to the LM datasets. As mentioned in Chapter II, this 

algorithm was trained to predict 17 keypoints for human pose. Thus, the object scale factors 

for the OKS are fit to human pose. These factors are inputted as coefficients in the source 

code. The coefficients chosen for the datasets of this study were 0.1 for all keypoints. The 

assumption was made that there is not large object scaling for the keypoints since the 

datasets are UAV models. This assumption also limits the algorithm to a closer predicting 

range around the intended keypoints. 
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2. Algorithm Implementation 

The implementation of the Keypoint R-CNN algorithm was done by developing a 

model custom to the scope of the study. Figure 17 shows an example of the code for the 

model. 

 
Figure 17. Keypoint Model Code. 

This model line in Figure 17, defines the overall bounds that will be trained. The 

“pretrained=False” parameter defines that this model will not use the trained Keypoint R-

CNN model. The weights would not perform well on the LM datasets since the data is not 

for human pose. The “pretrained_backbone,” and “trainable_backbone_layers” defines that 

the intention is to train all of NN layers within the algorithm. “num_keypoints” defines the 

number of keypoints that the model will be trained on. There are two separate models for 

the datasets since they have a different number of keypoints. The “out” line found below 

the “model” line defines the activation function, mentioned in Chapter II, for the model.  

3. Training 

The initial iterations of training the models were done to optimize the models for 

maximum performance. Preliminary training resulted in inadequate training accuracy that 

did not reach above fifty percent. The method to improve the models were altering and 
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evaluating its hyperparameters. Hyperparameters are used to affect the learning of a NN 

[25]. Using a combination of hyperparameters can optimize the learning approach the 

algorithm takes [25]. Figure 18 shows an example of how these parameters are 

implemented into the algorithm for training. 

 
Figure 18. Hyperparameters Code. 

The hyperparameters that were utilized for developing an optimal learning 

approach were learning rate, weight decay, momentum, a multi-step learning rate 

scheduler. These were implemented using a Pytorch optimizer package called 

“torch.optim” [26]. The specific optimizer used was the stochastic gradient descent (SGD). 

SGD reduces redundancy in the data by selecting a random batch from the entire dataset to 

calculate its gradient [27]. The functions of each hyperparameter used is broken down 

below [25, 27, 28]: 

• Learning Rate: Step size of weight updates during training.  

• Weight Decay: Penalty factor that is added to the loss function.  

• Momentum: Parameter specific for SGD. It increases the speed at which 

learning is done. 

• Multi-Step Learning Rate Scheduler (MSLRS): This is a subset of the 

optimizer package in Pytorch. Its function is to decay the learning rate by 

the gamma component once the number of epochs (training iterations) 

reaches the defined milestones. 
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The final decision of hyperparameters chosen for the models can be seen in  

Table 1. 

Table 1. Hyperparameters of Models 

Model Epochs Batches Learning 
Rate 

Weight 
Decay 

Momentum MSLRS 
Milestones 

NOAT - 7 
Keypoints 

15 16 0.2 0.0001 0.9 [7, 13] 

AT - 5 
Keypoints 

20 16 0.2 0.0001 0.9 [12,18] 

 

Table 1 includes the final decision on the epochs and batches for the models as well. 

Epochs are the number of complete passes that the model is trained on [5]. The batch size 

is the amount of data samples that are uses in one iteration of training [5]. The preliminary 

stages of training for an optimal model had 50 epochs to evaluate the behavior of the model. 

After an epoch of training, the model was then validated against sample test to estimate its 

trend of loss and accuracy as it learned. The average time for completion of a single epoch 

and validation was one hour. Table 2 shows the validation performance results of the final 

models. 

Table 2. Validation Performance of Finals Models 

Model Loss Bounding Box AP Keypoint AP 
NOAT - 7 Keypoints 0.45 0.97 0.78 

AT – 5 Keypoints 1.20 0.86 0.65 

 

After the completed training of each model’s set of epochs, the model weights were 

saved. These weights define the behavior of the model and were used to determine the 

predictions discussed below. 



28 

4. Predictions and Evaluations 

The predictions from the models were presented in a similar fashion to the input 

data format. The breakdown of the output from the models is seen below [24]: 

• boxes ([N, 4]): The predicted pixel coordinates of the N number of 

bounding boxes. 

• labels ([N]): The predicted class label of the N number of objects. 

• scores ([N]): The score of each prediction. The score value ranges from 0 

to 1 and defines prediction accuracy. The closer to 1, the more accuracy 

the prediction is. 

• keypoints ([N, K, 3]): The predicted locations of the keypoints for each N 

number of objects in the image. 

• heatmaps ([N, K, 56, 56]: A predicted 56x56 channel for K number of 

keypoints for each N number of objects.  

All predictions from the model are based on the bounding boxes. While there is 

only a single object in each image, the model could predict several bounding boxes due to 

confusing the background with UAV. For each bounding box predicted, there will be that 

same number of scores, keypoints, and heatmaps. The value of the scores determined which 

bounding box is the most accurate for the prediction. To obtain a single set of predictions 

for an image, the maximum score that was above 0.7 was selected. If the prediction was 

high, then this resulted in a set of predictions for a single bounding box. If the prediction 

was below 0.7, then this resulted in no predictions for that image. There is also the case 

that the algorithm did not predict for an image due to limitations mentioned in section B.2 

of this chapter. 

There are two outputs that provide keypoint prediction for the model, keypoints and 

heatmaps. The keypoint output is based on the default prediction that the model provides 

for the chosen bounding box. The heatmap output is a scoring map of possible keypoint 
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locations. This scoring map is analogous to heatmaps seen for weathering imaging.  

Figure 19 shows examples of the heatmaps. 

 
Figure 19. Heatmap Output. 

As illustrated in Figure 19, the heatmaps are hotter, or lighter in color, around the 

locations of the keypoints. There is a heatmap for each keypoint. Since this output is a 

channel of scores, this maximum heat score for a single keypoint could be converted into 

the x-y pixel coordinates for that keypoint. This conversion leads to a second set of 

predicted keypoints from a single model. The reason for utilizing the heatmap out is 

improve performance of the model. A limitation to accuracy is bearing ambiguity of the 

UAV. Since the datasets are comprised of the UAV at various poses, there are certain 

positions that can confuse the algorithm. This confusion leads to the model mistaking 

keypoints and predicting them in the same location. During the preliminary stages of 

deriving an optimal model, this behavior was most commonly seen between the right- and 

left-wing tip keypoints. Since the heatmaps focus on scoring around the location of a 

keypoint, there is the possibility this limits the confusion from the model.  

