
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-06

INCORPORATING PERISHABILITY AND
OBSOLESCENCE INTO CYBERWEAPON SCHEDULING

Lidestri, Michael R.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/70739

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

INCORPORATING PERISHABILITY AND
OBSOLESCENCE INTO CYBERWEAPON

SCHEDULING

by

Michael R. Lidestri

June 2022

Thesis Advisor: Neil C. Rowe
Co-Advisor: Wade L. Huntley

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
INCORPORATING PERISHABILITY AND OBSOLESCENCE INTO
CYBERWEAPON SCHEDULING

 5. FUNDING NUMBERS

 6. AUTHOR(S) Michael R. Lidestri

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 As cyberspace operations become further integrated into operational planning for nation-states, planners
must understand the implications of perishability and obsolescence when deciding how to use
cyberweapons. Obsolescence reflects the risk that a vulnerability will be patched without cyberweapon use,
while perishability describes the short lifespan of a cyberweapon once it is used; one creates an incentive to
use and the other an incentive to stockpile. This thesis examined operating-system vulnerabilities over four
years: we quantified the duration between key events of their life cycles as well as the time to release a patch
after disclosure. We performed survival analysis for longevity and post-disclosure patch time using
Kaplan-Meier curves, then found that the data fit well to Weibull distributions. We also examined the effects
of severity and operating system on the lengths of vulnerability life-cycle phases. Our parametric models
enable planners to predict the expected survival time of a cyberweapon’s vulnerability, allowing them to
determine when to use them, replenish them, and assess windows of opportunity for reuse. This reduces the
need to stockpile cyberweapons and creates incentives to use them before the expected survival time. The
observed wide variability in longevity values indicates that risk tolerance is important in deciding when to
use a cyberweapon.

 14. SUBJECT TERMS
cyberweapon, perishability, obsolescence, cyber warfare 15. NUMBER OF

PAGES
 99
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

INCORPORATING PERISHABILITY AND OBSOLESCENCE INTO
CYBERWEAPON SCHEDULING

Michael R. Lidestri
Lieutenant Commander, United States Navy
BSM, Georgia Institute of Technology, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
June 2022

Approved by: Neil C. Rowe
 Advisor

 Wade L. Huntley
 Co-Advisor

 Alex Bordetsky
 Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 As cyberspace operations become further integrated into operational planning for

nation-states, planners must understand the implications of perishability and obsolescence

when deciding how to use cyberweapons. Obsolescence reflects the risk that a

vulnerability will be patched without cyberweapon use, while perishability describes the

short lifespan of a cyberweapon once it is used; one creates an incentive to use and the

other an incentive to stockpile. This thesis examined operating-system vulnerabilities

over four years: we quantified the duration between key events of their life cycles as well

as the time to release a patch after disclosure. We performed survival analysis for

longevity and post-disclosure patch time using Kaplan-Meier curves, then found that the

data fit well to Weibull distributions. We also examined the effects of severity and

operating system on the lengths of vulnerability life-cycle phases. Our parametric models

enable planners to predict the expected survival time of a cyberweapon’s vulnerability,

allowing them to determine when to use them, replenish them, and assess windows of

opportunity for reuse. This reduces the need to stockpile cyberweapons and creates

incentives to use them before the expected survival time. The observed wide variability in

longevity values indicates that risk tolerance is important in deciding when to use a

cyberweapon.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. RELATED RESEARCH ...5
A. OVERVIEW ...5
B. DEFINING CYBERWEAPONS ..5
C. THE SOFTWARE VULNERABILITY LIFE CYCLE6

1. Discovery ...9
2. Disclosure ..9
3. Patch Adoption ...10

D. PERISHABILITY AND OBSOLESCENCE ..11
E. CONSIDERATIONS FOR CYBER OPERATIONS PLANNING12

III. ASSESSING PERISHABILITY AND OBSOLESCENCE IN THE
SOFTWARE VULNERABILITY LIFE CYCLE...15
A. PERISHABILITY AND OBSOLESCENCE ..15
B. DATA COLLECTION REQUIREMENTS ...17
C. DEFINITIONS, DATA SOURCES, AND ASSUMPTIONS17
D. DATABASES ..19

1. National Vulnerabilities Database ...19
2. Vendor Security Bulletins ..20
3. Exploit Database ...20
4. Obtaining Version Release Information20

IV. METHODOLOGY ..21
A. PROCESS OVERVIEW ...21
B. PARSING JSON FILES ..22

1. Parsing CPEs ..24
2. Retrieving Version Strings ..25
3. Building the Vulnerability Index Data Structure26

C. POPULATING CREATION, PATCH, AND EXPLOIT DATES26
1. Creation and Patch Dates ..27
2. Exploit Dates...28
3. Data Reduction and Consolidation...29
4. Aggregating Creation, Patch, and Exploit Data into the

CVE Index ..29
D. STATISTICAL ANALYSIS ...30

viii

V. ANALYSIS OF RESULTS..31
A. DATA ANALYSIS: ALL VULNERABILITIES31

1. Longevity ..31
2. Kaplan-Meier Survival Analysis ..33
3. Survival Analysis Using Parametric Functions35

B. ASSESSMENT OF VULNERABILITY LIFE CYCLE PHASES37
1. Vulnerability Time to Disclosure ..37
2. Vulnerability Time to Patch ..39
3. Disclosure to Exploit Availability ...41

C. FACTORS THAT COULD AFFECT VULNERABILITY
LIFESPAN ..43
1. Known Existence of an Exploit ...44
2. Observing Patching Behavior Where Coordination Is

Unlikely ...44
3. Vulnerability Severity ..46
4. Operating System ...50

VI. CONCLUSION ..59
A. OVERVIEW ...59
B. STRATEGIC IMPLICATIONS ...60
C. APPLICATION TO CYBERSPACE OPERATIONS62
D. FUTURE WORK ...64

APPENDIX A. PYTHON SCRIPT FOR PARSING JSON FILES65
A. PROGRAM DESCRIPTION ..65
B. SOFTWARE CODE ..65

APPENDIX B. SCRAPY SPIDER EXAMPLE ..73
A. PROGRAM DESCRIPTION ..73
B. SOFTWARE CODE ..73

LIST OF REFERENCES ..75

INITIAL DISTRIBUTION LIST ...81

ix

LIST OF FIGURES

Figure 1. The software vulnerability life cycle. The order of events may vary
and some may not occur at all. Adapted from Frei et al. (2010).16

Figure 2. Data collection and analysis flowchart ..21

Figure 3. NVD JSON data, as viewed in Mozilla Firefox ..22

Figure 4. jsonParse.py data flow ...23

Figure 5. JSON file layers and extracted data elements ..24

Figure 6. CPE name and attributes ..25

Figure 7. CPE name with product attribute split into product line and product25

Figure 8. Spider process for extracting CVE IDs and patch publish dates. This
could vary based on the structure of the website.27

Figure 9. Vulnerability longevity (∆cp) histogram ..32

Figure 10. Vulnerability longevity (∆cp) CDF ..33

Figure 11. Kaplan-Meier survival curve for vulnerability longevity (∆cp), with
95 percent confidence intervals ...35

Figure 12. Weibull CDF laid over longevity CDF ..36

Figure 13. Weibull survival function for vulnerability longevity37

Figure 14. Histogram for time to disclose (∆cd) ..38

Figure 15. CDF for time to disclose (∆cd) ...39

Figure 16. Histogram for time to patch (∆dp) ..40

Figure 17. CDF for time to patch (∆dp) ...41

Figure 18. Histogram for time to exploit (∆de) ..42

Figure 19. CDF for time to exploit (∆de) ...43

Figure 20. Weibull survival function for time to patch where ∆dp > 0
(uncensored data only) ...45

Figure 21. CDF for time to patch (∆dp) overlaid with Weibull model CDF46

x

Figure 22. Longevity CDFs by CVSS severity (four-level) ..48

Figure 23. Longevity CDFs by CVSS severity (two-level) ..49

Figure 24. CDF of time to patch by CVSS severity ..50

Figure 25. Longevity CDF – Android ...51

Figure 26. Longevity CDF – Linux distributions ..52

Figure 27. Longevity CDF – Apple ...53

Figure 28. Longevity CDF – Windows ...54

Figure 29. CDF for ∆dp – Android ...55

Figure 30. CDF for ∆dp – Linux distributions ...56

Figure 31. CDF for ∆dp – Apple ..57

Figure 32. CDF for ∆dp – Windows ...58

xi

LIST OF TABLES

Table 1. Vulnerability statistics - overall ...31

Table 2. Vulnerability statistics – by CVSS severity ...47

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CDF cumulative distribution function
CISA Cybersecurity and Infrastructure Security Agency
CPE common product enumerator
CSV comma-separated value
CVE common vulnerabilities and exposures
CVSS common vulnerability scoring system
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
NIST National Institute of Standards and Technology
NVD National Vulnerabilities Database
OSVDB Open-Source Vulnerabilities Database
TCP Transfer Control Protocol
URL Uniform Resource Locator
XML Extended Markup Language
WINE Worldwide Intelligence Network Environment

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Neil Rowe, for his assistance and guidance

throughout the thesis production process. I would also like to thank my co-advisor, Dr.

Wade Huntley, for his help in selecting a thesis topic and guidance he provided while

writing my thesis. I would like to thank all my classmates and fellow military officers,

without whom I could not have succeeded. Lastly, I would like to thank my wife, Yukiko,

for supporting me during my tenure at the Naval Postgraduate School, and for carrying our

daughter, who is due in August.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Exploits are malicious code that leverages software vulnerabilities to insert a

payload onto a target information system (Herr & Rosenzweig, 2014). Vulnerabilities are

software bugs (flaws) that allow a malicious actor to attack the confidentiality, integrity,

or availability of an information system (Microsoft, 2013). Bugs are prevalent in many

software programs; an estimated 20 occur for every 1,000 lines of code (Dacey, 2003). For

reference, the Linux kernel contains 27.8 million lines of code (Anderson, 2020).

Vulnerabilities persist in software and remain exploitable unless they are removed by

corrective software updates called patches (Sarabi et al., 2017). Vulnerabilities that remain

unpatched because the vendor is unaware of their existence are called zero-day

vulnerabilities and the corresponding exploits are zero-day exploits (Libicki et al., 2015).

A cyberweapon is an exploit that is used in a conflict to either inflict physical damage or

to sabotage or damage an information system; cyberweapons allow actors to execute

cyberspace attacks (cyberattacks) against a target using information systems (Mele, 2014).

Because of the low risk and high potential reward of carrying out successful

cyberattacks, actors of varying sizes and ideologies do so to further their own interests

(U.S. Cyber Command, 2018). While smaller actors may participate in cybercrime, theft

of intellectual property, or online activism, some state actors have poured significant

resources into their cyber capabilities and can operate more sophisticated campaigns. In

2012, the Shamoon virus deleted data from the hard drives of over 30,000 Windows

machines on Saudi Aramco’s network; it was speculated that Iranian actors were

responsible for the attack (Bronk & Tikk-Ringas, 2013). The Iranians themselves were

victims of the earlier Stuxnet worm, which used multiple Microsoft Windows zero-day

exploits and stolen digital certificates to modify the function of Siemens programmable

logic controllers (Langner, 2013). This attack used two vectors, overpressure and rotor

speed, to attempt to induce physical damage to Iranian centrifuges. In 2015, a cyberattack

on three Ukrainian electricity distribution companies resulted in a loss of power for

225,000 people, which the Ukrainian government blamed on Russia (Lee et al., 2016).

Established powers like the United States have also integrated cyber operations into joint

2

military planning: In 2016, U.S. Cyber Command established Joint Task Force ARES to

inhibit Islamic State cyber activities, supporting Operation Inherent Resolve (Martelle,

2018).

Cyberspace operations are defined in U.S. doctrine () as “the employment of

cyberspace capabilities where the primary purpose is to achieve objectives in and through

cyberspace” (U.S. Joint Chiefs of Staff, 2018, p. II-1). These capabilities are executed

across three layers of the information domain: physical, logical, and cyber-persona. The

physical layer includes physical network components and IT infrastructure that are

represented by their geographic location. The logical layer describes an abstraction

consisting of components that belong to the same network; physical location may vary.

The cyber-persona layer represents the many digital identities that people maintain based

on the roles they fulfill or their online behaviors. Cyber operations can be either offensive

or defensive, and they involve actions to attack, defend, exploit, or secure networks or

information systems. Cyberspace attack actions are executed to create effects in cyberspace

or in the physical domain.

Unlike other domains, the dynamic nature of cyberspace means that the opportunity

to use or reuse cyberweapons may be limited, complicating cyber operations planning

(Smeets, 2018). Cyber exploits are often considered to have a one-time capability with

limited efficacy: After an exploit is deployed and subsequently detected, a patch (fix) will

normally be quickly developed. Once this occurs, the underlying vulnerability is no longer

available, and the exploit is ineffective. Therefore, cyberweapons that exploit software

vulnerabilities are sometimes described as being transitory or perishable (Huntley, 2016;

Smeets, 2018). According to Smeets, this concept of transitoriness differentiates

cyberweapons from physical weapons, and because of this, planners must consider how

and when to deploy cyberweapons and which targets should be prioritized.

Even when it is not used, a cyberweapon may lose effectiveness over time, a trait

called obsolescence that suggests that vulnerabilities have a finite life cycle (Huntley,

2016). Obsolescence can occur when a vulnerability is disclosed by a third party or when

code is updated that eliminates the vulnerability during software development (Ablon &

Bogart, 2017). This creates an incentive to use a cyberweapon before it will no longer

3

provide desired effects (Huntley, 2016). While the window of opportunity may not

disappear completely following disclosure of a vulnerability, once a patch is released, a

rapid decline in the number of exploitable systems occurs (Frei et al., 2009), quickly

diminishing the effectiveness of the exploit.

A thorough understanding of the factors affecting perishability and obsolescence is

necessary to predict how long a cyberweapon is likely to remain effective. This enables

offensive planners to make decisions about which exploits to keep in inventory, when to

deploy them, and their period of for reuse. Because we can measure the duration between

each of the events associated with the software vulnerability life cycle, we can model the

probability of survival from each event using survival analysis techniques, which will allow

us to predict a cyberweapon’s period of usefulness (Izmiguzel, 2021).

