
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-06

STOCHASTIC MATCHED FILTERS FOR SIGNAL
DETECTION APPLICATIONS

Welch, Michelle M.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/70781

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

STOCHASTIC MATCHED FILTERS FOR SIGNAL 
DETECTION APPLICATIONS 

by 

Michelle M. Welch 

June 2022 

Thesis Advisor: Monique P. Fargues 
Second Reader: Ric Romero 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188 

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington, DC 20503. 
 1. AGENCY USE ONLY 
(Leave blank)  2. REPORT DATE 

 June 2022  3. REPORT TYPE AND DATES COVERED 
 Master’s thesis 

 4. TITLE AND SUBTITLE 
STOCHASTIC MATCHED FILTERS FOR SIGNAL DETECTION 
APPLICATIONS 

 5. FUNDING NUMBERS 
 
  

 6. AUTHOR(S) Michelle M. Welch 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

 8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
N/A 

 10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
 12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.  12b. DISTRIBUTION CODE 

 A 
13. ABSTRACT (maximum 200 words)     
 The stochastic matched filter (SMF) is a variation of the matched filter that can detect stochastic signals 
in noisy environments. Some earlier studies suggest that the SMF can be extended to the detection of 
frequency time-variant (nonstationary) signals, namely wideband modulated sonar in shallow water. This 
thesis considers the SMF algorithm first proposed by J.-F. Cavasillas in signal detection and estimation 
scenarios, and investigates its application to narrowband and chirp signals imbedded in white noise. In 
medium to high signal-to-noise ratio (SNR) values, results indicate that the SMF is a viable technique for 
signal detection and estimation, and could be employed in passive, real-time signal detection and estimation 
scenarios. 

 14. SUBJECT TERMS 
matched filter, stochastic matched filter, non-stationary signals, acoustic signals, detection  15. NUMBER OF 

PAGES 
 83 
 16. PRICE CODE 

 17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

 18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 
Unclassified 

 19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

 20. LIMITATION OF 
ABSTRACT 
 
 UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

STOCHASTIC MATCHED FILTERS FOR SIGNAL DETECTION 
APPLICATIONS 

Michelle M. Welch 
Lieutenant Commander, United States Navy 

BS, United States Naval Academy, 2009 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 2022 

Approved by: Monique P. Fargues 
 Advisor 

 Ric Romero 
 Second Reader 

 Douglas J. Fouts 
 Chair, Department of Electrical and Computer Engineering 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 The stochastic matched filter (SMF) is a variation of the matched filter that can 

detect stochastic signals in noisy environments. Some earlier studies suggest that the 

SMF can be extended to the detection of frequency time-variant (nonstationary) signals, 

namely wideband modulated sonar in shallow water. This thesis considers the SMF 

algorithm first proposed by J.-F. Cavasillas in signal detection and estimation scenarios, 

and investigates its application to narrowband and chirp signals imbedded in white noise. 

In medium to high signal-to-noise ratio (SNR) values, results indicate that the SMF is a 

viable technique for signal detection and estimation, and could be employed in passive, 

real-time signal detection and estimation scenarios. 
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I. INTRODUCTION 

The U.S. Navy has mission sets in multiple domains, from outer space to the bottom 

of the oceans, and even cyberspace. Arguably, the most challenging of these missions is 

undersea warfare, due to the unpredictable nature of the underwater acoustic environment. 

The path of an underwater signal depends on myriad factors such as the signal frequency 

and depth of transmission; the temperature, depth, and salinity of the water columns 

through which it travels; the composition of the bottom of the ocean; the nature of 

underwater noise; and much more. These complications make the Navy undersea mission 

of detecting adversary submarines difficult. When narrowed down to a signal processing 

problem, there are many techniques that show promise.  

Though the matched filter is a classic solution to signal detection, it is not 

necessarily well suited to the complicated conditions presented by real-world acoustic 

environments. Adaptations to the matched filter, such as the stochastic matched filter 

(SMF), introduced by J. F. Cavassilas in 1991 [1], have opened doors into solving more 

complex signal processing problems. Of note, P. Courmontagne’s 2010 paper [2] provided 

an overview of his years of work using the SMF to detect signals and de-noise imagery, 

paving the way for new applications. Bonnal, Danès, and Renaud used the SMF to detect 

and isolate acoustic patterns in speech [3]. Mori and Gounon explored its use in active 

sonar [4]. When using active sonar, a known signal is transmitted, and its return is received 

and analyzed. The transmitted signal, however, can be detected by the adversary, making 

active sonar a less desirable detection tool in many military situations. More recently, 

however, L. Bouffaut’s 2019 dissertation [5] detailed her use of SMF in passively detecting 

whale calls, an application that could directly contribute to the U.S. Navy ability to 

passively detect submarines. The purpose of this research is to determine if the SMF 

warrants further study and application to military problem sets, most notably submarine 

detection. 

Chapter II introduces concepts needed to provide background knowledge for the 

SMF, to include discussions about the matched filter and eigenanalysis. Next, Chapter III 

describes the SMF theory and algorithmic implementation. Chapter IV presents an 
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overview of the processes and associated parameters used to conduct our simulations. Next, 

Chapter V presents simulation results obtained using fixed frequency tones and various 

chirp signals. Finally, conclusions and recommendations for future work are presented in 

Chapter VI. 
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II. BACKGROUND 

The SMF incorporates some important concepts from the world of signal 

processing, including the classic matched filter and eigenanalysis. This chapter begins with 

a review of the matched filter, specifically its derivation for deterministic signals, followed 

by an overview of eigenanalysis and the Karhunen-Loève Expansion (KLE).  

A. MATCHED FILTER FOR DETERMINISTIC SIGNALS 

The matched filter approach is commonly applied to detect signals embedded in 

noise, where the filter impulse response is derived by optimizing the signal-to-noise ratio 

(SNR) quantity [6]. It is a popular technique in radar and sonar detection, specifically active 

applications, as the transmitted signal characteristics must be known in order to build the 

filter. Although the technique can be adapted to random signals with known statistics, this 

section will discuss the traditional application of the matched filter for deterministic signals 

only. 

Let us define 𝑠𝑠(𝑛𝑛) as a deterministic signal of interest with known structure that 

occurs between samples 𝑛𝑛 = 0, … ,𝑁𝑁 − 1, 𝑤𝑤(𝑛𝑛) as interfering noise, and 𝑧𝑧(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) +

𝑤𝑤(𝑛𝑛) the resulting observed discrete signal. Let us assume that the signal of interest and 

noise are uncorrelated, and both are zero-mean [7]. Consider a linear time invariant (LTI) 

filter with impulse response ℎ(𝑛𝑛) and output 𝑦𝑦𝑧𝑧(𝑛𝑛)  =  𝑦𝑦𝑠𝑠(𝑛𝑛)  +  𝑦𝑦𝑤𝑤(𝑛𝑛), where  𝑦𝑦𝑠𝑠(𝑛𝑛) 

represents the response of the signal of interest and 𝑦𝑦𝑤𝑤(𝑛𝑛) the response of the noise 

contribution. According to [6], the goal of the matched filter is to maximize the output SNR 

at the signal endpoint sample 𝑛𝑛𝑁𝑁 such that 

𝑆𝑆𝑁𝑁𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 =  
|𝑦𝑦𝑠𝑠(𝑛𝑛𝑁𝑁)|2

𝔼𝔼{|𝑦𝑦𝑤𝑤(𝑛𝑛𝑁𝑁)|2} , (1) 

with 𝑦𝑦𝑠𝑠(𝑛𝑛𝑁𝑁) = 𝒉𝒉𝑇𝑇𝒔𝒔�, 𝑦𝑦𝑤𝑤(𝑛𝑛𝑁𝑁) = 𝒉𝒉𝑇𝑇𝒘𝒘� , where h is defined as the impulse response of the 

matched filter of length N, and 𝒔𝒔� and 𝒘𝒘�  are the reversed signal vector and reversed noise 

vector, respectively. Note that in this context, a reversed vector is considered a flipped 
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vector. Then the output can be expressed in terms of the filter impulse response vector h 

and the observation in vector form 𝒛𝒛: 

𝑦𝑦𝑧𝑧(𝑛𝑛𝑁𝑁) = �ℎ[𝑘𝑘]𝑧𝑧[𝑛𝑛𝑁𝑁 − 𝑘𝑘]
𝑁𝑁−1

𝑘𝑘=0

=  𝒉𝒉𝑇𝑇𝒛𝒛� , (2) 

where 𝒛𝒛� is the reversed observation vector. The numerator of the expression shown in (1) 

can be expressed in terms of the impulse response vector and signal vectors as: 

|𝑦𝑦𝑠𝑠(𝑛𝑛𝑁𝑁)|2 = 𝒉𝒉𝐻𝐻𝒔𝒔�∗𝒔𝒔�𝑇𝑇𝒉𝒉, (3) 

and the denominator of (1) can be expressed in terms of the impulse response vector and 

noise autocorrelation matrix 𝑹𝑹𝑤𝑤: 

𝔼𝔼{|𝑦𝑦𝑤𝑤(𝑛𝑛𝑁𝑁)|2} = 𝒉𝒉𝐻𝐻𝑹𝑹𝑤𝑤𝒉𝒉. (4) 

Thus, (1) can be expressed as: 

𝑆𝑆𝑁𝑁𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 =
𝒉𝒉𝐻𝐻𝒔𝒔�∗𝒔𝒔�𝑇𝑇𝒉𝒉 
𝒉𝒉𝐻𝐻𝑹𝑹𝑤𝑤𝒉𝒉 

. (5) 

In the next sections, we will present applications of the matched filter to signal 

detection in white and colored noise environments. 

1. Deterministic Signal in White Noise 

When the noise 𝑤𝑤(𝑛𝑛) is white, 𝑹𝑹𝑤𝑤 = 𝜎𝜎𝑤𝑤2𝑰𝑰, where 𝜎𝜎𝑤𝑤2  is the noise power and I is the 

identity matrix, resulting in a diagonal noise correlation matrix. Then (5) can be expressed 

as: 

𝑆𝑆𝑁𝑁𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 =
𝒉𝒉𝐻𝐻𝒔𝒔�∗𝒔𝒔�𝑇𝑇𝒉𝒉 
𝜎𝜎𝑤𝑤2 |𝒉𝒉|2 =

|𝒉𝒉𝐻𝐻𝒔𝒔�∗|2

𝜎𝜎𝑤𝑤2 |𝒉𝒉|2 . (6) 

The impulse response 𝒉𝒉 can be computed by maximizing the numerator of (6) and 

normalizing the denominator to a fixed value equal to 1. By the Cauchy-Schwartz 

inequality, 𝒉𝒉 = 𝐾𝐾𝒔𝒔�∗ maximizes the numerator expression of (6) [6]. Substituting this 

expression of 𝒉𝒉 into the denominator portion of (6) and setting it to equal one, yields 𝐾𝐾 =
1

𝜎𝜎𝑤𝑤|𝒔𝒔|
 , which leads to 𝒉𝒉 = 1

𝜎𝜎𝑤𝑤|𝒔𝒔|
𝒔𝒔�∗, where 𝒔𝒔�∗ is the reversed conjugate of the signal 
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expression [6]. Therefore, the impulse response of the matched filter is a scaled version of 

the reversed expression of the signal of interest.  

2. Deterministic Signal in Colored Noise 

In the case of colored noise, the noise correlation function, 𝑹𝑹𝑤𝑤 is no longer diagonal 

but can be expressed using the Cholesky decomposition: 𝑹𝑹𝑤𝑤 = 𝑳𝑳𝑤𝑤𝑳𝑳𝑤𝑤𝐻𝐻  , and (5) can be 

rewritten as: 

𝑆𝑆𝑁𝑁𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 =
|𝒉𝒉𝐻𝐻𝒔𝒔�∗|2

𝒉𝒉𝐻𝐻𝑳𝑳𝑤𝑤𝑳𝑳𝑤𝑤𝐻𝐻𝒉𝒉
. (7) 

Again, the numerator is maximized using the Cauchy-Schwartz inequality leading 

to  

𝑳𝑳𝑤𝑤𝐻𝐻𝒉𝒉 = 𝐾𝐾𝑳𝑳𝑤𝑤−1𝒔𝒔�∗, which yields 𝒉𝒉 = 𝐾𝐾𝑹𝑹𝑤𝑤−1𝒔𝒔�∗ [7]. We then normalize the 

denominator of (7) by setting it equal to one, resulting in 𝐾𝐾 = 1

�𝒔𝒔𝐻𝐻𝑹𝑹𝑤𝑤−1𝒔𝒔
. Substituting K in 

the expression for the impulse response leads to 

𝒉𝒉 =
1

�𝒔𝒔𝐻𝐻𝑹𝑹𝑤𝑤−1𝒔𝒔
𝑹𝑹𝑤𝑤−1𝒔𝒔�∗. (8) 

In this case, the optimal filter can be viewed as a whitening filter combined with a 

matched filter derived in the white noise environment [7]. 

B. EIGENANALYSIS 

The concepts of eigenvectors and eigenvalues form the foundation of the SMF, 

which is the extension of the matched filter when applied to random signals [8]. In this 

section we briefly review these concepts before introducing the SMF approach in the next 

section.  

1. The Generalized Eigenvalue Problem 

Let 𝒖𝒖(𝑛𝑛) be a wide sense stationary discrete-time stochastic process in the form of 

a 𝑁𝑁 × 1 vector. Then the autocorrelation of 𝒖𝒖(𝑛𝑛) is a 𝑁𝑁 × 𝑁𝑁 Hermitian matrix 𝑹𝑹. An 
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eigenvector 𝒒𝒒 is defined as a vector of dimension 𝑁𝑁 × 1, which satisfies the following 

relationship,  

𝑹𝑹𝒒𝒒 = 𝜆𝜆𝒒𝒒, (9) 

where the constant 𝜆𝜆 is the eigenvalue associated with a specific eigenvector.  