Training and predictions were conducted on the 85–15 split mentioned above in 

section B. The modes were trained on 85,000 images and predictions were inferenced for 

the remaining 15,000. All predictions were saved in the same general format as the datasets 

were received. The predicted and ground-truth bounding boxes and keypoints were 

overlaid on top of the inferenced images and saved respectively. The predicted and ground-

truth pixel coordinates of the bounding boxes and keypoints were saved into excel files. 

These excel files were utilized in Phase 2 and 3. Keypoint prediction accuracy was 
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evaluated through the metrics of precision and recall. Precision is the number of correct 

positive predictions; recall is the number of correct positive predictions out of all 

predictions [29, 30]. The difference between the two metrics is that recall includes false 

positive predictions [30]. Recall quantifies the bearing ambiguity limitation mentioned 

above. The result of this evaluation is discussed below in Chapter IV. 

D. PHASE 2: POSE ESTIMATION  

Phase 2 in utilized the keypoint predictions to evaluate DL capability in the 

application of pose estimation. This section provides an overview of the methodologies for 

augmenting prediction data from Phase 1, modeling pose estimation and evaluating pose 

performance.  

1. Data Augmentation 

The excel files of the predicted and ground-truth bounding boxes and keypoints 

were read into MATLAB and adapted to fit the format of the pose estimation model. The 

annotation files of the LM datasets were also utilized. Mentioned above in section B, the 

pose line in these annotation files are the ground-truth 2D pose of UAV in the image. Two 

additional annotation files provided by LM were also utilized for the model. These files 

contained the 3D points on the UAV in its frame. Figure 20 shows an example of these 

files. 

 
Figure 20. 3D Target Points Annotation File. 
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These files are unique to each of the LM datasets. Based on the theory of WPDLT, 

mentioned in Chapter II section C.1, these are the 3D points needed to calculate the 

projection matrix. 

2. Keypoint Implementation 

The pose estimation model was coded in MATLAB as a function of WPDLT. The 

following equation was used in WPDLT [12], 

𝜉𝜉(𝜃𝜃) = 𝑊𝑊 − 𝑠𝑠𝑅𝑅� �𝐵𝐵0 + �𝑐𝑐𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝐵𝐵𝑖𝑖� − 𝑇𝑇�1𝛵𝛵 

where 𝑅𝑅� is a 2x3 rotation matrix, 𝑇𝑇� is a translation matrix, W is a matrix of the 2D keypoints 

and s is a scalar value. This equation calculates the reprojection error [12]. This equation 

was implemented into MATLAB as a function and can be seen in Figure 21. 

 
Figure 21. WPDLT MATLAB Function. Source: [12]. 

The WPDLT function takes an input of the 3D points on the target from the file 

shown in Figure 20, and the 2D keypoints. It then conducts the mathematical operations of 

WPDLT and outputs a projection matrix, rotation matrix, a translation matrix, and the 

subject distance. The resultant projection matrix was then multiplied to the 3D points to 
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determine the corresponding 2D image points. This model ran against the predicted 

keypoints provided from Phase 1 and the ground-truth keypoints of each dataset. The 

predicted pose was determined from computing a logarithm of the predicted rotation 

matrix. This computation resulted in predicted Euler angles for the model. 

3. Predictions and Evaluations 

The two sets of predicted keypoints for each dataset were inferenced on the 

WPDLT model. Each image had its own unique outputted projection and rotation matrix. 

The predicted keypoints and predicted and ground-truth 2D image points were overlaid on 

the testing images for visual results. The ground-truth and predicted poses were saved for 

evaluation. The projection matrix for each inference was also saved for Phase 3. The 

evaluation metric chosen for pose estimation was the root mean squared error (RMSE). 

RMSE is the standard deviation of the prediction errors [31]. The equation used to calculate 

RMSE for the experimentation can be seen below [31]: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�𝑒𝑒𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

RMSE measures the accuracy of the model. The accuracy in question is the error 

between the pose prediction from the DL model versus the ground-truth pose values. 

RMSE was calculated in MATLAB and results will be discussed in Chapter IV. 

E. PHASE 3: AIMPOINT SELECTION AND TRACKING 

Aimpoint selection was an extension of the determined pose in Phase 2. Utilizing 

the projection matrix results from the 2D keypoints, the DL model was evaluated in its 

usefulness of this application. This section discusses the methodologies of determining 

aimpoint selection from the results of the two previous phases. 



33 

1. Inference 

To achieve aimpoint selection, 3D points on the target were chosen to represent the 

intended placement of the aimpoint. These points are in the same format seen in the 3D 

points annotation file in Figure 20. Table 3 shows the points chosen for the datasets. 

Table 3. 3D Target Aimpoints. 

Dataset 3D points 
NOAT [-0.225; 0; -0.105] 

AT [0.215; 0; -0.0110] 

 

The 3D point for the NOAT dataset was chosen to be near the center of gravity of 

the UAV. It is half between the wing tips. The 3D point for the AT dataset was chosen to 

be under the nose of the UAV. Multiplying these 3D points and the projection matrices 

from on the predicted 2D keypoints and ground-truth keypoints, the 2D image 

correspondence for the aimpoint was determined.  

2. Evaluations and Predictions 

The two sets of keypoint predictions for each dataset were evaluated for their 

potential in aimpoint selection. The ground-truth and predicted aimpoints were overlaid on 

the test image. The determined x-y pixel coordinates of the aimpoint were saved. The 

evaluation metric for aimpoint selection was RMSE. The RMSE of this section was 

calculated from the error between the predicted 2D image correspondences and ground-

truth correspondences. The results of this phase will be discussed below in Chapter IV.  
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IV. SIMULATION RESULTS AND DL PERFORMANCE 
EVALUATION 

A. PHASE 1: KEYPOINT DETECTION 

1. Bounding Boxes 

The evaluation metric of the bounding boxes was provided from the algorithm after 

training. The average precision (AP) of the NOAT dataset was higher than the AP of the 

AT dataset. The NOAT model resulted in the most accurate performance for predicting 

bounding boxes coordinates matching the ground-truths. The prediction percentage was 

calculated as an additional metric. Mentioned in Chapter III section C.3, the bounding box 

that was accepted was based on the highest score above 0.7. If there was no score, then the 

prediction was not counted as accurate nor further evaluated. Table 4 quantifies the models’ 

performance for bounding boxes. 

Table 4. Summary of Bounding Box Prediction Results. 

