
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-06

OPTIMIZING INTELLIGENCE, SURVEILLANCE,
AND RECONNAISSANCE INPUTS FOR THE
SYNTHETIC THEATER OPERATIONS RESEARCH MODEL

Warner, Steven M.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/70780

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

OPTIMIZING INTELLIGENCE, SURVEILLANCE, AND 
RECONNAISSANCE INPUTS FOR THE SYNTHETIC 

THEATER OPERATIONS RESEARCH MODEL 

by 

Steven M. Warner 

June 2022 

Thesis Advisor: Johannes O. Royset 
Second Reader: Ruriko Yoshida 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2022

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
OPTIMIZING INTELLIGENCE, SURVEILLANCE, AND
RECONNAISSANCE INPUTS FOR THE SYNTHETIC THEATER
OPERATIONS RESEARCH MODEL

5. FUNDING NUMBERS

6. AUTHOR(S) Steven M. Warner

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
We consider the task of a mission planner for a unit charged with conducting intelligence, surveillance,

and reconnaissance (ISR) on an area of operations in a theater-level conflict for enemy combatants using 
the Synthetic Theater Operations Research Model (STORM). This relies upon effective intelligence 
planner inputs regarding revisit interval and sensor resolution for enemy combatants. Further 
complicating the problem is that the entire area of operations (AO), encompassing large geographical 
expanses, must be searched within the mission’s time constraints. Mission planning to coordinate the 
search assets and cover the search area while meeting intelligence inputs has proven to be difficult, often 
producing infeasible solutions. We present a mixed-integer linear program that effectively prescribes plans 
for assets to search optimally in the AO. The program is applicable, implementable, and adaptable to 
STORM’s settings across all campaigns and produces an average of 54.6% and a median of 22.8% 
improvement in search coverage relative to existing heuristics. 

14. SUBJECT TERMS
optimal search, STORM, Synthetic Theater Operations Research Model, intelligence, 
surveillance, reconnaissance, ISR, mixed-integer linear program, sensor allocation, sensor 
optimization

15. NUMBER OF
PAGES

81
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

OPTIMIZING INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE 
INPUTS FOR THE SYNTHETIC THEATER OPERATIONS RESEARCH 

MODEL 

Steven M. Warner 
Major, United States Marine Corps 
BS, Purdue University Global, 2008 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 2022 

Approved by: Johannes O. Royset 
Advisor 

Ruriko Yoshida 
Second Reader 

W. Matthew Carlyle
Chair, Department of Operations Research

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

We consider the task of a mission planner for a unit charged with conducting 

intelligence, surveillance, and reconnaissance (ISR) on an area of operations in a 

theater-level conflict for enemy combatants using the Synthetic Theater Operations 

Research Model (STORM). This relies upon effective intelligence planner inputs regarding 

revisit interval and sensor resolution for enemy combatants. Further complicating the 

problem is that the entire area of operations (AO), encompassing large geographical 

expanses, must be searched within the mission’s time constraints. Mission planning to 

coordinate the search assets and cover the search area while meeting intelligence 

inputs has proven to be difficult, often producing infeasible solutions. We present a 

mixed-integer linear program that effectively prescribes plans for assets to search 

optimally in the AO. The program is applicable, implementable, and adaptable to 

STORM’s settings across all campaigns and produces an average of 54.6% and a 

median of 22.8% improvement in search coverage relative to existing heuristics. 
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Executive Summary

We consider the case of using sensors on satellites to distribute looks to a geographic area 
discretized into grid cells. It is important to look in all grid cells at least once to see the entire 
area of operations; hence, we would like to initially obtain maximum coverage. Second, we 
would like to revisit high-priority grid cells with any extra looks. A sensor produces a two-
dimensional strip in which it can look for grid cells during each pass over the geographic 
area which we refer to as a swath. The resolution we use to look at grid cells determines the 
budget of looks. We can choose to use a high resolution which gives us fewer looks with 
finer detail, or a low resolution which gives us more looks with coarse detail. This gives us 
the choice of looking at a few places accurately, or looking at many places inaccurately.

This thesis is motivated and developed in close collaboration with the J8 directorate which 
is part of the joint staff in the Pentagon. The J8 advises the Chairman Joint Chiefs of 
Staff (CJCS) on force structure, resources, and assessment. This problem has been distilled 
down to a general intelligence, surveillance, and reconnaissance (ISR) problem but extends 
to the real problem the J8 is experiencing in the theater-level campaign model called STORM. 
STORM uses a heuristic to determine which grid cells receive looks. The STORM heuristic 
tends to produce undesirable results where large areas of interest are ignored. We would 
like to improve on the grid cell coverage that the search assets are able to perform.

In this thesis we formulate a novel, large-scale, mixed-integer optimization model for 
outperforming STORM’s heuristic for ISR search. The model, referred to as SOM, penalizes 
the number of swaths since the last look at each grid cell using a gap index. We want to 
avoid collecting these penalties which drives us to revisit grid cells. The objective function 
minimizes this penalty for incurring gaps. We use several constraints to maintain, reset and 
track the gap counter, a soft constraint for visiting all grid cells, and a constraint to impose 
a minimum resolution on grid cells. A unique feature of SOM is that it is event driven with 
swaths passing over the battlespace and is not based on time. SOM uses actual STORM 
data with over 1,300 lines of code consisting of data collection in R, processing in Python, 
and model implementation in Pyomo.

We implement the model on the unclassified Punic21 scenario in STORM. There are two

xv



combatants in this scenario: Red and Blue. We can implement SOM from either point of 
view and each combatant produces their own variables and constraints. To illustrate SOM’s 
large scale, in Punic21 with Red searching Blue grid cells and optimizing over 92 swaths, 
which correspond to a 48 hour period, we have over 25 million variables and 15 million 
constraints.

Case studies center both on the computational and operational results. The computational 
results demonstrate that we can reduce runtime by implementation of different options in 
International Business Machines ILOG CPLEX Optimization Studio (CPLEX)’s algorithm. 
The most significant option is providing a warm start using the worst possible solution of 
no looks occurring. For instance, when we run SOM on a single processor with over 2 
million variables and 1 million constraints with default CPLEX options, it takes over 1,400 
minutes and does not produce a solution. We identify tailored CPLEX options that reduce 
runtime and solve this instance in less than 5 minutes. This allows us to increase the 
size of the problem to over 22 million variables and 11 million constraints and achieve 
an 11% optimality gap in less than 50 minutes. Operational case study results show that 
SOM provides an average of 54.6% and a median of 22.8% more coverage compared to 
STORM. Additional options, native to SOM and not capable in STORM, ensure that SOM 
will outperform STORM to quickly reach maximum coverage and subsequently focus 
on allocating looks to the most important grid cells.

We see that the optimization model outperforms STORM’s heuristic based on the operational 
results and allows us to balance the search of all cells, while the heuristic has a tendency to 
focus on important cells. SOM directs satellites where to look to allow a visit to each grid 
cell and avoid large revisit gaps compared to STORM’s heuristic redundantly searching the 
same grid cells.
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CHAPTER 1:
Introduction

Military organizations throughout the globe strive to search large geographic areas for
enemy combatants using an efficient and comprehensive search plan that makes best use of
search assets. This task has proven challenging when suboptimal search plans are formed,
which commonly result in large, unsearched geographic regions and inefficient use of search
assets.

1.1 Problem Overview
We consider the task of a mission planner charged with conducting intelligence, surveillance,
and reconnaissance (ISR) using satellites on an enemy combatant over a geographic area.
The geographic area is divided into grid cells, with each grid cell assigned a value indicative
of how often it needs to be searched. The planner has sensors on satellites that orbit the
earth in an elliptical manner. During each pass over a geographic area, a sensor can look for
objects in a two-dimensional strip, which we refer to as a swath; see Figure 1.1. However,
only a portion of a swath can be looked at if the sensor were to produce high-resolution
images. A mission planner would need to make a constrained decision about which grid
cells within a swath should be looked at and with what resolution. The size of the geographic
area and the multitude of sensors and possible resolution levels complicate the problem.
The geographic area can include two or more continents and span millions of square km.
Multiple satellites orbit the battlespace numerous times over a given time period. Each of
these satellites has several sensors. With thousands of grid cells and hundreds of assets,
a standard formulation as an optimization problem produces variables and constraints that
number in the millions. A mission planner would typically like to search all grid cells at
least once and then maximize the detection of enemy combatants by either revisiting grid
cells and/or increasing resolution, all within a set period of time. We define this issue as
sensor allocation problem (SAP). A heuristic approach to SAP would have difficulties with
producing a sensor allocation plan that searches all grid cells. There might be a tendency
to over allocate to certain grid cells and under allocate to others, use too high or too low
resolution levels, or too long or too short revisit intervals. This heuristic approach can leave
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large areas unsearched and has detrimental second and third order effects on the battlefield.
The suboptimal search in this case has no chance of discovering enemy combatants in
unsearched regions and leaves them free to operate unrestricted during a campaign.

Figure 1.1. Swath depiction. Source: Earth Imaging Journal (2015).

We present Sensor Optimization Model (SOM) which prescribes optimal plans for utilizing
ISR assets and solving SAP. In particular, SOM ensures that a sensor looks at each grid cell
at least once, if feasible, and the important grid cells are revisited as often as possible. Given
all grid cells with different increasing priority based upon the last time the cell received
a look, SOM directs where the sensors should look on each pass of the battlespace. We
implement SOM in the context of the campaign simulation tool Synthetic Theater Operations
Research Model (STORM) and demonstrate that the obtained search plans outperform those
generated by STORM’s heuristic algorithm.
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1.2 Literature Review
SAP shares similarities with the orienteering problem (OP) as well as multi-agent search
problems, both of which are studied extensively. Tsiligirides (1984) introduces the OP where
competitors use land navigation to race to visit checkpoints. Competitors seek to maximize
their score by visiting as many checkpoints as possible within the allotted time, often
referred to as a score orienteering event (Tsiligirides 1984). In its most basic form, the OP
combines node selection with shortest path and relates to both the Knapsack and Travelling
Salesman Problems (Gunawan et al. 2016). The OP applies to the fields of logistics for
vehicle routing and delivery, tourism for visiting attractions, and military for surveillance
activities (Vansteenwegen et al. 2011).

