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DETERMINING OPTIMUM SHIP ROUTES

Frank D. Faulkner
Unated States Naval Postgraduate School, Monterey, Calif
(Received June, 1962)

A method 18 given for determining optimum ship routes on a digital com-
puter A shipis assumed to be 1n a fallout field whose intensity 18 a known
function j(z,y,t) of position and time A typical problem 1s that of choos-
1ng a route to a point where f<f.., the maximum intensity that can be toler-
ated indefinitely The route 1s to be such as to mmimize the dose z= /" OT fdt,
the termininal time and point are not specified The problem of sending
the ship to a given pomnt with z mimimized 1s also discussed These are
equivalent to corresponding problems of choosing a route to minimize the
probability of detection while going through a region where the probability
of detection 18 a known function of position and time

HE METHOD of solution 1s based on differential formulas which

G A Buiss mtroduced mn Ballistics, based on the adjont system of
differential equations These can be combmned with the Euler equations
and mverted to determine constants associated with the solution, m a
Newton-Raphson iteration The method 1s quite general and can be
apphed to, say, related problems of rendezvous, if the rendezvous pomt
either follows a known course or cooperates The correction routine for the
constants varies greatly with the end conditions, the method can best be
demonstrated by some examples and a statement of the general conditions

To simphfy the programming 1t was assumed that distances were small
enough that neghgible error was mtroduced by assuming the earth to be
flat and that the speed of the ship was constant In most ‘practical’ prob-
lems 1t can be shown that if f 1s independentof the speed as above, maxi-
mum speed 1s optimal

BASIC FORMULAS FOR VARIATIONS

I~ THIS section formulas are derived for vanations of the end values of the

variables The method seems somewhat devious at first, but numerical

methods for calculating differentials and vanational theory generally rest

on the equations of the type derived here, employing Lagrange multipliers

and the adjont system of differential equations When approached

through these, mntroductory calculus of vanations 1s quite straightforward
The governing equations for the course and the dose are

Z=1c0Sp,
Yy =uvsInp, (1)
z=/,
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800 Frank D. Faulkner

where z,y are coordinates, z 18 the dose accumulated, and p, a vanable, 1s
the course heading, which 1s to be found, a dot ( ) over a variable indicates
its time denivative We shall be concerned with neighboring courses and
1t will be assumed that the variations éz,5y etc , satisfy the equations
dz-+uvsmp §p =0,
dy—vcospdp =0, (2)
dz—fbx—f, dy=0
We shall be interested 1n formulas for the change 8x(7), etc, m z at
some future time 7 as a functional of the variation 8p of the control van-
able p
Followmg Bliss’s method, let us multiply each of the three equations

(2) through by new unspecified vanables Au,», respectively, Lagrange
multipliers, add, and mtegrate to get

fo [\ (6z+-vsinp 6p) +u(dy —veosp op) +v(dz—f0z —f,0y) dt=0 (3)

Now mtegrate this by parts to eliminate éz,6y,02 from the mntegrand,

(z-+ oy o8 = lor(hef) 09 (u-Hofy) @

+8zv+vép( —Asinp+ucosp)] di
To sumphfy this, let us choose \,u,v as solutions to the differential equations

A vf.=0,
p+vfy=0, (5)
v=0
These operations of integration by parts in (3) and setting to zero the
coefficient of the vanations 8r,8y,6z of the dependent varables mn (4)
defines the system (5) of equations adjoint to the system (2)
If also the terminal value T changes, the total differential changes mn
the terminal values of x,y,z are
Ax=08x(T)+x(T) 8T,
Ay=oy(T)+y(T) o7, (6)
Az=582(T)+2(T) 8T
In the problems of interest here the mitial values are assumed given so
that 82(0)=0, etc Equation (4) then reduces to
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Az +pAy+vAz— (oA yp+-vz)d T iy

T
= fo (—Asmp+pcosp)dp di (7

-

T
=[ A V,ép,
0

where A =)\;+y;+ui, I7=v(;cosp+zsmp), and the subscript p indi-
cates the partial denvative In the following, no distinction will be
made between a vector A and a column matrix with the same elements

A
ul! Three solutions to (5) are of particular interest,
1 0 gl
A1=]01, A= |[1}}, A 5=lus], (8a)
0 0 1
where
N+f=0, M(T)=0,
wH=0,  w(T)=0, (8b)
these constitute a fundamental set For them we get
r
Az=z(T) 6T+f A1 V,opdt,
0
T
Ay=y(T) 6T+f A: V,opdt, 9
0

T
Az=2(T) 6T+[0 Ry V,opdt

Finally, with every optimum 1t can be shown that there 1s a solution
A to the adjomnt ¢; A;+e; Astc; Az such that