Model Number of 
Ground-Truths 

Number of 
Predictions 

Prediction 
Percentage 

Average 
Precision 

NOAT 15000 15000 100% 0.97 
AT 15000 14984 99.8% 0.86 

 

From the table, the AT dataset did not have predictions 14 images. In comparison, 

the prediction percentage is efficient for both. The sections below further evaluate the 

bounding box predictions and their limitations.  

a. Dataset 1 

The NOAT dataset bounding boxes were almost identical to that of the ground-

truths. Figure 22 shows visual results of the prediction. 
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Figure 22. NOAT Model Bounding Box Predictions. 

From the Figure 22,  blue bounding box is the ground-truth, and the green bounding 

box is the prediction. As illustrated in the sample images, the bounding boxes are 

overlapping each other with near perfect symmetry. The NOAT had no false predictions 

for the bounding box and performed with pronounced accuracy.  

b. Dataset 2 

While the AT model had a high prediction percentage, the actual results are 

variable. Figure 23 shows quality predictions from the Model. 

 
Figure 23. Optimal Bounding Box Predictions from AT Model. 

These results show little to no deviation from the ground-truths. There is clear 

overlapping of the bounding boxes regardless of the varying sizes of the UAV. Figure 24 

shows average predictions  from the Model. 
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Figure 24. Avery Bounding Box Predictions from AT Model. 

These results illustrate the AT model’s true accuracy for prediction bounding 

boxes. An AP of 0.85 is a sufficient level of performance but there is still an average 

amount of error. As seen in the figure, the green predicted bound boxes still contain the 

target. However, there is a level of cropping with these predictions which results in a less 

accurate prediction for the keypoints as well. The first image in Figure 24 shows the 

prediction cutting off the wing tips of the target. The prediction keypoints for that image 

will result not at their desired location due to this. The cropping in the predicted bounding 

boxes were a result of the simulated weather in the dataset. Simulating a background and 

weather presented a high volume of image noise and blurred the target pixels with 

surrounding background pixels. This became challenging for the algorithm to learn on and 

resulted in bounding boxes that overcompensating and cropping closer to the disguisable 

areas of target. Figure 25 shows the test images where no bounding box predictions were 

made. 

 
Figure 25. Examples of  No Predictions from AT Model. 
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The images that had no bounding box prediction from the AT model all had extreme 

simulate backgrounds and weathering affects. As seen above in Figure 25 it would be hard 

to identify where the UAV was in the image if the ground-truth bounding box was not 

provided. The AT model resulted in only 16 images not having predictions. While the AP 

of the model allows for a small margin of error, the prediction capability of the model 

against the AT dataset showed promising results. The performance of this model is efficient 

and accurate in detecting targets under normal to extreme conditions of imaging. Overall, 

the prediction results from both models demonstrated the usefulness of DL for target 

detection, which is the initial stage for weapon guidance systems. 

2. Keypoints 

As mentioned in Chapter III, the inference of the models resulted in two sets of 

keypoints for each. This section will present the visual results of the keypoints predictions 

and evaluate its accuracy. The validation of each model provided a keypoint AP of 0.78 

for the NOAT model and a keypoint AP of 0.65 for AT model. The evaluation metric for 

the predictions were precision and recall. The results of the evaluation metrics provided 

the limitations and challenges of keypoint detection. 

a. Dataset 1 

(1) Default Keypoints 

The keypoint predictions defaulted from the bounding box predictions for the 

NOAT model had expected results. There was high accuracy in predicting the keypoints 

equal to their ground-truths. Figure 26 shows sample keypoint predictions. 
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Figure 26. NOAT Model Default Keypoint Predictions. 

In the figure, the green points are the predicted keypoints and the blue points are 

the ground-truths. The predictions are almost undisguisable from the ground-truths as they 

overlap exactly. The only limitation of these predictions is shown in the right most image 

of Figure 26. There are 7 keypoints predicted in the image but only 6 are shown. The 

algorithm placed two keypoints on one location. Explained in detail in Chapter III, the 

primary challenge faced for keypoint detection is bearing and pose ambiguity caused by 

the symmetric shape of the UAV target. Since the target is at a unique pose for every image 

in the dataset,  learning to differentiate various poses is limited the accuracy of the model.  

The precision and recall of the predicted keypoints was calculated by finding true 

and false positives. A true positive is a prediction that matches its ground-truth correctly. 

A false positive is a prediction that mistakes itself for another class. These metrics are 

typically used for classification and not detection. However, these metrics were 

implemented by setting a class to each keypoint value based on the ground-truths. If the 

predicted keypoint of the corresponding index was within a 2% margin of the ground-truth, 

then it had the same keypoint class. If the prediction was not within this margin, then its 

value was assessed against the 14 ground-truths, x-y coordinates of the 7 keypoints, for the 

corresponding image. The closest ground-truth value to that prediction was the assigned 

class for the prediction. Figure 27 illustrates the results in a confusion matrix. 
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Figure 27. NOAT Default Keypoint Confusion Matrix. 

The confusion matrix shows the total number of predictions of the specific keypoint 

in each cell. Values in the diagonal indicate the true positives [29]. Values outside the 

diagonal indicate the false positives [29]. The rows of the matrix are the ground-truths, and 

the columns are the predicted keypoint classes. The matrices on the right and bottom of the 

chart summaries the prediction accuracy for the NOAT model. The confusion matrix 

showed that the model has high accuracy for detecting keypoints. The most incorrect 

predictions were for the left and right wings. However, the limitations from bearing 

ambiguity are not significant within this model. Obtaining an accuracy of 98.7% or higher 

for detection is exceptional performance for an AI system based on DL.  

(2) Heatmap Keypoints 

The process of converting the predicted heatmaps into keypoints coordinates was 

discussed in Chapter 3. The purpose of obtaining these keypoints was to evaluate if 

heatmaps could be a potential solution to the bearing and pose ambiguity of targets in 

images. Figure 28 shows visual predictions of heatmap keypoints. 
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Figure 28. Optimal Heatmap Keypoint Predictions from NOAT Model. 

In Figure 28, the green points are the ground-truths, and the red points are the 

predicted heatmap keypoints. These results show similar performance to the default 

keypoint prediction. The accuracy seen in the images above show that the heatmap 

prediction provided the desired keypoint location. However, not all of the heatmap 

predictions resulted in this level of accuracy. Figure 29 shows poor results from these 

predictions. 

 
Figure 29. Poor Heatmap Keypoints Predictions from NOAT Model. 