Eigenvalues and eigenvectors may be computed by rewriting (9) in the form: 

(𝑹𝑹 − 𝜆𝜆𝑰𝑰)𝒒𝒒 = 𝟎𝟎, (10) 

where 𝑰𝑰 is the 𝑁𝑁 × 𝑁𝑁 identity matrix and 𝟎𝟎 is the 𝑁𝑁 × 1 null vector. For 𝒒𝒒 to be a non-zero 

solution of (10), (𝑹𝑹 − 𝜆𝜆𝑰𝑰) must be singular (i.e., have a determinant equal to zero); 

therefore: 

det(𝑹𝑹 − 𝜆𝜆𝑰𝑰) = 0. (11) 

Expanding (11) yields a polynomial of degree 𝑁𝑁, which means (11) (also known as 

the characteristic equation of 𝑹𝑹) has 𝑁𝑁 roots 𝜆𝜆, and there are 𝑁𝑁 vectors 𝒒𝒒 that satisfy (10). 

Let 𝜆𝜆𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑁𝑁 be the roots, or eigenvalues, of the characteristic equation (11), and 

𝒒𝒒𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑁𝑁 be the corresponding eigenvectors such that 

𝑹𝑹𝒒𝒒𝑖𝑖 = 𝜆𝜆𝑖𝑖𝒒𝒒𝑖𝑖. (12) 

Eigenvectors derived from a correlation are linearly independent and can be 

normalized to a length of one; therefore, they are considered an orthonormal set [8] such 

that: 

𝒒𝒒𝑖𝑖𝐻𝐻𝒒𝒒𝑗𝑗 = �1, 𝑖𝑖 = 𝑗𝑗
0, 𝑖𝑖 ≠ 𝑗𝑗 . (13) 

2. Karhunen-Loève Expansion 

One important property of eigenvalues and eigenvectors is the Karhunen-Loève 

Expansion (KLE) [8]. Let 𝒖𝒖(𝑛𝑛) be a 𝑁𝑁 × 1 vector that represents data derived from a zero-

mean wide sense stationary process with 𝑁𝑁 × 𝑁𝑁 autocorrelation matrix 𝑹𝑹. Let 𝒒𝒒𝑖𝑖, 𝑖𝑖 =

1, … ,𝑁𝑁 be the eigenvectors of 𝑹𝑹, sorted in descending order by their corresponding 
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eigenvalues 𝜆𝜆𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁. Then we can expand 𝒖𝒖(𝑛𝑛) into a linear combination of the 

eigenvectors: 

𝒖𝒖(𝑛𝑛) = �𝑐𝑐𝑖𝑖(𝑛𝑛)
𝑁𝑁

𝑖𝑖=1

𝒒𝒒𝑖𝑖 , (14) 

where 𝑐𝑐𝑖𝑖(𝑛𝑛) are the coefficients of the expansion defined by the Karhunen-Loève 

Transform (KLT) [6]: 

𝑐𝑐𝑖𝑖(𝑛𝑛) = 𝒒𝒒𝑖𝑖𝐻𝐻𝒖𝒖(𝑛𝑛), 𝑖𝑖 = 1, … ,𝑁𝑁. (15) 

The coefficients are zero-mean uncorrelated random variables, therefore [6]: 

𝔼𝔼{𝑐𝑐𝑖𝑖(𝑛𝑛)} = 0, (16) 

and 

𝔼𝔼�𝑐𝑐𝑖𝑖(𝑛𝑛)𝑐𝑐𝑗𝑗∗(𝑛𝑛)� = �𝜆𝜆𝑖𝑖 , 𝑖𝑖 = 𝑗𝑗
0, 𝑖𝑖 ≠ 𝑗𝑗 . (17) 

Then eigenvectors 𝒒𝒒𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁 form the orthonormal coordinate system of a 𝑁𝑁-

dimensional space in which 𝒖𝒖(𝑛𝑛) is represented as a set of projections 𝑐𝑐𝑖𝑖(𝑛𝑛) onto the axes 

𝒒𝒒𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁. According to Haykin [8], from (14) it follows: 

�|𝑐𝑐𝑖𝑖(𝑛𝑛)|2 = ‖𝒖𝒖(𝑛𝑛)‖2
𝑁𝑁

𝑖𝑖=1

, (18) 

and from (15) and (17) we have: 

𝔼𝔼{|𝑐𝑐𝑖𝑖(𝑛𝑛)|2} = 𝜆𝜆𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁. (19) 

Thus, most of the energy of 𝒖𝒖(𝑛𝑛) is in the direction of the eigenvector (also the 

basis vector or axis) that corresponds to the largest eigenvalue, 𝒒𝒒1 and 𝜆𝜆1, respectively [6], 

as illustrated in Figure 1.  
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Figure 1. Data projected onto eigenvector. Adapted from [6]. 

However, there may be a lesser, but still significant amount of energy in the 

direction of some of the subsequent eigenvectors, which we would want to include in the 

approximation. Therefore, we would use only data projected onto the eigenvectors 

associated with largest eigenvalues. Thus, the expansion can be reduced in dimension, 

meaning it can be truncated to fewer than 𝑁𝑁 orthonormal basis vectors with minimal loss 

of information [6].  

3. Dimension Reduction

We can use the KLE to create a subspace of dimension 𝑀𝑀, where 𝑀𝑀 < 𝑁𝑁 and the 

random process 𝒖𝒖(𝑛𝑛) is approximated by  

𝒖𝒖�(𝑛𝑛) = �𝑐𝑐𝑖𝑖(𝑛𝑛)𝒒𝒒𝑖𝑖

𝑀𝑀

𝑖𝑖=1

, (20) 

where 𝒒𝒒𝑖𝑖 , 1, … ,𝑀𝑀 are the basis vectors associated with the 𝑀𝑀 largest eigenvalues 𝜆𝜆𝑖𝑖 , 𝑖𝑖 =

1, … ,𝑀𝑀. We choose the value 𝑀𝑀 by minimizing the mean square error (MSE) between the 

data vector 𝒖𝒖(𝑛𝑛) and the truncated approximation 𝒖𝒖�(𝑛𝑛). First, we define the approximation 

error 𝒆𝒆(𝑛𝑛) as 
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𝒆𝒆(𝑛𝑛) = 𝒖𝒖(𝑛𝑛) − 𝒖𝒖�(𝑛𝑛), (21) 

which can be rewritten as 

𝒆𝒆(𝑛𝑛) = � 𝑐𝑐𝑖𝑖(𝑛𝑛)𝒒𝒒𝑖𝑖

𝑁𝑁

𝑖𝑖=𝑀𝑀+1

. (22) 

Then the MSE is defined as the average energy in the approximation error [6]: 

ℇ = 𝔼𝔼{‖𝒆𝒆(𝑛𝑛)2‖} = 𝔼𝔼{𝒆𝒆𝐻𝐻(𝑛𝑛)𝒆𝒆(𝑛𝑛)}  

= 𝔼𝔼� � � 𝒄𝒄𝑖𝑖∗(𝑛𝑛)𝒄𝒄𝑗𝑗

𝑁𝑁

𝑗𝑗=𝑀𝑀+1

𝑁𝑁

𝑖𝑖=𝑀𝑀+1

(𝑛𝑛)𝒒𝒒𝑖𝑖𝐻𝐻𝒒𝒒𝑗𝑗� 

= � � 𝔼𝔼�𝒄𝒄𝑖𝑖∗(𝑛𝑛)𝒄𝒄𝑗𝑗(𝑛𝑛)�
𝑁𝑁

𝑗𝑗=𝑀𝑀+1

𝑁𝑁

𝑖𝑖=𝑀𝑀+1

𝒒𝒒𝑖𝑖𝐻𝐻𝒒𝒒𝑗𝑗 

= � 𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=𝑀𝑀+1

, (23) 

where 𝜆𝜆𝑀𝑀+1, … , 𝜆𝜆𝑁𝑁 ≪ 𝜆𝜆1, … , 𝜆𝜆𝑀𝑀 [8]. Therefore, leaving out the smallest 𝑁𝑁 −𝑀𝑀 

eigenvalues of 𝑹𝑹 ensures that the approximation 𝒖𝒖�(𝑛𝑛) is an efficient and optimal 

representation of 𝒖𝒖(𝑛𝑛), which allows us to keep only the top 𝑀𝑀 eigenvalues and 

corresponding eigenvectors that contain useful information. 

When the data sequence is composed of a random signal in additive white noise, its 

truncated KLE allows us to retain signal information while eliminating much of the noise 

[6] as illustrated by Figure 2. The expansion effectively changes how we reference the 

space by using the eigenvectors of the noisy signal vector covariance as the basis to 

optimally describe the signal and noise, without knowing the initial shape of the signal [9]. 

Truncating the expansion reduces the dimension and allows us to work within a smaller, 

more efficient subspace.  
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Figure 2. Signal and noise projected onto eigenvectors. Adapted from [6]. 

C. SUMMARY 

In this chapter, we discussed the theory behind the matched filter for deterministic 

signals and briefly derived the resulting filter impulse response expressions in white and 

colored noise environments. We then reviewed the concept of eigenanalysis as it relates to 

the Karhunen-Loève Expansion and dimension reduction. In the next chapter, we introduce 

the stochastic matched filter, an adaptation of the matched filter designed to handle random 

signals. 
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III. STOCHASTIC MATCHED FILTER THEORY 

The matched filter described in the previous subsection is designed for 

deterministic signals, which are signals with known characteristics. In communication 

applications, this specification implies that there is a single path of propagation from 

transmitter to receiver, or in the case of multiple paths or receivers, the impulse responses 

of each are known. However, in a realistic environment, the transmission medium 

introduces randomness that alters the parameters of the received signal in unpredictable 

ways [4]. Bouffaut notes in [5] that the matched filter particularly struggles when the signal 

experiences frequency fluctuations and transient noise, both characteristics of the 

underwater acoustic environment. Additionally, the matched filter is more easily applied 

to white noise than to colored noise because white noise is completely uncorrelated. As 

noise becomes more “colored,” it becomes more correlated between samples, the noise 

autocorrelation function becomes less diagonal, and the impulse response less similar to 

the signal of interest, raising the optimum SNR at which the signal can be detected [7]. 

In his 1991 paper [1], J-F. Cavassilas introduced a technique called the stochastic 

matched filter, an extension of the matched filter that could detect stochastic signals 

imbedded in additive noise using the known statistical properties of the signal. The SMF 

can be adapted to passive collection, in which the received signal has unknown and 

unpredictable parameters due to the effects of the transmission medium. However, when 

the signal is WSS, second-order statistics can be estimated [5] and used to model the system 

impulse response [4]. Then the received signal, which is considered stochastic, can be 

detected, and its transmission time and duration determined. This chapter will introduce 

the theory behind the SMF, beginning with an introduction of matched filters applied to 

random signals imbedded in noise. Next, we will discuss the concept of random signal 

expansion and its use in the derivation of the SMF impulse response for real-time signal 

detection applications.  
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A. STOCHASTIC MATCHED FILTER IMPULSE RESPONSE 
DERIVATION 

This section expands the application of the matched filter to the detection of 

stochastic signals. Although the impulse response of the matched filter is traditionally 

derived from a deterministic transmitted signal, the technique can be adapted to random 

signals with known second-order statistics. As with the matched filter scenario described 

in the previous section, the goal of the SMF is to maximize the signal-to-noise ratio (SNR). 

According to Borloz and Xerri [10], the goal is to create a multi-dimensional subspace that 

will optimize signal detection when the data is projected onto it. This subspace is defined 

by eigenvectors that are associated with a certain number of the largest eigenvalues of the 

signal autocovariance matrix, allowing for signal detection in nonstationary and colored 

noise environments [11].  

