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ABSTRACT 

 The applications of machine learning are broad and useful for a variety of 

industry and military objectives, but are the current methods robust? Robustness requires 

more than accuracy in ideal conditions; it means the system is resistant to perturbations in 

the data, both from natural and adversarial causes. This research aims to analyze the 

robustness of neural networks used for power-grid fault classifications. We focus on data 

generated from simulations of the classical 9-bus model; however, these methods and 

results can be extended to more complex microgrids, such as those found on naval ships, 

submarines, and bases. First, we measure the effects of random and adversarial noise on 

the testing data and compare three network types. Then we test different structures by 

varying the number of nodes and layers. Finally, we test whether adding noise to the 

training data can improve robustness. Before machine learning methods are adopted on 

submarines, we must first understand their weaknesses and potential for error. This 

research provides the foundation for how to test robustness, where neural networks are at 

risk from random or adversarial noise, and how to modify networks to improve their 

robustness. 
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CHAPTER 1:
Introduction

1.1 Motivation
Machine learning (ML) is becoming a useful tool in many areas of life, including military
operations. The ability for machines to rapidly assess large data sets is unparalleled to
that of human analysts. Computational algorithms have provided us with many new ways
of collecting information, solving problems, and drawing conclusions. Unfortunately, the
decisions of a machine learning program are not always explainable or reliable. The inner
workings of a neural network may not be transparent from its code, and most machine
learning tools are vulnerable to errors, either from attacks or corrupted data. To harness all
of the benefits from machine learning, we must first work to build trust in their functions.
This requires a strong understanding of how the algorithms work and the limits to their
reliability and robustness.

One area for machine learning to improve is power grid analysis. Many devices essential
to our modern world are attached to a power grid, constantly drawing energy based on the
device’s operations. This energy usage can be measured, along with other data related to
the power grid, as a function of time. Using machine learning techniques, we can draw
conclusions about device operations based on data collected from sensors in the grid.

Microgrids are local energy grids that can be disconnected from a larger grid and operate
independently [1]. These can be used in conjunction with a larger, traditional power grid
to provide stability for critical infrastructure, such as Connecticut’s Microgrid Program
aims to do [1]. They can also be designed to operate completely independently, or “off
the grid.” The military already sees the value of microgrids, both for shore commands
and vessels at sea. A nuclear submarine, of course, operates on its own microgrid, using
electrical power generated by the reactor. As part of the Connecticut Microgrid Program,
the U.S. Naval Submarine Base in Groton, CT, is also working on building a microgrid
to power its submarines while in port [2]. Other military systems may be soon to follow,
since microgrids rely less on the traditional power grid system and are more resilient and
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adaptable to changing conditions.

For machine learning, microgrids provide a prime environment to analyze the system and
make predictions off of specific measurements. As with any power grid, faults can occur due
to natural disturbances, operator error, or adversarial attacks. Typically, human operators are
used to determine where these issues occurred, but this task is suited for machine learning
programs as well [3]. Microgrids are particularly useful for studying these machine learning
techniques because strategically measured data can sufficiently represent the workings of
the power system, thereby allowing the neural network to make accurate predictions.

Despite the many applications and exciting potential of machine learning, there are weak-
nesses that can be exploited. Neural networks are only as good as the data they’re trained
on, and understanding the limitations of an ML system is crucial to implementing it. For
military applications in particular, we must be absolutely confident in the system’s ability
to perform correctly under adverse conditions caused either from natural occurrences or
deliberate attack. A submarine at sea cannot rely on a prediction algorithm that only works
with lab-generated data. It must be adaptable to the environment and resistant to adversarial
input. This should be the goal of all machine learning systems—to be robust against both
natural and adversarial noise.

The operators of machine learning systems must be aware of their limitations and should
have a general understanding of the ML model. Just as engineers study theoretical concepts
before applying them, analysts must understand how machine learning works before relying
on its results. With a greater understanding of the underlying principles, operators can
critically assess the real-time predictions of their ML system and avoid the consequences
of undetected noise.

1.2 Research Goals
Before implementing machine learning systems onto defense platforms such as submarines,
we must fully understand their strengths, weaknesses, and vulnerabilities. This project aims
to thoroughly analyze these qualities in a simulated microgrid called the 9-bus model [4].
We focus on robustness, a broad term that encompasses a system’s ability to perform well
in the presence of noise and uncertainties.
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First, we design and train a simple feedforward neural network using MATLAB’s neural
network toolbox. This network serves as a baseline for the following experiments, since
it performs well under perfect conditions but has no additional robustness considerations.
Next, we add three types of noise (uniform random, Gaussian, and adversarial) to the testing
data and measure the network performance. Then we test other network structures and
measure their performance and stability against added noise. Finally, we train new neural
networks using training data with added noise in the hopes of improving their robustness
against noisy testing data.

Based on these tests, we determine the optimal structure for a machine learning tool using
power grid data. Analysis of the average errors over large testing data sets shows the limits for
the amount of random and adversarial noise that can be added while maintaining accuracy.
To conclude, we provide recommendations for the training and usage of a machine learning
tool along with parameters for which the tool can be trusted.

Overall, this analysis furthers our understanding of machine learning robustness and how
to measure it. The methods and conclusions can be applied towards more complex data sets
and real-life applications, such as submarine power grids. With this understanding, we can
ensure that ML systems are only used in scenarios where their results can be trusted.

3
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CHAPTER 2:
Background

2.1 Literature Review
Machine learning is currently being applied to a wide range of topics, including cyber
security. Additionally, some methods exist for using ML to analyze power systems, however,
their robustness is still in question. The following literature review covers the current research
into general machine learning topics, methods of analyzing robustness, and applications to
power systems.

2.1.1 Applications of Machine Learning for Cyber Security
The goal of any cyber defense system is to maintain data confidentiality, integrity, and
availability [5]. Threats such as phishing, spam, and malware can all affect the users’
experience. Traditional defenses such as firewalls and antivirus software work by following
a predesigned set of rules, so they only protect against previously known and expected
threats. Recently, machine learning has been applied to cyber security systems because
it can learn from examples and adapt to new attacks [5]. Additionally, its flexibility and
adaptive nature can detect slight variations in attacks that a more traditional system might
overlook.

