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ABSTRACT 

 As cyberspace operations become further integrated into operational planning for 

nation-states, planners must understand the implications of perishability and obsolescence 

when deciding how to use cyberweapons. Obsolescence reflects the risk that a 

vulnerability will be patched without cyberweapon use, while perishability describes the 

short lifespan of a cyberweapon once it is used; one creates an incentive to use and the 

other an incentive to stockpile. This thesis examined operating-system vulnerabilities 

over four years: we quantified the duration between key events of their life cycles as well 

as the time to release a patch after disclosure. We performed survival analysis for 

longevity and post-disclosure patch time using Kaplan-Meier curves, then found that the 

data fit well to Weibull distributions. We also examined the effects of severity and 

operating system on the lengths of vulnerability life-cycle phases. Our parametric models 

enable planners to predict the expected survival time of a cyberweapon’s vulnerability, 

allowing them to determine when to use them, replenish them, and assess windows of 

opportunity for reuse. This reduces the need to stockpile cyberweapons and creates 

incentives to use them before the expected survival time. The observed wide variability in 

longevity values indicates that risk tolerance is important in deciding when to use a 

cyberweapon. 
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I. INTRODUCTION 

Exploits are malicious code that leverages software vulnerabilities to insert a 

payload onto a target information system (Herr & Rosenzweig, 2014). Vulnerabilities are 

software bugs (flaws) that allow a malicious actor to attack the confidentiality, integrity, 

or availability of an information system (Microsoft, 2013). Bugs are prevalent in many 

software programs; an estimated 20 occur for every 1,000 lines of code (Dacey, 2003). For 

reference, the Linux kernel contains 27.8 million lines of code (Anderson, 2020). 

Vulnerabilities persist in software and remain exploitable unless they are removed by 

corrective software updates called patches (Sarabi et al., 2017). Vulnerabilities that remain 

unpatched because the vendor is unaware of their existence are called zero-day 

vulnerabilities and the corresponding exploits are zero-day exploits (Libicki et al., 2015). 

A cyberweapon is an exploit that is used in a conflict to either inflict physical damage or 

to sabotage or damage an information system; cyberweapons allow actors to execute 

cyberspace attacks (cyberattacks) against a target using information systems (Mele, 2014).  

Because of the low risk and high potential reward of carrying out successful 

cyberattacks, actors of varying sizes and ideologies do so to further their own interests 

(U.S. Cyber Command, 2018). While smaller actors may participate in cybercrime, theft 

of intellectual property, or online activism, some state actors have poured significant 

resources into their cyber capabilities and can operate more sophisticated campaigns. In 

2012, the Shamoon virus deleted data from the hard drives of over 30,000 Windows 

machines on Saudi Aramco’s network; it was speculated that Iranian actors were 

responsible for the attack (Bronk & Tikk-Ringas, 2013). The Iranians themselves were 

victims of the earlier Stuxnet worm, which used multiple Microsoft Windows zero-day 

exploits and stolen digital certificates to modify the function of Siemens programmable 

logic controllers (Langner, 2013). This attack used two vectors, overpressure and rotor 

speed, to attempt to induce physical damage to Iranian centrifuges. In 2015, a cyberattack 

on three Ukrainian electricity distribution companies resulted in a loss of power for 

225,000 people, which the Ukrainian government blamed on Russia (Lee et al., 2016). 

Established powers like the United States have also integrated cyber operations into joint 
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military planning: In 2016, U.S. Cyber Command established Joint Task Force ARES to 

inhibit Islamic State cyber activities, supporting Operation Inherent Resolve (Martelle, 

2018).  

Cyberspace operations are defined in U.S. doctrine () as “the employment of 

cyberspace capabilities where the primary purpose is to achieve objectives in and through 

cyberspace” (U.S. Joint Chiefs of Staff, 2018, p. II-1). These capabilities are executed 

across three layers of the information domain: physical, logical, and cyber-persona. The 

physical layer includes physical network components and IT infrastructure that are 

represented by their geographic location. The logical layer describes an abstraction 

consisting of components that belong to the same network; physical location may vary. 

The cyber-persona layer represents the many digital identities that people maintain based 

on the roles they fulfill or their online behaviors. Cyber operations can be either offensive 

or defensive, and they involve actions to attack, defend, exploit, or secure networks or 

information systems. Cyberspace attack actions are executed to create effects in cyberspace 

or in the physical domain.  

Unlike other domains, the dynamic nature of cyberspace means that the opportunity 

to use or reuse cyberweapons may be limited, complicating cyber operations planning 

(Smeets, 2018). Cyber exploits are often considered to have a one-time capability with 

limited efficacy: After an exploit is deployed and subsequently detected, a patch (fix) will 

normally be quickly developed. Once this occurs, the underlying vulnerability is no longer 

available, and the exploit is ineffective. Therefore, cyberweapons that exploit software 

vulnerabilities are sometimes described as being transitory or perishable (Huntley, 2016; 

Smeets, 2018). According to Smeets, this concept of transitoriness differentiates 

cyberweapons from physical weapons, and because of this, planners must consider how 

and when to deploy cyberweapons and which targets should be prioritized.  

Even when it is not used, a cyberweapon may lose effectiveness over time, a trait 

called obsolescence that suggests that vulnerabilities have a finite life cycle (Huntley, 

2016). Obsolescence can occur when a vulnerability is disclosed by a third party or when 

code is updated that eliminates the vulnerability during software development (Ablon & 

Bogart, 2017). This creates an incentive to use a cyberweapon before it will no longer 
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provide desired effects (Huntley, 2016). While the window of opportunity may not 

disappear completely following disclosure of a vulnerability, once a patch is released, a 

rapid decline in the number of exploitable systems occurs (Frei et al., 2009), quickly 

diminishing the effectiveness of the exploit.  

A thorough understanding of the factors affecting perishability and obsolescence is 

necessary to predict how long a cyberweapon is likely to remain effective. This enables 

offensive planners to make decisions about which exploits to keep in inventory, when to 

deploy them, and their period of for reuse. Because we can measure the duration between 

each of the events associated with the software vulnerability life cycle, we can model the 

probability of survival from each event using survival analysis techniques, which will allow 

us to predict a cyberweapon’s period of usefulness (Izmiguzel, 2021). 

Previous research has studied the software vulnerability life cycle (Arbaugh et al., 

2000), the phases through which a vulnerability can progress. While later research has 

refined the life cycle and quantified the length of some phases, most studies have focused 

on the relationship between when vulnerabilities are disclosed and the development of 

patches or exploits (Frei et al., 2006; Shazad et al., 2020; Arora et al., 2010). Other studies 

(Frei et al., 2006; Ablon & Bogart, 2017) have examined the timeframe from discovery to 

disclosure. Several studies have also analyzed other factors that may affect the life cycle, 

including the effect of vulnerability severity on the time required for vendors to release 

patches, disparities in open versus closed-source vulnerability disclosure and patching 

(Shazad et al., 2020), and the effect of code familiarity and reuse in the discovery of 

vulnerabilities in newly released software (Clark et al., 2010).  

However, there has not been much effort to determine the total lifespan of a 

vulnerability from when it is created to when it is disclosed and patched. This is significant 

considering the extent of code reuse and legacy software (old software still used) today. It 

is also relevant to cyber operations planning because the remaining useful life of an exploit 

could then be estimated, informing risk versus gain calculations for deploying it.  

This thesis examines operating system vulnerabilities from the National 

Vulnerabilities Database (NVD) from 2018–2021. Because the Open-Source 



4 

Vulnerabilities Database (OSVDB) used in previous studies no longer exists (Kovacs, 

2016), different data sources were used, including vendor security bulletins, exploit 

databases, the NVD, and other public information pertaining to the creation, disclosure, 

and patching of vulnerabilities and the development of exploits. Chapter II describes 

previous research studying concepts of cyberweapons, the software vulnerability life cycle, 

and factors affecting the length of phases of the life cycle. Chapter III explains perishability 

and obsolescence, and their relationship to the software vulnerability life cycle, and 

introduces the datasets used in our analysis. Chapter IV describes the methods used for 

collecting data. Chapter V contains results and statistical analysis, while Chapter VI 

discusses the strategic implications of our results, and how they apply to planning for 

cyberspace operations.  
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II. RELATED RESEARCH 

A. OVERVIEW 

The purpose of cyberwarfare is to create desired effects, both in cyberspace and 

physically (U.S. Joint Chiefs of Staff, 2018). Due to the low cost of entry, many actors can 

do cyber operations. While the level of sophistication and complexity may vary between 

cyberattacks, there are several common steps that must be taken to execute an attack. 

According to a cyber kill chain model developed by Lockheed Martin (Hutchins et al., 

2011), the first steps in this process start with reconnaissance of the target to identify 

vulnerabilities and potential methods of entry. Once vulnerabilities have been identified, a 

suitable malware program must be obtained or developed to exploit the vulnerability.  

B. DEFINING CYBERWEAPONS 

Malware can be classified by the target operating system, target device, 

dependencies specific to that malware, how it propagates itself between devices, or the 

method by which malware is introduced to a target system (physical media, email, chat, 

URLs, file sharing services, or software vulnerabilities) (Elisan, 2015). The classes of 

malware derived from these characteristics include infectors, network worms, trojan 

horses, backdoors, remote-access trojans, information stealers, ransomware, scareware, 

fakeware, and greyware. Malicious programs may fall in multiple categories, and they may 

be further differentiated by their infection vectors and dependencies. While software 

vulnerabilities exploit bugs or flaws in software code, other infection vectors involve using 

otherwise legitimate software for malicious purposes. Malware dependencies are 

conditions on the target system for malware to execute, such as the operating system, 

virtualization, system settings, or software programs present such as a web browser. Other 

dependencies include timing-based or event-based conditions that trigger the execution of 

malicious software. Users can also be dependencies because some malware may require 

certain levels of privilege or access to execute. Still others, such as information stealers, 

may depend on specific files stored on the target system.  
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To define cyberweapons, Liles and Poremski (2015) combined the taxonomies for 

malware and weaponry to guide risk assessment and incident response. The increasing 

complexity and adaptability of malware has decreased the usefulness of behavioral 

characteristics as classification criteria. After behavior, each class was further classified 

based on “weaponess,” which represents the ability of a class to cause damage or harm; 

while this varied from one class to the next, it was found that all classes of malware include 

some deception to escape detection and survive. 

Defining cyberweapons from a legal perspective, Mele (2014) used the 

characteristics of context, purpose, and means (or tools). Context in cyberwarfare is 

conflict among actors where an advantage is obtained using information systems. This 

distinguishes cyber warfare from activities like cybercrime and clarifies the intent for dual-

use software or devices. The purpose requires that malware inflict damage to physical 

entities, or damage or deny use of the target’s information systems. Lastly, means requires 

that information systems or networks be the primary mode of attack. Putting these three 

elements together, Mele defines a cyberweapon as  

a part of equipment, a device, or any set of computer instructions, used in a 
conflict among actors both National and non-National, with the purpose of 
causing (directly or otherwise) physical damage to objects or people, or of 
sabotaging and/or damaging in a direct way the information systems of a 
sensitive target of the attacked subject. (p.61)   

C. THE SOFTWARE VULNERABILITY LIFE CYCLE 

Software vulnerabilities are common; it is estimated that 20 bugs occur per 

thousand lines of software code (Dacey, 2003). Not every bug is a vulnerability and not 

every vulnerability can be exploited. Several studies have focused on how software 

vulnerabilities are created, disclosed, exploited, and patched. 

Arbaugh et al. (2000) first proposed a life cycle model to describe the phases of a 

vulnerability in its lifetime, starting with birth and continuing through to discovery, 

disclosure, correction, publicity, scripting, and death. Vulnerabilities normally occur 

during software development. After software release, they are eventually discovered by 

motivated actors, whose goals may be either benevolent (white hats) or malicious (black 
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hats). Correction begins when the vulnerability is disclosed and its existence is revealed to 

a larger audience that includes the vendor, and patch development starts. Eventually, the 

public becomes aware of the vulnerability (publicity). As more people learn of the 

vulnerability, knowledgeable hackers develop exploits, and write and distribute executable 

scripts or other tools to use them. This allows actors with little expertise to use the exploits, 

increasing the number of malicious actors and therefore the number of attacks on unpatched 

systems. Finally, death of the vulnerability occurs when all affected systems have been 

patched or are removed from service due to replacement or retirement.  