Let 𝒛𝒛 be a received observation of length 𝑁𝑁, sampled in the discrete time domain 

such that 

𝒛𝒛 = 𝒔𝒔 + 𝜼𝜼, (24) 

where 𝒔𝒔 is a zero mean random signal vector with known covariance matrix 𝑹𝑹𝒔𝒔, and 𝜼𝜼 is a 

zero mean random noise vector with known covariance matrix 𝑹𝑹𝜼𝜼. Let 𝜎𝜎𝒔𝒔2 = 𝔼𝔼{𝒔𝒔2} be the 

variance of the signal and 𝒔𝒔0 be the reduced signal such that 𝔼𝔼{𝒔𝒔02} = 1. Similarly, let 𝜎𝜎𝜼𝜼2 =

𝔼𝔼{𝜼𝜼2} be the variance of the noise and 𝜼𝜼0 be the reduced signal such that 𝔼𝔼{𝜼𝜼02} = 1. Then 

we can express the observation in terms of signal and noise variances and reduced signal 

and noise functions as follows: 

𝒛𝒛(𝑘𝑘) = 𝒔𝒔(𝑘𝑘) + 𝜼𝜼(𝑘𝑘) = 𝜎𝜎𝒔𝒔𝒔𝒔0(𝑘𝑘) + 𝜎𝜎𝜼𝜼𝜼𝜼0(𝑘𝑘), (25) 

where 𝒔𝒔0(𝑘𝑘) and 𝜼𝜼0(𝑘𝑘) are zero-mean, independent, and second-order stationary processes 
[2]. Additionally, the covariance matrix of the signal can be expressed in terms of the 
reduced signal covariance matrix 𝚪𝚪𝒔𝒔0, and the signal variance: 

𝑹𝑹𝒔𝒔 = 𝜎𝜎𝒔𝒔2𝚪𝚪𝒔𝒔0 . (26) 

Similarly, the noise covariance matrix can be expressed: 

𝑹𝑹𝜼𝜼 = 𝜎𝜎𝜼𝜼2𝚪𝚪𝜼𝜼0 , (27) 
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where 𝚪𝚪𝜼𝜼0 is the covariance matrix of the reduced noise [5]. If we consider a linear filter 

with impulse response 𝒉𝒉, the filter output SNR can be expressed as: 

𝑜𝑜𝑆𝑆𝑁𝑁𝑆𝑆 =
𝒉𝒉𝑇𝑇𝑹𝑹𝒔𝒔𝒉𝒉
𝒉𝒉𝑇𝑇𝑹𝑹𝜼𝜼𝒉𝒉

, (28) 

which is a Rayleigh quotient [10]. This Rayleigh quotient is maximized when 𝒉𝒉 is the 

eigenvector corresponding to the greatest eigenvalue of 𝑹𝑹𝜼𝜼−1𝑹𝑹𝒔𝒔, in which case, 𝑜𝑜𝑆𝑆𝑁𝑁𝑆𝑆 is 

actually equal to the greatest eigenvalue [7]. From (26) and (27), we note that 𝚪𝚪𝒔𝒔0 = 𝑹𝑹𝒔𝒔
𝜎𝜎𝒔𝒔2

 and 

𝚪𝚪𝜼𝜼0 = 𝑹𝑹𝜼𝜼
𝜎𝜎𝜼𝜼2

, which allows us to rewrite (28) as:  

𝑜𝑜𝑆𝑆𝑁𝑁𝑆𝑆 =
𝜎𝜎𝒔𝒔2

𝜎𝜎𝜼𝜼2
𝒉𝒉𝑇𝑇𝚪𝚪𝒔𝒔0𝒉𝒉
𝒉𝒉𝑇𝑇𝚪𝚪𝜼𝜼0𝒉𝒉

= 𝜌𝜌
𝒉𝒉𝑇𝑇𝚪𝚪𝒔𝒔0𝒉𝒉
𝒉𝒉𝑇𝑇𝚪𝚪𝜼𝜼0𝒉𝒉

, (29) 

where 𝜌𝜌 = 𝜎𝜎𝒔𝒔2

𝜎𝜎𝜼𝜼2
 is the input SNR [4]. According to Courmontagne [2], the Rayleigh quotient 

𝒉𝒉𝑇𝑇𝚪𝚪𝒔𝒔0𝒉𝒉
𝒉𝒉𝑇𝑇𝚪𝚪𝜼𝜼0𝒉𝒉

 can be maximized by solving the following generalized eigenvalue problem (GEP): 

𝚪𝚪𝒔𝒔0𝚽𝚽𝑖𝑖 = 𝜆𝜆𝑖𝑖𝚪𝚪𝜼𝜼0𝚽𝚽𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝑁𝑁} (30) 

where 𝚽𝚽𝑖𝑖 is the 𝑖𝑖th eigenvector associated with 𝜆𝜆𝑖𝑖, the 𝑖𝑖th eigenvalue of 𝚪𝚪𝜼𝜼0
−1𝚪𝚪𝒔𝒔0. The 

eigenvector 𝚽𝚽1, corresponding to the largest eigenvalue 𝜆𝜆1, maximizes the output SNR 

value defined in (29); however, Mori and Gounon [4] note that the output SNR can further 

be improved by including any eigenvectors corresponding to eigenvalues that are greater 

than or equal to one.  

As described in Section II.B.1, the eigenvectors 𝚽𝚽𝑖𝑖 form an orthonormal basis. 

According to Bouffaut [5], we can form another basis using the eigenvectors of 

(𝚪𝚪𝜼𝜼0
−1𝚪𝚪𝒔𝒔0)𝑇𝑇, which we denote 𝚿𝚿𝑖𝑖. Then  

𝚿𝚿 = 𝚪𝚪𝜼𝜼0𝚽𝚽, (31) 
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where the matrices  𝚽𝚽 and 𝚿𝚿, have column vectors 𝚽𝚽𝑖𝑖 and 𝚿𝚿𝑖𝑖 respectively, which define 

an orthogonal space in which we can expand the observation so that the signal can be 

differentiated from the noise, maximizing the SNR quantity [5]. 

B. RANDOM SIGNAL EXPANSION 

A noisy stochastic observation signal can be expanded into a sum of deterministic 

basis vectors weighted by uncorrelated random variables [2]. Those basis vectors can be 

chosen so that a number of random variables contain more signal information than noise. 

The Karhunen-Loève Expansion (KLE) described in Section II.B.2 meets these criteria. 

Let us define the vector 𝒛𝒛(𝑘𝑘) from (25) to be a discrete, zero-mean, second-order stationary 

random signal sequence of N samples, and 𝑧𝑧𝑖𝑖,𝑘𝑘, 𝑖𝑖 ∈ {1, … ,𝑁𝑁} is a zero-mean, uncorrelated 

random variable sequence [2]. Thus, 𝐸𝐸�𝑧𝑧𝑖𝑖,𝑘𝑘� = 0, 𝐸𝐸�𝑧𝑧𝑖𝑖,𝑘𝑘, 𝑧𝑧𝑗𝑗,𝑘𝑘 ,𝑘𝑘� = 𝛿𝛿𝑖𝑖,𝑗𝑗𝐸𝐸�𝑧𝑧𝑖𝑖,𝑘𝑘2 �, and 

𝒛𝒛(𝑘𝑘) =  �𝑧𝑧𝑖𝑖,𝑘𝑘𝚿𝚿𝑖𝑖 ,
𝑁𝑁

𝑖𝑖=1

(32) 

where 𝑧𝑧𝑖𝑖,𝑘𝑘 are the random variable coefficients of the decomposition of 𝒛𝒛(𝑘𝑘), and 𝚿𝚿𝑖𝑖 are 

basis vectors previously introduced in Section III.A. The random variable coefficients 𝑧𝑧𝑖𝑖,𝑘𝑘 

can be expressed as the inner product of the observation 𝒛𝒛(𝑘𝑘) and the basis vector 𝚽𝚽𝑖𝑖 [5]: 

𝑧𝑧𝑖𝑖,𝑘𝑘 = 𝒛𝒛(𝑘𝑘)𝑇𝑇𝚽𝚽𝑖𝑖 . (33) 

According to Cavassilas [1], coefficients 𝑧𝑧𝑖𝑖,𝑘𝑘 are uncorrelated with unit power when 

the noise is expanded on the basis 𝚿𝚿, while the signal expanded on the same basis will 

yield uncorrelated coefficients with power equal to the corresponding eigenvalue 𝜆𝜆𝑖𝑖, as 

illustrated in (19). Then it follows that there is a number of expansion coefficients that 

contain mostly signal information and would contribute to a good approximation of the 

signal of interest. Using the dimension reduction properties of KLE discussed in Section 

II.B.3, we can reconstruct the signal of interest with the following expression: 

𝒔𝒔�(𝑘𝑘) = �𝑧𝑧𝑖𝑖,𝑘𝑘𝚿𝚿𝑖𝑖

𝑄𝑄

𝑖𝑖=1

, (34) 
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where 𝑄𝑄 ≤ 𝑁𝑁 is the dimension of the basis 𝚿𝚿 that minimizes the MSE between the signal 

of interest 𝒔𝒔(𝑘𝑘) and the approximation 𝒔𝒔�(𝑘𝑘) [5].  

C. TIME-VARYING FILTER 

The discrete observation 𝒛𝒛(𝑘𝑘) can be expressed as a vector of length 𝑁𝑁, processed 

using sliding windows: 

𝒛𝒛(𝑘𝑘) = �𝑧𝑧 �𝑘𝑘 −
𝐿𝐿 − 1

2
� , … , 𝑧𝑧[𝑘𝑘], … , 𝑧𝑧 �𝑘𝑘 +

𝐿𝐿 − 1
2

�� , (35) 

where 𝐿𝐿 represents the odd-numbered length of the sample window, and 𝑘𝑘 = 1, …𝑁𝑁 is the 

center time sample of the window [2]. The signal 𝒔𝒔(𝑘𝑘) and noise 𝜼𝜼(𝑘𝑘) must both be 

considered second-order stationary in order to apply the SMF effectively. To ensure this 

stationarity characteristic in practical applications, 𝐿𝐿 is chosen to be small enough that the 

autocovariance of the sequence within the time window is wide sense stationary (WSS) 

[3]. Overlapping the windows by 𝐿𝐿 − 1 allows us to process one data point 𝑧𝑧[𝑘𝑘] for each 

time sample 𝑘𝑘 (the center sample of each window), and adding 𝐿𝐿−1
2

 zeroes to both the 

beginning and end of the data sequence 𝒛𝒛(𝑘𝑘) gives us 𝑁𝑁 windows, and therefore 𝑁𝑁 data 

points 𝑧𝑧[𝑘𝑘] [2]. Input SNR and the dimension of the basis 𝚿𝚿 also depend on the time index 

𝑘𝑘, and are denoted by 𝜌𝜌[𝑘𝑘] and 𝑄𝑄[𝑘𝑘] respectively. Then the approximation of the signal 

given in (34) can be rewritten in terms of 𝑘𝑘 and truncated to order 𝑄𝑄[𝑘𝑘]: 

𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘] = �𝑧𝑧𝑖𝑖,𝑘𝑘

𝑄𝑄[𝑘𝑘]

𝑖𝑖=1

𝚿𝚿𝑖𝑖 �
𝐿𝐿 + 1

2
� , (36) 

where 𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘] represents the 𝑘𝑘th data point of the approximated signal of interest, and 

𝚿𝚿𝑖𝑖 �
𝐿𝐿+1
2
� is the center point of the 𝑖𝑖th basis vector 𝚿𝚿 [5]. We can also consider 𝑄𝑄[𝑘𝑘] to be 

the number of eigenvalues 𝜆𝜆𝑖𝑖 , that when multiplied by the SNR for each sample window 

of 𝒛𝒛(𝑘𝑘), are greater than or equal to one [2]: 

𝜆𝜆𝑖𝑖𝜌𝜌[𝑘𝑘] ≥ 1. (37) 

The approximation in (36) can be rewritten using (33): 
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𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘] = 𝒛𝒛(𝑘𝑘)𝑇𝑇 �𝚿𝚿𝑖𝑖 �
𝐿𝐿 + 1

2
�𝚽𝚽𝑖𝑖

𝑄𝑄[𝑘𝑘]

𝑖𝑖=1

, (38) 

where 𝚿𝚿𝑖𝑖 and 𝚽𝚽𝑖𝑖 are 𝐿𝐿-dimensional bases derived from 𝐿𝐿 × 𝐿𝐿 reduced covariance matrices 

𝚪𝚪𝒔𝒔0 and 𝚪𝚪𝜼𝜼0 [2]. Then the value 𝑄𝑄[𝑘𝑘] will be between 1 and 𝐿𝐿. Let 𝒉𝒉𝑄𝑄[𝑘𝑘] be the impulse 

response for the corresponding filter (referred to as the filter vector) such that 

𝒉𝒉𝑄𝑄[𝑘𝑘] = �𝚿𝚿𝑖𝑖 �
𝐿𝐿 + 1

2
�𝚽𝚽𝑖𝑖

𝑄𝑄[𝑘𝑘]

𝑖𝑖=1

. (39) 

Then the expression shown in (38) can be expressed as the inner product of the 

observation vector and the filter vector for a specific value 𝑄𝑄[𝑘𝑘], resulting in: 

𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘] = 𝒛𝒛(𝑘𝑘)𝑇𝑇𝒉𝒉𝑄𝑄[𝑘𝑘]. (40) 

Note the filter vector 𝒉𝒉1 corresponds to the eigenvector associated with the largest 

eigenvalue 𝜆𝜆1 and maximizes the SNR quantity. Bouffaut [5] suggests choosing a 

maximum value for 𝑄𝑄[𝑘𝑘] ≤ 𝐿𝐿, using a priori knowledge of the signal of interest frequencies 

in order to decrease processing time. Let this value be called 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚. Then the filter vector 

𝒉𝒉𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 is defined as the superposition of all filter vectors up to 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, and it encompasses 

all the frequencies contained in the signal of interest. We use this process to define 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 

individual filter vectors which are associated with frequency bands of the signal of interest. 

The value 𝑄𝑄[𝑘𝑘] is determined by the estimated input SNR value at time 𝑘𝑘, as defined by 

(37). In turn, the value 𝑄𝑄[𝑘𝑘] determines which specific filter impulse expression is used at 

time 𝑘𝑘, resulting in a time-varying filter. This filter bank can be stored and used for real-

time signal processing [12], which will be discussed in the next section.  

D. REAL-TIME ANALYSIS 

For military applications, it is important that signal detection occurs in real-time. In 

[5], Bouffaut describes a technique for real-time analysis that uses a priori knowledge of 

the signal of interest to first conduct offline calculations in order to process noisy 

observations as they occur in real-time applications. In this approach, we first create a bank 



17 

of time-varying filters, as discussed in the previous section. Then we apply those filters 

selectively, choosing the filter that will optimize the output SNR value at each sample time. 

This section will first discuss the process of building the filter bank, which we call offline 

analysis. Then we will describe the steps for online analysis, which is the real-time 

processing of the observation and approximation of the signal [12]. 