Machine learning does have some limitations, however. Huge data sets are required for
adequate training, and ML models must be designed with specific threats in mind [5].
Trustworthiness is also an issue, since ML techniques often lack user transparency. More
importantly, machine learning methods are vulnerable to noise or adversarial input, which
can affect the training process or produce incorrect results when in use.

2.1.2 Robustness
There are many definitions of robustness for machine learning, all of which can be summa-
rized as “the degree to which a system or component can function correctly in the presence
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of invalid inputs or stressful environmental conditions” [6]. In other words, it is the ability
of an ML model to perform well against noisy or adversarial input data.

O’Mahony et al. focus on an adversarial attack and define the stability of prediction as a
robustness measurement [6]. Their definitions are given below.

“Definition 4.3. For each user-item pair (𝑎, 𝑗) ∈ 𝐴, the prediction error, 𝐸𝑝, of prediction
pre- and post-attack 𝑇 is given by

𝐸𝑝 (𝑎, 𝑗 , 𝑇) = 𝑝′𝑎, 𝑗 − 𝑝𝑎, 𝑗 (2.1)

where 𝑝𝑎, 𝑗 and 𝑝′
𝑎, 𝑗

are pre- and post-attack predictions respectively” [6].

“Definition 4.4. The stability of prediction (SOP) of the set 𝐴 to an attack 𝑇 is given by

𝑆𝑂𝑃(𝐴,𝑇, 𝛼) = 1 − 1
|𝐴|

∑︁
𝑎∈𝐴

^𝑎, 𝑗 (𝛼) (2.2)

where 𝛼 is an arbitrary prediction shift. When 𝛼 ≥ 0, ^𝑎, 𝑗 (𝛼) = 1 if 𝐸𝑝 (𝑎, 𝑗 , 𝑇) ≥ 𝛼 and 0
otherwise; when 𝛼 < 0, ^𝑎, 𝑗 (𝛼) = 1 if 𝐸𝑝 (𝑎, 𝑗 , 𝑇) ≤ 𝛼, and 0 otherwise” [6].

The SOP value measures the success of an attack, which is correlated to the robustness of
the machine learning system. A value close to 1 indicates that very few predictions changed
by more than 𝛼 due to the attack, meaning the system is stable. A value close to 0 means that
many predictions changed by at least 𝛼, so the system is not very robust. As an example, an
SOP of 0.4 at 𝛼 = 2 means that 60% of all predictions were changed by at least +2 units.
If the benchmark of accuracy for this system was ±2, then an SOP of 0.4 shows it is not
robust against that particular attack.

These measurements of robustness are designed to test an ML model against an adversarial
attack. The prediction error gives a measure of the magnitude of the change that an attack
causes, whereas the SOP gives an analysis of the attack’s effectiveness. One advantage
to the SOP measurement is that one can use it to compare the robustness of various
recommendation systems, regardless of their individual accuracy.

Hembram et al. studied robustness in a gully erosion prediction system and defined their
version of robustness as a combination of discrimination ability and reliability [7]. “Dis-
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crimination ability refers to the separation capability of a model between gully presence
and absence areas, and reliability refers to the agreement between observed gully locations
and predicted gully locations” [7]. The paper’s analysis provided several methods of mea-
suring both aspects of robustness. For discrimination ability, efficiency, the Jaccard index,
Matthew’s correlation coefficient, the Kappa coefficient, and receiver operating characteris-
tics were used. The reliability measurements were the root mean square error (RMSE) and
the mean absolute error (MAE). These are common statistics equations that can be used
to compare a variety of ML models. As shown in the gully erosion study, together they
can give a detailed picture of the ML predictions, however, each measurement focuses on
only one aspect of the problem. Most commonly, the RMSE is used as a benchmark error
measurement.

Derks et al. performed a robustness analysis on two types of neural networks: radial base
function (RBF) and multi-layered feedforward (MLF) networks [8]. The study generated
noisy data sets by sampling noise from a normal distribution such that the error ratio was
around 1%, then trained both types of networks on the original and modified data sets.
Using the root mean squared error, root mean squared error of prediction, and percentage
explained variance, the researchers concluded that the RBF model was more robust. This
example shows how noise can be added to input data and ways to measure its effect. Their
results were specific to the data sets used, however, their methods could be applied to other
ML models in order to test robustness.

2.1.3 Robustness Training Methods
Much of the literature on robustness focuses on adversarial attacks and the ability to protect
against small perturbations which could cause classification errors [9]. Given a classification
task with data drawn from a joint distribution (𝑥, 𝑦) ∼ 𝐷, with 𝑥 ∈ R𝑑 and 𝑦 ∈ {0, 1, ..., 𝑘}
and a loss function 𝑙 (𝑥, 𝑦;𝑤), the goal of a machine learning algorithm is to find the weights
𝑤 which minimize the risk over the distribution 𝐷. This can be written as

min
𝑤
E(𝑥,𝑦)∼𝐷 [𝑙 (𝑥, 𝑦;𝑤)] .

A network using this training function is vulnerable to adversarial attacks, meaning a new
input 𝑥𝑎𝑑𝑣 is close to the original value 𝑥 with label 𝑦, but the predicted class of 𝑥𝑎𝑑𝑣 is not
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𝑦. Perturbation-based robust learning is used to train neural networks “to be robust against
a worst case perturbation of each instance 𝑥” [9]. This is formulated as a min-max problem,
where the goal is to minimize the risk over 𝐷 of a maximized perturbation 𝛿 ∈ Δ:

min
𝑤
E(𝑥,𝑦)∼𝐷

[
max
𝛿∈Δ

𝑙 (𝑥 + 𝛿, 𝑦;𝑤)
]
.

The problem with adversarial training is that this method often fails to protect against
natural variation in the data. Rather than focus on adversarial attacks, Robey et al. propose
a method of model-based robust deep learning to account for this natural variation [9]. The
focus of their study is image classification, so the examples are natural variation such as
snowy conditions or background color.

