
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-06

USING REINFORCEMENT LEARNING TO SPOOF
A MONITORED KALMAN FILTER

Bonitz, Dylan A.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/70634

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

USING REINFORCEMENT LEARNING TO SPOOF
A MONITORED KALMAN FILTER

by

Dylan A. Bonitz

June 2022

Thesis Advisor: Mark Karpenko
Co-Advisor: Brian M. Wade

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
USING REINFORCEMENT LEARNING TO SPOOF A MONITORED
KALMAN FILTER

 5. FUNDING NUMBERS

 6. AUTHOR(S) Dylan A. Bonitz

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
DOD Space, Washington, DC, 20001

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Modern hardware systems rely on state estimators such as Kalman filters to monitor key variables for
feedback and performance monitoring. The performance of the hardware system can be monitored using a
chi-squared fault detection test. Previous work has shown that Kalman filters are susceptible to false data
injection attacks. In a false data injection attack, intentional noise and/or bias is added to sensor
measurement data to mislead a Kalman filter in a way that goes undetected by the chi-squared test. This
thesis proposes a method to deceive a Kalman filter where the attack data is generated using reinforcement
learning. It is shown that reinforcement learning can be used to train an agent to manipulate the output of a
Kalman filter via false data injection and without being detected by the chi-squared test. This result shows
that machine learning can be used to successfully perform a cyber-physical attack by an actor who does not
need to have in-depth knowledge and understanding of mathematics governing the operation of the target
system. This result has significant real-world impact as modern smart power grids, aircraft, car, and
spacecraft control systems are all cyber-physical systems that rely on trustworthy sensor data to function
safely and reliably. A machine learning derived false data injection attack against any of these systems could
lead to an undetected and potentially catastrophic failure.

 14. SUBJECT TERMS
machine learning, reinforcement learning, Kalman filter, chi-squared, cyber physical system 15. NUMBER OF

PAGES
 105
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

USING REINFORCEMENT LEARNING TO SPOOF
A MONITORED KALMAN FILTER

Dylan A. Bonitz
Lieutenant, United States Navy

BS, United States Naval Academy, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SPACE SYSTEMS OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
June 2022

Approved by: Mark Karpenko
Advisor

Brian M. Wade
Co-Advisor

James H. Newman
Chair, Space Systems Academic Group

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Modern hardware systems rely on state estimators such as Kalman filters to

monitor key variables for feedback and performance monitoring. The performance of the

hardware system can be monitored using a chi-squared fault detection test. Previous work

has shown that Kalman filters are susceptible to false data injection attacks. In a false

data injection attack, intentional noise and/or bias is added to sensor measurement data to

mislead a Kalman filter in a way that goes undetected by the chi-squared test. This thesis

proposes a method to deceive a Kalman filter where the attack data is generated using

reinforcement learning. It is shown that reinforcement learning can be used to train an

agent to manipulate the output of a Kalman filter via false data injection and without

being detected by the chi-squared test. This result shows that machine learning can be

used to successfully perform a cyber-physical attack by an actor who does not need to

have in-depth knowledge and understanding of mathematics governing the operation of

the target system. This result has significant real-world impact as modern smart power

grids, aircraft, car, and spacecraft control systems are all cyber-physical systems that rely

on trustworthy sensor data to function safely and reliably. A machine learning derived

false data injection attack against any of these systems could lead to an undetected and

potentially catastrophic failure.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...3
B. CURRENT RESEARCH...3
C. SCOPE AND APPLICATION..4
D. ASSUMPTIONS ...4
E. RESEARCH BENEFITS ..5
F. THESIS ORGANIZATION ..5

II. BACKGROUND ..7
A. KALMAN FILTERS ...7
B. CHI-SQUARED FAULT DETECTION..9
C. REINFORCEMENT LEARNING ...11

1. Neural Networks ..11
2. Reinforcement learning basics ..15
3. Policy Gradient and Actor Critic Methods16
4. Proximal Policy Optimization ...19

D. SUMMARY ..21

III. METHODOLOGY ..23
A. EXPERIMENT DESIGN OVERVIEW ..23
B. ALGORITHM DESIGN ...26

1. Main Script ...27
2. Step Function ..32
3. Reset Function ..37

C. TESTING ..37
1. Spoofed Kalman Filter and Chi-Squared Verification

Testing ...37
2. Step Function Verification ..41
3. Reward Function Testing ..44

D. SUMMARY ..47

IV. REINFORCEMENT LEARNING RESULTS ..49
A. FIRST TRAINING EVOLUTION ...49
B. SECOND TRAINING EVOLUTION ..52
C. FINAL TRAINING EVOLUTION ..55
D. SUMMARY ..58

viii

V. CONCLUSION AND FUTURE WORK ...59
A. CONCLUSIONS ..59
B. RECOMMENDATIONS FOR FUTURE WORK60

APPENDIX A. MAIN KALMAN FILTER SPOOFING SCRIPT61

APPENDIX B. ALGORITHM STEP FUNCTION ...69

APPENDIX C. ALGORITHM RESET FUNCTION ..75

APPENDIX D. ORIGINAL KALMAN FILTER AND CHI-SQUARED
SCRIPT ...79

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST ...89

ix

LIST OF FIGURES

Figure 1. Chi-Squared Distribution vs. Degrees of Freedom. Source: [13].10

Figure 2. Neural Network with One Hidden Layer ...11

Figure 3. Single Node Actions ..12

Figure 4. Common Activation Functions. Source: [20]. ...13

Figure 5. Fully Connected Feed Forward Neural Network14

Figure 6. Basic RL Agent-Environment Interaction. Source: [16, p. 48].15

Figure 7. Actor-Critic and Environment Relationship. Source: [16].18

Figure 8. Single Timestep Plot with a Positive Advantage. Source: [17].20

Figure 9. Single Timestep Plot with a Negative Advantage Source: [17].20

Figure 10. Projected Path over Time, Angle: 45° Number of Steps: 7023

Figure 11. True Measurement Overlaid on the True Projected Path...........................24

Figure 12. Spoofed Path Overlay ..25

Figure 13. Algorithm Flow Chart ..26

Figure 14. Critic Network ...29

Figure 15. Actor Network ...30

Figure 16. Agent Creation ...31

Figure 17. Agent Training Options ...32

Figure 18. Injecting Spoof onto the True Measurement ...33

Figure 19. Chi-squared Test on the Innovation ...34

Figure 20. Calculating the Windowed Alarm ...34

Figure 21. Reward Function Curve Generation ..35

Figure 22. Final Reward Function Plot ...36

Figure 23. Spoofing Inputs for Script Testing ...38

x

Figure 24. Spoofed Kalman Filter Estimations Overlayed with the Original
True Path ..39

Figure 25. Innovation with 1 Sigma and 3 Sigma Bounds ..40

Figure 26. Chi-squared and Chi-squared Windowed Value Plot40

Figure 27. Action-space Testing ...42

Figure 28. Sequence for Action-Space Test. ...42

Figure 29. Verification of the Chi-Squared Alarm Logic ...43

Figure 30. Action-space Test: No Alarm Triggered..44

Figure 31. Kalman Filter Output and Desired Location Comparison45

Figure 32. Reward Function Plateau Generation ..45

Figure 33. Reward Calculation and Alarm State ...46

Figure 34. Initial Training Results ..50

Figure 35. Initial Training Final Episode Results ...51

Figure 36. Second Training Cycle ...53

Figure 37. Second Cycle Final Episode Results..54

Figure 38. Final Training Cycle History ...55

Figure 39. Final Training Cycle Last Episode Results ..56

Figure 40. New Desired Path Attempt On Trained Agent ..57

xi

LIST OF TABLES

Table 1. State Variables ...27

Table 2. Action Space ..28

Table 3. Critic Options ...29

Table 4. Actor Network Options ..30

Table 5. Reinforcement Learning Agent Options ..31

Table 6. Key Training Options ..32

Table 7. Reward Function Options ..35

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Mark Karpenko and LTC Brian Wade,

for their compassionate guidance through this entire process. Your time, expertise,

and patience were truly above and beyond and for that, I am extremely grateful.

My sincerest thanks to my incredible wife Alexandria. Her unconditional love,

support, and patience made this possible for me. I am grateful, and especially lucky to have

someone like you in my corner when the going gets tough.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

This research intends to investigate the feasibility of using reinforcement learning

(RL) to disrupt the operation of cyber-physical systems. Similar to the impact the internet

had on the ways people transfer information, cyber-physical systems are reshaping the

ways people interact with hardware. Cyber-physical systems (CPSs) integrate hardware

and software components of a singular engineered system or multiple interconnected

systems connected to each other or to the internet. These types of systems take in sensor

data from physical systems, process the received sensor data via software, and then take an

autonomous action based on the physical systems’ performance [1]. Due to significant

advances in processing capabilities and over-the-air data transfer speeds, CPSs have

become more prolific in the last decade. They can be found in everyday life in the form of

smart home systems, automated vacuums, and dynamic vehicle safety systems [2].

Connected CPSs are becoming increasingly more commonplace in large-scale

infrastructure as well in the form of smart grids, cellular networks, heating ventilation and

air conditioning (HVAC) control, and military systems [3]. In all cases, CPSs simplify the

use or control of a single system or system of systems for a user and reduce the operator’s

workload by automating and simplifying as many tasks as possible.

However, automated operation of hardware via software comes at a cost: security.

Cyber-physical systems are no less vulnerable to cyberattacks than cyber information

systems; however, the impacts can be significantly more severe. Cyberattacks against

purely cyber systems do not inflict physical damage. If a cyberattack against a website is

successful, the only serious issue is that site may be down for a period of time, limiting

access to critical information. However, no hardware will be physically destroyed or

impaired. A successful CPS cyberattack, against a smart electrical grid for example, could

cause physical equipment to overload and explode, leaving millions without power [4].

At the heart of every CPS is an information system that collects and processes all

the received sensor data from various parts of a physical system. The information system

in an autonomous car, for example, is constantly receiving speed data from an

accelerometer, location data from the odometer and a GPS receiver, and camera data and

2

radar data from the various outward sensing equipment. It then processes all of the data

and selects an action based on its surroundings and desired end state. From this example,

it is clear to see how CPSs are significantly reliant on the data from the sensors that monitor

their interaction within a given environment. Control systems imbedded into cyber-

physical systems rely on state estimators and fault detection algorithms for control system

feedback and to establish statistical norms for ingested sensor data to help detect outliers

and/or system faults.

One of the primary workhorses in the field of state estimation is the Kalman Filter,

and its many derivative forms [5]. Kalman filters provide an excellent means to estimate a

true system state, such as position, in a noisy environment. A Kalman filter is an iterative

process that takes consecutive data inputs (measured values) and estimates the true value

of the state measured when there is uncertainty or random variations in the measured

values. For example, Space Situational Awareness networks rely optical imaging and radar

data to track space objects. The radar data received back from the ground transmitter will

be inherently noisy from environmental and atmospheric effects. In this situation, a Kalman

filter can be used to estimate the true position of the spacecraft from the noisy

measurements.

In CPSs where measurements are taken rapidly, the user might not want the CPS to

act on every piece of information. Occasionally, a bad measurement may be taken due to

an environmental anomaly that is significantly different from the norm. To combat this

issue, state estimators like the Kalman filter are paired with statistical fault detection

algorithms. One such fault detection method is the chi-squared test. The chi-squared test

suggests a distribution of the expected observations based on the measurement degrees of

freedom. If a received measurement is sufficiently far from the expected value, the system

will note that measurement as potentially bad. A series of bad measurements may trigger

an alarm state on a CPS and alert an end user of a potential problem. Detailed information

on Kalman filters and chi-squared testing can be found in Chapter II

3

A. PROBLEM STATEMENT

Examining a CPS from the attacker’s point of view, this research will investigate

potential vulnerabilities in the relationship between the information system and physical

components of a cyber-physical system. More specifically, this research will investigate

the feasibility of utilizing a reinforcement learning (RL), one of the three branches of

machine learning (ML), to exploit a potential weakness in Kalman filters paired with chi-

squared anomaly detection. The goal of this research is to model a cyber-physical system

and an imbedded reinforcement learning algorithm that can alter the intended outcome of

the system without being detected. As a proof-of-principle a simple line following robot is

used to represent a CPS process. The robot takes simulated positional measurements at a

given rate. The goal of this experiment will be to have the reinforcement learning algorithm

learn to drive the robot off its intended course by an amount defined by a malicious user

by adding a fictitious signal to the measurement data. This is an example of a false data

injection attack, where false data is used to spoof the sensor measurement.

B. CURRENT RESEARCH

Recent research from Zhang et al. mathematically proved that a Kalman filter

paired with a chi-squared detector can be successfully mislead from its intended output [6].

In their work, corrupt sensor measurement data was used to mislead a Kalman filter. It was

shown that if a malicious actor intentionally causes the Kalman filter to ingest corrupted

data, the output of the Kalman filter can be directed off its trajectory by a desired amount

[6]. This can be done in the presence of a chi-squared fault detector without triggering a

fault if the deviations are done methodically overtime.