1. Offline Analysis 

To create the filter bank, we must estimate the signal and noise autocovariance 

functions. Since the signal of interest has known characteristics, its autocovariance matrix 

can be calculated. For the purpose of calculating the filter bank, the noise autocovariance 

is estimated using simulated noise with a fixed variance [12]. To reduce the number of 

filter vectors from 𝐿𝐿 in order to decrease processing time, we initially choose the maximum 

filter parameter 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 to represent only the highest 10% of eigenvalues 𝜆𝜆𝑖𝑖 (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 equals 

the number of eigenvalues in the highest 10th percentile) [5]. As discussed in Section 

II.B.2, the signal can be accurately represented by a small number of eigenvectors 

associated with the largest eigenvalues. Figure 3 shows a block diagram of the resulting 

offline analysis algorithm. 

 
Figure 3. Offline SMF processing diagram. Adapted from [5]. 

2. Online Analysis 

Once the filter bank is created during offline analysis, we can process received data 

to determine whether the signal of interest is present in real-time. First, we estimate the 

noise autocovariance of the observed data so it can be used to calculate the online SNR 

value for each window [5]. However, signal may be present in any of these windows [12], 
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which complicates the noise covariance estimation process. In windows where signal may 

be present, signal contributions can be separated from the noise floor using the short-time 

Fourier transform (STFT) [13]. The STFT is a tool that analyzes the signal local frequency 

behavior by taking windows in the time-domain and performing a fast Fourier transform 

on the data within each window [14]. Window parameters are determined by sampling 

frequency, observation duration, and expected signal of interest duration [5]. Using 

weighted overlapping windows to take the STFT of the observation results in a spectrogram 

[12]. The STFT separates the observation into frequency bins, some of which are expected 

to contain signal information based on the signal of interest known frequency profile, and 

some of which are expected to contain only noise. 

Let 𝜸𝜸𝒛𝒛(𝑘𝑘′,𝑓𝑓) be the STFT of the received observation 𝒛𝒛(𝑘𝑘), where 𝑘𝑘′ represents 

the time index used in the time-frequency expansion [14]. Then its squared modulus 

|𝜸𝜸𝒛𝒛(𝑘𝑘′, 𝑓𝑓)|2 is the spectrogram, a time-frequency representation of the observation power 

spectral density (PSD). To obtain a good estimate of the noise floor, we apply a median 

filter to each frequency sub-band of the STFT of the observation. Since a median filter 

replaces outliers with the median of the neighboring samples, choosing a filter-order much 

longer than the signal duration will smooth out the signal contributions if any are present 

within the median filter window. Let the resulting time-frequency estimate of the 

background noise be denoted �𝜸𝜸𝜼𝜼�(𝑘𝑘′,𝑓𝑓)� [5]. By the Wiener-Khintchine theorem, the 

Fourier transform of the correlation function of a random process is its PSD [6]. As a result, 

an estimate of the noise autocorrelation function 𝑟𝑟𝑧𝑧(𝑘𝑘′) may be obtained as the inverse 

Fourier transform of the PSD of the observation after it is median-filtered [5]. Then we can 

estimate the noise autocovariance matrix 𝚪𝚪𝜼𝜼�0by creating a Toeplitz matrix out of the 

autocorrelation function 𝑟𝑟𝑧𝑧(𝑘𝑘′). 

The goal of online analysis is to get a time-dependent estimate of the SNR 𝜌𝜌[𝑘𝑘] in 

order to determine 𝑄𝑄[𝑘𝑘], the number of terms in the overall SMF filter expression to apply 

to the observation at time 𝑘𝑘; however, this is challenging in a noisy environment, as false 

signal detection may occur due to the presence of unpredictable wideband transient signals 

in the observation. These transients are neither noise, nor the signal of interest, but may 

trigger signal detection since they may occur within and near the signal of interest 
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bandwidth. Limiting false alarm occurrences can be accomplished by comparing both the 

observation 𝜸𝜸𝒛𝒛(𝑘𝑘′,𝑓𝑓) and the estimated noise �𝜸𝜸𝜼𝜼�(𝑘𝑘′, 𝑓𝑓)� in the time-frequency domain 

[12]. Using the STFT, we divided the observation into frequency bins based on the known 

frequency profile of the signal of interest. Let set 𝐴𝐴 contain the frequency bins where signal 

would be expected (signal bandwidth), and let set 𝐵𝐵 contain the frequency bins where the 

signal would not be expected [5].  

To estimate the online SNR value, there are three steps following the STFT and 

median filtering of the observation. First, we estimate the presence of the signal of interest 

for each time sample 𝑘𝑘′ within the signal bandwidth 𝐴𝐴 by comparing the maximum value 

of the modulus of the observation against the mean value of the noise estimate [12]: 

𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘′] =
max
𝑓𝑓

{|𝜸𝜸𝒛𝒛(𝑘𝑘′,𝑓𝑓)|}

�𝜸𝜸𝜼𝜼�(𝑘𝑘′,𝑓𝑓)�������������� , 𝑓𝑓 ∈ 𝐴𝐴. (41) 

If the expression shown in (41) is greater than 1, we can assume the presence of 

something other than noise; however, we cannot not yet distinguish between transients and 

the signal of interest [5]. Second, we estimate the presence of these transients by finding 

the maximum ratio between the modulus of the time-frequency observation and the noise 

estimate within the frequency bins adjacent to the signal of interest frequency range [12]: 

𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠[𝑘𝑘′] = max
𝑓𝑓

�
𝜸𝜸𝒛𝒛(𝑘𝑘′,𝑓𝑓)
𝜸𝜸𝜼𝜼�(𝑘𝑘′,𝑓𝑓)� ,𝑓𝑓 ∈ 𝐵𝐵. (42) 

Then, we determine the time-varying SNR 𝜌𝜌[𝑘𝑘′] in decibels by taking the ratio of 

the two previous expressions 𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘′] and 𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠[𝑘𝑘′] [5]: 

𝜌𝜌[𝑘𝑘′] = 20 log�
𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘′]
𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠[𝑘𝑘′]

� . (43) 

Finally, we interpolate our results from the time-frequency domain (𝑘𝑘′, 𝑓𝑓) back into 

the time domain (𝑘𝑘) in order to determine the estimated SNR in real time 𝜌𝜌[𝑘𝑘] [12].  
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E. SUMMARY 

In this section, we described the process used to estimate the online SNR value 𝜌𝜌[𝑘𝑘] 

and to evaluate 𝑄𝑄[𝑘𝑘], the number of terms present in the SMF impulse response expression 

derived for each time sample of the observation. Then we can approximate the signal by 

applying the appropriate number of terms in the filter expression created offline, allowing 

us to determine the start point and duration of the signal of interest present within the 

observation [5]. Figure 4 shows a block diagram of the online analysis algorithm. The next 

chapter discusses the conduct of the experiment, to include the simulation of the noisy 

observation and the parameters used to build the filters and approximate the signal of 

interest. 

 

Figure 4. Online SMF processing diagram. Adapted from [5]. 
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IV. EXPERIMENT 

In this section we present the details of our implementation of the SMF discussed 

earlier as applied to the detection and reconstruction of tonal signals. Using MATLAB, we 

generated the signals and embedded them in white noise at fixed SNR values. We then 

conducted offline analysis to create the filter bank for each signal of interest. Finally, we 

processed the noisy signal using online analysis, resulting in an approximation of the 

original signal. Though the goal was detection of the signal, recreating the signal also 

allowed us to determine its start time and duration when present amongst noise. First, we 

discuss the experimental set up, starting with signal and noise simulation parameters. Next, 

we present the approach to building the filter bank. Finally, we describe the process applied 

to approximate the signal. 

A. NOISY SIGNAL SIMULATION 

1. Simulated Signals 

In this experiment we tested the SMF on cosine tones and three types of chirps to 

simulate basic signals that may be encountered in military acoustic and radar applications. 

The simulated cosine signal contained a single frequency and is represented by a sequence 

of 𝑀𝑀 samples: 

𝒔𝒔(𝑘𝑘) = α cos �2𝜋𝜋𝑓𝑓0
𝑘𝑘
𝑓𝑓𝑠𝑠
� , (44) 

where 𝑘𝑘 = 1, … ,𝑀𝑀 and 𝑀𝑀 = 400. We fixed the noise power level and calculated the signal 

amplitude 𝛼𝛼 to achieve the signal power that would result in a specific SNR value. We used 

base frequencies 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 and 0.8 𝐻𝐻𝑧𝑧, which are scaled down by two orders of 

magnitude from a typical acoustic signal frequency to keep the processing time manageable 

for the simulation. We chose a fairly high sampling rate of 𝑓𝑓𝑠𝑠 = 25𝑓𝑓0 to ensure good signal 

resolution. 

Next, we considered chirp signals, which are nonstationary tones with changing 

frequencies, presenting a challenge to the SMF. In this experiment, we used linear, 
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quadratic, and exponential chirps simulated using the MATLAB function chirp.m. Once 

again, the signal amplitude 𝛼𝛼 was determined according to the desired SNR level. We set 

the chirps to have a maximum frequency 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧, and a minimum frequency 𝑓𝑓∆ that 

was either 20% lower than 𝑓𝑓0 (𝑓𝑓∆ = 0.1667 𝐻𝐻𝑧𝑧), or 80% lower than 𝑓𝑓0 (𝑓𝑓∆ = 0.1111 𝐻𝐻𝑧𝑧), 

in order to test the effect of chirp bandwidth on the SMF. Since 𝑓𝑓0 is the highest frequency 

present in the chirp signal, we again selected a sampling frequency 𝑓𝑓𝑠𝑠 = 25𝑓𝑓0. 

2. Simulated Noisy Observation 

We simulated a white noise sequence 𝜼𝜼(𝑘𝑘) by creating a vector of 𝑁𝑁 = 2000𝑓𝑓𝑠𝑠 

normally distributed random variables with a mean of 0 and variance of 1 using the 

MATLAB function randn.m to add noise to the signal. We then embedded the signal 𝒔𝒔(𝑘𝑘) 

of length 𝑀𝑀 = 400𝑓𝑓𝑠𝑠 in the noise sequence so that the observation was much longer than 

the signal of interest. We set the signal to start near the center of the sequence, 𝑘𝑘 = 1000𝑓𝑓𝑠𝑠, 

where it was combined with the noise sequence for its duration 𝑀𝑀. As described in Section 

III.C, the resulting observation signal 𝒛𝒛(𝑘𝑘), a sequence of 𝑁𝑁 samples was broken down 

into windows of length 𝐿𝐿 = 101 to ensure low levels of frequency variations within a given 

time window. According to Bonnal, Danes, and Renaud [3], we can consider the signal as 

wide sense stationary (WSS) within each of these windows. Each odd-length window was 

indexed by its center point 𝑧𝑧[𝑘𝑘], 

𝒛𝒛(𝑘𝑘) = �𝑧𝑧 �𝑘𝑘 −
𝐿𝐿 − 1

2
� , … , 𝑧𝑧[𝑘𝑘], … , 𝑧𝑧 �𝑘𝑘 +

𝐿𝐿 − 1
2

�� . (45) 

Breaking the observation into overlapping windows will allow us to eventually 

evaluate its properties in real-time. First, however, we use the characteristics of the known 

signal of interest 𝒔𝒔(𝑘𝑘) and modeled noise 𝜼𝜼(𝑘𝑘) to conduct offline analysis. 

B. OFFLINE ANALYSIS 

1. Determining Second-Order Signal Characteristics 

As discussed in Section III.D.1, the first step in creating the filter bank is estimating 

the signal and noise autocovariances using a priori knowledge of the signal and noise 

characteristics. In this experiment, we used the MATLAB function xcorr.m to calculate the 
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autocorrelation sequence of each signal type. We chose a maximum lag equal to window 

length 𝐿𝐿 = 101, so that only the first 101 points were used. The sequence was normalized 

so that at a lag of 0, the autocorrelation was equal to 1. We also subtracted the signal mean 

from the signal 𝒔𝒔(𝑘𝑘) when calculating the autocorrelation, which resulted in the 

autocovariance sequence (note that the mean of the signal is very close to zero to start 

with). Since the behavior of the signal within each window is approximated as wide sense 

stationary (WSS), the signal autocovariance matrix 𝚪𝚪𝒔𝒔 is a 𝐿𝐿 × 𝐿𝐿 Toeplitz matrix generated 

from the autocovariance sequence [8]. Next, we normalized the covariance matrix with 

respect to its trace by dividing each of its elements by the sum of its own eigenvalues, 

which were calculated using the MATLAB function eig.m, to produce the reduced signal 

autocovariance matrix 𝚪𝚪𝒔𝒔0.  

To calculate the reduced noise autocovariance matrix 𝚪𝚪𝜼𝜼𝟎𝟎, we followed the same 

procedure as above, with the simulated noise sequence 𝜼𝜼(𝑘𝑘). We used the 𝐿𝐿 × 𝐿𝐿 matrix 𝚪𝚪𝜼𝜼𝟎𝟎 

to create the filter bank during offline analysis. During online processing, the estimated 

reduced noise covariance matrix, denoted 𝚪𝚪𝜼𝜼�0, will be calculated again as the observation 

is processed in real-time (see Section IV.C.1 for details). 

2. Building the Filter Bank 

As discussed in Section III.D.1, we set the maximum value of 𝑄𝑄[𝑘𝑘] to a 

predetermined length equal to the number of eigenvalues of the noise autocovariance that 

are in the top ten percentile [5]. Let this predetermined offline maximum value of 𝑄𝑄[𝑘𝑘] be 

defined as 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0, the maximum dimension of the subspace which optimizes the SNR. 