The images in Figure 29 illustrate how heatmaps can be limited to bearing 

ambiguity. The keypoint predictions for the heatmaps were accurate for target pose when 

all of the keypoints could be seen. However, pose that presented a side profile of the target 

resulted in lower performance from the NOAT model. The predicted keypoint, red, can be 
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seen clustering towards the middle of the target in the figure. The model was compensating 

for a keypoint that was not visible. Visibility was a factor in model training that was 

discussed in Chapter III. For this dataset, all wing keypoints were labeled as visible and 

tail features were labeled as marked but not visible as an assumption. This assumption 

limited the potential accuracy of this model and its heatmaps. The precision and recall 

performance metrics quantified this limitation. Figure 30 is the confusion matrix for the 

heatmap keypoints.  

 
Figure 30. NOAT Heatmap Keypoint Confusion Matrix. 

The confusion matrix shows that there are more false positives for the heatmap 

keypoints versus the keypoints from the bounding box. While the false positives between 

the wing tips has decreases, the model incorrectly predicted the wing tips as other features 

of the UAV. The left and right horizontal stabilizers have a much higher false prediction 

rate than seen with the default keypoints. However, the accuracy of the model in terms of 

prediction did not decrease. The accuracy is still 98.7% or higher for true positives. The 

limitation from bearing ambiguity did not have a significant effect on the heatmaps for the 

NOAT dataset.  
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b. Dataset 2 

(1) Default Keypoints 

The AT model’s validation AP after training was significantly lower than the 

NOAT model. The evaluation in section 1.B discussed certain limitations seen in the 

bounding box performance that could have a secondary effect on keypoint detection. 

Figures 31 and 32 display those effects on the prediction of the default keypoints. 

 
Figure 31. Optimal Default Keypoint Predictions from AT Model. 

 
Figure 32. Poor Default Keypoint Predictions from AT Model. 

The green points are the predicted keypoints and the blue points are the ground-

truths in both figures. Figure 31 shows sufficient results from the AT model. The keypoints 

are aligned with the ground-truths and there is minimal difference. Figure 32 presents 

results of poor performance from the model. The second image in the figure is completely 

wrong for keypoint detection due to poor bounding box prediction. The model scored that 

bounding box for high accuracy, but it is detecting the mountain in the background instead 
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of the UAV. This further proves the limitations DL algorithms have when learning target 

pixels against obscure backgrounds. The keypoint predictions of the AT model were 

evaluated of the same performance metrics in section 2.B. Figure 33 is the confusion matrix 

for the default keypoint predictions. 

 
Figure 33. AT Default Keypoint Confusion Matrix. 

The confusion matrix shows low performance of the model predicting correct 

keypoints to ground-truths. The most accurate prediction was for the center keypoint. The 

bounding box prediction showed that the AT model compensated for the simulated 

background by cropping towards the center of the target. The center keypoint being the 

most accurate prediction supports the model’s behavior. The lowest preforming prediction 

was the nose keypoint which would have often been cut out due to cropping. The AP from 

the confusion matrix is true to the AT model’s validation AP. While the expectation is for 

the model’s performance to improve during inferencing, this is an adequate result of 

accuracy based on the training results. 
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(2) Heatmaps Keypoints 

The heatmap keypoints has expected results for the AT model after considering the 

limitations already described. For heatmaps, there is a limitation due to bearing ambiguity. 

The AT dataset has several limitations applied to assess the effectiveness of DL 

implementation in a real-world setting. The challenges of image noise from simulated 

environments of lighting, weather, and landscape, and target blurring for simulated 

movement required the DL algorithm to learn and adjust on a significant scale. Figure 34 

displays the visual results of the heatmap keypoints. 

 
Figure 34. AT Model Heatmap Keypoint Predictions. 

In Figure 34, the AT model’s heatmaps resulted in a range of performance of 

keypoint detection. There were cases where it was extremely accurate as seen in the middle 

image. There were other cases where accuracy was lower due to factors mentioned above. 

The bearing ambiguity limitation was consistent between the two models. Figure 35 

quantifies the heatmap keypoint prediction accuracy for the AT model in a confusion 

matrix. 
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Figure 35. AT Heatmap Keypoint Confusion Matrix. 

The heatmap confusion matrix showed consistent results with the confusion matrix 

for the default keypoint of this model. The center keypoint is the most accurately predicted 

keypoint and the nose keypoint is the less accurate. The significance this confusion matrix 

shows is that heatmaps are an acceptable form of determining keypoints for detection. The 

keypoints from the two methods preformed identically to each other while still having 

different predictions. Heatmaps derived from DL algorithms provide a secondary approach 

for target detection which could be utilized in weapon guidance systems based on infrared 

technology.  

B. PHASE 2: POSE ESTIMATION 

Pose estimation is one of the military applications this study wanted to evaluate for 

DL implementation. The process of determining the target pose using the predicted 

keypoints was explained in Chapter II. The primary question that Phase 2 and 3 answered 

was how the limitations found in the keypoint models’ effected its usefulness in military 

applications. The evaluation metric utilized within the phase is RMSE, mentioned in 

Chapter II. Pose estimation results were based on the two methods of keypoint prediction.  
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1. Dataset 1 

a. Default Keypoints 

As seen in section 1.B, the NOAT model had was extremely accurate in keypoint 

detection. The results from inferencing those predictions against the WPDLT function in 

MATLAB presented similar levels of accuracy. Figure 36 shows the pose estimation results 

for the default keypoints of the NOAT model. 

 
Figure 36. NOAT Pose Estimation from Default Keypoints. 

The green astreik markers in the images are the predicted keypoints of the model. 

The green open-circle marker is the 2D predicted pose and the blue open-circle marker is 

the 2D ground-truth pose. Figure 36 shows expected accuracy from the NOAT model. The 

pose circles are projected in the same location as the predicted keypoints. The limitations 

of these pose predictions can be seen in Figure 37. 
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Figure 37. Poor Pose Estimation of Default Keypoints. 

As seen in Figure 37,  the predicted pose is extremely inaccurate in some cases. The 

cause is the limitation of bearing ambiguity seen within the NOAT model. The false postive 

predicted keypoints make pose estimation from the WPDLT nearly impossible. A 

limitation of the WPDLT function must be considered. The WPDLT presents advantageous 

for the method used to create the LM datasets. However, its accuracy its limited to that 

method. These datasets were created with the intention to simulated real-world scenarios. 