Frei et al. (2006) describe a similar life cycle model with a timeline for discovery, 

disclosure, exploit availability, and patch release, which was developed for over 14,000 

vulnerabilities in the NVD for 1996–2006. The period between discovery (when a 

vulnerability is documented as being found) and disclosure (when a vulnerability has been 

analyzed and published publicly by trusted sources) is the zero-day state when the risk is 

greatest. While most vulnerabilities are disclosed quickly after discovery, since 2003 more 

than 20% of vulnerabilities were discovered at least 20 days before they were disclosed. 

When observing the cumulative distribution of the time required to develop an exploit 

relative to disclosure (texploit - tdisclosure), nearly 70% of exploit reports since 2001 were 

followed on the same day by vulnerability disclosures, and 95% of exploits were released 

within a month following disclosure. According to Frei et al., the large share of published 

exploits on the date of disclosure suggests that many vendors respond quickly to published 

exploits. Alternatively, they note that the 95% share of exploits published within a month 

following disclosure could mean that black hat actors are becoming more adept at reverse 

engineering.  

The cumulative distribution of the time required to develop a patch relative to 

disclosure (tpatch – tdisclosure) showed that since 2001 most patches were initially available 

on the date of disclosure (Frei et al., 2006). A comparison of the cumulative distributions 

for patch and exploit availability relative to the date of disclosure showed that the 

percentage of exploits that were available out to 300 days from disclosure exceeded the 

share of patches that were released, indicating that there is some post-disclosure risk of a 

vulnerability being exploited before a vendor can release a patch.   
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Shazad et al. (2020) expanded on Frei’s work, examining trends in exploit and 

patching behavior for 56,000 vulnerabilities from 1988–2013. Data was combined from 

the NVD, OSVDB, and the Frei study; the eight vendors with the most vulnerabilities were 

selected for analysis. As with previous work, the study focused on the dates for both exploit 

and patch availability relative to the date of disclosure (texploit – tdisclosure and tpatch - tdisclosure). 

Most exploits were first published on the disclosure date for the underlying vulnerability, 

and since 2004 that share has increased. This was attributed to the actions of security 

experts and other benign actors; the number of exploits available before disclosure 

appeared to be decreasing over time. For open-source vendors, more exploits were 

developed prior to the date of disclosure compared to closed-source vendors; Shazad et al. 

speculated that this is probably due to malicious actors taking advantage of the available 

source code. However, they observed that Microsoft and Apple products were more likely 

to have exploits published on or before disclosure, reflecting the ubiquity of the products 

and the divergent motivations for actors to develop exploits and disclose them. Across 

product lines, Windows and Firefox were exploited faster than their peers, as each showed 

a higher proportion of exploits released before disclosure.  

Regarding patching, closed-source vendors are faster at releasing patches (Shazad 

et al., 2020); over 70% of vulnerabilities were patched on or before the disclosure date, 

suggesting that for-profit companies provide more responsive product support. For 

vulnerabilities where both exploit and patch dates were available, a comparison of the two 

(texploit – tpatch) determined that 46% of exploits were released before the corresponding 

patch. This compares to 31.7% of vulnerabilities where patches preceded exploits, 

indicating that hackers were more successful at exploiting vulnerabilities before vendors 

patched them. However, this trend reversed in later years; in 2011, 77 percent of patches 

were released before the corresponding exploits. Across products, Microsoft and Sun 

Microsystems, respectively, patched Windows and Solaris vulnerabilities more quickly 

than hackers released exploits. Across vendors, only Oracle and Sun Microsystems patched 

more vulnerabilities before they were exploited than vice versa.  

Shazad et al. (2020) also found vulnerabilities in common between products of the 

same line (e.g., Windows) while finding comparatively few between vendors, such as 
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Linux products from Ubuntu, Red Hat, and Fedora. This suggests that vendors re-use much 

of their code in different products. By contrast, there were very few code similarities 

between vendors, even those based on the Linux kernel. Therefore, diversity across vendors 

can reduce the effects of specific vulnerabilities, while using multiple operating systems 

from a single vendor does not.  

1. Discovery 

Clark et al. (2010) observed a “honeymoon effect” where vulnerability discovery 

was delayed following product release, but intervals between successive vulnerability 

discoveries became smaller each time. By measuring version release and disclosure data 

for 30,000 vulnerabilities covering 700 software applications, they found that in 62% of 

cases, the interval from software release to the first vulnerability disclosure (p0) was longer 

than the interval separating disclosure of the second successive vulnerability (p1). The 

median honeymoon period was 110 days, while the Honeymoon ratio (p0:p1) was 1.54 

overall and 1.8 for major releases, reflecting smaller intervals for discovery of the second 

vulnerability.  

These results were unexpected; there should be more bugs in newer software, the 

number of bugs should diminish over time as they are patched, and the remaining bugs 

should be harder to find (Clark et al., 2010). Surprisingly, 77% of first-discovered 

vulnerabilities were in legacy code; they were present but undiscovered in earlier software 

versions, suggesting that many vulnerabilities have significant longevity and persist 

through multiple software versions. Ultimately, the honeymoon effect was attributed to 

hackers’ degree of familiarity with new software; as the software progresses through its 

life cycle, hackers become more familiar with its code and thus take less time to discover 

new vulnerabilities.  

2. Disclosure 

Arora et al. (2010) observed that vendors will patch a vulnerability more quickly 

once it has been disclosed. When this interval between vendor awareness of the 

vulnerability and patch release was measured for 420 vulnerabilities from the National 

Vulnerabilities Database, immediate disclosure resulted in significantly reduced delays in 
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patch releases (an average of 28 days versus 65 days for delayed disclosure). This was 

supported by subsequent statistical hazard modeling indicating that the immediate 

probability that a patch would be released was 2.5 times higher after disclosure. However, 

while immediate disclosure raises public awareness and may motivate the vendor to release 

a patch quickly to maintain its reputation and sales, it also allows malicious actors more 

time to create and deploy exploits before a patch is available. Delayed disclosure allows 

the vendor more time to develop a patch before increased exploitation, but vendors do not 

always act promptly to patch vulnerabilities before they are disclosed, which leaves them 

open for discovery by others. Unsurprisingly, more severe vulnerabilities had an increased 

rate of patching.  

3. Patch Adoption 

Some studies have examined how much users contribute to patching delays. Frei et 

al. (2009) identified patch update mechanisms, specifically auto-update, as a major factor 

in patching delays for four Internet browsers (Mozilla Firefox, Microsoft Internet Explorer 

(IE), Opera, and Apple Safari). Using samples from Google web server logs, user-agent 

fields in HTTP requests were parsed to extract browser and version data which were 

compared to version-release dates. Across all browsers, major updates (e.g., IE6 to IE7) 

were adopted more slowly except when released as an automatic upgrade or bundled with 

new software. Minor version releases for Firefox and Opera showed a high initial rate of 

adoption, with a rapid increase in the share of users running the new version, before 

slowing down. Firefox users, who could often install minor updates with only a single 

click, adopted patches more quickly; new versions reached 50% share in approximately 

three days. Opera users, who needed to manually download and install updates, required 

eleven days to reach majority share. However, because minor version updates are relatively 

frequent, the share of users operating the most up-to-date version never exceeded 80% for 

Firefox and 40% for Opera. 

Sarabi et al. (2017) studied update delays due to user negligence and patch-update 

mechanisms. Patch releases were tracked for 1,822 vulnerabilities affecting four products 

(Google Chrome, Mozilla Firefox, Mozilla Thunderbird, and Adobe Flash Player); 
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adoption was observed for over 400,000 users using the Worldwide Intelligence Network 

Environment (WINE) data. Predictably, longer patch delays resulted in more time spent in 

a vulnerable state. Across all products, an average user was in a vulnerable state more than 

half of the time, mostly due to user delay in applying updates, which accounted for greater 

than half of days in a vulnerable state for all products except Chrome (47.9%). However, 

users less often had long patch delays when the update was automated; the shorter patch 

delays with Chrome were attributed to the browser’s automatic updates. In contrast, Flash 

users had long patch delays because it required mostly manual downloads and installation.  

D. PERISHABILITY AND OBSOLESCENCE  

The software vulnerability life cycle assumes that most software vulnerabilities 

have a finite lifespan, after which patches are released, and the vulnerability becomes less 

prevalent. Smeets (2018) defines a trait of cyberweapons called transitoriness that 

describes how they are made less effective over time once the underlying vulnerability is 

recognized by or disclosed to the vendor. While this loss of effectiveness occurs in both 

conventional weapons and cyberweapons as adversaries develop countermeasures, the 

period in which this occurs is much shorter for cyberweapons: a patch can be deployed 

quickly. A unique feature also defines cyberweapon countermeasures: Once a vendor 

releases a patch, it is available to all users of the software. Therefore, using a cyberweapon 

may result in its ineffectiveness against future targets, especially when it causes highly 

visible damage. This discourages repeated use of a cyberweapon, since it will remain more 

useful if it is not known. Ultimately, actors must understand the tradeoff between present 

effects and future use, and they must develop plans that consider the quantity and quality 

of targets for present and future attack.  

Huntley (2016) considers the strategic effects of perishability and obsolescence as 

one factor in the balance between offensive and defensive advantage in cyberspace. 

Perishability refers to the prospect that cyberweapon use will reveal the existence of the 

underlying vulnerability and it will be patched, rendering the cyberweapon unavailable for 

future use. This creates an incentive to store exploits and creates a higher threshold for 

conflict in cyberspace. Obsolescence, which refers to the possibility that someone else may 
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discover and patch the same vulnerability (potentially without an adversary’s awareness), 

results in an incentive to use a cyberweapon, acting in opposition to perishability. Huntley 

describes the consequences of the interplay between these two factors; it may foster 

uncertainty regarding whether a cyberweapon will work, from both an offensive and 

defensive perspective. This uncertainty results in worst-case thinking that transitions into 

a cyber arms race.   

Though cyberweapon use may compromise its use against future targets, it is 

possible to increase the window of opportunity for reuse (period of successful reuse). Hall 

(2017) describes several factors that influence the window of opportunity. Some relate to 

characteristics of the target: Negligent system administrators may not promptly patch their 

systems or may turn off the auto-update, leaving systems vulnerable to attack. The 

EternalBlue, WannaCry, and Petya exploits were all derived from a vulnerability (MS 17–

010) that permits remote code execution, despite the existence of a patch to correct the 

vulnerability (Cybersecurity and Infrastructure Security Agency [CISA], 2018). According 

to Hall, other target characteristics that increase the window of attack opportunity are 

outdated signatures in antivirus software, vendor delays in releasing patches, and user 

susceptibility to social engineering. Hall describes how actors may also use persistence and 

detection evasion to increase exploit survivability. Persistence requires establishing an 

enduring presence on the host system or network and can be achieved by memory-resident 

attacks, executable injection, or privileged access through rootkits. Detection evasion can 

be accomplished through packing (Kang et al., 2007), encryption, or with sophisticated 

malware that is polymorphic or metamorphic and is therefore able to mutate either its 

decryption stubs or its body (You & Yim, 2010). Hall further states that evasion can also 

be aided by inserting exploits at various parts of the supply chain, effectively building the 

exploit into the product, and making it hard to remove. 