Hou et al. studied the effects of falsified measurement data in output tracking and

control systems [7]. In their research, the authors prove that false data injected into a target

tracking control system can cause the CPS to believe the target is in an untrue location.

This work shows that if an adversary compromises a target acquisition system, the end user

could potentially engage a false target.

4

Mo et al. studied the effects of false data injection into wide area wireless sensor

networks [8]. This research highlights how vulnerable a large, interconnected CPS can be

compromised even if only a few sensors on the network are attacked.

The aforementioned works show that it is possible to manipulate Kalman filters and

chi-squared detectors with a false data injection attack. However, these approaches rely on

the fact that the attacker has a deep understanding of the associated advanced mathematics.

This research will investigate the feasibility of using a RL algorithm to perform the same

function. Should this prove successful, a machine learning-based attack would make the

barrier to entry for a malicious actor significantly easier. Highlighting the potential for a

casual attacker, with limited knowledge of a target CPS and a reasonable understanding of

machine learning to develop an effective exploit. Moreover, a machine learning approach

can be more easily adapted to different models since you don’t need to re-design the attack.

Simply re-create your target and let the algorithm learn how to compromise the system.

C. SCOPE AND APPLICATION

This research investigates the potential impacts machine learning may have on state

estimator spoofing. This research will be focused on injecting false positional data using

reinforcement learning into the state estimator composed of a standard Kalman filter and

chi-squared detector. The system of interest is a simulated line-following robot that relies

on a Kalman filter for position estimation. The goal of this experiment is to ‘trick’ the robot

into following a different path without detection. There are many other types of state

estimators and fault detectors, however, this pair was chosen since it is commonly used in

large-scale industrial systems like smart-grids and air traffic control [7], [9]. This research

highlights a significant vulnerability in any CPS that uses Kalman filters for control system

data monitoring.

D. ASSUMPTIONS

To scope the problem appropriately, it was assumed that we have already infiltrated

the cyber-physical system in question. That is, the machine learning algorithm has been

maliciously imbedded into the firmware of a system either via a virus attached to a

firmware update or in the build phase through supply chain interdiction.

5

This thesis is a proof-of-concept for a simple CPS. However, these concepts can be

extrapolated to effect more complex CPSs.

E. RESEARCH BENEFITS

Studying cyber security issues from the attacker’s point of view can help to provide

alternative perspectives for studying security from a protection-focused point of view.

Understanding what an actor may be able to do can help get ahead of the problem. If a

malicious actor were able to spoof the fuel remaining data on a UAV, that malicious code

could potentially allow the UAV to run below its minimum fuel required to make it back

to base, causing the UAV to crash or fall into adversary hands. This research will also

discover if a properly tuned reinforcement learning algorithm is capable of learning to

spoof a Kalman filter without being detected. The implications for successfully training a

(RL) algorithm to accomplish this task means that the attacker does not necessarily have

to have an in-depth knowledge of operation the target CPS or how Kalman filters operate,

but just the ability to create functioning machine learning systems.

F. THESIS ORGANIZATION

Chapter I provides an overview of the research conducted, describing the

relationship between Kalman filters, chi-squared testing, and cyber-physical systems.

Chapter II provides supporting information on Kalman filters chi-squared fault detection

and RL methods used in this research. Chapter III describes the methodology used to model

a CPS, a detailed description of the RL algorithm, and covers testing and verification of

the algorithm’s functionality. Chapter IV presents the results of the research. Chapter V

details conclusions and areas of future research and applicability.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

This chapter provides background information on the key control system and

machine learning theories used in this research. Section A and B provide background on

key components of Kalman filters and chi-squared testing. Section C covers machine

learning principles relevant to this experiment.

A. KALMAN FILTERS

Kalman Filters are widely used in dynamic system applications. See [5] for

example. One of the earliest uses of a Kalman filter was for flight guidance and navigation

control of the Apollo program. Since the Apollo program, spacecraft have only grown in

complexity, requiring significantly more robust command-and-control systems. Kalman

filters are routinely chosen to meet the demands of modern spacecraft attitude

determination and control systems since they provide reliable state estimation. The

following description on how Kalman filters work is derived from [5], [10], [11].

The purpose of Kalman filter is to estimate the states of a dynamical system based

on sensor measurements and past predictions of the state. A Kalman filter is needed

because not all system states can be directly measured. The Kalman filter uses a model of

a system to estimate the state vector, x. In this thesis, the line following robot comprises

two state variables, the x position and the y position.

The Kalman filter operates as an iterative two-step process. In the first step, the

filter approximates the true system state by propagating a noisy model

 𝑥̇𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡−1 + 𝐵𝐵𝐵𝐵 + (1)

where A and B are matrices describing the system model and w is Gaussian process noise

that models the discrepancy between the actual system behavior and the model. The

subscript “pred” refers to the a priori prediction of the state dynamics (before a

measurement is taken) and the subscript “est” refers to the state estimate from the previous

time step.

8

At each time step a measurement, 𝑦𝑦 = 𝑧𝑧 ± 𝑣𝑣, is also taken, where z is the true value of the

measurement and v is sensor noise. Sensor noise is assumed to be zero mean, white-

Gaussian noise similar to w . At the same time, a predicted measurement can be constructed

from the predicted system state

 pred predy Hx v= ± (2)

where H is called the measurement matrix that maps the system states to measurements.

After calculating the predicted state and predicted measurement, a predicted state

error covariance matrix, can be created using equation (3).

 , 1P T
pred t estAP A Q−= + (3)

where ,pred tP is the current state error covariance matrix, Q is the process noise covariance

matrix, and , 1est tP − is the state error covariance matrix from the previous step. For the initial

step, a random guess is taken for ,0estP . Next the Kalman gain, Kt, is calculated using

equation (4).

 ,

,

T
pred t

t T
pred t

P H
K

HP H R
=

+
 (4)

In equation (4), R is the sensor noise covariance matrix for the measurement model, and K

is the Kalman gain. The Kalman gain is used to correct the predicted states to create an

estimate that also incorporates the sensor data. When the Kalman gain is large the

measurement is weighted over the prediction and when the Kalman gain is small the

prediction is weighted over the measurement.

The corrected or a posteriori estimated value of the state, ,est tx , is computed using

equation (5).

 , , ,()est t pred t t pred tx x K y y= + − (5)

where yt is the vector of true measurements taken by the sensor(s) and ypred,t is the predicted

measurement vector at the same time-step. The difference between yt and ypred,t is known

9

as the ‘innovation’. Finally, after the estimated state is computed, an a posteriori state error

covariance matrix is calculated using equation (6).

 , ,()est t t pred tP I K H P= − (6)

where I is an identity matrix of size equivalent to the dimension of the system. The

estimated state value xest,t and the estimated error covariance matrix Pest,t are used to report

the current state of the system (and its uncertainty) and also used as part of the next iteration

of the Kalman filtering process.

B. CHI-SQUARED FAULT DETECTION

Chi-squared testing is a statistical test that helps to reveal outlier data within an

observed data set. [12]. Such an outlier can imply that there is a problem or fault within the

system. The following section is derived from [12]–[14]. The notation for chi-squared is
2χ . The chi-squared test relies on the dimensionality or degrees of freedom in the

monitored data of a system, denoted by p .Degrees of freedom are the number of

independent variables in the test. This research focuses on a line following robot that can

move in the x and y directions. In this example, motion in each direction is a degree of

freedom resulting in two degrees of freedom test. If however a fault or no fault decision is

to be made by monitoring several successive observations, the degrees of freedom increase

with the size of the window. The degrees of freedom determine the shape of the chi-squared

distribution as shown in Figure 1.

10

Figure 1. Chi-Squared Distribution vs. Degrees of Freedom. Source: [13].

Depicted in Figure 1, as the number of degrees of freedom in a given system increases, the

chi-squared distribution begins to resemble a normal gaussian distribution.

The chi-squared test used to detect soft failures is depicted by equation (7).

 1 2

1
() () () () ()

k
T

i k N
k i V i i Npξζ ξ ξ χ−

= − +

= ∑  (7)

Where ()kξζ is a chi-square random variable with Np degree of freedom, where

N is the window length, and ()kξ is a p-dimensional random gaussian white noise vector

which has zero mean and covariance ()V k . In this experiment, the innovation of the

Kalman filter isξ and Tξ ξ is the innovation squared. Nominal values for the innovation

should be close to zero, implying the predictions of the state made by the filter are close to

the estimate, resulting in small chi-squared values. If the innovation is large then the chi-

squared value will increase, potentially exceeding the threshold ξε , triggering an alarm.

Should the alarm be raised for N consecutive steps, the system will trigger a soft alarm

alerting an operator or user of a potential fault in the system. A soft failure is a software

detected discrepancy in a CPS. The hardware will continue to function during a soft failure,

however the CPS will note that there was a fault measured.

11

C. REINFORCEMENT LEARNING

The purpose of this research was to investigate if a machine learning approach

could be taken to deceive a Kalman filter that is monitored by a chi-squared fault detection

test. To best meet the needs of this application, proximal policy optimization reinforcement

learning method was chosen. The following sections provide background detail on

reinforcement learning basics and proximal policy optimization methods. For additional

information on machine learning methods see references [15]–[18].

1. Neural Networks

The use of neural networks is integral to modern machine learning techniques.

Neural networks are comprised of an input layer, an output layer, and one or more hidden

layers, depicted in Figure 2.

Figure 2. Neural Network with One Hidden Layer

The input layer has one neuron or node for each input variable. The output layer

has one node per output variable. There can be one or multiple hidden layers with any

12

number of nodes per layer. The composition of the hidden layers is selected by the engineer

of the system. Layers are connected by edges, shown as black arrows in Figure 2.

Every edge carries a weight, w, which can be thought of as the strength of the

connection of a particular synapse. A node with a strong weight leading to it will be more

dominant than a node with a small weight. Every node other than the input nodes takes the

output of the previous node, multiplies it by the edge weight w, adds a nodal bias, b, then

performs an activation on that value. This is shown in Figure 3

Figure 3. Single Node Actions

The activation function maps the weighted sum of the input into a new range. Hidden layer

nodes produce an output, a, that becomes the input to the next hidden layer, or the input to

the final output layer. The final output layer result is the estimation, ŷ , which represents

the estimated output of the network based on the input and the current weights and biases.

Figure 4 depicts the most commonly used activation functions. For additional information

on activation functions and their applications, see reference [19].

13

Figure 4. Common Activation Functions. Source: [20].

a. Forward Propagation

Forward propagation is the process of taking input variables through a neural

network and producing an estimation, ŷ . Figure 5 details the processes of a feed forward

neural network.

14

3 inputs, 1 2-node hidden layer, and 1 output layer.

Figure 5. Fully Connected Feed Forward Neural Network

The output of the hidden layer is computed by equation (8).

11 1 1 1 1

1,1 1,2 1,31 1 1
21 1 1 1 1

2,1 2,2 2,3 2 2
3

x
w w w b a

f x
w w w b a

x

  
        + =                

 (8)

After the intermediate outputs, a, are computed, the estimation of this simple network is

computed by equation (9).

1

2 2 2 2 21
1,1 1,2 11

2

ˆa
f w w b a y

a
  
   + = ==        

 (9)

After the estimate, ŷ is calculated, it is compared to the desired true value, y, to

calculate an estimation error. The error is used to determine how to update the weights and

bias of the neural network through back propagation.

b. Back Propagation

Back propagation is the process of updating the weights and bias of the neural

network based on the error between the desired estimated output. The most common error

metric is the sum squared error, depicted in equation (10).

 2

1

1 ˆ()
2

N

error i i
i

SS y y
N =

= −∑ (10)

15

For additional error cost functions applicable to various machine learning methods,

see reference [19]. The weights and biases are adjusted throughout the neural network to

minimize the value of the cost function. This process helps to minimize the influence of

nodes that have a negative impact on the overall estimation and increase the influence of

nodes with a positive impact on the network. The rate at which nodes are updated, known

as the learning rate, is a network hyperparameter that is controlled by the designer. A

learning rate close to 1 will cause the network to adjust weights and biases quickly, which

may lead to erratic training. A very small learn rate will adjust the weights and biases more

gradually, causing a more predictable training cycle. For additional information on back

propagation, see reference [19].

2. Reinforcement learning basics

Reinforcement learning involves an agent interacting with an environment to

influence the environment state, then receiving feedback, known as the reward, to learn

how to properly interact with the given environment. The term “agent” refers to the

components that make up the reinforcement learning algorithm, to include the sensors that

provide information about the environment, and the neural networks and algorithms that

evaluate the actions chosen by the agent. Figure 6 depicts how an agent interacts with an

environment.

Figure 6. Basic RL Agent-Environment Interaction. Source: [16, p. 48].