The various factors applied to make the datasets as realistic as possible potential hinders 

the accuracy of WPDLT. 

b. Heatmap Keypoints 

The heatmap keypoints from the NOAT model were inference in the same approach 

discussed above. Figures 38 and 39 display the various results from the heatmap 

predictions. 
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Figure 38. Optimal Pose Estimation of Heatmap Keypoints. 

 
Figure 39. Poor Pose Estimation of Heatmap Keypoints. 

The pose estimation results of the heatmap keypoints are of expected performance. 

There are instances where the pose estimation is completely accurate, Figure 38, and 

instances where it is severely off, Figure 39. The primary concern of the heatmap keypoints 

were their limitation to certain pose and bearing ambiguity. Discussed within section 1.B, 

the heatmap predictions had higher false positives of other features due to this limitation. 

It is expected that the heatmaps would have a higher penalty for pose performance as a 

result. 
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c. Evaluation of NOAT Model 

The pose estimation of the NOAT keypoints resulted in expected behavior. The 

accuracy of the predicted pose was determined from calculating the RMSE. As discussed 

in Chapter II, RMSE is the error percentage between a ground-truth and prediction [31]. 

For pose estimation, the RMSE was calculated by first finding the error between the 

predicted 3D pose values and their ground-truth values. The pose values are Euler angles 

and in the units of radians. RMSE is presented as a percentage of error. Figure 40 shows 

the plotted RMSE for the pose estimation of both keypoint methods. Table 5 shows the 

summary average RMSE for each case. 

 
Figure 40. NOAT Pose RMSE Results. (Left: Default Keypoint. Right: 

Heatmap Keypoints). 

Table 5. Mean RMSE of NOAT Pose Results 

NOAT Model Case Mean RMSE 

Default Keypoints 0.2133 

Heatmap Keypoints 0.2005 
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The blue plot on the left  of Figure 40 is the calculated RMSE for the default 

keypoint pose. The red plot of the right is the calculated RMSE for the heatmap keypoint 

pose. The RMSE is plotted as a line graph to illustrate error noise of the pose. The RMSE 

is on the y-axis of both plots and ranges from the smallest error value to the largest. As 

seen from Table 5, the heatmap keypoints performed better than the default keypoints. The 

noise of the heatmap RMSE seen in Figure 40 is focused in a smaller range of  error. The 

default keypoints had an average error of 0.2133%. The heatmap keypoints has an average 

error of 0.2005%.There is also a decreased in error spiking for the heatmap RMSE. There 

is only one spike that results in significant inaccuracy. This is an unexpected result due to 

the heatmap keypoints challenges with certain pose perspectives. It can be inferred that 

heatmaps have the potential to be more accurate and efficient for specific military 

applications. DL implementation of heatmaps for target detection and pose estimation 

could significantly improve the accuracy of military weapon systems. The NOAT model 

had excellent accuracy in detecting the UAV model and determining keypoints. With the 

utilization of a pose estimation method fit for the environment of the intended system, this 

model proves that there are advantageous of DL implementation for pose determination.  

2. Dataset 2 

a. Default Keypoints 

The main limitations seen from the AT model are due to the simulated environment 

applied to its dataset. The model struggled to learn to its full potential with several scenarios 

applied to it. Figure 41 shows pose predictions for its default keypoints. 
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Figure 41. AT Pose Estimation from Default Keypoints. 

Figure 41 displays expected results. The green open-circle predicted pose is 

accurate to the blue ground-truths where it is easier for the model to distinguish the target 

against the background. This is seen on the left image. There are other predictions where 

the predicted pose is off due to inaccurate keypoints, as seen on the right image. In the right 

image, the target has blurring around the edge of its silhouette. The AT model has the 

tendency of cropping its bounding boxes toward the center of the UAV targets where its 

pixels are more prominent. This cropping limits the accuracy this model can achieve for 

pose estimation.  

b. Heatmap Keypoints 

The heatmap keypoints results of the AT model did not show significant 

improvement from the default keypoints. Figure 42 shows the pose estimation results from 

the heatmap keypoints. 
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Figure 42. AT Pose Estimation from Heatmap Keypoints. 

The heatmap keypoints pose performance is similar to the AT default keypoints. 

There does seem to be a slight improvement how inaccurate the pose can be predicted, seen 

in the right image. The pose is closer towards the target then being spread across the image. 

The NOAT model showed that heatmaps performed better than the keypoints in terms of 

minimizing pose error. The heatmaps of the AT model may have the same benefit. 

c. Evaluation of AT Model 

The RMSE calculated from the AT predictions is presented in Figure 42. The blue 

plot on the left is the RMSE of the pose from the default keypoints. The red plot on the 

right is the RMSE of the pose from the heatmap keypoints. Table 6 presents the average 

RMSE for both keypoint cases of this model. 
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Figure 43. AT Pose RMSE Results. 

Table 6. AT Pose Mean RMSE 

AT Model Case Mean RMSE 

Default Keypoints 1.3901 

Heatmap Keypoints 1.2805 

 

The RMSE results showed that the heatmap predictions performed better for pose 

than the default keypoints for the AT model as well. The heatmap keypoints RMSE have 

an average error of 1.2805%. There is some spiking in the 30% error range which can be 

seen in the image of the right, in Figure 43. However, for the default keypoints, the average 

RMSE is 1.3901%. There is spiking that ranges from 30–60% error. The benefit of utilizing 

heatmap keypoints over the default keypoints is consistent over the two models. This 

further supports the usefulness of DL heatmap implementation for pose estimation in 

military tracking and guidance systems. The AT model was able to achieve an average 

error of 3% regardless of the severity of the simulated effects. This DL model shows its 

capability of being implemented in a real system to have similar results.  
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C. PHASE 3 AIMPOINT SELECTION 

The second military application that evaluated the potential of DL implementation 

was aimpoint selection. Aimpoint selection was achieved through the pose projection 

results of the predicted keypoints. The intended aimpoint was selected prior to evaluation, 

seen in Table 3. RMSE was the evaluation metric for aimpoint accuracy. This section 

reviews the results and limitations of DL implementation for this military application. 

1. Dataset 1 

a. Default Keypoints 

Since pose estimation was dependent on the pose estimation predictions, the results 

were expected to be consistent with the behavior seen in section B. Figure 44 shows the 

aimpoint results of the NOAT default keypoints. 

 
Figure 44. NOAT Aimpoint Selection from Default Keypoints. 