This method of model-based robustness requires a model of natural variation,𝐺 (𝑥, 𝛿), which
is a mapping that takes input datum 𝑥 and a nuisance parameter 𝛿 to a naturally varied output
𝑥′ [9]. Finding this model of natural variation can be difficult since its geometry is often more
complex than that of adversarial perturbations [9]. In fact, the perturbation-based adversarial
training method is a special case of the model-based method, where 𝐺 (𝑥, 𝛿) = 𝑥 + 𝛿 for
𝛿 ∈ Δ := {𝛿 ∈ R𝑑 : | |𝛿 | | ≤ 𝜖}, for some small 𝜖 > 0. For image classification problems, a
known model of natural variation for rotation is𝐺 (𝑥, 𝛿) = 𝑅(𝛿)𝑥 where 𝑅(𝛿) is the rotation
matrix of angle 𝛿 ∈ Δ := [0, 2𝜋]. If the model of natural variation is not a priori knowledge,
then 𝐺 (𝑥, 𝛿) should be learned from the data before starting the robustness training. This is
done by separating the data into two sets, 𝐴 containing the original data and 𝐵 containing
the data with natural variation. Then the goal is to find a model 𝐺 which transforms the
distribution of data in 𝐴 into the distribution of data in 𝐵.

Similar to the adversarial perturbation-based method, the goal of the model-based robustness
training algorithm is to minimize the risk against the datum 𝑥′ := 𝐺 (𝑥, 𝛿∗) generated by the
worst-case nuisance, 𝛿∗ which maximizes the loss values under the current weights, 𝑤:

min
𝑤
E(𝑥,𝑦)∼𝐷

[
max
𝛿∈Δ

𝑙 (𝐺 (𝑥, 𝛿), 𝑦;𝑤)] .

This optimization problem is often difficult to solve exactly, but the problem can be modified
to a finite-sample setting. Assuming there are a finite number of independent and identically
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distributed samples from 𝐷𝑛 := {(𝑥 𝑗 , 𝑦 𝑗 )}𝑛
𝑗=1, the min-max problem can be stated as

min
𝑤

1
𝑛

𝑛∑︁
𝑗=1

[
max
𝛿∈Δ

𝑙 (𝐺 (𝑥 𝑗 , 𝛿), 𝑦 𝑗 ;𝑤)
]
.

The authors propose three variants of this algorithm, each of which add data generated by
𝐺 to the original training set 𝐷𝑛 [9]. First, the model-based robust training (MRT) method
“randomly queries 𝐺 to generate several new data points and then selects those generated
data that induce the highest loss in the inner-maximization problem.” The model-based ad-
versarial training (MAT) algorithm “employs a gradient-based search in the nuisance space
Δ to find loss-maximizing generated data.” Finally, the model-based data augmentation
(MDA) method “augments the training set with generated data by sampling randomly in
Δ” [9].

These model-based robustness methods were compared to a standard training with no ro-
bustness considerations and an adversarial training with the perturbation-based method [9].
Their results show that the model-based methods provide significant robustness improve-
ments to a variety of datasets and nuisances. A model of variation trained on a dataset 𝐷 can
be reused for training of classifiers on a different dataset 𝐷′ and models of natural variation
can be combined to improve robustness against a multiple nuisances. Additionally, model-
based training provides an advantage over other methods, even when tested on datasets with
higher natural variation than the set it was trained on. Overall, their model-based robust
deep learning techniques show significant improvement over other methods when used in
image classification problems.

The idea of defining a model of variation may be useful for other types of data sets, apart
from image classification problems. This approach can help train networks against many
types of predictable noise, however, the main challenge is defining that model. Once an
accurate model of variation is found, any of the three model-based training methods would
provide significant robustness improvement.

9



2.1.4 Power Grid Disturbances
Power systems are relevant in nearly every aspect of modern life and we rely upon them
being resilient despite their complexity. Nevertheless, disturbances from natural events,
maintenance, or even attacks can occur. Determining the location and causes of disturbances
is usually done by experienced human operators, however, machine learning has recently
been applied to differentiate between types of disturbances [3]. Hink et al. tested various
machine learning methods on a set of simulated data from Mississippi State University which
contained five types of disturbances: short-circuit fault, line maintenance, remote tripping
command injection (attack), relay setting change (attack), and data injection (attack) [3].
Their goal was to classify the disturbances into three classification schemes, with either 37
specific event scenarios, three types of events (attack, natural event, or no event), or a binary
scheme of attacks and normal operations. The three-class scheme with a JRipper+Adaboost
method showed the best results, proving that using machine learning is a viable approach
to power system disturbance classification.

Another study used data from phasor measurement units (PMU) within the power system
to classify disturbances [10]. In that study, three classes were used: no event, natural event,
and intrusion event. The method started by “manually constructing new features from the
original data in the dataset so as to enhance data dimension.” This was done to improve
flexibility and gain higher accuracy and robustness in the model. Next, the data was split and
training occurred by sorting the original features according to importance and then selecting
diverse proportions of those features. This reduced the error from bad PMU measurements.
Finally, the model assigned different weights to each label and chose the final classification
label based on these weights. The model was tested on a dataset from the ICS cyber-attack
datasets and success was measured in terms of accuracy, prediction, recall, F1 score, the
ROC curve, and the AUC. This study showed that splitting the data and using manufactured
features had a positive effect on the classifier’s predictions of power system disturbances.

2.2 Machine Learning
Machine learning is a wide area of study whose overall goal is to use algorithms to make
predictions based on input data. The variations and applications are wide ranging, from
simple classification tasks to complex game play or modeling.
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Within the realm of machine learning algorithms, supervised learning is a method of
training a network to make predictions based on examples. This requires a large set of data
which can be broken into separate training and testing sets such that the algorithm “learns”
on the training data and is later validated on previously unseen testing data. The training
process uses an optimization method to minimize the loss function, or difference between
the predictions and actual values.

This paper will focus on neural networks, which take input data into a series of neurons, each
with an activation function, and then output a prediction. A single neuron can be visualized
with the image in Figure 2.1. It takes in the inputs 𝑥1, 𝑥2, 𝑥3 and a +1 intercept term, then
outputs ℎ𝑊,𝑏 (𝑥) = 𝑓 (𝑊𝑇𝑥 + 𝑏) where 𝑓 is the activation function, 𝑊 is the set of weights
represented by a matrix, and 𝑏 are the bias terms [11].

Figure 2.1. A single neuron.

Common activation functions are graphed in Figure 2.2. The sigmoid function is

𝑓 (𝑧) = 1
1 + 𝑒𝑥𝑝(−𝑧) .