16

In relation to this thesis, the agent action represents a change to the x or y

measurement. The environment then provides a reward and a new state, via the Kalman

filter, based on the previous state action pair. The state, tS , is a vector of n variables that

represent the agent’s view of the environment at every timestep. The reward, tR , is a single,

real number that the agent receives as feedback from the action, tA , taken in relation to the

state. This process is how reinforcement learning algorithms learn to interact with an

environment. The goal of the algorithm designer is to optimize the agent’s understanding

of the environment by shaping the reward function, so the agent learns how to accomplish

a desired task through training simulations, by maximizing the reward. There are multiple

methods of reinforcement learning, each with its own advantages and disadvantages,

depending on the specific task and desired outcome. For this research, Proximal Policy

Optimization was chosen since it performs better than alternatives in noisy stochastic

environments [17].

3. Policy Gradient and Actor Critic Methods

The overall goal of reinforcement learning is to find the optimal policy, represented

by π, to maximize the long-term reward of an individual training cycle known as an

episode. The policy is the mapping of observed states to actions. The policy retains

the information about a specific state and the optimal actions to take from the current

state forward to maximize the long-term reward. To prevent a reinforcement learning

algorithm from favoring near term rewards vice long term rewards, a discount factor,

γ, is applied to the reward received at every timestep. The reward over time is

depicted by equation (11),

 10

T k
t t kk

G Rγ + +=
=∑ (11)

Where G is the cumulative long-term reward, R is the current step reward value,

and γ is the discount factor. A small discount factor makes the algorithm more

farsighted while a value close to 1 will make the algorithm greedy, favoring short term

rewards. Maximizing the cumulative long-term reward is a key component of this

research.

17

The key concept of policy gradient reinforcement learning is to increase the

probabilities of actions that lead to a better long-term reward and decrease the probabilities

of choosing actions that lead to lower rewards or simulation termination, until the algorithm

reaches specified stopping criteria. Policy gradient methods compute an estimation of the

policy gradient and plug it into a stochastic gradient ascent algorithm. The most common

form of the gradient estimator is,

0

() log (|) (,)
T

t t t t
t

J a s A s aθ

θ

π
θ θ θ θτ π

π π
=

 ∇ = Ε ∇  
∑


 (12)

where θπ is the policy with hyperparameters θ, ()J θπ is the expected finite-

horizon undiscounted return of the policy. The advantage function of the current

policy is represented by A θπ , ta is the action at time t, and ts is the state. After every

episode, the policy is updated by equation (13).

 1 ()
kk k a Jθ θθ θ π+ = + ∇ (13)

Since policy gradient methods only update the policy directly, they do not learn an

associated value for state action pairs over the course of the episode. Therefore, the agent

does not process the potential value of being in a specific state, taking an action, and what

effect that may have on the overall long-term reward. It only learns that it did well after it

completes an entire episode and updates the policy based in its performance. Actor-critic

methods take advantage of this short coming in policy gradient methods and combine these

two methods in one agent.

Actor-critic methods combine policy-based functions, the actor, with value-based

functions, the critic, to increase learning speed. The actor sets the policy for the agent. It

uses policy gradient methods to derive best-action probabilities for a given state. The critic

measure how good a chose action was. It then assigns a value to the previous state based

on the action chosen and the projected long-term reward the agent will receive having taken

that action. The relationship between the actor, critic, and the environment is depicted in

Figure 7.

18

Figure 7. Actor-Critic and Environment Relationship. Source: [16].

The actor network, which builds the policy for the agent, choses an action. The agent then

interacts with the environment based on that action and produces a new state and a reward

for taking that action. The critic uses a temporal difference algorithm to learn the state

value function for the actor’s current policy[16, pp. 395–396]. Temporal difference of

bootstrapping is an estimate of the value of a state based on the current estimate of the

value of the next state. In short, temporal difference learning allows the critic to update the

state action pair values while the algorithm is learning vice waiting for the completion of

an episode to update the understand of each state action pair chosen. A positive temporal

difference error tells the agent that the action resulted in a reward that was better than

expected and updates its understanding of that state action pair and the policy.

The critic network update is represented by equation (14),

 1 (,)t t t t tw w q S Aπβδ+ = + ∇ (14)

19

where w are the weights and biases of the neural network, δ is the temporal difference, qπ

is the value of each state action pair, and S and A are the state and action at each timestep

respectively. The actor network update is represented by equation (15),

 1 ln((| ,))t t t ta Sθθ θ α δ π θ+ = + ∇ (15)

4. Proximal Policy Optimization

The following section is derived from references [17], [21]. As mentioned in

section 2, the advantage function in an actor critic can unintentionally cause destructively

large policy updates that inhibit learning speed and progress. To help foster stable policy

updates throughout training, proximal policy optimization was created. Proximal policy

methods limit the policy gradient step to prevent large swings in policy updates.

Mathematically, proximal policy optimization is represented by equation (16)

 ˆ ˆˆ() min(() ,clip((),1 ,1))CLIP
t t t t tL r A r Aθ θ θ ε ε = Ε − +  (16)

where ()tr θ is the probability ratio of the current policy over the old policy depicted by
equation (17).

old

(|)()
(|)

t t
t

t t

a sr
a s

θ

θ

πθ
π

= (17)

The first term inside of the minimization function in equation (16) is the

constructive policy iteration, which without the second term would lead to an excessively

large policy update. The second term inside of the clip function in equation (16) penalizes

changes to the policy that move ()tr θ outside of the interval defined by []1 ,1ε ε− + . Due

to the presence of the min operation, the objective behaves differently when the advantage,

ˆ
tA , is positive or negative. Figure 8 depicts a positive advantage, where the selected action

by the agent resulted in a better-than-expected effect on the outcome.

20

Figure 8. Single Timestep Plot with a Positive Advantage. Source: [17].

Figure 8 shows that the loss function flattens out when r gets too large, or if an

action is significantly more likely under the current policy than it was under the previous

policy. The goal is to not overdo the action update, so the objective is clipped to prevent

this. The same concepts apply when the advantage is negative, as shown by Figure 9.

Figure 9. Single Timestep Plot with a Negative Advantage Source: [17].

The clipping approach not only helps to reduce large policy changes, but it also

helps to undo policy mistakes efficiently since the new policy will constantly be compared

21

to the old policy. The result is the final loss function for proximal policy represented by

equation (18).

 []1 2
ˆ() () () ()CLIP VF S CLIP VF

t t t t tL L c L c S sθθ θ θ π+ +  = Ε − +  (18)

Where 1c and 2c are learning hyperparameters, ()VF
tL θ is the mean squared error of the value

function responsible for updating the baseline critic network and []()tS sθπ , is an entropy

term used to encourage the agent to explore the action-space early in the training process

and slowly fade away as training persists and the objective term ()CLIP
tL θ starts dominating.

D. SUMMARY

This chapter provided an overview of the major used in this thesis. Kalman filters

are recursive adaptive filters that model a state-space based on a prediction and a

measurement update. Chi-squared tests, check data for goodness-of-fit, ensuring the

quality of data in noisy monitored systems and providing an alarm for out of norm behavior.

Reinforcement learning, specifically Proximal Policy Optimization, is a method to train an

agent in the presence of a noisy dataset. Together these ingredients are used to achieve the

goal of this thesis, which is to use a reinforcement learning agent to deceive a chi-squared

monitored Kalman filter.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. METHODOLOGY

This Chapter details the design, verification, and initial testing of the reinforcement

learning agent and the unique environment of this experiment. First, a model line following

robot was designed and functionally tested to operate within the reinforcement learning

environment. Next, a reinforcement learning neural network was developed tested against

in the environment to verify that the agent could choose actions to spoof the Kalman filter.

Finally, a reward function capable of providing the agent the requisite feedback was

developed and experiment shifted from algorithm testing to training.

A. EXPERIMENT DESIGN OVERVIEW

The goal of this research was to demonstrate the potential impact of a discrete

cyberattack against a Kalman filter. For simplicity, this experiment was designed to

simulate a line-following robot using MATLAB. The experiment allows a user to choose

a desired angle for a robot to drive along for a desired number of steps. At every step, an

integrator is used to compute the true path of the robot. The robot can take a step in both

the x and y direction. A constant control input of 1 unit of velocity in each axis per step

used. Figure 10 shows a simple example of the robot’s path.

Figure 10. Projected Path over Time, Angle: 45° Number of Steps: 70

24

Figure ten depicts the projected path of the robot following a 45° angle for 70 steps.

Next, at each projected step, a measurement of the robot’s location is taken. Randomly

generated noise is added to the measurement to simulate environmental factors that would

affect any real-world position sensor. This measurement is what is going to be exploited

by the main attack algorithm. Figure 11 depicts the noisy measurement overlaid on the

projected path.

Figure 11. True Measurement Overlaid on the True Projected Path

While the true measurement is generated for each step based off the projected path,

a desired attack path is also generated. The desired path is the attackers intended path for

the robot. This experiment does not change the physical location of the robot. The output

25

of the Kalman filter is the robot’s perceived location. Thus, the robot is being tricked into

thinking it is somewhere else. The attacker can predefine how quickly, how many times,

how far off, and for how long they would like the spoofed path to deviate from the actual

path. Figure 12 shows an example spoofed path, desired by the attacker.

Desired spoofed path deviation is both 5 units in x and y. The deviation starts at step 5 and
reaches five units of deviation 25 steps into the simulation and maintains 5 units of
deviation for the rest of the simulation.

Figure 12. Spoofed Path Overlay

In Figure 12, the desired spoofed path was set to start its deviation 5 steps into the

simulation and reach a final deviation of 5 units in both x and y by step 25. Then it will

maintain the 5-unit deviation for the remainder of the simulation. The attacker has the

ability to make more or less sophisticated deviations and can choose to alter only x or y.

All of these curves are generated at the start of each simulation in the system restart

26

function which is discussed in detail in section B.1. of this chapter. Lastly, the goal of the

algorithm is to learn to inject the optimal amount of noise/bias to the measurement at each

time step to make the Kalman filter generate an estimated position path that mimics the

desired spoofed path. The following sections will discuss in detail the components that

make up the proximal policy reinforcement learning algorithm that will be used to deceive

the Kalman filter undetected.

B. ALGORITHM DESIGN

The experiment is composed of three main components. The first components is

the main script which is where a user defines the parameters of the training or testing

senario. It also constructs the components of the reinforcement learning agent. The second

is the reset function. The reset function initializes the training episode, builds the paths of

the senario, and generates the first time-step state vector. The final component is the

Kalman filter step function. The step function steps the Kalman filter one timestep and

provides the agent a reward for its action in the environment. Figure 13 is a graphical

representation of the relationship between the experiment scripts.

Figure 13. Algorithm Flow Chart

27

1. Main Script

The main MATLAB script for the experiment is given Appendix A, which builds

the neural networks and trains or tests the agent. Appendix A is broken into four sections.

Section 1 initializes the hyperparameters of the networks and the user inputs. Section II

builds the action space for the actor to choose from and constructs the reinforcement

learning environment. Section III builds the actor, critic, and agent. Lastly, section IV trains

or tests a new or previously saved agent.

a. Simulation Inputs, Action Space, and Reward Function Options

Table 1 depicts the simulation inputs. These are tunable inputs that an attacker can

adjust to change the desired path of the robot.

Table 1. State Variables

Variable Name Description Range of Values
Time end Sets the total number of

steps per episode
70-200 total steps were

tested
Speed Sets a constant velocity for

the training senario
Speed was kept constant at 1

for all testing
Initial angle (initial ang) Sets the angle for the true

path (x true) to be drawn
from

Can accept 0–90 degrees.
For training, initial angle was
kept constant at 45 degrees

Distances (Dists) Sets the desired deviation
from the true path in both

the x and y direction.
Multiple deviations can be

implemented

A 2 x n matrix where the first
row is the starting value of

the deviation and the second
row is the desired end state.

Ex.
[0, 10; 10, 10;]

Time targets Specify the time when the
user wants the deviation to

start and stop. Multiple time
vectors can be created.

A 2 x n matrix where the first
row is the start time and the
second is the start time. Ex.

[5, 10; 10, time end;]
Action range Specifies the step size

between -1 and 1 that builds
the action space for the
agent. Must be an odd

number larger than three.

An action range of 5
produces the action space:

[-1, -0.5, 0, 0.5, 1]

Action space reduction
factor

Scales the action range Values between .1 and 1.

28

Variable Name Description Range of Values
Noise reduction factor Scales the noise taken by

the simulated position
sensor in the Kalman filter.

Values between 0 (no Noise)
and 1 (full noise)

The values depicted in this table were for the final successful training session of the agent. Each
episode was 100 seconds long. There was a single deviation of 10 units in both the x and y axis.
The action space was reduced by 75%. The simulation had full noise.

In Table 1, “Time end” is the desired runtime of an individual simulation. One step

is equivalent to 1 second. A senario with “time end” set to 100 will run for 100 seconds.

