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DETERMINING OPTIMUM SHIP ROUTES 

Frank D. Faulkner 

United St,a,tes Naval Postgraduate School, Monterey, Calif 

(Received June, 1962) 

A method 1s given for determmmg optimum ship routes on a digital com
puter A ship 1s assumed to be m a fallout field whose mtens1ty 1s a known 
funct1onf(x,y,t) of pos1t1on and time A typical problem 1s that of choos
mg a route to a pomt wheref;;i,f,,., the maximum mtens1ty that can be toler
ated mdefimtely The route 1s to be such as to m1mmize the dose z = f '[ f dt, 
the termimnal time and pomt are not specified The problem of sending 
the ship to a given pomt with z mimmized 1s also discussed These are 
eqmvalent to corresponding problems of choosmg a route to m1mm1ze the 
probab1hty of detection while gomg through a region where the probab1hty 
of detection 1s a known function of position and time 

THE METHOD of solut10n is based on differential formulas which 
G A BLISS mtroduced m Ballistics, based on the adJomt system of 

differential equations These can be combmed with the Euler equations 
and mverted to determme constants associated with the solution, m a 
Newton-Raphson iteration The method IS qmte general and can be 
apphed to, say, related problems of rendezvous, 1f the rendezvous pomt 
either follows a known course or cooperates The correct10n routme for the 
constants vanes greatly with the end conditions, the method can best be 
demonstrated by some examples and a statement of the general conditions 

To Bllllphfy the programmmg 1t was assumed that distances were small 
enough that negligible error was mtroduced by assummg the earth to be 
flat and that the speed of the ship was constant In most 'practical' prob
lems 1t can be shown that if f 1s mdependentof the speed as above, maXJ.

mum speed IS optimal 
BASIC FORMULAS FOR VARIATIONS 

IN THIS sect10n formulas are denved for vanations of the end values of the 
vanables The method seems somewhat deVIous at first, but numencal 
methods for calculatmg differentials and vanational theory generally rest 
on the equations of the type denved here, employmg Lagrange multipliers 
and the adJomt system of d1fferent1al equations When approached 
through these, mtroductory calculus of vanat1ons 1s qmte straightforward 

The governmg equations for the course and the dose are 

x=vcosp, 
y=vsmp, 
z=f, 
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800 Frank D. Faulkner 

where x,y are coordmates, z IS the dose accumulated, and p, a vanable, is 
the course headmg, wlu.ch IS to be found, a dot ( ) over a vanable mdicates 
its time denvative We shall be concerned with neighbonng courses and 
1t will be assumed that the varmt10ns ox,oy etc, satisfy the equations 

ox+vsmp op = 0, 

oy-vcosp op =0, 

oz-fJ,x-f 11 oy=0 

(2) 

We shall be mterested m formulas for the change ox(T), etc, m x at 
some future trme T as a functional of the varmt1on op of the control van
able p 

Followmg Bliss's method, let us multiply each of the three equat10ns 
(2) through by new unspecified vanables )l.,µ,v, respectively, Lagrange 
multiphers, add, and mtegrate to get 

£\x(ox+vsmp op)+µ(oy-vcosp op)+v(oz-fJ,x-f 11oy)] dt=0 (3) 

Now mtegrate this by parts to ehmmate ox,oy,oz from the mtegrand, 

(Mx+µoy+voz)~ = iT[ox()l.+vf,,) +oy(µ+vfy) 

+ozv+vop(-)1.smp+µcosp)] dt 

(4) 

To simplify tlu.s, let us choose )l.,µ,v as solutions to the differential equations 

)l.+vf,,=0, 

µ+vfu=0, 

v=0 

(5) 

These operations of mtegrat10n by parts in (3) and settmg to zero the 
coefficient of the vanat10ns ox,oy,oz of the dependent vanables m ( 4) 
defines the system ( 5) of equat10ns adJotnt to the system ( 2) 

If also the termmal value T changes, the total differential changes m 
the termmal values of x,y,z are 