Previous research has studied the software vulnerability life cycle (Arbaugh et al.,

2000), the phases through which a vulnerability can progress. While later research has

refined the life cycle and quantified the length of some phases, most studies have focused

on the relationship between when vulnerabilities are disclosed and the development of

patches or exploits (Frei et al., 2006; Shazad et al., 2020; Arora et al., 2010). Other studies

(Frei et al., 2006; Ablon & Bogart, 2017) have examined the timeframe from discovery to

disclosure. Several studies have also analyzed other factors that may affect the life cycle,

including the effect of vulnerability severity on the time required for vendors to release

patches, disparities in open versus closed-source vulnerability disclosure and patching

(Shazad et al., 2020), and the effect of code familiarity and reuse in the discovery of

vulnerabilities in newly released software (Clark et al., 2010).

However, there has not been much effort to determine the total lifespan of a

vulnerability from when it is created to when it is disclosed and patched. This is significant

considering the extent of code reuse and legacy software (old software still used) today. It

is also relevant to cyber operations planning because the remaining useful life of an exploit

could then be estimated, informing risk versus gain calculations for deploying it.

This thesis examines operating system vulnerabilities from the National

Vulnerabilities Database (NVD) from 2018–2021. Because the Open-Source

4

Vulnerabilities Database (OSVDB) used in previous studies no longer exists (Kovacs,

2016), different data sources were used, including vendor security bulletins, exploit

databases, the NVD, and other public information pertaining to the creation, disclosure,

and patching of vulnerabilities and the development of exploits. Chapter II describes

previous research studying concepts of cyberweapons, the software vulnerability life cycle,

and factors affecting the length of phases of the life cycle. Chapter III explains perishability

and obsolescence, and their relationship to the software vulnerability life cycle, and

introduces the datasets used in our analysis. Chapter IV describes the methods used for

collecting data. Chapter V contains results and statistical analysis, while Chapter VI

discusses the strategic implications of our results, and how they apply to planning for

cyberspace operations.

5

II. RELATED RESEARCH

A. OVERVIEW

The purpose of cyberwarfare is to create desired effects, both in cyberspace and

physically (U.S. Joint Chiefs of Staff, 2018). Due to the low cost of entry, many actors can

do cyber operations. While the level of sophistication and complexity may vary between

cyberattacks, there are several common steps that must be taken to execute an attack.

According to a cyber kill chain model developed by Lockheed Martin (Hutchins et al.,

2011), the first steps in this process start with reconnaissance of the target to identify

vulnerabilities and potential methods of entry. Once vulnerabilities have been identified, a

suitable malware program must be obtained or developed to exploit the vulnerability.

B. DEFINING CYBERWEAPONS

Malware can be classified by the target operating system, target device,

dependencies specific to that malware, how it propagates itself between devices, or the

method by which malware is introduced to a target system (physical media, email, chat,

URLs, file sharing services, or software vulnerabilities) (Elisan, 2015). The classes of

malware derived from these characteristics include infectors, network worms, trojan

horses, backdoors, remote-access trojans, information stealers, ransomware, scareware,

fakeware, and greyware. Malicious programs may fall in multiple categories, and they may

be further differentiated by their infection vectors and dependencies. While software

vulnerabilities exploit bugs or flaws in software code, other infection vectors involve using

otherwise legitimate software for malicious purposes. Malware dependencies are

conditions on the target system for malware to execute, such as the operating system,

virtualization, system settings, or software programs present such as a web browser. Other

dependencies include timing-based or event-based conditions that trigger the execution of

malicious software. Users can also be dependencies because some malware may require

certain levels of privilege or access to execute. Still others, such as information stealers,

may depend on specific files stored on the target system.

6

To define cyberweapons, Liles and Poremski (2015) combined the taxonomies for

malware and weaponry to guide risk assessment and incident response. The increasing

complexity and adaptability of malware has decreased the usefulness of behavioral

characteristics as classification criteria. After behavior, each class was further classified

based on “weaponess,” which represents the ability of a class to cause damage or harm;

while this varied from one class to the next, it was found that all classes of malware include

some deception to escape detection and survive.

Defining cyberweapons from a legal perspective, Mele (2014) used the

characteristics of context, purpose, and means (or tools). Context in cyberwarfare is

conflict among actors where an advantage is obtained using information systems. This

distinguishes cyber warfare from activities like cybercrime and clarifies the intent for dual-

use software or devices. The purpose requires that malware inflict damage to physical

entities, or damage or deny use of the target’s information systems. Lastly, means requires

that information systems or networks be the primary mode of attack. Putting these three

elements together, Mele defines a cyberweapon as

a part of equipment, a device, or any set of computer instructions, used in a
conflict among actors both National and non-National, with the purpose of
causing (directly or otherwise) physical damage to objects or people, or of
sabotaging and/or damaging in a direct way the information systems of a
sensitive target of the attacked subject. (p.61)

C. THE SOFTWARE VULNERABILITY LIFE CYCLE

Software vulnerabilities are common; it is estimated that 20 bugs occur per

thousand lines of software code (Dacey, 2003). Not every bug is a vulnerability and not

every vulnerability can be exploited. Several studies have focused on how software

vulnerabilities are created, disclosed, exploited, and patched.

Arbaugh et al. (2000) first proposed a life cycle model to describe the phases of a

vulnerability in its lifetime, starting with birth and continuing through to discovery,

disclosure, correction, publicity, scripting, and death. Vulnerabilities normally occur

during software development. After software release, they are eventually discovered by

motivated actors, whose goals may be either benevolent (white hats) or malicious (black

7

hats). Correction begins when the vulnerability is disclosed and its existence is revealed to

a larger audience that includes the vendor, and patch development starts. Eventually, the

public becomes aware of the vulnerability (publicity). As more people learn of the

vulnerability, knowledgeable hackers develop exploits, and write and distribute executable

scripts or other tools to use them. This allows actors with little expertise to use the exploits,

increasing the number of malicious actors and therefore the number of attacks on unpatched

systems. Finally, death of the vulnerability occurs when all affected systems have been

patched or are removed from service due to replacement or retirement.

Frei et al. (2006) describe a similar life cycle model with a timeline for discovery,

disclosure, exploit availability, and patch release, which was developed for over 14,000

vulnerabilities in the NVD for 1996–2006. The period between discovery (when a

vulnerability is documented as being found) and disclosure (when a vulnerability has been

analyzed and published publicly by trusted sources) is the zero-day state when the risk is

greatest. While most vulnerabilities are disclosed quickly after discovery, since 2003 more

than 20% of vulnerabilities were discovered at least 20 days before they were disclosed.

When observing the cumulative distribution of the time required to develop an exploit

relative to disclosure (texploit - tdisclosure), nearly 70% of exploit reports since 2001 were

followed on the same day by vulnerability disclosures, and 95% of exploits were released

within a month following disclosure. According to Frei et al., the large share of published

exploits on the date of disclosure suggests that many vendors respond quickly to published

exploits. Alternatively, they note that the 95% share of exploits published within a month

following disclosure could mean that black hat actors are becoming more adept at reverse

engineering.

The cumulative distribution of the time required to develop a patch relative to

disclosure (tpatch – tdisclosure) showed that since 2001 most patches were initially available

on the date of disclosure (Frei et al., 2006). A comparison of the cumulative distributions

for patch and exploit availability relative to the date of disclosure showed that the

percentage of exploits that were available out to 300 days from disclosure exceeded the

share of patches that were released, indicating that there is some post-disclosure risk of a

vulnerability being exploited before a vendor can release a patch.

8

Shazad et al. (2020) expanded on Frei’s work, examining trends in exploit and

patching behavior for 56,000 vulnerabilities from 1988–2013. Data was combined from

the NVD, OSVDB, and the Frei study; the eight vendors with the most vulnerabilities were

selected for analysis. As with previous work, the study focused on the dates for both exploit

and patch availability relative to the date of disclosure (texploit – tdisclosure and tpatch - tdisclosure).

Most exploits were first published on the disclosure date for the underlying vulnerability,

and since 2004 that share has increased. This was attributed to the actions of security

experts and other benign actors; the number of exploits available before disclosure

appeared to be decreasing over time. For open-source vendors, more exploits were

developed prior to the date of disclosure compared to closed-source vendors; Shazad et al.

speculated that this is probably due to malicious actors taking advantage of the available

source code. However, they observed that Microsoft and Apple products were more likely

to have exploits published on or before disclosure, reflecting the ubiquity of the products

and the divergent motivations for actors to develop exploits and disclose them. Across

product lines, Windows and Firefox were exploited faster than their peers, as each showed

a higher proportion of exploits released before disclosure.

Regarding patching, closed-source vendors are faster at releasing patches (Shazad

et al., 2020); over 70% of vulnerabilities were patched on or before the disclosure date,

suggesting that for-profit companies provide more responsive product support. For

vulnerabilities where both exploit and patch dates were available, a comparison of the two

(texploit – tpatch) determined that 46% of exploits were released before the corresponding

patch. This compares to 31.7% of vulnerabilities where patches preceded exploits,

indicating that hackers were more successful at exploiting vulnerabilities before vendors

patched them. However, this trend reversed in later years; in 2011, 77 percent of patches

were released before the corresponding exploits. Across products, Microsoft and Sun

Microsystems, respectively, patched Windows and Solaris vulnerabilities more quickly

than hackers released exploits. Across vendors, only Oracle and Sun Microsystems patched

more vulnerabilities before they were exploited than vice versa.

Shazad et al. (2020) also found vulnerabilities in common between products of the

same line (e.g., Windows) while finding comparatively few between vendors, such as

9

Linux products from Ubuntu, Red Hat, and Fedora. This suggests that vendors re-use much

of their code in different products. By contrast, there were very few code similarities

between vendors, even those based on the Linux kernel. Therefore, diversity across vendors

can reduce the effects of specific vulnerabilities, while using multiple operating systems

from a single vendor does not.

1. Discovery

Clark et al. (2010) observed a “honeymoon effect” where vulnerability discovery

was delayed following product release, but intervals between successive vulnerability

discoveries became smaller each time. By measuring version release and disclosure data

for 30,000 vulnerabilities covering 700 software applications, they found that in 62% of

cases, the interval from software release to the first vulnerability disclosure (p0) was longer

than the interval separating disclosure of the second successive vulnerability (p1). The

median honeymoon period was 110 days, while the Honeymoon ratio (p0:p1) was 1.54

overall and 1.8 for major releases, reflecting smaller intervals for discovery of the second

vulnerability.

These results were unexpected; there should be more bugs in newer software, the

number of bugs should diminish over time as they are patched, and the remaining bugs

should be harder to find (Clark et al., 2010). Surprisingly, 77% of first-discovered

vulnerabilities were in legacy code; they were present but undiscovered in earlier software

versions, suggesting that many vulnerabilities have significant longevity and persist

through multiple software versions. Ultimately, the honeymoon effect was attributed to

hackers’ degree of familiarity with new software; as the software progresses through its

life cycle, hackers become more familiar with its code and thus take less time to discover

new vulnerabilities.

2. Disclosure

Arora et al. (2010) observed that vendors will patch a vulnerability more quickly

once it has been disclosed. When this interval between vendor awareness of the

vulnerability and patch release was measured for 420 vulnerabilities from the National

Vulnerabilities Database, immediate disclosure resulted in significantly reduced delays in

10

patch releases (an average of 28 days versus 65 days for delayed disclosure). This was

supported by subsequent statistical hazard modeling indicating that the immediate

probability that a patch would be released was 2.5 times higher after disclosure. However,

while immediate disclosure raises public awareness and may motivate the vendor to release

a patch quickly to maintain its reputation and sales, it also allows malicious actors more

time to create and deploy exploits before a patch is available. Delayed disclosure allows

the vendor more time to develop a patch before increased exploitation, but vendors do not

always act promptly to patch vulnerabilities before they are disclosed, which leaves them

open for discovery by others. Unsurprisingly, more severe vulnerabilities had an increased

rate of patching.

3. Patch Adoption

Some studies have examined how much users contribute to patching delays. Frei et

al. (2009) identified patch update mechanisms, specifically auto-update, as a major factor

in patching delays for four Internet browsers (Mozilla Firefox, Microsoft Internet Explorer

(IE), Opera, and Apple Safari). Using samples from Google web server logs, user-agent

fields in HTTP requests were parsed to extract browser and version data which were

compared to version-release dates. Across all browsers, major updates (e.g., IE6 to IE7)

were adopted more slowly except when released as an automatic upgrade or bundled with

new software. Minor version releases for Firefox and Opera showed a high initial rate of

adoption, with a rapid increase in the share of users running the new version, before

slowing down. Firefox users, who could often install minor updates with only a single

click, adopted patches more quickly; new versions reached 50% share in approximately

three days. Opera users, who needed to manually download and install updates, required

eleven days to reach majority share. However, because minor version updates are relatively

frequent, the share of users operating the most up-to-date version never exceeded 80% for

Firefox and 40% for Opera.

Sarabi et al. (2017) studied update delays due to user negligence and patch-update

mechanisms. Patch releases were tracked for 1,822 vulnerabilities affecting four products

(Google Chrome, Mozilla Firefox, Mozilla Thunderbird, and Adobe Flash Player);

11

adoption was observed for over 400,000 users using the Worldwide Intelligence Network

Environment (WINE) data. Predictably, longer patch delays resulted in more time spent in

a vulnerable state. Across all products, an average user was in a vulnerable state more than

half of the time, mostly due to user delay in applying updates, which accounted for greater

than half of days in a vulnerable state for all products except Chrome (47.9%). However,

users less often had long patch delays when the update was automated; the shorter patch

delays with Chrome were attributed to the browser’s automatic updates. In contrast, Flash

users had long patch delays because it required mostly manual downloads and installation.

D. PERISHABILITY AND OBSOLESCENCE

The software vulnerability life cycle assumes that most software vulnerabilities

have a finite lifespan, after which patches are released, and the vulnerability becomes less

prevalent. Smeets (2018) defines a trait of cyberweapons called transitoriness that

describes how they are made less effective over time once the underlying vulnerability is

recognized by or disclosed to the vendor. While this loss of effectiveness occurs in both

conventional weapons and cyberweapons as adversaries develop countermeasures, the

period in which this occurs is much shorter for cyberweapons: a patch can be deployed

quickly. A unique feature also defines cyberweapon countermeasures: Once a vendor

releases a patch, it is available to all users of the software. Therefore, using a cyberweapon

may result in its ineffectiveness against future targets, especially when it causes highly

visible damage. This discourages repeated use of a cyberweapon, since it will remain more

useful if it is not known. Ultimately, actors must understand the tradeoff between present

effects and future use, and they must develop plans that consider the quantity and quality

of targets for present and future attack.

