
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-06

TARGET POSE ESTIMATION VIA DEEP
LEARNING FOR MILITARY SYSTEMS

Heath, Raven S.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/70684

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

TARGET POSE ESTIMATION VIA DEEP LEARNING
FOR MILITARY SYSTEMS

by

Raven S. Heath

June 2022

Thesis Advisor: Jae Jun Kim
Co-Advisor: Brij N. Agrawal

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2022

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
TARGET POSE ESTIMATION VIA DEEP LEARNING FOR MILITARY
SYSTEMS

5. FUNDING NUMBERS

6. AUTHOR(S) Raven S. Heath

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Target pose estimation and aimpoint selection is crucial in direct energy weapon systems, as it allows

the system to point to a specific and strategic area of the target. However, it is a challenging task because a
dedicated attitude sensor is required. Motivated by new emerging deep learning capabilities, the present
work proposes a deep learning model to estimate a target spacecraft attitude in terms of Euler angles. Data
for the deep learning model were experimentally generated from 3D UAV models, incorporating effects
such as atmospheric backgrounds and turbulence. The targets pose was derived from the training, validation,
and prediction of 2D keypoints. With a keypoint detection model it is possible to detect interest points in an
image, which allows us to estimate pose, angles, and dimensions of the target in question. Utilizing a
weak-perspective direct linear transformation algorithm, the pose of a 3D object with respect to a camera
from 3D to 2D correspondences could be determined. Additionally, from this correspondence, an aimpoint,
mimicking laser tracking could be determined on the target. This work evaluates these methods and their
accuracy against experimentally generated data with simulated real-world environments.

14. SUBJECT TERMS
deep learning, pose estimation, machine learning, artificial intelligence, aimpoint selection,
high energy laser

15. NUMBER OF
PAGES

87
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

TARGET POSE ESTIMATION VIA DEEP LEARNING
FOR MILITARY SYSTEMS

Raven S. Heath
Ensign, United States Navy

BS, United States Naval Academy, 2021

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2022

Approved by: Jae Jun Kim
 Advisor

 Brij N. Agrawal
 Co-Advisor

 Garth V. Hobson
 Chair, Department of Mechanical and Aerospace Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Target pose estimation and aimpoint selection is crucial in direct energy weapon

systems, as it allows the system to point to a specific and strategic area of the target.

However, it is a challenging task because a dedicated attitude sensor is required.

Motivated by new emerging deep learning capabilities, the present work proposes a deep

learning model to estimate a target spacecraft attitude in terms of Euler angles. Data for

the deep learning model were experimentally generated from 3D UAV models,

incorporating effects such as atmospheric backgrounds and turbulence. The targets pose

was derived from the training, validation, and prediction of 2D keypoints. With a

keypoint detection model it is possible to detect interest points in an image, which allows

us to estimate pose, angles, and dimensions of the target in question. Utilizing a

weak-perspective direct linear transformation algorithm, the pose of a 3D object with

respect to a camera from 3D to 2D correspondences could be determined. Additionally,

from this correspondence, an aimpoint, mimicking laser tracking could be determined on

the target. This work evaluates these methods and their accuracy against experimentally

generated data with simulated real-world environments.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW ...1
B. OBJECTIVES ..2
C. APPROACH ...2
D. EXPERIMENT INTRODUCTION ...3
E. SCOPE ..4
F. THESIS ORGANIZATION ..4

II. LITERATURE REVIEW ...5
A. ARTIFICIAL INTELLIGENCE ..5

1. Machine Learning ..5
2. Deep Learning ..7
3. CNNS ...8

B. DETECTION ALGORITHMS...9
1. Mask R-CNN ..9
2. Keypoint R-CNN ..10

C. MILITARY APPLICATIONS ...13
1. Pose Estimation ..13
2. Aimpoint Tracking ..14

III. PROBLEM FORMULATION AND METHODOLOGY17
A. SOFTWARE ...17

1. PyTorch ...17
2. Jupyter Notebook ...17
3. MATLAB ..18

B. DATASETS ..19
1. No Atmospheric Effects Dataset ...20
2. Atmospheric Effects Dataset ...21

C. PHASE 1: KEYPOINT DETECTION...23
1. Data Augmentation ..23
2. Algorithm Implementation ...25
3. Training ..25
4. Predictions and Evaluations..28

D. PHASE 2: POSE ESTIMATION ...30
1. Data Augmentation ..30
2. Keypoint Implementation ...31
3. Predictions and Evaluations..32

viii

E. PHASE 3: AIMPOINT SELECTION AND TRACKING32
1. Inference ...33
2. Evaluations and Predictions..33

IV. SIMULATION RESULTS AND DL PERFORMANCE EVALUATION35
A. PHASE 1: KEYPOINT DETECTION...35

1. Bounding Boxes ..35
2. Keypoints ..38

B. PHASE 2: POSE ESTIMATION ...46
1. Dataset 1 ..47
2. Dataset 2 ..51

C. PHASE 3 AIMPOINT SELECTION ...55
1. Dataset 1 ..55
2. Dataset 2 ..58

V. CONCLUSION ..61
A. SUMMARY ..61
B. FUTURE RESEARCH ..61

LIST OF REFERENCES ..63

INITIAL DISTRIBUTION LIST ...67

ix

LIST OF FIGURES

Figure 1. Machine Learning Techniques. Source: [1]. ..6

Figure 2. Neural Network Layered Node Structure. Source: [4].6

Figure 3. Neural Network Node Function. Source: [4]. ..7

Figure 4. CNN Architecture Example. Source: [4]. ..8

Figure 5. Deep Learning Algorithms Timeline. Source: [6].9

Figure 6. Mask R-CNN Output. Source: [8]. ..10

Figure 7. Mask Encoding Examples (Left: Mask R-CNN. Right: Keypoint R-
CNN.). Source: [9]. ..10

Figure 8. Keypoint R-CNN Architecture. Source: [9]. ...11

Figure 9. OKS Example. Source: [9]. ...12

Figure 10. Weak-Perspective Direct Linear Transformation Diagram. Source:
[17]. ..14

Figure 11. Jupyter Notebook Interface. ...18

Figure 12. MATLAB Interface. ..19

Figure 13. NOAT Dataset Images. ..20

Figure 14. NOAT Dataset Annotation File. ..21

Figure 15. AT Dataset Images. ..22

Figure 16. AT Dataset Annotation File. ..22

Figure 17. Keypoint Model Code. ...25

Figure 18. Hyperparameters Code. ..26

Figure 19. Heatmap Output. ..29

Figure 20. 3D Target Points Annotation File. ...30

Figure 21. WPDLT MATLAB Function. Source: [12]. ..31

Figure 22. NOAT Model Bounding Box Predictions. ...36

x

Figure 23. Optimal Bounding Box Predictions from AT Model.36

Figure 24. Avery Bounding Box Predictions from AT Model....................................37

Figure 25. Examples of No Predictions from AT Model. ..37

Figure 26. NOAT Model Default Keypoint Predictions. ..39

Figure 27. NOAT Default Keypoint Confusion Matrix. ...40

Figure 28. Optimal Heatmap Keypoint Predictions from NOAT Model.41

Figure 29. Poor Heatmap Keypoints Predictions from NOAT Model.41

Figure 30. NOAT Heatmap Keypoint Confusion Matrix. ...42

Figure 31. Optimal Default Keypoint Predictions from AT Model.43

Figure 32. Poor Default Keypoint Predictions from AT Model.43

Figure 33. AT Default Keypoint Confusion Matrix. ...44

Figure 34. AT Model Heatmap Keypoint Predictions. ...45

Figure 35. AT Heatmap Keypoint Confusion Matrix. ..46

Figure 36. NOAT Pose Estimation from Default Keypoints.47

Figure 37. Poor Pose Estimation of Default Keypoints. ...48

Figure 38. Optimal Pose Estimation of Heatmap Keypoints.49

Figure 39. Poor Pose Estimation of Heatmap Keypoints. ...49

Figure 40. NOAT Pose RMSE Results. (Left: Default Keypoint. Right:
Heatmap Keypoints). ...50

Figure 41. AT Pose Estimation from Default Keypoints. ...52

Figure 42. AT Pose Estimation from Heatmap Keypoints. ...53

Figure 43. AT Pose RMSE Results. ..54

Figure 44. NOAT Aimpoint Selection from Default Keypoints.55

Figure 45. NOAT Aimpoint Selection from Heatmap Keypoints.56

Figure 46. NOAT Aimpoint RMSE Results. ..57

xi

Figure 47. AT Aimpoint Selection from Default Keypoints.58

Figure 48. AT Aimpoint Selection from Heatmap Keypoints.59

Figure 49. AT Aimpoint RMSE Results. ..60

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Hyperparameters of Models ...27

Table 2. Validation Performance of Finals Models ...27

Table 3. 3D Target Aimpoints. ..33

Table 4. Summary of Bounding Box Prediction Results. ..35

Table 5. Mean RMSE of NOAT Pose Results ...50

Table 6. AT Pose Mean RMSE ..54

Table 7. NOAT Aimpoint Mean RMSE ..57

Table 8. AT Aimpoint Mean RMSE ..60

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

AI artificial intelligence
AP average precision
AT atmospheric effects
CNN Convolution Neural Networks
DL deep learning
ISR intelligence, surveillance, and reconnaissance
JSON JavaScript Object Notation
LM Lockheed Martin
LWS laser weapons system
MATLAB Matrix Laboratory
ML machine learning
NN Neural Networks
NOAT no atmospheric effects
OKS Object Keypoint Similarity
PnP Perspective-n-Point
R-CNN Region based Convolutional Neural Network
RMSE root mean squared error
ROI region of interest
SGD stochastic gradient descent
WPDLT weak-perspective direct linear transfer

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I would like to thank my thesis advisors, Dr. Jae Kim and Dr. Brij Agrawal, for

their assistance and guidance. I would also like to thank Lockheed Martin, especially

Mr. Gary Chern, for providing their data and knowledge on the topic of machine learning.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. OVERVIEW

Unmanned aerial vehicles (UAVs) have become a serious security threat to the

military within the last decade. Counter offensive and defensive operations towards drones

are paramount as the dynamic of warfare changes. Developments in drone detection and

tracking are becoming a hallmark operation in the fleet for intelligence, surveillance, and

reconnaissance (ISR). One of the most recent developments is the Navy’s high energy laser

weapons system (LWS). The LWS has the potential to advance ship and battle aerial

defense as it supports in the selection of targets for engagement. The challenges from the

LWS are a consequence of a series of decisive factors. These factors include the target’s

characteristics (range, position, velocity) and atmospheric conditions and their effect on

the laser beam. Decision making for the LWS is dependent on these factors and can affect

battle readiness.