The hyperbolic tangent, or “tanh” function, is

𝑓 (𝑧) = 𝑡𝑎𝑛ℎ(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧 . (2.3)

The rectified linear (ReLU) function is

𝑓 (𝑧) = 𝑚𝑎𝑥(0, 𝑧).
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Figure 2.2. Common activation functions.

A neural network is composed of layers, each with a set of neurons. The leftmost layer
is called the input layer and the rightmost is the output layer. Any layers in between are
referred to as hidden layers. The example in Figure 2.3 takes in data 𝑥 ∈ R3 and outputs
𝑦 ∈ R2. There are two hidden layers, the first with three neurons and the second with two.

Figure 2.3. A neural network example.

The neural net uses parameters (𝑊, 𝑏) where 𝑊 (𝑙)
𝑖 𝑗

denotes the weight of the connection
between unit 𝑗 in layer 𝑙 and unit 𝑖 in layer 𝑙+1. The parameter 𝑏 (𝑙)

𝑖
is the bias associated with

unit 𝑖 in layer 𝑙 + 1. The output value of unit 𝑖 in layer 𝑙, also called the activation, is denoted
𝑎
(𝑙)
𝑖

. This is computed as 𝑎 (𝑙+1) = 𝑓 (𝑧(𝑙)) where 𝑧(𝑙+1) = 𝑊 (𝑙)𝑎 (𝑙) + 𝑏 (𝑙) . These calculations
are referred to as forward propagation. The final output, or hypothesis, is ℎ𝑊,𝑏 = 𝑎 (𝐿) , where
𝐿 is the final layer.
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The final layer often uses a different activation function to produce the final prediction. For
this paper, we will consider the pure linear and softmax functions (default for MATLAB’s
predefined network structures). The pure linear transfer function (called purelin in MAT-
LAB) outputs the input (i.e., 𝑓 (𝑥) = 𝑥). The softmax function, however, outputs a vector of
probabilities:

ℎ\ (𝑥) =


𝑃(𝑦 = 1|𝑥; \)
𝑃(𝑦 = 2|𝑥; \)

...

𝑃(𝑦 = 𝐾 |𝑥; \)


(2.4)

where \ are the parameters of the model [11]. This is used for classification networks where
the prediction should be one of 𝐾 categories.

To train the neural network we use the backpropagation algorithm. This method uses
standard gradient descent to reduce the cost function, 𝐽 (𝑊, 𝑏). Given a training set
(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚) the cost function is computed as

𝐽 (𝑊, 𝑏) =
[

1
𝑚

𝑚∑︁
𝑖=1

𝐽 (𝑊, 𝑏; 𝑥𝑖, 𝑦𝑖)
]
+ _

2

𝐿−1∑︁
𝑙=1

𝑠𝑙∑︁
𝑖=1

𝑠𝑙+1∑︁
𝑗=1

(𝑊 𝑙
𝑗 ,𝑖)2

where
𝐽 (𝑊, 𝑏; 𝑥𝑖, 𝑦𝑖) = 1

2
| |ℎ𝑊,𝑏 (𝑥𝑖) − 𝑦𝑖 | |2.

Recall that 𝐿 is the number of layers and 𝑠𝑙 is the number of neurons in layer 𝑙 ≤ 𝐿. The
weight decay parameter _ is used to balance the two terms. Note that it is only applied to
𝑊 , not the bias term 𝑏.

This paper will focus primarily on feedforward multi-layered neural networks, also called
deep neural networks (DNN). However, there are many other forms of machine learning
algorithms and network structures which may be topics for further study.

2.3 Power System Modeling
To train and test a machine learning method, we first need large quantities of data. To start,
we create a model power grid and gather simulated data. Our system is based on the classical
9-bus dynamical microgrid model, as described by Anderson and Fouad [4]. It contains three
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generators (denoted by i= 1, 2, 3) and is modeled with “6 state variables, rotor angle (𝛿𝑖) and
angular velocity (𝑤𝑖), and 12 parameters determined by the admittance.” The parameters
are constants but the state variables vary with time. The relationships between power, rotor
angular velocity, degree of rotor rotation, and time are described by the ordinary differential
Equations (2.5-2.7).

2𝐻𝑖
𝜔𝑅

𝑑𝜔𝑖

𝑑𝑡
+ 𝐷𝑖𝜔𝑖 = 𝑃𝑚𝑖 − 𝑃𝑒𝑖 ; 𝑖 = 1, 2, 3 (2.5)

𝑑𝛿𝑖

𝑑𝑡
= 𝜔𝑖 − 𝜔𝑅 (2.6)

𝑃𝑒𝑖 = 𝐸
2
𝑖 𝐺𝑖𝑖 +

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝐸𝑖𝐸 𝑗𝑌𝑖 𝑗𝑐𝑜𝑠(\𝑖 𝑗 − 𝛿𝑖 + 𝛿 𝑗 ) (2.7)

𝐻𝑖 is the generators stored kinetic energy, 𝜔𝑅 is the angular velocity, 𝜔𝑖 is the generator’s
angular velocity, 𝐷𝑖 is the drag damping effect of the generator’s dynamical electrical load
and system drag, and 𝛿𝑖 is the generators rotor angular position. The two power components
are 𝑃𝑚𝑖, the generator’s mechanical energy, and 𝑃𝑒𝑖, the produced electrical energy, with 𝐸𝑖
as the generator’s constant excitation voltage. The conductance of each generator at term 𝑖

is 𝐺𝑖𝑖 [4].

A drawing of the classical 9-bus model is shown in Figure 2.4.

2.3.1 Simulations
We implemented the 9-bus system described above in MATLAB. Then we simulated tra-
jectories for normal operations and faults at each generator.

We compiled the data into two sets, training and validation. Each contains 18000 examples
with data 𝑥 ∈ R30 which represents the angular velocities from each generator, measured
at 10HZ, over a one-second interval. Each 𝑥 corresponding to 𝑦 ∈ {0, 1, 2, 3} denoting the
type of fault. More specifically, 𝑦 = 0 means there is no fault (i.e., normal operations), 𝑦 = 1
represents a fault between generators 1 and 2 which causes a 5% change in the parameters,
𝑦 = 2 represents a fault between generators 2 and 3, and 𝑦 = 3 represents a fault between
generators 3 and 1.
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The data sets are split with 50% of the values representing normal operations (𝑦 = 0) and
the remaining 50% divided evenly between the three fault locations (𝑦 = {1, 2, 3}). Once
generated, the training data was used to train each neural network and the testing data was
used to measure their performance.