E. CONSIDERATIONS FOR CYBER OPERATIONS PLANNING 

Ablon and Bogart (2017) examined the cost and benefits of stockpiling zero-day 

exploits versus disclosing them to avoid compromise of friendly networks. They measured 

the life expectancy and collision rate (the rediscovery rate) for over 200 zero-day exploits 
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developed or obtained from 2002–2016. The exploit data was collected from an anonymous 

research group referred to as BUSBY that has relationships with nation-state actors; the 

dataset was therefore assumed to be representative of friendly nation actors and their 

stockpile, and it could also be used to infer a baseline for adversary stockpiles. They 

compared the data about the exploits and their underlying vulnerabilities against what was 

in the public domain. Using disclosure and patch data from public sources, as well as 

exploit data from the developers themselves, exploits were classified as either “living” 

(undisclosed) or “dead” (public awareness; it was either disclosed or patched), and the life 

expectancy, defined as the length of time from birth (initial discovery) to death (disclosure 

or patching), was determined. 40.1% of the vulnerabilities in the sample were found to be 

dead, while 38.2% were still undisclosed, including 6.3% that would never be patched 

because the software was no longer supported. The remainder were either eliminated by 

code refactor (10.1%), where updated software removed the vulnerability without 

disclosure, or the status was uncertain (11.6%). Using the subset of living and dead exploits 

for which discovery information was available, the average life expectancy of an exploit 

was estimated as 6.9 years, although this decreased to 1.4 years when the vulnerability was 

obtained from an external source. The bottom quartile of exploits was discovered and 

patched within 1.5 years, while the top quartile survived for at least 9.5 years. This contrasts 

with the relatively brief time to develop an exploit; 71% were developed in less than 31 

days.  

While the life expectancy of exploits was long, the collision rate (the rate at which 

discovered vulnerabilities are then discovered by others) was relatively small: The median 

rate was about 5.7% for a one-year period, meaning that only 5.7% of exploits would be 

re-discovered in a year (Ablon & Bogart, 2017). For a 90-day period, the median rate was 

0.87%. Because the collision rate is low, an adversary is unlikely to discover the 

vulnerability and exploit it. Therefore, there is less risk to friendly networks, reducing the 

pressure for them to disclose the vulnerability. However, Ablon and Bogart also observed 

that the longevity and low collision rate suggest that there may be little need to stockpile 

zero-day exploits, although it may be wise to hold a few in inventory for redundancy. 
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Because of the transitory nature of cyberweapons, Hall (2017) argues that cyber 

operations planning should be like planning for aircraft combat survivability, where 

probabilistic assessment of mission success or failure should be considered. If such an 

assessment determines that the exploit is likely to succeed and remain undetected, the 

weapon can be reused; however, if detection is likely, measures can be taken to increase 

survivability. If the exploit is detected, it can be reverse-engineered to determine what 

vulnerabilities are exploited and how its payload functions so that a patch can be developed. 

Several of the methods mentioned earlier can make this process more difficult, increasing 

the opportunity for re-use, and could affect the determination about whether to stockpile a 

weapon or use it.  

Smeets (2018) recommends prioritization of targets for cyberweapons based on the 

exploit’s current state in the software vulnerability life cycle. High-value targets should be 

attacked during the awareness delay, when only the exploit developer is aware of the 

vulnerability, to exploit the lack of countermeasures and maximize the odds of success. 

Once the vulnerability has been disclosed, but the vendor has not yet developed a patch for 

it (the patching delay), the attacker need not be as selective with targets; the effectiveness 

of the exploit will soon start to diminish. This period may be somewhat chaotic as other 

actors create and deploy their own exploits. Lastly, once a patch is released in the 

“adaptation delay,” targets are unpatched systems whose number gradually diminishes.   
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III. ASSESSING PERISHABILITY AND OBSOLESCENCE IN THE 
SOFTWARE VULNERABILITY LIFE CYCLE 

A. PERISHABILITY AND OBSOLESCENCE 

Cyber operations models, such as the Lockheed Martin cyber kill chain (Hutchins et 

al., 2011), generally begin by conducting reconnaissance of a prospective target. The 

objective is to get information about the target to identify potential vulnerabilities that can be 

used to develop and deploy exploits. However, a vulnerability that exists now may get 

patched in the future. The transitory nature of cyberweapons coupled with the easy 

availability of software patches means that cyberweapons lose effectiveness much faster than 

conventional weapons (Smeets, 2018). If a cyberweapon is used and its existence is 

discovered, such use may stimulate patch development and render it ineffective for future 

use; this is called “perishability” (Huntley, 2016). The software vulnerability life cycle also 

suggests that vulnerabilities have a finite lifespan (Arbaugh et al., 2000) and will eventually 

become obsolete regardless of whether they are used (Huntley, 2016).  

The concepts of perishability and obsolescence create opposing incentives for exploit 

use; perishability provides an incentive to avoid using an exploit because use would quickly 

result in the vulnerability being patched, while obsolescence provides an incentive to use an 

exploit because it may eventually be disabled (Huntley, 2016). In research of 200 exploits, 

Ablon and Bogart (2017) found that the rate of rediscovery for exploits in their dataset was 

5.76% annually; while this rate is relatively low, some risk is incurred when storing an exploit 

for an extended period. Another 10.1% of the exploits studied by Ablon and Bogart were 

eliminated through “code churn,” regular updates to software code that removed the 

vulnerability without formal disclosure.  

Once an exploit has been disclosed, the window of opportunity to use it begins to 

close, but it usually does not close completely (Smeets, 2018). Providing patches alone does 

not prevent an exploit from working because users do not always download and install them 

quickly enough, leaving their systems vulnerable to exploitation (Sarabi et al., 2017). For 

software programs, a high rate of patching occurs when patches are released (Frei et al., 

2009). After the initial burst, patching continues but the percentage of users that are patched 
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never reaches 100 percent. Therefore, exploits can still maintain some effectiveness even 

after patches are released. Forty-two percent of vulnerabilities were observed to be exploited 

after the vulnerability had been disclosed and a patch was released; sometimes several years 

later (Metrick et al., 2020). This often happens with legacy systems use, which is especially 

common in both government systems and industrial control systems (Harris, 2019; Johnson, 

2018). As of January 2021, an estimated 20% of PCs were still running Windows 7 (Warren, 

2021), for which Microsoft had ceased support in 2020, prompting a warning (Federal 

Bureau of Investigation, 2020).  

The software-vulnerability life cycle describes events that may occur during a 

vulnerability’s existence (Frei et al., 2010), as shown in Figure 1. Smeets (2018) identifies 

three delays in the cycle that affect the transitoriness of an exploit: awareness delay, patching 

delay, and adaptation delay. These delays correspond to periods in a vulnerability’s life cycle 

that incur gradually increasing levels of risk to the attacker that an exploit will not achieve 

desired effects due to patching and other countermeasures. Most research of the software-

vulnerability life cycle has focused on the length of these periods and their relationship to the 

time of exploit availability, usually beginning with the disclosure or discovery of the 

vulnerability (Frei et al., 2006; Frei et al., 2009; Ablon & Bogart, 2017; Shazad et al., 2020).  

 
Figure 1. The software vulnerability life cycle. The order of events may vary 

and some may not occur at all. Adapted from Frei et al. (2010). 

While disclosure and discovery are useful milestones to assess the timeliness of 

subsequent events such as patch release, they provide an incomplete model of the life cycle 

of a vulnerability because they do not consider when it was created. This information can 
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often be estimated using product or version release data for the software (Clark et al., 2010). 

Using this information, we could assess the probability of disclosure based on the age of a 

vulnerability, providing greater understanding of its obsolescence. This would factor into the 

risk versus gain considerations that cyberweapons planners must consider when matching a 

weapon to a target. Understanding the perishability of an exploit will also enable planners to 

determine the timespan for weapon reuse to prioritize targets.  

B. DATA COLLECTION REQUIREMENTS 

To model the lifespan of a vulnerability, we must quantify the duration from the 

creation of a vulnerability to its disclosure and patch release. This requires determining when 

vulnerabilities were created, perhaps in a previous software version; many operating systems 

often reuse code to save time and money when creating new products. However, this can 

also result in legacy vulnerabilities remaining in later software versions. Clark et al. (2010) 

found that 61% of vulnerabilities attributed to Windows Vista had carried over from previous 

Windows versions; 40% originated in Windows 2000, suggesting that vulnerabilities can 

persist undiscovered for long periods. Overall, 77% of the vulnerabilities in their study were 

also present in earlier software versions.  

To determine the lifespan of vulnerabilities, we needed to get the creation date of the 

earliest affected software version, as well as the disclosure and patch dates. We also needed 

data of the severity of vulnerabilities, and whether cyberweapon use affects the patch time. 

To measure cyberweapon use at scale, the thesis analysis assumed that published exploits are 

like zero-day exploits that have been deployed during cyber operations but were discovered 

and reverse-engineered by cybersecurity professionals. Therefore, by tracing exploits to their 

associated vulnerabilities, we could examine differences in patch development between those 

vulnerabilities that have a corresponding known exploit and those that do not. This required 

collecting data about published exploits for the vulnerabilities in a dataset.  

C. DEFINITIONS, DATA SOURCES, AND ASSUMPTIONS 

Following the software-vulnerability life cycle model, data was collected for four 

dates when possible: when a vulnerability was created (tcreation), when it was publicly 

disclosed (tdisclosure), when a patch was released by the vendor (tpatch), and when an exploit 
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was available for that vulnerability (texploit) (Frei et al., 2010). The discovery date, tdiscovery, 

was unavailable for all the databases used in the research for this thesis. Data from all sources 

needed to use CVE (“common vulnerabilities and exposures”) identifiers to distinguish 

vulnerabilities. We extracted the following parameters:  

• tcreation - the earliest date at which software containing the vulnerability was 

available for public release  

• tdisclosure - the date at which information about the vulnerability was made 

public  

• tpatch - the date on which a patch was released to address a vulnerability  

• texploit - the date on which when a functional exploit was created  

Our primary source for CVE identifiers was the NVD (https://nvd.nist.gov), from 

which we obtained 68,667 vulnerabilities for the years 2018–2021. This dataset spanned 

8,740 unique vendors and over 19,000 software product lines. Our analysis required data 

from individual vendors as well as manual data collection of some software information. To 

aid this, we limited data collection to vulnerabilities for the operating-system product lines 

of Windows, Apple (iOS, tvOS, watchOS, and MAC OS), Android, Google Chrome, and 

several Linux products (Red Hat, Fedora, Debian, Ubuntu, and the Linux Kernel). This still 

yielded a dataset of 10,912 vulnerabilities with which to work.  

For tcreation dates, we used the public release date for the earliest software version in 

the NVD containing the vulnerability. We did not include dates for beta releases (pre-

releases) because they are part of software development. For tdisclosure dates, we used the date 

when the vulnerability was published to the NVD, a public database. For tpatch dates, we used 

the vendor’s update release dates (Frei et al., 2006). Exploit data was collected from the 

Exploit Database (https://www.exploit-db.com); texploit dates were determined to be the date 

exploits were published (Nappa et al., 2015). If more than one date existed for a specific 

CVE identification number, such as when more than one patch was created for vulnerabilities 

affecting multiple products, we used the earliest date.  
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To assess perishability, we measured the time required following cyberweapon use 

for the exploit to be disclosed and patched. This period is the window of opportunity for 

reuse (Hall, 2017). Because the Exploit Database (Offensive Security, 2022) also publishes 

exploit code, published dates for texploit were assumed equivalent to deployment once it has 

been discovered by cyber incident response personnel and reverse-engineered. Notably, this 

does not include delays in discovery and reverse engineering; many techniques can extend 

this timeframe and the window of opportunity to reuse an exploit against subsequent targets 

(Hall, 2017).  

D. DATABASES 

1. National Vulnerabilities Database 

The NVD is a repository of reported vulnerabilities that is maintained by NIST (Nat. 

Institute of Standards and Technology [NIST], 2022). Stored vulnerabilities are indexed by 

their CVE IDs, which are maintained by the MITRE Corporation and assigned by MITRE 

and an international group of vendors and research personnel. The first four numbers in the 

CVE ID give the year in which it was issued, and the remaining digits give a serial number 

for the vulnerability. For example, the first CVE ID assigned in 2018 was CVE-2018-0001.  