Next, applying the reduction properties of the KLE as discussed in Section II.B.2, we 

projected the signal and noise autocovariance matrices 𝚪𝚪𝒔𝒔0 and 𝚪𝚪𝜼𝜼𝟎𝟎 onto the optimal 

reduced-dimension signal subspace by following the transformation approach proposed by 

Bouffaut [15], defined as:  

�
𝚪𝚪�𝒔𝒔0 = 𝑽𝑽𝒔𝒔,𝑙𝑙

𝑇𝑇 𝚪𝚪𝒔𝒔0𝑽𝑽𝒔𝒔,𝑙𝑙

𝚪𝚪�𝜼𝜼0 = 𝑽𝑽𝒔𝒔,𝑙𝑙
𝑇𝑇 𝚪𝚪𝜼𝜼0𝑽𝑽𝒔𝒔,𝑙𝑙

,∀ 𝑙𝑙 = 1, … ,𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 , (46) 
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where 𝚪𝚪�𝒔𝒔0 and 𝚪𝚪�𝜼𝜼0 are the projected 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 × 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 signal and noise autocovariance 

matrices, respectively. In addition, 𝑽𝑽𝒔𝒔,𝑙𝑙 is defined as a matrix of  𝐿𝐿 × 1 eigenvectors 

obtained from the signal autocovariance matrix, with its columns sorted by the associated 

eigenvalues in descending order from 1 to 𝐿𝐿. Note that in (46), we truncate 𝑽𝑽𝒔𝒔,𝑙𝑙, taking only 

the signal eigenvectors that correspond to the 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 highest eigenvalues, which define 

the optimal signal subspace [10]. Next, we used the projected signal and noise 

autocovariance matrices 𝚪𝚪�𝒔𝒔0 and 𝚪𝚪�𝜼𝜼0 to solve for the GEP defined in (30), which becomes 

𝚪𝚪�𝒔𝒔0𝚽𝚽�𝑙𝑙  = 𝜆𝜆𝑙𝑙𝚪𝚪�𝜼𝜼0𝚽𝚽�𝑙𝑙 ,∀ 𝑙𝑙 = 1, … ,𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 , (47) 

where 𝚽𝚽�𝑙𝑙 is a matrix of 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 × 1 eigenvectors obtained from (47) sorted by 

the associated eigenvalues 𝜆𝜆𝑙𝑙 in descending order from 1 to L, which we again truncate to 

𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0. Next, let 𝚽𝚽 be defined as 

𝚽𝚽 = 𝑽𝑽𝒔𝒔,𝑙𝑙𝚽𝚽�𝑙𝑙 ,∀ 𝑙𝑙 = 1, … ,𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 , (48) 

where 𝚽𝚽 is the matrix made up of L column basis vectors 𝚽𝚽𝑙𝑙, of which we consider only 

the first 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0  vectors. Each basis vector 𝚽𝚽𝑙𝑙 is normalized as follows: 

1

�𝚽𝚽𝑙𝑙
𝑇𝑇𝚪𝚪𝜼𝜼0𝚽𝚽𝑙𝑙

𝚽𝚽𝑙𝑙 ,∀ 𝑙𝑙 = 1, … ,𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 . (49)
 

 

Using (31), we created basis vectors 𝚿𝚿𝑙𝑙 ,∀ 𝑙𝑙 = 1, … ,𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0, which are 

deterministic vectors of the noisy signal expansion [2]:  

𝚿𝚿𝑙𝑙 = 𝚪𝚪𝜼𝜼0𝚽𝚽𝑙𝑙 . (50) 

Finally, we built the filter bank by defining a filter 𝒉𝒉𝑄𝑄[𝑘𝑘] for each value of 𝑄𝑄[𝑘𝑘] 

from 1 to 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0 using (39), which leads to:  

𝒉𝒉𝑄𝑄[𝑘𝑘] = �𝚿𝚿𝑙𝑙 �
𝐿𝐿 + 1

2
�

Q[k]

𝑙𝑙=1

𝚽𝚽𝑙𝑙 . (51) 
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As we process the signal in real-time, we will determine a 𝑄𝑄[𝑘𝑘] value for each 

window of the observation 𝒛𝒛(𝑘𝑘), and then apply the optimal filter 𝒉𝒉𝑄𝑄[𝑘𝑘] to that portion of 

the online signal. 

C. ONLINE ANALYSIS 

1. Estimating Online Noise Covariance 

When analyzing a noisy observation, we must understand noise characteristics to 

process the data and detect the signal of interest. During offline processing, we built a filter 

bank using the autocovariance function of a white noise model. For online processing, 

noise parameters are unknown until processing begins. The goal of estimating the online 

noise autocovariance is to determine the filter parameter 𝑄𝑄[𝑘𝑘] needed to process each data 

sample as it becomes available in real-time. Recall we do not know whether the signal is 

present at a given time or whether we have noise only in real-time scenarios. Since the 

signal duration is short compared to the total duration of the observation, and we know the 

signal of interest frequencies, we can estimate the noise characteristics using median 

filtering and time-frequency analysis as discussed in Section III.C.2.  

In order to get an estimate of the noise characteristics, we chose our parameters for 

the STFT and median filters as follows. First, we normalized the received observation 𝒛𝒛(𝑘𝑘) 

by dividing each element by the maximum value of 𝒛𝒛(𝑘𝑘). Then we performed an STFT on 

the data using the MATLAB function spectrogram.m. We chose a window length 𝐿𝐿 = 101 

to match the length of the signal autocovariance sequence. We used a Hanning window to 

reduce spectral leakage, and set the window overlap to 98% to avoid information loss 

between windows. We zero-padded the Fast Fourier transform to 1024 to ensure high 

spectral resolution [14]. The resulting STFT is a representation of the observation in the 

time-frequency domain 𝜸𝜸𝑧𝑧(𝑘𝑘′, 𝑓𝑓), where 𝑘𝑘′ is a time sample in the time-frequency domain 

and 𝑓𝑓 is the frequency. An example of such a spectrogram obtained for a cosine signal 

centered at 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 with an SNR value of 6 dB is illustrated in Figure 5a. In order to 

mitigate any contributions from the signal that would distort the characteristics of the noise, 

we used the function medfilt1.m to process the absolute value of the STFT |𝜸𝜸𝑧𝑧(𝑘𝑘′,𝑓𝑓)| 

through a median filter twice as long as the signal of interest, ensuring any transients caused 
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by signal presence would be smoothed out. This filter of length 2𝑀𝑀 = 800 was applied to 

each frequency sub-band through time. The resulting estimation of the time-frequency 

behavior of the noise is �𝜸𝜸𝜼𝜼�(𝑘𝑘′,𝑓𝑓)�. A plot of the noise estimation of an observation with 

SNR value of 6 dB, and cosine signal centered at 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 is illustrated in Figure 5b. 

Note that the 0.2Hz tone frequency has been smoothed out by the median filter.  

 
Figure 5. Spectrogram plots of a cosine signal centered at 0.2 Hz embedded 

in noise at 6dB SNR. (a) Noisy observation. (b) Estimated noise. 

By the Wiener-Khintchine theorem, we can calculate the autocorrelation function 

of a WSS process by taking the inverse discrete Fourier transform of the power spectral 

density (PSD) [8]. The PSD of the estimated noise can be expressed as �𝜸𝜸𝜼𝜼�(𝑘𝑘′, 𝑓𝑓)�2, the 

magnitude squared of the median filtered observation STFT. We then apply the Wiener-

Khintchine theorem by taking the inverse Fourier transform of the PSD. The result is 𝚪𝚪𝜼𝜼�, 
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the autocovariance matrix of the STFT estimated online noise, where each row corresponds 

to a frequency 𝑓𝑓 and each column corresponds to a time sample 𝑘𝑘′. 

Because we assume the observation is WSS in each window, the autocovariance 

matrix of the online noise, which we will call 𝚪𝚪𝜼𝜼�0, must be a Toeplitz matrix where the 

diagonal elements represent the covariances between the noise samples with the same lag 

[6]. By summing each row of 𝚪𝚪𝜼𝜼�, we combined all the elements of each frequency 𝑓𝑓, 

collapsing 𝚪𝚪𝜼𝜼� into an autocovariance sequence evaluated at each time sample 𝑘𝑘′. We then 

interpolated the sequence to evaluate the autocovariance at 𝐿𝐿 frequencies from 0 to 𝑓𝑓𝑠𝑠 2⁄ . 

Using the function toeplitz.m, we created the estimated online noise autocovariance matrix 

𝚪𝚪𝜼𝜼�0 (a 𝐿𝐿 × 𝐿𝐿 toeplitz matrix) out of the autocovariance sequence. Using eig.m, we computed 

the eigenvalues 𝜆𝜆𝜼𝜼�  of the noise autocovariance matrix 𝚪𝚪𝜼𝜼�0, and we let 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚 be the 

number of eigenvalues 𝜆𝜆𝜼𝜼� > 1, since this choice results in improving the SNR value, and 

set that value to be the high limit of the value 𝑄𝑄[𝑘𝑘]. Note that the maximum value of 𝑄𝑄[𝑘𝑘] 

derived from online processing, which we called 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚, was set to be less than or equal 

to the maximum 𝑄𝑄[𝑘𝑘] derived from offline preprocessing, which we called 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚0[5].  

Next, we projected the 𝐿𝐿 × 𝐿𝐿 estimated online noise autocovariance matrix 𝚪𝚪𝜼𝜼�0  onto 

the signal subspace, using the same signal eigenvector matrix 𝑽𝑽𝒔𝒔,𝑙𝑙 that we used to build the 

filter bank in Section IV.B.2 [15]:  

𝚪𝚪�𝜼𝜼�0 = 𝑽𝑽𝒔𝒔,𝑙𝑙
𝑇𝑇 𝚪𝚪𝜼𝜼�0𝑽𝑽𝒔𝒔,𝑙𝑙 ,∀ 𝑙𝑙 = 1, … ,𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚, (52) 

where 𝚪𝚪�𝜼𝜼�0 is the resulting 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑄𝑄[𝑘𝑘]𝑚𝑚𝑚𝑚𝑚𝑚 estimated online noise autocovariance 

matrix. Then we solved the GEP with the projected online estimated noise autocovariance 

matrix 𝚪𝚪�𝜼𝜼�0, 

𝚪𝚪�𝒔𝒔0𝑽𝑽𝒔𝒔 = �̃�𝜆𝑙𝑙𝚪𝚪�𝜼𝜼�0𝑽𝑽𝒔𝒔, (53) 

where �̃�𝜆𝑙𝑙 are the sorted eigenvalues and 𝑽𝑽𝒔𝒔 is the matrix of associated eigenvectors that 

solve the GEP. These eigenvalues, along with the online SNR estimates, determine the 

filter parameter 𝑄𝑄[𝑘𝑘] for each time sample 𝑘𝑘 of the observation during real-time 

processing, allowing us to choose the optimal filter for each window.  
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2. Estimating Online SNR 

Once we determined the eigenvalues from (53) using the estimated noise 

autocovariance, we applied the three steps described in Section III.D.2 to estimate the SNR 

of each sample window. Since we had completed time-frequency analysis of the 

observation, we first estimated whether or not the signal frequency was present within each 

time window. Next, we estimated the presence of unwanted transient signals in each 

window. Finally, we compared these results to estimate the SNR for each time window. 

Time-frequency analysis using the STFT separated the noise from the signal by 

dividing the observation into overlapping time windows that were also divided by 

frequency from 0 to 𝑓𝑓𝑠𝑠 2⁄ , resulting in data separated into consecutive frequency “bins.” 

We chose the frequency bins that contained the frequencies of our signal of interest and 

called them 𝑆𝑆𝑆𝑆𝑡𝑡 𝐴𝐴. We assumed the remaining frequency bins contained frequencies that 

only contributed to noise or other transient signals present in the environment. We called 

this group of frequencies 𝑆𝑆𝑆𝑆𝑡𝑡 𝐵𝐵. In the single frequency cosine signal scenario, we let 𝑆𝑆𝑆𝑆𝑡𝑡 𝐴𝐴 

contain the range of frequencies 10% lower than the tone frequency 𝑓𝑓0 up to frequencies 

10% higher than 𝑓𝑓0, while 𝑆𝑆𝑆𝑆𝑡𝑡 𝐵𝐵 contained the range of frequencies 50% lower than 𝑓𝑓0 and 

below, as well as frequencies 50% higher than 𝑓𝑓0 and above: 

𝐴𝐴 ∈ [𝑓𝑓0 − 0.1𝑓𝑓0,𝑓𝑓0 + 0.1𝑓𝑓0]
𝐵𝐵 ∈ [0,𝑓𝑓0 − 0.5𝑓𝑓0] ∩ [𝑓𝑓0 + 0.5𝑓𝑓0,𝑓𝑓𝑠𝑠 2⁄ ] . (54) 

In the chirp signal scenario, we let 𝑆𝑆𝑆𝑆𝑡𝑡 𝐴𝐴 contain the range of frequencies 10% 

lower than 𝑓𝑓∆, the lowest frequency in the chirp bandwidth, to frequencies 10% of 𝑓𝑓∆ higher 

than 𝑓𝑓0, while 𝑆𝑆𝑆𝑆𝑡𝑡 𝐵𝐵 contained the range of frequencies 50% lower than 𝑓𝑓∆ and below, as 

well as frequencies 50% of 𝑓𝑓∆ higher than 𝑓𝑓0 and above: 

𝐴𝐴 ∈ [𝑓𝑓∆ − 0.1𝑓𝑓∆,𝑓𝑓0 + 0.1𝑓𝑓∆]
𝐵𝐵 ∈ [0,𝑓𝑓∆ − 0.5𝑓𝑓∆] ∩ [𝑓𝑓0 + 0.5𝑓𝑓∆,𝑓𝑓𝑠𝑠 2⁄ ] . (55) 