There are numerous variants of the OP. Examples deviate from a team OP approach,
which seeks to find multiple paths that maximize a collective score, or incorporating time
windows for specific node visitation (Vansteenwegen et al. 2011). The Generalized OP, a
variant which uses a nonlinear objective function for computing the overall score for the
competitor, has been studied and solved with different methods (Wang et al. 1995; Geem
et al. 2005; Wang et al. 2008). Ilhan et al. (2008) studied the OP with stochastic profits
where nodes are assigned normally distributed random profits with the goal of exceeding a
certain profit threshold. Gendreau et al. (1998) incorporated compulsory vertices into the OP
which forced requirements on certain checkpoints to be visited. Fomin and Lingas (2002)
considered the time-dependent OP where the travel time between checkpoints depends upon
the competitors start time. The capacitated OP was introduced by Archetti et al. (2009) and
modeled a limited capacity on the total checkpoints that each competitor could visit. Pietz
and Royset (2013) introduced varying quantities of rewards at each node which depended
upon resource expenditure to reach a specific node. The multi-profit OP varies profit by
time spent at each checkpoint and requires selecting both checkpoint sequence and the time
spent at each checkpoint (Kim et al. 2020). SAP most aligns with the categories of a team
OP approach, compulsory vertices, limited capacity checkpoints, and varying rewards.

Each of these OP problems is non-deterministic polynomial time (NP)-hard which means
that producing an exact solution will most likely be very time consuming. Efforts have
focused on reducing runtimes through specialized branch-and-bound algorithms (see, e.g.,
Pietz and Royset 2013), neural networks (see, e.g., Wang et al. 1995, 2008), heuristics (see,
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e.g., Kim et al. 2020; Archetti et al. 2009; Gendreau et al. 1998), and various other algorithms
to include dynamic programming, approximation, bi-objective genetic, and harmonious
(see, e.g., Peng et al. 2020; Fomin and Lingas 2002; Ilhan et al. 2008; Geem et al. 2005).

The OP connects to search problems where specific areas of interest to search are spread
about a graph, and search assets are subjected to budget constraints. Searches in this manner
are modeled as an OP if using a single search asset or a team OP if using multiple search
assets (Ding 2018). An example showcasing this relatability to SAP, and tying in with
optimal search theory, is when Peng et al. (2020) applies the OP to the scheduling of
satellites for target looks. In Peng et al. (2020), each target has an associated profit and time
window for a look; however, satellites focus on manipulation of look angle for image quality
and the algorithm is based on a single orbit.

Optimal search theory focuses on searching for a stationary or moving target. For a stationary
search, the problem associates a prior distribution to the location of the target. It uses a
detection function that relates search time with probability of detection for a target given
it is in that specific cell (Stone et al. 2016). Stationary search then focuses on allocating
search assets amongst cells to maximize the probability of target detection. Much of the
work focused on search of a stationary object with one search asset occurred several decades
ago from 1946 to 1982 and is listed in Ding (2018). Song and Teneketzis (2004) expanded
stationary search to include multiple search assets but did not accommodate for search
assets that are only able to search a portion of the geographic area. Searching for a moving
target requires modeling a target’s movement through potential paths using a probability
distribution. The last three decades of work in search theory focus on moving targets with
one or multiple search assets using algorithms based on branch-and-bound (Dell et al.
1996; Washburn 1998; Lau et al. 2008; Bourque 2019; Sato and Royset 2010), cutting plane
(Royset and Sato 2010), open loop network flow (Berger et al. 2021), and heuristics (Dell
et al. 1996; Abi-Zeid et al. 2019).

Various military applications in search theory abound; for example, Yoash et al. (2018)
focuses on finding an optimal search pattern over a small scale search area covered by a
single aviation asset to obtain full coverage in search of a single adversary. Kress et al. (2012)
examine search and interdiction with multiple moving adversaries and two types of search
assets. They pose a greedy heuristic due to their primary model being computationally
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intractable regarding realistic application.

Both stationary and moving search problems are conducted over a set time period and are
limited by the effort available for the search. SAP shares similarities since we are searching
over a set time period and have a budget associated with the search effort; however, we are
focused on covering and monitoring cells in a suitable manner and not detecting one or
more specific targets.

The maximal covering location problem (MCLP) is a thoroughly studied NP-hard problem
in which we are given a number of sets that have some elements in common and we seek to
choose a limited number of these sets which maximize the total coverage of elements (Church
and ReVelle 1974). Hoogendoorn (2017) gives an overview of the different algorithmic
approaches applied to MCLP within the past several decades. Efforts within the past decade
have proposed branch and cut through benders decomposition (see, e.g., Cordeau et al. 2019;
Vatsa and Jayaswal 2021), greedy heuristics (see, e.g., Sekar Amarilies et al. 2020; Seyhan
et al. 2018), metaheursitics (see, e.g., Pereira et al. 2015), minmax regret model (see, e.g.,
Baldomero-Naranjo et al. 2021), and simulated annealing (see, e.g., Zarandi et al. 2013).
Price et al. (2022) completed recent work regarding military application of MCLP over
the Western Hemisphere on counterdrug efforts. They extend the generic MCLP to three
different mixed integer linear program (MILP)s in the context of counterdrug trafficking.
Their approach satisfies both multiple drug cartels and multiple counterdrug assets while
identifying the best interdiction locations. However, their formulations only model a small
subset of operationally relevant constraints.

The combination of an OP, stationary search, and MCLP, with specific constraints for
integration with a large scale campaign model such as STORM, differentiates SAP from
previously studied problems. Additionally, the specific nature of a military campaign sce-
nario covering an expansive geographic area with thousands of cells and hundreds of swaths
equating to millions of variables compounds the complexity of SAP. We present a novel
MILP which solves SAP by optimally distributing looks from sensors to grid cells. Re-
sults show we can capitalize on different International Business Machines ILOG CPLEX
Optimization Studio (CPLEX) algorithm options to significantly reduce runtime as well as
increase coverage compared to existing heuristics.
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1.3 Thesis Organization
In Chapter 2 we discuss SAP through the lens of the campaign analysis tool called STORM.

In Chapter 3 we formulate SOM, a novel MILP which solves SAP. SOM directs sensors
on satellites to look at specific cells in a swath. Rigorous data collection is a requisite for
STORM integration and we discuss this in further detail.

In Chapter 4 we test SOM on data produced through STORM. We analyze how SOM
compares to STORM’s heuristic grid cell search and explore several excursions of sponsor
related questions in further detail.

Chapter 5 provides a summary of our work and recommends topics for future research.
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CHAPTER 2:
STORM Context

To conduct campaign analysis in STORM, sensor allocation is required and we thus provide
a brief overview of STORM’s purpose, key terms, and pertinent literature. We provide
further background and definitions as well as refine and scope SAP through our sponsor,
the J8 Directorate in the Pentagon, which gives the necessary context to understand how
SAP relates to SOM.

2.1 STORM Overview and Literature
STORM began as a U.S. Air Force (USAF) project in 1996 to simulate both aviation and
space power across the joint military (Group W 2019a). STORM has since experienced
several enhancements and updates to incorporate multiple domains including the mar-
itime environment for naval combat and expeditionary warfare (Group W 2019a). Current
STORM users range widely, consisting of military branches, numerous high level staffs
such the Joint Staff and Combatant Command (COCOM)s and different international users
(Group W 2019a). STORM is designed to simulate theater level conflict while representing
all warfighting domains across the range of military operations. STORM has functional area
tools which are separated into three categories: input, execution, and output. Input is primar-
ily composed of over one hundred text data files which provide definitions and background,
permit user changes, and are used to run the simulation. To generate the primary output,
the user subsequently calls the execution tool to run the input data through STORM which
creates a dbase.out file. This file populates a data warehouse which can then be processed
by the user to generate analytical results through different mapping, graphing, and reporting
components. These main functional area tools are accessed through STORM’s graphical
user interface (GUI). STORM’s stochastic nature is demonstrated when the campaign level
simulation scenario input data is replicated and executed multiple times, giving the user
satisfactory confidence in the results. On the unclassified side, STORM has two modern,
prebuilt scenarios titled Punic21 and Wona. This thesis uses the Punic21 scenario for pri-
mary analysis. The Punic21 scenario has two combatants, Blue and Red, and takes place in
the geographic regions of Europe and North Africa. STORM has three manuals directed at
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informing and educating the different individual users: the Programmer’s Manual, the User’s
Manual and the Analyst’s Manual (Group W 2019a,d,c,b). The Programmer’s Manual is
tailored for development, maintenance, and modification of STORM’s base code (Group
W 2019a). The User’s Manual focuses on navigating the graphical user interface (GUI)
and the Analyst’s Manual concentrates on simulating campaign-level combat to generate
and analyze results that aid in decision making (Group W 2019a). STORM also has an
associated Appendices document which serve as a single reference for all types of users
(Group W 2019b).

2.2 STORM Background and Definitions
To fully understand SAP’s relation to STORM, a background of STORM’s ISR, battlespace,
satellites, sensors, and resolution is necessary.

2.2.1 ISR
ISR in STORM consists of a fixed number of satellites and aircraft prior to campaign
execution that look at both geographic regions and individual targets. Combatants use their
assigned ISR assets to discover and further develop targets to strike, as well as conduct
post-strike analysis through follow on assessment and monitoring (Group W 2019a).

2.2.2 Battlespace
In STORM, the battlespace encompasses all areas of interest for a campaign. Each combatant
in a campaign will have different area of interest (AOI)s that they likely occupy while
operating. The opposing forces COCOM planner assigns types and establishes boundaries
for these AOIs in order to search them for intelligence collection and targets. The type
of AOI determines the priority of search for that area. For instance, a “Naval Search
Area” covering large expanses of ocean may have a lower priority compared to an “Air
Defense” area covering detailed land. STORM permits AOIs to change type based on pre-
determined conditions as the scenario progresses. In the Punic21 scenario, the “Blue East
Med AOI” is initially assigned as a Naval Search Area but changes to a ground moving
target indicator (GMTI) Search Area once the number of ships in the East Mediterranean
Sea is less than five. In STORM’s terminology, AOIs are named after the combatant that
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will be searching them but owned by the combatant that is likely to be found inside that
AOI. For instance, the Blue combatant would use Blue ISR assets to search for Red targets
in the AOI owned by the Red combatant which is titled “Blue Italy AOI.”