Vulnerabilities are assigned by NIST a CVSS (common vulnerability scoring system) 

score measuring their severity using factors of the attack vector, complexity, level of 

privilege required, scope, and level of required user interaction (NIST, 2022). CVSS overall 

scores range from 0–10, which is used to determine the severity: critical, high, medium, or 

low. Vulnerabilities are also assigned weakness enumerators, which place the vulnerability 

in a family with similar attributes such as memory-buffer errors or exposure of sensitive 

information. Each CVE ID also has CPEs (“common product enumerators”) which identify 

the products that are vulnerable to that CVE. The format for the fields is specified by (NIST, 

2011), but at a minimum, a CPE must contain part, vendor, product, and version information 

to identify a unique set of products. We can estimate the date when a vulnerability was 

created using the release date of the earliest affected product version.  

NVD data is available for download in Extended Markup Language (XML) and 

JavaScript Object Notation (JSON) format; we used JSON files, which we read and parsed 
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in Python using the JSON module. We then extracted the data we needed such as CVE IDs, 

software and version data, and the date of publish.  

2. Vendor Security Bulletins 

We collected tpatch dates from vendor security bulletins or databases. Because CVE 

IDs are frequently used in cybersecurity, published security updates usually mention the 

CVE IDs that are corrected in the update. The vendors for the products in our dataset 

maintained central repositories for their security bulletins. 

We extracted this information with Python’s Scrapy module. Scrapy (Zyte, 2022) can 

design Web crawlers which navigate Web pages, follow links, and extract data from the 

Hypertext Markup Language (HTML) of each Web page. We also used the Selenium module 

(Selenium Project, 2022) to process dynamic Web pages that use JavaScript.  

3. Exploit Database 

To collect texploit dates, we used the Exploit Database, a public database of exploits 

created for penetration testing (Offensive Security, 2022). The database contains 

approximately 50,000 exploits, some of which are tagged by CVE IDs to identify the 

vulnerabilities they exploit. Because we had trouble using its data extraction capability 

Searchsploit, we again used Scrapy to crawl the database and extract CVE IDs and the dates 

exploits were published. 

4. Obtaining Version Release Information 

After creating a list of affected versions for each CVE ID, we exported the complete 

set of versions for each software product line to a CSV (comma-separated value) file. We 

then searched the Internet manually to find the version-release dates. While many release 

dates were available through vendor websites, some minor version-release dates were 

obtained through third-party sources such as blogs.  

  



21 

IV. METHODOLOGY 

A. PROCESS OVERVIEW 

Figure 2 outlines the steps required to retrieve the data needed to determine tcreation, 

tdisclosure, tpatch, and texploit, which let us measure the perishability and obsolescence in 

software vulnerabilities. After downloading the JSON files for the years 2018–2021 from 

the NVD, we parsed them to retrieve the vulnerability IDs and their attributes (here called 

the CVE index). We also extracted the NVD publishing dates (tdisclosure), CVSS scores, and 

the affected operating system products and versions to aid our analysis. We used the 

product and version data to search online for vendor release dates, which were later entered 

in our dictionary and would be used to determine tcreation. 

 
Figure 2. Data collection and analysis flowchart 

As shown in Figure 2, we also programmed Web crawlers to extract the patch and 

exploit-publishing dates from vendor websites and the Exploit Database. The data 

reduction process consolidated individual vendor data into one file, and resolved multiple 

entries with the same CVE IDs by using the earliest date given. We then inserted our 

creation, patch, and exploit data into the CVE index, and exported the completed dictionary 

to a CSV file. The completed dictionary was then converted to a Pandas data frame for 

statistical analysis. Pandas (Pandas Development Team, 2020) is a Python package that 

allows data to be imported or converted into indexed data frames, permitting data 
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manipulation, slicing, and filtering; it can also handle missing data and data in date-time 

format.  

B. PARSING JSON FILES 

The JSON-format file from the NVD lists vulnerabilities and their attributes, 

including their CVE ID, CVSS score, and product identifications (CPEs). Figure 3 shows 

the structure and attributes of one such file, as displayed by Mozilla Firefox. We developed 

a Python script jsonParse.py that uses Python’s JSON module to load the files, parse them, 

extract the necessary data elements, generate the vulnerability index, and export the data 

to CSV files. The process flowchart is shown in Figure 4. See Appendix A for the Python 

code.  

 
Figure 3. NVD JSON data, as viewed in Mozilla Firefox
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Figure 4. jsonParse.py data flow
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Initially, our Python script used the JSON module to load each file and convert the 

contents to Python data structures that can be queried. Figure 5 shows the JSON elements 

we extracted. JSON objects are imported as dictionaries into Python, but the depth of the 

NVD files resulted in several layers of nested dictionaries, and we had to work down each 

layer to retrieve the desired data elements. CVE IDs, CVSS scores, and publishing dates 

were relatively simple to handle. Extracting vendor, product, and version information 

required further processing and parsing of the CPE field. 

 
Figure 5. JSON file layers and extracted data elements 

1. Parsing CPEs 

Parsing the CPE product data enabled two things: We needed to determine if the 

product belonged in our dataset, and we needed the product and version data to extract 

software-release dates. The NVD cites alternative CPE specifications 2.2 and 2.3 to 

identify affected products; we chose CPE 2.3 to extract our data. (NIST, 2011) specifies 

that each CPE name consist of attribute-value pairs that describe its underlying product: 

The attributes we needed were part, vendor, product, and version. The pairs are represented 
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in the NVD as a string, with attributes separated by colons (see Figure 6). The part attribute 

has three classes: “h” (hardware), “o” (operating system), or “a” (application).  

 
Figure 6. CPE name and attributes 

Because each CPE product datum is a string, we could split it into its attributes at 

the colons. To determine if the product was in our dataset, we checked whether it belonged 

to the operating-system part class and if the vendor and product line were known vendors 

and product lines in our dataset. For product lines, we split the product value into words 

and assumed that the first word represented the product line (Figure 7).  

 
Figure 7. CPE name with product attribute split into product line and 

product 

2. Retrieving Version Strings 

Retrieving the strings for versions was more complicated because the NVD had two 

ways of indicating them. Sometimes the version attribute in the CPE contained a value, but 

for some vulnerabilities it was in a separate set of attributes in the JSON file (see Figure 

5). The latter indicated a range of affected versions; we used the earliest affected version 

for which we had data. 
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3. Building the Vulnerability Index Data Structure  

To build our initial vulnerability data structure, we used a Python nested dictionary; 

the key for each element in the dictionary was the CVE ID for that vulnerability. The value 

associated with it was another dictionary with the following key-value pairs: 

• CVSS score: the CVSS score for that vulnerability  

• t(disclosure): the date the CVE ID was published  

• Vendor: vendors with products that were affected by the vulnerability 

• Affected software: affected product lines 

• Versions: key-value pairs where product line is the key, and value is a list 

of all affected software versions 

• Keys for tcreation, tpatch, and texploit were created and assigned “N/A” values 

to be populated later. 

Using the csv Python module, we exported the product/version groupings for each 

product line to CSV files used to populate the version release dates. We also exported the 

CVE index to a CSV file for later processing.  

C. POPULATING CREATION, PATCH, AND EXPLOIT DATES 

For each product and version listed for a product line, we searched the Internet for 

the corresponding release date. We started by searching vendor websites; some, like 

Microsoft, kept a comprehensive set of release dates. Other vendor websites listed major 

version but not minor version releases such as a product being upgraded from 6.0 to 6.0.1. 

When the vendor website provided inadequate data, we searched blogs, bulletins, and other 

sources of information. If subsequent versions were affected, we used the release date for 

the first version dated after it.  
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1. Creation and Patch Dates 

Windows patch release dates were obtained from the Microsoft Security Response 

Center website (https://msrc.microsoft.com/update-guide). The exported CSV file included 

the vulnerabilities patched by each update. To get patch data for the other product lines, 

we used the Scrapy module (Zyte, 2022) to crawl the websites where vendors published 

their security bulletins. Scrapy retrieves specified HTML documents with “spiders,” 

queries their contents, follows links, and extracts desired data. The Python code is in 

Appendix B. Each website has a different structure, but generally the steps were (Figure 

8):  

1. Send HTML GET requests for the starting pages. 

2. Query the retrieved HTML file for security-bulletin links and the dates 

they were published. 

3. Iterate through the links and their publishing dates. If the date for a 

bulletin was within the scope of our dataset, the bulletin was retrieved. 

The spider ignored pages published before 2018.  

4. Query the HTML file for the bulletin and extract the CVE ID and 

publishing date. 

5. Export the vulnerability ID and publishing date to a CSV file. 

6. Navigate to the next page.  

 
Figure 8. Spider process for extracting CVE IDs and patch publish dates. 

This could vary based on the structure of the website.  
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Programming the spiders to query the HTML contents required first checking the 

target HTML pages; we used Mozilla Firefox’s Inspect function to determine which page 

elements contained the data we needed. Our first spider used the BeautifulSoup module 

(Richardson, 2015) to crawl the Google Chrome release blog 

(https://chromereleases.googleblog.com/), but our subsequent crawlers used Scrapy’s 

XPath selectors. While BeautifulSoup can query the contents of Google’s blog posts about 

patch releases, we found the XPath syntax better for querying the other pages. Many used 

multiple HTML elements such as tables without unique attributes, and only some contained 

data relevant to our analysis. XPath enabled more precise queries for our spiders.  

CVE IDs are widely used in security bulletins and software-patch updates to 

identify vulnerabilities that were corrected. For each bulletin, we extracted the date it was 

published (the patch release date) and any CVE IDs and wrote this to a CSV file for each 

vendor. For Fedora, which has an open-source development and update system 

(https://bodhi.fedoraproject.org/), we only used the date on which a build was declared 

stable as the patch date. Some websites were harder to crawl than others due to their 

structure. For example, Redhat used JavaScript on its customer portal which Scrapy cannot 

process by itself (3i Data Scraping, 2021). To handle this issue, we used the Selenium 

Python module (Selenium Project, 2022). Selenium is commonly used for web testing; it 

uses a “webdriver” browser engine (either Gecko or Chrome) to load pages which can 

handle JavaScript (3i Data Scraping, 2021). Using it with Scrapy, we could retrieve the 

page source code and query it as we did for the other spiders. For other websites, Scrapy 

erroneously treated some links as duplicates and filtered them out (Scrapy Developers, 

2022); we changed the setting within the spider to disable filtering.  

2. Exploit Dates 

To get dates that exploits were published, we first tried to use Searchsploit on an 

Ubuntu virtual machine; it retrieves data from the Exploit Database and can output to a 

JSON format (Offensive Security, 2022). However, the output listed the publishing date 

for all exploits as zero in epoch time (01/01/1970), which was obviously an error. So 

instead, we extracted the exploit publishing dates and associated vulnerabilities using the 
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same process as for patch data, by using another spider to crawl the Exploit Database 

website.  

Our spider encountered several problems. Initially, HTTP GET messages returned 

a code 403 (Forbidden) status code, which we corrected by adding Mozilla Firefox header 

data to the settings for our spider (Mamka, 2016). Once we got it crawling, the Web server 

sometimes spontaneously terminated the TCP (transfer control protocol) connection. We 

suspect that this was a response to the large volume of requests we were sending, which 

may have looked like a denial of service (DoS) attack. We fixed this problem by adjusting 

the spider settings to delay successive requests by one second, with the drawback that it 

took longer to crawl the database.  

When following links on the page, the Web server would sometimes redirect us 

back to the main page instead. This was possibly a JavaScript issue. We corrected this 

problem by using full page links (URLs). The page URLs on this site were identical except 

for the exploit serial numbers which were generally sequential integers, although some 

numbers were skipped. So we just tried to retrieve pages in numerical sequence, which 

worked because the spider would skip over pages generating an HTTP error code 404 (Not 

Found) response and move on to the next link.  