Figure 2.4. The 9-bus model. Source: [12].
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CHAPTER 3:
Methodology

3.1 MATLAB Neural Network Tools
To build and train our neural networks we utilized MATLAB’s nntraintool (see Figure
3.1). The simple command “network” creates a custom shallow neural network, where
the user can define the number of inputs, layers, and connections. Then we can train the
network according to a customizable training function and training parameters. We found
optimal results with the default training function, the Levenberg-Marquardt method [13].
Each hidden layer uses the hyperbolic tangent activation function. For the parameters, our
baselines were 500 training iterations, a gradient of 10−7 and 100 validation checks. Once
the network is trained, it can be saved and used later to make predictions from different
input data. An example code is provided in Appendix A.1.

Figure 3.1. MATLAB’s nntraintool for training neural networks.
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3.2 Network Structure
The neural network tool in MATLAB contains several basic network structures. The first
that we trained was a feedforward net (FFN). The number of hidden layers and nodes per
layer can vary, but in all cases the input layer is connected to the first layer, which is then
connected to the second layer, and so on until the final hidden layer is connected to the
output layer. A FFN with 3 hidden layers of 16 nodes each is shown in Figure 3.2.

Figure 3.2. Example feedforward neural network.

We tested both the feedforwardnet for regression and the patternnet for pattern classifica-
tion. These MATLAB commands return the same network structure, but are designed for
different data types. The basic feedforward net is for regression, where the target values
are continuous, whereas the pattern net (PN) requires target values in the form of a vector,
with all zeros except a one in the index of the desired category. Additionally, both networks
use the hyperbolic tangent (tansig) function (2.3) for their hidden layer activations, but
the feedforwardnet uses a pure linear (purelin) function for the output layer whereas the
patternnet uses the softmax function (2.4) for its output. Although very similar, these small
differences cause noticeable variation in robustness, as described more in chapter 4.

The second network we tested is the cascade forward net (CFN). This structure is similar to a
feedforward network but includes more connections, with each layer connected to the input
and every previous layer. Each hidden layer uses the hyperbolic tangent (tansig) activation
function and the output layer uses the pure linear (purelin) function. As before, we can
customize the number of layers and nodes. It is important to note that this network takes a
particularly long time to train due to its high density of connections. An example cascade
forward net with 3 hidden layers of 16 nodes each is shown in Figure 3.3.
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Figure 3.3. Example cascade forward network.

3.3 Added Noise
Starting with a network trained on the “clean” data (generated by the 9-bus simulation), we
added various forms of noise to our validation data set and recorded the new error. The two
distributions we used were uniform random (𝑈 [−

√
3,
√

3]) and Gaussian (𝑁 (0, 1)). Note
that these distributions have the same mean (` = 0) and standard deviation (𝜎 = 1). A noise
scalar, 𝛿 was then multiplied by the noise and added to normalized data. For example, the
process of adding uniform random noise (𝑍) to a normalized data vector, x𝑛𝑜𝑟𝑚, is calculated
as:

𝑍 = 2
√

3 · 𝑟𝑎𝑛𝑑 (𝑠𝑖𝑧𝑒(x𝑛𝑜𝑟𝑚)) −
√

3

x𝑛𝑜𝑖𝑠𝑒 = x𝑛𝑜𝑟𝑚 + 𝛿 · 𝑍

An example code for this method is provided in Appendix A.2. Since the networks were
trained on a “clean” data set; i.e., no added noise, the “noisy” data is different from the
training set and therefore poses a challenge to the robustness of the network. Section 4.2
describes the effects of this random noise.

3.4 Gradient-Based Perturbations
To further challenge the robustness of the networks, we injected validation data with noise
in the direction of the gradient. This so-called gradient-perturbed data is a simple form of
adversarial attack, which is targeted to cause misclassification.
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To perform the gradient-perturbations we first wrote a script to calculate the gradient at one
data point using the finite difference method:

[∇(ℎ𝑊,𝑏)]𝑖 (x) =
ℎ𝑊,𝑏 (x + ℎ𝑒𝑖) − ℎ𝑊,𝑏 (x − ℎ𝑒𝑖)

2ℎ
,

where ℎ𝑊,𝑏 is the trained neural network and ℎ is very small, typically 10−5. This is repeated
for each index, 𝑖, of 𝑥. Since our input data x ∈ R30, this gradient ∇(ℎ𝑊,𝑏 (x)) ∈ R30.

The noise vector (𝑍) is computed for each data point, 𝑥, by calculating ∇(ℎ𝑊,𝑏 (x)) and
normalizing it. This noise is then multiplied by the noise scalar and added to the normalized
data, as shown below. Example code is provided in Appendix A.3.

𝑍 =
∇(ℎ𝑊,𝑏 (x))

| |∇(ℎ𝑊,𝑏 (x)) | |

x𝑛𝑜𝑖𝑠𝑒 = x𝑛𝑜𝑟𝑚 + 𝛿 · 𝑍

The finite difference method is a slow process, therefore we tested the gradient-perturbations
on smaller data sets with 𝑁 = 1000 test values. To ensure representative results, before each
test we shuffled the validation set and then selected the first 𝑁 data points.

3.5 Robustness Measurements
As shown in the literature, there are numerous ways of measuring the robustness of a ML
method. For this research we focus on the average error, stability of prediction (SOP), and
percent misclassified. After each network test we first calculate the errors for each data
point; i.e., the absolute value of the difference between predicted and actual 𝑌 values. The
average error is simply the mean of this set.

The SOP measures how much an “attack” (or noise) affects the output of a neural network [6].
This is calculated using the prediction error, 𝐸𝑝. Equations 2.1 and 2.2 show the calculations
for these measurements. For our purposes we used a prediction shift𝛼 = 0.5 since any change
in prediction greater than 0.5 would result in a misclassification after rounding. The attack,
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𝑇 , represents the added random or gradient-based noise.

The percent misclassified is used to compare the classification networks (patternnet struc-
ture) to the regression networks (feedforward and cascade forward). To do this, we round
the regression output to the nearest integer. Then the error measurement is the percent of
data points with the wrong predicted value (𝑦 ∈ {0, 1, 2, 3}).