The entire battlespace in STORM is divided into grid cells to save on efficiencies in
computing (Group W 2019a). The default setting for grid cell size is 50 km wide by 50 km
long which equates to 2,500 square km. The default setting for number of grid cells is a
width and depth of 60 by 60 which equates to 3,600 total cells. However, for the Punic21
scenario, AOIs for both sides expand beyond the 60 by 60 square grid. To ensure entire
scenario coverage, grid cell expansion to 120 by 120 was necessary which resulted in 14,400
total grid cells covering 36 million square km. We henceforth refer to targets as grid cells
since that is the primary focus. Figure 2.1 depicts the required expansion by showing a 60
by 60 grid cell overlay on top of Red AOIs.
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Figure 2.1. Screen capture from the Punic21 scenario in STORM with two
overlays: a 60x60 yellow grid and Red AOIs which are depicted in blue.
We notice the grid cells do not cover all the AOIs and must be expanded.
Source: Group W (2005).

2.2.3 Satellites
Different satellite types perform different functions for each combatant such as reconnais-
sance, spectrum surveillance, or GPS and are positioned in low, medium, or high earth
orbits. These satellites follow a dual body Kepler orbit based upon a spherical earth (Group
W 2019a). The orbit distance from earth combined with the Keplerian motion determines
how often a satellite passes over the battlespace. Prior to simulation execution, STORM
creates a script of orbital asset interactions with the battlespace using the Orbital Tool
(Group W 2019a). The Orbital Tool produces an OrbitalEvent file that lists satellite entry
and exit latitude and longitude as well as an instantaneous time the satellite passed over the
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battlespace. To focus on a broad area search, this thesis has been scoped down to specifically
examine satellites searching geographic regions in the ISR representation.

2.2.4 Sensors
Each satellite has a specific number of sensors on it which determines the function the
satellite performs for the combatant. We are primarily concerned with reconnaissance
sensors since they are designed to look at geographic regions. The two types of satellites
that have sensors that perform reconnaissance are the Reconnaissance and the Space Based
Laser (SBL) satellites. These two types of satellites make approximately 4 to 6 passes over
the battlespace every 24 hour period. In Punic21, both combatants have four Reconnaissance
satellites and one SBL satellite. The Reconnaissance satellites have four sensors on them
compared to SBL which has three sensors. These sensors are named after the type of
functions they perform which are Electro-Optical (EO) Imagery Analysis (IMINT), Infrared
(IR) Day IMINT, IR Night IMINT, and Search and Rescue (SAR) IMINT. Each time a
satellite passes over the battlespace, individual sensors produce a swath (Section 1.1; Figures
2.2 and 2.3). Since sensors provide the lowest echelon search asset, we will henceforth group
the various levels of search assets into sensors to simplify terminology.
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Figure 2.2. Orbital asset swath representation. Source: Group W (2019a).

Figure 2.3. A screen capture from the Punic21 scenario in STORM of a
single satellite passing over the battlespace producing various swaths from
its sensors. Source: Group W (2005).
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2.2.5 Resolution
Each sensor has a limited number of looks it can allocate to grid cells per swath which is
determined by the adopted resolution levels. These resolutions follow the National Imagery
Interpretability Rating Scale (NIIRS) and have at most nine discrete levels. A higher NIIRS
level equates to a more detailed look and an increased likelihood of detecting something
in that grid cell. However, setting a high NIIRS level serves as a trade-off with less looks
to distribute per swath compared to setting a low NIIRS level. The limit on the number of
looks for a swath is determined by two separate calculations, one involving the square area
that is viewed in the look and the other involving the total look count (Figure 2.4). We refer
to these as the square area resource budget and the look count budget.

Figure 2.4. STORM’s max area per look and max looks per swath for the
listed sensors NIIRS level resolutions. Source: Group W (2005).

We explain these budgets in detail which are defined in Group W (2005). Since a sensor can
use different resolutions for separate grid cell looks, both the square area resource budget
and the look count budget are normalized to an initial value of one. When a sensor passes
over the battlespace and produces a swath, each grid cell it looks at encompasses a square
area. The default STORM grid cell square area is 2,500 square km or 2.5·109 square meters.
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We update the square area resource budget by subtracting

square area
max area per look

(2.1)

for each look during a swath. For instance, if we use the first look on a grid cell with the
Orbital EO Sensor using NIIRS 4, we update the square area resource budget by subtracting

1 − 2.5 · 109

1.0 · 1010 (2.2)

to obtain the updated sensor square area resource budget of 3
4 . The numerator in this case

is the grid cell area in square meters and the denominator is obtained from Figure 2.4.
We discount each subsequent look during the swath in the same manner from the updated
square area resource budget. Additionally, each

1.0
max looks per swath

(2.3)

counts against the look count budget for each swath. This budget starts at one and is
discounted by each look during a swath. For example, for the first look during a swath we
compute the updated look count budget by subtracting

1 − 1.0
90

(2.4)

which gives us a remaining budget of 89
90 . Since each grid cell has the same area, we compute

how many grid cells we can look at during a swath with a particular resolution by dividing

grid cell square area
max area per look

(2.5)

for each value in column three of Figure 2.4. This value is input into column three of Figure
2.5 to create the max cells by area. We assign a weight associated with each look using a
specific resolution level which is

1
min (max looks per swath, max cells by area)

(2.6)
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and depicted in column four of Figure 2.5. We eliminate NIIRS nine for the orbital EO
Sensor and NIIRS six through NIIRS nine for all other sensors since only a fraction of a
grid cell is capable of being looked at with those resolutions.

Figure 2.5. STORM’s resolution level budget for the listed sensors with as-
signed weights. Source: Group W (2005).

We thus produce an updated budget chart depicted in Figure 2.5. From this updated budget
chart, we produce a bar graph which shows the number of looks per swath the available
resolutions are capable of producing (Figure 2.6).
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Figure 2.6. STORM’s number of looks available per resolution level for a
swath. Source: Group W (2005).

2.3 J8 Directorate Problem Set
The J8 Directorate of the Joint Staff at the Pentagon supports the Chairman Joint Chiefs of
Staff (CJCS) in development and evaluation of force structure requirements (Joint Chiefs of
Staff 2022). To accomplish their mission, the J8 conducts studies, analysis, and assessments
and evaluates plans, programs, and strategies. Within the J8 is the Studies and Analysis
branch which is further subdivided into the Warfighting Analysis Division (WAD). The
WAD provides campaign analysis for both Joint staff and COCOMs on Operational Plan
(OPLAN)s of record in STORM. The J8 is currently experiencing issues with STORM’s
ISR representation.

The ISR cycle is used to discover, develop, strike, assess, and monitor grid cells during a
campaign. Thus, accurate ISR representation is vital to correctly model realistic outcomes.
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A key element to the effectiveness of an ISR asset such as a sensor looking at a grid cell
is how grid cells are prioritized and the timeliness of their looks. These aspects of a look
are captured in the collection plan supplied by the COCOM planners. The collection plan
is designed to optimize the process of allocating looks; however, it may not prove optimal,
realistic, or feasible while being modeled in STORM for ISR coverage. One major issue
is that STORM determines ISR grid cell priorities using a heuristic collection approach
(Group W 2019a). STORM takes 13 different COCOM inputs supplied by the COCOM
planner to compute a collection score and assign it to each cell in a specific AOI (Group W
2019a). As the time between a grid cell look increases, the collection score increases until
it reaches a peak priority input. Figure 2.7 depicts three grid cells, each with a different
collection score.
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Figure 2.7. Each color line depicts a collection score for a different type of
grid cell. Time is on the x-axis and the associated collection score is on the
y-axis.

STORM bases the heuristic collection approach upon the highest collection score. STORM’s
search heuristic examines all cells in a particular swath and decides which cell to look at
based upon the highest collection score, proceeding in a top to bottom, left to right manner
to break collection score ties (Figure 2.8).
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Figure 2.8. Each color line depicts a collection score for a different type of
grid cell. Time is on the x-axis and the associated collection score is on the
y-axis. Two looks were available at times 20 and 35 respectively. The look
went to the highest score at the time; hence the blue grid cell received a
look and the yellow grid cell received a look.

While STORM uses the terminology of collection score, we henceforth refer to this as the
collection penalty since the word score is associated with maximization but we would like
to minimize this number.

This manner of allocating looks to grid cells does not optimally balance looks over a given
time period and creates extreme difficulty in ensuring all grid cells receive at least one look.
There is no direct indication to the mission planner of efficient use of orbital assets in a
scenario. This heuristic approach is commonly referred to as a “greedy” algorithm because
it selects the locally optimal cells that are immediately available during a swath without
regard to future consequences (Rardin 2016). STORM’s greedy heuristic fails to balance
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optimal looks over an entire scenario, resulting in skewed campaign outcomes if large
swaths of search area go unobserved. We see an example of STORM’s greedy algorithm
leaving unsearched areas in Figure 2.9.

Figure 2.9. The top row represents Blue searching for Red grid cells and
the bottom row represents Red searching for Blue grid cells in the Punic21
scenario. Searched cells are overlayed over the black AOIs in red, green, and
blue colors respectively. Column 2 is the baseline case in STORM and shows
a significant amount of unsearched area. Column 1 shows a scenario where
the revisit interval for grid cells has been increased from 12 hours to 10 days
and depicts an increase in the number of grid cell looks. Column 3 shows a
scenario where the minimum grid cell resolution was decreased from NIIRS
4 to NIIRS 1 and depicts an increase in the number of grid cell looks. Some
of the unsearched black cells in both column 1 and column 3 are due to the
grid being limited to 60x60 grid cells.
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CHAPTER 3:
Model

In this section, we address SAP by presenting SOM and discuss data collection. We provide
model justification through an explanation of indices, data, decision variables, objective
function, and constraints. We explain the data collection process of parsing STORM outputs
through a series of steps to obtain usable input for SOM.