3. Data Reduction and Consolidation 

Following data extraction, we observed multiple entries with the same CVE ID, 

most likely due to multiple patches correcting the same vulnerability for different products. 

We removed the later such instances. We then consolidated the patch data into a single file 

using a Python script we wrote, dataReduction.py. The consolidated CVE index was then 

written to a master output file, yielding one CSV master file for patch dates and one for 

exploit dates.  

4. Aggregating Creation, Patch, and Exploit Data into the CVE Index 

The last step copied the creation, patch, and exploit dates to the CVE index, giving 

us tcreation, tpatch, and texploit using another Python script we wrote (integrateCVE.py). For 

patches and exploits, the script would read each row of our CSV master files into a list, 
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then iterate through that list and check if the vulnerability was in the CVE index. If it was, 

the associated date was assigned as either tpatch or texploit.  

Because the creation dates were assigned by product/version groupings and not by 

CVE ID, our Python script had to check if each product line and product/version grouping 

was listed for each vulnerability in the CVE index. If it was, and a tcreation value was not 

yet assigned, the creation date for that software version was assigned as tcreation for that 

vulnerability. If a tcreation value was already assigned, for those vulnerabilities in more than 

one product line or in more than one version within a product line, the earlier date was 

used. We also extracted CVSS scores to analyze differences between vulnerabilities based 

on their severity.  Finally, we exported the now-completed CVE index to a new CSV file.  

D. STATISTICAL ANALYSIS 

Once we accumulated and aggregated our data, we converted the Python dictionary 

to a data frame using the Pandas package. Pandas (Pandas Development Team, 2020), also 

called the Python Data Analysis Library, is a data analysis tool that provides ways to view 

and manipulate data including dates. This was ideal for our analysis, which needed to 

calculate the duration (the difference) between dates (such as tpatch-tdisclosure to find the 

duration from disclosure to patch release). To plot our results, we used the Matplotlib 

Python package. Matplotlib (Caswell et al., 2021) can display data in scatter plots, 

histograms, and cumulative distribution functions. 
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V. ANALYSIS OF RESULTS 

A. DATA ANALYSIS: ALL VULNERABILITIES  

We successfully collected 10,912 operating system vulnerabilities from the NVD. 

Because all vulnerabilities had publishing dates, we extracted tdisclosure for the entire set of 

vulnerabilities. Of these, we found tcreation for 7,893 vulnerabilities, tpatch for 8,860 

vulnerabilities, and texploit for 322 vulnerabilities. Once the data was aggregated into one 

CSV file, we imported it into a Pandas data frame with Python, which permitted us to 

calculate the duration between the dates to determine the lengths of the phases of their life 

cycles. The four durations we were interested in were the time to disclosure (∆cd),  the time 

to patch (∆dp), the time to exploit (∆de), and the longevity (∆cp). ∆cd represents the duration 

from tcreation until its tdisclosure, while ∆dp and ∆de are the durations from disclosure until 

patches and exploits, respectively, were published. ∆cp represents the total lifespan of a 

vulnerability, from tcreation to tpatch. Table 1 contains the statistics for each period for the 

dataset. 

Table 1. Vulnerability statistics - overall 

 
Vulnerabilities 

Observed 
Mean 
(days) 

Median 
(days) 

Standard 
Deviation 

25th 
Percentile 

75th 
Percentile 

Time to Disclose (∆cd)  
(tdisclsoure - tcreation) 7893 1697.72 1364 1334.21 708 2371 

Time to Patch (∆dp) 
(tpatch - tdisclosure) 8860 -11.35 -1 111.4 -14 8 

Time to Exploit (∆de) 
(texploit - tdisclosure) 322 -9.57 1 113.84 -23.75 7 

Longevity (∆cp) 
(tpatch - tcreation) 7275 1737.65 1410 1366.51 665 2600 

       

1. Longevity 

We first observed ∆cp using the subset of vulnerabilities for which we had both 

tcreation and tpatch. We found that the median lifespan of a vulnerability was 1,410 days, or 

approximately 3.86 years. We also found a high degree of dispersion among the values:  
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The bottom quartile was patched in less than two years (665 days), while the top quartile 

was patched after more than 7.1 years (2,600 days), which can be seen in the histogram 

(Figure 9). The CDF (Figure 10) shows that when an operating system was first released, 

over 70% of vulnerabilities were patched within the first five years (1,825 days). After that, 

the rate of patching slowed considerably.  

 
Figure 9. Vulnerability longevity (∆cp) histogram 
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Figure 10. Vulnerability longevity (∆cp) CDF 

Interestingly, 76 vulnerabilities had a longevity that was negative in that the patch 

was released before the product containing the vulnerability. Further examination of those 

vulnerabilities indicated that, in some cases, the patch was released by a developer to fix 

third-party software before the release of the affected operating-system version; the 

operating system was probably released with old, unpatched software installed or bundled 

with it. In other cases, multiple operating systems were affected by the vulnerability, but 

the date of earliest affected version was unavailable. Other cases could not be easily 

explained from the data in the NVD and in security bulletins from the operating system 

vendor; several of these cases involved the Fedora operating system.  

2. Kaplan-Meier Survival Analysis 

We used survival analysis to better understand the probability of a vulnerability 

reaching a specified longevity. Survival analysis is a form of statistical analysis that 
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measures the duration of time leading up to the occurrence of an event (Kleinbaum & Klein, 

2005). This method is often used for clinical studies in medicine but can be used for many 

other purposes, and it can handle censored data (where some but not all the data for all 

subjects has been observed), permitting us to include in our dataset those vulnerabilities 

that have not yet been patched (right-censored). The survival function 𝑆𝑆(𝑡𝑡)  =  𝑃𝑃(𝑇𝑇 >  𝑡𝑡) 

indicates the probability that an event (with survival time T) will occur after a specified 

time t. We used the Python Lifelines package (Davidson-Pilon, 2019) to plot the survival 

function for the dataset. The Lifelines package takes a Pandas data frame as input and fits 

the data to the survival function.   

We plotted the Kaplan-Meier curve (Kleinbaum & Klein, 2005) first because it is 

non-parametric (makes no assumptions about the data) (Ismiguzel, 2021). This curve is 

generated using a function known as the Kaplan-Meier estimator, which estimates the 

survival probability over a specified period (Lewinson, 2020). The formula for this 

estimator is  𝑆̂𝑆(𝑡𝑡) =  ∏ (1 −  𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

)𝑖𝑖:𝑡𝑡𝑖𝑖≤𝑡𝑡 , where di represents the number of events that have 

occurred and ni the number of surviving elements at time ti. Kleinbaum and Klein describe 

the probability of survival past time t as the product of the survival probability at each 

previous time an event occurs and the probability of surviving at time t, given survival up 

to time t. Applying this definition to our longevity data, the probability of a vulnerability 

surviving past time t using the Kaplan-Meier estimate is the probability of the vulnerability 

being patched at time t (given that it survived until time t), multiplied by the product of the 

survival probabilities of all vulnerabilities that were patched before it. The Kaplan-Meier 

curve for our data is in Figure 11.  



Figure 11. Kaplan-Meier survival curve for vulnerability longevity (∆cp), with 
95 percent confidence intervals 

The median survival time was 1,485 days, with a 95 percent confidence interval of  

1467 to 1517. That is higher than the 1,410 days observed using the uncensored data, 

suggesting that several vulnerabilities have remained unpatched for years, possibly because 

the software is no longer supported. The survival function shows a steep drop in the 

survival rate out to approximately 2,000 days; the probability a vulnerability will remain 

unpatched past this point is less than .35. Then the survival rate declines more slowly; at 

ten years (3,650 days), the probability of survival is still .18. This is consistent with what 

we observed in the CDF in Figure 10.  

3. Survival Analysis Using Parametric Functions

We also fit a parametric distribution model to our longevity data. We tried both a 

Weibull distribution (Reliasoft, 2002) and an exponential distribution (Zach, 2021) based 

on the shape of the CDF. The Lifelines package supported these parametric distributions, 

35 
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and like the Kaplan-Meier curve, data with missing parameters could be included, although 

we could only include vulnerabilities with positive longevity values. After plotting both 

CDFs against the CDF for the raw data, we determined that the Weibull distribution fit the 

best (Figure 12). A Weibull distribution has survival function 𝑆𝑆(𝑡𝑡) = 𝑒𝑒(−(𝑡𝑡𝜂𝜂)𝛽𝛽) and a 

probability density function 𝑓𝑓(𝑇𝑇) = 𝛽𝛽
𝜂𝜂

(𝑇𝑇−𝛾𝛾
𝜂𝜂

)(𝛽𝛽−1)𝑒𝑒(−(𝑇𝑇− 𝛾𝛾
𝜂𝜂 )𝛽𝛽), where β represents the shape, 

𝜂𝜂 represents the scale, and γ represents the location (Reliasoft, 2002). Figure 13 shows the 

survival function for the Weibull distribution we fit to our longevity data, with 𝜂𝜂 = 2033.55, 

β = 1.26, and γ = 0.  

 
Figure 12. Weibull CDF laid over longevity CDF  
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Figure 13. Weibull survival function for vulnerability longevity 

B. ASSESSMENT OF VULNERABILITY LIFE CYCLE PHASES 

Besides the overall lifespan of a vulnerability, we assessed the durations of three 

phases: time to disclose (∆cd, tdisclsoure - tcreation), time to patch (∆dp, tpatch - tdisclosure), and 

time to exploit (∆de, texploit - tdisclosure).  

1. Vulnerability Time to Disclosure 

We observed a median time to disclosure of 1,364 days (3.74 years) and a mean of 

1,697.72 days (4.65 years). As with the longevity results, the standard deviation was high 

(1,334 days), indicating considerable variability within the dataset. The bottom quartile of 

vulnerabilities would be disclosed in less than two years (708 days), while the top quartile 

would require more than 6.5 years (2,371 days). As shown in Figures 14 and 15, the 

histogram and CDF for the time to disclosure look like those for the longevity dataset, 
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indicating that a vulnerability will probably spend most of its life in an undisclosed (zero-

day) state.  

  
Figure 14. Histogram for time to disclose (∆cd) 
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Figure 15. CDF for time to disclose (∆cd) 

2. Vulnerability Time to Patch 

We next observed ∆dp using the subset of vulnerabilities with tpatch values and 

compared them to the date of disclosure. The median was -1 days and only 35.68 percent 

of patches were released after  disclosure. This suggests that white-hat hackers and security 

researchers often report vulnerabilities to vendors before disclosing them (“responsible 

disclosure”) (Sen et al., 2020). Some vendors provide bug bounties or other incentives to 

encourage this behavior, which gives them time to develop a patch before the vulnerability 

is disclosed (Microsoft, 2022).  

Most patches were released within weeks of the date of disclosure; the range of the 

middle quartiles (25th -75th percentile) was [-14, 8] days. This concentration near the 

disclosure time is clear in the histogram (Figure 16) and the CDF (Figure 17). However, 



40 

the data becomes more widely dispersed as the time before or after  disclosure  increases, 

resulting in a standard deviation of 111.4 days.  

      
Figure 16. Histogram for time to patch (∆dp) 
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Figure 17. CDF for time to patch (∆dp) 

3. Disclosure to Exploit Availability 

The data for vulnerabilities with known exploit dates was much smaller than the 

others; only 322 vulnerabilities in our dataset had them. While most patches were released 

on or before disclosure, the opposite was true for exploits; 58 percent of exploits were 

released after their vulnerability had been disclosed. As with time to patch, the histogram 

for ∆de (Figure18) shows that most exploits are published close to disclosure. The CDF for 

∆de (Figure 19) shows a steady rise in the share of exploits published until just before 

disclosure. Then a strong upward trend starts and more exploits are published.  
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Figure 18. Histogram for time to exploit (∆de) 
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Figure 19. CDF for time to exploit (∆de) 

Two reasons may explain why most exploits are released after disclosure. First, the 

type of actors that populate the Exploit Database include many who do vulnerability 

research and penetration testing (Offensive Security, 2022), white-hat actors willing to 

cooperate with vendors to privately disclose vulnerabilities. Second, many exploits are 

probably developed after disclosure of vulnerabilities with reverse engineering of patches 

(Frei et al., 2006).  