Huntley (2016) considers the strategic effects of perishability and obsolescence as

one factor in the balance between offensive and defensive advantage in cyberspace.

Perishability refers to the prospect that cyberweapon use will reveal the existence of the

underlying vulnerability and it will be patched, rendering the cyberweapon unavailable for

future use. This creates an incentive to store exploits and creates a higher threshold for

conflict in cyberspace. Obsolescence, which refers to the possibility that someone else may

12

discover and patch the same vulnerability (potentially without an adversary’s awareness),

results in an incentive to use a cyberweapon, acting in opposition to perishability. Huntley

describes the consequences of the interplay between these two factors; it may foster

uncertainty regarding whether a cyberweapon will work, from both an offensive and

defensive perspective. This uncertainty results in worst-case thinking that transitions into

a cyber arms race.

Though cyberweapon use may compromise its use against future targets, it is

possible to increase the window of opportunity for reuse (period of successful reuse). Hall

(2017) describes several factors that influence the window of opportunity. Some relate to

characteristics of the target: Negligent system administrators may not promptly patch their

systems or may turn off the auto-update, leaving systems vulnerable to attack. The

EternalBlue, WannaCry, and Petya exploits were all derived from a vulnerability (MS 17–

010) that permits remote code execution, despite the existence of a patch to correct the

vulnerability (Cybersecurity and Infrastructure Security Agency [CISA], 2018). According

to Hall, other target characteristics that increase the window of attack opportunity are

outdated signatures in antivirus software, vendor delays in releasing patches, and user

susceptibility to social engineering. Hall describes how actors may also use persistence and

detection evasion to increase exploit survivability. Persistence requires establishing an

enduring presence on the host system or network and can be achieved by memory-resident

attacks, executable injection, or privileged access through rootkits. Detection evasion can

be accomplished through packing (Kang et al., 2007), encryption, or with sophisticated

malware that is polymorphic or metamorphic and is therefore able to mutate either its

decryption stubs or its body (You & Yim, 2010). Hall further states that evasion can also

be aided by inserting exploits at various parts of the supply chain, effectively building the

exploit into the product, and making it hard to remove.

E. CONSIDERATIONS FOR CYBER OPERATIONS PLANNING

Ablon and Bogart (2017) examined the cost and benefits of stockpiling zero-day

exploits versus disclosing them to avoid compromise of friendly networks. They measured

the life expectancy and collision rate (the rediscovery rate) for over 200 zero-day exploits

13

developed or obtained from 2002–2016. The exploit data was collected from an anonymous

research group referred to as BUSBY that has relationships with nation-state actors; the

dataset was therefore assumed to be representative of friendly nation actors and their

stockpile, and it could also be used to infer a baseline for adversary stockpiles. They

compared the data about the exploits and their underlying vulnerabilities against what was

in the public domain. Using disclosure and patch data from public sources, as well as

exploit data from the developers themselves, exploits were classified as either “living”

(undisclosed) or “dead” (public awareness; it was either disclosed or patched), and the life

expectancy, defined as the length of time from birth (initial discovery) to death (disclosure

or patching), was determined. 40.1% of the vulnerabilities in the sample were found to be

dead, while 38.2% were still undisclosed, including 6.3% that would never be patched

because the software was no longer supported. The remainder were either eliminated by

code refactor (10.1%), where updated software removed the vulnerability without

disclosure, or the status was uncertain (11.6%). Using the subset of living and dead exploits

for which discovery information was available, the average life expectancy of an exploit

was estimated as 6.9 years, although this decreased to 1.4 years when the vulnerability was

obtained from an external source. The bottom quartile of exploits was discovered and

patched within 1.5 years, while the top quartile survived for at least 9.5 years. This contrasts

with the relatively brief time to develop an exploit; 71% were developed in less than 31

days.

While the life expectancy of exploits was long, the collision rate (the rate at which

discovered vulnerabilities are then discovered by others) was relatively small: The median

rate was about 5.7% for a one-year period, meaning that only 5.7% of exploits would be

re-discovered in a year (Ablon & Bogart, 2017). For a 90-day period, the median rate was

0.87%. Because the collision rate is low, an adversary is unlikely to discover the

vulnerability and exploit it. Therefore, there is less risk to friendly networks, reducing the

pressure for them to disclose the vulnerability. However, Ablon and Bogart also observed

that the longevity and low collision rate suggest that there may be little need to stockpile

zero-day exploits, although it may be wise to hold a few in inventory for redundancy.

14

Because of the transitory nature of cyberweapons, Hall (2017) argues that cyber

operations planning should be like planning for aircraft combat survivability, where

probabilistic assessment of mission success or failure should be considered. If such an

assessment determines that the exploit is likely to succeed and remain undetected, the

weapon can be reused; however, if detection is likely, measures can be taken to increase

survivability. If the exploit is detected, it can be reverse-engineered to determine what

vulnerabilities are exploited and how its payload functions so that a patch can be developed.

Several of the methods mentioned earlier can make this process more difficult, increasing

the opportunity for re-use, and could affect the determination about whether to stockpile a

weapon or use it.

Smeets (2018) recommends prioritization of targets for cyberweapons based on the

exploit’s current state in the software vulnerability life cycle. High-value targets should be

attacked during the awareness delay, when only the exploit developer is aware of the

vulnerability, to exploit the lack of countermeasures and maximize the odds of success.

Once the vulnerability has been disclosed, but the vendor has not yet developed a patch for

it (the patching delay), the attacker need not be as selective with targets; the effectiveness

of the exploit will soon start to diminish. This period may be somewhat chaotic as other

actors create and deploy their own exploits. Lastly, once a patch is released in the

“adaptation delay,” targets are unpatched systems whose number gradually diminishes.

15

III. ASSESSING PERISHABILITY AND OBSOLESCENCE IN THE
SOFTWARE VULNERABILITY LIFE CYCLE

A. PERISHABILITY AND OBSOLESCENCE

Cyber operations models, such as the Lockheed Martin cyber kill chain (Hutchins et

al., 2011), generally begin by conducting reconnaissance of a prospective target. The

objective is to get information about the target to identify potential vulnerabilities that can be

used to develop and deploy exploits. However, a vulnerability that exists now may get

patched in the future. The transitory nature of cyberweapons coupled with the easy

availability of software patches means that cyberweapons lose effectiveness much faster than

conventional weapons (Smeets, 2018). If a cyberweapon is used and its existence is

discovered, such use may stimulate patch development and render it ineffective for future

use; this is called “perishability” (Huntley, 2016). The software vulnerability life cycle also

suggests that vulnerabilities have a finite lifespan (Arbaugh et al., 2000) and will eventually

become obsolete regardless of whether they are used (Huntley, 2016).

The concepts of perishability and obsolescence create opposing incentives for exploit

use; perishability provides an incentive to avoid using an exploit because use would quickly

result in the vulnerability being patched, while obsolescence provides an incentive to use an

exploit because it may eventually be disabled (Huntley, 2016). In research of 200 exploits,

Ablon and Bogart (2017) found that the rate of rediscovery for exploits in their dataset was

5.76% annually; while this rate is relatively low, some risk is incurred when storing an exploit

for an extended period. Another 10.1% of the exploits studied by Ablon and Bogart were

eliminated through “code churn,” regular updates to software code that removed the

vulnerability without formal disclosure.

Once an exploit has been disclosed, the window of opportunity to use it begins to

close, but it usually does not close completely (Smeets, 2018). Providing patches alone does

not prevent an exploit from working because users do not always download and install them

quickly enough, leaving their systems vulnerable to exploitation (Sarabi et al., 2017). For

software programs, a high rate of patching occurs when patches are released (Frei et al.,

2009). After the initial burst, patching continues but the percentage of users that are patched

16

never reaches 100 percent. Therefore, exploits can still maintain some effectiveness even

after patches are released. Forty-two percent of vulnerabilities were observed to be exploited

after the vulnerability had been disclosed and a patch was released; sometimes several years

later (Metrick et al., 2020). This often happens with legacy systems use, which is especially

common in both government systems and industrial control systems (Harris, 2019; Johnson,

2018). As of January 2021, an estimated 20% of PCs were still running Windows 7 (Warren,

2021), for which Microsoft had ceased support in 2020, prompting a warning (Federal

Bureau of Investigation, 2020).

The software-vulnerability life cycle describes events that may occur during a

vulnerability’s existence (Frei et al., 2010), as shown in Figure 1. Smeets (2018) identifies

three delays in the cycle that affect the transitoriness of an exploit: awareness delay, patching

delay, and adaptation delay. These delays correspond to periods in a vulnerability’s life cycle

that incur gradually increasing levels of risk to the attacker that an exploit will not achieve

desired effects due to patching and other countermeasures. Most research of the software-

vulnerability life cycle has focused on the length of these periods and their relationship to the

time of exploit availability, usually beginning with the disclosure or discovery of the

vulnerability (Frei et al., 2006; Frei et al., 2009; Ablon & Bogart, 2017; Shazad et al., 2020).

Figure 1. The software vulnerability life cycle. The order of events may vary

and some may not occur at all. Adapted from Frei et al. (2010).

While disclosure and discovery are useful milestones to assess the timeliness of

subsequent events such as patch release, they provide an incomplete model of the life cycle

of a vulnerability because they do not consider when it was created. This information can

17

often be estimated using product or version release data for the software (Clark et al., 2010).

Using this information, we could assess the probability of disclosure based on the age of a

vulnerability, providing greater understanding of its obsolescence. This would factor into the

risk versus gain considerations that cyberweapons planners must consider when matching a

weapon to a target. Understanding the perishability of an exploit will also enable planners to

determine the timespan for weapon reuse to prioritize targets.

B. DATA COLLECTION REQUIREMENTS

To model the lifespan of a vulnerability, we must quantify the duration from the

creation of a vulnerability to its disclosure and patch release. This requires determining when

vulnerabilities were created, perhaps in a previous software version; many operating systems

often reuse code to save time and money when creating new products. However, this can

also result in legacy vulnerabilities remaining in later software versions. Clark et al. (2010)

found that 61% of vulnerabilities attributed to Windows Vista had carried over from previous

Windows versions; 40% originated in Windows 2000, suggesting that vulnerabilities can

persist undiscovered for long periods. Overall, 77% of the vulnerabilities in their study were

also present in earlier software versions.

To determine the lifespan of vulnerabilities, we needed to get the creation date of the

earliest affected software version, as well as the disclosure and patch dates. We also needed

data of the severity of vulnerabilities, and whether cyberweapon use affects the patch time.

To measure cyberweapon use at scale, the thesis analysis assumed that published exploits are

like zero-day exploits that have been deployed during cyber operations but were discovered

and reverse-engineered by cybersecurity professionals. Therefore, by tracing exploits to their

associated vulnerabilities, we could examine differences in patch development between those

vulnerabilities that have a corresponding known exploit and those that do not. This required

collecting data about published exploits for the vulnerabilities in a dataset.

C. DEFINITIONS, DATA SOURCES, AND ASSUMPTIONS

Following the software-vulnerability life cycle model, data was collected for four

dates when possible: when a vulnerability was created (tcreation), when it was publicly

disclosed (tdisclosure), when a patch was released by the vendor (tpatch), and when an exploit

18

was available for that vulnerability (texploit) (Frei et al., 2010). The discovery date, tdiscovery,

was unavailable for all the databases used in the research for this thesis. Data from all sources

needed to use CVE (“common vulnerabilities and exposures”) identifiers to distinguish

vulnerabilities. We extracted the following parameters:

• tcreation - the earliest date at which software containing the vulnerability was

available for public release

• tdisclosure - the date at which information about the vulnerability was made

public

• tpatch - the date on which a patch was released to address a vulnerability

• texploit - the date on which when a functional exploit was created

Our primary source for CVE identifiers was the NVD (https://nvd.nist.gov), from

which we obtained 68,667 vulnerabilities for the years 2018–2021. This dataset spanned

8,740 unique vendors and over 19,000 software product lines. Our analysis required data

from individual vendors as well as manual data collection of some software information. To

aid this, we limited data collection to vulnerabilities for the operating-system product lines

of Windows, Apple (iOS, tvOS, watchOS, and MAC OS), Android, Google Chrome, and

several Linux products (Red Hat, Fedora, Debian, Ubuntu, and the Linux Kernel). This still

yielded a dataset of 10,912 vulnerabilities with which to work.

For tcreation dates, we used the public release date for the earliest software version in

the NVD containing the vulnerability. We did not include dates for beta releases (pre-

releases) because they are part of software development. For tdisclosure dates, we used the date

when the vulnerability was published to the NVD, a public database. For tpatch dates, we used

the vendor’s update release dates (Frei et al., 2006). Exploit data was collected from the

Exploit Database (https://www.exploit-db.com); texploit dates were determined to be the date

exploits were published (Nappa et al., 2015). If more than one date existed for a specific

CVE identification number, such as when more than one patch was created for vulnerabilities

affecting multiple products, we used the earliest date.

19

To assess perishability, we measured the time required following cyberweapon use

for the exploit to be disclosed and patched. This period is the window of opportunity for

reuse (Hall, 2017). Because the Exploit Database (Offensive Security, 2022) also publishes

exploit code, published dates for texploit were assumed equivalent to deployment once it has

been discovered by cyber incident response personnel and reverse-engineered. Notably, this

does not include delays in discovery and reverse engineering; many techniques can extend

this timeframe and the window of opportunity to reuse an exploit against subsequent targets

(Hall, 2017).

D. DATABASES

1. National Vulnerabilities Database

The NVD is a repository of reported vulnerabilities that is maintained by NIST (Nat.

Institute of Standards and Technology [NIST], 2022). Stored vulnerabilities are indexed by

their CVE IDs, which are maintained by the MITRE Corporation and assigned by MITRE

and an international group of vendors and research personnel. The first four numbers in the

CVE ID give the year in which it was issued, and the remaining digits give a serial number

for the vulnerability. For example, the first CVE ID assigned in 2018 was CVE-2018-0001.