A V,=0, (10)
or —smp—+ucosp=0, (10")
or A V=extremum, (10”)

as a function of p for each value of ¢, and a fourth equivalent form
T
f A Vdt=extremum, (10m)
0

the last extremum being achieved by choosing p properly The second
of these, with the adjomnt system, constitute the classic Euler, or Euler-
Lagrange, equations mn calculus of variations The last form (10’’) has
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802 Frank D. Faulkner

attracted considerable attention recently due to Pontriagin as a maximum
principle  As a philosophy of approach, 1t 1s somewhat more general, but
for our purposes all are equivalent Since equation (7) 15 homogeneous 1n
the set A\u,v, we may choose one relation among the ¢’s 1t will be con-
vement, to choose the coefficient ¢; of Az m (7) to be one (1) This 18
taken to be the case henceforth

No philosophy ehminates the basic problem of determning the con-
stants c;,c;, T

Curves on which (10) s satisfied for some choice of A ,a solution to the
adjoint system, will be called ertremals Curves which satisfy the con-
stramts on the end values will be called admassible

Munimum Dose in Attaining a Specified Curve

Let us consider the following problem A ship 1s1n afalloutarea We
wish to route 1t to the curve whereon f=f,=maximum allowed contmnual
intensity, so that the resulting dose 15 & mimmimum

z(T>=fondt=mm (11)

Suppose we have two neighboring admissible paths, the differential of the
end values must satisfy the relation

Af=f. Az+f, Ay+f. 8T =0, (12)

since both end on the hypersurface f=f, The transversal condition (see
Bhiss,! p 196) that the end values must satisfy may be expressed

f+ fu O e
rank/|0 O 1 0 =2, (13)

T e )]

and the 2X4 submatrices must all have rank 2 The terms 1n the first
row are from the constramnt (12) The terms in the second row are from
the quantity to be maximized (11) The terms m the last row are the
coefficients of the varations on the left side of (7) From the transversal
condition, we see that if we regard f.f,.f: and Au,~ (Az+uy—+f) as com-
ponents of two vectors, those two must be parallel Henceatti= T

a/fz=e/fy=—(ez+cy+f) /1y (14)
whence = _fzfm/(df/dt)y
2= —fufw/ (df/dt)

Since we want to mmimize z(7'), the choice of p must be to minimize
AV

(15)
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Computational Routine
Guess starting values for A(0),u(0) Integrate systems (1) and (5),
using (10'). Continue until f<f» Adjust the end time step
If n denotes an 1teration index, note that
M1(Ts) —Ma41(0) =23 ns1(T0) =23 242(0)
= —)\3,»+1(0)
Now assume g n41{0) =2x; ,(0) =X (T4) —A.(0)
A similar relation holds for 4 and we get
>\»+1(0) = Cln+>‘n(0) —X,.( Tn) ’
}l»n+](0) = c2n+ﬂn(0) _“ﬂ( Tﬂ)

Since every term on the left 1s known, we are ready to start the n+1st
round

(16)

Convergence Criterion

The above routmne 18 continued until some convergence criterion is
satisfied In this case, let

_ [fAtfou— (vrcosptousmp ST
(f2+12H &2+ w2+ [vAcosp+vusinp+112)

evaluated at =T The routine 18 assumed to have converged when e 18
below some specified number The transversal condition specified that
two vectors be parallel, ¢ 1s the square of the sign of the angle between
them

e=1

Ship Sent to Prescribed Point

Let us now consider the problem of sending the ship to a specified pont
Zs,yy with & minimum final value of z The transversal condition becomes

1 0 0 0
0 1 0 0

rank =3, (18)
0 0 1 0

AN ow 1 —(Oatuyt2)
the first two rows are from the constraints Hence
(Az+upy+2)r=0 (19)
To get a corrective routine for the ¢’s, note that on any extremal

A V,EO,
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804 Frank D. Faulkner

hence if we change ci,c,,p with the other vanables fixed,

Ry Vst Ry P00+ R V,,8p=0 (20)
Smce X V,,=2&|, (20) reduces to
op=(smp dc,—cosp bc2) /| R |, (21)

and

Ax=x(T) 6T—j‘;r(vsm2 p/|A]) dt 5cl+'£r(vsmpcosp/| A1) dt bcy,
T T (22)
Ay=y(T) 6T+£ (vsinpeosp/| X |) dt 601—-] (veos’ p/| R |) dt éce
(1]

Numerical Routine

Let us guess A(0),.(0) Integrate to get 2y Az+py+fhu at T and
the mntegrals in (22) In general z,y will not assume the desired terminal
values, nor will y =Az+puy+f be zero To correct ¥ use

Ay =f, 8T+f. Ax-+f, Ay+xde,+ydes, (23)
everything evaluated at t=7T Now set
Ay=—y,
Ax=x,—2(T), (24)
Ay=y;—y(T),

substituting from (22), (23) mto (24), these equations determine dc;,d¢,,8T

and hence ¢,,;,7 Equations (16) then determine A0),u(0) to start the
next iteration