The “speed” variable is a constant control input of 1 unit of motion in both the x and y

direction per step. The “initial angle” draws the true path of the robot. For this experiment,

the true path of the is a straight line based along the initial angle. All of the desired

deviations, “Dists” are created based off the true path line. “Time targets” allows the user

to specify when, and for how long, a deviation can occur. Table 2 depicts the action space,

which is created based on the action range and action space reduction factor.

Table 2. Action Space

[-0.75; -0.75] [-0.75; -0.375] [-0.75; 0] [-0.75; 0.375] [-0.75; 0.75]
[-0.375; -0.75] [-0.375;-0.375] [-0.375; 0] [-0.375; 0.375] [-0.375; 0.75]

[0; -0.75] [0; -0.375] [0; 0] [0; 0.375] [0; 0.75]
[0.375; -0.75] [0.375;-0.375] [0.375; 0] [0.375; 0.375] [0.375; 0.75]
[0.75; -0.75] [0.75;-0.375] [0.75; 0] [0.75; 0.375] [0.75; 0.75]

Action range of 5. Action space reduction factor of 0.75. Total number of actions to choose from:
25.

For speed and simplicity, an “action range” of 5 discrete actions in each axis was

chosen. This gives the agent a total of 25 different options to choose from at each step. An

“action space reduction factor” of 0.75 was chosen based on trial and error. This reduction

factor scales the available action-spaced based on the attacker’s needs. In simulations with

no reduction factor, the agent tended to alarm more often than simulations with some

reduction. Reduction factors smaller than 0.75 made it difficult for the agent to reach the

desired deviation in the 100-step simulation.

29

b. Critic

The critic, is the value network. The critic evaluates how good a chosen action was

based on the projected long-term reward of being in a state and taking an action. Since the

data is noisy, being in the same state as a pervious episode and taking the same action, may

result in a lower-than-expected reward. To help the agent understand this phenomenon, a

long-short-term-memory layer (LSTM) was added to the critic neural network. More

information on LSTM layers can be found in reference[18] The Critic uses the

hyperparameters in Table 3 to construct the network in Figure 14.

Table 3. Critic Options

Variable Value
Critic FC1a 50
Critic FC2 20
Learn rate critic 0.0001
Gradient threshold critic 1

a. Fully Connected (FC).

Figure 14. Critic Network

c. Actor

The actor is the policy-based network. The actor network chooses an action from

the action space based on the value of that action determined by the critic. The actor uses

the hyperparameters in Table 4 to construct the network in Figure 15.

30

Table 4. Actor Network Options

Variable Value
Actor FC1a 150
Actor FC2 100
Actor FC3 50
Learn rate actor 0.00001
Grad threshold actor 1

a. Fully Connected (FC).

Figure 15. Actor Network

d. Agent and Training Options

The agent encompasses both the actor and the critic. The critic network maps values

to individual state-action pairs, while the actor builds the policy to choose actions that

optimize the cumulative long-term reward based on the values generated by the critic. The

agent uses the parameters described in Table 5 to build the agent depicted in Figure 16.

31

Table 5. Reinforcement Learning Agent Options

Hyperparameter Description Value
Discount Factor Determines if the agent

favors long-term or short-
term rewards.

0.99 (Far looking)

Experience Horizon How the PPO agent looks
out over a specified

number of steps

150 (for a 200 second
scenario)

Mini Batch Size Determines the amount of
data stored in memory per

step

64

Figure 16. Agent Creation

The training options set the training criteria for agent and the environment. Table 6

and Figure 17 depict the training options used. Visualization options are omitted from

Table 6.

32

Table 6. Key Training Options

Variable Description Value
Max Episodes The max number of episodes to run for if

no other criteria is met
500,000

Max Steps Per
Episode

Equal to the total number of steps per
episode

100

Average Reward A stop-training-criteria where once the
average reward is met for the specified

window length, training terminates.

See equation in
Section I.f of
Appendix A.

297
Score Average

Window
Number of episodes steps to compute the

average reward
30

Figure 17. Agent Training Options

The final sections of Appendix A initiate the training process, then plot relevant

training data once training has terminated or completed.

2. Step Function

The second key script for the experiment is the combined Kalman filter step

function and reward function, found in Appendix B. The Kalman filter step function is

called by the environment of the main script for every timestep in an episode. The inputs

to the Kalman filter step function are the “actions” chosen by the agent to propagate the

system toward the desired path, the structure “LoggedSignal” which stores the variables

that are carried forward through the system. The “out,” “in,” and “max-R” variables are

33

used to build the reward function, and “Time end” specifies the duration of the training

episode. The step function then performs three primary functions. First, it steps the

environment one unit of time through the dynamics and Kalman filter process. During this

process, the action chosen by the agent is accumulated and added to the true measurement

of the system to begin the spoofing process depicted in Figure 18.

Figure 18. Injecting Spoof onto the True Measurement

In Figure 18, where “spoofing input buffer” is the cumulative sum of all the actions

chosen by the agent for a given episode. The “spoofing input” is the current timestep’s

value of “spoofing input buffer” and “pos spoof” is the summation of the spoofed data and

the true measurement at the current timestep. This is recorded for later analysis.

Next, the step function performs a chi-squared test on the innovation of the Kalman

filter. As discussed in Chapter II section B, the chi-squared fault detection test determines

if a value is outside of normal. If the squared innovation exceeds the Chi-squared threshold,

an alarm state is recorded. Alarming after a single fault is typically unreasonable since it

may just be an anomaly and not a true fault. To help prevent constant alarms from being

raised, systems with chi-squared fault detection systems often utilize an alarm window,

where if an alarm is raised for a specified number of iterations in a row, then an actual

alarm is triggered alerting the system and observers. Figure 19 and Figure 20 depict the

chi-squared test and windowed alarm tracker of the step function.

34

Figure 19. Chi-squared Test on the Innovation

Figure 20. Calculating the Windowed Alarm

The goal of the agent in this experiment is to learn how to mislead the Kalman filter

to allow the simulation to follow the attacker’s chosen desired path, vice the true path,

without triggering the windowed alarm state.

The last major component of the step function is the reward function. The reward

function provides the agent feedback as to how well it is performing the specified task in

the environment. Reward function shaping is an integral part of machine learning [22]. The

system designer needs to find a function that allows the agent to build an understanding of

35

how each action it can take effects the overall simulation outcome and eventually, leads

the agent to learn how to take an optimal action for a given state.

Table 7 depicts the reward function options. These options are specified in the main

script and are imported into the step function. The variable “Out” determines the x-

intercepts of the reward function. For example, an “Out” of 10 makes x-intercepts at -10

and 10, and determines the width of the plateau. An “In” value of 1 sets the plateau of the

reward function from -1 to 1. “Max reward” determines the height of the reward function

and sets the y-value of the plot at the plateau. Figure 21 captures the component of the

reward function that constructs the shape of the curve based on the user inputs defined in

Table 7.

Table 7. Reward Function Options

Variable Value

Out 10

In 1

Max Reward (max-R) 1

Figure 21. Reward Function Curve Generation

A reward is generated for the x and y component of the robot’s motion separately. This

helps to ensure that the agent can process a senario where there may be a different desired

path in the x and y directions. The variable “x1” in Figure 21 is the difference between the

36

current output of the Kalman filter and the desired path. The reward function, shown in

Figure 21, takes the values from Table 7 and generates the reward function as shown in

Figure 22.

Figure 22. Final Reward Function Plot

The curve depicted in Figure 22, is used to map “x1” which is the distance the simulation

is from the desired path to a reward between zero and one. Where the plateau determined

by the variable “in” is the user defined tolerance for being close to the desired path. In this

example, if “x1” is greater than one or less than negative one, the agent will receive a

reward less than the maximum reward which is one. If “x1” is greater than ten or less than

negative 10, the agent receives a negative reward, and the simulation is terminated. Since

the measurement data being spoofed is inherently noisy, it is nearly impossible for the

agent to perfectly match the desired path line, resulting in the agent never receiving the

maximum reward. The plateau gives the agent a small band in which to take actions and

still maintain the maximum reward.

37

3. Reset Function

The Reset function listed in Appendix C, Initializes the variables used in the step

function at the beginning of each new training episode. It also builds the true, measured,

and desired paths based off the parameters set by the user in the main script. The reset

function is called by the training environment every time the agent successfully reaches the

end of an episode, or if the episode reaches any early termination criteria. For a visual

representation of the desired, true, and measured paths generated by the reset function see

Figure 12.

C. TESTING

The design, build, and test of the various scripts used in this thesis were structured

as follows. First, a functioning Kalman filter and chi-squared monitor were built to form a

position estimator. Next, the original Kalman filter program was converted into a step

function to allow it to interact with MATLAB’s machine learning toolbox. Then, the step

function was tested outside of the reinforcement learning environment with a known set of

actions to verify that the action space available to the agent can indeed achieve the desired

goal. After the action space was validated, the reward function was tuned outside of the

reinforcement learning environment to ensure that the agent would receive the correct

signals based on its chosen actions. Finally, after all individual components were verified

to function as desired, the agent main script was setup to begin training of the agent. The

following sections describe the verification testing of the individual components of the

algorithm.

1. Spoofed Kalman Filter and Chi-Squared Verification Testing

The first part of this development was to model a simple double integrator system

that incorporates a Kalman filter and performs a chi-squared fault detection test. The script

also needed to test the spoofing input, which was done by adding an intentional amount of

bias to the true measurement. The original test script can be found in Appendix D. Figure

23 depicts the output. This simulation ran for 200 timesteps with a constant control input

of 1 unit in both the x and y directions. Figure 23 depicts the intentional spoofing inputs

for the simulation.

38

Figure 23. Spoofing Inputs for Script Testing

The goal was to create to large deviations from the projected path by influencing

the measurement with an additional signal form the spoofing input. The first term in the

vector “spoofing input” is the x deviation and the second term is the y deviation. The

secondary goal was to verify that the chi-squared fault detection test alarms and then

recovers after the filter outputs stabilize and then to repeat this cycle for this single

simulation. Figure 24 illustrates the true output against the spoofed Kalman filter output

based on the spoofing inputs from Figure 23.

39

Top plot is the estimated x value over time. Bottom plot is the estimated y value over time.

Figure 24. Spoofed Kalman Filter Estimations Overlayed with the Original
True Path

As shown in Figure 24, the spoofing inputs were successfully inserted into the Kalman

filter output, and the estimated course deviated from the true path by the specified amounts.

The Kalman filter output returned to mirroring the true path when the spoofing inputs were

turned off.

Figures 25 and 26 show that the chi-squared test performed on the innovation of

the Kalman filter, performed as expected.

40

1 sigma is the solid red line. 3 sigma is the dotted red line. The innovation over time is the
blue line.

Figure 25. Innovation with 1 Sigma and 3 Sigma Bounds

Figure 26. Chi-squared and Chi-squared Windowed Value Plot

41

In Figure 25, the innovation for each the x and y components stay within the three

sigma standard deviation bounds used as the alarm metric for the chi-squared test until the

spoofing input is introduced. At the same time, the corresponding chi-squared value spikes

and begins triggering individual step alarms shown in Figure 26.

2. Step Function Verification

With the functionality of the Kalman filter, chi-squared test, and spoofing effects

proven, it was necessary to build a step function to interface with MATLAB’s RL toolbox.

The data was carried over from step to step and iterated for the maximum number of steps

in a desired simulation. To verify functionality, prior to introducing the step function to the

reinforcement learning environment, the reward function was separated from the Kalman

filter spoofing and chi-squared testing of the function.

The agent as discussed in Section A and shown in Table 2, will only have a limited

action-space to work with. To verify that the action-space available to the agent will be

sufficient for it to reach the desired deviation within the simulation time, an action-space

was prescribed to the step function in a limited scenario shown in Figure 27.

42

Figure 27. Action-space Testing

In this 70 timestep run, the deviation in the x direction was kept constant and only

the desired and estimated path of the y direction was manipulated. The desired path in

Figure 27 was created using a deflection of positive five units from step 20 to step 45, then

a sharp negative step of five units off of the intended true path for the remainder of the

scenario. The goal was to test that an action-space using the agent’s available action

sequence could be used to generate a post filter estimated position line that could reach and

follow the desired deviations in the desired path before the scenario ended. The following

action-sequence was fed to the Kalman filter step function shown in Figure 28 to achieve

the successful plot in Figure 27.

Figure 28. Sequence for Action-Space Test.

43

Now that the action space available to the agent has been proven to reach the desired

deflection, the chi-squared fault detection test was verified next. The first test was to prove

that the alarm state would trigger for innovations that exceeded the threshold of the 2

degrees of freedom chi-squared curve and that the alarm window would activate after a

specified number of consecutive alarm states. Figure 29 illustrates a successful instance

where the spoofed Kalman filter caused the alarm to raise and the alarm window to activate.