Vulnerabilities are assigned by NIST a CVSS (common vulnerability scoring system)

score measuring their severity using factors of the attack vector, complexity, level of

privilege required, scope, and level of required user interaction (NIST, 2022). CVSS overall

scores range from 0–10, which is used to determine the severity: critical, high, medium, or

low. Vulnerabilities are also assigned weakness enumerators, which place the vulnerability

in a family with similar attributes such as memory-buffer errors or exposure of sensitive

information. Each CVE ID also has CPEs (“common product enumerators”) which identify

the products that are vulnerable to that CVE. The format for the fields is specified by (NIST,

2011), but at a minimum, a CPE must contain part, vendor, product, and version information

to identify a unique set of products. We can estimate the date when a vulnerability was

created using the release date of the earliest affected product version.

NVD data is available for download in Extended Markup Language (XML) and

JavaScript Object Notation (JSON) format; we used JSON files, which we read and parsed

20

in Python using the JSON module. We then extracted the data we needed such as CVE IDs,

software and version data, and the date of publish.

2. Vendor Security Bulletins

We collected tpatch dates from vendor security bulletins or databases. Because CVE

IDs are frequently used in cybersecurity, published security updates usually mention the

CVE IDs that are corrected in the update. The vendors for the products in our dataset

maintained central repositories for their security bulletins.

We extracted this information with Python’s Scrapy module. Scrapy (Zyte, 2022) can

design Web crawlers which navigate Web pages, follow links, and extract data from the

Hypertext Markup Language (HTML) of each Web page. We also used the Selenium module

(Selenium Project, 2022) to process dynamic Web pages that use JavaScript.

3. Exploit Database

To collect texploit dates, we used the Exploit Database, a public database of exploits

created for penetration testing (Offensive Security, 2022). The database contains

approximately 50,000 exploits, some of which are tagged by CVE IDs to identify the

vulnerabilities they exploit. Because we had trouble using its data extraction capability

Searchsploit, we again used Scrapy to crawl the database and extract CVE IDs and the dates

exploits were published.

4. Obtaining Version Release Information

After creating a list of affected versions for each CVE ID, we exported the complete

set of versions for each software product line to a CSV (comma-separated value) file. We

then searched the Internet manually to find the version-release dates. While many release

dates were available through vendor websites, some minor version-release dates were

obtained through third-party sources such as blogs.

21

IV. METHODOLOGY

A. PROCESS OVERVIEW

Figure 2 outlines the steps required to retrieve the data needed to determine tcreation,

tdisclosure, tpatch, and texploit, which let us measure the perishability and obsolescence in

software vulnerabilities. After downloading the JSON files for the years 2018–2021 from

the NVD, we parsed them to retrieve the vulnerability IDs and their attributes (here called

the CVE index). We also extracted the NVD publishing dates (tdisclosure), CVSS scores, and

the affected operating system products and versions to aid our analysis. We used the

product and version data to search online for vendor release dates, which were later entered

in our dictionary and would be used to determine tcreation.

Figure 2. Data collection and analysis flowchart

As shown in Figure 2, we also programmed Web crawlers to extract the patch and

exploit-publishing dates from vendor websites and the Exploit Database. The data

reduction process consolidated individual vendor data into one file, and resolved multiple

entries with the same CVE IDs by using the earliest date given. We then inserted our

creation, patch, and exploit data into the CVE index, and exported the completed dictionary

to a CSV file. The completed dictionary was then converted to a Pandas data frame for

statistical analysis. Pandas (Pandas Development Team, 2020) is a Python package that

allows data to be imported or converted into indexed data frames, permitting data

22

manipulation, slicing, and filtering; it can also handle missing data and data in date-time

format.

B. PARSING JSON FILES

The JSON-format file from the NVD lists vulnerabilities and their attributes,

including their CVE ID, CVSS score, and product identifications (CPEs). Figure 3 shows

the structure and attributes of one such file, as displayed by Mozilla Firefox. We developed

a Python script jsonParse.py that uses Python’s JSON module to load the files, parse them,

extract the necessary data elements, generate the vulnerability index, and export the data

to CSV files. The process flowchart is shown in Figure 4. See Appendix A for the Python

code.

Figure 3. NVD JSON data, as viewed in Mozilla Firefox

23

Figure 4. jsonParse.py data flow

24

Initially, our Python script used the JSON module to load each file and convert the

contents to Python data structures that can be queried. Figure 5 shows the JSON elements

we extracted. JSON objects are imported as dictionaries into Python, but the depth of the

NVD files resulted in several layers of nested dictionaries, and we had to work down each

layer to retrieve the desired data elements. CVE IDs, CVSS scores, and publishing dates

were relatively simple to handle. Extracting vendor, product, and version information

required further processing and parsing of the CPE field.

Figure 5. JSON file layers and extracted data elements

1. Parsing CPEs

Parsing the CPE product data enabled two things: We needed to determine if the

product belonged in our dataset, and we needed the product and version data to extract

software-release dates. The NVD cites alternative CPE specifications 2.2 and 2.3 to

identify affected products; we chose CPE 2.3 to extract our data. (NIST, 2011) specifies

that each CPE name consist of attribute-value pairs that describe its underlying product:

The attributes we needed were part, vendor, product, and version. The pairs are represented

25

in the NVD as a string, with attributes separated by colons (see Figure 6). The part attribute

has three classes: “h” (hardware), “o” (operating system), or “a” (application).

Figure 6. CPE name and attributes

Because each CPE product datum is a string, we could split it into its attributes at

the colons. To determine if the product was in our dataset, we checked whether it belonged

to the operating-system part class and if the vendor and product line were known vendors

and product lines in our dataset. For product lines, we split the product value into words

and assumed that the first word represented the product line (Figure 7).

Figure 7. CPE name with product attribute split into product line and

product

2. Retrieving Version Strings

Retrieving the strings for versions was more complicated because the NVD had two

ways of indicating them. Sometimes the version attribute in the CPE contained a value, but

for some vulnerabilities it was in a separate set of attributes in the JSON file (see Figure

5). The latter indicated a range of affected versions; we used the earliest affected version

for which we had data.

26

3. Building the Vulnerability Index Data Structure

To build our initial vulnerability data structure, we used a Python nested dictionary;

the key for each element in the dictionary was the CVE ID for that vulnerability. The value

associated with it was another dictionary with the following key-value pairs:

• CVSS score: the CVSS score for that vulnerability

• t(disclosure): the date the CVE ID was published

• Vendor: vendors with products that were affected by the vulnerability

• Affected software: affected product lines

• Versions: key-value pairs where product line is the key, and value is a list

of all affected software versions

• Keys for tcreation, tpatch, and texploit were created and assigned “N/A” values

to be populated later.

Using the csv Python module, we exported the product/version groupings for each

product line to CSV files used to populate the version release dates. We also exported the

CVE index to a CSV file for later processing.

C. POPULATING CREATION, PATCH, AND EXPLOIT DATES

For each product and version listed for a product line, we searched the Internet for

the corresponding release date. We started by searching vendor websites; some, like

Microsoft, kept a comprehensive set of release dates. Other vendor websites listed major

version but not minor version releases such as a product being upgraded from 6.0 to 6.0.1.

When the vendor website provided inadequate data, we searched blogs, bulletins, and other

sources of information. If subsequent versions were affected, we used the release date for

the first version dated after it.

27

1. Creation and Patch Dates

Windows patch release dates were obtained from the Microsoft Security Response

Center website (https://msrc.microsoft.com/update-guide). The exported CSV file included

the vulnerabilities patched by each update. To get patch data for the other product lines,

we used the Scrapy module (Zyte, 2022) to crawl the websites where vendors published

their security bulletins. Scrapy retrieves specified HTML documents with “spiders,”

queries their contents, follows links, and extracts desired data. The Python code is in

Appendix B. Each website has a different structure, but generally the steps were (Figure

8):

1. Send HTML GET requests for the starting pages.

2. Query the retrieved HTML file for security-bulletin links and the dates

they were published.

3. Iterate through the links and their publishing dates. If the date for a

bulletin was within the scope of our dataset, the bulletin was retrieved.

The spider ignored pages published before 2018.

4. Query the HTML file for the bulletin and extract the CVE ID and

publishing date.

5. Export the vulnerability ID and publishing date to a CSV file.

6. Navigate to the next page.

Figure 8. Spider process for extracting CVE IDs and patch publish dates.

This could vary based on the structure of the website.

28

Programming the spiders to query the HTML contents required first checking the

target HTML pages; we used Mozilla Firefox’s Inspect function to determine which page

elements contained the data we needed. Our first spider used the BeautifulSoup module

(Richardson, 2015) to crawl the Google Chrome release blog

(https://chromereleases.googleblog.com/), but our subsequent crawlers used Scrapy’s

XPath selectors. While BeautifulSoup can query the contents of Google’s blog posts about

patch releases, we found the XPath syntax better for querying the other pages. Many used

multiple HTML elements such as tables without unique attributes, and only some contained

data relevant to our analysis. XPath enabled more precise queries for our spiders.

CVE IDs are widely used in security bulletins and software-patch updates to

identify vulnerabilities that were corrected. For each bulletin, we extracted the date it was

published (the patch release date) and any CVE IDs and wrote this to a CSV file for each

vendor. For Fedora, which has an open-source development and update system

(https://bodhi.fedoraproject.org/), we only used the date on which a build was declared

stable as the patch date. Some websites were harder to crawl than others due to their

structure. For example, Redhat used JavaScript on its customer portal which Scrapy cannot

process by itself (3i Data Scraping, 2021). To handle this issue, we used the Selenium

Python module (Selenium Project, 2022). Selenium is commonly used for web testing; it

uses a “webdriver” browser engine (either Gecko or Chrome) to load pages which can

handle JavaScript (3i Data Scraping, 2021). Using it with Scrapy, we could retrieve the

page source code and query it as we did for the other spiders. For other websites, Scrapy

erroneously treated some links as duplicates and filtered them out (Scrapy Developers,

2022); we changed the setting within the spider to disable filtering.

2. Exploit Dates

To get dates that exploits were published, we first tried to use Searchsploit on an

Ubuntu virtual machine; it retrieves data from the Exploit Database and can output to a

JSON format (Offensive Security, 2022). However, the output listed the publishing date

for all exploits as zero in epoch time (01/01/1970), which was obviously an error. So

instead, we extracted the exploit publishing dates and associated vulnerabilities using the

29

same process as for patch data, by using another spider to crawl the Exploit Database

website.

Our spider encountered several problems. Initially, HTTP GET messages returned

a code 403 (Forbidden) status code, which we corrected by adding Mozilla Firefox header

data to the settings for our spider (Mamka, 2016). Once we got it crawling, the Web server

sometimes spontaneously terminated the TCP (transfer control protocol) connection. We

suspect that this was a response to the large volume of requests we were sending, which

may have looked like a denial of service (DoS) attack. We fixed this problem by adjusting

the spider settings to delay successive requests by one second, with the drawback that it

took longer to crawl the database.

When following links on the page, the Web server would sometimes redirect us

back to the main page instead. This was possibly a JavaScript issue. We corrected this

problem by using full page links (URLs). The page URLs on this site were identical except

for the exploit serial numbers which were generally sequential integers, although some

numbers were skipped. So we just tried to retrieve pages in numerical sequence, which

worked because the spider would skip over pages generating an HTTP error code 404 (Not

Found) response and move on to the next link.

3. Data Reduction and Consolidation

Following data extraction, we observed multiple entries with the same CVE ID,

most likely due to multiple patches correcting the same vulnerability for different products.

We removed the later such instances. We then consolidated the patch data into a single file

using a Python script we wrote, dataReduction.py. The consolidated CVE index was then

written to a master output file, yielding one CSV master file for patch dates and one for

exploit dates.

4. Aggregating Creation, Patch, and Exploit Data into the CVE Index

The last step copied the creation, patch, and exploit dates to the CVE index, giving

us tcreation, tpatch, and texploit using another Python script we wrote (integrateCVE.py). For

patches and exploits, the script would read each row of our CSV master files into a list,

30

then iterate through that list and check if the vulnerability was in the CVE index. If it was,

the associated date was assigned as either tpatch or texploit.

Because the creation dates were assigned by product/version groupings and not by

CVE ID, our Python script had to check if each product line and product/version grouping

was listed for each vulnerability in the CVE index. If it was, and a tcreation value was not

yet assigned, the creation date for that software version was assigned as tcreation for that

vulnerability. If a tcreation value was already assigned, for those vulnerabilities in more than

one product line or in more than one version within a product line, the earlier date was

used. We also extracted CVSS scores to analyze differences between vulnerabilities based

on their severity. Finally, we exported the now-completed CVE index to a new CSV file.

D. STATISTICAL ANALYSIS

Once we accumulated and aggregated our data, we converted the Python dictionary

to a data frame using the Pandas package. Pandas (Pandas Development Team, 2020), also

called the Python Data Analysis Library, is a data analysis tool that provides ways to view

and manipulate data including dates. This was ideal for our analysis, which needed to

calculate the duration (the difference) between dates (such as tpatch-tdisclosure to find the

duration from disclosure to patch release). To plot our results, we used the Matplotlib

Python package. Matplotlib (Caswell et al., 2021) can display data in scatter plots,

histograms, and cumulative distribution functions.

31

V. ANALYSIS OF RESULTS

A. DATA ANALYSIS: ALL VULNERABILITIES

We successfully collected 10,912 operating system vulnerabilities from the NVD.

Because all vulnerabilities had publishing dates, we extracted tdisclosure for the entire set of

vulnerabilities. Of these, we found tcreation for 7,893 vulnerabilities, tpatch for 8,860

vulnerabilities, and texploit for 322 vulnerabilities. Once the data was aggregated into one

CSV file, we imported it into a Pandas data frame with Python, which permitted us to

calculate the duration between the dates to determine the lengths of the phases of their life

cycles. The four durations we were interested in were the time to disclosure (∆cd), the time

to patch (∆dp), the time to exploit (∆de), and the longevity (∆cp). ∆cd represents the duration

from tcreation until its tdisclosure, while ∆dp and ∆de are the durations from disclosure until

patches and exploits, respectively, were published. ∆cp represents the total lifespan of a

vulnerability, from tcreation to tpatch. Table 1 contains the statistics for each period for the

dataset.