The routine 1s continued untl some convergence criterion 1s satisfied,
one might take

(r—2)"+ (g —y)*+¥ <o,
where ¢ 1s a preassigned number
COMMENTS

THE PrROBLEM has been programmed and run No particular computa-
tional problems were encountered In some siumple cases ivolving about
100 time steps, the route was determined m from four to twenty seconds
on the CDC-1604, depending on the mitial conditions assumed

The fallout problems above are equivalent to corresponding problems
of finding routes that minimize the probability of detection mn gong from
one pomnt to another Assume that the probability of bemng detected at
a pomt 18 given by

Ap=p(i+At) —p(t) =f(x,y,t) At,

if undetected prior to time ¢ On the path the probability of bemng first
detected at time £ satisfies the relation
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Ap=(1—p)f At,
set z=In(1—p)

In general we should keep maximum speed For if we find a path that
furnishes a minimum with v a maximum for each value of ¢ and then con-
sider vanations, év <0, we have, from (7),

re
DA—udy-+As— Oa-uy+) oTle= [ V-

A svdt

T
=—f|2]5vdt,
0

all other terms m the integral vamsh by virtue of (5), (10) The last
minus sign occurs because we seek a minimmum 2z and the mntegrand must
be mmimized If the speed v 18 maximal on the original path, then v <0
leads to a larger value of the mtegral and hence to a larger value of 2
This 18 mmtwitively obvious, the proof 1s constructive, and 1s equivalent to
the proof of the fundamental lemma of the calculus of vamations (see
CouranTt,”™ p 200)

The problem 1s more mvolved if f nvolves v and 18 an mereasing func-
tion of ¥ This may be the case for a submarine, where the additional
noise might increase the likelihood of detection, or where the speed and
probability of detection both change with depth The adjunction of
another variable such as v leads to another Euler equation that must be
adjomed to those above If more mvolved formulas are taken for the
speed, the solutions to the adjoint system and the resulting correction
formulas for the constants are more involved In the differential formulas
above 1s the mpheit assumption that the path has no corners in z,y,t
space, If 1t has, a term must be added to each differential correction,
formula (22), for each corner

In a sense this method 1s a simple application of methods that Bliss
mtroduced for caleulating differentials in artillery during World War I,
summarized m his book (Briss,”” Chap V) The advent of large-scale
digital computers has made 1t possible to use these formulas and mnvert
them to determine the corresponding courses

If equations (1) govern the system, we may have from none to three
side conditions of the form G.(z,y,2,t):=r=0, m=1, , M <4, when all
mitial conditions are given, and a function F(z,y,2,t):—r=extremum
The transversal condition may then be expressed

Gm,z Gm,y Gm,z G,,. t }(M I'OWS)
rank|| F. F, F, F, =M+1
A " v —(\stpy+ve)|i-r

and the (M+1)X4 matrices obtamned by elunmating either of the last
two rows must also both be of rank M 41 The evolution of a routine to
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correct the ¢’s and T, from the transversal conditions, seems to be the
place where mgenwity 18 required in the routine, the mitial values must
also be guessed 1n a proper range or the Newton 1iteration may not con-
verge

It 15 not possible to discuss 1n a short paper other conditions associated
with the solution which ensure that the solution yields a minimum, the
above routmes yield only stationary values The conditions are discussed
completely in Bliss™ (Chaps VII, VIII) The treatment there 1s neat
and precise but the problem 1s expressed 1n a symmetric form that may
obscure for the control engineer the essential difference between the so-
called state vanables, z,y,z, which are properly dependent, and the control
vanable p, which must be determined to effect the extremum It should
be stressed that the multipliers A,u,» are mtroduced by the mathematician
and he later chooses them to satisfy (5) to sumplify Green’s formula (4)
to the form (7)

One problem that we may expect is that convergence will be poor when
the mn1tial point 1s near an envelope or a focal pomt of the extremals which
satisfy the transversal conditions A trivial example of such a pomt 1s
the center of a region which has circular symmetry with respect to a
fixed pomnt This may not be a serious problem since neighboring trajec-
tones then generally lead to terminal values of z that differ ‘httle’ How-
ever, problems such as these generally require an element of skill and judg-
ment on the part of the operator

It seems to the author that there are two practical methods of determin-
mng optimum trajectories numerically One 1s the differential method
presented here, always using extremals and approximating the transversal
conditions The other 1s the method of ‘steepest descent’ of Bryson AND
DenaaM!Y and KELLEY (see KELLEY, KopPp, AND MoYER!! for summary
and comments) Discussions suggest we are all having typical small
problems associated with computations
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