C. FACTORS THAT COULD AFFECT VULNERABILITY LIFESPAN 

We also examined some factors to determine if they affected the phases of the 

software vulnerability life cycle, resulting in a lifespan that differed from those of the 

overall dataset. These are also considerations for cyber-operations planning.  
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1. Known Existence of an Exploit 

We tried measuring the effect of having a known exploit on vendor patching, using 

data in the Exploit Database. We assumed that the reaction from vendors to exploits 

published by white-hat actors and penetration testers would suggest their response to 

malicious exploits. We would then determine how the discovery of an exploit by a victim 

impacted the time to patch, ∆dp, or the longevity, ∆cp. We considered only those 

vulnerabilities with exploits released before disclosure (∆de < 0). Of 116 vulnerabilities that 

met this criterion, 110 were patched, while six remained unpatched. However, we 

discovered that most vulnerabilities were still being patched before they were exploited; 

the median for ∆de was -81 days while the median for ∆dp was -101.5 days. It became clear 

that the data did not show what we were trying to measure. We tried considering only 

vulnerabilities where the exploit was released before the patch (∆de < ∆dp), but only 12 

vulnerabilities fit this criterion. All but one was disclosed within 20 days after the exploits 

were published; the delay in disclosure for the remaining exploit was 156 days. Therefore, 

we could not draw any conclusions about this issue.    

2. Observing Patching Behavior Where Coordination Is Unlikely 

We tried to determine how long it took vendors to react when a vulnerability was 

disclosed of which they were unaware. To measure this, we used the subset of 

vulnerabilities where ∆dp > 0. We assumed that for this subset of vulnerabilities, 

coordination between white hats and vendors was unlikely because a vendor would not 

want a vulnerability to be disclosed until they could develop and release a patch.  

We narrowed our dataset to 3,161 vulnerabilities where ∆dp > 0. The median time 

to patch was 18 days, while the mean was 57 days, so some vulnerabilities took a long time 

to patch after they were disclosed. As with longevity, we tried to fit a survival function to 

this dataset. Based on the shape of our model, the most likely distributions that might fit 

were exponential, pareto, and Weibull. Weibull was the best fit for this curve with β = .70, 

𝜂𝜂 = 42.48 and γ = 0; the survival function is shown in Figure 20 and the CDF overlay is 

shown in Figure 21. The median survival time was 25.09 days; there is a 50 percent chance 

a vulnerability will survive past this point.  
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Figure 20. Weibull survival function for time to patch where ∆dp > 0 

(uncensored data only) 
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Figure 21. CDF for time to patch (∆dp) overlaid with Weibull model CDF 

Unlike with longevity, this Weibull distribution model used only uncensored data 

because from a cyber-operations planner’s perspective, a deployed cyberweapon will most 

likely be patched once discovered. Therefore, it is more useful to understand the time it 

took for vendors to release patches when they felt they needed to do so, rather than 

considering those that were not patched.  

3. Vulnerability Severity 

We also sought to determine any significant differences in the software 

vulnerability life cycle based on the severity of a vulnerability. CVSS scores are segregated 

into four levels of severity: Low (0-3.9), Medium (4.0-6.9), High (7.0-8.9), and Critical 

(9.0-10.0) (NIST, 2022). Table 2 contains the statistical results for each level. We noticed 

that our dataset contained very few Low-severity vulnerabilities; this could be because they 

pose so little threat that many vendors do not bother to disclose them for inclusion in the 
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NVD. Most vulnerabilities were either Medium- and High-severity, although the 

population of Critical vulnerabilities was sizable. For most phases of the software 

vulnerability life cycle, the medians for each level were similar, except for ∆de, for which 

we had less data.  

Table 2. Vulnerability statistics – by CVSS severity 

Time to Disclose: tdisclsoure - tcreation 
Severity Number Observed Mean Std Dev Median 

Low 189 1592.93 1325.23 1270 
Medium 2876 1597.35 1237.21 1359 

High 4111 1800.33 1433.76 1375 
Critical 717 1539.63 1041.54 1375 

     
 Time to Patch: tpatch - tdisclosure 

Severity Number Observed Mean Std Dev Median 
Low 233 -6.66 139.68 0 

Medium 3237 -3.65 125.09 0 
High 4714 -16.81 98.33 -1 

Critical 676 -11.81 114.6 0 
     

Time to Exploit: texploit - tdisclosure 
Severity Number Observed Mean Std Dev Median 

Low 4 16.5 17.54 10 
Medium 64 33.7 151.79 4 

High 220 -21.91 102.68 1 
Critical 34 -14.21 85.47 1.5 

     
Longevity: tpatch - tcreation 

Severity Number Observed Mean Std Dev Median 
Low 164 1711.25 1390.29 1459 

Medium 2648 1636.21 1266.07 1405 
High 3877 1828.43 1457.67 1407 

Critical 586 1602.8 1108.97 1427 
 

The CDFs for longevity are shown in Figure 22; for approximately the first 1,500 

days, the CDFs track closely together, with over half being patched during that period, then 

they begin to diverge slightly. It seems that High-severity vulnerabilities were patched 

more slowly, and Critical-severity vulnerabilities were patched more quickly than the 
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others, although all four CDFs track closely to one another. When we collapse the severity 

levels from four to two (Low/Medium and High/Critical), as shown in Figure 23, we see 

the same pattern where vulnerabilities are patched at the same rate through approximately 

1,500 days before diverging. After 1,500 days, more severe vulnerabilities have slightly 

longer lifespans (are patched more slowly) than less severe ones, not what we expected. 

We had expected that more severe vulnerabilities would be discovered and patched faster 

due to the greater risk that they pose. This suggests they are harder to find and patch. 

 
Figure 22. Longevity CDFs by CVSS severity (four-level) 
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Figure 23. Longevity CDFs by CVSS severity (two-level) 

When we compared patching behavior (∆dp) by CVSS severity, the statistics were 

like the overall longevity data: The datasets for each level had large standard deviations. 

The medians were all similar and close to zero, indicating that at least half of the 

vulnerabilities were patched on or before their disclosure. Figure 24 shows the CDFs for 

∆dp at each severity level; little difference existed between them except for Low-severity 

vulnerabilities, for which a greater portion appeared to be patched before disclosure before 

falling below the other levels during the first 200 days after disclosure. However, we should 

note that the size of that subset was small (233 vulnerabilities) compared to the others.  
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Figure 24. CDF of time to patch by CVSS severity 

4. Operating System 

We grouped our product lines into four groups for analysis: Windows, Linux 

distributions, Apple products, and Android (Figures 25–28). Google Chrome had too few 

operating system vulnerabilities for any meaningful analysis; this is probably because it is 

based on an application, so most Chrome vulnerabilities are not classified as operating 

system vulnerabilities, even if they affect ChromeOS. We found that Apple operating 

system vulnerabilities had the shortest longevity: The median ∆cp was 737 days for Apple. 

Android was 909 days, Linux was 1,011 days, and Windows was over 10 years (3,654 

days). Less than 40 percent of Windows vulnerabilities were patched after 2,500 days (6.8 

years). In contrast, Apple and Android lacked any vulnerabilities whose lifespan exceeded 

1,400 days.  
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Figure 25. Longevity CDF – Android  
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Figure 26. Longevity CDF – Linux distributions 
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Figure 27. Longevity CDF – Apple  
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Figure 28. Longevity CDF – Windows 

A possible reason that vulnerabilities for Apple and Android have shorter lifespans 

is that they release major operating system versions more often than their counterparts. For 

example, Apple’s macOS 10.14 (Mojave) was released on September 24, 2018, but reached 

end-of-life in late 2021, a lifespan of only three years (Ng, 2022; Apple Inc., 2022). 

Vendors are unlikely to disclose vulnerabilities for products after they reach end-of-life 

because security support and software updates are no longer provided. Even if the 

vulnerability affects versions currently in use, a vendor is probably less likely to mention 

legacy versions when disclosing vulnerabilities.  

We also studied whether variations in patching behavior existed between each 

operating system group; the CDFs for ∆dp are shown in Figures 29–32. Apple, Android, 

and Windows each patched over 80 percent of their vulnerabilities before their disclosure 

date. What is noteworthy about Windows is that out of 2,138 vulnerabilities in the 
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Windows subset, all were patched on or before the date they were disclosed. In contrast, 

the Linux-based operating systems were much slower to patch their vulnerabilities. One 

reason could be that unlike with the other operating systems, Linux vendors rely heavily 

on community development and vulnerabilities must be disclosed to mobilize the 

developers to create a patch.  

 
Figure 29. CDF for ∆dp – Android 
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Figure 30. CDF for ∆dp – Linux distributions 
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Figure 31. CDF for ∆dp – Apple 
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Figure 32. CDF for ∆dp – Windows 
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VI. CONCLUSION 

A. OVERVIEW 

We successfully extracted dates for the creation, disclosure, patch, and exploitation 

of vulnerabilities associated with common operating systems. We used this data to 

calculate the lengths of software-vulnerability life cycle phases and plot survival functions 

for longevity and time to patch given that the patch was released after disclosure of the 

vulnerability. The median expected longevity for a vulnerability was 1,485 days (4.07 

years), based on the Kaplan-Meier estimator, and 25.09 days after disclosure, based on the 

Weibull model.  

Our median expected longevity was considerably shorter than previously found in 

work that measured the longevity of exploits (not vulnerabilities) and determined their 

median survival time to be 5.07 years and 6.9 years on average (Ablon & Bogart, 2017). 

This is noteworthy because the methods used in that study calculated longevity starting 

with the date of vulnerability discovery, not creation, and ending with public disclosure of 

the vulnerability. With parameters similar to those used in this thesis, the survival time 

would almost certainly be longer, and the difference between this thesis and previous work 

would be greater. This may be due to a lack of vendor data for legacy operating systems 

that have passed their end-of-life, which may make the vulnerability lifespans appear 

shorter.  

We also studied the effects of vulnerability severity and variations between 

operating systems. While previous work found that vendors patched higher severity 

vulnerabilities more quickly (Shazad et al., 2020), our results did not show that more severe 

vulnerabilities were disclosed or patched more quickly than those of lower severity. Our 

finding that open-source vendors (the Linux-based distributions) patched their 

vulnerabilities more slowly than closed-source vendors was also consistent with this 

previous research. However, Microsoft’s ability to patch all its Windows vulnerabilities 

before disclosure was a significant difference from prior findings. We also found that 

Windows and Linux vulnerabilities had higher longevity than Apple or Android. However, 



60 

this difference may be due to Apple and Android operating systems reaching end-of-life 

faster than Linux or Windows; the actual longevity could be longer if legacy versions were 

included. 

Our assumption that exploits published before disclosure were used in malicious 

software and cyberweapons was incorrect. We neglected to consider that cybersecurity 

experts and researchers populating the Exploit Database may also collaborate privately 

with vendors. Most exploits developed before disclosure were indeed patched before the 

exploits were published, indicating such coordination. When we tried to correct for this by 

reducing the dataset to only those vulnerabilities whose exploit publishing date was earlier 

than the patch release date, too few vulnerabilities remained for us to glean any useful data. 

We extracted some useful vendor response data using a part of the dataset for ∆dp that had 

positive values, although that method removed the effect of a known or discovered exploit, 

which could affect the time a vendor takes to release a patch.  

This thesis also only studied operating-system vulnerabilities. Our dataset did not 

include application or firmware vulnerabilities from the NVD (NIST, 2011). These may 

have different characteristics affecting their lifespans that would be important for cyber 

operations planners to be aware of when selecting an appropriate cyberweapon. Also, 

vendors for applications or firmware may patch at a different speed than operating system 

vendors, which would affect cyberweapon reuse.  