3.1 SOM Formulation
Since we formulate a MILP, we make assumptions on both time and the geographic region.
We assume that time can be discretized into instantaneous sensor passes. Since each sensor
produces a swath as it passes over the battlespace, we are able to base the model on swaths.
Thus, a unique aspect of this model is that it is event driven, reliant on swaths passing
over the battlespace and not based on time. In STORM, each swath has an instantaneous
time that it passes over the battlespace which can be referenced via a lookup table. Since
swaths have a pre-built accounting of time, a specific number of swaths has an associated
time period. For example, over a 24 hour period Blue satellites produce 43 swaths and Red
satellites produce 46 swaths that contain grid cells the particular combatant is interested in
(Table 3.1).

Table 3.1. Hours in the Punic21 scenario and number of swaths produced.

Scenario Hours Blue Swaths Red Swaths

6 10 12
12 34 36
24 43 46
48 86 92
72 121 138

We additionally make the assumption that the geographic region can be discretized into a
number of grid cells. For indices, we avoid indexing over AOIs by specifying individual
grid cells which assists in limiting the number of variables.
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The model, denoted as SOM, is a unique mixture of an OP, stationary search, and MCLP.
SOM takes the following form.

Indices
𝑐 grid cell {1, ..., 𝐶}
𝑟 resolution {1, ..., 𝑅}
𝑠 swath {0, 1, ..., 𝑆}
𝑔 gap {0, 1, ..., 𝐺}

Data
𝑝𝑒𝑛𝑐,𝑠,𝑔 penalty in grid cell 𝑐 for swath 𝑠 at a gap of 𝑔
𝑟𝑚𝑖𝑛𝑐 minimum resolution level for a look in grid cell 𝑐
𝑤𝑒𝑖𝑠,𝑟 weight for swath 𝑠 using resolution 𝑟

𝛿 max number of looks permitted with resolution level less than 𝑟𝑚𝑖𝑛𝑐

𝑚 large constant for grid cell non-looks
𝑛 large constant for significant swath gaps between looks

Decision Variables

𝑋𝑐,𝑠,𝑟 =


1 if grid cell 𝑐 receives a look with resolution 𝑟 from swath 𝑠

0 otherwise

𝑌𝑐,𝑠,𝑔 =


1 if, at swath 𝑠, there is 𝑔 swaths since last look in grid cell 𝑐

0 otherwise

𝐽𝑐,𝑠 = at swath 𝑠, number of swaths since last look for grid cell 𝑐

𝑍𝑐 = amount by which the at-least-once constraint is violated

Objective Function

minimize
∑︁
𝑐,𝑠,𝑔

𝑝𝑒𝑛𝑐,𝑠,𝑔𝑌𝑐,𝑠,𝑔 + 𝑚
∑︁
𝑐

𝑍𝑐 (3.1)

Subject to
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∑︁
𝑔

𝑔𝑌𝑐,𝑠,𝑔 = 𝐽𝑐,𝑠 ∀𝑐, 𝑠 (3.2)∑︁
𝑔

𝑌𝑐,𝑠,𝑔 = 1 ∀𝑐, 𝑠 (3.3)

1 + 𝐽𝑐,𝑠−1 ≤ 𝐽𝑐,𝑠 + 𝑛
∑︁
𝑟

𝑋𝑐,𝑠,𝑟 ∀𝑐, 𝑠 > 0 (3.4)∑︁
𝑠,𝑟

𝑋𝑐,𝑠,𝑟 ≥ 1 − 𝑍𝑐 ∀𝑐 (3.5)∑︁
𝑐,𝑟

𝑤𝑒𝑖𝑠,𝑟 𝑋𝑐,𝑠,𝑟 ≤ 1 ∀𝑠 (3.6)∑︁
𝑠,𝑟<𝑟𝑚𝑖𝑛𝑐

𝑋𝑐,𝑠,𝑟 ≤ 𝛿 ∀𝑐 (3.7)

𝑋𝑐,0,𝑟 = 0 ∀𝑐, 𝑟 (3.8)

𝑌𝑐,𝑠,𝑔 = 0 ∀𝑐, 𝑠, 𝑔 > 𝑠 (3.9)

0 ≤ 𝐽𝑐,𝑠 ∀𝑐, 𝑠 (3.10)

𝐽𝑐,0 = 0 ∀𝑐 (3.11)

0 ≤ 𝑍𝑐 ≤ 1 ∀𝑐 (3.12)

The objective function in (3.1) treats the collection penalty as a coefficient and seeks to
minimize this penalty multiplied by the number of grid cells that received no looks. Any
unobserved cells are tracked through the 𝑍 variable and penalized with the large𝑚 coefficient
which we also seek to minimize. We choose 𝑚 to be sufficiently large in proportion to the
penalty computed in the first term. The value of 𝑚 ensures enforcement of constraint (3.5)
to search all grid cells.

The gap index is tied to the grid cells that receive no looks and hence tied to the objective
function. As time continues without a look, the gap index continues to increase, and, in turn,
the count of 𝑌𝑐,𝑠,𝑔 variables increase. We can associate gaps with the “Time since previous
look” in Figure 2.7 for simplicity’s sake but we use a lookup table since the time between
swaths steps do not occur at uniform times. We can think of the blue, yellow, and pink lines
as individual grid cells in Figure 2.8. All three grid cells have a gap of 19 when the “Time
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since previous look” equals 19. The first look is given at time 20 to the largest collection
penalty, the blue grid cell. The blue grid cell now has a gap of 0 at time 20. The yellow and
pink grid cells continue with gaps of 20 each since they did not receive a look. The next
available look occurs at time 35 which is given to the yellow grid cell. At this time the blue
grid cell has a gap of 15, the yellow has a gap of 0, and the pink has a gap of 35. We seek to
minimize the collection penalty multiplied by the number of grid cells that receive no looks
which consequently incorporate the gaps for these cells.

We use constraint (3.2) to maintain the value of the gap to track the total gaps between looks.
Constraint (3.3) keeps the current 𝑌𝑐,𝑠,𝑔 variable at 1 and turns previous 𝑌𝑐,𝑠,𝑔 variables to
0. Hence, as time steps forward, old 𝑌𝑐,𝑠,𝑔 variables turn to 0. This ensures old gaps aside
from the current gap are not consecutively summed over in constraint (3.2). For example,
when 𝑠 = 3, 𝑌𝑐,𝑠,𝑔=0 for 𝑠 = {0, 1, 2}. When 𝑠 = 4, 𝑌𝑐,𝑠,𝑔=0 for 𝑠 = {0, 1, 2, 3}. Constraint
(3.4) forces the gap counter to reset when a look occurs. We choose 𝑛 as small as possible to
satisfy the left hand side (LHS) of constraint (3.4) when 𝐽𝑐,𝑠 = 0 which correlates directly
with 𝑛 = 𝑆. Constraint (3.5) can be changed to require 2 or more looks per grid cell and sets
up tracking of unobserved cells through the 𝑍𝑐 variable. Constraint (3.6) uses the weight
derived from each resolution to maintain the budget of looks for each sensor. Constraint
(3.7) allows us to require a minimum resolution for looks greater than or equal to 𝛿. If 𝛿 = 1,
then one look is permitted to happen with a resolution less than the minimum resolution
specified for that cell; all other looks shall use a higher resolution. We can adjust this
constraint to require a minimum resolution on all looks by setting 𝛿 = 0. The remaining
constraints (3.8) through (3.12) set various variables that are non-existent to zero, establish
non-negativity, and establish upper and lower bounds for variables and data.

3.2 Data Collection
We seek to instantiate SOM with data from STORM. This requires gathering data from
STORM and converting it into usable input into SOM. We break data collection down into
three steps which entail STORM output, initial processing, and model input. We accomplish
STORM output through the use of a virtual machine to run STORM, examine data files,
and retrieve data with pre-built functions created by the J8 staff in R, a programming
language designed for statistical analysis (R Core Team 2016). STORM output data is
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further processed in R, outside of the virtual machine environment, to obtain usable input
for Pyomo. Pyomo is a language designed to model optimization and is based in Python
(Bynum et al. 2021; Hart et al. 2011; Van Rossum and Drake 2009). The last step in data
collection involves the transfer of data from R to Pyomo with follow on processing before
we run the model.

3.2.1 STORM Output
Regarding STORM output, we examine and transfer various text files generated in STORM
to usable input in R. STORM runs on the Linux operating system and its base language
is C++. Therefore, we use a virtual machine which provides software access to pre-built
packages such as Stormtracker, a library that allows us to parse STORM output data into
usable form (Schrad 2022). We obtain two specific files: AOI region and orbital path.
These files provide us with the AOI type, AOI name, sensor type, grid coordinates for
AOI boundaries, entry and exit sensor grid coordinates, and sensor battlespace passage
simulation time (Section 2.2.3). We produce both of these files prior to starting STORM’s
simulation, which provides significant reductions in run time and eliminates stochastic
outputs of different runs in STORM.

Additionally, we obtain grid cell information and collection penalty inputs through various
STORM data files. Battlespace information includes the center grid, width, depth, and cell
size, which we obtain from the battlespace.dat file. We manually input this information into
R to facilitate adjustment in expanding cells for total AOI coverage. We also manually input
the 13 inputs relating to each AOIs collection penalty into a comma separated values (CSV)
file.

3.2.2 Initial Data Processing
We read the input files into a separate instance of R, outside of the virtual machine, where
we divide cells into individual grid points, determine which grid points are in which AOIs,
and determine which grid points are in which swaths. We assume that if the center point of
each grid cell lies in a particular AOI, then it is assigned to that AOI. We use this center
point grid cell assumption not only with AOIs but also in the case of swaths. STORM
manuals and data files provide little information on the exact details of how an individual
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grid cell is divided up or assigned so these assumptions are necessary to move forward with
SOM. To create grid points, we subdivide a rectangular polygon into a coordinates matrix
of individual latitude and longitude pairs using the Geosphere and Simple Features libraries
in R (Pebesma 2018).

We determine which grid points are in which AOIs through creation of polygons and the
contains function in the Simple Features library which checks for points within a shape
boundary. Producing the AOI cells in this manner assumes that the AOIs do not overlap and
no AOIs contain grid points that are in another AOI. Hence, no grid cells are split between
multiple AOIs.

We build swath objects initially with Geosphere for great circle distance and border di-
mensions. We then turn the swath into a multi-polygon object to add left and right swaths
through Simple Features. We use the multi-polygon object to check which grid points it
contains and store it in a list. Using this information, we generate simple statistics such as
how often a cell appears in all swaths, which cells do not appear in any swaths, and the
average number of cells per swath.