AT=ox(T)+x(T) oT, 

Ay=oy(T)+y(T) oT, 

Az=oz(T)+z(T) oT 

(6) 

In the problems of mterest here the m1tml values are assumed given so 
that ox( 0) = 0, etc Equation ( 4) then reduces to 
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Optimum Slnp Routes 801 

[XAx+µ.:1y+vAz-(xX+yµ+vz)aT]t=T 

= 1T (->.smp+µcosp)op dt 
(7) 

= 1T A 't\,ap, 

where A =Xi+µj+vk, V=v(7cosp+jsmp), and the subscript p mdi
cates the partial derivative In the followmg, no d1stmction will be 
made between a vector A and a column matrix with the same elements 

;\ 

µ Three solutions to ( 5) are of particular mterest, 
JI 

where 

X3+f,,=0, 
µ3+f11=0, 

Xa( T) =0, 
µa(T)=0, 

these constitute a fundamental set For them we get 

Ax=x(T) oT+ 1T A1 Vpopdt, 

.:1y=y(T) oT+ 1T A2 Vpapdt, 

Az=z(T) oT+ 1T A 3 VP ap dt 

(Sa) 

(Sb) 

(9) 

Fmally, with every optrmum 1t can be shown that there 1s a solution 
A to the adJomt c1 "1 +c2 I\ 2+ca A a such that 

or 

or 

A Vp=O, 

->.smp+µcosp=0, 

A V = extremum, 

(10) 

(10') 

( 10") 

as a function of p for each value of t, and a fourth eqmvalent form 
T l A Vdt=extremum, (10"') 

the last extremum bemg achieved by choosmg p properly The second 
of these, with the adJomt system, constitute the classw Euler, or Euler
Lagrange, equations m calculus of variations The last form (10"') has 
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attracted considerable attention recently due to Pontriagm as a maximum 
principle As a philosophy of approach, 1t 18 somewhat more general, but 
for our purposes all are eqmvalent Smee equation (7) IS homogeneous m 
the set 'A.,µ,11, we may choose one relation among the e's 1t will be con
vement to choose the coefficient c3 of /lz m (7) to be one (1) This 1s 
taken to be the case henceforth 

No philosophy ehmmates the basic problem of deternunmg the con
stants c1,~, T 

Curves on which ( 10) 18 satisfied for some choice of A , a solution to the 
adJomt system, will be called extremals Curves which sat1Sfy the con
stramts on the end values will be called admissible 

Minimum Dose in Attaining a Specified Curve 

Let us consider the followmg problem A ship ism a fallout area We 
W1Sh to route it to the curve whereon f = f m = ma:xunum allowed contmual 
mtens1ty, so that the resultmg dose 18 a mm1mum 

(11) 

Suppose we have two neighboring admissible paths, the drlierential of the 
end values must sat1Sfy the relation 

(12) 

smce both end on the hypersurface f = f m The transversal condition ( see 
Bl1Ss,r11 p 196) that the end values must sat1Sfy may be expressed 

fx f11 0 ft 

rankO O 1 0 =2, (13) 

'A µ 1 -(Xx+µy+z) 

and the 2X4 submatnces must all have rank 2 The terms m the first 
row are from the constramt (12) The terms m the second row are from 
the quantity to be maxmuzed ( 11) The terms m the last row are the 
coefficients of the vanations on the left side of (7) From the transversal 
condition, we see that if we regard fxJ 11J, and 'A.,µ,-(>..x+µy+f) as com
ponents of two vectors, those two must be parallel Hence at t = T 

whence 

ci/f,=c-iff11= -(c1x+c1y+f)/f,, 

c1 = -f,f m/(df /dt), 

C%= -f,J,,./(df /dt) 

(14) 

(15) 

Smee we want to m1mm1ze z( T), the choice of p must be to mmimize 
A V 
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Computational Routine 

Guess startmg values for A(O),µ(O) Integrate systems (1) and (5), 
usmg (10'). Contmue unttlf~fm AdJust the end time step 

If n denotes an 1teration mdex, note that 

An+1( Tn)-An+1(0) =A3 n+i( Tn)-A3 n+1(0) 