In Figure 44, the blue asterisk marker is the ground-truth aimpoint and the green 

asterisk marker is the predicted keypoint. These results show that there is secondary 

adverse effects to poor performance of pose. The image of the right shows that the NOAT 

model completely missed the target. If the pose predicted is inaccurate then there is the 

expectation the aimpoint will be predicted incorrectly as well. 
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b. Heatmap Keypoints 

Figure 45 presents the aimpoint results from the NOAT heatmap keypoints 

predictions. There is similar behavior exhibited from the heatmap keypoints from what is 

shown above in Figure 44.  

 
Figure 45. NOAT Aimpoint Selection from Heatmap Keypoints. 

The heatmap aimpoint had varying results of accuracy to the ground-truth. In the 

image on the left, the aimpoint is projected behind the desired aimpoint location. As seen 

within this discussion, the heatmap keypoints have a limitation due to certain bearing 

ambiguity. In the right image, the tail of the UAV is not visible and the aimpoint prediction 

is incorrect as a result. 

c. Evaluation of NOAT Model 

Aimpoint selection was evaluated by the same metric used for pose estimation. The 

error was calculated between the predicted 2D pixel coordinates of the aimpoint and its 

ground-truth pixel coordinates. Figure 46 presents the RMSE results for the aimpoint 

determined by the NOAT model. Table 7 summaries the average error for both keypoint 

cases. The blue plot is the RMSE for the aimpoints predicted from default keypoints. The 

red plot is the RMSE for the heatmap keypoints. 
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Figure 46. NOAT Aimpoint RMSE Results. 

Table 7. NOAT Aimpoint Mean RMSE 

NOAT Model Case Mean RMSE 

Default Keypoints 0.7401 

Heatmap Keypoints 0.9894 

 

As seen in Figure 46, there is not a significant difference between the RMSE of the 

two keypoint determination methods. From Table 7, the heatmap RMSE average is slightly 

higher than the default keypoint’s average. However, the scale of the plots and the spread 

of spiking is consistent between the two cases. The RMSE of the aimpoint does not show 

a certain advantage for the use of either keypoint method. This does show that the NOAT 

model is consistent within this application. However, the aimpoint RMSE is much larger 

than the pose estimation RMSE. The volume of spiking has increased and thus increased 

the range of error a system would see if this model were to be implemented. For aimpoint 

selection, a small error margin is heavily desirable. As seen in figures 44 and 45, poor pose 

can lead to a weapon system missing the target when using aimpoint selection and 

targeting. The results from the NOAT model provided reasonable results for aimpoint 

selection. The average error was below 1% for 15,000 samples. The large volume of 

spiking is the limitation of this application. The smallest deviation from the ground-truth 
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in pose can cause large error in aimpoint selection which would be detrimental for a 

weapon system in this application. 

2. Dataset 2 

a. Default Keypoints 

The limitations of the AT Model  reflected in higher error for its use in pose 

estimation. Aimpoint selection is a direct product of pose. Figure 47 shows the aimpoint 

selection from the AT default keypoints. The varying results are consistent in the model’s 

performance throughout the discussion. 

 
Figure 47. AT Aimpoint Selection from Default Keypoints. 

The images in Figure 47 show the limitations of the AT model in its use for military 

applications. Depending on the accuracy of the default keypoint prediction, the model has 

shown promising or poor performance. The green predicted marker in the first image is  

ahead of the desired aimpoint. The body of the UAV is the most distinguishable feature in 

the image. Bounding box cropping and overcompensating seen from the model can produce 

aimpoints that are significant off from the intended location.  
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b. Heatmap Keypoints 

The heatmap keypoints of the AT model showed consistent performance to its 

default keypoints. There is the expectation that this consistency should be seen within its 

utilization for aimpoint prediction. Figure 48 shows the aimpoint results for the heatmap 

keypoint. 

 
Figure 48. AT Aimpoint Selection from Heatmap Keypoints. 

The aimpoint determined from the heatmap keypoints show expected results. There 

are cases where the accuracy is high due to previous phases performing well. Cases of low 

accuracy show the effects of the simulated scenarios on the AT Model. The image on the 

right has a large disparity between the predicted and ground-truth aimpoint. The UAV in 

that model is small, has blurring and is within a dark environment. The performance of the 

AT model has shown that its performance is dependent on the combination of these affects 

and their strength levels. 

c. Evaluation AT Model 

The pose estimation of the AT model showed an improvement in accurate for the 

heatmap keypoints. The expectation is that is improvement should be seen within aimpoint 

selection. The RMSE of the aimpoint predictions of the AT model can be seen in  

Figure 49. Table 8 presents the average RMSE values for both cases of the model. 
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Figure 49. AT Aimpoint RMSE Results. 

Table 8. AT Aimpoint Mean RMSE 

AT Model Case Mean RMSE 

Default Keypoints 6.6785 

Heatmap Keypoints 6.6412 

 

The aimpoint RMSE of the AT Model has a significantly higher margin of error 

than the NOAT model. The average error for both its keypoint method is approximately 

6.6%. Between the two methods, the aimpoint error is consistent across the model. The 

limitations seen from the model are heavily shown within this military application. 

Aimpoint selection does not allow for a large area of estimation. Poorly predicted pose has 

severe effects on the aimpoint performance. The DL implementation of this model would 

not currently benefit systems in a real-world environment. While the dataset implements 

scenarios seen in real data, the error presented is concerning. Another factor that may add 

to this limitation is the WPDLT. If a pose determination method more advantageous for 

real data was used for the NOAT model, the results of its pose and aimpoint determination 

may improve. There are limitations of the scope in the WPDLT function that are only 

beneficial for data like the NOAT dataset.  
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V. CONCLUSION 

A. SUMMARY 

This research studied the implementation of DL as a proof of concept for improving 

the accuracy of weapon guidance systems. This was accomplished by training a DL 

algorithm on two datasets that represented real-world scenarios of aerial targets. The 

models that were a result of that training were then evaluated on their performance and 

accuracy for target keypoint detection, pose estimation and aimpoint selection. Results 

from the NOAT model had an overall accuracy of 97% for target detection. Pose estimation 

and aimpoint selection had a 97–99% accuracy. Results from the AT model had lower 

accuracy in all areas of evaluation. The target and keypoint detection for the AT model was 

approximately 65% which decreased accuracy for pose estimation and aimpoint selection 

as well. The decrease in performance was due to the several effects the data induced to 

simulate a real-world scenario. Weather, lighting, and target blurring have adverse effects 

of the efficiency of a DL algorithm made for keypoint detection. However, experimentation 

also showed that heatmaps provide an alternative approach of deriving keypoints to 

improve performance. Heatmaps showed the most benefit for pose estimation. Poor pose 

estimations results were limited due to only one mathematical approach being utilized. The 

results of the experiment demonstrated that DL implementation has potential and can be 

used to improve the accuracy of weapon guidance systems. Implementation should focus 

on a pose estimation function fit for the applied system. 