Figure 29. Verification of the Chi-Squared Alarm Logic

In Figure 29, the action-space was a series of random large action taken from step

20 to 35 in the y direction only. The windowed alarm threshold was set to 13. The

windowed alarm is how many consecutive step alarms the system allows before the real

alarm activates. In a real-world system, this is when an operator would be notified of a

potential fault in a sensor. The alarm state is continuously active from step 22 to 45. The

alarm window was successfully triggered at time step 35 and remained on until the Kalman

filter stabilized and the innovation returned to a nominal value. Figure 29 also shows that

44

the windowed alarm did not trigger from steps 16 to 20 when the windowed alarm threshold

was not met and restarted counting consecutive alarm states at step 22.

With the functionality of the chi-squared test verified, a test was also conducted to

ensure that it is possible for the agent to make it through an episode of training without

triggering a windowed alarm. Figure 30 depicts the result of this test.

Figure 30. Action-space Test: No Alarm Triggered

In Figure 30, the prescribed action-sequence was able to slowly drive the Kalman filter

estimations to stay within a 1 unit bound of the desired path while never triggering a single

alarm state. This proves that the agent has the ability to never trigger a windowed alarm.

The test also shows that it is feasible to learn to spoof the Kalman filter without triggering

any individual alarm states.

3. Reward Function Testing

The final testing performed on the step function prior to implementation in the

reinforcement learning environment was crafting a reward function that provides feedback

to the agent to learn its intended task. The first part of the reward function computes the

45

distance between the current Kalman filter output “pos hat” and the attacker’s “desired

location” in both the x and y directions individually. The agent then computes the slope of

the plateau function based on the user defined inputs depicted in Figure 31.

Figure 31. Kalman Filter Output and Desired Location Comparison

Initially, the comparison between the current filter output and the desired location

were combined in a single summed squared distance. However, the result is a scalar, so the

agent had no sense of which way it needed to adjust the spoofing signal to reach the desired

location. The slope of the plateau is helps to shape the reward for the agent to learn exactly

what it is suppose to. The slope gives the agent a better reward as it gets closer to the top

of the plateau where it receives the maximum reward as long as it stays within the “In”

window. This comparison is depicted in Figure 32.

Figure 32. Reward Function Plateau Generation

If the comparison is outside the bounds of the plateau but inside the bounds of the

values of “Out,” the agent will receive a reward for how well it is moving in both the x and

y directions. If the agent does not stay within the curve and exceeds the value of out at any

point, the agent is given a negative reward and the simulation terminates early. Strong

46

negative rewards coupled with termination criteria help the agent to understand the bounds

of the environment clearly, and also to help it to understand that there are bad actions to

choose and to avoid them.

The agent also needed to build an understanding of the instantaneous alarm state

and windowed alarm and how to avoid triggering the windowed alarm. Depicted in Figure

33 is the code that provides additional feedback to the agent on the alarm state and

windowed alarm that is included in the reward function.

Figure 33. Reward Calculation and Alarm State

In Figure 33, the “smoothed alarm” and “sum Alarm” values are imported from the

step function and are used to provide the agent feedback on the alarm state. If “smoothed

Alarm” is triggered, its value will be one, which will give the agent a strong negative

reward for tripping the full windowed alarm. To help the agent understand that it is getting

closer or farther away from the windowed alarm state, the agent gets a reward for how

close it is to “sum alarm,” which is the calculation for smoothed alarm mapped between

zero and one. If the agent hasn’t triggered many alarms, “sum alarm” will be small and the

agent will receive an additional reward point. As “sum alarm” gets larger the reward from

“reward alarm” will get increasingly smaller until the “smoothed alarm” is triggered, and

the episode is terminated.

47

D. SUMMARY

The Above sections describe the methods utilized to develop and verify the

environment for the agent and reward function shaping prior to training. The Kalman filter

responds to the spoofing input action-space and the chi-squared test functions properly

when performed on the innovation of the filter. The reward function is properly shaped to

give the agent the constructive feedback on its actions in the environment and gives the

agent a range of values that achieve the maximum reward to compensate for the inherently

noisy measurement data. In the next chapter, the results of reinforcement learning are

presented.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

IV. REINFORCEMENT LEARNING RESULTS

This chapter presents the results of the reinforcement learning experiment. For

simplicity, the training scenario was limited to directing the output of the Kalman filter ten

units off of the true path in both the x and y directions to show a proof of concept. After

successfully training the agent to deceive the Kalman filter and chi-squared test, a new

deviation was given to the agent to test its understanding of the objective, and if it could

potentially follow a new desired path without any additional training.

A. FIRST TRAINING EVOLUTION

After successful reward shaping iterations to provide the agent proper feedback on

its progress in the environment, the final hyperparameters chosen for the scenario can be

found in Appendix A, Section I. For the desired ten-unit deviation, the outside bound of

the plateau function was set to 10, the inside bound was set to 1, and the maximum reward

was set to 1. This curve, depicted in Figure 22 gives the agent the maximum reward for

every step that the agent chooses an action that moves the Kalman filter output within ± 1

of the desired path. The agent can receive a maximum reward per step of three. Where one

full point is awarded for following the x deviation, another point for the y deviation and

another point for not triggering alarms. Figure 34 depicts the initial training progress of the

reinforcement learning agent. As training progressed, Figure 34 shows that the agent began

to receive a greater reward per episode.

50

Figure 34. Initial Training Results

To facilitate initial training, the alarm window variable “N window” was set to 30,

the stop-training-value was set to 90% of the maximum reward, and the score-average-

window-length was set to 10. A large alarm window was used initially to help the agent

explore the action-space without triggering a windowed alarm as this would terminate a

scenario early and potentially inhibit learning. The maximum reward for an episode is 300.

Since there is inherent random noise in the system, and on the measurements, it is nearly

impossible for the agent to get a perfect score with the limited discrete action-space chosen.

Therefore, setting the stop training value to 90% of the maximum reward is a reasonable

goal given the constraints of the environment. The score-average-window-length is how

many episodes in a row the agent needs to score above the stop training value. The Agent

successfully met the stop training criteria after 74,000 episodes. The episodes with low

total rewards are instances where the agent met any of the “IsDone” criteria specified in

the reward function of Appendix B. The likely culprit for the noisiness of the data set is the

clause in the reward function that returns a negative reward and an “IsDone” flag whenever

the distance between the Kalman filter output and the desired path is greater than the

bounds of the plateau function. The goal of this clause is to teach the agent to fight to stay

within the bounds of the plateau and if it cannot, it receives a negative reward, and the

episode terminates early. The noisiness will decrease with future training cycles. Figure 35

shows the results for the initial training cycle

51

Figure 35. Initial Training Final Episode Results

52

In Figure 35, The x direction path, and actions are depicted in the upper left and the

y direction path, and actions are on the upper left. The y direction desired path is a 10-unit

deviation from the projected path starting at step five and maintaining the deviation from

step 10 to the end of the episode. The x direction desired path is a gradual deviation from

the true path, reaching 10 units of deviation by the end of the episode. The purple line is

the output of the Kalman filter as it is misled from the blue true path by the actions chosen

by the reinforcement learning agent. In Figure 34, it is evident that the agent has learned

that the closer it can stay to the desired path, the more often it will receive the maximum

reward per step. The agent at the end of the initial training cycle also struggled to stay

within ± 1 of the desired path longer than a few steps at a time. Overall, the agent is able

to choose action that allow it to stay just outside the bounds of the plateau function.

B. SECOND TRAINING EVOLUTION

Next, the same agent was loaded and trained further. This time, the stopping criteria

was made more challenging. The score-average-window-length was set to 30 and the stop

training value was set to 95% of the maximum reward. This means that the agent will take

the average score of the past 30 episodes at a time, and training will stop once the average

meets or exceeds 285 points per episode. In this iteration of training, the alarm window

was still set to 30. Now that the agent has learned how to interact with the environment for

the duration of an episode, the goal of the second training session was to improve the

agent’s ability to follow the desired path line with greater accuracy. Figure 36 shows the

training progress for the second training cycle.

53

Figure 36. Second Training Cycle

Depicted in Figure 36, the agent continued to fine tune its understanding of the

environment and achieved the stricter stopping criteria after 22,000 episodes. This is a

significant improvement over the previous training cycles since the training stopped

significantly earlier than the first cycle. The episode reward values are significantly less

noisy than the first training cycle but, instances of low reward early termination episodes

are still present. This is likely due to the previously mentioned issue of the width of the

plateau function coupled with the inherent noisiness of the measurement data. Figure 37

shows the final episode results of the second training cycle.

54

Figure 37. Second Cycle Final Episode Results

55

In Figure 37, the mislead Kalman filter output tracks the attacker’s desired path

significantly more accurately. The agent appears to have learned to favor taking the smallest

action available at each time. This is most likely to avoid triggering the chi-squared alarm. The

agent is able to keep both the x and y deviations within ± 1 of the desired path for a majority

of the episode.

C. FINAL TRAINING EVOLUTION

Finally, the same agent was loaded and trained a third time. This time, the stop-training-

value was set to 96% of the maximum reward and the alarm window was set to 10. It is evident

from Figure 36 and Figure 37, that due to the decrease in step reward value as the agent

activates the instantaneous alarm, the Agent has built a reasonable understanding to avoid any

number alarms even when the windowed alarm value was set significantly higher. This last

training cycle is to confirm the agent’s understanding of triggering the windowed alarm and to

ensure that the final agent can deceive the Kalman filter without triggering a practical alarm

configuration. Figure 38 depicts the training history for the last training cycle.

Figure 38. Final Training Cycle History

On the Final training cycle, the agent reached the average reward stopping criteria just

short of 4,500 episodes. The variations in episode rewards have significantly diminished form

the original training session however, there are still occasional episodes where the agent

terminates early. The early terminations at this point in training are likely due to the random

system noise and measurement noise impacting the agent’s ability to stay withing the reward

function curve. Figure 39 shows the final episode results for last training session.

56

Figure 39. Final Training Cycle Last Episode Results

57

By the end of the final training session, the agent had optimized its ability to adjust

the output of the Kalman filter to follow to desired path without being detected. Outside of

the anomalies depicted in Figure 39, the agent was capable of keeping the output of the

Kalman filter within ± 1 of the desired path for over half of the total steps in an episode.

The anomalies are likely instances where the agent fails to stay within the bounds of the

reward function. Figure 39 also highlights an interesting capability of the system. Even

given the limited action-space of this experiment, and the short 100 step simulation time,

the agent learned to adjust the Kalman filter output without triggering a single alarm. This

shows that a more sophisticated model with a highly sensitive chi-squared test could

potentially still be deceived by a simple machine learning algorithm.

The last test performed on the agent was to give it an entirely new desired path to

see if, without any additional training, the agent could potentially follow a new path. Figure

40 depicts the y direction simulation results for the fully trained agent attempting to follow

a -10 deviation from projected, desired path.

Figure 40. New Desired Path Attempt On Trained Agent

58

In Figure 40, it is clear that the agent is assuming it is in the scenario it has been

trained for and continues to try and move the Kalman filter output +10 units vice -10 units

away from the projected path. For the agent to learn any additional desired paths, a new

training regimen similar to the three-step process previously performed would be needed.

D. SUMMARY

After three incremental training evolutions, the reinforcement learning agent was

able to learn how to successfully mislead an operator by adjusting the Kalman filter output

in both the x and y directions without being detected by the chi-squared fault detection test.

There are occasional instances where the agent terminates an episode early, which is likely

due in part to the inherent noise of the system and the limited action-space available to the

agent. Additional testing proved that a fully trained agent for one scenario does not

inherently have the ability to track a new desired path without specified training for the

additional task. This is expected, and if an attacker wanted to have multiple options, each

case would need to be explicitly trained via curriculum learning.

The combined computational power required to run an agent of this complexity or

greater could be extremely difficult to conceal on an intended target system. A potential

solution is to run training simulations offline to build a repository of desired deviations and

then save the actions chosen by the agent. The action sequence for a specified attack could

then be uploaded onto the target system. These actions are the key to altering the Kalman

filter. They cause the filter to deviate from its true projected course. An attacker could

potentially incorporate the actions chosen by the final trained agent into a much smaller

malicious package to implant on a system.

59

V. CONCLUSION AND FUTURE WORK

A. CONCLUSIONS

Many modern cyber-physical systems rely on Kalman filters to process sensor data

[23]. From smart grids, to unmanned aerial vehicles, to spacecraft, Kalman filters are

prolific in everyday life. A potential malicious actor could potentially train an algorithm to

perform a specific effect on any of the aforementioned systems, with grave consequences.

The results of this thesis support continued research into the potential applications of using

machine learning to spoof operational cyber-physical system in the eventual pursuit to

devise future countermeasures to mitigate the threat. Studying system vulnerabilities from

an attackers point of view can provide insight that might be overlooked from a purely

defensive perspective.

Specifically, this thesis used a reinforcement learning-based approach for learning

how to mislead a Kalman filter that is monitored using a chi-squared fault detection test.