The use of artificial intelligence (AI) could support warfighters to address the

challenges in weapon guidance systems. Researchers have been developing deep learning

(DL) algorithms within the last two decades, that have been able to imitate the functions

of the human cortex and brain. However, the use of these types of autonomous systems

within a military domain has not been thoroughly evaluated. There are several challenges

that come with AI implementation. The development of autonomous cars exhibit the

limitations of cognitive decision making for AI. The primary cause of these limitations is

the high volume of data exposure that DL algorithms require to have a performance

comparable to human functions. However, AI implementation has numerous counts of

success that are now a part of daily life. AI and DL could be beneficial in advancing weapon

guidance systems such as LWS in terms of autonomy and accuracy.

The specific applications of the LWS that AI implementation could transform is

aimpoint selection and tracking. The LWS system’s decision making involves detecting,

tracking, and engaging an aerial target. This process is analogous to current DL detection

and pose estimation algorithms. Although the majority of these algorithms were developed

2

for specific problems such as human pose or satellite imagery, they can be reconstructed

to fit this problem domain. The goal of this research is to conduct experimentation in

exploring the application of DL algorithms on weapon guidance systems against aerial

targets. This goal was accomplished by evaluating two datasets that are comprised of

synthetic imagery of the Mongoose UAV. These datasets factor in real world limitations

such as atmospheric affects, target turbulence and detection ambiguity due to pose. This

research focused on the use of a keypoint detection DL algorithm and weak-perspective

direct linear transformation (WPDLT) pose estimation algorithm to determine aimpoint

selection and tracking. This research studied various DL algorithms to obtain the most

appropriate fit for the problem. Finally, this study evaluated the performance of the AI

implementation for the purpose of identifying its potential effectiveness for systems like

the LWS.

B. OBJECTIVES

The primary objective of this research was to evaluate if AI and DL methods could

improve the target detection, pose estimation and aimpoint tracking of naval weapon

guidance systems. Subsidiary research goals were:

• To study DL methods to identify and evaluate algorithms suitable for

improving Naval directed energy weapon system guidance

• To study how DL algorithms developed for human pose can be transferred

into tracking systems of aerial targets

• To demonstrate the application of DL to this problem domain through

algorithm training and modeling.

• To identify and evaluate the limitations of the DL through synthetic data

C. APPROACH

This thesis approached the research objective through a literature review,

development of an open-source DL algorithms to fit the problem domain, and

experimentation through training and evaluation of algorithm models. The research began

3

with a literature review to accumulate information on artificial intelligence (including

machine learning (ML), DL and Convolutional Neural Networks (CNNs)), object detection

algorithms and DL applications for Naval weapon systems. This information was the

foundation for augmenting and evaluating a DL algorithm within the scope of the problem.

This research used synthetic data developed and provided by Lockheed Martin.

This data simulated current limitations faced in pose estimation and aimpoint tracking

applications such as image noise or clutter, and target ambiguity. These datasets were used

to train a DL algorithm to perform keypoint detection, and inference pose estimation and

aimpoint tracking. The DL algorithm modeling process was conducted following the five

phases: data augmentation, adaptation, training, improving, and validating. The research

approach followed five primary steps:

1. Identify DL methodology and techniques

2. Augment datasets to fit DL algorithm format

3. Train and evaluate a keypoint detection model on dataset

4. Determine and evaluate 3D pose from 2D predicted keypoints

5. Determine and evaluate aimpoint accuracy from predicted 3D pose

D. EXPERIMENT INTRODUCTION

The experimentation for this thesis followed three major phases based on the DL

methodology discussed in Chapter III.

• Phase 1 (Keypoint Detection): Developed an open-source DL algorithm

for keypoint detection to fit provided datasets. Algorithm was trained to

predict keypoints of aerial targets. Prediction accuracy was evaluated and

compared to ground-truth keypoints of data.

• Phase 2 (Pose Estimation): Implemented a pose estimation algorithm to

determine the 3D-2D pose correspondences. Pose accuracy was evaluated

and compared to ground-truth pose of data.

4

• Phase 3 (Aimpoint Tracking): Utilized pose estimation outcomes to

determine aimpoint tracking capability and accuracy.

E. SCOPE

This research focused on the use of DL algorithms to improve acquisition, tracking,

and pointing performance of Naval weapon systems that requires target detection and

aimpoint determination. The scope of this thesis was intended to support the investigation

of how AI methods can be applied to encourage autonomy and accuracy for the directed

energy weapon system guidance. Autonomic target detection and pose estimation provide

challenges that researchers in AI and DL have been evaluating for the last two decades.

Implementation of AI into technology only advances capabilities which is mutually

beneficial for military applications as the dynamic of warfare progresses. The training and

evaluation of DL algorithms for target detection and pose estimation support this research’s

demonstration of DL capability in military applications. The scope of this study covered a

narrow methodology specifically for UAV targets, which is discussed in detail in

Chapter III.

F. THESIS ORGANIZATION

This thesis is organized into five chapters. Chapter I provides the overview of this

research, its objectives, and the general approach for experimentation. Chapter II addresses

the background and theory of this research in a literature review. Chapter III details the

methodology that was implemented to carry out the experimentation. Chapter IV presents

the results of the research as well as a survey of the limitations found. Chapter V recounts

the conclusion and findings of the research and discusses potential future work.

5

II. LITERATURE REVIEW

This literature review presents the background information required for the

foundation of this thesis research. There are three main topics that are pertinent to the study:

(1) an overview of artificial intelligence, including ML, DL and CNNs, (2) a review of

detection algorithms, and (3) a review of military applications for this research, including

pose estimation and aimpoint tracking.

A. ARTIFICIAL INTELLIGENCE

1. Machine Learning

ML is a subset of AI. The concept of ML was birthed in the 1950s, when

psychologist Frank Rosenblatt cultivated a team to build a machine capable of recognizing

the letters of the English alphabet [1]. His inspiration for this machine was the human

nervous system. Within the next decade, Rosenblatt’s study transformed into

computational learning and pattern recognition based on probability and statistics [1].

Since then, ML has only progressed and is now one of the most heavily researched areas

within computer science.

Present day ML algorithms are used to make predictions on data [2]. The

significance of ML can be seen in its countless applications. ML has been used by the

medical community for patient data analysis, predicting probabilities of diseases [2]. It can

be utilized to survey and predict poverty in countries from satellite imagery [3]. ML has no

bounds to its applications and is beneficial to all areas of interest as technology advances.

The advantages from ML come from its several techniques which are illustrated in

Figure 1.

6

Figure 1. Machine Learning Techniques. Source: [1].

 ML is the art of designing algorithms that give a computer the ability to

learn. The process for this is dependent on the input data and desired output of the specific

problem [2]. The techniques of ML that are utilized in this thesis research are neural

networks (NNs). NNs mimic the mechanisms of the brain [4]. They are comprised of node

connections analogous to the brain’s web of neurons [4]. NNs can be created in a variety

of ways depending on how the nodes are connected or layered. An example of a layered

structure of nodes is shown in Figure 2.

Figure 2. Neural Network Layered Node Structure. Source: [4].

The square nodes on the left Figure 2 represent the input and connect to the first

layer of nodes [4]. The arrows represent signal flow, and the outer layer represents the

result of the NN [4]. The layers in between these two are defined as hidden layers as they

7

are inaccessible outside of the network [4]. The node within each layer carries out the

mechanism of collecting the information the NN learns from. The NN stores this

information in the form of weights and bias [4]. To understand the function of a node in a

neural network, Figure 3 illustrates an example of its relationships with weights and biases.

Figure 3. Neural Network Node Function. Source: [4].

From the diagram above, the x variables are the input signals, the w variables are

the weights, the b variable is the bias, and the y variable is the output [4]. The node, circle

in figure, reads in the input signals multiplied by the weights [4]. They are then summed

within the node with the bias. The weighted sum is them sent to the output. The output

equation can be seen below [4]:

𝑦𝑦 = 𝜑𝜑(𝑣𝑣)

where y is the output, φ is the activation function and v is the weighted sum. The activation

function depicts the node’s behavior [4]. There are a variety of activation functions for

NNs depending on the problem it is solving. The overall result is a trained model on the

input, based on weights minimizing the error between in its output and the correct output.

2. Deep Learning

DL is a ML technique that utilizes multi-layered NNs of two or more layers [4]. DL

became a commonly used technique in the early 2000s as it solved the primary limitation

seen from single-layered NNs, the lack of learning from incomplete training [4]. DL

developments showed that by strategically layering NNs to increase the complexity of an

algorithm, the performance could be improved during training [4]. These strategies

8

expanded the capabilities of NNs when it came to imitating human brain functions [5]. The

capabilities that will be implemented in this study are in computer vision.

3. CNNS

Convolutional Neural Networks (CNNs) are a type of deep learning neural network

(DLNN) that is specialized for image recognition [4]. CNNS are unique in the fact that

they mimic the relationship between the visual cortex and the human brain for recognizing

objects [4]. Image recognition for CNNs includes a set of tasks such as image classification,

object localization and object detection. These tasks are seen every day from facial

recognition in iPhones, to autonomous vehicles and self-service machines [6]. CNNs work

by processing images to compare its features. Figure 4 provides an example of a CNN

architecture.

Figure 4. CNN Architecture Example. Source: [4].

The feature extractor in the example CNN is a special type of NNs, comprised of

multiple convolutional or pooling layers [4]. The convolutional layer is a collection of

filters whereas the pooling layer combines neighboring pixels into one [4]. The deeper the

feature extraction network, the higher yield of accuracy for the CNN. The classification

network in the example CNN determines the desired output for the CNN which is the task

of classification. This is analogous to the eye and brain relationship of seeing an object and

determining what kind of object it is. From the diagram, the object in question is the

classification of a dog. The tasking of CNNs that is the focus of this thesis is object

detection. Object detection is based on image classification and localization, which is

9

locating a known object within the given image. The algorithm must identify the class of

the object as well as locate it by marking it with a bounding box [6] Object detection is an

application that has been heavily improved in the last decade with a variety of available

algorithms to use. The development of DL detection algorithms can be seen in Figure 5.

Figure 5. Deep Learning Algorithms Timeline. Source: [6].

 From years of object detection competition, research teams have been able to build

and expand off one another to create a family of open-source DL algorithms. This study

determined the best algorithm for Phase 1 of this research was an extension of the Mask

Region-based convolutional neural network (R-CNN): Keypoint R-CNN.

B. DETECTION ALGORITHMS

1. Mask R-CNN

Mask R-CNN is a variant of R-CNN, a special type of object detection model. R-

CNN became a notable algorithm due to its feature extractor method of region

proposals [7]. The method R-CNN use involves extracting a set number of proposed object

regions within the image and evaluating the CNN independently for each region of interest

(ROI) [8]. Mask R-CNN differs from the prototype model by having three outputs instead

of two [8]. Formerly, object detection algorithms have two methods: one-stage or two-

stage [6]. R-CNN is a two-stage method by having an output of a class label and a bounding

box for each object [7]. Mask R-CNN introduced a third branch that outputted the object’s

mask. A mask for an object is its spatial layout [8]. Figure 6 shows examples of the mask

output.