B. FUTURE RESEARCH 

Future opportunities will focus on expanding on the limitations seen in pose 

estimation and aimpoint selection. Evaluating other pose estimation methods for the AT 

model could show an ideal approach to use in conjunction with keypoint detection. 

Expansion of DL training could be conducted by focusing on different combinations of 

simulated environments for the datasets. This would provide information on which effect: 

weather, lighting, blurring, has the most influence of the accuracy of the DL model. 



62 

THIS PAGE INTENTIONALLY LEFT BLANK  



63 

LIST OF REFERENCES 

[1]  Dey, A., 2016, “Machine Learning Algorithms: A Review,” International Journal 
of Computer Science and Information Technologies, 3, pp. 1174–1179.  

[2]  Fradkov, A., 2020, ‘Early History of Machine Learning,” IFAC-PapersOnLine, 
53, pp.1385-1390. https://doi.org/10.1016/j.ifacol.2020.12.1888 

[3]  Udousoro, I., 2020, “Machine Learning: A Review,” Semiconductor Science and 
Information Devices, 2. http://dx.doi.org/10.30564/ssid.v2i2.1931 

[4]  Kim, P., 2017, MATLAB Deep Learning: With Machine Learning, Neural 
Networks and Artificial Intelligence, Apress, DE. 

[5]  Aloysius, N., and Geetha, M., 2017, “A Review on Deep Convolutional Neural 
Networks,” IEEE International Conference on Communication and Signal 
Processing, pp. 588–592. 

[6]  Li, Z., Yang, W., Peng, S. and Liu, F., 2021, “A Survey of Convolutional Neural 
Networks: Analysis, Applications, and Prospects,” IEEE Transactions on Neural 
Networks and Learning Systems. doi: 10.1109/TNNLS.2021.3084827 

[7] Girshick, R., Donahue, J., Darrell, T., and Malik, J., 2014, “Rich Feature 
Hierarchies for Accurate Object Detection and Semantic Segmentation,” 2014 
IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. doi: 
10.1109/CVPR.2014.81 

[8]  He, K., Gkioxari, G., Dollár, P., and Girshick, R., 2017, “Mask R-CNN,”  IEEE 
International Conference on Computer Vision, pp. 2980–2988. doi: 10.1109/
ICCV.2017.322 

[9]  Patil, C., and Vikas, G., 2021, “Human Pose Estimation Using Keypoint RCNN 
in Pytorch,” The OpenCV Library, Dr. Dobb’s Journal of Software Tools. Human 
Pose Estimation using Keypoint RCNN in PyTorch (learnopencv.com) 

[10]  Lin, TY. et al., 2014, “Microsoft COCO: Common Objects in Context,” European 
Conference on Computer Vision, 8693, pp. 740–755. https://doi.org/10.1007/978-
3-319-10602-1_48 

[11]  Odemakinde, E., 2021, Human Pose Estimation with Deep Learning, VISO AI, 
Switzerland. 

[12]  Pavlakos, G., Zhou, X., Chan, A., Derpanis, K., and Daniilidis. K., 2017, “6-DOF 
Object Pose from Semantic Keypoints,” 2017 IEEE International Conference on 
Robotics and Automation, pp. 2011–2018. doi: 10.1109/ICRA.2017.7989233 

https://doi.org/10.1016/j.ifacol.2020.12.1888
https://doi.org/10.1016/j.ifacol.2020.12.1888
http://dx.doi.org/10.30564/ssid.v2i2.1931
http://dx.doi.org/10.30564/ssid.v2i2.1931
doi:%2010.1109/TNNLS.2021.3084827
doi:%2010.1109/TNNLS.2021.3084827
doi:%2010.1109/CVPR.2014.81
doi:%2010.1109/CVPR.2014.81
doi:%2010.1109/CVPR.2014.81
doi:%2010.1109/ICCV.2017.322
doi:%2010.1109/ICCV.2017.322
doi:%2010.1109/ICCV.2017.322
https://learnopencv.com/human-pose-estimation-using-keypoint-rcnn-in-pytorch/#input-output
https://learnopencv.com/human-pose-estimation-using-keypoint-rcnn-in-pytorch/#input-output
https://learnopencv.com/human-pose-estimation-using-keypoint-rcnn-in-pytorch/#input-output
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
doi:%2010.1109/ICRA.2017.7989233
doi:%2010.1109/ICRA.2017.7989233


64 

[13]  Xiao-Shan Gao, Xiao-Rong Hou, Tang, J., and Hang-Fei Cheng, 2003, “Complete 
Solution Classification for the Perspective-Three-Point Problem,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 25, pp. 930–943. doi: 
10.1109/TPAMI.2003.1217599 

[14] Fischler, M. A.; Bolles, R. C. ,1981,. “Random Sample Consensus: A Paradigm 
for Model Fitting with Applications to Image Analysis and Automated 
Cartography,” Communications of the ACM, 24 (6),pp. 381–395. doi:10.1145/
358669.358692 

[15] Penate-Sanchez, A.; Andrade-Cetto, J.; Moreno-Noguer, F. (2013). “Exhaustive 
Linearization for Robust Camera Pose and Focal Length Estimation.” IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 35 (10): 2387–2400. 
doi:10.1109/TPAMI.2013.36 

[16]  Ingrid Carlbom, Joseph Paciorek ,1978,. “Planar Geometric Projections and 
Viewing Transformations,” ACM Computing Surveys. 10 (4), pp.465–502. . 
doi:10.1145/356744.356750. S2CID 708008 

[17]  Bradski, G., 2000, The OpenCV Library,  Dr. Dobb’s Journal of Software Tools. 
OpenCV: Perspective-n-Point (PnP) pose computation 

[18]  Zhi-Yong, L., Fu, J. and Zhong-Kang, S., 1990, “Target Tracking and Aimpoint 
Selection In Homing Stage,” IEEE Conference on Aerospace and Electronics, 
DOI:10.1109/NAECON.1990.112783 

[19]  Rheeden, D., and Jones, R., 1988, “Noise effects on centroid tracker aim point 
estimation,” IEEE Transactions on Aerospace and Electronic Systems, 24, pp. 
177–185. doi: 10.1109/7.1051 

[20] Paszke, A. et al., 2019, PyTorch: An Imperative Style, High-Performance Deep 
Learning Library, In Advances in Neural Information Processing Systems, 32, pp. 
8024–8035, Curran Associates, Inc.  