Table 1. Vulnerability statistics - overall

Vulnerabilities

Observed
Mean
(days)

Median
(days)

Standard
Deviation

25th
Percentile

75th
Percentile

Time to Disclose (∆cd)
(tdisclsoure - tcreation) 7893 1697.72 1364 1334.21 708 2371

Time to Patch (∆dp)
(tpatch - tdisclosure) 8860 -11.35 -1 111.4 -14 8

Time to Exploit (∆de)
(texploit - tdisclosure) 322 -9.57 1 113.84 -23.75 7

Longevity (∆cp)
(tpatch - tcreation) 7275 1737.65 1410 1366.51 665 2600

1. Longevity

We first observed ∆cp using the subset of vulnerabilities for which we had both

tcreation and tpatch. We found that the median lifespan of a vulnerability was 1,410 days, or

approximately 3.86 years. We also found a high degree of dispersion among the values:

32

The bottom quartile was patched in less than two years (665 days), while the top quartile

was patched after more than 7.1 years (2,600 days), which can be seen in the histogram

(Figure 9). The CDF (Figure 10) shows that when an operating system was first released,

over 70% of vulnerabilities were patched within the first five years (1,825 days). After that,

the rate of patching slowed considerably.

Figure 9. Vulnerability longevity (∆cp) histogram

33

Figure 10. Vulnerability longevity (∆cp) CDF

Interestingly, 76 vulnerabilities had a longevity that was negative in that the patch

was released before the product containing the vulnerability. Further examination of those

vulnerabilities indicated that, in some cases, the patch was released by a developer to fix

third-party software before the release of the affected operating-system version; the

operating system was probably released with old, unpatched software installed or bundled

with it. In other cases, multiple operating systems were affected by the vulnerability, but

the date of earliest affected version was unavailable. Other cases could not be easily

explained from the data in the NVD and in security bulletins from the operating system

vendor; several of these cases involved the Fedora operating system.

2. Kaplan-Meier Survival Analysis

We used survival analysis to better understand the probability of a vulnerability

reaching a specified longevity. Survival analysis is a form of statistical analysis that

34

measures the duration of time leading up to the occurrence of an event (Kleinbaum & Klein,

2005). This method is often used for clinical studies in medicine but can be used for many

other purposes, and it can handle censored data (where some but not all the data for all

subjects has been observed), permitting us to include in our dataset those vulnerabilities

that have not yet been patched (right-censored). The survival function 𝑆𝑆(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡)

indicates the probability that an event (with survival time T) will occur after a specified

time t. We used the Python Lifelines package (Davidson-Pilon, 2019) to plot the survival

function for the dataset. The Lifelines package takes a Pandas data frame as input and fits

the data to the survival function.

We plotted the Kaplan-Meier curve (Kleinbaum & Klein, 2005) first because it is

non-parametric (makes no assumptions about the data) (Ismiguzel, 2021). This curve is

generated using a function known as the Kaplan-Meier estimator, which estimates the

survival probability over a specified period (Lewinson, 2020). The formula for this

estimator is 𝑆̂𝑆(𝑡𝑡) = ∏ (1 − 𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)𝑖𝑖:𝑡𝑡𝑖𝑖≤𝑡𝑡 , where di represents the number of events that have

occurred and ni the number of surviving elements at time ti. Kleinbaum and Klein describe

the probability of survival past time t as the product of the survival probability at each

previous time an event occurs and the probability of surviving at time t, given survival up

to time t. Applying this definition to our longevity data, the probability of a vulnerability

surviving past time t using the Kaplan-Meier estimate is the probability of the vulnerability

being patched at time t (given that it survived until time t), multiplied by the product of the

survival probabilities of all vulnerabilities that were patched before it. The Kaplan-Meier

curve for our data is in Figure 11.

Figure 11. Kaplan-Meier survival curve for vulnerability longevity (∆cp), with
95 percent confidence intervals

The median survival time was 1,485 days, with a 95 percent confidence interval of

1467 to 1517. That is higher than the 1,410 days observed using the uncensored data,

suggesting that several vulnerabilities have remained unpatched for years, possibly because

the software is no longer supported. The survival function shows a steep drop in the

survival rate out to approximately 2,000 days; the probability a vulnerability will remain

unpatched past this point is less than .35. Then the survival rate declines more slowly; at

ten years (3,650 days), the probability of survival is still .18. This is consistent with what

we observed in the CDF in Figure 10.

3. Survival Analysis Using Parametric Functions

We also fit a parametric distribution model to our longevity data. We tried both a

Weibull distribution (Reliasoft, 2002) and an exponential distribution (Zach, 2021) based

on the shape of the CDF. The Lifelines package supported these parametric distributions,

35

36

and like the Kaplan-Meier curve, data with missing parameters could be included, although

we could only include vulnerabilities with positive longevity values. After plotting both

CDFs against the CDF for the raw data, we determined that the Weibull distribution fit the

best (Figure 12). A Weibull distribution has survival function 𝑆𝑆(𝑡𝑡) = 𝑒𝑒(−(𝑡𝑡𝜂𝜂)𝛽𝛽) and a

probability density function 𝑓𝑓(𝑇𝑇) = 𝛽𝛽
𝜂𝜂

(𝑇𝑇−𝛾𝛾
𝜂𝜂

)(𝛽𝛽−1)𝑒𝑒(−(𝑇𝑇− 𝛾𝛾
𝜂𝜂)𝛽𝛽), where β represents the shape,

𝜂𝜂 represents the scale, and γ represents the location (Reliasoft, 2002). Figure 13 shows the

survival function for the Weibull distribution we fit to our longevity data, with 𝜂𝜂 = 2033.55,

β = 1.26, and γ = 0.

Figure 12. Weibull CDF laid over longevity CDF

37

Figure 13. Weibull survival function for vulnerability longevity

B. ASSESSMENT OF VULNERABILITY LIFE CYCLE PHASES

Besides the overall lifespan of a vulnerability, we assessed the durations of three

phases: time to disclose (∆cd, tdisclsoure - tcreation), time to patch (∆dp, tpatch - tdisclosure), and

time to exploit (∆de, texploit - tdisclosure).

1. Vulnerability Time to Disclosure

We observed a median time to disclosure of 1,364 days (3.74 years) and a mean of

1,697.72 days (4.65 years). As with the longevity results, the standard deviation was high

(1,334 days), indicating considerable variability within the dataset. The bottom quartile of

vulnerabilities would be disclosed in less than two years (708 days), while the top quartile

would require more than 6.5 years (2,371 days). As shown in Figures 14 and 15, the

histogram and CDF for the time to disclosure look like those for the longevity dataset,

38

indicating that a vulnerability will probably spend most of its life in an undisclosed (zero-

day) state.

Figure 14. Histogram for time to disclose (∆cd)

39

Figure 15. CDF for time to disclose (∆cd)

2. Vulnerability Time to Patch

We next observed ∆dp using the subset of vulnerabilities with tpatch values and

compared them to the date of disclosure. The median was -1 days and only 35.68 percent

of patches were released after disclosure. This suggests that white-hat hackers and security

researchers often report vulnerabilities to vendors before disclosing them (“responsible

disclosure”) (Sen et al., 2020). Some vendors provide bug bounties or other incentives to

encourage this behavior, which gives them time to develop a patch before the vulnerability

is disclosed (Microsoft, 2022).

Most patches were released within weeks of the date of disclosure; the range of the

middle quartiles (25th -75th percentile) was [-14, 8] days. This concentration near the

disclosure time is clear in the histogram (Figure 16) and the CDF (Figure 17). However,

40

the data becomes more widely dispersed as the time before or after disclosure increases,

resulting in a standard deviation of 111.4 days.

Figure 16. Histogram for time to patch (∆dp)

41

Figure 17. CDF for time to patch (∆dp)

3. Disclosure to Exploit Availability

The data for vulnerabilities with known exploit dates was much smaller than the

others; only 322 vulnerabilities in our dataset had them. While most patches were released

on or before disclosure, the opposite was true for exploits; 58 percent of exploits were

released after their vulnerability had been disclosed. As with time to patch, the histogram

for ∆de (Figure18) shows that most exploits are published close to disclosure. The CDF for

∆de (Figure 19) shows a steady rise in the share of exploits published until just before

disclosure. Then a strong upward trend starts and more exploits are published.

42

Figure 18. Histogram for time to exploit (∆de)

43

Figure 19. CDF for time to exploit (∆de)

Two reasons may explain why most exploits are released after disclosure. First, the

type of actors that populate the Exploit Database include many who do vulnerability

research and penetration testing (Offensive Security, 2022), white-hat actors willing to

cooperate with vendors to privately disclose vulnerabilities. Second, many exploits are

probably developed after disclosure of vulnerabilities with reverse engineering of patches

(Frei et al., 2006).

C. FACTORS THAT COULD AFFECT VULNERABILITY LIFESPAN

We also examined some factors to determine if they affected the phases of the

software vulnerability life cycle, resulting in a lifespan that differed from those of the

overall dataset. These are also considerations for cyber-operations planning.

44

1. Known Existence of an Exploit

We tried measuring the effect of having a known exploit on vendor patching, using

data in the Exploit Database. We assumed that the reaction from vendors to exploits

published by white-hat actors and penetration testers would suggest their response to

malicious exploits. We would then determine how the discovery of an exploit by a victim

impacted the time to patch, ∆dp, or the longevity, ∆cp. We considered only those

vulnerabilities with exploits released before disclosure (∆de < 0). Of 116 vulnerabilities that

met this criterion, 110 were patched, while six remained unpatched. However, we

discovered that most vulnerabilities were still being patched before they were exploited;

the median for ∆de was -81 days while the median for ∆dp was -101.5 days. It became clear

that the data did not show what we were trying to measure. We tried considering only

vulnerabilities where the exploit was released before the patch (∆de < ∆dp), but only 12

vulnerabilities fit this criterion. All but one was disclosed within 20 days after the exploits

were published; the delay in disclosure for the remaining exploit was 156 days. Therefore,

we could not draw any conclusions about this issue.

2. Observing Patching Behavior Where Coordination Is Unlikely

We tried to determine how long it took vendors to react when a vulnerability was

disclosed of which they were unaware. To measure this, we used the subset of

vulnerabilities where ∆dp > 0. We assumed that for this subset of vulnerabilities,

coordination between white hats and vendors was unlikely because a vendor would not

want a vulnerability to be disclosed until they could develop and release a patch.

We narrowed our dataset to 3,161 vulnerabilities where ∆dp > 0. The median time

to patch was 18 days, while the mean was 57 days, so some vulnerabilities took a long time

to patch after they were disclosed. As with longevity, we tried to fit a survival function to

this dataset. Based on the shape of our model, the most likely distributions that might fit

were exponential, pareto, and Weibull. Weibull was the best fit for this curve with β = .70,

𝜂𝜂 = 42.48 and γ = 0; the survival function is shown in Figure 20 and the CDF overlay is

shown in Figure 21. The median survival time was 25.09 days; there is a 50 percent chance

a vulnerability will survive past this point.

45

Figure 20. Weibull survival function for time to patch where ∆dp > 0

(uncensored data only)

46

Figure 21. CDF for time to patch (∆dp) overlaid with Weibull model CDF

Unlike with longevity, this Weibull distribution model used only uncensored data

because from a cyber-operations planner’s perspective, a deployed cyberweapon will most

likely be patched once discovered. Therefore, it is more useful to understand the time it

took for vendors to release patches when they felt they needed to do so, rather than

considering those that were not patched.

3. Vulnerability Severity

We also sought to determine any significant differences in the software

vulnerability life cycle based on the severity of a vulnerability. CVSS scores are segregated

into four levels of severity: Low (0-3.9), Medium (4.0-6.9), High (7.0-8.9), and Critical

(9.0-10.0) (NIST, 2022). Table 2 contains the statistical results for each level. We noticed

that our dataset contained very few Low-severity vulnerabilities; this could be because they

pose so little threat that many vendors do not bother to disclose them for inclusion in the

47

NVD. Most vulnerabilities were either Medium- and High-severity, although the

population of Critical vulnerabilities was sizable. For most phases of the software

vulnerability life cycle, the medians for each level were similar, except for ∆de, for which

we had less data.

Table 2. Vulnerability statistics – by CVSS severity

Time to Disclose: tdisclsoure - tcreation
Severity Number Observed Mean Std Dev Median

Low 189 1592.93 1325.23 1270
Medium 2876 1597.35 1237.21 1359

High 4111 1800.33 1433.76 1375
Critical 717 1539.63 1041.54 1375

 Time to Patch: tpatch - tdisclosure

Severity Number Observed Mean Std Dev Median
Low 233 -6.66 139.68 0

Medium 3237 -3.65 125.09 0
High 4714 -16.81 98.33 -1

Critical 676 -11.81 114.6 0

Time to Exploit: texploit - tdisclosure
Severity Number Observed Mean Std Dev Median

Low 4 16.5 17.54 10
Medium 64 33.7 151.79 4

High 220 -21.91 102.68 1
Critical 34 -14.21 85.47 1.5

Longevity: tpatch - tcreation

Severity Number Observed Mean Std Dev Median
Low 164 1711.25 1390.29 1459

Medium 2648 1636.21 1266.07 1405
High 3877 1828.43 1457.67 1407

Critical 586 1602.8 1108.97 1427

The CDFs for longevity are shown in Figure 22; for approximately the first 1,500

days, the CDFs track closely together, with over half being patched during that period, then

they begin to diverge slightly. It seems that High-severity vulnerabilities were patched

more slowly, and Critical-severity vulnerabilities were patched more quickly than the

48

others, although all four CDFs track closely to one another. When we collapse the severity

levels from four to two (Low/Medium and High/Critical), as shown in Figure 23, we see

the same pattern where vulnerabilities are patched at the same rate through approximately

1,500 days before diverging. After 1,500 days, more severe vulnerabilities have slightly

longer lifespans (are patched more slowly) than less severe ones, not what we expected.

We had expected that more severe vulnerabilities would be discovered and patched faster

due to the greater risk that they pose. This suggests they are harder to find and patch.

Figure 22. Longevity CDFs by CVSS severity (four-level)

49

Figure 23. Longevity CDFs by CVSS severity (two-level)

When we compared patching behavior (∆dp) by CVSS severity, the statistics were

like the overall longevity data: The datasets for each level had large standard deviations.