10

Figure 6. Mask R-CNN Output. Source: [8].

The colored overlays of the people within the example images are the mask encoded

from Mask R-CNN. This algorithm can have this additional output by having a ROI-Align

layer versus a ROI-Pooling layer which is seen in R-CNN. Additionally, Mask R-CNN has

a Mask head that outputs the mask corresponding to a specific class [8]. This new layer

was created due the need for higher accuracy in image segmentation [8].

2. Keypoint R-CNN

The specific algorithm this thesis uses for Phase 1 of its experimentation is

Keypoint R-CNN, which is an adaptation of Mask R-CNN. Keypoint R-CNN differs by

one-hot encoding a keypoint instead of an object mask [8]. An example of this encoding is

seen below in Figure 7.

Figure 7. Mask Encoding Examples (Left: Mask R-CNN. Right: Keypoint

R-CNN.). Source: [9].

11

On the left side of Figure 7 is an example of how Mask R-CNN encodes its mask

for training. There is a mask for the object class and for the background class, and the result

is a channel for the two respectively [9]. This encoding method is the approach used in

Keypoint R-CNN. However, it focuses on a specific point in the object rather than it

entirely as a mask. On the right side of the diagram is the example of Keypoint R-CNN

mask encoding. Each mask has its own keypoint class [9] resulting in a channel for each

specific keypoint. Keypoint R-CNN is also originally trained for identifying keypoints in

a person, so it is limited to only one object class for detection [8]. The architecture of

Keypoint R-CNN is provided in Figure 8.

Figure 8. Keypoint R-CNN Architecture. Source: [9].

12

Keypoint R-CNN was originally developed to determine 17 keypoints for human

pose. Therefore, this algorithm does not support multi-class object detection since it was

developed for specifically the human class. The metric of Keypoint R-CNN is called Object

Keypoint Similarity (OKS) [10]. This metric quantifies the error of the predicted keypoint

location against its ground-truth keypoint location. OKS ranges from 0 to 1 [9]. The closer

the prediction is to the ground-truth, the closer the OKS will be to 1. OKS is a factor of the

object’s scale. Lower penalization should be for larger objects and hence its OKS will be

better [9]. A visual example of how OKS works is illustrated in Figure 9.

Figure 9. OKS Example. Source: [9].

From the figure above, the green dot is the truth keypoint, the brown dots are

predicted keypoints; the dashed circles depict different strength values of OKS for

prediction. As the OKS value increases to 1, the dashed circles shrink. This illustrates how

Keypoint R-CNN measures prediction accuracy. The benefit of this algorithm is that as an

object detection model it additionally provides keypoint detection and prediction.

Keypoints can be utilized in applications of weapon guidance systems such as pose

estimation and aimpoint tracking. The advantages and limitations of implementing

keypoints in these applications will be evaluated in this study.

13

C. MILITARY APPLICATIONS

The capability of AI, specifically DL is being applied to improve and advance

technologies for all systems today. As the dynamic of military warfare progresses into a

technologically advanced environment, implementation of DL systems could be beneficial

for military readiness. Naval systems in development such as the LWS are analogous to

the functions of DL algorithms. This section provides an overview of the applications of

DL algorithms that can be applied to military weapon systems to improve performance and

encourage autonomy.

1. Pose Estimation

Pose estimation is a popular application researched in DL for computer vision [11].

Pose estimation is the process of detecting and tracking 2D semantic keypoints to

determine 3D pose of an object in imaging data [12]. This concept has been heavily

researched for human pose estimation to understand human behavior and improve the

limitations of autonomous driving [11]. However, this can be applied to any object or

system. The problem of pose estimation is commonly known as the Perspective-n-Point

problem (PnP) [12]. The PnP problem originates from calibrated camera pose; the goal is

to estimate the 6 degrees of freedom (DOF) pose of the camera with respect to a world

frame from 3D pose of an object and its 2D image corresponding points [13].

Developments of solutions for PnP are current [13, 14, 15], and widely reviewed. The

solution approach this research is adapting on is WPDLT. WPDLT is based on 3D

projection theory, specifically orthographic projection. Orthographic projection is the

mathematical formulation for projection 3D objects into a 2D space. The difference is that

WPDLT requires a scaling factor to ensure object appear the correct size in the

projection [16]. For example, a closer object would appear larger in the projection. WPDLT

is advantageous for cases where the scale of the object with respect to line of sight is

small [13]. This data of study utilizes 3D models of UAVs therefore WPDLT is most

efficient solution method to adopt. Figure 10 shows a visual depiction of WPDLT.

14

Figure 10. Weak-Perspective Direct Linear Transformation Diagram.

Source: [17].

The 3D pose angles expressed in the world frame are casted in the image plane

using a projection matrix and the cameras parameters [13]. The projection matrix is

determined from known 3D pose of the object, UAV model, and its 2D image

correspondences [13]. These 2D points would be the predicted keypoints from the detection

algorithm mentioned above. The limitations in this method are due to scene clutter or

texture ambiguity of the object in the image. These challenges make it more difficult for

the target to be separated from its background which lowers accuracy [12]. However, the

implementation and evaluation of DL algorithms in this military application could benefit

tracking systems by receiving real-time pose data of aerial targets.

2. Aimpoint Tracking

Selection of a desired point on an aerial target to ensure tracking is essential to

weapon guidance accuracy [18]. This application is commonly recognized in missile

guidance. Aimpoint selection and tracking works in conjointly with pose estimation. From

pose estimation, the resultant projection matrix can be applied to that desired point and

15

project the aimpoint onto the target in the imaging data. DL implementation into this

application would be the most beneficial to weapon guidance systems such as the LWS.

Incorporating image processing techniques into weapon guidance systems could lead to

autonomy in target determination of position and velocity, and target interception [19]. The

limitations for aimpoint tracking from DL are homogenous to pose estimation. Image noise

or clutter limits performance as it causes errors in computing the target aimpoint [19]. The

primary goal of this research is to evaluate these two applications mentioned above through

DL efforts and maximize their performance.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. PROBLEM FORMULATION AND METHODOLOGY

The beginning of this section describes the software components and the

implementation of them for the experimental approach. After the overview of the software

design, the data utilized in the experimentation is detailed as well as the steps of

augmenting it to fit the software. There are two datasets, both provided from Lockheed

Martin. The last section expresses the three-phase method of the experiment outlined in

section 1.C Approach: Phase 1 keypoint detection, Phase 2 pose estimation and Phase 3

aimpoint selection.

A. SOFTWARE

1. PyTorch

As stated above in section 2.A, the AI community has developed a library of open-

source ML and DL algorithms and implementations. The software utilized for Phase 1 of

the experimentation is PyTorch. PyTorch is an open-source framework based on the Torch

library. This framework was developed by Facebook’s AI Research lab and its primary

used for computer vision applications [20]. Implementation of this software only requires

installation on a computer from its repository on GitHub. PyTorch is versatile in all

programming languages. Python was the chosen language for its application in Phase 1.

2. Jupyter Notebook

Jupyter Notebook is another open-source prototype in the AI community [21]. It is

commonly used for being a web-based computer environment. The environment’s

interface, or known as a notebook, allows for real-time manipulation and execution of

algorithms by being connected to a kernel [21]. Kernels handle the user’s request by

executing and replying. The advantage of this interface is the capability of having

immediate results which improves efficiency in code implementation. An example of a

notebook in the Jupyter Notebook interface is shown in Figure 11.

18

Figure 11. Jupyter Notebook Interface.

The conjunction of Jupyter Notebook and PyTorch provided the design to execute

Phase 1 of the experimentation. Jupyter Notebook is also versatile in all programming

languages. Using Jupyter Notebook as the environmental interface, the repository of

Pytorch was able to be accessed. From the repository, the Keypoint R-CNN algorithm,

mentioned in Chapter II, was implemented in a notebook. There were adjustments to the

original source code of this algorithm to fit the bounds of the experimentation. These

adjustments will be further explained in sections below on Phase 1 of experimentation.

While Keypoint R-CNN is utilized and implemented for its applications, the design of

Phase 1 results in an authentic coding program specifically for this research.

3. MATLAB

The Matrix Laboratory (MATLAB) was the software utilized for Phase 2 and 3 of

experimentation. Similar to Jupyter Notebook, MATLAB is a computational environment.

However, this software is numeric-based while Jupyter Notebook was web-based.

MATLAB was developed by MathWorks with the original intent of being an interactive

matrix calculator [22]. Recent developments in AI have transformed MATLAB into one

19

of the most common computer environments for ML and DL applications. MATLAB is

equivalent to Jupyter Notebook in terms of operating and executing code. However, its

programming languages are limited to C or C++ [22]. Figure 12 shows an example of the

MATLAB interface.

Figure 12. MATLAB Interface.

Phase 2 and Phase 3 of experimentation are based on pose estimation, mentioned

in section 2.C above. The method chosen for pose estimation is derived from WPDLT.

WPDLT determines the 3D-2D point correspondences from given pose of a camera. This

method was the center of the coding program designed for Phase 2 and 3. All

implementation and execution of program was carried through MATLAB.

B. DATASETS

The data for the experiment was synthetically created to simulate real-world

expectations. UAV models were captured at different poses in a testbed. The resulting

images were then altered to simulate different imaging limitations that are expected for

real-world applications. There limitations include but are not limited to atmospheric effects

such as weather and lighting and blurring of the model to simulated turbulence. There are

two sets of data that were evaluated in the experimentation. Both datasets were provided

20

by LM. This section details the format of the datasets, their characteristics. Steps taken to

augment the data for experimentation will be discussed in the Phase sections.

1. No Atmospheric Effects Dataset

This dataset will be referenced to as the no atmospheric effects (NOAT) dataset.

This dataset is comprised of 100,000 synthetic images of a modeled Mongoose UAV in an

unaffecting background. All images are in grayscale. Each image is a size of 255x255

pixels. The Mongoose UAV model is at different poses but consistent sizing throughout

the images. Figure 13 shows examples of the NOAT dataset.

Figure 13. NOAT Dataset Images.

Along with every image is an annotation file. These files are JavaScript Object

Notation (JSON) files, a common format for DL algorithms. In them contains the required

pixel data for training the DL algorithms. A visual example of the dataset’s annotation files

can be seen in Figure 14.

21

Figure 14. NOAT Dataset Annotation File.