From this data we determine that the Blue combatant is required to search 1,415 cells and
the Red combatant is required to search 2,663 cells. Within the first 12 hours (34 swaths),
the Blue combatant swaths cover all 1,415 cells whereas the Red combatant swaths leave
5.1% or 137 grid cells uncovered (Tables 3.2 and 3.3).

Table 3.2. Blue combatant time and swaths it takes to cover all 1,415 Red
grid cells.

Scenario Hours Swaths Cells Not Covered Uncovered Percentage

6 10 120 8.5%
8 12 98 6.9%
12 34 0 0%
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Table 3.3. Red combatant time and swath’s it takes to cover all 2,663 Blue
grid cells.

Scenario Hours Swaths Cells Not Covered Uncovered Percentage

6 12 331 12.4%
8 12 331 12.4%
12 36 137 5.1%
18 39 114 4.3%
24 46 114 4.3%

72 (3 days) 138 95 3.6%
144 (6 days) 284 71 2.7%
288 (12 days) 565 55 2.1%
480 (20 days) 942 39 1.5%

By graphically depicting Tables 3.2 and 3.3 over the 20 day period, we observe that the
Blue combatant is never able to search all cells (Figure 3.1). The best cell coverage Blue
is able to reach still leaves 1.5% (39 cells) not covered by any swath. When analyzing cell
coordinate locations, we conclude that the gradual reduction in uncovered cells is a result
of the continuous axial turn of the Earth combined with the daily repeat of satellite orbits
slightly shifting satellites on each pass.
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Figure 3.1. Swath hours in the Punic21 scenario and number of grid cells
covered per combatant. The blue line represents the Blue grid cells and the
red line represents the Red grid cells. The lines show the remaining grid
cells that have not been covered compared to swath hours. We see Red’s
remaining grid cells reach and remain at 0 after 12 swath hours whereas Blue
grid cells never reach 0.

We output three CSV files titled “AOI Consolidated,” “Swath Type,” and “CS List” to
conclude the initial data processing. The “AOI Consolidated” file gives us the cell index
position and type of AOI for each combatant. The “Swath Type” file gives us the swath
indices, sensor type, and sim time for each combatant according to a user specified length
of time to truncate the scenario. The “CS List” file gives us the grid cell index position for
grid cells in each swath for each combatant.
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3.2.3 Model Input Data Processing
For the next step in data processing, we operate in the Pyomo environment and read in
the appropriate CSV files produced from R. We build a function to generate the collection
penalty. This function takes the time since the previous look and 13 collection penalty
inputs involving priority, revisit interval, worth, bias, and urgency and uses a rational bias
function to determine 3 overall values labeled value, urgency, and priority (Section 2.3).
The numerical values for value, urgency, and priority range between [0, 1] and are then
multiplied together to obtain the collection penalty which also ranges between [0, 1].

AOIs that change search area type as the scenario progresses pose challenges for modelling
(Section 2.2.2). This change in AOI type necessitates a change in collection penalty inputs
and the type of sensor that is capable of looking in that geographic region. It additionally
requires running the STORM scenario prior to running the model to find the time that these
pre-determined conditions are met. Thus, the model assumes AOI types remain constant
during the duration of the scenario. We examine two different cases of AOI types based on
preconditions that are met at scenario start time that change the AOI type. For the cases we
examine, the Blue combatant searching Red cells show all AOI types remaining constant.
However, the Red combatant searching Blue cells have two AOIs, the “Red Anglo Republic”
and the “Red North Carthage,” that meet certain preconditions and both seamlessly shift
from air defense (AD) to GMTI search areas. If the two AOIs do not change, we see an
increase in cells from 2,663 to 5,565 since the AD AOI type is required to be searched by
the same specific types of sensors.

A second function is used to inflate the collection penalty when it levels off. This function
checks the previous collection penalty against the current collection penalty and, if equal,
adds a minimal amount not to exceed 1. This assumption of increasing collection penalties
over time is required in the model to appropriately track the gaps in constraints (3.2) and
(3.3) and is thus a divergence from the STORM representation.

We use the “AOI Consolidated” file to separate grid cells into lists for each type of AOI.
We build a dataframe with the appropriate swath number, time the swath occurred, and
time difference for each gap. Any gap greater than the swath number is set to zero since
those gaps do not exist. We calculate the collection penalty for each indexed swath and gap
using the collection penalty function. We adjust these collection penalties using the inflation
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function and then add in grid cells for each specific dataframe of collection penalties when
we transfer the dataframe over to a dictionary. The dictionary keys are cell, swath, and gap
and the value is the collection penalty adjusted for inflation.

To calculate weight, we assign specific sensor resolution types the appropriate pre-calculated
weight. We build a weight dictionary when we iterate through the “Swath Type” file, where
swath and resolution represent the keys and the pre-calculated weight represents the values.
We transfer the “CS List” into a two-dimensional array and assign a minimum resolution
through a dictionary to each cell which concludes the data processing.

30



CHAPTER 4:
Results

We are interested in both the computational and operational results that SOM produces.
We first address the size of SOM since computational efficiency can often depend upon the
number of variables and constraints for an optimization model. We conduct experiments that
compare the performance of Computational Infrastructure for Operations Research branch
and cut solver (CBC) and CPLEX algorithms and vary numbers of grid cells and swaths
to see their impact on SOM runtime. We examine different options in CPLEX that reduce
runtime and propose the best combination of options. Operational results focus on scenario
grid cell coverage while adjusting the number of swaths, minimum resolution, and revisit
intervals.

4.1 Computational Results
Because thousands of cells and hundreds of sensors produces millions of variables and
constraints, it is prudent to have a firm grasp of SOMs size before discussing algorithms
and computational efficiency. We consider the case with two different types of AOI grid
cells and hence two different types of collection penalties. We set𝐶 = 1, 415, 𝑅 = 5, 𝑆 = 34,
𝐺 = 34, 𝛿 = 0, 𝑚 = 100, 000, and 𝑛 = 𝑆, with a minimum resolution of 4 for all grid cells.
We use STORM’s pre-loaded collection penalty parameters for the AOIs. These settings are
representative of the initial Blue combatant scenario over 12 hours and we consider this the
benchmark case. The experiments consist of this case unless otherwise annotated. We see
that the variables and constraints for the benchmark case are approximately 2.03 million and
1.36 million respectively (Figure 4.1). The variables and constraints for the Blue combatant
increase to 3.11 and 2.09 million for 𝑆 = 43 and 𝐺 = 43 and 11.45 million and 7.64 million
for 𝑆 = 86 and 𝐺 = 86 (Figures 4.1 and 3.1). A comparison of the Blue and Red combatants
shows that the variables and constraints more than double in size mainly due to the increase
in grid cells from 𝐶 = 1, 415 to 𝐶 = 2, 663 (Figure 4.1).
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Figure 4.1. Blue and Red Combatant Variables and Constraints.

A direct comparison of the two different Red combatant scenarios with 𝐶 = 2, 663 versus
𝐶 = 5, 565 again shows the variables and constraints more than double in size (Figure
4.2). We initially combat the model size by setting as many specific variables to zero using
constraints (3.8), (3.9), and (3.11).
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Figure 4.2. Red combatant variables and constraints for grid cells of 2,663
and grid cells of 5,565.

For the first set of experiments, we compare the performance of two algorithm’s: CBC and
CPLEX version 20.1.0.0 (Forrest and Lougee-Heimer 2005; CPLEX 2017). We solve on a
laptop with 16 gigabytes (GB) random access memory (RAM) and a 2.69 gigahertz (GHz)
processor running Windows 10 Pro. Table 4.1 shows that CPLEX outperforms CBC by a
substantial amount in terms of runtime.
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Table 4.1. Minutes of runtime for CBC and CPLEX with varying grid cells
𝐶 using 10 swaths, and 10 gaps with minimum resolutions of 4 and 1 for
higher and lower penalty grid cells respectively. We solve each scenario to
optimality. If optimality could not be achieved, we report the runtime and,
in brackets, when an optimality gap ≤ 5 was achieved.

𝐶 CBC CPLEX

25 0.1101 0.0502
50 0.1573 0.0624
75 0.9313 0.0770
100 4.1916 0.0868
125 2.3942 [0.012] 0.1070
150 0.4457 [0.0007] 0.1279
200 12.1968 [0.082] 0.6446

We see from Table 4.1 that CBC struggles to achieve optimality with𝐶 ≥ 125. However, we
notice that CBC achieves 0.012%, 0.0007%, and a 0.082% optimal gaps in a short amount of
time for 125, 150, and 200 grid cells respectively. CBC plateaus at this optimality gap as each
of these three experiments continue to run for more than 90 minutes. We manually end each
of these experiments at 90 minutes. Regardless, in every instance CPLEX outperforms CBC.
We conclude it is prudent to focus efforts on CPLEX and hence all remaining experiments
use this algorithm. We fix grid cells to 100 and run experiments where we vary the number
of swaths (Table 4.2).
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Table 4.2. Minutes of runtime and optimality gap achieved for CPLEX by
varying swaths 𝑆 which in turn varies gaps 𝐺 using 100 grid cells. We solve
to a 5% optimality gap, and run all experiments on the 16 GB of RAM
laptop.

𝑆 Variables Constraints Runtime Optimality Gap

16 39,201 24,638 0.2592 0%
18 47,601 29,885 0.5726 0%
42 210,801 117,899 57.4594 0.04%
46 249,201 139,303 218.1108 0.96%
65 475,301 259,547 190.3238 1.79%

We see a significant increase in runtime with 𝑆 ≥ 42 and compare these runtimes with
experiments conducted on a desktop computer with 128 GB of RAM and a 2.10 GHz
processor running Windows 10 Enterprise (Table 4.3).

Table 4.3. Minutes of runtime and optimality gap achieved for CPLEX by
varying swaths 𝑆 which in turn varies gaps 𝐺 using 100 grid cells. We solve
to a 5% optimality gap, and run all experiments on the 128 GB of RAM
desktop.