Separating the observation into 𝑆𝑆𝑆𝑆𝑡𝑡 𝐴𝐴 and 𝑆𝑆𝑆𝑆𝑡𝑡 𝐵𝐵, or signal-only frequencies and 

noise-only frequencies respectively, we estimated the presence of the signal by maximizing 

the STFT of the observation |𝜸𝜸𝑧𝑧(𝑘𝑘′, 𝑓𝑓)| and dividing by the mean noise estimate 
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�𝜸𝜸𝜂𝜂�(𝑘𝑘′,𝑓𝑓)�������������� for each frequency bin where signal could be expected (𝑆𝑆𝑆𝑆𝑡𝑡 𝐴𝐴), as referenced 

in (41), 

𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘′] =
max
𝑓𝑓

{|𝜸𝜸𝑧𝑧(𝑘𝑘′,𝑓𝑓)|}

�𝜸𝜸𝜂𝜂�(𝑘𝑘′,𝑓𝑓)�������������� ,𝑓𝑓 ∈ 𝐴𝐴. (56) 

We then estimated where unwanted transient signals would possibly occur by 

maximizing the ratio of the STFT of the observation 𝜸𝜸𝑧𝑧(𝑘𝑘′,𝑓𝑓) and the noise estimate 

𝜸𝜸𝜂𝜂�(𝑘𝑘′, 𝑓𝑓) for each frequency bin that would not contain frequencies found in the signal of 

interest (𝑆𝑆𝑆𝑆𝑡𝑡 𝐵𝐵), as illustrated by (42), 

𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠[𝑘𝑘′] = max
𝑓𝑓

�
𝜸𝜸𝑧𝑧(𝑘𝑘′,𝑓𝑓)
𝜸𝜸𝜂𝜂�(𝑘𝑘′,𝑓𝑓)� ,𝑓𝑓 ∈ 𝐵𝐵. (57) 

Both 𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘′] and 𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠[𝑘𝑘′] expressions were median filtered using a filter order 

equal to 20% of the length of the sequence to smooth out any outliers and interpolated from 

the time-frequency domain (𝑘𝑘′,𝑓𝑓) back into the original time domain (𝑘𝑘) [12]. The online 

SNR value 𝜌𝜌[𝑘𝑘] was estimated as the ratio of 𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘] to 𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠[𝑘𝑘] defined previously by 

(43). 

𝜌𝜌[𝑘𝑘] = 20 log�
𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘]
𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠[𝑘𝑘]� . (58) 

Thus, we created an estimated SNR 𝜌𝜌[𝑘𝑘] expressed in decibels for each time sample 

𝑘𝑘, where 𝑘𝑘  represents the center sample of the 𝑘𝑘𝑜𝑜ℎ time window, as discussed in Section 

III.D.2. Figure 6 shows a plot of the estimated online SNR values for a cosine signal 

centered at 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 with an input SNR value of 6 dB.  
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Figure 6. Estimated online SNR for 0.2 Hz cosine signal at SNR of 6dB 

D. APPROXIMATING THE SIGNAL OF INTEREST 

Once we determined the online SNR for each time sample, we used the inequality 

(37) to find the parameter 𝑄𝑄[𝑘𝑘], which represents the number of eigenvalues �̃�𝜆𝑙𝑙 such that 

𝜌𝜌[𝑘𝑘]�̃�𝜆𝑙𝑙  > 1, (59) 

for each time sample 𝑘𝑘 [2]. As discussed in Section III.C, the parameter 𝑄𝑄[𝑘𝑘] determines 

which time-varying filter 𝒉𝒉𝑄𝑄[𝑘𝑘] from the offline bank we will apply to each window of the 

observation in order to maximize the SNR at the given time sample 𝑘𝑘. Then an 

approximation of the signal of interest obtained at time 𝑘𝑘 can be obtained from the inner 

product of the window of the observation 𝒛𝒛(𝑘𝑘) at sample 𝑘𝑘 and the filter vector 𝒉𝒉𝑄𝑄[𝑘𝑘] as in 

(40): 

𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘] = 𝒛𝒛(𝑘𝑘)𝑇𝑇𝒉𝒉𝑄𝑄[𝑘𝑘]. (60) 
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Here 𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘] is a scalar approximation of the signal at time sample 𝑘𝑘, and 𝒉𝒉𝑄𝑄[𝑘𝑘] is 

the 𝐿𝐿 × 1 filter vector taken from the offline filter bank that corresponds to the appropriate 

value of 𝑄𝑄[𝑘𝑘]: 

𝒉𝒉𝑄𝑄[𝑘𝑘] = �𝚿𝚿𝑖𝑖 �
𝐿𝐿 + 1

2
�𝚽𝚽𝑖𝑖

𝑄𝑄[𝑘𝑘]

𝑖𝑖=1

. (61) 

This process ensures the optimal filter is used on each window with the goal of 

maximizing the SNR within the window [5]. Though our purpose for using the SMF is to 

determine whether a signal is present at a certain time rather than to approximate the signal 

itself, signal approximation allows us to evaluate the effectiveness of the SMF on different 

signals at varying SNR values. In the next section, we compare the approximated signal to 

the transmitted signal to determine the accuracy with which the SMF detects the signal 

presence. At each chosen SNR value, we will examine the similarities between the 

recreated signal and the original transmitted signal, as well as evaluate the proportion of 

the signal recreated using the SMF. 
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V. EXPERIMENTAL RESULTS 

The previous chapter provided an overview of our experimental process for signal 

reconstruction using the stochastic matched filter. This chapter will summarize the results 

of the experiment, including a discussion of the criteria and methods used to measure the 

effectiveness of the SMF for detecting signals in various SNR levels, followed by graphical 

depictions of our experimental results.  

A. EVALUATION METHODS 

First, we compared the transmitted signal 𝒔𝒔(𝑘𝑘) to the signal approximated by the 

SMF, 𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘], at various SNR values to evaluate the effectiveness of the SMF for signal 

detection, and chose two criteria to measure. Then, we evaluated the level of difference 

between the approximated signal and the original transmitted signal by measuring their 

similarity. Next, we determined the level of transmitted signal accurately generated, i.e., 

detected, by the SMF. Both evaluations were accomplished using a Monte Carlo simulation 

which we ran 100 times at SNR values from -6 dB to 15 dB, with means and 95% 

confidence intervals calculated using 5000 bootstrap data samples. 

1. Evaluating Approximated Signal Accuracy 

It is important to evaluate the accuracy of the SMF in recreating the transmitted 

signal because it is a measure of the capability of the SMF to recognize and detect the 

specific signal of interest. We accomplished this goal by running the SMF algorithm 100 

times for each SNR value and taking the mean of the absolute value squared of the 

difference between the transmitted signal and the approximated signal: 

�𝒔𝒔(𝑘𝑘) − 𝒔𝒔�𝑄𝑄[𝑘𝑘][𝑘𝑘]�2. (62) 

Then we divided each difference by the transmitted signal power to normalize and 

subtracted it from 1 to get the percentage of similarity between the two signals. We used 

these values to calculate the means and 95% confidence intervals for 5000 bootstrap 

samples with the MATLAB functions bootstrp.m and bootci.m. For example, Figure 7 
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illustrates the differences present between transmitted and reconstructed approximated 

signal values obtained at a relatively high SNR value of 6 dB, though the entire duration 

of the signal is approximated accurately. 

 
Figure 7. Comparison of transmitted cosine signal with 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 to SMF 

approximated signal at SNR value of 6 dB 

2. Evaluating Approximated Signal Length 

The second criterion selected to evaluate the SMF performance considers the 

proportion of the signal recovered by the SMF at various SNR values, and the proportion 

of the signal which may be missed by the SMF, which indicates a delay in signal detection. 

Again, we run the SMF algorithm 100 times at each SNR value, this time determining the 

duration of the approximated signal using the find.m function in MATLAB to detect the 

first and last indices where 𝑄𝑄 > 0, indicating the start and end of the approximated signal. 

We then divided the approximated signal length by the length of the transmitted signal to 

find the percentage of signal detected, and once again calculated means and 95% 

confidence intervals using the bootstrap method described above. Figure 8 illustrates that 
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only part of the signal has been approximated and thus detected for a relatively low SNR 

value of -4dB. 

 
Figure 8. Comparison of transmitted cosine signal with 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 to SMF 

approximated signal at SNR value of -4 dB 

B. RESULTS 

Using the criteria and methods described in the previous section, we plotted the 

means and 95% confidence intervals for cosine signal and chirp signal approximations 

compared to transmitted signals. This section will display the resulting plots beginning 

with cosine signals centered at 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 and 𝑓𝑓0 = 0.8 𝐻𝐻𝑧𝑧, followed by a brief 

discussion about the chirp signals we used in our experiment, and resulting plots. 

1. Comparing Cosine Signal Results 

When testing the SMF on simple cosine signals, we chose tone frequencies of 𝑓𝑓0 =

0.2 𝐻𝐻𝑧𝑧 and 𝑓𝑓0 = 0.8 𝐻𝐻𝑧𝑧 to compare SMF performance between signals with lower and 

higher frequencies, at a sampling frequency of 𝑓𝑓𝑠𝑠 = 25𝑓𝑓0. Figure 9 illustrates the accuracy 
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of the SMF in approximating cosine signals centered at both frequencies. At SNR values 

of -5 dB and under, the SMF approximation does not perform particularly well, but is more 

accurate for lower frequency cosine signals. However, we see slightly better results with 

fewer variations when approximating the higher frequency cosine signals at SNR values of 

-4 dB and higher. Figure 10 illustrates the detection capability of the SMF for cosine signals 

at both tone frequencies. Again, the SMF does not perform well at relatively low SNR 

values, but we see that it is slightly more successful with lower frequency signals at the 

lowest SNR values considered in the study. Interestingly, we also see that the lower 

frequency signals are more completely detected at higher SNR values as well. Note that 

the percent of signal detected is slightly higher than 100% at high SNR values. This is due 

to the use of overlapping windows. Residual indications of signal are present in the 

windows just before the signal begins and just after it ends. 

 
Figure 9. Normalized similarity between transmitted and reconstructed 

cosine signals - means and 95% confidence intervals  
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Figure 10. Percentage of cosine signal length detected using the SMF 

implementation - means and 95% confidence intervals  

2. Comparing Chirp Signal Results 

For this experiment, we tested chirp signals, also known as swept-frequency 

cosines, which are tones with time-varying frequency values. This change in frequency is 

referred to as the bandwidth of the signal. We tested three types of chirp signals: those that 

increased in frequency linearly, quadratically, and logarithmically. As described in Section 

IV.A.1, we chose 𝑓𝑓0 = 0.2 𝐻𝐻𝑧𝑧 to be the highest frequency and set the lowest frequencies 

to be either 20% lower or 80% lower to test the effect of signal bandwidth on the SMF; the 

sampling frequency remains at 𝑓𝑓𝑠𝑠 = 25𝑓𝑓0. 

Results shown in Figures 11 and 12 indicate the SMF is decidedly more successful 

at approximating and detecting signals with smaller frequency variation (or smaller 

bandwidth) at SNR levels between -4 dB and 9 dB for linear chirp signals. 
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Figure 11. Normalized similarity between transmitted and reconstructed linear 

chirp signals - means and 95% confidence intervals 
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Figure 12. Percentage of linear chirp signal length detected using the SMF 

implementation - means and 95% confidence intervals 

Similarly, we see a decrease in SMF performance when increasing the bandwidth 

of quadratic chirp signals, as illustrated in Figures 13 and 14. 
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Figure 13. Normalized similarity between transmitted and reconstructed 

quadratic chirp signals - means and 95% confidence intervals 
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Figure 14. Percentage of quadratic chirp signal length detected using the SMF 

implementation - means and 95% confidence intervals 

Figures 15 and 16 present the results of SMF approximation and detection of 

logarithmic chirp signals. As expected, the SMF performance in the mid-range SNR values 

is reduced for logarithmic chirp signals with higher bandwidths.  



42 

 
Figure 15. Normalized similarity between transmitted and reconstructed 

logarithmic chirp signals - means and 95% confidence intervals 
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Figure 16. Percentage of logarithmic chirp signal length detected using the 

SMF implementation - means and 95% confidence intervals 

Recognizing that bandwidth affects SMF performances for chirp signals, we also 

investigated whether chirp types would affect results. Figures 17 and 18 compare SMF 

performances for signals of each chirp type with a 20% change in frequency. For chirp 

signals with a smaller bandwidth, the chirp type had little effect on either accuracy or 

detection capability. 
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Figure 17. Normalized similarity between transmitted and reconstructed chirp 

signals with 20% frequency change- means and 95% confidence intervals 
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Figure 18. Percentage of signal length detected using the SMF 

implementation for chirp signals with 20% frequency change - means and 
95% confidence intervals  

Figures 19 and 20 illustrate results obtained for chirp signals with 80% change in 

frequency. Results show that quadratic chirps showed moderately better results at relatively 

lower SNR values than both other chirp types, especially for detection. 
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Figure 19. Normalized similarity between transmitted and reconstructed chirp 

signals with 80% frequency change- means and 95% confidence intervals  
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Figure 20. Percentage of signal length detected using the SMF 

implementation for chirp signals with 80% frequency change - means and 
95% confidence intervals 

C. SUMMARY OF RESULTS 

In order to determine whether or not the SMF is effective for the signals we tested, 

we must consider the likelihood of the algorithm to detect and recognize these signals in 

real-time. Simulation results show the SMF is most effective against simple cosine signals, 

and performed best at SNR values of -3 dB and above, approximating and detecting the 

transmitted signal with at least 75% accuracy. Results also show the tone frequency had a 

small impact. Instead, the major factor in SMF accuracy and detection capabilities is the 

signal bandwidth for chirp types considered in the study. The SMF was much more 

successful against signals with lower bandwidths at slightly higher SNR values. Even at 

the lower of the two bandwidths tested, the SMF exceeded 75% accuracy and detection 
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ability at -2 dB and above for all chirp types. For higher bandwidth signals, the SMF 

performed similarly at SNR levels of -1 or 0 dB.  