The image id is the image number. For the example above, this JSON file is

associated with image 85,008. The bbox is the parameters of the bounding box for object

detection. Typical bounding box formats provide the x-y pixel coordinates for two

opposing corners on the bounding box, lower left, and upper right. The parts component is

comprised of the keypoints for the NOAT dataset. This dataset has 7 keypoints: nose, right

wing, left wing, tail, tail top, right horizontal stabilizer and left horizontal stabilizer. Each

keypoint has a x-y pixel coordinate. The pose component of the JSON file describes the

2D pose correspondence for this specific image which will be utilized in Phase 2 and 3.

The data provided in the JSON files are the ground-truths for the experimentation models

and the baseline when assessing the algorithms’ performance.

2. Atmospheric Effects Dataset

This dataset will be referenced as the atmospheric effects (AT) dataset. It has the

same general format at the NOAT dataset since both are provided from LM. Example

images of the AT dataset can be seen in Figure 15.

22

Figure 15. AT Dataset Images.

The difference between the NOAT and AT datasets are the synthetic atmospheric

effects applied to alter the image and UAV model. From the figure, these effects include

lighting, object blurring, simulated weather, and differing model sizing. These effects

present the challenge of training in-disguisable pixels between the object and background.

Inconsistent model sizing presents the challenge of different perspectives of ranges for the

algorithms. The AT dataset is comprised of 100,000 images of the mongoose UAV model.

The image size is the same as the NOAT dataset. Figure 16 shows an example of the JSON

files associated with this dataset.

Figure 16. AT Dataset Annotation File.

The general format is the same as seen above with the NOAT JSON files. The

difference is the keypoints. For the AT dataset, there are five keypoints provided: nose,

23

center, right wing, left wing and tail. This dataset provides a keypoint for the center of

gravity of the UAV model and removes keypoints of features such as the tail top and

stabilizers. Similar to above, the data provided in each JSON file is the ground-truth data

to evaluate against the accuracy of the algorithms in the experimentation.

The implementation of these datasets are separated into the task of training and

evaluating. The datasets were split 85–15 for training and testing. As mentioned above in

Chapter II, the larger the volume for training, the higher the accuracy of the resultant model.

The next section breaks down the specific methodology of each phase in the

experimentation including data augmentation and implementation, and design overview.

C. PHASE 1: KEYPOINT DETECTION

Phase 1 of the experiment developed the keypoint detection model for this study.

The data augmentation methodology discusses the implementation of the datasets to fit the

format of Keypoint R-CNN. The algorithm implementation section is an overview

breakdown of the adaptation of Keypoint R-CNN to fit the scope of the study. Two unique

models resulted in the training of the DL algorithm on the LM datasets. Training was

conducted for multiple iterations to optimize the models. Training results determined two

scenarios of predictions, keypoints and heatmaps. The evaluation and predictions section

discusses the methodologies of obtaining the predictions and evaluating the performance

of the models against the ground-truth keypoints.

1. Data Augmentation

To fit the datasets into the format of Keypoint R-CNN, tools from Pytorch were

utilized. Pytorch has an object called the Dataset class which allows for easy manipulation

to alter data into its expected format. The Dataset class object for Keypoint R-CNN is

broken down below [20, 23, 24]:

• boxes ([N, 4]): a channel of the pixel coordinates of the N number of

bounding boxes in [x0, y0, x1, y1] (lower left, upper right) format.

• area ([N]): a channel of the pixel area of the N number of bounding boxes.

24

• keypoints ([N, K, 3]): a channel for each one of the N number of objects in

an image. This channel contains the K number of keypoints in [x, y, v]

pixel coordinate format.

• labels ([N]): a channel of the class label for each N number of bounding

boxes. 0 always represents the background class. 1 represents the object

class which in this case is “Mongoose.”

• image_id ([1]): a channel of the image number.

Keypoint R-CNN has a unique visibility factor for keypoint detection. This

visibility factor, denoted as v above, can be the number: 0, 1 or 2. Denoted as 0 dictates

that the keypoint is not visible and is not marked in the image [24]. Visibility denoted as 1

dictates that the keypoint is marked but is not visible and denoted as 2 dictates that it is

both marked and visible in the image [24]. Since both datasets were provided and not

generated as a part of the experimentation, assumptions had to be made about this visibility

factor. For the NOAT dataset, all keypoints were denoted as 2 expect the tail top, and right

and left horizontal stabilizers; those keypoints were denoted as 1. The factor that made this

decision is due to these three keypoints are not always visible in each image due to the pose

of the object. For the AT dataset, visibility was denoted as 2 for all keypoints. The task of

going through each image and editing its associate JSON file to have complete accuracy of

the visibility factor was not determined necessary for the experimentation. Additional code

was added to The Dataset class object source code to fit the LM datasets to this format.

The next step taken for data augmentation was altering the original source code of

Keypoint R-CNN to fit its OKS to the LM datasets. As mentioned in Chapter II, this

algorithm was trained to predict 17 keypoints for human pose. Thus, the object scale factors

for the OKS are fit to human pose. These factors are inputted as coefficients in the source

code. The coefficients chosen for the datasets of this study were 0.1 for all keypoints. The

assumption was made that there is not large object scaling for the keypoints since the

datasets are UAV models. This assumption also limits the algorithm to a closer predicting

range around the intended keypoints.

25

2. Algorithm Implementation

The implementation of the Keypoint R-CNN algorithm was done by developing a

model custom to the scope of the study. Figure 17 shows an example of the code for the

model.

Figure 17. Keypoint Model Code.

This model line in Figure 17, defines the overall bounds that will be trained. The

“pretrained=False” parameter defines that this model will not use the trained Keypoint R-

CNN model. The weights would not perform well on the LM datasets since the data is not

for human pose. The “pretrained_backbone,” and “trainable_backbone_layers” defines that

the intention is to train all of NN layers within the algorithm. “num_keypoints” defines the

number of keypoints that the model will be trained on. There are two separate models for

the datasets since they have a different number of keypoints. The “out” line found below

the “model” line defines the activation function, mentioned in Chapter II, for the model.

3. Training

The initial iterations of training the models were done to optimize the models for

maximum performance. Preliminary training resulted in inadequate training accuracy that

did not reach above fifty percent. The method to improve the models were altering and

26

evaluating its hyperparameters. Hyperparameters are used to affect the learning of a NN

[25]. Using a combination of hyperparameters can optimize the learning approach the

algorithm takes [25]. Figure 18 shows an example of how these parameters are

implemented into the algorithm for training.

Figure 18. Hyperparameters Code.

The hyperparameters that were utilized for developing an optimal learning

approach were learning rate, weight decay, momentum, a multi-step learning rate

scheduler. These were implemented using a Pytorch optimizer package called

“torch.optim” [26]. The specific optimizer used was the stochastic gradient descent (SGD).

SGD reduces redundancy in the data by selecting a random batch from the entire dataset to

calculate its gradient [27]. The functions of each hyperparameter used is broken down

below [25, 27, 28]:

• Learning Rate: Step size of weight updates during training.

• Weight Decay: Penalty factor that is added to the loss function.

• Momentum: Parameter specific for SGD. It increases the speed at which

learning is done.

• Multi-Step Learning Rate Scheduler (MSLRS): This is a subset of the

optimizer package in Pytorch. Its function is to decay the learning rate by

the gamma component once the number of epochs (training iterations)

reaches the defined milestones.

27

The final decision of hyperparameters chosen for the models can be seen in

Table 1.

Table 1. Hyperparameters of Models

Model Epochs Batches Learning
Rate

Weight
Decay

Momentum MSLRS
Milestones

NOAT - 7
Keypoints

15 16 0.2 0.0001 0.9 [7, 13]

AT - 5
Keypoints

20 16 0.2 0.0001 0.9 [12,18]

Table 1 includes the final decision on the epochs and batches for the models as well.

Epochs are the number of complete passes that the model is trained on [5]. The batch size

is the amount of data samples that are uses in one iteration of training [5]. The preliminary

stages of training for an optimal model had 50 epochs to evaluate the behavior of the model.

After an epoch of training, the model was then validated against sample test to estimate its

trend of loss and accuracy as it learned. The average time for completion of a single epoch

and validation was one hour. Table 2 shows the validation performance results of the final

models.

Table 2. Validation Performance of Finals Models

Model Loss Bounding Box AP Keypoint AP
NOAT - 7 Keypoints 0.45 0.97 0.78

AT – 5 Keypoints 1.20 0.86 0.65

After the completed training of each model’s set of epochs, the model weights were

saved. These weights define the behavior of the model and were used to determine the

predictions discussed below.

28

4. Predictions and Evaluations

The predictions from the models were presented in a similar fashion to the input

data format. The breakdown of the output from the models is seen below [24]:

• boxes ([N, 4]): The predicted pixel coordinates of the N number of

bounding boxes.

• labels ([N]): The predicted class label of the N number of objects.

• scores ([N]): The score of each prediction. The score value ranges from 0

to 1 and defines prediction accuracy. The closer to 1, the more accuracy

the prediction is.

• keypoints ([N, K, 3]): The predicted locations of the keypoints for each N

number of objects in the image.

• heatmaps ([N, K, 56, 56]: A predicted 56x56 channel for K number of

keypoints for each N number of objects.

All predictions from the model are based on the bounding boxes. While there is

only a single object in each image, the model could predict several bounding boxes due to

confusing the background with UAV. For each bounding box predicted, there will be that

same number of scores, keypoints, and heatmaps. The value of the scores determined which

bounding box is the most accurate for the prediction. To obtain a single set of predictions

for an image, the maximum score that was above 0.7 was selected. If the prediction was

high, then this resulted in a set of predictions for a single bounding box. If the prediction

was below 0.7, then this resulted in no predictions for that image. There is also the case

that the algorithm did not predict for an image due to limitations mentioned in section B.2

of this chapter.

There are two outputs that provide keypoint prediction for the model, keypoints and

heatmaps. The keypoint output is based on the default prediction that the model provides

for the chosen bounding box. The heatmap output is a scoring map of possible keypoint

29

locations. This scoring map is analogous to heatmaps seen for weathering imaging.

Figure 19 shows examples of the heatmaps.

Figure 19. Heatmap Output.

As illustrated in Figure 19, the heatmaps are hotter, or lighter in color, around the

locations of the keypoints. There is a heatmap for each keypoint. Since this output is a

channel of scores, this maximum heat score for a single keypoint could be converted into

the x-y pixel coordinates for that keypoint. This conversion leads to a second set of

predicted keypoints from a single model. The reason for utilizing the heatmap out is

improve performance of the model. A limitation to accuracy is bearing ambiguity of the

UAV. Since the datasets are comprised of the UAV at various poses, there are certain

positions that can confuse the algorithm. This confusion leads to the model mistaking

keypoints and predicting them in the same location. During the preliminary stages of

deriving an optimal model, this behavior was most commonly seen between the right- and

left-wing tip keypoints. Since the heatmaps focus on scoring around the location of a

keypoint, there is the possibility this limits the confusion from the model.