The simulation utilized MATLAB’s reinforcement learning toolbox to build a proof-of-

concept environment to train a reinforcement learning agent to inject spoofing inputs to

mislead the operator of a line following robot. The environment and reward function of the

simulation were carefully crafted to provide the agent feedback on its interactions with the

environment to accomplish the task. The methodology section of this document describes

in detail how the unique components of the environment were verified. The research and

analysis presented show that there is significant potential for using reinforcement learning

to mislead complex systems that rely on Kalman filters for control system monitoring. The

results show that with three training sessions totaling 37 hours of combined training time,

a reinforcement learning algorithm, even one with a limited action-space, can be taught not

only to deceive a Kalman filter, but also to never trigger a single alarm state. This work

focused on a specialized task: training the agent to perfect one specific attack pattern. A

more generalized approach may have yielded more versatile utility, however, the cost of

training time would have risen exponentially.

60

B. RECOMMENDATIONS FOR FUTURE WORK

There are several potential future research applications. The first, with access to a

supercomputer capable of significant parallel processing, investigates if a more general

form of the algorithm can be trained to handle a larger range of desired attacks vice one

attack per training cycle. Proving the effectiveness of a generalized form of this algorithm

would help to show the overall cyber lethality of this machine learning algorithm. A

generalized algorithm will take significant time to train, however, an attack with a real-

world data set and access to a supercomputer could potentially train an agent to be capable

of multiple desired effects on a cyber-physical system.

Another area for future work is to train an agent in a simulated environment

utilizing a real-world dataset. Acquiring input data to a real-world systems’ Kalman filter

and the settings of its fault detection monitor, then use this research as a model to design a

new reinforcement learning agent to deceive the operator of a real system in a simulated

environment.

A final area for potential future work would be to train an agent to mislead a

controlled real-world system, like an unmanned aerial vehicle, then devise a way to upload

the agent or specific action-sequences to test the effectiveness of the malicious attack in

practice. This could help to provide key insight into where a potential attacker may try to

hide malicious Kalman filter spoofing code and give protection agencies insights into how

to harden against these attacks.

61

APPENDIX A. MAIN KALMAN FILTER SPOOFING SCRIPT

Main Script for Kalman Filter Spoofing

The following sections of code build the agent and the environment for testing and evaluation of RL
applications on Kalman Filter Spoofing.

Required Scripts:

Kalman_step_func.mlx : step the environment 1 step through a Kalman Filter with a Chi-squared test
performed on the innovation and gives the agent a reward based on its actions

Kalman_sys_startup.mlx : Initializes the variables for the agent, environment, and step function for
each episode of training.

Section I: Initialization of Parameters
Written By: LT Dylan A. Bonitz, USN,

 LTC Brian M. Wade, USA

 Dr. Mark Karpenko

Completed: 30 Mar 2022

This section contains the simulation inputs that the user can define, the hyperparameters for the neural
networks, and the training options.

close all; clc; clear;

Section I.a: Simulation Inputs

rng(42); % Random Seed

time_end = 100; % max time of sim
speed = 1; % speed of vechicle
initial_ang = 45; % projected angle of travel degrees

noise_reduction_factor = 1; % Controls the strength of the noise, values
from 0–1 only

62

dists = [0, 10; 10, 10;];
% n x 2 array of n number of (x,y) shifts from projected course

time_targets = [5, 10; 10, time_end;];
% n x 2 array of times when the shifts where each n row is (start_time,
end_time)

action_range = 5;
% choose the range of available action for the agent to learn.
% the more actions, the longer the training will take

action_space_reduction_factor=0.75;

Section I.b: Reward Function Options

out = 10; % The x-intercepts of the plateau reward funciton ex. out = 10
builds a
% reward funciton with x-intercepts at -10 and 10.

in = 1; % the range of the plateau. a value of one sets the plateau from
-1 to 1.
% in the “in” range, the agent will receive the max_R value

max_R = 1; % the max reward for a given timestep that defines the hight
of the plateau.
% a value of 1 sets the plateau at 1.

Section I.c: Critic Options

critic_FC1 = 50; % Number of nodes in the first layer
critic_FC2 = 20; % Number of nodes in the second layer
learn_rate_critic = 0.0001;
grad_threshold_critic = 1; % 0.5

Section I.d: Actor Options

actor_FC1 = 150; % 50
actor_FC2 = 100; % 30
actor_FC3 = 50; % 20
learn_rate_actor = 0.00001;
grad_threshold_actor = 1; % 0.5

63

Section I.e: Agent Options

DiscountFactor = 0.99;
% a high discount factor makes the agent look farther into the future

ExperienceHorizon = 150; % Looks out over all steps
MiniBatchSize = 64;

Section I.f: Training Options

MaxEpisodes = 500000;
steps_per_edisode = time_end;
doTraining = true;
Load_agent = true;
want_parallel = false;
ScoreAveragingWindowLength = 30; % Number of episodes to average together
Max_reward_stop = .99; % value to scale strop training value
StopTrainingValue = 3*(time_end*max_R)*Max_reward_stop;
% Verbose = true;

Section I.g: Multi-Core Training

%Start worker pool
if want_parallel == true
 poolobj = gcp(‘nocreate’); % If no pool, do not create new one.
 %delete(poolobj)
 if isempty(poolobj)
 poolsize_want = round(.9*feature(‘numcores’));
 if poolsize_want < feature(‘numcores’)
 poolsize = poolsize_want;
 else
 poolsize = feature(‘numcores’)-1;
 end
 parpool(‘local’,poolsize);
 else
 poolsize = poolobj.NumWorkers;
 end
end

Section II: Action Space and Environment Setup
Section II.a: Action and Observation Spaces

64

numObs = 8; % number of state variables
ObservationInfo = rlNumericSpec([numObs 1]);
ObservationInfo.Name = ‘KF Info’;
ObservationInfo.Description =
[‘difference_x’,’difference_y’,’p_11’,”p_22”,...
 “innovation”,’l’,’Alarm’];

% This loop sets up the discrete action space. The Algoithm can choose to
a spoof
% between negative 1 and 1.
% ‘action_range’ input. An action_range of 5 means that x and Y can have
% an input of [-1,-0.5, 0, 0.5, 1].
% The action space reduction factor scales the action space.
ii=0;
action_space = cell(action_range);
for i = -1:2/(action_range-1):1
 ii=ii+1;
 jj=0;
 for j = -1:2/(action_range-1):1
 jj=jj+1;

 action_space{ii,jj}=[i;j].*action_space_reduction_factor;
 end
end

ActionInfo = rlFiniteSetSpec(action_space);
ActionInfo.Name = ‘Spoofing Action’;
num_actions = length(ActionInfo.Elements);

Section II.b: Reinforcement Learning Environment Setup

StepHandle = @(Action,LoggedSignal) Kalman_step_func...
 (Action,LoggedSignal,out,in,max_R,time_end);

ResetHandle = @() kalman_sys_startup...
 (time_end,initial_ang,dists,time_targets,speed,noise_reduction_factor);

env = rlFunctionEnv(ObservationInfo,ActionInfo,StepHandle,ResetHandle);

Section III: Actor, Critic, and Agent Setup
Section III.a: Critic Network Setup and Critic Training Options

65

criticNetwork = [
 sequenceInputLayer(numObs,”Name”,’state’)
 fullyConnectedLayer(critic_FC1,’Name’,’critic_FC1’)
 leakyReluLayer(‘Name’,’critic_reLu1’)
 lstmLayer(critic_FC2,’Name’,’critic_FC2’)
 leakyReluLayer(‘Name’,’critic_reLu2’)
 fullyConnectedLayer(1,’Name’,’critic_value’)
];

criticOpts= rlRepresentationOptions(‘LearnRate’,learn_rate_critic,...
 “GradientThreshold”,grad_threshold_critic);

critic=rlValueRepresentation(criticNetwork,ObservationInfo,...
 “Observation”,{‘state’},criticOpts);

Section III.b: Actor Network Setup and Actor Training Options

actorNetwork = [
 sequenceInputLayer(numObs,”Name”,’state’)
 fullyConnectedLayer(actor_FC1,’Name’,’actor_FC1’)
 reluLayer(‘Name’,’actor_reLu1’)
 lstmLayer(actor_FC2,’Name’,’actor_FC2’)
 leakyReluLayer(‘Name’,’actor_reLu2’)
 lstmLayer(actor_FC3,’Name’,’actor_FC3’)
 leakyReluLayer(‘Name’,’actor_reLu3’)
 fullyConnectedLayer(num_actions,’Name’,’actor_FC4’) %one node per action
 softmaxLayer(‘Name’,’action_prob’)
];

actorOpts= rlRepresentationOptions(‘LearnRate’,learn_rate_actor,...
 “GradientThreshold”,grad_threshold_actor);

actor=rlStochasticActorRepresentation(actorNetwork,ObservationInfo,...
 ActionInfo,’Observation’,{‘state’},actorOpts);

Section III.c: Agent Setup, Training and File Save Options

agentOptions = rlPPOAgentOptions(...
 ‘DiscountFactor’, DiscountFactor, ...
 ‘experienceHorizon’, ExperienceHorizon,...
 ‘MiniBatchSize’,MiniBatchSize);

66

if want_parallel == true
 agentOpts.ExperienceHorizon = steps_per_edisode;
end

agent = rlPPOAgent(actor, critic, agentOptions);

agent_folder = ‘saved_agents’;
image_folder = ‘images_3’;
agentName = ‘trained_PPO_agent_1’;

Verbose = false;
Plots = ‘training-progress’;

%Create agent and image folders for saved agents and images
if ~exist(agent_folder, ‘dir’)
 mkdir(agent_folder)
end

if ~exist(image_folder, ‘dir’)
 mkdir(image_folder)
end

%Setup Training for Agent
saved_agent_name = agentName;
SaveAgentDirectory = fullfile(agent_folder,saved_agent_name);

trainOpts = rlTrainingOptions(...
 ‘MaxEpisodes’, MaxEpisodes,...
 ‘MaxStepsPerEpisode’, steps_per_edisode,...
 ‘Verbose’, false,...
 ‘Plots’, Plots,...
 ‘Verbose’, Verbose,...
 ‘StopTrainingCriteria’,’AverageReward’,...
 ‘SaveAgentDirectory’, ‘trainedACagent’,...
 ‘StopTrainingValue’, StopTrainingValue, ...
 ‘ScoreAveragingWindowLength’, ScoreAveragingWindowLength,...
 ‘SaveAgentDirectory’, SaveAgentDirectory);

Section IV: Train, Test, and Visualize the Agent
Section IV.a: Parallel Processing

if want_parallel == true
 trainOpts.UseParallel = true;

67

 trainOpts.ParallelizationOptions.Mode = “async”;
 trainOpts.ParallelizationOptions.DataToSendFromWorkers = “experiences”;
 trainOpts.ParallelizationOptions.StepsUntilDataIsSent = ...
 agentOptions.ExperienceHorizon;
end

Section IV.b: Train and/or Test the Agent

This section trains a new or existing agent based on the load_agent check. In both cases, once training
is complete, the agent is saved and a plot of the training history is generated and saved.

if Load_agent == true
 load(‘saved_agents/trained_PPO_agent_1.mat’,’agent’);
end

if doTraining == true

 trainingStats = train(agent, env, trainOpts);
 save(trainOpts.SaveAgentDirectory, ‘agent’);

 figure()
 plot(trainingStats.EpisodeIndex, trainingStats.EpisodeReward,...
 ‘--’,’Color’,[0.3010 0.7450 0.9330])
 hold on
 plot(trainingStats.EpisodeIndex, trainingStats.AverageReward,...
 ‘:’,’Color’,[0 0.4470 0.7410], ‘LineWidth’,2)
 plot(trainingStats.EpisodeIndex, trainingStats.EpisodeQ0,...
 ‘-x’,’Color’,[0.9290 0.6940 0.1250])
 hold off
 xlabel(‘Episode Number’)
 ylabel(‘Episode Reward’)
 title(strcat(‘Reward Training History for ‘, agentName, ‘ Agent’))
 legend(‘Episode Reward’, ‘Average Reward’, ‘Episode Q0’,...
 ‘location’, ‘northwest’)

 image_file = strcat(‘TrainingHistory_’, agentName, ‘.png’);
 image_save_path = fullfile(image_folder,image_file);
 set(gcf,’position’,[50,50,1200,400])
 saveas(gcf,image_save_path)
else
 load([‘agents\trained_AC_agent.mat’]);
end

68

Section IV.c: Last Episode of Training Visualization

This section is used to visualized any of the stored data in the structure logged signals. This section is
primarily used to visualize the reward over time vs. the path planning plot.

z_true=env.LoggedSignals.z_true’;
desired_location= env.LoggedSignals.desired_location’;
projected_location=env.LoggedSignals.x_true’;
pos_hat=env.LoggedSignals.pos_hat’;
REWARD=env.LoggedSignals.reward;
sum_alarm_hist = env.LoggedSignals.smoothed_alarm;

figure()
subplot(1, 3, 1)
plot(1:1:time_end,projected_location(:, 2))
hold on
plot(1:1:time_end,desired_location(:, 2))
hold on
plot(1:1:time_end,z_true(:, 2))
hold on
plot(1:1:time_end,pos_hat(2:end, 2))
hold off
title(‘Path Planning’)
legend(‘Projected True Path’, ‘Desired Perceived Path’,...
 ‘true Measurement’,’pos hat’, ‘location’, ‘northwest’)

subplot(1,3,2)
plot(1:1:time_end,REWARD)
title(‘reward over time’)

subplot(1,3,3)
plot(1:1:time_end,sum_alarm_hist)
title(‘Alarm strength over time’)

image_file = strcat(‘Sim_outcome_’, agentName, ‘.png’);
image_save_path = fullfile(image_folder,image_file);
set(gcf,’position’,[50,50,1200,400])
saveas(gcf,image_save_path)