Overall, results show that the SMF is an effective detection tool for simple one-

tone cosine signals, as well as multiple types of chirp signals, at moderate SNR levels. We 

found that the SMF can detect parts of certain signals at SNR values as low as -5dB. The 

SMF shows more reliable results for most signals tested at SNR values between -3dB and 

-2dB. While these SNR values are not particularly low, the SMF shows promise as a signal 

detection tool in difficult environments, warranting further research and improvement of 

the algorithm. The next chapter will discuss the conclusions of this study and present 

opportunities for future work. 
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VI. CONCLUSIONS AND FUTURE RESEARCH 
OPPORTUNITIES 

This study explored the potential military application of the stochastic matched 

filter, a less known and less often researched adaptation of the classic matched filter. In the 

course of our research, we outlined the theory behind SMF and built an algorithm for 

approximating simple signals embedded in noise. Signal detection has always been an 

important challenge for the military, especially in challenging noise environments such as 

the undersea domain. Implementing the SMF could potentially enhance U.S. Navy passive 

signal detection capability.  

Our study considered basic signals at medium to high SNR values to determine 

practicality of the SMF technique. Results suggest that the SMF could be a viable technique 

for military acoustic signal detection as it could be employed for passive, real-time 

detection of signals in challenging noise environments [5]. In addition, the SNR estimation 

algorithm investigated as part of the study, could be refined for use against more complex 

signals, such as multi-tone cosine signals and high-bandwidth chirp signals.  

At this point, there has been very little research applying the SMF for military 

scenarios. A next step could be to build a filter bank for real-world military signals of 

interest and test the SMF on actual observed data, vice simulated signals and noise. Finally, 

the SMF has also shown promise as a de-noising application and has been used in two 

dimensions to de-noise imagery, including synthetic aperture sonar (SAS) [2]. An 

additional application that could be investigated is de-noising synthetic aperture radar 

(SAR) imagery. 
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APPENDIX 

This appendix presents the MATLAB code used to build SMF algorithms for 

simple cosine and chirp signals. These algorithms were adapted from code [15] developed 

by Dr. Léa Bouffaut in her 2019 PhD dissertation [d]. The code used to conduct the 

simulations and compare results may be provided by request of the author 

(michelle.welch@nps.edu) or thesis advisor (fargues@nps.edu). 

A. SMF ALGORITHM FOR SIMPLE COSINE SIGNALS 

% SMF algorithm for simple cosine signals 
 
format compact 
format shortG 
% clear,close all  
   
% ---------------------- CREATE NOISY SIGNAL ------------------------ 
 
% build signal of interest 
f0 = 0.2; % <-------------------------------------------------------- 
target freq 
fs = 25*f0; % sampling freq 
ts = 1/fs; 
Tsig = 400; 
tsig = 0:ts:Tsig-ts; 
 
N = 2000*fs; % length of total received signal 
%rng(5); 
w = sqrt(1).*randn(1,N); % fixed noise sequence var = 1; 
Pw = var(w); % noise power 
 
iSNRdB = -60 %   <--------------------------------- * CHOOSE SNR in dB 
*  
iSNRw = 10^(iSNRdB/10); % convert SNR to W/W 
 
Ps = Pw*iSNRw; % calculate desired signal power 
s_k1 = cos(2*pi*f0.*tsig); % basic cosine signal for calculations  
ns = length(s_k1); % signal length  
 
A = sqrt(Ps/(sum(s_k1.^2)./ns)); % calculate signal amplitude 
s_k = A.*s_k1; % embedded signal with correct amplitude 
 
% create noisy observed signal 
I = 1000*fs:1000*fs+ns-1; % signal indices  
Signal_Indices = [I(1) I(end)] 
sig = zeros(1,N); 
sig(1,I(1,:)) = s_k; 
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z = sig+w; % signal embedded in noise (observed signal) 
 
Tobs = (length(z)-1)/fs; % observation duration 
tobs = 0:1/fs:Tobs; % observation time vector 
 
% ----------------------- OFFLINE ANALYSIS ----------------------- 
 
% signal autocorrelation sequence 
L = 101; % Window length 
 
[rs,lags] = xcorr(s_k1-mean(s_k1),L,’coeff’); % experimental 
autocorrelation sequence of signal 
rs = rs(L+1:end-1); 
 
gams0 = toeplitz(rs); 
 
% signal covariance from estimated signal expression (normalized with 
respect to trace) 
gams0 = gams0/sum(eig(gams0)); 
 
[svec,lams] = eig(gams0);  
lams = diag(lams); 
[lams,pos] = sort(lams,’descend’); 
svec = svec(:,pos); % Sorted signal eigenvectors 
 
% modeled noise covariance 
w1 = w/max(abs(w)); 
rn0 = zeros(1,2*L-1); 
for i=1:length(w1)-L+1 
   A = w1(i:i+L-1);  
   B = xcorr(A-mean(A),’coeff’); % centered 
   rn0 = rn0+B/max(B); % reduced 
end 
 
rn0 = rn0/max(rn0); % reduced 
gamn0 = toeplitz(rn0(L:end)); % Noise covariance matrix 
gamn0 = gamn0/sum(eig(gamn0)); % normalized with respect to the trace 
 
 
% noise covariance matrix analysis to evaluate Qmax 
% keep highest 10% eigenvalues -- most of the noise energy 
[~,lamn] = eig(gamn0);  
lamn = diag(lamn); 
lamn = sort(lamn); 
Qmax0 = sum(lamn > lamn(fix(0.9*length(lamn)))); 
 
% Karhunen-Loeve theorem  
sproj = svec(:,1:Qmax0)’*gams0*svec(:,1:Qmax0); % Projection of the 
signal covariance matrix onto signal subspace 
nproj0 = svec(:,1:Qmax0)’*gamn0*svec(:,1:Qmax0); % Projection of the 
noise covariance matrix onto signal subspace 
 
% GEP 
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[vec0,lam0] = eig(sproj/nproj0); 
lam0 = abs(diag(lam0)); 
[lam0,pos] = sort(lam0,’descend’); % Sort by descending eigenvalues 
vec0 = vec0(:,pos);  
 
% find phi and psi 
phi = svec(:,1:Qmax0)*vec0; 
for i = 1:size(phi,2) 
   phi(:,i) = phi(:,i)/sqrt(phi(:,i)’*gamn0*phi(:,i)); %normalize 
end 
 
psi = gamn0*phi; 
 
% create filter bank 
h = zeros(size(phi)); 
[np,~] = size(phi); 
cp = fix((np+1)/2); 
for i = 2:Qmax0+1 
   h(:,i) = h(:,i-1) + psi(cp,i-1).*phi(:,i-1); 
end 
h=h(:,2:i); 
 
% ---------------- ONLINE (TIME-FREQUENCY) ANALYSIS -------------- 
 
% STFT of observation 
%L = 101; % stft time window length 
ovlp = floor(.98*L); % stft window overlap length 
win = hann(L);  % stft window 
nfft = 2^10; % number of fft sampling points 
 
[Yz,fz,tz,psd] = spectrogram(z/max(z),win,ovlp,nfft,fs); % stft, freqs, 
and time vector 
 
figure(1) 
subplot(221) 
%spectrogram(z/max(z),win,ovlp,nfft,fs) 
imagesc(tz*fs,fz,abs(Yz)) 
ax = gca; ax.YDir = ‘reverse’;ax.YLim = [0 f0*2]; 
xlabel(‘Time Index’);ylabel(‘Frequency’); 
title(‘Spectrogram of Observation’) 
 
Yn = abs(Yz); % |Yz(k’,f)| STFT modulus 
nmf = 2*ns; % length of median filter 
Yn = medfilt1(Yn,nmf,[],2); % Yn(k’,f) noise estimate 
 
figure(2) 
subplot(211) 
mesh(Yn) 
title(‘Noise Estimate in TF Domain’) 
 
% zcall [k’] 
fz_lo = find(fz >= f0-(f0*0.1),1); % set freq range for signal presence 
fz_hi = find(fz >= f0+(f0*0.1),1); 
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zcall = max(abs(Yz(fz_lo:fz_hi,:))./mean(Yn(fz_lo:fz_hi,:),1)); % calc 
zcall [k’] [3.39] 
[~,fzi] = max(abs(Yz(fz_lo:fz_hi,:))); % indices within freq range that 
maximize zcall 
fz_max = fz(fz_lo+fzi); % frequencies where zcall is maximized 
fz_max = interp1(tz,fz_max,tobs); % interpolate to time domain 
zcall = interp1(tz,zcall,tobs); % interpolate to time domain 
zcall = medfilt1(zcall,round(N/5)); % smooth outliers via median 
filtering 
 
figure(1) 
subplot(2,2,2) 
plot(zcall)  
title(‘zcall [k]’) 
xlim([0 length(zcall)]) 
 
% trans [k’] 
transk = abs(Yz./Yn); % calc trans [k’] [3.40] 
fn_lo = find(fz >= f0-(f0*0.5),1); % set freq range for noise-only 
observation 
fn_hi = find(fz >= f0+(f0*0.5),1); 
transk(fn_lo:fn_hi,:) = zeros(size(transk(fn_lo:fn_hi,:))); % zero out 
signal freqs 
transk = max(transk,[],1); % find max  
transk = interp1(tz,transk,tobs); % interpolate to time domain 
transk = medfilt1(transk,round(N/5)); % smooth outliers via medain 
filtering 
 
subplot(2,2,3) 
plot(transk) 
title(‘trans [k]’) 
xlim([0 length(transk)]) 
 
% online SNR estimate 
rhok = (zcall./transk).^2; % calc online SNR est 
%rhokdB = 20*log10(zcall./transk); % calc online SNRdB est [3.41] 
rhokdB = 10*log10(zcall./transk); 
 
subplot(2,2,4)  
plot(rhokdB) 
title(‘\rho [k] Estimate in dB’) 
xlim([0 length(rhokdB)]) 
 
% estimate the noise covariance (online) 
rn = real(ifft(Yn.^2)); % autocorrelation of noise (Wiener-Khintchine 
Theorem) 
rn = sum(rn,2); 
f_e = linspace(0,0.5*fs,L); % frequencies for evaluation  
rn = interp1(fz,rn,f_e); 
 
figure(2) 
subplot(212) 
plot(rn) 
title(‘Estimated Autocovariance of Noise \Gamma_N’) 
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gamn = toeplitz(rn); % noise covariance matrix 
gamn = gamn-min(min(gamn));              
gamn = gamn/max(max(gamn));  
  
% online estimate of Qmax                    
[~,lam] = eig(gamn); % GEP 
lam = diag(lam); 
lam = sort(lam); 
Qmax = sum(lam > 1); % max filter order 
 
%limit number of filters   
b = size(h,2); 
if b < Qmax 
   Qmax = b; % Qmax = Qmax0 most likely 
end 
 
% online GEP 
sproj = svec(:,1:Qmax)’*gams0*svec(:,1:Qmax); % Projection of the 
signal covariance matrix onto signal subspace 
nproj = svec(:,1:Qmax)’*gamn*svec(:,1:Qmax); % Projection of the online 
estimated noise covariance matrix onto signal subspace 
 
[~,lamz] = eig(sproj/nproj); 
lamz = abs(diag(lamz)); 
lamz = sort(lamz,’descend’); % Sort by descending eigenvalues 
 
figure(3) 
subplot(211) 
stem(lamz) 
title(‘Eigenvalues \lambda_z [k]’) 
 
% ----------------------- SIGNAL RECONSTRUCTION -----------------------
-- 
% in real time 
nz = length(z); 
sQk = []; 
Q = []; 
 
z0 = zeros(1,L+nz-1); % zero pad the observation 
if mod(L,2)==0 % even or odd 
   z0(L/2:end-L/2) = z; 
else 
   z0((L+1)/2:end-(L-1)/2) = z; 
end 
 
for i = 1:nz 
   zk(i,:) = z0(i:i+L-1); 
   Q(i) = sum((abs(lamz)*rhok(i)) >= 1); 
   if Q(i) <= 0 
       sQk(i) = 0; 
   else sQk(i) = zk(i,:)*h(:,Q(i)); 
   end 
end 
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figure(3) 
subplot(212) 
plot(rhok) 
title(‘Online Estimated SNR \rho [k]’) 
 
figure(4) 
subplot(211) 
stem(Q) 
title(‘Filter Order Q[k]’) 
subplot(212) 
plot(z) 
hold on 
plot(sQk) 
hold off 
title(‘Reconstructed Signal s_Q[k] vs. Observation z [k]’) 
legend(‘Observed Signal z [k]’,’Reconstructed Signal 
s_Q[k]’,’Location’,’southwest’) 
 
figure(5) 
si = Signal_Indices; 
plot(s_k) 
hold on 
plot(sQk(si(1):si(2))) 
hold off 
xlabel(‘Sample Number’);ylabel(‘Amplitude’); 
ax = gca; 
%ax.Title.FontSize = 18; 
ax.XAxis.FontSize = 18; 
ax.YAxis.FontSize = 18; 
set(gca, ‘FontName’, ‘Times New Roman’) 
legend({‘Transmitted Signal’,’Approximated 
Signal’},’FontSize’,14,’FontName’,’Times New 
Roman’,’NumColumns’,2,’Location’,’best’) 
%title(‘Estimated Signal over Transmitted Signal’) 
 