Training and predictions were conducted on the 85–15 split mentioned above in

section B. The modes were trained on 85,000 images and predictions were inferenced for

the remaining 15,000. All predictions were saved in the same general format as the datasets

were received. The predicted and ground-truth bounding boxes and keypoints were

overlaid on top of the inferenced images and saved respectively. The predicted and ground-

truth pixel coordinates of the bounding boxes and keypoints were saved into excel files.

These excel files were utilized in Phase 2 and 3. Keypoint prediction accuracy was

30

evaluated through the metrics of precision and recall. Precision is the number of correct

positive predictions; recall is the number of correct positive predictions out of all

predictions [29, 30]. The difference between the two metrics is that recall includes false

positive predictions [30]. Recall quantifies the bearing ambiguity limitation mentioned

above. The result of this evaluation is discussed below in Chapter IV.

D. PHASE 2: POSE ESTIMATION

Phase 2 in utilized the keypoint predictions to evaluate DL capability in the

application of pose estimation. This section provides an overview of the methodologies for

augmenting prediction data from Phase 1, modeling pose estimation and evaluating pose

performance.

1. Data Augmentation

The excel files of the predicted and ground-truth bounding boxes and keypoints

were read into MATLAB and adapted to fit the format of the pose estimation model. The

annotation files of the LM datasets were also utilized. Mentioned above in section B, the

pose line in these annotation files are the ground-truth 2D pose of UAV in the image. Two

additional annotation files provided by LM were also utilized for the model. These files

contained the 3D points on the UAV in its frame. Figure 20 shows an example of these

files.

Figure 20. 3D Target Points Annotation File.

31

These files are unique to each of the LM datasets. Based on the theory of WPDLT,

mentioned in Chapter II section C.1, these are the 3D points needed to calculate the

projection matrix.

2. Keypoint Implementation

The pose estimation model was coded in MATLAB as a function of WPDLT. The

following equation was used in WPDLT [12],

𝜉𝜉(𝜃𝜃) = 𝑊𝑊 − 𝑠𝑠𝑅𝑅� �𝐵𝐵0 + �𝑐𝑐𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝐵𝐵𝑖𝑖� − 𝑇𝑇�1𝛵𝛵

where 𝑅𝑅� is a 2x3 rotation matrix, 𝑇𝑇� is a translation matrix, W is a matrix of the 2D keypoints

and s is a scalar value. This equation calculates the reprojection error [12]. This equation

was implemented into MATLAB as a function and can be seen in Figure 21.

Figure 21. WPDLT MATLAB Function. Source: [12].

The WPDLT function takes an input of the 3D points on the target from the file

shown in Figure 20, and the 2D keypoints. It then conducts the mathematical operations of

WPDLT and outputs a projection matrix, rotation matrix, a translation matrix, and the

subject distance. The resultant projection matrix was then multiplied to the 3D points to

32

determine the corresponding 2D image points. This model ran against the predicted

keypoints provided from Phase 1 and the ground-truth keypoints of each dataset. The

predicted pose was determined from computing a logarithm of the predicted rotation

matrix. This computation resulted in predicted Euler angles for the model.

3. Predictions and Evaluations

The two sets of predicted keypoints for each dataset were inferenced on the

WPDLT model. Each image had its own unique outputted projection and rotation matrix.

The predicted keypoints and predicted and ground-truth 2D image points were overlaid on

the testing images for visual results. The ground-truth and predicted poses were saved for

evaluation. The projection matrix for each inference was also saved for Phase 3. The

evaluation metric chosen for pose estimation was the root mean squared error (RMSE).

RMSE is the standard deviation of the prediction errors [31]. The equation used to calculate

RMSE for the experimentation can be seen below [31]:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�𝑒𝑒𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

RMSE measures the accuracy of the model. The accuracy in question is the error

between the pose prediction from the DL model versus the ground-truth pose values.

RMSE was calculated in MATLAB and results will be discussed in Chapter IV.

E. PHASE 3: AIMPOINT SELECTION AND TRACKING

Aimpoint selection was an extension of the determined pose in Phase 2. Utilizing

the projection matrix results from the 2D keypoints, the DL model was evaluated in its

usefulness of this application. This section discusses the methodologies of determining

aimpoint selection from the results of the two previous phases.

33

1. Inference

To achieve aimpoint selection, 3D points on the target were chosen to represent the

intended placement of the aimpoint. These points are in the same format seen in the 3D

points annotation file in Figure 20. Table 3 shows the points chosen for the datasets.

Table 3. 3D Target Aimpoints.

Dataset 3D points
NOAT [-0.225; 0; -0.105]

AT [0.215; 0; -0.0110]

The 3D point for the NOAT dataset was chosen to be near the center of gravity of

the UAV. It is half between the wing tips. The 3D point for the AT dataset was chosen to

be under the nose of the UAV. Multiplying these 3D points and the projection matrices

from on the predicted 2D keypoints and ground-truth keypoints, the 2D image

correspondence for the aimpoint was determined.

2. Evaluations and Predictions

The two sets of keypoint predictions for each dataset were evaluated for their

potential in aimpoint selection. The ground-truth and predicted aimpoints were overlaid on

the test image. The determined x-y pixel coordinates of the aimpoint were saved. The

evaluation metric for aimpoint selection was RMSE. The RMSE of this section was

calculated from the error between the predicted 2D image correspondences and ground-

truth correspondences. The results of this phase will be discussed below in Chapter IV.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

IV. SIMULATION RESULTS AND DL PERFORMANCE
EVALUATION

A. PHASE 1: KEYPOINT DETECTION

1. Bounding Boxes

The evaluation metric of the bounding boxes was provided from the algorithm after

training. The average precision (AP) of the NOAT dataset was higher than the AP of the

AT dataset. The NOAT model resulted in the most accurate performance for predicting

bounding boxes coordinates matching the ground-truths. The prediction percentage was

calculated as an additional metric. Mentioned in Chapter III section C.3, the bounding box

that was accepted was based on the highest score above 0.7. If there was no score, then the

prediction was not counted as accurate nor further evaluated. Table 4 quantifies the models’

performance for bounding boxes.

Table 4. Summary of Bounding Box Prediction Results.

Model Number of
Ground-Truths

Number of
Predictions

Prediction
Percentage

Average
Precision

NOAT 15000 15000 100% 0.97
AT 15000 14984 99.8% 0.86

From the table, the AT dataset did not have predictions 14 images. In comparison,

the prediction percentage is efficient for both. The sections below further evaluate the

bounding box predictions and their limitations.

a. Dataset 1

The NOAT dataset bounding boxes were almost identical to that of the ground-

truths. Figure 22 shows visual results of the prediction.

36

Figure 22. NOAT Model Bounding Box Predictions.

From the Figure 22, blue bounding box is the ground-truth, and the green bounding

box is the prediction. As illustrated in the sample images, the bounding boxes are

overlapping each other with near perfect symmetry. The NOAT had no false predictions

for the bounding box and performed with pronounced accuracy.

b. Dataset 2

While the AT model had a high prediction percentage, the actual results are

variable. Figure 23 shows quality predictions from the Model.

Figure 23. Optimal Bounding Box Predictions from AT Model.

These results show little to no deviation from the ground-truths. There is clear

overlapping of the bounding boxes regardless of the varying sizes of the UAV. Figure 24

shows average predictions from the Model.

37

Figure 24. Avery Bounding Box Predictions from AT Model.

These results illustrate the AT model’s true accuracy for prediction bounding

boxes. An AP of 0.85 is a sufficient level of performance but there is still an average

amount of error. As seen in the figure, the green predicted bound boxes still contain the

target. However, there is a level of cropping with these predictions which results in a less

accurate prediction for the keypoints as well. The first image in Figure 24 shows the

prediction cutting off the wing tips of the target. The prediction keypoints for that image

will result not at their desired location due to this. The cropping in the predicted bounding

boxes were a result of the simulated weather in the dataset. Simulating a background and

weather presented a high volume of image noise and blurred the target pixels with

surrounding background pixels. This became challenging for the algorithm to learn on and

resulted in bounding boxes that overcompensating and cropping closer to the disguisable

areas of target. Figure 25 shows the test images where no bounding box predictions were

made.

Figure 25. Examples of No Predictions from AT Model.

38

The images that had no bounding box prediction from the AT model all had extreme

simulate backgrounds and weathering affects. As seen above in Figure 25 it would be hard

to identify where the UAV was in the image if the ground-truth bounding box was not

provided. The AT model resulted in only 16 images not having predictions. While the AP

of the model allows for a small margin of error, the prediction capability of the model

against the AT dataset showed promising results. The performance of this model is efficient

and accurate in detecting targets under normal to extreme conditions of imaging. Overall,

the prediction results from both models demonstrated the usefulness of DL for target

detection, which is the initial stage for weapon guidance systems.

2. Keypoints

As mentioned in Chapter III, the inference of the models resulted in two sets of

keypoints for each. This section will present the visual results of the keypoints predictions

and evaluate its accuracy. The validation of each model provided a keypoint AP of 0.78

for the NOAT model and a keypoint AP of 0.65 for AT model. The evaluation metric for

the predictions were precision and recall. The results of the evaluation metrics provided

the limitations and challenges of keypoint detection.

a. Dataset 1

(1) Default Keypoints

The keypoint predictions defaulted from the bounding box predictions for the

NOAT model had expected results. There was high accuracy in predicting the keypoints

equal to their ground-truths. Figure 26 shows sample keypoint predictions.

39

Figure 26. NOAT Model Default Keypoint Predictions.

In the figure, the green points are the predicted keypoints and the blue points are

the ground-truths. The predictions are almost undisguisable from the ground-truths as they

overlap exactly. The only limitation of these predictions is shown in the right most image

of Figure 26. There are 7 keypoints predicted in the image but only 6 are shown. The

algorithm placed two keypoints on one location. Explained in detail in Chapter III, the

primary challenge faced for keypoint detection is bearing and pose ambiguity caused by

the symmetric shape of the UAV target. Since the target is at a unique pose for every image

in the dataset, learning to differentiate various poses is limited the accuracy of the model.

The precision and recall of the predicted keypoints was calculated by finding true

and false positives. A true positive is a prediction that matches its ground-truth correctly.

A false positive is a prediction that mistakes itself for another class. These metrics are

typically used for classification and not detection. However, these metrics were

implemented by setting a class to each keypoint value based on the ground-truths. If the

predicted keypoint of the corresponding index was within a 2% margin of the ground-truth,

then it had the same keypoint class. If the prediction was not within this margin, then its

value was assessed against the 14 ground-truths, x-y coordinates of the 7 keypoints, for the

corresponding image. The closest ground-truth value to that prediction was the assigned

class for the prediction. Figure 27 illustrates the results in a confusion matrix.