B. STRATEGIC IMPLICATIONS 

With the survival function and associated Weibull distribution for longevity, we 

can determine the probability of a vulnerability’s survival from the date it was first created. 

We can then assess what useful life it may have left. Using the survival function and 

associated Weibull distribution from time to patch after disclosure, we can also estimate 

the probability that a vendor will release a patch and thus assess the window for reuse.  

While perishability and obsolescence create incentives to stockpile and use 

exploits, our work provides some insight about which exploits to stockpile and for how 

long, diminishing the cyberweapon arms race that results from worst-case scenario 

planning (Huntley, 2016). Instead of purchasing or developing as many cyberweapons as 
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possible, a better approach would be to develop cyberweapons exploiting vulnerabilities 

early in their life cycle, and then plan to develop or acquire replacements when the 

vulnerability reaches a specified probability threshold of patching or obsolescence. The 

low likelihood that a vulnerability will be re-discovered by others (Ablon & Bogart, 2017) 

lends support to this approach. This can reduce costs in money, manpower, and time, 

although a well-resourced offensive cyber actor may still choose to stockpile as many 

exploits as possible. Besides obsolescence, actors can use the probability of survival after 

disclosure to assess perishability and establish a timeframe and priority for subsequent 

attacks.  

Determining the probability of survival of a vulnerability could create an incentive 

to use cyberweapons to exploit older vulnerabilities; this is a “use it or lose it” incentive 

associated with obsolescence (Huntley, 2016). While exploit development times have been 

observed to be relatively short (Ablon & Bogart, 2017), the process of finding new 

vulnerabilities or purchasing exploits from developers can be time-consuming and 

expensive (Smeets, 2018); Ablon and Bogart found that the typical market price for an 

exploit is in the $50,000 - $100,000 range. Therefore, poorly-resourced actors may have a 

greater incentive to use older exploits before they are patched because they may be unable 

to replace them.  

Another factor that could encourage use of a cyberweapon is whether an actor 

knows that a vulnerability will be patched soon. If most vulnerabilities are patched before 

disclosure, then the release of a patch is probably the first indication that a cyberweapon is 

becoming ineffective. Disclosure before patch release still offers a small window for a 

cyberweapon to be used, permitting some potential return on investment from its 

development. Then there would be a strong incentive to use a cyberweapon once it has 

been disclosed. If a vulnerability is not disclosed, the loss of that window encourages using 

a cyberweapon earlier in its life cycle. It is worth noting that some vendors are better at 

patching before disclosure than others. We found that Windows patched all its 

vulnerabilities on or before disclosure; in contrast, Linux vendors patched very few before 

disclosure, probably due to their open-source development model.  
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The wide variability in a vulnerability’s longevity (as indicated by large standard 

deviations) suggests that risk tolerance is a major factor when deciding when to use or 

replace a cyberweapon. Had most of the longevity values been clustered around the mean 

with smaller standard deviations, a long window of relatively low risk that a patch would 

be released would occur, followed by a short high-risk period. With a wider dispersion of 

longevity values, the risk is distributed over a longer duration, and this could mean a 

difference of several years. If risk tolerance dictates that cyberweapons be used or replaced 

before their vulnerabilities reach a 75 percent probability of survival, then the window of 

opportunity is 775 days from creation using our Weibull model. If actors can wait until 

there is a 25 percent probability, then the window of opportunity is 2,639 days. This would 

have significant implications not just for operations, but also for staffing and funding of 

new cyberweapon development and acquisition.  

 

 

C. APPLICATION TO CYBERSPACE OPERATIONS 

The Weibull distribution model fitted to our longevity data yielded a distribution of 

the probability that a vulnerability will survive past a specific number of days after its 

creation. This enables planners to predict a vulnerability’s obsolescence. Longevity was 

our primary metric for obsolescence because most vulnerabilities in our dataset were 

patched on or before the date they were publicly disclosed. This suggests that vendors are 

actively collaborating with and incentivizing white-hat and other security professionals to 

disclose vulnerabilities privately to them, then wait until a patch is released to disclose it 

publicly.   

For cyberspace-operation planners, this means they can assess the remaining useful 

life of a cyberweapon based on the probability associated with the survival function. This 

would be valuable when choosing cyberweapons, as a cyberweapon that exploits an older 

vulnerability that has less than a 50 percent probability of survival may be less desirable 

than one whose exploited vulnerability is fewer days removed from the date it was created. 

This is also useful for determining whether to develop a cyberweapon:  If operators find 
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that the survival function for an older cyberweapon shows a low probability of survival, 

they can prioritize development of new cyberweapons with similar effects. As mentioned 

earlier, risk tolerance is also a factor; lower risk tolerance means that planners would use 

cyberweapons earlier in their vulnerability’s life cycle and replace them more frequently. 

While a vulnerability’s severity did not seem to affect its life cycle, the operating 

system did. For example, a vulnerability in Apple operating systems will probably have a 

shorter lifespan than a vulnerability in Windows, so a cyber operations planner should use 

a cyberweapon targeting an Apple operating system earlier than they would a cyberweapon 

targeting Windows, and replacement cyberweapons should also be developed more often. 

Planners should also consider the vendor’s propensity to patch vulnerabilities before 

disclosure. Windows, Apple, and Android had many vulnerabilities patched before they 

were disclosed, but Linux did not. Therefore, there is less risk of obsolescence with a 

cyberweapon that targets Linux operating systems, as there will probably be more of a 

window to use it before a patch is released. 

However, the probability of survival is just one factor in selecting cyberweapons. 

Planners should also consider whether the target software and operating system are still 

receiving security support, or the likelihood the vendor would patch legacy software. We 

could not determine if the presence of a known exploit would affect the time it took a 

vendor to release a patch. However, we could develop a survival model for vulnerabilities 

where ∆dp > 0, which we assumed were vulnerabilities the vendor was unaware of before 

disclosure. The survival function in Figure 13 permits this. Planners can then determine 

the period within which they can redeploy that weapon after initial use, prioritizing their 

targets to maximize operational effect. For example, a planner may schedule subsequent 

cyberweapon use against high-value targets within the first 25 days after it is first deployed 

when the probability of survival is greater than 50 percent. After that point, when the risk 

of mission failure is greater, lower-priority targets or targets of opportunity could then be 

scheduled. Before any such operation, careful planning could determine what additional 

targets could be attacked, what priority is assigned to each, and whether hastening attack 

on these targets is consistent with operational objectives; there will inherently be trade-offs 

(Smeets, 2018).       
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D. FUTURE WORK 

Future work could measure the software-vulnerability phases of application or 

firmware vulnerabilities because they are also workable vectors for exploits that cyber 

operations planners could use. Determining the probability of survival for vulnerabilities 

that have been exploited also warrants further study due to its potential effect on 

cyberweapon reuse. Future work could also explore characteristics of different types of 

vulnerabilities that affect their longevity or the phases of their life cycles.  
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APPENDIX A. PYTHON SCRIPT FOR PARSING JSON FILES 

A. PROGRAM DESCRIPTION 

The Python program below (JSONParse.py) loads the specified set of JSON files 

downloaded from the NVD. It then converts them to Python nested dictionaries and parses 

them to extract the required data for each CVE entry, including the CVE ID, CVSS score, 

publishing date, and the affected software versions for each vendor and product line. If the 

CVE ID is within our desired dataset, it is added to the CVE Index. When this process is 

complete, the CVE Index is exported to a CSV file. Also, the index is broken up by product 

line, then exported separately to assess metrics for each operating system. Lastly, the 

complete set of affected software versions is exported to CSV files, one for each product 

line, which are used for populating software version release dates.  

B. SOFTWARE CODE 

######################################################################## 
# Program Name: JSONParse.py 
# Author: Michael Lidestri 
# Date of Publication: May 16, 2022 
#  
# Description: JSONParse.py opens four JSON files (years 2018–2021) from the NVD and  
# converts the contents to a Python nested dictionary. This dictionary is then used to  
# extract the vendor, product, version, publishing date and other required data. This  
# information is then inserted into a CVE index, cve_dict, which holds all CVEs. It also 
# generates the product/version information needed to manually search for creation dates.  
######################################################################## 
 
import json 
import csv 
from datetime import date, datetime 
import dateutil.parser as dparser 
 
####################### GLOBAL VARIABLES ############################ 
# These variables are used to parse, store, and export CVE information 
cve_dict= {}        # CVE Index where all CVEs and their data will be stored                    
os_list = [‘windows’, ‘chrome’, ‘iphone’, ‘macos’, ‘mac’, ‘enterprise’, ‘fedora’, \ 
         ‘android’, ‘tvos’, ‘watchos’, ‘debian’, ‘linux’, ‘ubuntu’] 
vendor_list = [‘canonical’, ‘microsoft’, ‘google’, ‘redhat’, ‘apple’, ‘linux’,\ 
             ‘fedoraproject’, ‘debian’] 
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# These variables are used to generate statistics about the dataset 
vers_master = {} 
vendor_master = set() 
vendor_dict = {}    #  
sw_dict = {} 
sw_master = set() 
no_cvss = 0 
count = 0 
######################################################################## 
 
def getVersion(vers_str): 
  # Determines if the version string contains version data or just filler characters. 
  # It returns a version only if there are alphanumberic characters and None otherwise.  
  res = any(chr.isalnum() for chr in vers_str) 
  if res: 
      min_vers = vers_str 
  else: 
      min_vers = None 
   
  return min_vers 
 
def getData(cpe): 
  # This function splits a CPE string into its components: part, vendor, affected  
  # software (product line), product, and version. See (NIST, 2011) for more details  
  # about CPE strings.  
  global vendor_master 
  global sw_master 
       
  cpe_list = cpe.split(‘:’) 
  part = cpe_list [2] 
  vendor = cpe_list [3] 
  sw_aff = cpe_list [4].split(‘_’) 
  vers_string = cpe_list [5] 
  product = sw_aff [1:] 
  new_sw = sw_aff [0] 
  sw_master.add(new_sw) 
  vendor_master.add(vendor) 
   
  return part, vendor, new_sw, product, vers_string 
 
def processJSON(data): 
  # Takes a JSON file (converted to Python nested dictionaries) and parses it. It  
  # extracts the CVE, CVSS Score, affected software product line, and version. If the  
  # data is part of the corpus we intend to use for research, it is placed in the CVE  
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  # Index (cve_dict). 
  global count 
  global cve_dict 
  global no_cvss 
  global other_count   
       
  for i in data [‘CVE_Items’]: 
      # Extract CVE, CPE data; create data structures for affected software 
      cve = (i [‘cve’][‘CVE_data_meta’][‘ID’]) 
      configs = i [‘configurations’][‘nodes’] 
      cpe_list = [] 
      vendor_set = set() 
      sw_set = set() 
      vers_dict = {} 
      in_corpus = False 
      in_sw = False 
       
      # Extract the publishing date, which will be t(disclosure), and CVSS score 
      publishedDate = i [‘publishedDate’][:10] 
      try: 
          cvss_score = i [‘impact’][‘baseMetricV3’][‘cvssV3’][‘baseScore’] 
      except: 
          cvss_score = ‘N/A’ 
          no_cvss +=1 
       
      # Extract product line and version data     
      for node in configs: 
          # if each node has a ‘children’ field, the following code runs data extraction 
          for index in node [‘children’]: 
              for number in index [‘cpe_match’]: 
                  if number [‘vulnerable’] == True: 
                      cpe = number [‘cpe23Uri’]  # This is the CPE string 
                      # Extract data from the CPE string 
                      part, vendor, new_sw, product, vers_string = getData(cpe) 
                      # If product is an operating system, extract software+version data 
                      if part == ‘o’: 
                          vendor_set.add(vendor) 
                          sw_set.add(new_sw) 
                           
                          if new_sw in os_list and vendor in vendor_list: 
                              in_corpus = True 
                          if new_sw in os_list: 
                              in_sw= True  
                                                        