𝑆 Variables Constraints Runtime Optimality Gap GB

42 210,801 117,899 38.9580 0.51% 128
46 249,201 139,303 63.5254 2.0% 128
65 475,301 259,547 184.6071 3.7% 128

We see a decrease in runtime and optimality gap from the shift of 16 GB to 128 GB of
RAM in rows 1 through 3 of Table 4.3 compared to rows 3 through 5 of Table 4.2. Since
the runtime increases dramatically with 𝑆 ≥ 42, we examine this further with various
combinations of grid cells and swaths in Table 4.4. We notice a trend of lack of progress
in finding the best integer solution correlated with increasing runtimes when we examine
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individual CPLEX logs.

Table 4.4. Minutes of runtime and optimality gap achieved for CPLEX with
varying grid cells and swaths. We solve all experiments to optimality on the
16 GB of RAM computer. Failed experiments did not produce any feasible
solution within the runtime period and ran out of memory.

𝐶 𝑆 Variables Constraints Runtime Optimality Gap

200 50 581,601 323,797 43.9361 0.01%
1,415 18 673,541 421,160 4.3940 0%
1,415 21 873,056 539,778 6.3790 0%
500 52 1,508,501 839,178 532.6857 failed

1,415 51 4,269,056 2,373,438 49.0897 0%

The lengthy runtimes in rows three, four, and five of Table 4.2 and one, four, and five
of Table 4.4 have CPLEX logs that continue to increase in nodes without producing a
feasible solution. For instance, row 1 of Table 4.4 and row 3 of Table 4.2 found initial
best integer solutions at node 3,565 and 18,983 respectively. After producing a best integer
solution, CPLEX is able to quickly work towards the optimal solution. To reduce runtime,
we experiment with three different approaches as described in CPLEX (2017). We first see
decreases in runtime by changing the node selection strategy from best bound search to
best estimate search. The best estimate search selects the next node through a ratio of the
previous node’s progress toward a feasible integer solution compared with the objective
function. Best bound search selects the next node in terms of the best objective function.
Changing this parameter from best estimate to best bound search can be helpful in producing
feasible solutions.

The second approach implements rounding of the collection penalty to the sixth decimal
place. Since we are inflating each collection penalty by a minimal amount, each penalty
has the potential to be 16 decimal places in length. The sixth decimal place is sufficient to
permit a constantly increasing collection penalty and we expect this implementation to save
on memory and potential computing time.
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The third approach supplies CPLEX with the worst possible feasible solution to implement
a warm start. We assign 𝑍𝑐 = 1, 𝐽𝑐,𝑠 = 𝑠, 𝑋𝑐,𝑠,𝑟 = 0 for all 𝑐, 𝑠, and 𝑟. Additionally, we assign
𝑌𝑐,𝑠,𝑔 = 1 for all 𝑠 = 𝑔 and 0 otherwise. The provided solution states that no looks occur
over the entire time period. Providing a starting point via warm start supplies CPLEX with
a 100% optimality gap to work from and may permit both quicker development in cutoff
values for the best integer solution as well as enhance probing to fix variables (Klotz and
Newman 2013). We label each of these options as CPLEX one, two, and three respectively
and report the results in Table 4.5.

Table 4.5. Minutes of runtime and percentage optimality gap achieved in
brackets with 10 swaths which in turn equate to 10 gaps with minimum
resolutions of 4 and 1 for higher and lower penalty grid cells respectively. We
solve to a 5% optimality gap using the 128 GB of RAM desktop.

𝑆 Variables Constraints CPLEX CPLEX
1

CPLEX
2

CPLEX
3

CPLEX
1, 2, 3

10 266,021 184,824 1.8810
[1.11]

1.8479
[0.03]

0.9781
[0.016]

0.6281
[0.01]

0.7065
[3.54]

22 945,221 585,761 96.1515
[1.60]

123.785
[0.18]

101.2721
[1.69]

1.8739
[0.03]

1.9362
[0.6]

34 2,031,941 1,183,678 1,466.37
[failed]

806.964
[2.91]

676.629
[0.55]

4.045
[1.52]

4.1544
[1.04]

We see that CPLEX option three, the warm start, provides a significant reduction in runtime
whereas CPLEX options one and two improve upon the CPLEX default options with 𝑆 = 34
(Table 4.5). Column eight shows that all three options combined do not significantly detract
from CPLEX option three. We explore the impact of the other options combined with option
three in Table 4.6.
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Table 4.6. Minutes of runtime and percentage optimality gap achieved in
brackets with varying swaths which in turn vary gaps. We use a minimum
resolutions of 4 and 1 for higher and lower penalty grid cells respectively.
We solve to a 5% optimality gap using the 128 GB of RAM desktop. All
experiments in row three ran out of memory and were thus unable to achieve
the 5% optimality gap.

𝑆 Variables Constraints CPLEX
3

CPLEX
1 & 3

CPLEX
2 & 3

CPLEX
1, 2, 3

86 11,450,181 6,150,850 23.1269
[2.90]

23.3050
[2.90]

24.4981
[3.70]

24.6840
[3.70]

111 18,702,056 9,890,060 40.5063
[4.08]

40.8749
[4.08]

42.2248
[0.70]

42.1449
[4.08]

121 22,098,056 11,643,435 39.5528
[9.55]

39.0537
[9.55]

44.2908
[11.06]

49.6045
[11.06]

We notice a slight increase in runtime when we combine CPLEX option three with option
two or options one and two. However, all instances in Table 4.6 were able to solve relatively
quickly given the variable and constraint size and no CPLEX logs showed lengthy increases
in nodes without a change in the optimality gap. We thus continue to explore these options
and vary other parameters.

We set 𝑟𝑚𝑖𝑛𝑐 = 1 for all 𝐶 by removing constraint (3.7). When comparing row 1 with all
other rows in Table 4.7, we see that removing this constraint increases the complexity of
this problem significantly from an average of 4.2 minutes 966.2 minutes to solve to a 5%
optimality gap.
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Table 4.7. Minutes of runtime and percentage optimality gap achieved in
brackets with varying minimum resolution 𝑟𝑚𝑖𝑛𝑐. We require all grid cells
to use the specified minimum resolution except in 𝑟𝑚𝑖𝑛𝑐 = 5. In that case,
we set the higher collection penalty grid cells to 5 and the lower collection
penalty grid cells to 4 to allow use of sensors that do not have NIIRS 5. We
solve to a 5% optimality gap using the 128 GB of RAM desktop.

𝑟𝑚𝑖𝑛𝑐 CPLEX 3 CPLEX 1 & 3 CPLEX 2 & 3 CPLEX 1, 2, 3

1 1,186.40 [0.92] 1,209.12 [0.7] 690.7936 [1.08] 778.67 [1.1]
2 4.1042 [0.01] 4.0752 [0.01] 4.4161 [0.01] 4.5694 [0.01]
3 4.2928 [0.88] 4.2189 [0.88] 4.2725 [0.88] 4.4734 [0.88]
4 3.9862 [0.08] 3.8098 [0.08] 4.0863 [0.08] 4.1340 [0.08]
5 4.1350 [0.08] 4.1969 [0.08] 4.1560 [0.08] 4.1546 [0.08]

When we compare the CPLEX logs from row one of Table 4.7, we notice similar progress
across all columns. All 4 CPLEX logs show an initial drastic decrease in the optimality gap
within the first 110 minutes to less than 29%. Significant trouble with lack of progress in
reducing the optimality gap for the next 250-350 minutes follows until a repeat and restart
of the solver occurs. The optimality gap slowly decreases to 6-7% within the next 300
minutes. Row 1, columns 2 and 3 both take over 400 minutes to achieve the less than 5%
optimality gap threshold whereas row 1, columns 4 and 5 are able to achieve the threshold
in significantly less time (Table 4.8).
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Table 4.8. CPLEX log comparison for row 1 of Table 4.7. We report mile-
stones (MS) which we consider significant decreases in the optimality gap.
MS 2 is when the restart and repeat of the presolver occurred for all CPLEX
options. We list the time in minutes and the optimality gap percentage in
brackets.

CPLEX options MS 1 MS 2 MS 3 MS 4

CPLEX 3 100.69 [26.62] 442.92 [26.62] 723.57 [6.02] 1,170.33 [1.23]
CPLEX 1 & 3 102.48 [26.62] 444.13 [26.62] 734.39 [6.02] 1,204.29 [0.7]
CPLEX 2 & 3 108.89 [28.51] 351.98 [25.89] 623.95 [7.81] 679.52 [1.08]
CPLEX 1, 2, 3 110.33 [28.51] 355.40 [25.89] 642.71 [6.70] 756.72 [1.1]

We suspect that by permitting more resolutions to be used for all grid cells causes this
increase in computational complexity. Similarly, we can permit a single look for each grid
cell to use any resolution by changing 𝛿 from 0 to 1 in constraint (3.7) instead of removing
it entirely (Table 4.9).

Table 4.9. Minutes of runtime and percentage optimality gap achieved in
brackets with varying number of sensors and using 𝛿 = 1. We require all grid
cells to use the specified minimum resolution 𝑟𝑚𝑖𝑛𝑐 = 2 for all looks except
1. We solve to a 5% optimality gap using the 16 GB RAM laptop for row 2
and the 128GB RAM desktop for rows 1 and 3.

𝑆 𝑟𝑚𝑖𝑛𝑐 CPLEX 3 CPLEX 1 & 3 CPLEX 2 & 3 CPLEX 1, 2, 3

22 2 2.002 [0.91] 1.981 [0.91] 2.079 [0.91] 2.107 [0.91]
34 2 841.292 [4.56] 950.58 [1.1] 906.28 [1.54] 879.13 [0.89]
86 2 1,562.26 [50.21] 1,581.477 [50.21] 1,562.92 [49.13] 1,506.02 [49.13]

Table 4.9 increases our confidence in the complexity assumption due to increases in reso-
lution. We see that as we increase from 22 to 34 swaths, the runtime increases sharply. We
observe that CPLEX option one and three tends to slightly increase runtime; however, when
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we bundle all three options together we see the lowest runtime. We believe incorporating
CPLEX option one improves our chances to achieve both a low optimality gap and runtime
when the problem is computationally expensive. We conclude that it is best to use all three
options together to solve SAP.

4.2 Operational Results
We have several choices when it comes to parameters for setting up a scenario. We focus on
two specific parameters, the time period (number of swaths) and the minimum resolution
and explain both of them in the context of the benchmark scenario.