40

Figure 27. NOAT Default Keypoint Confusion Matrix.

The confusion matrix shows the total number of predictions of the specific keypoint

in each cell. Values in the diagonal indicate the true positives [29]. Values outside the

diagonal indicate the false positives [29]. The rows of the matrix are the ground-truths, and

the columns are the predicted keypoint classes. The matrices on the right and bottom of the

chart summaries the prediction accuracy for the NOAT model. The confusion matrix

showed that the model has high accuracy for detecting keypoints. The most incorrect

predictions were for the left and right wings. However, the limitations from bearing

ambiguity are not significant within this model. Obtaining an accuracy of 98.7% or higher

for detection is exceptional performance for an AI system based on DL.

(2) Heatmap Keypoints

The process of converting the predicted heatmaps into keypoints coordinates was

discussed in Chapter 3. The purpose of obtaining these keypoints was to evaluate if

heatmaps could be a potential solution to the bearing and pose ambiguity of targets in

images. Figure 28 shows visual predictions of heatmap keypoints.

41

Figure 28. Optimal Heatmap Keypoint Predictions from NOAT Model.

In Figure 28, the green points are the ground-truths, and the red points are the

predicted heatmap keypoints. These results show similar performance to the default

keypoint prediction. The accuracy seen in the images above show that the heatmap

prediction provided the desired keypoint location. However, not all of the heatmap

predictions resulted in this level of accuracy. Figure 29 shows poor results from these

predictions.

Figure 29. Poor Heatmap Keypoints Predictions from NOAT Model.

The images in Figure 29 illustrate how heatmaps can be limited to bearing

ambiguity. The keypoint predictions for the heatmaps were accurate for target pose when

all of the keypoints could be seen. However, pose that presented a side profile of the target

resulted in lower performance from the NOAT model. The predicted keypoint, red, can be

42

seen clustering towards the middle of the target in the figure. The model was compensating

for a keypoint that was not visible. Visibility was a factor in model training that was

discussed in Chapter III. For this dataset, all wing keypoints were labeled as visible and

tail features were labeled as marked but not visible as an assumption. This assumption

limited the potential accuracy of this model and its heatmaps. The precision and recall

performance metrics quantified this limitation. Figure 30 is the confusion matrix for the

heatmap keypoints.

Figure 30. NOAT Heatmap Keypoint Confusion Matrix.

The confusion matrix shows that there are more false positives for the heatmap

keypoints versus the keypoints from the bounding box. While the false positives between

the wing tips has decreases, the model incorrectly predicted the wing tips as other features

of the UAV. The left and right horizontal stabilizers have a much higher false prediction

rate than seen with the default keypoints. However, the accuracy of the model in terms of

prediction did not decrease. The accuracy is still 98.7% or higher for true positives. The

limitation from bearing ambiguity did not have a significant effect on the heatmaps for the

NOAT dataset.

43

b. Dataset 2

(1) Default Keypoints

The AT model’s validation AP after training was significantly lower than the

NOAT model. The evaluation in section 1.B discussed certain limitations seen in the

bounding box performance that could have a secondary effect on keypoint detection.

Figures 31 and 32 display those effects on the prediction of the default keypoints.

Figure 31. Optimal Default Keypoint Predictions from AT Model.

Figure 32. Poor Default Keypoint Predictions from AT Model.

The green points are the predicted keypoints and the blue points are the ground-

truths in both figures. Figure 31 shows sufficient results from the AT model. The keypoints

are aligned with the ground-truths and there is minimal difference. Figure 32 presents

results of poor performance from the model. The second image in the figure is completely

wrong for keypoint detection due to poor bounding box prediction. The model scored that

bounding box for high accuracy, but it is detecting the mountain in the background instead

44

of the UAV. This further proves the limitations DL algorithms have when learning target

pixels against obscure backgrounds. The keypoint predictions of the AT model were

evaluated of the same performance metrics in section 2.B. Figure 33 is the confusion matrix

for the default keypoint predictions.

Figure 33. AT Default Keypoint Confusion Matrix.

The confusion matrix shows low performance of the model predicting correct

keypoints to ground-truths. The most accurate prediction was for the center keypoint. The

bounding box prediction showed that the AT model compensated for the simulated

background by cropping towards the center of the target. The center keypoint being the

most accurate prediction supports the model’s behavior. The lowest preforming prediction

was the nose keypoint which would have often been cut out due to cropping. The AP from

the confusion matrix is true to the AT model’s validation AP. While the expectation is for

the model’s performance to improve during inferencing, this is an adequate result of

accuracy based on the training results.

45

(2) Heatmaps Keypoints

The heatmap keypoints has expected results for the AT model after considering the

limitations already described. For heatmaps, there is a limitation due to bearing ambiguity.

The AT dataset has several limitations applied to assess the effectiveness of DL

implementation in a real-world setting. The challenges of image noise from simulated

environments of lighting, weather, and landscape, and target blurring for simulated

movement required the DL algorithm to learn and adjust on a significant scale. Figure 34

displays the visual results of the heatmap keypoints.

Figure 34. AT Model Heatmap Keypoint Predictions.

In Figure 34, the AT model’s heatmaps resulted in a range of performance of

keypoint detection. There were cases where it was extremely accurate as seen in the middle

image. There were other cases where accuracy was lower due to factors mentioned above.

The bearing ambiguity limitation was consistent between the two models. Figure 35

quantifies the heatmap keypoint prediction accuracy for the AT model in a confusion

matrix.

46

Figure 35. AT Heatmap Keypoint Confusion Matrix.

The heatmap confusion matrix showed consistent results with the confusion matrix

for the default keypoint of this model. The center keypoint is the most accurately predicted

keypoint and the nose keypoint is the less accurate. The significance this confusion matrix

shows is that heatmaps are an acceptable form of determining keypoints for detection. The

keypoints from the two methods preformed identically to each other while still having

different predictions. Heatmaps derived from DL algorithms provide a secondary approach

for target detection which could be utilized in weapon guidance systems based on infrared

technology.

B. PHASE 2: POSE ESTIMATION

Pose estimation is one of the military applications this study wanted to evaluate for

DL implementation. The process of determining the target pose using the predicted

keypoints was explained in Chapter II. The primary question that Phase 2 and 3 answered

was how the limitations found in the keypoint models’ effected its usefulness in military

applications. The evaluation metric utilized within the phase is RMSE, mentioned in

Chapter II. Pose estimation results were based on the two methods of keypoint prediction.

47

1. Dataset 1

a. Default Keypoints

As seen in section 1.B, the NOAT model had was extremely accurate in keypoint

detection. The results from inferencing those predictions against the WPDLT function in

MATLAB presented similar levels of accuracy. Figure 36 shows the pose estimation results

for the default keypoints of the NOAT model.

Figure 36. NOAT Pose Estimation from Default Keypoints.

The green astreik markers in the images are the predicted keypoints of the model.

The green open-circle marker is the 2D predicted pose and the blue open-circle marker is

the 2D ground-truth pose. Figure 36 shows expected accuracy from the NOAT model. The

pose circles are projected in the same location as the predicted keypoints. The limitations

of these pose predictions can be seen in Figure 37.

48

Figure 37. Poor Pose Estimation of Default Keypoints.

As seen in Figure 37, the predicted pose is extremely inaccurate in some cases. The

cause is the limitation of bearing ambiguity seen within the NOAT model. The false postive

predicted keypoints make pose estimation from the WPDLT nearly impossible. A

limitation of the WPDLT function must be considered. The WPDLT presents advantageous

for the method used to create the LM datasets. However, its accuracy its limited to that

method. These datasets were created with the intention to simulated real-world scenarios.

The various factors applied to make the datasets as realistic as possible potential hinders

the accuracy of WPDLT.

b. Heatmap Keypoints

The heatmap keypoints from the NOAT model were inference in the same approach

discussed above. Figures 38 and 39 display the various results from the heatmap

predictions.

49

Figure 38. Optimal Pose Estimation of Heatmap Keypoints.

Figure 39. Poor Pose Estimation of Heatmap Keypoints.

The pose estimation results of the heatmap keypoints are of expected performance.

There are instances where the pose estimation is completely accurate, Figure 38, and

instances where it is severely off, Figure 39. The primary concern of the heatmap keypoints

were their limitation to certain pose and bearing ambiguity. Discussed within section 1.B,

the heatmap predictions had higher false positives of other features due to this limitation.

It is expected that the heatmaps would have a higher penalty for pose performance as a

result.

50

c. Evaluation of NOAT Model

The pose estimation of the NOAT keypoints resulted in expected behavior. The

accuracy of the predicted pose was determined from calculating the RMSE. As discussed

in Chapter II, RMSE is the error percentage between a ground-truth and prediction [31].

For pose estimation, the RMSE was calculated by first finding the error between the

predicted 3D pose values and their ground-truth values. The pose values are Euler angles

and in the units of radians. RMSE is presented as a percentage of error. Figure 40 shows

the plotted RMSE for the pose estimation of both keypoint methods. Table 5 shows the

summary average RMSE for each case.

Figure 40. NOAT Pose RMSE Results. (Left: Default Keypoint. Right:

Heatmap Keypoints).

Table 5. Mean RMSE of NOAT Pose Results

NOAT Model Case Mean RMSE

Default Keypoints 0.2133

Heatmap Keypoints 0.2005

51

The blue plot on the left of Figure 40 is the calculated RMSE for the default

keypoint pose. The red plot of the right is the calculated RMSE for the heatmap keypoint

pose. The RMSE is plotted as a line graph to illustrate error noise of the pose. The RMSE

is on the y-axis of both plots and ranges from the smallest error value to the largest. As

seen from Table 5, the heatmap keypoints performed better than the default keypoints. The

noise of the heatmap RMSE seen in Figure 40 is focused in a smaller range of error. The

default keypoints had an average error of 0.2133%. The heatmap keypoints has an average

error of 0.2005%.There is also a decreased in error spiking for the heatmap RMSE. There

is only one spike that results in significant inaccuracy. This is an unexpected result due to

the heatmap keypoints challenges with certain pose perspectives. It can be inferred that

heatmaps have the potential to be more accurate and efficient for specific military

applications. DL implementation of heatmaps for target detection and pose estimation

could significantly improve the accuracy of military weapon systems. The NOAT model

had excellent accuracy in detecting the UAV model and determining keypoints. With the

utilization of a pose estimation method fit for the environment of the intended system, this

model proves that there are advantageous of DL implementation for pose determination.

2. Dataset 2

a. Default Keypoints

The main limitations seen from the AT model are due to the simulated environment

applied to its dataset. The model struggled to learn to its full potential with several scenarios

applied to it. Figure 41 shows pose predictions for its default keypoints.