3.6 Gathering Real Data
The majority of this project focuses on simulated data from a 3-generator 9-bus microgrid
model (Section 2.3.1), however, the clear follow-on is to apply the same robustness mea-
surement techniques to real data. To do this, we set up a Frequency Disturbance Machine
(FDR) as part of the University of Tennessee’s FNET/GridEye project [14]. Our system
is composed of the FDR and a small air compressor connected to the same conventional
120V power outlet. These components are shown in Figures 3.4 and 3.5. By running a
program through MATLAB we can collect the frequency output of the outlet over a given
time interval.

Figure 3.4. FDR machine.
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Figure 3.5. Air compressor.

We collected two types of data: normal operations and powering on the machine. For the
first, the system records the frequency output over three minute intervals while nothing is
turned on. Second, we gathered data for three minute intervals where the air compressor is
repeatedly turned on for 5 seconds, then off for 10. To prepare the data for use in a neural
network, we randomly select 12-second intervals and form our input vectors, 𝑥 ∈ R120 of
the frequency output from the FDR. Each 𝑥 is assigned either a value of 𝑦 = 0 for normal
operations, or 𝑦 = 1 if the air compressor is turned on.

The training and testing sets each contain 2750 examples, with about 40% representing
normal operations and the rest containing air compressor activity. Feedforward neural
networks were trained according to the same process outlined in Section 3.1.

22



CHAPTER 4:
Results

4.1 Structure of a Feedforward Neural Network
The first goal of this analysis was to determine the most robust configuration of a basic
feedforward neural network (FFN). Working off the connection scheme described in section
3.2, we varied the number of layers and the number of hidden nodes per layer to determine
the best combination to balance accuracy and simplicity.

First, we started by training networks of 1 to 10 layers, each with 16 nodes per layer. Uniform
noise with the noise scalar 𝛿 = {0, 0.01, 0.05} was added to test their robustness with respect
to average prediction error. These results are shown in Figure 4.1.

Figure 4.1. Effect of number of layers in FFN with 16 hidden nodes each,
tested against uniform noise.
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Figure 4.2. Error distribution for 1 and 3 layer FFNs against testing data
with added uniform noise of 𝛿 = 0.01.

Figure 4.2 shows how the errors are distributed over the entire testing set, resulting in the
average errors plotted in Figure 4.1. As these graphs show, the average error evens out
around 3 layers regardless of the noise scalar. While there may be slight improvements for
much higher numbers of layers, the time to train these networks also increases drastically.
For example, using a MacBook Pro with the M1 chip (8 core CPU), a 3-layer FFN takes
roughly 13 minutes to train, 6 layers takes 36.5 minutes, and 9 layers takes 1 hour and
28 minutes. Therefore, we can conclude that 3 layers is sufficient for good results with a
reasonable training time requirement.

Next, we vary the number of nodes per layer of a 3-layer FFN. Once again, we tested the
networks against data with added uniform noise. Figure 4.3 shows the average error of
networks with 4, 8, 12, 16, or 20 nodes per layer as the noise scalar increases.

This data shows that the optimal number of nodes per layer is 16. As expected, less than 8
nodes does not produce a very accurate or robust network, but it may be surprising to see
that 20 nodes also perform worse than 16. This may be a result of overparameterization.
Since more nodes per layer also increases the training time of a FFN (4 nodes per layer takes
less than a minute, 28 nodes takes 32 minutes), limiting our structure to 16 nodes produces
the best results within reasonable amounts of time (about 13 minutes).
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Figure 4.3. Effect of number of nodes per layer in FFN with 3 layers, tested
against uniform noise.

4.2 Types of Noise
Based on the previous two tests of network structure, we proceeded with a 3-layer, 16 nodes
per layer feedforward neural network to test the effects of different types of noise. We added
uniformly random (𝑈 [−

√
3,
√

3]) noise, normal (𝑁 (0, 1)) noise, and gradient perturbations
to the input data, then ran this altered data through the same FFN. Note that this network
was trained using “clean” data (i.e., no added noise), so each of the three altered data sets
presents a new challenge to the network. Figure 4.4 shows the results of this study, with the
degree of noise (noise scalar) vs the average error of predictions. Figure 4.5 shows the error
distributions for each type of noise with 𝛿 = 0.05 and Table 4.1 provides the numerical
values for the cumulative distribution.
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Figure 4.4. Effect of different noise types on a 3-layer, 16-node FFN.

Figure 4.5. Error distribution for a 3 layer, 16 node FFN against uniform,
normal, and gradient perturbations (𝛿 = 0.05).

< 0.5 < 1.0 < 1.5 < 2.0
Uniform 0.7984 0.9241 0.9749 1.0000
Normal 0.7998 0.9268 0.9743 1.0000

Gradient 0.6785 0.8339 0.9967 1.0000
Table 4.1. Percent of predictions within error bounds.
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For small amounts of noise, the difference between types is not significant, however, as the
noise scalar increases we see a clear distinction between random noise (uniform or normal)
and gradient perturbations. As expected, the gradient perturbations cause the highest error
since their direction is chosen based on the greatest change in the function. For random
noise, however, the distribution does not seem to matter as long as the mean (` = 0) and
standard deviation (𝜎 = 1) are the same.

When looking at the error distributions, however, it is clear that the vast majority of data
points are classified correctly, regardless of the noise type. The difference is that the gradient
noise causes significantly more noise in the 1.0 − 1.5 range. While this does cause a higher
average error, in practice the difference between an error of 0.75 and 1.25 is insignificant
since both predictions would be misclassified after rounding. The most relevant metric for
accurate predictions on this data set is the percent of predictions with an error < 0.5.

4.3 Network Type
Next we move on to different types of networks, testing their robustness against data with
added noise. The feedforward net (our baseline structure) is compared to the pattern net
and cascade forward net, as described in section 3.2. All three networks have the same
structure with 3 layers and 16 nodes per layer. Here we use the percent of data points which
are misclassified as the error measurement since the pattern net is a classification method
rather than a regression tool. We round the predictions of the FFN and CFN so that all three
networks output an integer prediction to represent the power grid fault location. We must
also note that the PN does not lend itself to gradient perturbations, since the gradient cannot
be easily computed with the classification nature of the network structure. The results for
uniform and Gaussian noise are shown in Figures 4.6 and 4.7.
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Figure 4.6. Comparison of network types against uniform noise.