= -A3,,,+1(0) 

Now assume Aan+1(0) =Aa ,,(0) =X,.(T,.)-X,.(O) 
A slffillar relation holds for µ and we get 

An+1(0) =c1,.+X,.(O)-"A,.( T,.), 

µ,.+1(0) = 1:2,.+µ .. (0)-µ..( Tn) 
(16) 

Smee every term on the left IS known, we are ready to start the n+ 1st 
round 

Convergence Criterion 

The above routme IS contmued until some convergence cntenon IS 

satisfied In thIS case, let 

E= 1 _ [f,,X+f11µ-(vAcosp+vµsmp+J)ft]2 
(f,.2+fil+fi2)(">.2 +µ 2+[v">.cosp+vµamp+JJ2) 

evaluated at t= T The routme IS assumed to have converged when EIS 

below some specified number The transversal condition specified that 
two vectors be parallel, E IS the square of the Sign of the angle between 
them 

Ship Sent to Prescribed Point 

Let us now consider the problem of sendmg the ship to a specified pomt 
x1,y1 with a ffilillfilum final value of z The transversal condtt10n becomes 

1 0 0 0 

0 1 0 0 
rank =3, 

0 0 1 0 
(18) 

A µ 1 -(AX+µy+z) 

the first two rows are from the constraints Hence 

(AX+µy+z)T=O (19) 

To get a corrective routme for the e's, note that on any extremal 

i\ V,.=0, 
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hence 1f we change c1,C2,P with the other vanables fixed, 

A1 t\6c1+i:2 V,,~+i\ V,,,,op=O (20) 
Smee X v,,,,=vl °A I, (20) reduces to 

op= (smp oc1-cosp oD.i)/1 ""J. I, (21) 
and 

t1x=x(T) oT- [r (vsm2 p// Al) dt 6c1+ £\vsmpcosp/l A I) dt oc2, 
T T (22) 

'1y=y(T) oT+ 1 (vsmpcosp/j .i\ I) dt oc1- [ (vcos2 p// ""J. I) dt oc2 

Numerical Routine 

Let us guess X(O),µ(O) Integrate to get x,y,Xx+µy+f,X,µ, at T and 
the mtegrals m (22) In general x,y wtll not assume the desrred terminal 
values, nor wtll f=Xx+µ,y+Jbe zero To correct 1/1 use 

t:.i/1=!1 oT+f,, t:.x+fy t:.y+xoc1+yoc2, 
everythmg evaluated at t= T Now set 

111/1= -if;, 

11x=x1-x(T), 

'1y=y 1-y(T), 

(23) 

(24) 

substitutmg from (22), (23) mto (24), these equations determme 6c1,oc2,0T 
and hence c1,C2,T Equations (16) then deterrrune X(O),µ(O) to start the 
next iteration 

The routme IS contmued unttl some convergence cr1ter10n IS satisfied, 
one might take 

(x,-x )2 + (y1-Y )2 +l < E, 

where E IS a preassigned number 

COMMENTS 
THE PROBLEM has been programmed and run No particular computa
tional problems were encountered In some srmple cases mvolvmg about 
100 time steps, the route was determmed m from four to twenty seconds 
on the CDC-1604, dependmg on the rmtial cond1t1ons assumed 

The fallout problems above are equivalent to correspondmg problems 
of findmg routes that mmnmze the probability of detection m gomg from 
one pomt to another Assume that the probabihty of bemg detected at 
a pomt is given by 

t:.p=p(t+t:.t)-p(t)=f(x,y,t) t:.t, 
If undetected pnor to trme t On the path the probability of bemg first 
detected at tune t satisfies the relation 
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llp=(I-p)f flt, 
set z=ln(l-p) 

805 

In general we should keep maxunum speed l~or if we find a path that 
furrushes a mmunum with v a maxunum for each value of t and then con
S1der vanations, ov~O, we have, from (7), Ty • 