%-------------CHAPTER 4 FIGURES-------------------- 
 
figure(10) 
%imagesc(tz,fz,db(abs(Yz).^2)) 
imagesc(tz,fz,abs(Yz)) 
ax = gca;  
ax.YLim = [0 f0*2];%ax.YDir = ‘reverse’; 
xlabel(‘Sample Number’);ylabel(‘Frequency [Hz]’) 
ax.XAxis.FontSize = 18; 
ax.YAxis.FontSize = 18; 
c = colorbar; 
% set(gca,’ColorScale’,’log’);c.Label.String = ‘Amplitude [dB]’; 
% c.Label.FontSize = 18; 
set(gca, ‘FontName’, ‘Times New Roman’) 
%title(‘Spectrogram of Observation’) 
 
figure(11) 
%mesh(Yn) 
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% imagesc(tz,fz,db(abs(Yn))) 
imagesc(tz,fz,Yn) 
ax = gca;  
ax.YLim = [0 f0*2];%ax.YDir = ‘reverse’; 
xlabel(‘Sample Number’);ylabel(‘Frequency [Hz]’);%zlabel(‘Amplitude’); 
ax.XAxis.FontSize = 18; 
ax.YAxis.FontSize = 18; 
ax.ZAxis.FontSize = 18; 
c = colorbar; 
% set(gca,’ColorScale’,’log’);c.Label.String = ‘Amplitude [dB]’; 
% c.Label.FontSize = 18; 
set(gca, ‘FontName’, ‘Times New Roman’) 
 
 
figure(12) 
stem(lamz,’filled’,’MarkerSize’,10) 
 
figure(13) 
plot(rhokdB) 
xlabel(‘Sample Number’);ylabel(‘SNR value [dB]’) 
ax = gca; 
ax.XAxis.FontSize = 18; 
ax.YAxis.FontSize = 18; 
set(gca, ‘FontName’, ‘Times New Roman’) 
 

B. SMF ALGORITHM FOR CHIRP SIGNALS 

% SMF algorithm for chirp signals 
 
format compact 
format shortG 
% clear,close all 
 
% ---------------------- CREATE NOISY SIGNAL ------------------------ 
 
% build signal of interest 
f1 = 0.2; % max chirp freq 
f0 = f1/1.8; % min chirp freq <---------------------------- choose 
bandwidth, 1.2 for 20%, 1.8 for 80% 
fs = 25*f1; % sampling freq 
ts = 1/fs; 
Tsig = 400; 
tsig = 0:ts:Tsig-ts; 
 
N = 2000*fs; % length of total received signal 
%rng(5); 
w = sqrt(1).*randn(1,N); % fixed noise sequence var = 1; 
Pw = var(w); % noise power 
 
iSNRdB = -2 %   <--------------------------- * CHOOSE SNR in dB *   
iSNRw = 10^(iSNRdB/10); % convert SNR to W/W 
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Ps = Pw*iSNRw; % calculate desired signal power 
 
% Chirp Signal 
type = 1;   %<---------------------------------------------------------
-- choose type: 0, 1, or 2 
if type == 0 
       s_k1 = chirp(tsig,f0,Tsig,f1,’linear’); 
       display(‘linear’) 
   elseif type == 1 
       s_k1 = chirp(tsig,f0,Tsig,f1,’quadratic’); 
       display(‘quadratic’) 
   elseif type == 2 
       s_k1 = chirp(tsig,f0,Tsig,f1,’logarithmic’); 
       display(‘logarithmic’) 
   else 
       display(‘Choose 0 for linear, 1 for quadratic, or 2 for 
logarithmic’) 
end 
 
ns = length(s_k1); % signal length  
 
A = sqrt(Ps/(sum(s_k1.^2)./ns)); % calculate signal amplitude 
s_k = A.*s_k1; % embedded signal with correct amplitude 
 
% create noisy observed signal 
I = 1000*fs:1000*fs+ns-1; % signal indices  
Signal_Indices = [I(1) I(end)] 
sig = zeros(1,N); 
sig(1,I(1,:)) = s_k; 
z = sig+w; % signal embedded in noise (observed signal) 
 
Tobs = (length(z)-1)/fs; % observation duration 
tobs = 0:1/fs:Tobs; % observation time vector 
 
% ----------------------- OFFLINE ANALYSIS ----------------------- 
 
% signal autocorrelation sequence 
L = 101; % Window length 
 
[rs,lags] = xcorr(s_k1-mean(s_k1),L,’coeff’); % experimental 
autocorrelation sequence of signal 
rs = rs(L+1:end-1); 
 
gams0 = toeplitz(rs); 
 
% signal covariance from estimated signal expression (normalized with 
respect to trace) 
gams0 = gams0/sum(eig(gams0)); 
 
[svec,lams] = eig(gams0);  
lams = diag(lams); 
[lams,pos] = sort(lams,’descend’); 
svec = svec(:,pos); % Sorted signal eigenvectors 
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% modeled noise covariance 
w1 = w/max(abs(w)); 
rn0 = zeros(1,2*L-1); 
for i=1:length(w1)-L+1 
   A = w1(i:i+L-1);  
   B = xcorr(A-mean(A),’coeff’); % centered 
   rn0 = rn0+B/max(B); % reduced 
end 
 
rn0 = rn0/max(rn0); % reduced 
gamn0 = toeplitz(rn0(L:end)); % Noise covariance matrix 
gamn0 = gamn0/sum(eig(gamn0)); % normalized with respect to the trace 
 
 
% noise covariance matrix analysis to evaluate Qmax 
% keep highest 10% eigenvalues -- most of the noise energy 
[~,lamn] = eig(gamn0);  
lamn = diag(lamn); 
lamn = sort(lamn); 
Qmax0 = sum(lamn > lamn(fix(0.9*length(lamn)))); 
 
% Karhunen-Loeve theorem  
sproj = svec(:,1:Qmax0)’*gams0*svec(:,1:Qmax0); % Projection of the 
signal covariance matrix onto signal subspace 
nproj0 = svec(:,1:Qmax0)’*gamn0*svec(:,1:Qmax0); % Projection of the 
noise covariance matrix onto signal subspace 
 
% GEP 
[vec0,lam0] = eig(sproj/nproj0); 
lam0 = abs(diag(lam0)); 
[lam0,pos] = sort(lam0,’descend’); % Sort by descending eigenvalues 
vec0 = vec0(:,pos);  
 
% find phi and psi 
phi = svec(:,1:Qmax0)*vec0; 
for i = 1:size(phi,2) 
   phi(:,i) = phi(:,i)/sqrt(phi(:,i)’*gamn0*phi(:,i)); %normalize 
end 
 
psi = gamn0*phi; 
 
% create filter bank 
h = zeros(size(phi)); 
[np,~] = size(phi); 
cp = fix((np+1)/2); 
for i = 2:Qmax0+1 
   h(:,i) = h(:,i-1) + psi(cp,i-1).*phi(:,i-1); 
end 
h=h(:,2:i); 
 
% ---------------- ONLINE (TIME-FREQUENCY) ANALYSIS -------------- 
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% STFT of observation 
%L = 101; % stft time window length 
ovlp = floor(.98*L); % stft window overlap length 
win = hann(L);  % stft window 
nfft = 2^10; % number of fft sampling points 
 
[Yz,fz,tz,psd] = spectrogram(z/max(z),win,ovlp,nfft,fs); % stft, freqs, 
and time vector 
 
figure(1) 
subplot(221) 
%spectrogram(z/max(z),win,ovlp,nfft,fs) 
imagesc(tz*fs,fz,abs(Yz)) 
ax = gca; ax.YDir = ‘reverse’;ax.YLim = [0 f1*2]; 
xlabel(‘Time Index’);ylabel(‘Frequency’) 
title(‘Spectrogram of Observation’) 
 
Yn = abs(Yz); % |Yz(k’,f)| STFT modulus 
nmf = 2*ns; % length of median filter 
Yn = medfilt1(Yn,nmf,[],2); % Yn(k’,f) noise estimate 
 
figure(2) 
subplot(211) 
mesh(Yn) 
title(‘Noise Estimate in TF Domain’) 
 
% zcall [k’] 
fz_lo = find(fz >= f0-(f1*0.1),1); % set freq range for signal presence 
fz_hi = find(fz >= f1+(f1*0.1),1); 
zcall = max(abs(Yz(fz_lo:fz_hi,:))./mean(Yn(fz_lo:fz_hi,:),1)); % calc 
zcall [k’] [3.39] 
[~,fzi] = max(abs(Yz(fz_lo:fz_hi,:))); % indices within freq range that 
maximize zcall 
fz_max = fz(fz_lo+fzi); % frequencies where zcall is maximized 
fz_max = interp1(tz,fz_max,tobs); % interpolate to time domain 
zcall = interp1(tz,zcall,tobs); % interpolate to time domain 
zcall = medfilt1(zcall,round(N/5)); % smooth outliers via median 
filtering 
 
figure(1) 
subplot(2,2,2) 
plot(zcall)  
title(‘zcall [k]’) 
xlim([0 length(zcall)]) 
 
% trans [k’] 
transk = abs(Yz./Yn); % calc trans [k’] [3.40] 
fn_lo = find(fz >= f0-(f1*0.5),1); % set freq range for noise-only 
observation 
fn_hi = find(fz >= f1+(f1*0.5),1); 
transk(fn_lo:fn_hi,:) = zeros(size(transk(fn_lo:fn_hi,:))); % zero out 
signal freqs 
transk = max(transk,[],1); % find max 
transk = interp1(tz,transk,tobs); % interpolate to time domain 
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transk = medfilt1(transk,round(N/5)); % smooth outliers via medain 
filtering 
 
subplot(2,2,3) 
plot(transk) 
title(‘trans [k]’) 
xlim([0 length(transk)]) 
 
% online SNR estimate 
rhok = (zcall./transk).^2; % calc online SNR est 
rhokdB = 20*log10(zcall./transk); % calc online SNRdB est [3.41] 
 
subplot(2,2,4)  
plot(rhokdB) 
title(‘\rho [k] Estimate in dB’) 
xlim([0 length(rhokdB)]) 
 
% estimate the noise covariance (online) 
rn = real(ifft(Yn.^2)); % autocorrelation of noise (Wiener-Kintchine 
Theorem: IF(PSD) = autocorr func) 
rn = sum(rn,2); 
f_e = linspace(0,0.5*fs,L); % frequencies for evaluation  
rn = interp1(fz,rn,f_e); 
 
figure(2) 
subplot(212) 
plot(rn) 
title(‘Estimated Autocovariance of Noise \Gamma_N’) 
 
gamn = toeplitz(rn); % noise covariance matrix 
gamn = gamn-min(min(gamn));              
gamn = gamn/max(max(gamn));  
  
% online estimate of Qmax                    
[~,lam] = eig(gamn); % GEP 
lam = diag(lam); 
lam = sort(lam); 
Qmax = sum(lam > 1); % max filter order 
 
%limit number of filters   
b = size(h,2); 
if b < Qmax 
   Qmax = b; % Qmax = Qmax0 most likely 
end 
 
% online GEP 
sproj = svec(:,1:Qmax)’*gams0*svec(:,1:Qmax); % Projection of the 
signal covariance matrix onto signal subspace 
nproj = svec(:,1:Qmax)’*gamn*svec(:,1:Qmax); % Projection of the online 
estimated noise covariance matrix onto signal subspace 
 
[~,lamz] = eig(sproj/nproj); 
lamz = abs(diag(lamz)); 
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lamz = sort(lamz,’descend’); % Sort by descending eigenvalues 
 
figure(3) 
subplot(211) 
stem(lamz) 
title(‘Eigenvalues \lambda_z [k]’) 
 
% ----------------------- SIGNAL RECONSTRUCTION -----------------------
-- 
% in real time 
nz = length(z); 
sQk = []; 
Q = []; 
 
z0 = zeros(1,L+nz-1); % zero pad the observation 
if mod(L,2)==0 % even or odd 
   z0(L/2:end-L/2) = z; 
else 
   z0((L+1)/2:end-(L-1)/2) = z; 
end 
 
for i = 1:nz 
   zk(i,:) = z0(i:i+L-1); 
   Q(i) = sum((abs(lamz)*rhok(i)) >= 1); 
   if Q(i) <= 0 
       sQk(i) = 0; 
   else sQk(i) = zk(i,:)*h(:,Q(i)); 
   end 
end 
 
figure(3) 
subplot(212) 
plot(rhok) 
title(‘Online Estimated SNR \rho [k]’) 
 
figure(4) 
subplot(211) 
stem(Q) 
title(‘Filter Order Q[k]’) 
subplot(212) 
plot(z) 
hold on 
plot(sQk) 
hold off 
title(‘Reconstructed Signal s_Q[k] vs. Observation z [k]’) 
legend(‘Observed Signal z [k]’,’Reconstructed Signal 
s_Q[k]’,’Location’,’southwest’) 
 
figure(5) 
si = Signal_Indices; 
plot(s_k) 
hold on 
plot(sQk(si(1):si(2))) 
hold off 
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xlabel(‘Sample Number’);ylabel(‘Amplitude’); 
ax = gca; 
%ax.Title.FontSize = 18; 
ax.XAxis.FontSize = 18; 
ax.YAxis.FontSize = 18; 
set(gca, ‘FontName’, ‘Times New Roman’) 
legend({‘Transmitted Signal’,’Approximated 
Signal’},’FontSize’,14,’FontName’,’Times New 
Roman’,’NumColumns’,2,’Location’,’best’) 
%title(‘Estimated Signal over Transmitted Signal’) 
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