The medians were all similar and close to zero, indicating that at least half of the

vulnerabilities were patched on or before their disclosure. Figure 24 shows the CDFs for

∆dp at each severity level; little difference existed between them except for Low-severity

vulnerabilities, for which a greater portion appeared to be patched before disclosure before

falling below the other levels during the first 200 days after disclosure. However, we should

note that the size of that subset was small (233 vulnerabilities) compared to the others.

50

Figure 24. CDF of time to patch by CVSS severity

4. Operating System

We grouped our product lines into four groups for analysis: Windows, Linux

distributions, Apple products, and Android (Figures 25–28). Google Chrome had too few

operating system vulnerabilities for any meaningful analysis; this is probably because it is

based on an application, so most Chrome vulnerabilities are not classified as operating

system vulnerabilities, even if they affect ChromeOS. We found that Apple operating

system vulnerabilities had the shortest longevity: The median ∆cp was 737 days for Apple.

Android was 909 days, Linux was 1,011 days, and Windows was over 10 years (3,654

days). Less than 40 percent of Windows vulnerabilities were patched after 2,500 days (6.8

years). In contrast, Apple and Android lacked any vulnerabilities whose lifespan exceeded

1,400 days.

51

Figure 25. Longevity CDF – Android

52

Figure 26. Longevity CDF – Linux distributions

53

Figure 27. Longevity CDF – Apple

54

Figure 28. Longevity CDF – Windows

A possible reason that vulnerabilities for Apple and Android have shorter lifespans

is that they release major operating system versions more often than their counterparts. For

example, Apple’s macOS 10.14 (Mojave) was released on September 24, 2018, but reached

end-of-life in late 2021, a lifespan of only three years (Ng, 2022; Apple Inc., 2022).

Vendors are unlikely to disclose vulnerabilities for products after they reach end-of-life

because security support and software updates are no longer provided. Even if the

vulnerability affects versions currently in use, a vendor is probably less likely to mention

legacy versions when disclosing vulnerabilities.

We also studied whether variations in patching behavior existed between each

operating system group; the CDFs for ∆dp are shown in Figures 29–32. Apple, Android,

and Windows each patched over 80 percent of their vulnerabilities before their disclosure

date. What is noteworthy about Windows is that out of 2,138 vulnerabilities in the

55

Windows subset, all were patched on or before the date they were disclosed. In contrast,

the Linux-based operating systems were much slower to patch their vulnerabilities. One

reason could be that unlike with the other operating systems, Linux vendors rely heavily

on community development and vulnerabilities must be disclosed to mobilize the

developers to create a patch.

Figure 29. CDF for ∆dp – Android

56

Figure 30. CDF for ∆dp – Linux distributions

57

Figure 31. CDF for ∆dp – Apple

58

Figure 32. CDF for ∆dp – Windows

59

VI. CONCLUSION

A. OVERVIEW

We successfully extracted dates for the creation, disclosure, patch, and exploitation

of vulnerabilities associated with common operating systems. We used this data to

calculate the lengths of software-vulnerability life cycle phases and plot survival functions

for longevity and time to patch given that the patch was released after disclosure of the

vulnerability. The median expected longevity for a vulnerability was 1,485 days (4.07

years), based on the Kaplan-Meier estimator, and 25.09 days after disclosure, based on the

Weibull model.

Our median expected longevity was considerably shorter than previously found in

work that measured the longevity of exploits (not vulnerabilities) and determined their

median survival time to be 5.07 years and 6.9 years on average (Ablon & Bogart, 2017).

This is noteworthy because the methods used in that study calculated longevity starting

with the date of vulnerability discovery, not creation, and ending with public disclosure of

the vulnerability. With parameters similar to those used in this thesis, the survival time

would almost certainly be longer, and the difference between this thesis and previous work

would be greater. This may be due to a lack of vendor data for legacy operating systems

that have passed their end-of-life, which may make the vulnerability lifespans appear

shorter.

We also studied the effects of vulnerability severity and variations between

operating systems. While previous work found that vendors patched higher severity

vulnerabilities more quickly (Shazad et al., 2020), our results did not show that more severe

vulnerabilities were disclosed or patched more quickly than those of lower severity. Our

finding that open-source vendors (the Linux-based distributions) patched their

vulnerabilities more slowly than closed-source vendors was also consistent with this

previous research. However, Microsoft’s ability to patch all its Windows vulnerabilities

before disclosure was a significant difference from prior findings. We also found that

Windows and Linux vulnerabilities had higher longevity than Apple or Android. However,

60

this difference may be due to Apple and Android operating systems reaching end-of-life

faster than Linux or Windows; the actual longevity could be longer if legacy versions were

included.

Our assumption that exploits published before disclosure were used in malicious

software and cyberweapons was incorrect. We neglected to consider that cybersecurity

experts and researchers populating the Exploit Database may also collaborate privately

with vendors. Most exploits developed before disclosure were indeed patched before the

exploits were published, indicating such coordination. When we tried to correct for this by

reducing the dataset to only those vulnerabilities whose exploit publishing date was earlier

than the patch release date, too few vulnerabilities remained for us to glean any useful data.

We extracted some useful vendor response data using a part of the dataset for ∆dp that had

positive values, although that method removed the effect of a known or discovered exploit,

which could affect the time a vendor takes to release a patch.

This thesis also only studied operating-system vulnerabilities. Our dataset did not

include application or firmware vulnerabilities from the NVD (NIST, 2011). These may

have different characteristics affecting their lifespans that would be important for cyber

operations planners to be aware of when selecting an appropriate cyberweapon. Also,

vendors for applications or firmware may patch at a different speed than operating system

vendors, which would affect cyberweapon reuse.

B. STRATEGIC IMPLICATIONS

With the survival function and associated Weibull distribution for longevity, we

can determine the probability of a vulnerability’s survival from the date it was first created.

We can then assess what useful life it may have left. Using the survival function and

associated Weibull distribution from time to patch after disclosure, we can also estimate

the probability that a vendor will release a patch and thus assess the window for reuse.

While perishability and obsolescence create incentives to stockpile and use

exploits, our work provides some insight about which exploits to stockpile and for how

long, diminishing the cyberweapon arms race that results from worst-case scenario

planning (Huntley, 2016). Instead of purchasing or developing as many cyberweapons as

61

possible, a better approach would be to develop cyberweapons exploiting vulnerabilities

early in their life cycle, and then plan to develop or acquire replacements when the

vulnerability reaches a specified probability threshold of patching or obsolescence. The

low likelihood that a vulnerability will be re-discovered by others (Ablon & Bogart, 2017)

lends support to this approach. This can reduce costs in money, manpower, and time,

although a well-resourced offensive cyber actor may still choose to stockpile as many

exploits as possible. Besides obsolescence, actors can use the probability of survival after

disclosure to assess perishability and establish a timeframe and priority for subsequent

attacks.

Determining the probability of survival of a vulnerability could create an incentive

to use cyberweapons to exploit older vulnerabilities; this is a “use it or lose it” incentive

associated with obsolescence (Huntley, 2016). While exploit development times have been

observed to be relatively short (Ablon & Bogart, 2017), the process of finding new

vulnerabilities or purchasing exploits from developers can be time-consuming and

expensive (Smeets, 2018); Ablon and Bogart found that the typical market price for an

exploit is in the $50,000 - $100,000 range. Therefore, poorly-resourced actors may have a

greater incentive to use older exploits before they are patched because they may be unable

to replace them.

Another factor that could encourage use of a cyberweapon is whether an actor

knows that a vulnerability will be patched soon. If most vulnerabilities are patched before

disclosure, then the release of a patch is probably the first indication that a cyberweapon is

becoming ineffective. Disclosure before patch release still offers a small window for a

cyberweapon to be used, permitting some potential return on investment from its

development. Then there would be a strong incentive to use a cyberweapon once it has

been disclosed. If a vulnerability is not disclosed, the loss of that window encourages using

a cyberweapon earlier in its life cycle. It is worth noting that some vendors are better at

patching before disclosure than others. We found that Windows patched all its

vulnerabilities on or before disclosure; in contrast, Linux vendors patched very few before

disclosure, probably due to their open-source development model.

62

The wide variability in a vulnerability’s longevity (as indicated by large standard

deviations) suggests that risk tolerance is a major factor when deciding when to use or

replace a cyberweapon. Had most of the longevity values been clustered around the mean

with smaller standard deviations, a long window of relatively low risk that a patch would

be released would occur, followed by a short high-risk period. With a wider dispersion of

longevity values, the risk is distributed over a longer duration, and this could mean a

difference of several years. If risk tolerance dictates that cyberweapons be used or replaced

before their vulnerabilities reach a 75 percent probability of survival, then the window of

opportunity is 775 days from creation using our Weibull model. If actors can wait until

there is a 25 percent probability, then the window of opportunity is 2,639 days. This would

have significant implications not just for operations, but also for staffing and funding of

new cyberweapon development and acquisition.

C. APPLICATION TO CYBERSPACE OPERATIONS

The Weibull distribution model fitted to our longevity data yielded a distribution of

the probability that a vulnerability will survive past a specific number of days after its

creation. This enables planners to predict a vulnerability’s obsolescence. Longevity was

our primary metric for obsolescence because most vulnerabilities in our dataset were

patched on or before the date they were publicly disclosed. This suggests that vendors are

actively collaborating with and incentivizing white-hat and other security professionals to

disclose vulnerabilities privately to them, then wait until a patch is released to disclose it

publicly.

For cyberspace-operation planners, this means they can assess the remaining useful

life of a cyberweapon based on the probability associated with the survival function. This

would be valuable when choosing cyberweapons, as a cyberweapon that exploits an older

vulnerability that has less than a 50 percent probability of survival may be less desirable

than one whose exploited vulnerability is fewer days removed from the date it was created.

This is also useful for determining whether to develop a cyberweapon: If operators find

63

that the survival function for an older cyberweapon shows a low probability of survival,

they can prioritize development of new cyberweapons with similar effects. As mentioned

earlier, risk tolerance is also a factor; lower risk tolerance means that planners would use

cyberweapons earlier in their vulnerability’s life cycle and replace them more frequently.

While a vulnerability’s severity did not seem to affect its life cycle, the operating

system did. For example, a vulnerability in Apple operating systems will probably have a

shorter lifespan than a vulnerability in Windows, so a cyber operations planner should use

a cyberweapon targeting an Apple operating system earlier than they would a cyberweapon

targeting Windows, and replacement cyberweapons should also be developed more often.

Planners should also consider the vendor’s propensity to patch vulnerabilities before

disclosure. Windows, Apple, and Android had many vulnerabilities patched before they

were disclosed, but Linux did not. Therefore, there is less risk of obsolescence with a

cyberweapon that targets Linux operating systems, as there will probably be more of a

window to use it before a patch is released.

However, the probability of survival is just one factor in selecting cyberweapons.

Planners should also consider whether the target software and operating system are still

receiving security support, or the likelihood the vendor would patch legacy software. We

could not determine if the presence of a known exploit would affect the time it took a

vendor to release a patch. However, we could develop a survival model for vulnerabilities

where ∆dp > 0, which we assumed were vulnerabilities the vendor was unaware of before

disclosure. The survival function in Figure 13 permits this. Planners can then determine

the period within which they can redeploy that weapon after initial use, prioritizing their

targets to maximize operational effect. For example, a planner may schedule subsequent

cyberweapon use against high-value targets within the first 25 days after it is first deployed

when the probability of survival is greater than 50 percent. After that point, when the risk

of mission failure is greater, lower-priority targets or targets of opportunity could then be

scheduled. Before any such operation, careful planning could determine what additional

targets could be attacked, what priority is assigned to each, and whether hastening attack

on these targets is consistent with operational objectives; there will inherently be trade-offs

(Smeets, 2018).

64

D. FUTURE WORK

Future work could measure the software-vulnerability phases of application or

firmware vulnerabilities because they are also workable vectors for exploits that cyber

operations planners could use. Determining the probability of survival for vulnerabilities

that have been exploited also warrants further study due to its potential effect on

cyberweapon reuse. Future work could also explore characteristics of different types of

vulnerabilities that affect their longevity or the phases of their life cycles.

65

APPENDIX A. PYTHON SCRIPT FOR PARSING JSON FILES

A. PROGRAM DESCRIPTION

The Python program below (JSONParse.py) loads the specified set of JSON files

downloaded from the NVD. It then converts them to Python nested dictionaries and parses

them to extract the required data for each CVE entry, including the CVE ID, CVSS score,

publishing date, and the affected software versions for each vendor and product line. If the

CVE ID is within our desired dataset, it is added to the CVE Index. When this process is

complete, the CVE Index is exported to a CSV file. Also, the index is broken up by product

line, then exported separately to assess metrics for each operating system. Lastly, the

complete set of affected software versions is exported to CSV files, one for each product

line, which are used for populating software version release dates.