[21]  Kluyver, T. et al., 2016, Jupyter Notebook. Fernando Perez, CA. 

[22] MATLAB and Statistics Toolbox. The MathWorks, Inc., MA.  

[23] Alex P., 2021, “How to Train a Custom keypoint Detection Model with 
PyTorch,” Medium. Available: httsp://github.com/alexpppp/
keypoint_rcnn_training_pytorch 

[24] Paszke, A. et al., 2019. “Source Code for 
Torchvision.models.detection.keypoint_rcnn” https://pytorch.org/vision/0.12
/_modules/torchvision/models/detection/keypoint_rcnn.html 

doi:%2010.1109/TPAMI.2003.1217599
doi:%2010.1109/TPAMI.2003.1217599
doi:%2010.1109/TPAMI.2003.1217599
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F358669.358692
https://doi.org/10.1145%2F358669.358692
https://doi.org/10.1145%2F358669.358692
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTPAMI.2013.36
https://doi.org/10.1109%2FTPAMI.2013.36
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F356744.356750
https://doi.org/10.1145%2F356744.356750
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:708008
https://api.semanticscholar.org/CorpusID:708008
https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html
https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html
https://doi.org/10.1109/NAECON.1990.112783
https://doi.org/10.1109/NAECON.1990.112783
doi:%2010.1109/7.1051
doi:%2010.1109/7.1051
httsp://github.com/alexpppp/keypoint_rcnn_training_pytorch
httsp://github.com/alexpppp/keypoint_rcnn_training_pytorch
httsp://github.com/alexpppp/keypoint_rcnn_training_pytorch
https://pytorch.org/vision/0.12/_modules/torchvision/models/detection/keypoint_rcnn.html
https://pytorch.org/vision/0.12/_modules/torchvision/models/detection/keypoint_rcnn.html
https://pytorch.org/vision/0.12/_modules/torchvision/models/detection/keypoint_rcnn.html


65 

[25]  Claesen, M., and Moor, B., 2015, “Hyperparameters Search in Machine 
Learning,” The XI Metaheuristics International Conference. https://doi.org/
10.48550/arXiv.1502.02127 

[26] Pazke, A. et al., 2019, Torch.Optim. torch.optim — PyTorch 1.11.0 
documentation.  

[27]  Smith, S., and Le, Q., 2018, “A Bayesian Perspective on Generalization and 
Stochastic Gradient Descent,” ICLR. 

[28] Shi, B., 2021, “On the Hyperparameters in Stochastic Gradient Descent with 
Momentum,” White Paper, Cornell University. 

[29]  Juba, B., Le, H. , 2019,  “Precision-Recall versus Accuracy and the Role of Large 
Data Sets,” Proceedings of the AAAI Conference on Artificial Intelligence, 33, pp. 
4039–4048. https://doi.org/10.1609/aaai.v33i01.33014039 

[30]  Botchkarev, A.,2019, “A New Typology Design of Performance Metrics to 
Measure Errors in Machine Learning Regression Algorithms,” Interdisciplinary 
Journal of Information, Knowledge, and Management, 14, 45–76.  
doi:https://doi.org/10.28945/4184 

[31] Chai, T., and Draxler, R., 2014, “Root Mean Square Error (RSME) or Mean 
Absolute Error (MAE),” Geoscientific Model Development, 7, pp. 1247–1250. 

[32]  Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., Ermon, S., 2016, 
“Combining Satellite Imagery and Machine Learning To Predict Poverty,” 
Science, 353(6301): 790–794. 

[33] Pazke, A. et al., 2019. “Torchvision Object Detection Finetuning Tutorial.” 
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html 

[34] Lu, P., 2020, Self-Supervised Keypoint Learning: A Review, Towards Data 
Science. Medium, CA. 

https://doi.org/10.48550/arXiv.1502.02127
https://doi.org/10.48550/arXiv.1502.02127
https://doi.org/10.48550/arXiv.1502.02127
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://doi.org/%E2%80%8B10.1609/%E2%80%8Baaai.v33i01.33014039
https://doi.org/%E2%80%8B10.1609/%E2%80%8Baaai.v33i01.33014039
doi:https://doi.org/10.28945/4184
doi:https://doi.org/10.28945/4184
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html


66 

THIS PAGE INTENTIONALLY LEFT BLANK 



67 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	22Jun_Heath_Raven_First8
	22Jun_Heath_Raven
	I. Introduction
	A. Overview
	B. Objectives
	C. Approach
	D. Experiment introduction
	E. Scope
	F. Thesis organization

	II. Literature Review
	A. Artificial Intelligence
	1. Machine Learning
	2. Deep Learning
	3. CNNS

	B. Detection Algorithms
	1. Mask R-CNN
	2. Keypoint R-CNN

	C. Military Applications
	1. Pose Estimation
	2. Aimpoint Tracking


	III. Problem Formulation and Methodology
	A. Software
	1. PyTorch
	2. Jupyter Notebook
	3. MATLAB

	B. datasets
	1. No Atmospheric Effects Dataset
	2. Atmospheric Effects Dataset

	C. Phase 1: Keypoint Detection
	1. Data Augmentation
	2. Algorithm Implementation
	3. Training
	4. Predictions and Evaluations

	D. Phase 2: Pose Estimation
	1. Data Augmentation
	2. Keypoint Implementation
	3. Predictions and Evaluations

	E. Phase 3: Aimpoint Selection and Tracking
	1. Inference
	2. Evaluations and Predictions


	IV. Simulation Results and DL Performance Evaluation
	A. Phase 1: keypoint Detection
	1. Bounding Boxes
	a. Dataset 1
	b. Dataset 2

	2. Keypoints
	a. Dataset 1
	(1) Default Keypoints
	(2) Heatmap Keypoints

	b. Dataset 2
	(1) Default Keypoints
	(2) Heatmaps Keypoints



	B. Phase 2: Pose Estimation
	1. Dataset 1
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation of NOAT Model

	2. Dataset 2
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation of AT Model


	C. Phase 3 Aimpoint SelecTION
	1. Dataset 1
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation of NOAT Model

	2. Dataset 2
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation AT Model



	V. Conclusion
	A. Summary
	B. Future Research

	List of References
	initial distribution list