Figure 4.7. Comparison of network types against normal noise.

The two types of random noise produce nearly identical graphs, again confirming that the
distribution matters less than the mean and standard deviation. Here we clearly see that the
pattern net produces the least misclassifications and the cascade forward net produces the
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most. This is likely because the pattern net is designed for classification problems, whereas
the other two are used for regression and then rounded. Between the FFN and CFN it is
interesting to see that the CFN, with far more connections between nodes and layers, actually
performs worse than the simple FFN. Considering the additional training time requirements
for a CFN, the FFN is clearly a better choice. Finally, we see that the misclassification rate
for a CFN follows a near linear relationship with the noise scalar, whereas the FFN and PN
both start to level off as the noise scalar increases. Once again, this is an advantage of the
FFN and PN.

4.4 Network-Noise Profiles
For further comparison between networks, we graphed their stability of prediction vs added
noise of each type (uniform, normal, and gradient). Figure 4.8 shows the data for random
noise and Figure 4.9 shows gradient perturbations. Each graph contains the stability of
prediction values for the 3-layer FFN, 3-layer CFN, 9-layer FFN, and 9-layer CFN (each
with 16 nodes per layer). Note that the PN networks are not represented due to the inherent
differences in their classification method as opposed to regression. Between the two types
of random noise we see virtually no difference, once again confirming that the different
distributions have the same effect so long as their mean and standard deviation are identical.
The gradient perturbations, however, have a clearly different pattern emerging between the
network types, particularly in the leveling off and then sharp downturn of the 3-layer CFN.

All three graphs show that the 9-layer CFN is least stable with high noise levels, whereas
the 9-layer FFN is most stable. Interestingly, the 3-layer CFN performs worse for smaller
levels of noise and the 3-layer FFN performs slightly better. Regardless of the noise scalar,
we see that the FFN structure is generally more stable than the CFN.

Taken together, these graphs demonstrate how a grouping of networks could be used to
determine whether noise has been added to the system. While all four networks perform
with perfect accuracy on “clean” data, each network is affected differently by random
or adversarial noise. These differences in stability could be measured and compared to
network-noise profiles to classify the type and scale of added noise.
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Figure 4.8. SOP comparison for 4 network structures with random added
noise.

Figure 4.9. SOP comparison for 4 network structures with gradient pertur-
bations.

4.5 Training with Noisy Data
Since the prediction ability of a neural network is dependent on its training, we suggest
using noisy training data to produce a more robust network. Using the same baseline FFN
structure with 3 layers and 16 nodes each, we trained new networks using “noisy” data sets.
These were produced by adding uniform noise (Section 3.3) to the original training data set
(Section 2.3.1). We trained one network for each noise scalar (𝛿) and then tested it against
the validation data with added uniform noise.
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The results are shown in Figure 4.10, where each line represents a network trained with
added noise. The graph shows that the average error follows a curve with the lowest point
at a testing noise scalar slightly lower than the training noise scalar. For example, the red
line, representing a network trained with added noise of 𝛿 = 0.04, produces the lowest
error when the testing data has noise of 𝛿 = 0.03. This trend is shown in all five networks,
implying that one should train their network with slightly noisier data than what they expect
to test it on. For this data set and range of testing noise scalars, the overall lowest error is
from a network trained on added noise of 𝛿 = 0.08 (the purple line).

Figure 4.10. Effect of uniform noise added to the testing data.

4.6 Real Data
Following the same procedure as Section 4.1, we train several FFNs with structures that
vary in number of layers and nodes per layer. Figure 4.11 shows the average errors for
networks with 16 nodes per layer and various numbers of layers, where each colored line
represents testing data with a different noise scalar (𝛿). Unlike Figure 4.1, here we see very
little difference between the noise scalars, however, we see a similar pattern in the steep
decline up to 3 layers, then a non-linear relationship as the layers increase.
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Figure 4.11. Effect of number of layers in a FFN, each with 16 nodes per
layer.

Figure 4.12 shows the average error compared to the noise scalar for several 3-layer networks
with different number of nodes per layer. Again, we see that the noise scalar seems to have
very little effect. The number of nodes, however, mirrors Figure 4.3 with 16 showing the
lowest error.

While further study is certainly required for this real data set, we do see interesting compar-
isons with the simulated data results from Section 4.1. For both, the optimal configuration
appears to be 3 layers with 16 nodes per layer. With the real data, however, added noise
does not have much of an effect like it does for the simulated data. This could be due to
the already “noisy” nature of real data, whereas the simulated data is more “ideal” from the
start.
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Figure 4.12. Effect of number of nodes per layer in a FFN, each with 3 layers.
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CHAPTER 5:
Conclusion

5.1 Analysis
This project aimed to analyze the strengths, weaknesses, and vulnerabilities of machine
learning systems to gain insights into their robustness. To this end, we used MATLAB’s Deep
Neural Network Toolbox and trained networks to predict faults in a simulated microgrid.
These networks were challenged by adding both random and gradient noise to the testing
data. We compared the performance of various network structures, analyzed each type of
noise, graphed the stability of prediction for multiple types of networks, and improved
robustness by adding noise to the training data.

Based on analysis of the network structure, we conclude that 3 layers and 16 nodes per layer
is sufficient for this data set. Figure 4.1 shows diminishing returns past 3 layers and Figure
4.3 shows that 16 nodes per layer achieves the minimum average error across all noise levels.
While this “ideal” structure is specific to the 9-bus microgrid data, we can assume that other
data sets will also have an “ideal” network structure. Counter to intuition, more layers
and more nodes does not always produce a more accurate neural network. Additionally,
deeper networks require more time to train, so achieving results with a simpler network can
drastically reduce the overall time to build an effective machine learning system. Overall,
we conclude that adding layers and nodes to a feedforward neural network does not directly
improve its robustness.

Adding random noise from both the uniform (𝑈 (−
√

3,
√

3)) and normal (𝑁 (0, 1)) dis-
tributions showed no difference in their effects on the network’s prediction ability. We
hypothesized that different noise distribution might affect the predictions, but this was not
the case. Instead, we conclude that noise drawn from any distribution with the same mean
and standard deviation will produce the same result in the network.