52

Figure 41. AT Pose Estimation from Default Keypoints.

Figure 41 displays expected results. The green open-circle predicted pose is

accurate to the blue ground-truths where it is easier for the model to distinguish the target

against the background. This is seen on the left image. There are other predictions where

the predicted pose is off due to inaccurate keypoints, as seen on the right image. In the right

image, the target has blurring around the edge of its silhouette. The AT model has the

tendency of cropping its bounding boxes toward the center of the UAV targets where its

pixels are more prominent. This cropping limits the accuracy this model can achieve for

pose estimation.

b. Heatmap Keypoints

The heatmap keypoints results of the AT model did not show significant

improvement from the default keypoints. Figure 42 shows the pose estimation results from

the heatmap keypoints.

53

Figure 42. AT Pose Estimation from Heatmap Keypoints.

The heatmap keypoints pose performance is similar to the AT default keypoints.

There does seem to be a slight improvement how inaccurate the pose can be predicted, seen

in the right image. The pose is closer towards the target then being spread across the image.

The NOAT model showed that heatmaps performed better than the keypoints in terms of

minimizing pose error. The heatmaps of the AT model may have the same benefit.

c. Evaluation of AT Model

The RMSE calculated from the AT predictions is presented in Figure 42. The blue

plot on the left is the RMSE of the pose from the default keypoints. The red plot on the

right is the RMSE of the pose from the heatmap keypoints. Table 6 presents the average

RMSE for both keypoint cases of this model.

54

Figure 43. AT Pose RMSE Results.

Table 6. AT Pose Mean RMSE

AT Model Case Mean RMSE

Default Keypoints 1.3901

Heatmap Keypoints 1.2805

The RMSE results showed that the heatmap predictions performed better for pose

than the default keypoints for the AT model as well. The heatmap keypoints RMSE have

an average error of 1.2805%. There is some spiking in the 30% error range which can be

seen in the image of the right, in Figure 43. However, for the default keypoints, the average

RMSE is 1.3901%. There is spiking that ranges from 30–60% error. The benefit of utilizing

heatmap keypoints over the default keypoints is consistent over the two models. This

further supports the usefulness of DL heatmap implementation for pose estimation in

military tracking and guidance systems. The AT model was able to achieve an average

error of 3% regardless of the severity of the simulated effects. This DL model shows its

capability of being implemented in a real system to have similar results.

55

C. PHASE 3 AIMPOINT SELECTION

The second military application that evaluated the potential of DL implementation

was aimpoint selection. Aimpoint selection was achieved through the pose projection

results of the predicted keypoints. The intended aimpoint was selected prior to evaluation,

seen in Table 3. RMSE was the evaluation metric for aimpoint accuracy. This section

reviews the results and limitations of DL implementation for this military application.

1. Dataset 1

a. Default Keypoints

Since pose estimation was dependent on the pose estimation predictions, the results

were expected to be consistent with the behavior seen in section B. Figure 44 shows the

aimpoint results of the NOAT default keypoints.

Figure 44. NOAT Aimpoint Selection from Default Keypoints.

In Figure 44, the blue asterisk marker is the ground-truth aimpoint and the green

asterisk marker is the predicted keypoint. These results show that there is secondary

adverse effects to poor performance of pose. The image of the right shows that the NOAT

model completely missed the target. If the pose predicted is inaccurate then there is the

expectation the aimpoint will be predicted incorrectly as well.

56

b. Heatmap Keypoints

Figure 45 presents the aimpoint results from the NOAT heatmap keypoints

predictions. There is similar behavior exhibited from the heatmap keypoints from what is

shown above in Figure 44.

Figure 45. NOAT Aimpoint Selection from Heatmap Keypoints.

The heatmap aimpoint had varying results of accuracy to the ground-truth. In the

image on the left, the aimpoint is projected behind the desired aimpoint location. As seen

within this discussion, the heatmap keypoints have a limitation due to certain bearing

ambiguity. In the right image, the tail of the UAV is not visible and the aimpoint prediction

is incorrect as a result.

c. Evaluation of NOAT Model

Aimpoint selection was evaluated by the same metric used for pose estimation. The

error was calculated between the predicted 2D pixel coordinates of the aimpoint and its

ground-truth pixel coordinates. Figure 46 presents the RMSE results for the aimpoint

determined by the NOAT model. Table 7 summaries the average error for both keypoint

cases. The blue plot is the RMSE for the aimpoints predicted from default keypoints. The

red plot is the RMSE for the heatmap keypoints.

57

Figure 46. NOAT Aimpoint RMSE Results.

Table 7. NOAT Aimpoint Mean RMSE

NOAT Model Case Mean RMSE

Default Keypoints 0.7401

Heatmap Keypoints 0.9894

As seen in Figure 46, there is not a significant difference between the RMSE of the

two keypoint determination methods. From Table 7, the heatmap RMSE average is slightly

higher than the default keypoint’s average. However, the scale of the plots and the spread

of spiking is consistent between the two cases. The RMSE of the aimpoint does not show

a certain advantage for the use of either keypoint method. This does show that the NOAT

model is consistent within this application. However, the aimpoint RMSE is much larger

than the pose estimation RMSE. The volume of spiking has increased and thus increased

the range of error a system would see if this model were to be implemented. For aimpoint

selection, a small error margin is heavily desirable. As seen in figures 44 and 45, poor pose

can lead to a weapon system missing the target when using aimpoint selection and

targeting. The results from the NOAT model provided reasonable results for aimpoint

selection. The average error was below 1% for 15,000 samples. The large volume of

spiking is the limitation of this application. The smallest deviation from the ground-truth

58

in pose can cause large error in aimpoint selection which would be detrimental for a

weapon system in this application.

2. Dataset 2

a. Default Keypoints

The limitations of the AT Model reflected in higher error for its use in pose

estimation. Aimpoint selection is a direct product of pose. Figure 47 shows the aimpoint

selection from the AT default keypoints. The varying results are consistent in the model’s

performance throughout the discussion.

Figure 47. AT Aimpoint Selection from Default Keypoints.

The images in Figure 47 show the limitations of the AT model in its use for military

applications. Depending on the accuracy of the default keypoint prediction, the model has

shown promising or poor performance. The green predicted marker in the first image is

ahead of the desired aimpoint. The body of the UAV is the most distinguishable feature in

the image. Bounding box cropping and overcompensating seen from the model can produce

aimpoints that are significant off from the intended location.

59

b. Heatmap Keypoints

The heatmap keypoints of the AT model showed consistent performance to its

default keypoints. There is the expectation that this consistency should be seen within its

utilization for aimpoint prediction. Figure 48 shows the aimpoint results for the heatmap

keypoint.

Figure 48. AT Aimpoint Selection from Heatmap Keypoints.

The aimpoint determined from the heatmap keypoints show expected results. There

are cases where the accuracy is high due to previous phases performing well. Cases of low

accuracy show the effects of the simulated scenarios on the AT Model. The image on the

right has a large disparity between the predicted and ground-truth aimpoint. The UAV in

that model is small, has blurring and is within a dark environment. The performance of the

AT model has shown that its performance is dependent on the combination of these affects

and their strength levels.

c. Evaluation AT Model

The pose estimation of the AT model showed an improvement in accurate for the

heatmap keypoints. The expectation is that is improvement should be seen within aimpoint

selection. The RMSE of the aimpoint predictions of the AT model can be seen in

Figure 49. Table 8 presents the average RMSE values for both cases of the model.

60

Figure 49. AT Aimpoint RMSE Results.

Table 8. AT Aimpoint Mean RMSE

AT Model Case Mean RMSE

Default Keypoints 6.6785

Heatmap Keypoints 6.6412

The aimpoint RMSE of the AT Model has a significantly higher margin of error

than the NOAT model. The average error for both its keypoint method is approximately

6.6%. Between the two methods, the aimpoint error is consistent across the model. The

limitations seen from the model are heavily shown within this military application.

Aimpoint selection does not allow for a large area of estimation. Poorly predicted pose has

severe effects on the aimpoint performance. The DL implementation of this model would

not currently benefit systems in a real-world environment. While the dataset implements

scenarios seen in real data, the error presented is concerning. Another factor that may add

to this limitation is the WPDLT. If a pose determination method more advantageous for

real data was used for the NOAT model, the results of its pose and aimpoint determination

may improve. There are limitations of the scope in the WPDLT function that are only

beneficial for data like the NOAT dataset.

61

V. CONCLUSION

A. SUMMARY

This research studied the implementation of DL as a proof of concept for improving

the accuracy of weapon guidance systems. This was accomplished by training a DL

algorithm on two datasets that represented real-world scenarios of aerial targets. The

models that were a result of that training were then evaluated on their performance and

accuracy for target keypoint detection, pose estimation and aimpoint selection. Results

from the NOAT model had an overall accuracy of 97% for target detection. Pose estimation

and aimpoint selection had a 97–99% accuracy. Results from the AT model had lower

accuracy in all areas of evaluation. The target and keypoint detection for the AT model was

approximately 65% which decreased accuracy for pose estimation and aimpoint selection

as well. The decrease in performance was due to the several effects the data induced to

simulate a real-world scenario. Weather, lighting, and target blurring have adverse effects

of the efficiency of a DL algorithm made for keypoint detection. However, experimentation

also showed that heatmaps provide an alternative approach of deriving keypoints to

improve performance. Heatmaps showed the most benefit for pose estimation. Poor pose

estimations results were limited due to only one mathematical approach being utilized. The

results of the experiment demonstrated that DL implementation has potential and can be

used to improve the accuracy of weapon guidance systems. Implementation should focus

on a pose estimation function fit for the applied system.

B. FUTURE RESEARCH

Future opportunities will focus on expanding on the limitations seen in pose

estimation and aimpoint selection. Evaluating other pose estimation methods for the AT

model could show an ideal approach to use in conjunction with keypoint detection.

Expansion of DL training could be conducted by focusing on different combinations of

simulated environments for the datasets. This would provide information on which effect:

weather, lighting, blurring, has the most influence of the accuracy of the DL model.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

LIST OF REFERENCES

[1] Dey, A., 2016, “Machine Learning Algorithms: A Review,” International Journal
of Computer Science and Information Technologies, 3, pp. 1174–1179.

[2] Fradkov, A., 2020, ‘Early History of Machine Learning,” IFAC-PapersOnLine,
53, pp.1385-1390. https://doi.org/10.1016/j.ifacol.2020.12.1888

[3] Udousoro, I., 2020, “Machine Learning: A Review,” Semiconductor Science and
Information Devices, 2. http://dx.doi.org/10.30564/ssid.v2i2.1931

[4] Kim, P., 2017, MATLAB Deep Learning: With Machine Learning, Neural
Networks and Artificial Intelligence, Apress, DE.