When we compare the results to STORM, we adjust appropriate STORM settings to prohibit
attacks on and jamming of sensors. This eliminates some of the stochastic nature of STORM
and allows us to appropriately compare the number of looks from SOM compared to
STORM. We run the benchmark scenario but vary the number of swaths according to
Figure 3.1. We immediately see increases in coverage for all swath hour intervals (Table
4.10 and Figure 4.3).

Table 4.10. Benchmark scenario coverage of SOM compared to STORM
with varying the swath hours according to Table 3.1.

Swath hours SOM looks STORM looks SOM percentage increase

12 hours 135 119 13.5%
24 hours 171 146 17.1%
48 hours 331 175 89.1%
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Figure 4.3. Benchmark SOM performance compared to STORM with varied
swaths.

When we closely examine the impact of varying the number of swaths, we see that an
initial low number of swaths results in similar coverage between SOM and STORM. SOM
steadily increases coverage as swath’s increase, more than doubling the coverage at 111
swaths compared to STORM (Table 4.11).
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Table 4.11. SOM compared to STORM scenario coverage by AOI type with
varied swaths. The total number of grid cells searched, if different than the
unique number, are in brackets and the percentage of cells covered are listed
in the coverage column.

SOM STORM

𝑠 AD Naval Coverage AD Naval Coverage

10 24 16 2.83% 26 14 2.83%
22 0 83 [87] 5.87% 46 [64] 28 5.23%
34 0 135 9.54% 55 [76] 64 8.41%
43 65 106 [107] 12.08% 60 [85] 86 [87] 10.32%
86 100 231 [244] 23.39% 70 [164] 105 [171] 12.37%
111 0 409 [416] 28.90% 77 [228] 116 [227] 13.64%

When we relax the resolution for the larger grid cell Naval search AOI we see that SOM
quickly outperforms STORM in coverage due to the increase in available budget. SOM
shows 36% and 56% increases for 10 and 22 swaths respectively when compared to STORM
(Table 4.12). STORM decreases the gap in coverage at 34 swaths to 30% and we notice
STORM progressively reduce this deficit but never fully catch SOM by the 111 swath mark.
Additionally, we see that SOM fails to search all cells as the budget increases. We suspect
this may be due to solving to a 5% optimality gap.
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Table 4.12. SOM compared to STORM coverage by AOI type with varied
swaths and minimum resolution of 1 for the Naval search area. The total
number of grid cells searched, if different than the unique number, are in
brackets and the percentage of cells covered are listed in the coverage col-
umn.

SOM STORM

𝑠 AD Naval Coverage AD Naval Coverage

10 2 802 [816] 56.82% 26 260 [300] 20.21%
22 18 1156 [1287] 82.97% 46 [64] 323 [386] 26.08%
34 48 1158 [1685] 85.23% 56 [78] 724 [1173] 55.12%
43 62 1158 [1914] 86.22% 62 [88] 848 [1549] 64.31%
86 135 [136] 1158 [3560] 91.38% 68 [160] 1102 [3630] 82.68%
111 192 1158 [4370] 95.41% 82 [228] 1114 [4802] 84.53%

Tables 4.11 and 4.12 show the difference in changing the minimum resolution compared
with different swaths. However, we have not maximized STORM’s heuristic performance
for searching as many grid cells as possible. Two specific parameters, the required revisit
interval and the desired revisit interval, play a significant role in when STORM chooses
to revisit a grid cell. The desired revisit interval refers to the best possible timeliness for a
look to occur whereas the required revisit interval refers to the time a look becomes useless.
The required revisit interval is often associated with the maximum acceptable latency. Both
revisit intervals are inputs into the penalty collection and have various effects on the penalty
collection curve (Figures 2.7 and 2.8). The required revisit interval changes where the
penalty collection curve flattens out to a slope of zero. For instance, the blue high score
curve has a required revisit interval of 38 in Figure 2.7. The desired revisit interval changes
the slope of the curve as it approaches the required revisit interval. A low desired revisit
interval results in a high slope whereas a high desired revisit interval results in a low slope
for the penalty collection curve line segment prior to the required revisit interval value.

Increasing the required revisit interval in STORM increases the chances of searching more
grid cells. Setting the required revisit interval to the length of the swath period we are
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optimizing over helps to ensure that STORM will rotate looks when allocating looks to a
specific type of AOI. However, setting a high required revisit interval comes at a cost and
must be tempered with realism. If we increase all required revisit intervals on all grid cells
to the optimization period time, we will see a decrease in the priority of revisiting the higher
priority grid cells. Grid cells that incur a higher collection penalty have a higher priority
and should be revisited more often.

We experiment with increasing the low priority Naval search area AOI required and desired
revisit intervals to the optimization period time denoted in Table 3.1. We additionally
increase the high priority AD search area AOI to 1

6 (Naval Search Area) to maintain the
revisit priorities (Table 4.13).

Table 4.13. SOM compared to STORM coverage by AOI type with varied
swaths and adjusted revisit rates. Required and desired revisit rates for the
Naval search area match the swath hours interval in Table 3.1 and for the
AD Search area are 1

6 (Naval Search Area). We report the total number of
grid cells searched, if different than the unique number, in brackets and we
report the percentage of cells covered in the coverage column.

SOM STORM

𝑆 AD Naval Coverage AD Naval Coverage

10 2 802 [816] 56.82% 26 260 [300] 20.21%
22 17 1157 [1314] 82.97% 46 [64] 323 [386] 26.08%
34 48 1158 [1685] 85.23% 56 [78] 724 [1173] 55.12%
43 62 1157 [1908] 86.15% 62 [88] 993 [1522] 74.56%
86 136 1158 [3559] 91.45% 71 [164] 1209 [3470] 87.31%
111 194 1158 [4083] 95.54% 87 [222] 1215 [4897] 88.45%

We see that SOM is quite robust to revisit rate changes over all experimented swaths whereas
STORM shows significant increases in coverage in the Naval search area AOI with 𝑆 ≥ 43.
However, SOM still outperforms STORM’s coverage in every instance. The robustness in
revisit rate changes displayed in SOM meets our expectations since SOM is constrained to
look at all grid cells first.
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Of note, rows 7 and 8 of column 7 in Table 4.13 have more unique grid cells in the Naval
search area than the 1,158. We speculate this is due to STORM determining grid cells in
AOIs and swaths by a more complicated area method than the center point method we use
in section 3.2.2. For coverage in these cases, we add the difference to the total grid cells to
compute STORM coverage in a conservative manner.

Another option we adjust is the minimum resolution setting. We set blanket minimum
resolutions for all grid cells and compare the coverage in Table 4.14.

Table 4.14. SOM compared to STORM coverage by AOI type with varied
minimum resolution imposed on both search areas. For minimum resolution
of 5, the AD search area is assigned 5 and the Naval search area is assigned
4 to prevent loss of sensor usage that do not possess NIIRS 5. We report
the total number of grid cells searched, if different than the unique number,
in brackets and we report the percentage of cells covered in the coverage
column.

SOM STORM

𝑟𝑚𝑖𝑛𝑐 AD Naval Coverage AD Naval Coverage

1 257 [753] 1153 [2130] 99.64% 262 [697] 1171 [2136] 100%
2 257 680 [725] 66.22% 227 [364] 583 [616] 57.24%
3 11 495 [508] 35.76% 157 [241] 278 [279] 30.74%
4 0 135 9.54% 55 [76] 64 8.41%
5 0 136 9.61% 21 [30] 80 7.14%

We see once again the coverage for STORM in row one, columns five and six exceed the
expected grid cell count from SOM. We again attribute this to the center point method.
STORM outperforms SOM for a resolution setting of NIIRS 1 by 0.36% and we suspect
this is due to solving to a 5% optimality gap. The remaining minimum resolutions all
outperform STORM in coverage. As expected in row five, SOM chooses all Naval search
area grid cells using NIIRS four in order to maximize the budget and achieve the most
amount of looks.

Since we have examined blanket performance regarding SOM compared to STORM, we
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transition to a more nuanced approach examining individual scenarios. For this approach,
we first determine the number of cells in each type of AOI. We can calculate the required
number of swaths to allocate one look to each cell by multiplying the grid cell count by the
resolution weight (Table 4.15). Since we want to use a higher resolution on the AD search
area, we do not bother creating combinations with the AD search area having a resolution
less than the Naval search area.

Table 4.15. The number of cells is multiplied by the resolution weight from
Figure 2.5 to obtain the required number of swaths.

AD Search Area
(257 Grid Cells)

Naval Search Area
(1158 Grid Cells)

Required
Swaths

RMIN 1 RMIN 1 14.15
RMIN 3 RMIN 1 24.43
RMIN 3 RMIN 2 41.8
RMIN 4 RMIN 1 75.83
RMIN 4 RMIN 2 93.2

We then determine the percentage of cells covered after specific numbers of swaths (Tables
3.2 and 3.3). This lets us choose a point in time when we obtain a satisfactory amount of
coverage. Next, we pick the time to optimize over based on the percentage of cells covered,
desired number of swaths, and the maximum acceptable time for the required revisit interval.
This chosen time will be used to set the maximum acceptable latency for the lowest priority
AOI. Last, we pick minimum resolutions that fit within the budget for the total number of
swaths based on Table 4.15.

For example, in the Blue combatant searching Red grid cells scenario, we see that minimum
resolution levels of NIIRS 3 and NIIRS 1 will require 24.43 swaths to cover 257 and 1,158
grid cells respectively (Table 4.15). We achieve full grid cell coverage at 12 scenario hours
with 34 swaths (Table 3.2). We can thus keep the resolution of NIIRS 3 and NIIRS 1 when
choosing an optimization period of 12 hours. These resolutions will keep us under the 34
swath budget while providing the ability for full grid cell coverage. We set these parameters
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and compare them to STORM in Table 4.16.

Table 4.16. Benchmark scenario of SOM compared to STORM coverage
with minimum resolution of 3 for AD search area grid cells and 1 for Naval
search area grid cells. We report the total number of grid cells searched, if
different than the unique number, in brackets and the percentage of cells
covered in the coverage column.