Adding adversarial noise in the direction of the network gradient did have a significantly
different effect from the random noise distributions. We see this in Figure 4.4 and Figure
4.5.
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This gradient perturbation using the finite difference method is a simple form of adversarial
attack, so we can conclude that more complex attack methods will cause greater error in the
ML system.

Figure 4.6 shows how three different network types perform against varying levels of uniform
noise. This data agrees with our first conclusion, that more complex networks (i.e., the CFN
with more connections between layers) does not necessarily result in a more robust network.
Additionally, we observe that the PN, which is identical in structure to the FFN, produces
better results because it is designed for classification rather than regression.

By plotting the stability of prediction (SOP) for several networks against added noise of
each type, we see patterns emerge that may be useful for noise classification. As expected,
the uniform and normal random noise graphs are nearly identical, but the gradient noise has
a distinctly different shape. Interestingly, the CFN with 3 layers is more stable than with 9
layers, and the FFN achieves levels out around 𝛿 = 0.04 for all noise types. This implies
that a higher noise scalar will not affect the network any more negatively. While these SOP
graphs do not present clear conclusions about robustness, they do show interesting patterns
that may have future applications for identifying when noise is present in a system.

Finally, we added uniform random noise to the training data as a way to improve the
robustness of our networks against noisy testing data. Figure 4.10 shows that we achieve the
lowest error when a network is trained with slightly higher noise levels than those present
in the testing data. This conclusion is important for real-world applications, where noise is
expected in the input data and thus the ML system should be trained with additional noise
added to the training data set.

5.2 Future Work
The next step for this work is to continue applying the robustness measurements and
improvement techniques to real data. Section 4.6 begins to analyze the predictions for
turning on/off an air compressor, however, this is simply proof of concept. Collecting and
testing FDR data from larger, more complex power grids will further develop the methods
and strengthen our conclusions about neural networks applied to this type of dynamic data.
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Alternatively, future work could continue to use the simulated data and expand the results
for other types of noise. More complex distributions of random noise or more pointed
adversarial attacks could provide useful insight into how the networks behave under harsh
conditions.

Overall, the end goal is to further our understanding of machine learning robustness for
power grid data so that these concepts can be used in real-world applications, such as
naval vessels and military bases. Future work should be focused on adding complexity to
the experimental design such that the data and conclusions more closely resemble these
applications.

5.3 Applications
Overall, this work demonstrates the applicability of neural networks for dynamic power grid
systems and provides a series of tests for understanding their robustness. These methods of
measuring robustness can be applied to any other form of machine learning and other data
sets.

Specific to power grids, the use of machine learning could aid in oversight and maintenance.
Our neural networks were able to accurately predict if a fault occurred and where it happened.
Even with significant added noise, the average error remained beneath 0.5, the criteria for
misclassification. When applied to real power grids, the neural networks could assist human
operators in quickly identifying faults or unusual behavior before the problem shut down the
grid. On submarines, naval bases, and other mission-essential platforms, this early warning
from ML systems could be essential in maintaining operability and scheduling maintenance.

Further analysis of the effects of added noise and adversarial effect can also aid in the
defense of machine learning systems. If several neural networks with various structures
are simultaneously processing incoming noise, any differences in their predictions could
indicate the presence of noise. This concept is demonstrated in the SOP noise-network
profiles of Section 4.4. Assuming the group of networks perform identically under ideal
conditions, the magnitude of the discrepancy between network predictions can determine
the amount and type of noise present.
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From an offensive perspective, neural networks could be used to gain insight into adversarial
operations. If one could gather frequency data from an adversary’s power grid using remote
or mobile sensors such as the Frequency Disturbance Recorder, an ML system could analyze
the data and draw conclusions about the usage of the grid. Similarly to how the neural
network could determine when the air compressor is turned on, a similar ML system could
determine if and when an adversary powers up a large machine such as a missile system.

For both maintenance and surveillance applications, the methods and insights presented in
this paper should guide robustness evaluations of the machine learning systems. Testing
various network structures to find the optimal configuration and training with more noise
than is expected operationally will improve the resilience and accuracy of neural networks,
while groupings of networks can help identify the presence of noise.
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APPENDIX: MATLAB Example Code

A.1 Train a Neural Network

% Train network using MATLAB Deep Learning Toolbox

%% Load and Prepare Training Data

load data_train.mat

Xt = X;

Xt_norm = normalize(Xt, 2);

Yt = Y;

%% Build Network

net = feedforwardnet([16, 16, 16], 'trainlm'); %levenberg-marquardt training method

net.trainParam.epochs = 500; %max epochs

net.trainParam.max_fail = 100; %max validation checks

%% Train Network

[TrainedNet, tr] = train(net, Xt_norm, Yt);

save feedforwardnet_3layer_16nodes

%% Test Network

load data_val.mat

testX = normalize(X,2);

testY = Y;

Ypred = TrainedNet(testX);

%% Calculate Accuracy

Z = abs(Ypred - testY);

avgerr = mean(Z);

Zround = abs(round(Ypred) - testY);

N = nonzeros(Zround);

mispredictions = sum(N);

accuracy_rounded = 1 - sum(N)/length(Zround);
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A.2 Add Noise to Training Data

% Add noise

Noise = randn(size(Xt)); %Gaussian noise

d = 0.1; %noise scalar

Xt_perturbed = Xt_norm + d*Noise;

A.3 Finite Difference Method for Gradient Perturbations

% Gradient Perturbation

N = 1000;

h = 10^(-5);

%Shuffle and Shorten

order = randperm(size(testX, 2));

testX_shuff = testX(:, order);

testY_shuff = testY(order);

testX_short = testX_shuff(:, 1:N);

testY_short = testY_shuff(1:N);

% Calculate Gradient and perturb

Ddx = zeros(size(Xk_short));

testX_pert = zeros(size(testX_short));

noise = zeros(size(testX_pert));

for i = 1:N

x0 = testX_short(:, i);

Ddx(:,i) = finitediff(net, x0, h);

noise(:,i) = Ddx(:,i)./norm(Ddx(:,i));

end
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function [ddx] = finitediff(Net, x0, h)

%Approximate the gradient at x0

ddx = size(x0);

for i = 1:length(x0)

xb = x0;

xb(i) = xb(i) - h;

xf = x0;

xf(i) = xf(i) + h;

ddx(i) = (Net(xf) - Net(xb))/(2*h);

end

end
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