B. SOFTWARE CODE

Program Name: JSONParse.py
Author: Michael Lidestri
Date of Publication: May 16, 2022

Description: JSONParse.py opens four JSON files (years 2018–2021) from the NVD and
converts the contents to a Python nested dictionary. This dictionary is then used to
extract the vendor, product, version, publishing date and other required data. This
information is then inserted into a CVE index, cve_dict, which holds all CVEs. It also
generates the product/version information needed to manually search for creation dates.

import json
import csv
from datetime import date, datetime
import dateutil.parser as dparser

####################### GLOBAL VARIABLES ############################
These variables are used to parse, store, and export CVE information
cve_dict= {} # CVE Index where all CVEs and their data will be stored
os_list = [‘windows’, ‘chrome’, ‘iphone’, ‘macos’, ‘mac’, ‘enterprise’, ‘fedora’, \
 ‘android’, ‘tvos’, ‘watchos’, ‘debian’, ‘linux’, ‘ubuntu’]
vendor_list = [‘canonical’, ‘microsoft’, ‘google’, ‘redhat’, ‘apple’, ‘linux’,\
 ‘fedoraproject’, ‘debian’]

66

These variables are used to generate statistics about the dataset
vers_master = {}
vendor_master = set()
vendor_dict = {} #
sw_dict = {}
sw_master = set()
no_cvss = 0
count = 0

def getVersion(vers_str):
 # Determines if the version string contains version data or just filler characters.
 # It returns a version only if there are alphanumberic characters and None otherwise.
 res = any(chr.isalnum() for chr in vers_str)
 if res:
 min_vers = vers_str
 else:
 min_vers = None

 return min_vers

def getData(cpe):
 # This function splits a CPE string into its components: part, vendor, affected
 # software (product line), product, and version. See (NIST, 2011) for more details
 # about CPE strings.
 global vendor_master
 global sw_master

 cpe_list = cpe.split(‘:’)
 part = cpe_list [2]
 vendor = cpe_list [3]
 sw_aff = cpe_list [4].split(‘_’)
 vers_string = cpe_list [5]
 product = sw_aff [1:]
 new_sw = sw_aff [0]
 sw_master.add(new_sw)
 vendor_master.add(vendor)

 return part, vendor, new_sw, product, vers_string

def processJSON(data):
 # Takes a JSON file (converted to Python nested dictionaries) and parses it. It
 # extracts the CVE, CVSS Score, affected software product line, and version. If the
 # data is part of the corpus we intend to use for research, it is placed in the CVE

67

 # Index (cve_dict).
 global count
 global cve_dict
 global no_cvss
 global other_count

 for i in data [‘CVE_Items’]:
 # Extract CVE, CPE data; create data structures for affected software
 cve = (i [‘cve’][‘CVE_data_meta’][‘ID’])
 configs = i [‘configurations’][‘nodes’]
 cpe_list = []
 vendor_set = set()
 sw_set = set()
 vers_dict = {}
 in_corpus = False
 in_sw = False

 # Extract the publishing date, which will be t(disclosure), and CVSS score
 publishedDate = i [‘publishedDate’][:10]
 try:
 cvss_score = i [‘impact’][‘baseMetricV3’][‘cvssV3’][‘baseScore’]
 except:
 cvss_score = ‘N/A’
 no_cvss +=1

 # Extract product line and version data
 for node in configs:
 # if each node has a ‘children’ field, the following code runs data extraction
 for index in node [‘children’]:
 for number in index [‘cpe_match’]:
 if number [‘vulnerable’] == True:
 cpe = number [‘cpe23Uri’] # This is the CPE string
 # Extract data from the CPE string
 part, vendor, new_sw, product, vers_string = getData(cpe)
 # If product is an operating system, extract software+version data
 if part == ‘o’:
 vendor_set.add(vendor)
 sw_set.add(new_sw)

 if new_sw in os_list and vendor in vendor_list:
 in_corpus = True
 if new_sw in os_list:
 in_sw= True

 # Check for varying sources of version data

68

 if ‘versionStartExcluding’ in number:
 version = str(‘>‘+number [‘versionStartExcluding’])
 elif ‘versionStartIncluding’ in number:
 version = number [‘versionStartIncluding’]
 else:
 version = getVersion(vers_string)

 if version != None:
 product.append(version)
 prod_vers = ‘.’.join(product)

 if new_sw not in vers_dict:
 vers_dict [new_sw] = set()
 vers_dict [new_sw].add(prod_vers)

 # if a node does not have a ‘children’ field, data extraction starts here
 for index in node [‘cpe_match’]:
 if index [‘vulnerable’] == True:
 cpe = index [‘cpe23Uri’]
 # Extract data from the CPE string
 part, vendor, new_sw, product, vers_string = getData(cpe)
 # If product is an operating system, extract software and version data
 if part == ‘o’:
 vendor_set.add(vendor)
 sw_set.add(new_sw)
 if new_sw in os_list and vendor in vendor_list:
 in_corpus = True
 if new_sw in os_list:
 in_sw= True

 if ‘versionStartExcluding’ in index:
 version = str(‘>‘+index [‘versionStartExcluding’])
 elif ‘versionStartIncluding’ in index:
 version = index [‘versionStartIncluding’]
 else:
 version = getVersion(vers_string)

 if version != None:
 product.append(version)
 prod_vers = ‘.’.join(product)

 if new_sw not in vers_dict:
 vers_dict [new_sw] = set()
 vers_dict [new_sw].add(prod_vers)

69

 # If part of our dataset, add to the CVE Index, if not already listed
 if in_corpus:
 if cve not in cve_dict:
 cve_dict [cve] = {‘CVSS Score’ : cvss_score, ‘t(creation)’ : ‘N/A’,\
 ‘t(disclosure)’: publishedDate, ‘t(patch)’ : ‘N/A’, \
 ‘t(exploit)’ : ‘N/A’, ‘Vendor’ : vendor_set, \
 ‘Affected Software’ : sw_set, ‘Versions’ : vers_dict}

 count+=1
########################## MAIN FUNCTION ############################

if __name__ == “__main__”:
 # Imports JSON files specified below from NVD (NIST, 2022) and converts them to
 # Python dictionaries, which are then processed so data can be extracted and inserted
 # into the CVE Index. When data has been extracted from all files, the CVE Index and
 # compiled software/version data are exported to CSV files for further processing.

 # Load JSON files and process (Canepa, 2019).
 json_file_list = (‘nvdcve-1.1-2021.json’, ‘nvdcve-1.1-2020.json’, \
 ‘nvdcve-1.1-2019.json’, ‘nvdcve-1.1-2018.json’)

 for file in json_file_list:
 json_file = open(file, encoding=‘utf8’)
 json_data = json.load(json_file)
 processJSON(json_data)
 json_file.close()

 # Write CVE Index to CSV file (GeeksforGeeks, 2022).
 with open(‘cve_prelim_results.csv’, ‘w’) as csvfile:
 fields = [‘cve’, ‘cvss score’, ‘vendor’, ‘affected software’, ‘versions’, \
 ‘t(creation)’, ‘t(disclosure)’, ‘t(patch)’, ‘t(exploit)’]
 writer = csv.DictWriter(csvfile, fieldnames = fields)
 writer.writeheader()

 for item in cve_dict:
 line = {‘cve’: item, ‘vendor’ : cve_dict [item][‘Vendor’], \
 ‘affected software’ : cve_dict [item][‘Affected Software’], \
 ‘versions’ : cve_dict [item][‘Versions’], ‘cvss score’ : \
 cve_dict [item][‘CVSS Score’], ‘t(creation)’: \
 cve_dict [item][‘t(creation)’], ‘t(disclosure)’ : \
 cve_dict [item][‘t(disclosure)’], ‘t(patch)’: \
 cve_dict [item][‘t(patch)’], ‘t(exploit)’: cve_dict [item][‘t(exploit)’]}

 writer.writerow(line)

70

 # Break out CVE Index by operating system for product specific calculations later,
 # export to CSV file (GeeksforGeeks, 2022).
 for os in os_list:
 with open(str(os)+’_prelim_results.csv’, ‘w’) as file:
 fields = [‘cve’, ‘cvss score’, ‘vendor’, ‘affected software’, ‘versions’, \
 ‘t(creation)’, ‘t(disclosure)’, ‘t(patch)’, ‘t(exploit)’]
 writer = csv.DictWriter(file, fieldnames = fields)
 writer.writeheader()

 for item in cve_dict:
 if os in cve_dict [item][‘Affected Software’]:
 line = {‘cve’: item, ‘vendor’ : cve_dict [item][‘Vendor’], \
 ‘affected software’ : cve_dict [item][‘Affected Software’], \
 ‘versions’ : cve_dict [item][‘Versions’], ‘cvss score’ : \
 cve_dict [item][‘CVSS Score’], ‘t(creation)’: \
 cve_dict [item][‘t(creation)’], ‘t(disclosure)’ : \
 cve_dict [item][‘t(disclosure)’], ‘t(patch)’: \
 cve_dict [item][‘t(patch)’], ‘t(exploit)’: \
 cve_dict [item][‘t(exploit)’]}
 writer.writerow(line)

###################### GET PRODUCT/VERSION DATA ####################
 # This portion of the main function extracts vendor, software, and version data; it
 # then exports the data to individual CSV files for each vendor. It then calculates
 # and prints some statistics for the dataset.
 vendor_count = 0
 multi = 0
 corpus_count = 0

 # Generate totals for number of vendors, products, versions
 for item in cve_dict:
 counted = False
 vendors = cve_dict [item][‘Vendor’]
 software = cve_dict [item][‘Affected Software’]
 versions = cve_dict [item][‘Versions’]
 if len(vendors) > 1:
 multi +=1
 for vendor in vendors:
 if vendor not in vendor_dict:
 vendor_dict [vendor] = 0
 vendor_dict [vendor] += 1
 vendor_count += 1

 for sw in software:
 if sw not in sw_dict:

71

 sw_dict [sw] = 0
 sw_dict [sw] += 1
 if sw in os_list and counted == False:
 corpus_count += 1
 counted = True

 for program in versions:
 if program not in vers_master:
 vers_master [program] = set()
 for version in versions [program]:
 vers_master [program].add(version)

 # For each operating system, extract the set of products/versions associated with CVEs
 # in the dataset, and export them to a CSV file for further processing
 # (GeeksforGeeks, 2022).
 for index in os_list:
 rows = []
 if index in vers_master:
 with open(index+’.csv’, ‘w’) as file:
 for unit in vers_master [index]:
 row = [unit]
 rows.append(row)
 write = csv.writer(file)
 write.writerows(rows)
 file.close()

 # Print statistics for dataset
 print(‘Number of CVEs: ‘, count)
 print(‘Number of Vendors: ‘, vendor_count)
 print(‘CVEs Affecting more than one vendor:’, multi)
 print(‘Number of Unique Vendors: ‘, len(vendor_master))
 print(‘Number of Unique Software: ‘, len(sw_master))
 print(‘Corpus Count: ‘, corpus_count)
 print(‘CVEs with no CVSS: ‘, no_cvss)

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

APPENDIX B. SCRAPY SPIDER EXAMPLE

A. PROGRAM DESCRIPTION

The Python program below is an example of a spider we used to scrape patch and

exploit dates for CVE IDs. The spiders rely on central files generated by the Scrapy module

when the crawler is created. While each spider is unique, each one loads the HTML page

specified in the start URL, parses it for links to follow to security bulletins, and loads those

pages, from which it extracts CVE IDs and publishing dates.

B. SOFTWARE CODE

##
Program Name: ubuntu_patches.py
Author: Michael Lidestri
Date of Publication: May 16, 2022

This program is a spider based off the Scrapy module (Zyte, 2022). The spider class was
generated by Scrapy and leverages settings and middleware files that are also generated
by the Scrapy package. We customized the spider to crawl the desired webpages and
extract the data we needed. (Jabeen, 2019) is an excellent tutorial we used to learn how
to create a webcrawler and spiders in Scrapy. For XPath guidance, see (Scrapy
Developers, 2022), which we used to build our queries.

Description: Starting from the start URL, retrieves the HTML page, parses it for links to
security bulletins, then creates new requests to retrieve those HTML pages, with a call
to the getCVE() function which extracts the patch date and CVE ID. Yields a CVE ID
and patch date, which are exported to the CSV file specified under custom_settings.

from datetime import date, datetime
import dateutil.parser as dparser
from ..items import PatchItem

class UbuntuPatchesSpider(scrapy.Spider):
 name = ‘ubuntu_patches’
 allowed_domains = [‘ubuntu.com/’]
 start_urls = [‘https://ubuntu.com/security/notices/’]
 custom_settings= { ‘FEED_URI’: “ubuntu_patches.csv”}

 def parse(self, response):
 # Parses an HTML file; in this case it is the index page with links to security

74

 # bulletins. Retrieves all links and creates new GET messages to retrieve pages. Calls
 # getCVE() function for all subsequent pages.
 min_date = date(2018, 1, 1)

 # If website articles have dates within the cutoff for the dataset, yield a HTTP
 # request and pass to getCVE() to extract data. Dates extracted using dateutil
 # package (Niemeyer, 2019).
 posts = response.xpath(“//div [contains(@class, ‘col-9’)]/article”)
 for post in posts:
 post_date = post.xpath(‘p [1]/text()’).get()
 extracted_date = dparser.parse(post_date, fuzzy=True)
 ext_date_adj = date(extracted_date.year, extracted_date.month,\
 extracted_date.day)

 if ext_date_adj >= min_date:
 link = post.xpath(“h3/a/@href”).get()
 yield response.follow(url=link, callback=self.getCVE, dont_filter=True)

 if ext_date_adj >= min_date:
 url = response.xpath(“//div/ol/li/a [contains(@class, \
 ‘p-pagination__link--next’)]/@href”).get()
 yield scrapy.Request(response.urljoin(url), callback=self.parse,\
 dont_filter=True)

 def getCVE(self, response):
 # Parses an HTML file to extract the CVE and the patch publishing date. Yields a
 # dictionary consisting of CVE ID and patch date. Ensures only stable updates are
 # used.
 prefix = “CVE-”

 # Extract patch date with dateutil package (Niemeyer, 2019)
 rel_date= response.xpath(“//div [contains(@class, ‘col-12’)]/p [1]/text()”).get()
 ext_date = dparser.parse(rel_date, fuzzy=True)
 new_ext_date = date(ext_date.year, ext_date.month, ext_date.day)
 formatted_date = new_ext_date.isoformat()

 # Extract CVE IDs and export with patch date to CSV file
 div_entries= response.xpath(“//div [contains(@class, ‘col-8’)]/\
 ul [contains(@class, ‘p-list’)]/li [contains(@class, ‘p-list__item’)]/a/text()”).getall()
 for entry in div_entries:
 item = PatchItem()
 if prefix in entry:
 item [‘cve’] = entry
 item [‘pdate’] = formatted_date
 yield(item)

75

LIST OF REFERENCES

3i Data Scraping. (2021, September 8). How Scrapy and Selenium is used in analyzing and
scraping news articles? https://www.3idatascraping.com/how-scrapy-and-selenium-
is-used-in-analyzing-and-scraping-news-articles.php

Ablon, L., & Bogart, A. (2017). Zero days, thousands of nights: The life and times of zero-
day vulnerabilities and their exploits (Report No. RR1751). RAND.
https://www.rand.org/pubs/research reports/RR1751.html

Anderson, T. (2020, January 6). Linux in 2020: 27.8 million lines of code in the kernel, 1.3
million in systemd. The Register. https://www.theregister.com/2020/01/06/
linux_2020_kernel_systemd_code/

Apple, Inc. (2022). Apple security updates (2018 to 2019). https://support.apple.com/en-us/
HT213078