Model Search
Area

NIIRS
1

NIIRS
2

NIIRS
3

NIIRS
4

Total Coverage

STORM AD 0 0 142
[218]

15
[20]

157
[238]

61.1%

STORM Naval 934
[1460]

0 0 0 934
[1460]

80.6%

STORM Total 934
[1460]

0 142
[218]

15
[20]

1091
[1698]

77.1%

SOM AD 0 0 239 4 243 94.6%
SOM Naval 1157

[1624]
1 [8] 0 [1] 0 1158

[1633]
100%

SOM Total 1157
[1624]

1 [8] 239
[240]

4 1401
[1876]

99.0%

We observe with STORM that we achieve only 77.1% grid cell coverage but with SOM we
achieve 99.0% total grid cell coverage and 100% coverage in the Naval Search Area. Since
STORM uses NIIRS four for a portion of coverage for the AD Search Area, we suspect
the greedy algorithm fails to balance looks over the entire time interval when sensors with
NIIRS three are unavailable. SOM clearly outperforms STORM in this instance by achieving
21.9% better grid cell coverage.

A potential way to increase coverage in STORM using the greedy heuristic would be to set
all maximum latency periods to the same time interval that we optimize over. Setting equal
time intervals across all types of grid cells assists us in keeping higher priority grid cells
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from overtaking lower priority grid cells in collection penalty after the higher priority grid
cell receives a look. The tradeoff to making this setting change is that STORM will tend
to rotate looks and not allocate more extra looks towards higher priority collection penalty
grid cells. Using this setting, STORM will continue to alternate looks. Thus, once all grid
cells receive a look, the higher priority grid cells will not be prioritized. Additionally, this
is an unrealistic setting from a COCOM planner’s point of view since higher priority grid
cells will need to be revisited more often than lower priority grid cells. While this scenario
is not ideal in STORM from a planner’s perspective, we set these parameters in both SOM
and STORM and examine the comparison in Table 4.17.

Table 4.17. SOM compared to STORM coverage with adjusted revisit in-
tervals all set to 12 hours and minimum resolutions of 3 and 1 for the AD
and Naval search areas respectively. We report the total number of grid cells
searched, if different than the unique number, in brackets and the percentage
of cells covered in the coverage column.

Model Search
Area

NIIRS
1

NIIRS
2

NIIRS
3

NIIRS
4

Total Coverage

STORM AD 0 0 182
[196]

19
[20]

201
[216]

78.2%

STORM Naval 1010
[1614]

0 0 0 1010
[1614]

87.2%

STORM Total 1010
[1614]

0 182
[196]

19
[20]

1211
[1830]

85.6%

SOM AD 0 0 239 3 242 94.2%
SOM Naval 1156

[1640]
1 [8] 0 [1] 1 1158

[1650]
100%

SOM Total 1156
[1640]

1 [8] 239
[240]

4 1400
[1892]

98.9%

We see an increase in STORM coverage by 8.5% but we still see SOM outperform STORM
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by 13.3%. Additionally, we see a loss in a single look from Table 4.16 to Table 4.17 and we
suspect it is due to solving to a 12.4% optimality gap due to experiment time constraints.
Thus, a change in revisit interval does not appear to have a significant impact on SOM
performance for the initial set of unique looks which aligns with the assumptions from
Table 4.13.

We create the next operational scenario reverting back to realistic revisit intervals that span
the entire optimization time period. We see from Tables 4.15 and 3.1 that 43 swaths over a
24 hour period will provide us a large enough look budget using minimum resolutions of
NIIRS 3 and NIIRS 2 for AD and Naval search areas respectively and we display the results
in Table 4.18.

Table 4.18. SOM compared to STORM coverage with adjusted revisit inter-
vals of 4 and 24 hours and minimum resolutions of NIIRS 3 and NIIRS 2 for
the AD and Naval search areas respectively. We report the total number of
grid cells searched, if different than the unique number, in brackets and the
percentage of cells covered in the coverage column.

Model Search
Area

NIIRS
2

NIIRS
3

NIIRS
4

Total Coverage

STORM AD 0 140
[213]

14
[19]

154
[232]

59.92%

STORM Naval 504
[523]

0 13
[17]

517
[540]

44.64%

STORM Total 504
[523]

140
[213]

27
[36]

671
[772]

47.42%

SOM AD 0 35 20 55 21.40%
SOM Naval 996

[1077]
0 20

[24]
1016
[1101]

87.74%

SOM Total 996
[1077]

35 40
[44]

1071
[1156]

75.69%
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We see in this case that SOM continues to outperform STORM in coverage but SOM is
24.31% away from entire scenario grid cell coverage. We suspect this is due to sensors
that are able to only use certain resolutions. Because 25% of the total swath sensors do not
possess the capability of using NIIRS 2 or 3 to look at grid cells, both SOM and STORM
are forced to use NIIRS 4 which reduces the budget of looks significantly.

We run an experiment on another instance from Table 4.15 using resolution levels NIIRS 4
and NIIRS 1 which require 76 swaths and display the results in Table 4.19.

Table 4.19. SOM compared to STORM coverage with adjusted revisit inter-
vals set to 8 and 48 hours and minimum resolutions of 4 and 1 for the AD
and Naval search areas respectively. We report the total number of grid cells
searched, if different than the unique number, in brackets and the percentage
of cells covered in the coverage column.

Model Search
Area

NIIRS
1

NIIRS
4

Total Coverage

STORM AD 0 56
[78]

56[78] 21.79%

STORM Naval 858
[1163]

0 868
[1163]

74.09%

STORM Total 858
[1163]

56
[78]

914
[1241]

64.59%

SOM AD 0 140 140 54.47%
SOM Naval 1158

[3486]
0 1158

[3486]
100%

SOM Total 1158
[3486]

140 1298
[3626]

91.73%

We again see SOM outperform STORM but SOM fails to achieve 100% coverage with all
extra looks allocated to the Naval search area using NIIRS 1. We suspect this is because
SOM reduces the objective function value with many looks allocated to a lower priority
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search area than few looks allocated to a higher priority search area.

These direct comparisons between SOM and STORM aid us in evaluating performance.
However, the major benefits of SOM are the options it provides compared to STORM. One
option is the ability to view grid cells with a low resolution for a single look and then
require a higher resolution for subsequent looks. We see that this option quickly gives us
100% coverage with a coarse resolution and then concentrate subsequent looks on higher
resolutions (Table 4.20).

Table 4.20. SOM compared to STORM coverage with minimum resolution
of 2 for all grid cells and SOM setting 𝛿 = 1. We report the total number of
grid cells searched, if different than the unique number, in brackets and the
percentage of cells covered in the coverage column.

Model Search
Area

NIIRS
1

NIIRS
2

NIIRS
3

NIIRS
4

NIIRS
5

Total Coverage

STORM AD 0 211
[344]

0 16
[20]

0 227
[364]

88.32%

STORM Naval 0 571
[600]

0 12
[16]

0 583
[616]

50.35%

STORM Total 0 782
[944]

0 28
[36]

0 810
[980]

57.24%

SOM AD 31
[257]

226
[324]

0 0 0 257
[581]

100%

SOM Naval 1067
[1158]

88
[308]

3 [11] 0 [5] 0 [1] 1158
[1483]

100%

SOM Total 1098
[1415]

314
[632]

3 [11] 0 [5] 0 [1] 1415
[2064]

100%

When we compare this option with STORM we use the case where the minimum resolutions
match. This is the most closely aligned case and we see that SOM easily outperforms
STORM in terms of coverage by over 42%. STORM does receive several more high quality
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looks compared to SOM but we can easily help compensate for this by imposing a higher
minimum resolution and keeping 𝛿 = 1.

When we compare the 28 operational case studies conducted, we see that SOM provides an
average of 54.6% and a median of 22.8% more coverage compared to STORM (Figure 4.4).

Figure 4.4. Summary of each operational case study illustrating SOM’s in-
crease in coverage compared to STORM.

We conclude that SOM provides the best options for searching all grid cells and provides
extra, tailorable options that STORM does not possess.
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CHAPTER 5:
Conclusion

In this thesis, we develop SOM, which is a MILP that seeks to distribute a limited number
of looks from sensors to grid cells in the best possible way. We refer to this problem as SAP
which directly applies to a specific problem encountered in STORM, a campaign analysis
tool used by the J8 directorate in the Pentagon. Since STORM uses a heuristic to distribute
grid cell looks, we additionally seek to outperform this heuristic. SOM accomplishes both
of these objectives by directing where sensors look to ensure all grid cells receive a look and
avoid large revisit gaps. Results show that by introducing several CPLEX options including
a warm start, we can reduce runtime from over 1,400 minutes with no feasible solution
to less than 5 minutes with a feasible solution on a benchmark campaign scenario. The
additional CPLEX options allow us to increase the size of the problem to over 22 million
variables and 11 million constraints and achieve an 11% optimality gap in less than 50
minutes. Operational case study results show that SOM provides an average of 54.6% and
a median of 22.8% more coverage compared to STORM. Additional options present in
SOM and absent in STORM ensure that SOM will outperform STORM to quickly reach
maximum coverage and subsequently focus on allocating looks to the most important grid
cells.

Drawbacks to SOM are that slight changes in 𝛿 result in potentially lengthy runtimes. This
change in 𝛿 also results in the inability to reach an acceptable optimality gap when variables
and constraints number above 11 million and 6 million respectively. Another computational
drawback is having to accept an optimality gap between 5 and 12% to avoid out of memory
errors on a single processor as variables and constraints increase above 22 million and 11
million respectively. Operational drawbacks are that the center point grid cell method does
not completely match STORM’s area method for determining the number of grid cells in
AOIs and swaths.

Further computational research can be directed towards runtime reduction and expand-
ing SOM’s options. Implementation of a rolling horizon approach as well as constraint
programming may prove useful with further testing for reductions in both runtime and
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required memory. Incorporation of more sophisticated options into SOM such as a prior-
itized, progressive, contingent based AOI search, increased penalties commensurate with
required higher resolutions, or integration of STORM aircraft sensors and targets are all
worthy of further exploration but require additional constraints, data collection, and model
programming.

Despite drawbacks, SOM outperforms STORM’s heuristic in all cases studied except one.
The additional option of allowing no minimum resolution for a user defined number of
looks ensures that SOM will outperform STORM to quickly reach maximum coverage and
subsequently focus on allocating looks to the most important grid cells.
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