[>.11x+,,.11y+11z-(>.x+,,.y+J) oT]T=[ -" ov dt 
o V 

= - 1\;. 1 ov dt, 

all other terms m the mtegral varush by virtue of ( 5), ( 10) The last 
nunus sign occurs because we seek a mmunum z and the mtegrand must 
be muunuzed If the speed v IS maxunal on the ongmal path, then ov<O 
leads to a larger value of the mtegral and hence to a larger value of z 
Tlus 1s mtmtively obVIous, the proof IS constructive, and IS eqmvalent to 
the proof of the fundamental lemma of the calculus of vanat10ns ( see 
CouRANT, 121 p 200) 

The problem 1s more mvolved If f mvolves v and IS an mcreasmg func
t10n of v ThIS may be the case for a submanne, where the addit10nal 
n01se nnght mcrease the hkehhood of detection, or where the speed and 
probab1hty of detection both change with depth The adJunct1on of 
another vanable such as v leads to another Euler equation that must be 
adJomed to those above If more mvolved formulas are taken for the 
speed, the solut10ns to the adJomt system and the resultmg correct10n 
formulas for the constants are more mvolved In the differential formulas 
above 18 the unphc1t assumption that the path has no corners m x,y,t 
space, if it has, a term must be added to each differential correct10n, 
formula ( 22), for each corner 

In a sense thIS method 18 a simple apphcation of methods that Bhss 
mtroduced for calculatmg differentials m artillery dunng World War I, 
summarized m his book (BLiss,£31 Chap V) The advent of large-scale 
digital computers has made 1t possible to use these formulas and mvert 
them to determme the correspondmg courses 

If equat10ns ( 1) govern the system, we may have from none to three 
side conditions of the form Gm(x,y,z,t)i=T=O, m=l, ,M<4, when all 
lllltial conditions are given, and a function F(x,y,z,l)t=T=extremum 
The transversal condition may then be expressed 

G,,.,., Gm,11 G,,.,. 

rank F., F11 F. 

X µ. V -(>.x+,,.y+PZ) l=T 

} (M rows) 

=M+l 

and the ( M + 1) X 4 matnces obtamed by elunmatmg either of the last 
two rows must also both be of rank M + 1 The evolution of a routme to 
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correct the e's and T, from the transversal condJ.tions, seems to be the 
place where mgenmty IS reqmred m the routme, the rmtml values must 
also be guessed m a proper range or the Newton iteration may not con
verge 

It IS not possible to dIScuss m a short paper other condJ.tions assoc1ated 
With the solution which ensure that the solution yields a nummum, the 
above routmes yield only stationary values The conditions are dIScussed 
completely m Bhss 111 (Chaps VII, VIII) The treatment there IS neat 
and precise but the problem IS expressed m a symmetnc form that may 
obscure for the control engmeer the essential difference between the so
called state vanables, x,y,z, which are properly dependent, and the control 
vanable p, which must be determined to effect the extremum It should 
be stressed that the multipliers ">..,µ,11 are mtroduced by the mathematician 
and he later chooses them to satISfy (5) to srmplify Green's formula (4) 
to the form (7) 

One problem that we may expect is that convergence will be poor when 
the lllltial pomt 1s near an envelope or a focal pomt of the extremals which 
satISfy the transversal cond1t1ons A tnVIal example of such a pomt 1s 
the center of a region which has circular symmetry with respect to a 
fixed pomt This may not be a senous problem SIDce ne1ghbormg traJec
tones then generally lead to termmal values of z that differ 'httle' How
ever, problems such as these generally reqmre an element of skill and Judg
ment on the part of the operator 

It seems to the author that there are two practical methods of detenmn
mg optrmum traJectones numencally One 1s the differential method 
presented here, always usmg extremals and approxrmatmg the transversal 
cond1t10ns The other 1s the method of 'steepest descent' of BRYSON AND 
DENHAM141 and KELLEY {see KELLEY, KoPP, AND MoYERl6l for summary 
and comments) DiscUSSions suggest we are all havmg typical small 
problems assomated with computations 

ACKNOWLEDGMENT 
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