                          # Check for varying sources of version data                     
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                          if ‘versionStartExcluding’ in number: 
                              version = str(‘>‘+number [‘versionStartExcluding’]) 
                          elif ‘versionStartIncluding’ in number: 
                              version = number [‘versionStartIncluding’]                         
                          else:  
                              version = getVersion(vers_string) 
                           
                          if version != None: 
                              product.append(version) 
                          prod_vers = ‘.’.join(product)   
                           
                          if new_sw not in vers_dict: 
                              vers_dict [new_sw] = set() 
                          vers_dict [new_sw].add(prod_vers) 
                           
          # if a node does not have a ‘children’ field, data extraction starts here            
          for index in node [‘cpe_match’]: 
              if index [‘vulnerable’] == True: 
                  cpe = index [‘cpe23Uri’] 
                  # Extract data from the CPE string 
                  part, vendor, new_sw, product, vers_string = getData(cpe) 
                  # If product is an operating system, extract software and version data 
                  if part == ‘o’: 
                      vendor_set.add(vendor) 
                      sw_set.add(new_sw) 
                      if new_sw in os_list and vendor in vendor_list: 
                          in_corpus = True 
                      if new_sw in os_list: 
                          in_sw= True  
                           
                      if ‘versionStartExcluding’ in index: 
                          version = str(‘>‘+index [‘versionStartExcluding’]) 
                      elif ‘versionStartIncluding’ in index: 
                          version = index [‘versionStartIncluding’] 
                      else:  
                          version = getVersion(vers_string) 
                       
                      if version != None:                                                 
                          product.append(version) 
                      prod_vers = ‘.’.join(product)   
                                               
                      if new_sw not in vers_dict: 
                          vers_dict [new_sw] = set() 
                      vers_dict [new_sw].add(prod_vers)  
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      # If part of our dataset, add to the CVE Index, if not already listed                
      if in_corpus: 
          if cve not in cve_dict:     
              cve_dict [cve] = {‘CVSS Score’ : cvss_score, ‘t(creation)’ : ‘N/A’,\ 
                               ‘t(disclosure)’: publishedDate, ‘t(patch)’ : ‘N/A’, \ 
                               ‘t(exploit)’ : ‘N/A’, ‘Vendor’ : vendor_set, \ 
                               ‘Affected Software’ : sw_set, ‘Versions’ : vers_dict} 
                          
      count+=1 
########################## MAIN FUNCTION ############################ 
 
if __name__ == “__main__”: 
  # Imports JSON files specified below from NVD (NIST, 2022) and converts them to  
  # Python dictionaries, which are then processed so data can be extracted and inserted  
  # into the CVE Index. When data has been extracted from all files, the CVE Index and  
  # compiled software/version data are exported to CSV files for further processing.  
   
  # Load JSON files and process (Canepa, 2019).  
  json_file_list = (‘nvdcve-1.1-2021.json’, ‘nvdcve-1.1-2020.json’, \ 
                    ‘nvdcve-1.1-2019.json’, ‘nvdcve-1.1-2018.json’) 
   
  for file in json_file_list: 
      json_file = open(file, encoding=‘utf8’) 
      json_data = json.load(json_file)  
      processJSON(json_data) 
      json_file.close() 
   
  #  Write CVE Index to CSV file (GeeksforGeeks, 2022).    
  with open(‘cve_prelim_results.csv’, ‘w’) as csvfile: 
      fields = [‘cve’, ‘cvss score’, ‘vendor’, ‘affected software’, ‘versions’, \ 
                ‘t(creation)’, ‘t(disclosure)’, ‘t(patch)’, ‘t(exploit)’] 
      writer = csv.DictWriter(csvfile, fieldnames = fields) 
      writer.writeheader() 
           
      for item in cve_dict: 
          line = {‘cve’: item, ‘vendor’ : cve_dict [item][‘Vendor’], \ 
                  ‘affected software’ : cve_dict [item][‘Affected Software’], \ 
                  ‘versions’ : cve_dict [item][‘Versions’], ‘cvss score’ : \ 
                  cve_dict [item][‘CVSS Score’], ‘t(creation)’: \ 
                  cve_dict [item][‘t(creation)’], ‘t(disclosure)’ : \ 
                  cve_dict [item][‘t(disclosure)’], ‘t(patch)’: \ 
                  cve_dict [item][‘t(patch)’], ‘t(exploit)’: cve_dict [item][‘t(exploit)’]} 
           
          writer.writerow(line)    
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  # Break out CVE Index by operating system for product specific calculations later,  
  # export to CSV file (GeeksforGeeks, 2022).  
  for os in os_list: 
      with open(str(os)+’_prelim_results.csv’, ‘w’) as file: 
          fields = [‘cve’, ‘cvss score’, ‘vendor’, ‘affected software’, ‘versions’, \ 
                    ‘t(creation)’, ‘t(disclosure)’, ‘t(patch)’, ‘t(exploit)’] 
          writer = csv.DictWriter(file, fieldnames = fields) 
          writer.writeheader()             
           
          for item in cve_dict: 
              if os in cve_dict [item][‘Affected Software’]: 
                  line = {‘cve’: item, ‘vendor’ : cve_dict [item][‘Vendor’], \ 
                          ‘affected software’ : cve_dict [item][‘Affected Software’], \ 
                          ‘versions’ : cve_dict [item][‘Versions’], ‘cvss score’ : \ 
                          cve_dict [item][‘CVSS Score’], ‘t(creation)’: \ 
                          cve_dict [item][‘t(creation)’], ‘t(disclosure)’ : \ 
                          cve_dict [item][‘t(disclosure)’], ‘t(patch)’: \ 
                          cve_dict [item][‘t(patch)’], ‘t(exploit)’: \ 
                          cve_dict [item][‘t(exploit)’]}                 
                  writer.writerow(line)  
   
###################### GET PRODUCT/VERSION DATA #################### 
  # This portion of the main function extracts vendor, software, and version data; it  
  # then exports the data to individual CSV files for each vendor. It then calculates  
  # and prints some statistics for the dataset.  
  vendor_count = 0 
  multi = 0 
  corpus_count = 0  
   
  # Generate totals for number of vendors, products, versions 
  for item in cve_dict: 
      counted = False 
      vendors = cve_dict [item][‘Vendor’] 
      software = cve_dict [item][‘Affected Software’] 
      versions = cve_dict [item][‘Versions’] 
      if len(vendors) > 1: 
          multi +=1 
      for vendor in vendors: 
          if vendor not in vendor_dict: 
              vendor_dict [vendor] = 0                 
          vendor_dict [vendor] += 1 
          vendor_count += 1 
                
      for sw in software: 
          if sw not in sw_dict: 
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              sw_dict [sw] = 0 
          sw_dict [sw] += 1 
          if sw in os_list and counted == False: 
              corpus_count += 1 
              counted = True 
                   
      for program in versions: 
          if program not in vers_master: 
              vers_master [program] = set() 
          for version in versions [program]: 
              vers_master [program].add(version) 
   
  # For each operating system, extract the set of products/versions associated with CVEs 
  # in the dataset, and export them to a CSV file for further processing  
  # (GeeksforGeeks, 2022). 
  for index in os_list: 
      rows = [] 
      if index in vers_master: 
          with open(index+’.csv’, ‘w’) as file: 
              for unit in vers_master [index]: 
                  row = [unit] 
                  rows.append(row) 
              write = csv.writer(file) 
              write.writerows(rows)  
          file.close() 
    
  # Print statistics for dataset 
  print(‘Number of CVEs: ‘, count) 
  print(‘Number of Vendors: ‘, vendor_count) 
  print(‘CVEs Affecting more than one vendor:’, multi) 
  print(‘Number of Unique Vendors: ‘, len(vendor_master)) 
  print(‘Number of Unique Software: ‘, len(sw_master)) 
  print(‘Corpus Count: ‘, corpus_count) 
  print(‘CVEs with no CVSS: ‘, no_cvss) 
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APPENDIX B. SCRAPY SPIDER EXAMPLE 

A. PROGRAM DESCRIPTION 

The Python program below is an example of a spider we used to scrape patch and 

exploit dates for CVE IDs. The spiders rely on central files generated by the Scrapy module 

when the crawler is created. While each spider is unique, each one loads the HTML page 

specified in the start URL, parses it for links to follow to security bulletins, and loads those 

pages, from which it extracts CVE IDs and publishing dates.  

B. SOFTWARE CODE 

########################################################################
# Program Name: ubuntu_patches.py 
# Author: Michael Lidestri 
# Date of Publication: May 16, 2022 
#  
# This program is a spider based off the Scrapy module (Zyte, 2022). The spider class was  
# generated by Scrapy and leverages settings and middleware files that are also generated  
# by the Scrapy package. We customized the spider to crawl the desired webpages and  
# extract the data we needed. (Jabeen, 2019) is an excellent tutorial we used to learn how 
# to create a webcrawler and spiders in Scrapy. For XPath guidance, see (Scrapy  
# Developers, 2022), which we used to build our queries.  
# 
# Description: Starting from the start URL, retrieves the HTML page, parses it for links to 
# security bulletins, then creates new requests to retrieve those HTML pages, with a call  
# to the getCVE() function which extracts the patch date and CVE ID. Yields a CVE ID  
# and  patch date, which are exported to the CSV file specified under custom_settings. 
######################################################################## 
 
from datetime import date, datetime 
import dateutil.parser as dparser 
from ..items import PatchItem 
 
class UbuntuPatchesSpider(scrapy.Spider): 
  name = ‘ubuntu_patches’ 
  allowed_domains = [‘ubuntu.com/’] 
  start_urls = [‘https://ubuntu.com/security/notices/’]     
  custom_settings= { ‘FEED_URI’: “ubuntu_patches.csv”} 
 
  def parse(self, response): 
      # Parses an HTML file; in this case it is the index page with links to security  
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      # bulletins. Retrieves all links and creates new GET messages to retrieve pages. Calls    
      # getCVE() function for all subsequent pages.        
      min_date = date(2018, 1, 1)        
       
      # If website articles have dates within the cutoff for the dataset, yield a HTTP  
      # request and pass to getCVE() to extract data. Dates extracted using dateutil  
      # package (Niemeyer, 2019).  
      posts = response.xpath(“//div [contains(@class, ‘col-9’)]/article”) 
      for post in posts: 
          post_date = post.xpath(‘p [1]/text()’).get() 
          extracted_date = dparser.parse(post_date, fuzzy=True) 
          ext_date_adj = date(extracted_date.year, extracted_date.month,\ 
                              extracted_date.day) 
           
          if ext_date_adj >= min_date: 
              link = post.xpath(“h3/a/@href”).get() 
              yield response.follow(url=link, callback=self.getCVE, dont_filter=True) 
               
      if ext_date_adj >= min_date: 
          url = response.xpath(“//div/ol/li/a [contains(@class, \ 
          ‘p-pagination__link--next’)]/@href”).get() 
          yield scrapy.Request(response.urljoin(url), callback=self.parse,\ 
                               dont_filter=True)  
           
  def getCVE(self, response): 
      # Parses an HTML file to extract the CVE and the patch publishing date. Yields a  
      # dictionary consisting of CVE ID and patch date. Ensures only stable updates are 
      # used.         
      prefix = “CVE-” 
       
      # Extract patch date with dateutil package (Niemeyer, 2019)  
      rel_date= response.xpath(“//div [contains(@class, ‘col-12’)]/p [1]/text()”).get() 
      ext_date = dparser.parse(rel_date, fuzzy=True) 
      new_ext_date = date(ext_date.year, ext_date.month, ext_date.day) 
      formatted_date = new_ext_date.isoformat() 
       
      # Extract CVE IDs and export with patch date to CSV file 
      div_entries= response.xpath(“//div [contains(@class, ‘col-8’)]/\ 
      ul [contains(@class, ‘p-list’)]/li [contains(@class, ‘p-list__item’)]/a/text()”).getall() 
      for entry in div_entries: 
          item = PatchItem() 
          if prefix in entry:  
              item [‘cve’] = entry 
              item [‘pdate’] = formatted_date 
              yield(item)         
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