[5] Aloysius, N., and Geetha, M., 2017, “A Review on Deep Convolutional Neural
Networks,” IEEE International Conference on Communication and Signal
Processing, pp. 588–592.

[6] Li, Z., Yang, W., Peng, S. and Liu, F., 2021, “A Survey of Convolutional Neural
Networks: Analysis, Applications, and Prospects,” IEEE Transactions on Neural
Networks and Learning Systems. doi: 10.1109/TNNLS.2021.3084827

[7] Girshick, R., Donahue, J., Darrell, T., and Malik, J., 2014, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,” 2014
IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. doi:
10.1109/CVPR.2014.81

[8] He, K., Gkioxari, G., Dollár, P., and Girshick, R., 2017, “Mask R-CNN,” IEEE
International Conference on Computer Vision, pp. 2980–2988. doi: 10.1109/
ICCV.2017.322

[9] Patil, C., and Vikas, G., 2021, “Human Pose Estimation Using Keypoint RCNN
in Pytorch,” The OpenCV Library, Dr. Dobb’s Journal of Software Tools. Human
Pose Estimation using Keypoint RCNN in PyTorch (learnopencv.com)

[10] Lin, TY. et al., 2014, “Microsoft COCO: Common Objects in Context,” European
Conference on Computer Vision, 8693, pp. 740–755. https://doi.org/10.1007/978-
3-319-10602-1_48

[11] Odemakinde, E., 2021, Human Pose Estimation with Deep Learning, VISO AI,
Switzerland.

[12] Pavlakos, G., Zhou, X., Chan, A., Derpanis, K., and Daniilidis. K., 2017, “6-DOF
Object Pose from Semantic Keypoints,” 2017 IEEE International Conference on
Robotics and Automation, pp. 2011–2018. doi: 10.1109/ICRA.2017.7989233

https://doi.org/10.1016/j.ifacol.2020.12.1888
https://doi.org/10.1016/j.ifacol.2020.12.1888
http://dx.doi.org/10.30564/ssid.v2i2.1931
http://dx.doi.org/10.30564/ssid.v2i2.1931
doi:%2010.1109/TNNLS.2021.3084827
doi:%2010.1109/TNNLS.2021.3084827
doi:%2010.1109/CVPR.2014.81
doi:%2010.1109/CVPR.2014.81
doi:%2010.1109/CVPR.2014.81
doi:%2010.1109/ICCV.2017.322
doi:%2010.1109/ICCV.2017.322
doi:%2010.1109/ICCV.2017.322
https://learnopencv.com/human-pose-estimation-using-keypoint-rcnn-in-pytorch/#input-output
https://learnopencv.com/human-pose-estimation-using-keypoint-rcnn-in-pytorch/#input-output
https://learnopencv.com/human-pose-estimation-using-keypoint-rcnn-in-pytorch/#input-output
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
doi:%2010.1109/ICRA.2017.7989233
doi:%2010.1109/ICRA.2017.7989233

64

[13] Xiao-Shan Gao, Xiao-Rong Hou, Tang, J., and Hang-Fei Cheng, 2003, “Complete
Solution Classification for the Perspective-Three-Point Problem,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25, pp. 930–943. doi:
10.1109/TPAMI.2003.1217599

[14] Fischler, M. A.; Bolles, R. C. ,1981,. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography,” Communications of the ACM, 24 (6),pp. 381–395. doi:10.1145/
358669.358692

[15] Penate-Sanchez, A.; Andrade-Cetto, J.; Moreno-Noguer, F. (2013). “Exhaustive
Linearization for Robust Camera Pose and Focal Length Estimation.” IEEE
Transactions on Pattern Analysis and Machine Intelligence. 35 (10): 2387–2400.
doi:10.1109/TPAMI.2013.36

[16] Ingrid Carlbom, Joseph Paciorek ,1978,. “Planar Geometric Projections and
Viewing Transformations,” ACM Computing Surveys. 10 (4), pp.465–502. .
doi:10.1145/356744.356750. S2CID 708008

[17] Bradski, G., 2000, The OpenCV Library, Dr. Dobb’s Journal of Software Tools.
OpenCV: Perspective-n-Point (PnP) pose computation

[18] Zhi-Yong, L., Fu, J. and Zhong-Kang, S., 1990, “Target Tracking and Aimpoint
Selection In Homing Stage,” IEEE Conference on Aerospace and Electronics,
DOI:10.1109/NAECON.1990.112783

[19] Rheeden, D., and Jones, R., 1988, “Noise effects on centroid tracker aim point
estimation,” IEEE Transactions on Aerospace and Electronic Systems, 24, pp.
177–185. doi: 10.1109/7.1051

[20] Paszke, A. et al., 2019, PyTorch: An Imperative Style, High-Performance Deep
Learning Library, In Advances in Neural Information Processing Systems, 32, pp.
8024–8035, Curran Associates, Inc.

[21] Kluyver, T. et al., 2016, Jupyter Notebook. Fernando Perez, CA.

[22] MATLAB and Statistics Toolbox. The MathWorks, Inc., MA.

[23] Alex P., 2021, “How to Train a Custom keypoint Detection Model with
PyTorch,” Medium. Available: httsp://github.com/alexpppp/
keypoint_rcnn_training_pytorch

[24] Paszke, A. et al., 2019. “Source Code for
Torchvision.models.detection.keypoint_rcnn” https://pytorch.org/vision/0.12
/_modules/torchvision/models/detection/keypoint_rcnn.html

doi:%2010.1109/TPAMI.2003.1217599
doi:%2010.1109/TPAMI.2003.1217599
doi:%2010.1109/TPAMI.2003.1217599
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F358669.358692
https://doi.org/10.1145%2F358669.358692
https://doi.org/10.1145%2F358669.358692
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTPAMI.2013.36
https://doi.org/10.1109%2FTPAMI.2013.36
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F356744.356750
https://doi.org/10.1145%2F356744.356750
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:708008
https://api.semanticscholar.org/CorpusID:708008
https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html
https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html
https://doi.org/10.1109/NAECON.1990.112783
https://doi.org/10.1109/NAECON.1990.112783
doi:%2010.1109/7.1051
doi:%2010.1109/7.1051
httsp://github.com/alexpppp/keypoint_rcnn_training_pytorch
httsp://github.com/alexpppp/keypoint_rcnn_training_pytorch
httsp://github.com/alexpppp/keypoint_rcnn_training_pytorch
https://pytorch.org/vision/0.12/_modules/torchvision/models/detection/keypoint_rcnn.html
https://pytorch.org/vision/0.12/_modules/torchvision/models/detection/keypoint_rcnn.html
https://pytorch.org/vision/0.12/_modules/torchvision/models/detection/keypoint_rcnn.html

65

[25] Claesen, M., and Moor, B., 2015, “Hyperparameters Search in Machine
Learning,” The XI Metaheuristics International Conference. https://doi.org/
10.48550/arXiv.1502.02127

[26] Pazke, A. et al., 2019, Torch.Optim. torch.optim — PyTorch 1.11.0
documentation.

[27] Smith, S., and Le, Q., 2018, “A Bayesian Perspective on Generalization and
Stochastic Gradient Descent,” ICLR.

[28] Shi, B., 2021, “On the Hyperparameters in Stochastic Gradient Descent with
Momentum,” White Paper, Cornell University.

[29] Juba, B., Le, H. , 2019, “Precision-Recall versus Accuracy and the Role of Large
Data Sets,” Proceedings of the AAAI Conference on Artificial Intelligence, 33, pp.
4039–4048. https://doi.org/10.1609/aaai.v33i01.33014039

[30] Botchkarev, A.,2019, “A New Typology Design of Performance Metrics to
Measure Errors in Machine Learning Regression Algorithms,” Interdisciplinary
Journal of Information, Knowledge, and Management, 14, 45–76.
doi:https://doi.org/10.28945/4184

[31] Chai, T., and Draxler, R., 2014, “Root Mean Square Error (RSME) or Mean
Absolute Error (MAE),” Geoscientific Model Development, 7, pp. 1247–1250.

[32] Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., Ermon, S., 2016,
“Combining Satellite Imagery and Machine Learning To Predict Poverty,”
Science, 353(6301): 790–794.

[33] Pazke, A. et al., 2019. “Torchvision Object Detection Finetuning Tutorial.”
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

[34] Lu, P., 2020, Self-Supervised Keypoint Learning: A Review, Towards Data
Science. Medium, CA.

https://doi.org/10.48550/arXiv.1502.02127
https://doi.org/10.48550/arXiv.1502.02127
https://doi.org/10.48550/arXiv.1502.02127
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://doi.org/%E2%80%8B10.1609/%E2%80%8Baaai.v33i01.33014039
https://doi.org/%E2%80%8B10.1609/%E2%80%8Baaai.v33i01.33014039
doi:https://doi.org/10.28945/4184
doi:https://doi.org/10.28945/4184
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Jun_Heath_Raven_First8
	22Jun_Heath_Raven
	I. Introduction
	A. Overview
	B. Objectives
	C. Approach
	D. Experiment introduction
	E. Scope
	F. Thesis organization

	II. Literature Review
	A. Artificial Intelligence
	1. Machine Learning
	2. Deep Learning
	3. CNNS

	B. Detection Algorithms
	1. Mask R-CNN
	2. Keypoint R-CNN

	C. Military Applications
	1. Pose Estimation
	2. Aimpoint Tracking

	III. Problem Formulation and Methodology
	A. Software
	1. PyTorch
	2. Jupyter Notebook
	3. MATLAB

	B. datasets
	1. No Atmospheric Effects Dataset
	2. Atmospheric Effects Dataset

	C. Phase 1: Keypoint Detection
	1. Data Augmentation
	2. Algorithm Implementation
	3. Training
	4. Predictions and Evaluations

	D. Phase 2: Pose Estimation
	1. Data Augmentation
	2. Keypoint Implementation
	3. Predictions and Evaluations

	E. Phase 3: Aimpoint Selection and Tracking
	1. Inference
	2. Evaluations and Predictions

	IV. Simulation Results and DL Performance Evaluation
	A. Phase 1: keypoint Detection
	1. Bounding Boxes
	a. Dataset 1
	b. Dataset 2

	2. Keypoints
	a. Dataset 1
	(1) Default Keypoints
	(2) Heatmap Keypoints

	b. Dataset 2
	(1) Default Keypoints
	(2) Heatmaps Keypoints

	B. Phase 2: Pose Estimation
	1. Dataset 1
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation of NOAT Model

	2. Dataset 2
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation of AT Model

	C. Phase 3 Aimpoint SelecTION
	1. Dataset 1
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation of NOAT Model

	2. Dataset 2
	a. Default Keypoints
	b. Heatmap Keypoints
	c. Evaluation AT Model

	V. Conclusion
	A. Summary
	B. Future Research

	List of References
	initial distribution list