Arbaugh, W., Fithen, W., & McHugh, J. (2000). Windows of vulnerability: A case study
analysis. Computer, 33(12), 52–59. http://dx.doi.org/10.1109/2.889093

Arora, A., Krishnan, R., Telang, R., & Yang, Y. (2010). An empirical analysis of software
vendors’ patch release behavior: Impact of vulnerability disclosure. Information
Systems Research, 21(1), 115–132. http://www.jstor.org/stable/23015522

Bronk, C., & Tikk-Ringas, E. (2013). The cyber attack on Saudi Aramco. Survival: Global
Politics and Strategy, 55(2), 81–96. https://doi.org/10.1080/00396338.2013.784468

Canepa, G. (2019, January 15). Importing data from a JSON resource with Python.
PluralSight. https://www.pluralsight.com/guides/importing-data-from-json-resource-
with-python

Caswell, T., Droettboom, M., Lee, A., Andrade E., Hoffmann, T., Hunter, J., Klymak, J.,
Firing, E., Stansby, D., Varoquaux, N., Hedegaard Nielsen, J., Root, B., May, R.,
Elson, P., Seppänen, J., Dale, D., Lee, J., McDougall, D., Straw, A., Ivanov, P.
(2021). matplotlib/matplotlib: REL: v3.5.1 (v3.5.1) [computer software]. Zenodo.
https://doi.org/10.5281/zenodo.5773480

Clark, S.; Frei, S.; Blaze, M.; & Smith, J. (2010). Familiarity breeds contempt: the
honeymoon effect and the role of legacy code in zero-day vulnerabilities.
Proceedings of the 26th Annual Computer Security Applications Conference
(ACSAC ‘10), 251–260. https://doi.org/10.1145/1920261.1920299

Cybersecurity and Infrastructure Security Agency. (2018, February 15). Alert (TA17-181A)-
Petya ransomware. https://www.cisa.gov/uscert/ncas/alerts/TA17-181A

http://www.rand.org/pubs/research

76

Dacey, R. (2003). Information security effective patch management is critical to mitigating
software vulnerabilities (GAO-03-1138T). Government Accountability Office.
https://www.gao.gov/assets/gao-03-1138t.pdf

Davidson-Pilon, (2019). Lifelines: survival analysis in Python. Journal of Open Source
Software, 4(40), 1317, https://doi.org/10.21105/joss.01317

Elisan, C. (2015). Advanced Malware Analysis. McGraw-Hill.

Federal Bureau of Investigation. (2020, August 03). Computer network infrastructure
vulnerable to Windows 7 end of life status, increasing potential for cyber attacks.
https://www.documentcloud.org/documents/ 7013545-Windows-7-End-of-Life-
PIN-20200803-002-BC.html

Frei, S., May, M., Fiedler, U., & Plattner, B. (2006). Large-scale vulnerability analysis.
Proceedings of the 2006 SIGCOMM workshop on Large-scale attack defense (LSAD
‘06), 131–138. https://doi.org/10.1145/1162666.1162671

Frei, S., Dübendorfer, T., & Plattner, B. (2009). Firefox (in)security update dynamics
exposed. ACM SIGCOMM Computer Communication Review, 39(1), 16–22.
https://doi.org/10.1145/1496091.1496094

Frei, S., Schatzmann, D., Plattner, B., & Trammell, B. (2010). Modeling the security
ecosystem - The dynamics of (in)security. In T. Moore, D. Pym, and C. Ioannidis,
(Eds.), Economics of information security and privacy (pp. 69–106). Springer,
Boston, MA. https://doi.org/10.1007/978-1-4419-6967-5_6

GeeksforGeeks. (2022, 19 February). Working with csv files in Python.
https://www.geeksforgeeks.org/reading-csv-files-in-python/

Hall, C. (2017). Time Sensitivity in Cyberweapon Reusability [Master’s thesis, Naval
Postgraduate School]. NPS Archive, Calhoun. https://nps.primo.exlibrisgroup.com/
permalink/01NPS_INST/ofs26a/alma991005653428203791

Harris, C. (2019). Agencies need to develop modernization plans for critical legacy systems
(GAO-19-471). Government Accountability Office.

Herr, T., & Rosenzweig, P. (2014). Cyber weapons and export control: Incorporating dual
use with the PrEP model. Journal of National Security Law and Policy, 8(2), 301–
319. http://dx.doi.org/10.2139/ssrn.2501789

Huntley, W. (2016). Strategic implications of offense and defense in cyberwar. 2016 49th
Hawaii International Conference on System Sciences, 5588–5595. http://dx.doi.org/
10.1109/HICSS.2016.691

http://www.documentcloud.org/documents/
http://www.documentcloud.org/documents/

77

Hutchins, E., Cloppert, M., & Amin, R. (2011). Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains.
Lockheed Martin Corporation. https://lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf

Ismiguzel, I. (2021, September 27). Hands-on survival analysis with Python. TOPBOTS.
https://www.topbots.com/survival-analysis-with-python/

Jabeen, H. (2019, January 10). Making Web crawlers using Scrapy for Python. Datacamp.
https://www.datacamp.com/tutorial/making-web-crawlers-scrapy-python

Johnson, T. (2018). Growing cybersecurity concerns in industrial IoT. Telecom Asia
(Online). https://libproxy.nps.edu/login?url=https://www.proquest.com/trade-
journals/growing-cybersecurity-concerns-industrial-iot/docview/2139264772/se-
2?accountid=12702

Kang, M., Pongsin, P., Yin, H. (2007). Renovo: a hidden code extractor for packed
executables. 2007 ACM workshop on Recurring Malcode (WORM ‘07), 46–53.
https://doi.org/10.1145/1314389.1314399

Kleinbaum, D. & Klein, M. (2005). Survival analysis: A self-learning text (2nd ed.).
Springer.

Kovacs, E. (2016, April 7). OSVDB shut down permanently. Security Week.
https://www.securityweek.com/osvdb-shut-down-permanently

Langner, R. (2013). To kill a centrifuge: A technical analysis of what Stuxnet’s creators
tried to achieve. The Langner Group. https://www.langner.com/wp-content/uploads/
2017/03/to-kill-a-centrifuge.pdf

Lee, R., Assante, M., Conway, T. (2016). Analysis of the cyber attack on the Ukrainian
power grid. E-ISAC, SANS ICS. https://www.readkong.com/page/analysis-of-the-
cyber-attack-on-the-ukrainian-power-grid-6826988

Lewinson, E. (2020, August 17). Introduction to survival analysis: the Kaplan-Meier
estimator. Towards Data Science. https://towardsdatascience.com/introduction-to-
survival-analysis-the-kaplan-meier-estimator-94ec5812a97a

Libicki, M., Ablon, L., Webb, A. (2015). The defender’s dilemma: Charting a course
toward cybersecurity (Report No. RR1024). RAND. https://www.rand.org/content/
dam/rand/pubs/research_reports/RR1000/RR1024/RAND_RR1024.pdf

Liles, S., & Poremski, E. (2015). Fusion of malware and weapons taxonomies for analysis.
Journal of Information Warfare, 14(1), 75–83. https://www.jstor.org/stable/
26487520

78

Mamka, A. (2016, August 29). How to solve 403 error in scrapy. Stack Overflow.
https://stackoverflow.com/questions/39202058/how-to-solve-403-error-in-scrapy

Martelle, M. (2018, August 13). Joint Task Force ARES and Operation GLOWING
SYMPHONY: Cyber Command’s Internet war against ISIL. George Washington
University. https://nsarchive.gwu.edu/briefing-book/cyber-vault/2018-08-13/joint-
task-force-ares-operation-glowing-symphony-cyber-commands-internet-war-
against-isil

Mele, S. (2014). Legal considerations on cyber-weapons and their definition. Journal of
Law & Cyber Warfare, 3(1), 52–69. http://www.jstor.org/stable/26432559

Metrick; K., Semrau, J., & Sadayappan, S. (2020, April 13). Think fast: Time between
disclosure, patch release and vulnerability exploitation — Intelligence for
vulnerability management, part two. Mandiant. https://www.mandiant.com/
resources/time-between-disclosure-patch-release-and-vulnerability-exploitation

Microsoft. (2013). Microsoft security intelligence report, volume 15. Microsoft Corporation.
https://www.microsoft.com/en-us/download/details.aspx?id=40871

Microsoft. (2022). Microsoft bug bounty program. Microsoft Corporation.
https://www.microsoft.com/en-us/msrc/bounty

Nappa, A., Johnson, R., Bilge, L., Caballero, J., & Dumitras, T. (2015). The attack of the
clones: A study of the impact of shared code on vulnerability patching. 2015 IEEE
Symposium on Security and Privacy, 692–708. https://doi.org/10.1109/SP.2015.48

National Institute of Standards and Technology. (2011). Common product enumeration:
Naming Specification Version 2.3 (IR 7695). https://nvlpubs.nist.gov/nistpubs/
Legacy/IR/nistir7696.pdf

National Institute of Standards and Technology. (2022). The National Vulnerability
Database [Data set]. https://nvd.nist.gov/vuln/data-feeds

Niemeyer, G. (2019). Dateutil (version 2.8.2) [computer software].
https://dateutil.readthedocs.io/en/stable/

Ng, D. (2022, March 7). macOS 10.14 Mojave - end of support. University of California –
San Francisco. https://it.ucsf.edu/news/macos-1014-mojave-end-support

Offensive Security. (2022). The Exploit Database [Data set]. https://www.exploit-db.com/

Pandas Development Team. (2020). pandas-dev/pandas: Pandas 1.0.3 (v1.0.3) [computer
software]. Zenodo. https://doi.org/10.5281/zenodo.3715232

Reliasoft. (2002, April). Characteristics of the Weibull Distribution. Reliability Hotwire
(14). https://weibull.com/hotwire/issue14/relbasics14.htm

79

Richardson, L. (2015). Beautiful Soup [computer software]. Leonard Richardson.
https://beautiful-soup-4.readthedocs.io/en/latest/#

Sarabi, A., Zhu, Z., Xiao, C., Liu, M., & Dumitraş, T. (2017). Patch me if you can: A study
on the effects of individual user behavior on the end-host vulnerability state. In
Passive and Active Measurement (pp. 113–125). Springer International Publishing.
https://doi.org/10.1007/978-3-319-54328-4_9

Scrapy Developers. (2022, April 14). Scrapy 2.6 documentation. Scrapy.
https://docs.scrapy.org/en/latest/

The Selenium Project. (2022). Selenium [computer software]. Software Freedom
Conservancy. https://www.selenium.dev/

Sen, R., Choobineh, J., Kumar, S. (2020). Determinants of software vulnerability disclosure
timing. Production and Operations Management, 29(11), 2532–2552.
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.13120

Shahzad, M., Shafiq, M. Z., & Liu, A. X. (2020). Large scale characterization of software
vulnerability life cycles. IEEE Transactions on Dependable and Secure Computing,
17(4), 730–744. https://doi.org/10.1109/TDSC.2019.2893950

Smeets, M. (2018). A matter of time: On the transitory nature of cyberweapons. Journal of
Strategic Studies, 41(1-2), 6–32. https://doi.org/10.1080/01402390.2017.1288107

U.S. Cyber Command. (2018). Achieve and maintain cyberspace superiority: Command
vision for U.S. Cyber Command. https://www.cybercom.mil/Portals/56/Documents/
USCYBERCOM Vision April 2018.pdf?ver=2018-06-14-152556-010

U.S. Joint Chiefs of Staff. (2018). Cyberspace Operations (JP 3-12). https://www.jcs.mil/
Portals/36/Documents/Doctrine/pubs/jp3_12.pdf?ver=2018-07-16-134954-150

Warren, T. (2021, January 6). Windows 7 is still running on at least 100 million PCs. The
Verge. https://www.theverge.com/2021/1/6/22217052/ microsoft-windows-7-109-
million-pcs-usage-stats-analytics

You, I., & Yim, K. (2010). Malware obfuscation techniques: A brief survey. 2010 IEEE
International Conference on Broadband, Wireless Computing, Communication and
Applications, 297–300. http://dx.doi.org/10.1109/BWCCA.2010.85

Zach. (2021, March 2). An introduction to the exponential distribution. Statology.
https://www.statology.org/exponential-distribution/

Zyte. (2022). Scrapy [computer software]. Zyte. https://scrapy.org/

http://www.theverge.com/2021/1/6/22217052/

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Jun_Lidestri_Michael_First8
	22Jun_Lidestri_Michael
	I. Introduction
	II. Related research
	A. Overview
	B. Defining Cyberweapons
	C. The Software vulnerability life cycle
	1. Discovery
	2. Disclosure
	3. Patch Adoption

	D. Perishability and obsolescence
	E. considerations for cyber operations planning

	III. assessing perishability and obsolescence in the software vulnerability life cycle
	A. perishability and obsolescence
	B. Data collection requirements
	C. DEFINITIONS, Data sources, AND ASSUMPTIONS
	D. dataBases
	1. National Vulnerabilities Database
	2. Vendor Security Bulletins
	3. Exploit Database
	4. Obtaining Version Release Information

	IV. Methodology
	A. Process Overview
	B. parsing json files
	1. Parsing CPEs
	2. Retrieving Version Strings
	3. Building the Vulnerability Index Data Structure

	C. populating creation, Patch, and Exploit dates
	1. Creation and Patch Dates
	2. Exploit Dates
	3. Data Reduction and Consolidation
	4. Aggregating Creation, Patch, and Exploit Data into the CVE Index

	D. statistical analysis

	V. analysis of results
	A. data analysis: all vulnerabilities
	1. Longevity
	2. Kaplan-Meier Survival Analysis
	3. Survival analysis using parametric functions

	B. assessment of vulnerability life cycle phases
	1. Vulnerability Time to Disclosure
	2. Vulnerability Time to Patch
	3. Disclosure to Exploit Availability

	C. factors that could affect vulnerability lifespan
	1. Known Existence of an Exploit
	2. Observing Patching Behavior Where Coordination Is Unlikely
	3. Vulnerability Severity
	4. Operating System

	VI. conclusion
	A. Overview
	B. strategic implications
	C. Application to cyberspace operations
	D. Future work

	Appendix A. python script for parsing json files
	A. program description
	B. software code

	Appendix b. scrapy spider example
	A. program description
	B. Software code

	List of References
	initial distribution list