69

APPENDIX B. ALGORITHM STEP FUNCTION

function [NextObs,reward,IsDone,LoggedSignal] = Kalman_step_func...
 (action,LoggedSignal,out,in,max_R,time_end)

Section I: Function Constants

 A = eye(2); % linear system A matrix
 B = eye(2); % linear system B matrix
 C = eye(2); % linear system C matrix
 D = [0,0;0,0]; % linear system D matrix
 Q = 0.1*eye(2); % process noise covariance
 R = 0.1*eye(2); % measurement noise covariance
 u = [1;1]; % Constant Control input

Section II: Unpack LoggedSignal Structure

 pos_hat = LoggedSignal.pos_hat(:,end);
 % Previous estimiated position

 i = length(LoggedSignal.pos_hat(1,:)); % Step Counter

 desired_location = LoggedSignal.desired_location;
 % Vecotr containing the desired deviation line

 p_11 = LoggedSignal.p_11(1,end);
 %Upper left Diagonal of the Covariance Matrix P

 p_22 = LoggedSignal.p_22(1,end);
 % Bottom Right Diagonal of the COvariance Matrix P

 P = [p_11,0;0,p_22]; % Re-constructed Covariance MAtrix

 x_true = LoggedSignal.x_true(:,i);
 z_true = LoggedSignal.z_true(:,i);

Section III: Step the Kalman Filter

70

 LoggedSignal.spoofing_input_buffer =
LoggedSignal.spoofing_input_buffer...
 (:,end)+action;
 % Stores the cumulative spoofing inputs and adds the current action

 spoofing_input = LoggedSignal.spoofing_input_buffer;

 pos_spoof = z_true + spoofing_input;
 %add the injected spoof to the true measurement

 LoggedSignal.pos_spoof(:,i) = pos_spoof;

 %%%%%
 %step the kalman filter

 [pos_hat, P, innovation, V_innovation] = ...
 KF(pos_spoof, pos_hat, P, u, A, B, C, D, Q, R);

 if i==1
 LoggedSignal.innovation(:,end) = innovation;

 else
 LoggedSignal.innovation(:,end+1) = innovation;

 end

 LoggedSignal.pos_hat(:,end+1) = pos_hat;

 LoggedSignal.p_11(1,end+1) = P(1,1);

 LoggedSignal.p_22(1,end+1) = P(2,2);

 p_11 = P(1,1);
 p_22 = P(2,2);

71

Section IV: Implement the Chi-squared Fault Detector

 N_window = 30;
 N_chi = 2*N_window; %the Chi^2 DOF N_chi is equal to the dimension
 %of the innovation, in this case 2, times the
 %length of the data window

 PD = 0.997; % Probability the system detects a bad when it occurs

 l= innovation’*V_innovation^(-1)*innovation; %l is the Chi^2 value

 LoggedSignal.l(1,end+1) = l;
 l = LoggedSignal.l;
 idx_lo = max(1,i-N_window+1);
 idx_hi = i;
 cl = sum(l(idx_lo:idx_hi)); %windowed sum fof Chi^2 values

Section V: Impliment the Alarm-state and Windowed Alarm

 if (cl>gammaincinv(PD,N_chi,’lower’))
 Alarm = 1; %raise an alarm
 else
 Alarm = 0;
 end
 LoggedSignal.Alarm(1,end+1) = Alarm;
 l = l(1,end);

 %alarm shoudld be on for at least N_window+2 consequtive samples

 idx_lo = max(1,i-(N_window+2)+1);
 sum_Alarm = sum(LoggedSignal.Alarm(idx_lo:idx_hi))/(N_window+2);

 if (sum_Alarm>=1)
 smoothed_Alarm = 1;
 else
 smoothed_Alarm = 0;
 end

 LoggedSignal.smoothed_alarm(1,end+1) = smoothed_Alarm;

72

Section VI: Reward Calculation and State Vector Composition

desired_location = desired_location(:,i);

[reward,IsDone,x1,y1]=reward_func...
 (i,pos_hat,desired_location,out,in,max_R,time_end,...
 sum_Alarm, smoothed_Alarm);

LoggedSignal.x_difference(:,end+1) = x1;
x_difference = LoggedSignal.x_difference(:,end);

LoggedSignal.y_difference(:,end+1) = y1;
y_difference = LoggedSignal.y_difference(:,end);

LoggedSignal.State = ...
 [x_difference;y_difference;p_11;p_22;innovation;l;sum_Alarm];
State = LoggedSignal.State;
NextObs = State;

if i == 1
 LoggedSignal.reward=reward;
else
 LoggedSignal.reward(i)=reward;
end

Step Function Nested Functions
Kalman Filter Function

 function [pos_hat_new, P_new, innovation, V_innovation] =...
 KF(z, pos_hat, P, u, A, B, C, D, Q, R)

 %Predict
 pos_hat = A*pos_hat+B*u;
 P = A*P*A’+Q;

 %Update
 Vk = (C*P*C’+R);
 V_innovation = Vk;
 Kk = P*C’*Vk^(-1);
 innovation = z-C*pos_hat-D*u;
 pos_hat_new = pos_hat+Kk*innovation;

73

 %P_new=P-Kk*C*P;
 P_new = (eye(2)-Kk*C)*P*(eye(2)-Kk*C)’+Kk*R*Kk’;

 end

Reward Function

 function [reward,IsDone,x1,y1]=reward_func...
 (pos_hat,desired_location,out,in,max_R, sum_Alarm, smoothed_Alarm)

 x1 = pos_hat(1,1)-desired_location(1,1);
 y1 = pos_hat(2,1)-desired_location(2,1);

 b = ((max_R)/(out - in))*in + max_R;
 slope = (b - max_R)/in;

 [reward_x,IsDone_x] = reward_calc(x1,b,slope,max_R,in,out);

 [reward_y,IsDone_y] = reward_calc(y1,b,slope,max_R,in,out);

 if smoothed_Alarm >= 1
 reward_alarm_on = -50;
 else
 reward_alarm_on = 0;
 end

 reward_alarm = 1 - sum_Alarm;

 reward = reward_x + reward_y + reward_alarm + reward_alarm_on;

 if (IsDone_y + IsDone_x) > 0 || smoothed_Alarm >= 1
 IsDone = 1;
 else
 IsDone = 0;
 end

 function [reward,IsDone] = reward_calc(x1,b,slope,max_R,in,out)
 IsDone = 0;
 if x1 < -in && x1 >= -out
 reward = slope * x1 + b;
 elseif (-in <= x1) && (x1 <= in)

74

 reward = max_R;
 elseif x1 > in && x1 <= out
 reward = -slope * x1 + b;
 else
 reward = -1;
 IsDone = 1;
 end
 end

 end

end

75

APPENDIX C. ALGORITHM RESET FUNCTION

Kalman Filter Spoof Initialization Function

This function initializes the parameters of the Kalman filter step function, and the variables that are
used to create the environment for the agent

Section I: Parameter Initialization and State-space Assembly

• Initializes the parameters utilized by the step function.

• Runs Section II and builds the projected (true estimate) and Desired path (Deviation

from true).

• Computes the true measurement path based of the true estimate.

• Compiles the state space that the agent observes.

function [InitialObservation,LoggedSignal] = kalman_sys_startup...
 (time_end,initial_ang,dists,time_targets,speed,noise_reduction_factor)

C = eye(2); %linear system C matrix

D = [0,0;0,0]; %linear system D matrix

R=0.1*eye(2); %measurement noise covariance

u=[1;1]; %assume a constant control input

P = 5*eye(2); %initial Kalman filter covariance

p_11 = (P(1,1)); % upper left diagonal of the covariance matrix

p_22 = (P(2,2)); % lower left diagonal of the covariance matrix

time = 1:1:time_end; % total scenario runtime in seconds

[projected_location, desired_location] = make_paths...
 (initial_ang, speed, dists, time_targets, time);

76

x_true=projected_location’;
desired_location=desired_location’;

for j = 1:time_end

 z_true(:,j) = C*x_true(:,j) + D*u + chol(R)*...
 (randn(2,1).*noise_reduction_factor); % Noisy true measurements
end

pos_hat = z_true(:,1)+[0.5*randn;0.5*randn]; %first estimated position
guess at time zero

% Zeroise tracked data for the first observation at time zero.
innovation=[0;0];
sum_Alarm=0;

l=0;

x_difference = 0;
y_difference = 0;

LoggedSignal.pos_hat = pos_hat;
LoggedSignal.x_true = x_true;
LoggedSignal.z_true = z_true;
LoggedSignal.x_difference = 0;
LoggedSignal.y_difference = 0;
LoggedSignal.p_11 = p_11;

LoggedSignal.p_22 = p_22;
LoggedSignal.innovation = innovation;
LoggedSignal.l = l;
LoggedSignal.Alarm = 0;
LoggedSignal.desired_location = desired_location;
LoggedSignal.spoofing_input_buffer=[0;0];
LoggedSignal.smoothed_alarm = 0;
LoggedSignal.reward = 0;

LoggedSignal.State = [x_difference;y_difference
;p_11;p_22;innovation;l;sum_Alarm];
%Contains the data that is presented to the agent

77

InitialObservation = LoggedSignal.State; % first system observation at
time zero
% This is the first set of data points observed by the agent

Section II: Projected and Desired Path Generation

The function below builds the projected and desired paths. The measured path is built off the projected
path in lines 27–30.

 function [projected_location, desired_location] = make_paths...
 (initial_ang, speed, dists, time_targets, time)

 %make projected path
 projected_location = zeros(length(time), 2);
 for i = 1:length(time)
 offset = [0, 0];
 path = find_xy_from_angle(initial_ang, offset, i, speed);
 projected_location(i,:) = path;
 end

 %make desired path
 desired_location = zeros(size(projected_location));
 present_shift = [0, 0];
 shift = present_shift;
 num_shifts = size(time_targets, 2);
 current_shift = 1;

 for i = 1:length(time)
 if current_shift <= num_shifts
 if i >= time_targets(1,current_shift)
 x_shift = interp1(time_targets(current_shift,:),...
 [present_shift(1), dists(current_shift, 1)], i);

 y_shift = interp1(time_targets(current_shift,:),...
 [present_shift(2), dists(current_shift, 2)], i);
 shift = [x_shift, y_shift];

 if i == time_targets(current_shift, 2)
 current_shift = current_shift + 1;
 present_shift = shift;
 end
 end
 end

78

 path = find_xy_from_angle(initial_ang, shift, i, speed);
 desired_location(i,:) = path;
 end

 end

 function [path] = find_xy_from_angle(ang, offset, time_step, speed)
 dist = speed*time_step;
 x_pos = cosd(ang)*dist;
 y_pos = sind(ang)*dist;
 path = [x_pos, y_pos] + offset;
 end

end

79

APPENDIX D. ORIGINAL KALMAN FILTER AND CHI-SQUARED
SCRIPT

close all; clc; clear all;

 A = eye(2); %linear system A matrix
 B = eye(2); %linear system B matrix
 C = eye(2); %linear system C matrix
 D = [0,0;0,0]; %linear system D matrix
 Q=0.1*eye(2); %process noise covariance
 R=0.1*eye(2); %measurement noise covariance

 %generate ‘truth’ data
 N = 200; %number of samples

 x_true(:,1) = [0;0]; %true initial condition
 u = [1;1]; %assume a constant control input
 for i=1:N
% x_true(:,i+1) = A*x_true(:,i) + B*u + Q*randn(2,1);
% z_true(:,i) = C*x_true(:,i) + D*u + R*randn(2,1);

 x_true(:,i+1) = A*x_true(:,i) + B*u + chol(Q)*randn(2,1);
 % Q is random system noise

 z_true(:,i) = C*x_true(:,i) + D*u + chol(R)*randn(2,1);
 % R is random measurement noise from envrionment
 end

 P = 5*eye(2); %initial Kalman filter covariance
 x_hat = x_true(:,1)+[0.5*randn;0.5*randn];
 for i=2:N

 spoofing_input = [0;0];
 if (i>25)
 spoofing_input = [-10.5;20.5];
 %this would be selected by the AI system
 end

 if (i>75)
 spoofing_input = [0;0];
 %this would be selected by the AI system
 end

80

 if (i>100)
 spoofing_input = [+20.5;-10.5];
 %this would be selected by the AI system
 end

 if (i>125)
 spoofing_input = [0.0;0.0];
 %this would be selected by the AI system
 end

 z_spoof = z_true + spoofing_input;
 %add the injected spoof to the true measurement

 %%%%%
 %step the kalman filter
 [x_hat(:,i), P, innovation(:,i), V_innovation] = KF...
 (z_spoof(:,i), x_hat(:,i-1), P, u, A, B, C, D, Q, R);

 p11(1,i) = P(1,1);
% p12(1,i) = P(1,2);
% p21(1,i) = P(2,1);
 p22(1,i) = P(2,2);

 v11(1,i) = V_innovation(1,1);
% v12(1,i) = V_innovation(1,2);
% v21(1,i) = V_innovation(2,1);
 v22(1,i) = V_innovation(2,2);

 %%%%%%%%%%
 %implement Chi^2 fault detector

 N_window = 10;
 N_chi = 2*N_window; %the Chi^2 DOF N_chi is equal to the dimension
 %of the innovation, in this case 2, times the
 %length of the data window (see “Tuning
 %Windowed Chi-Squared Detectors for Sensor
 %Attacks - and ref 24 therein

 PD = 0.997;
 %detection threshold

81

 l(1,i) = innovation(:,i)’*V_innovation^(-1)*innovation(:,i);
 %l is the Chi^2 value

 idx_lo = max(1,i-N_window+1);
 idx_hi = i;
 cl(1,i) = sum(l(idx_lo:idx_hi)); %windowed sum fof Chi^2 values

 %%%%%%%%
 %set the alarm state
% if (cl(1,i)>chi2inv(PD,N_chi))
 %if (cl(1,i)>gammaincinv(PD/2,N_chi/2,’lower’))
 if (cl(1,i)>gammaincinv(PD,N_chi,’lower’))

 Alarm(1,i) = 1; %raise an alarm
 else
 Alarm(1,i) = 0;
 end

 idx_lo = max(1,i-(N_window+2)+1);
 sum_Alarm(1,i) = sum(Alarm(idx_lo:idx_hi))/(N_window+2);

 if (sum_Alarm(i)>=1)
 smoothed_Alarm(1,i) = 1;
 else
 smoothed_Alarm(1,i) = 0;
 end
 end
 l(1) = [];
 cl(1) = [];
 Alarm(1) = [];
 smoothed_Alarm(1) = [];
 v11(1) = [];
 v22(1) = [];
 p11(1) = [];
 p22(1) = [];
 innovation(:,1) = [];
 x_hat(:,1) = [];
 x_true(:,1) = [];
 x_true(:,end) = [];

 figure
 plot(2:N,l,’-b’)
 hold on

82

 plot(2:N,cl,’--r’)
 legend(‘Chi^2 value’,’windowed Chi^2 value’)
 xlabel(‘sample’)
 ylabel(‘Chi^2’)

 figure
 plot(2:N,Alarm,’o’)
 hold on
 plot(2:N,smoothed_Alarm,’*’)
 xlabel(‘sample’)
 ylabel(‘Alarm’)

 figure
 subplot(211)
 plot(2:N,innovation(1,:),’-b’)
 hold on
 plot(2:N,[3*sqrt(v11);-3*sqrt(v11)],’--r’)
 plot(2:N,[sqrt(v11);-sqrt(v11)],’r’)
 xlabel(‘sample’)
 ylabel(‘innov 1’)
 subplot(212)
 plot(2:N,innovation(2,:),’-b’)
 hold on
 plot(2:N,[sqrt(v22);-sqrt(v22)],’r’)
 plot(2:N,[3*sqrt(v22);-3*sqrt(v22)],’--r’)
 xlabel(‘sample’)
 ylabel(‘innov 2’)

 figure
 subplot(211)
 plot(2:N,x_true(1,:) - x_hat(1,:),’-b’)
 hold on
 plot(2:N,[3*sqrt(p11);-3*sqrt(p11)],’--r’)
 plot(2:N,[sqrt(p11);-sqrt(p11)],’r’)
 xlabel(‘sample’)
 ylabel(‘x error 1’)
 subplot(212)
 plot(2:N,x_true(2,:) - x_hat(2,:),’-b’)
 hold on
 plot(2:N,[sqrt(p22);-sqrt(p22)],’r’)
 plot(2:N,[3*sqrt(p22);-3*sqrt(p22)],’--r’)
 xlabel(‘sample’)
 ylabel(‘x error 2’)

 figure

83

 subplot(211)
 plot(2:N,x_true(1,:),’-b’)
 hold on
 plot(2:N,x_hat(1,:),’--r’)
 xlabel(‘sample’)
 ylabel(‘x 1’)
 legend(‘true’,’est’)
 subplot(212)
 plot(2:N,x_true(2,:),’-b’)
 hold on
 plot(2:N,x_hat(2,:),’--r’)
 xlabel(‘sample’)
 ylabel(‘x 2’)

 figure
 histogram(cl,’Normalization’,’pdf’)

 idx = find(Alarm==1);
 Avg_Alarm = sum(Alarm(idx))/(N-1)

function [x_hat_new, P_new, innovation, V_innovation] = KF...
 (z, x_hat, P, u, A, B, C, D, Q, R)

%Predict
x_hat=A*x_hat+B*u;
P=A*P*A’+Q;

%Update
Vk=(C*P*C’+R);
V_innovation = Vk;
Kk=P*C’*Vk^(-1);
innovation = z-C*x_hat-D*u;
x_hat_new=x_hat+Kk*innovation;
%P_new=P-Kk*C*P;
P_new=(eye(2)-Kk*C)*P*(eye(2)-Kk*C)’+Kk*R*Kk’;

end

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

LIST OF REFERENCES

[1] M. Fakhari Mehrjardi, H. Sanusi, Mohd. A. Mohd. Ali, and M. A. Taher, “PD
Controller For Three-Axis Satellite Attitude Control Using Discrete Kalman
Filter,” in 2014 International Conference on Computer, Communications, and
Control Technology (I4CT), Sep. 2014, pp. 83–85. doi: 10.1109/
I4CT.2014.6914151.

[2] W. M. Taha, A.-A. M. Taha, and J. Thunberg, “Cyber-Physical Systems: A
Model-Based Approach.” Springer Nature Switzerland AG, Jan. 2021. [Online].
Available: https://link.springer.com/book/10.1007/978-3-030-36071-9

[3] Md. A. Rahman and H. Mohsenian-Rad, “False Data Injection Attacks Against
Nonlinear State Estimation In Smart Power Grids,” in 2013 IEEE Power Energy
Society General Meeting, Jul. 2013, pp. 1–5. doi: 10.1109/
PESMG.2013.6672638.

[4] D. Levshun, A. Chechulin, I. Kotenko, and Y. Chevalier, “Design and
Verification Methodology for Secure and Distributed Cyber-Physical Systems,”
in 2019 10th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), CANARY ISLANDS, Spain, Jun. 2019, pp. 1–5. doi: 10.1109/
NTMS.2019.8763814.

[5] S. Bhaumik and P. Date, “The Kalman filter and the extended Kalman filter,” in
Nonlinear Estimation, Chapman and Hall/CRC, 2019.

[6] Z. Zhang, L. Zhou, and P. Tokekar, “Strategies to Inject Spoofed Measurement
Data to Mislead Kalman Filter,” ArXiv171002442 Cs, Sep. 2020, Accessed: Jan.
23, 2022. [Online]. Available: http://arxiv.org/abs/1710.02442

[7] F. Hou, Z. Pang, Y. Zhou, and D. Sun, “False Data Injection Attacks For A Class
of Output Tracking Control Systems,” in The 27th Chinese Control and Decision
Conference (2015 CCDC), Qingdao, China, May 2015, pp. 3319–3323. doi:
10.1109/CCDC.2015.7162493.

[8] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False Data Injection Attacks
Against State Estimation In Wireless Sensor Networks,” in 49th IEEE Conference
on Decision and Control (CDC), Dec. 2010, pp. 5967–5972. doi: 10.1109/
CDC.2010.5718158.

[9] K. Nakayama, N. Muralidhar, C. Jin, and R. Sharma, “Detection of False Data
Injection Attacks in Cyber-Physical Systems using Dynamic Invariants,” in 2019
18th IEEE International Conference On Machine Learning And Applications
(ICMLA), Boca Raton, FL, USA, Dec. 2019, pp. 1023–1030. doi: 10.1109/
ICMLA.2019.00173.

86

[10] “How Kalman Filters Work, Part 1 | An Uncommon Lab.”
https://www.anuncommonlab.com/articles/how-kalman-filters-work/#lkf
(accessed Apr. 19, 2022).

[11] W. Franklin, “Kalman Filter Explained Simply,” The Kalman Filter, Dec. 31,
2020. https://thekalmanfilter.com/kalman-filter-explained-simply/ (accessed Apr.
19, 2022).

[12] @pramodAIML, “What Is Chi-Square Test & How Does It Work?,” The Startup,
Aug. 22, 2020. https://medium.com/swlh/what-is-chi-square-test-how-does-it-
work-3b7f22c03b01 (accessed Apr. 24, 2022).

[13] “Facts About the Chi-Square Distribution – Introductory Business Statistics.”
https://opentextbc.ca/introbusinessstatopenstax/chapter/facts-about-the-chi-
square-distribution/ (accessed Apr. 24, 2022).

[14] R. Da, “Failure Detection of Dynamical Systems with the State Chi-Square Test,”
J. Guid. Control Dyn., vol. 17, no. 2, pp. 271–277, 1994, doi: 10.2514/3.21193.

[15] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement Learning in
Robotics: Applications and Real-World Challenges [dagger],” Robotics, vol. 2,
no. 3, pp. 122–148, 2013, doi: http://dx.doi.org/10.3390/robotics2030122.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second
edition. Cambridge, Massachusetts: The MIT Press, 2018.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” ArXiv170706347 Cs, Aug. 2017, Accessed:
Apr. 19, 2022. [Online]. Available: http://arxiv.org/abs/1707.06347

[18] M. Bernico, Deep Learning Quick Reference: Useful Hacks for Training and
Optimizing Deep Neural Networks with TensorFlow and Keras. Birmingham,
UNITED KINGDOM: Packt Publishing, Limited, 2018. Accessed: May 03, 2022.
[Online]. Available: http://ebookcentral.proquest.com/lib/ebook-nps/
detail.action?docID=5322203

[19] D. Graupe, Principles Of Artificial Neural Networks (2nd Edition). Singapore,
SINGAPORE: World Scientific Publishing Company, 2007. Accessed: Apr. 29,
2022. [Online]. Available: http://ebookcentral.proquest.com/lib/ebook-nps/
detail.action?docID=312337

[20] “Neural Network Design.” https://hagan.okstate.edu/nnd.html (accessed Apr. 29,
2022).

[21] “Proximal Policy Optimization — Spinning Up documentation.”
https://spinningup.openai.com/en/latest/algorithms/ppo.html (accessed Apr. 18,
2022).

87

[22] P. L. Gilabert, D. López‐Bueno, T. Quynh Anh Pham, and G. Montoro, “Machine
Learning for Digital Front‐End: a Comprehensive Overview,” in Machine
Learning for Future Wireless Communications, 1st ed., F. Luo, Ed. Wiley, 2020,
pp. 327–381. doi: 10.1002/9781119562306.ch17.

[23] O. Inverso, A. Bemporad, and M. Tribastone, “SAT-Based Synthesis of Spoofing
Attacks in Cyber-Physical Control Systems,” in 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS), Porto, Apr. 2018,
pp. 1–9. doi: 10.1109/ICCPS.2018.00009.

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Jun_Bonitz_Dylan_First8
	22Jun_Bonitz_Dylan
	I. Introduction
	A. problem statement
	B. current research
	C. scope and application
	D. assumptions
	E. research benefits
	F. thesis organization

	II. Background
	A. Kalman Filters
	B. Chi-Squared fault detection
	C. Reinforcement learning
	1. Neural Networks
	a. Forward Propagation
	b. Back Propagation

	2. Reinforcement learning basics
	3. Policy Gradient and Actor Critic Methods
	4. Proximal Policy Optimization

	D. Summary

	III. Methodology
	A. Experiment design Overview
	B. algorithm design
	1. Main Script
	a. Simulation Inputs, Action Space, and Reward Function Options
	b. Critic
	c. Actor
	d. Agent and Training Options

	2. Step Function
	3. Reset Function

	C. testing
	1. Spoofed Kalman Filter and Chi-Squared Verification Testing
	2. Step Function Verification
	3. Reward Function Testing

	D. Summary

	IV. Reinforcement learning results
	A. First Training Evolution
	B. Second Training Evolution
	C. Final Training Evolution
	D. Summary

	V. Conclusion and Future Work
	A. Conclusions
	B. Recommendations for future work

	appendix A. Main Kalman Filter Spoofing ScripT
	Appendix b. ALGORITHM STEP FUNCTION
	Appendix C. Algorithm Reset Function
	Appendix D. Original Kalman Filter and Chi-squared Script
	List of References
	initial distribution list

