
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

2022-08

False Data Injection of a Robotic Navigation
System: Concepts and Simulations

Kersten, Philip
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/70552

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

NPS-SP-22-010

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

FALSE DATA INJECTION OF A ROBOTIC NAVIGATION

SYSTEM: CONCEPTS AND SIMULATIONS

by

Philip Kersten

August 2022

Distribution Statement A

Approved for public release; distribution is unlimited

Prepared for: Universitaet der Bundeswehr Muenchen

THIS PAGE INTENTIONALLY LEFT BLANK

i STANDARD FORM 298 (REV. 5/2020)
Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE

08/26/2022

2. REPORT TYPE

Technical Report

3. DATES COVERED

START DATE

04/07/2022

END DATE

08/31/2022

4. TITLE AND SUBTITLE

False Data Injection of a Robotic Navigation System: Concepts and Simulations

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

6. AUTHOR(S)

ENS Philip Kersten, B. Sc., German Navy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Guidance Navigation and Control Laboratory

Department for Mechanical and Aerospace Engineering

Naval Postgraduate School

Monterey, CA, 93943

8. PERFORMING ORGANIZATION

REPORT NUMBER

NPS-SP-22-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Universitaet der Bundeswehr Muenchen

Fakultaet fuer Luft- und Raumfahrttechnik

Institute for Space Technology and Applications

Werner-Heisenberg-Weg 39

85579 Neubiberg, Germany

10. SPONSOR/MONITOR'S

ACRONYM(S)

UniBw M

11. SPONSOR/MONITOR'S

REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Statement A: Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

Thesis Examiners: Univ.-Prof. Mag. Dr. habil. Thomas Pany (UniBwM), Prof. Dr. Mark Karpenko (NPS)

14. ABSTRACT
Today, robotic vehicles (RV) play an essential role in both modern industry and the military. More and more RVs become autonomously operated and are prone to
cyber-attacks of their embedded control systems. These attacks can be detected and prevented with the appropriate tools but can also be almost undetectable if
executed correctly.
In this work, a type of cyber-attack, namely false data injection is performed to spoof an Extended Kalman Filter (EKF) and a conventional fault detection
mechanism is used to attempt to identify the attack. A two-wheeled differentially steered robotic vehicle based on the TurtleBot 3 ‘Burger’ is simulated in MATLAB.
The navigation system is attacked by injecting false data into the measurement device - a LiDAR sensor. The false data injection alters the range and bearing
measurements and aims to change the measured heading angle of the robot and alter its trajectory. The attack is then tuned to make it undetectable by the
implemented counter measures.

In this thesis, it is demonstrated that false data injection can be executed in such a way that it is almost impossible for the fault detection mechanism to perceive
an attack. The simulations have shown that the key to stealth is to inject the false data in a slow and steady manner to deceive the EKF by steering its output. The
deviation introduced is mostly unnoticeable as long as it is in the same order of magnitude of the noise, which is part of the robot’s navigation system. In contrast,
sudden and severe changes of measurement data are detected easily by the EKF and the fault detection mechanism.

15. SUBJECT TERMS

False Data Injection, Spoofing, Stealthy, Robotic Vehicle, Navigation, Extended Kalman Filter, Fault Detection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

unclassified

18. NUMBER OF PAGES

72 a. REPORT

unclassified

b. ABSTRACT

unclassified

C. THIS PAGE

unclassified

19a. NAME OF RESPONSIBLE PERSON

Philip Kersten

19b. PHONE NUMBER (Include area code)

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Ann E. Rondeau Scott Gartner

President Provost

The report entitled “False Data Injection of a Robotic Navigation System: Concepts and

Experiments” was prepared for “Universitaet der Bundeswehr Muenchen” funded by

“German Armed Forces”.

Distribution Statement A: Further distribution of all or part of this report is

authorized.

This report was prepared by:

________________________ ________________________

 ENS Philip Kersten, German Navy Mark Karpenko

 B.Sc. Mechanical and Aerospace

 Engineering

Reviewed by: Released by:

________________________ ________________________

 James Newman, Chairman Kevin B. Smith

 Space Systems Academics Group Vice Provost of Research

 2

THIS PAGE INTENTIONALLY LEFT BLANK

False Data Injection of a Robotic

Navigation System: Concepts and

Simulations

Master Thesis

Philip Kersten

matriculation number: 1185224

August 2022

Declaration of Authorship

I declare that the thesis has been composed by myself and that the work has not be

submitted for any other degree or professional qualification. I confirm that the work

submitted is my own, except where work which has formed part of jointly-authored

publications has been included. My contribution and those of the other authors to this

work have been explicitly indicated below. I confirm that appropriate credit has been

given within this thesis where reference has been made to the work of others.

Eigenständigkeitserklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als

der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder

ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich

oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Monterey, 31.08.2022

Philip Kersten

Abstract I

Abstract

Today, robotic vehicles (RV) play an essential role in both modern industry and the

military. More and more RVs become autonomously operated and are prone to cyber-

attacks of their embedded control systems. These attacks can be detected and

prevented with the appropriate tools but can also be almost undetectable if executed

correctly.

In this work, a type of cyber-attack, namely false data injection is performed to spoof

an Extended Kalman Filter (EKF) and a conventional fault detection mechanism is

used to attempt to identify the attack. A two-wheeled differentially steered robotic

vehicle based on the TurtleBot 3 ‘Burger’ is simulated in MATLAB. The navigation

system is attacked by injecting false data into the measurement device - a LiDAR

sensor. The false data injection alters the range and bearing measurements and aims

to change the measured heading angle of the robot and alter its trajectory. The attack

is then tuned to make it undetectable by the implemented counter measures.

In this thesis, it is demonstrated that false data injection can be executed in such a way

that it is almost impossible for the fault detection mechanism to perceive an attack. The

simulations have shown that the key to stealth is to inject the false data in a slow and

steady manner to deceive the EKF by steering its output. The deviation introduced is

mostly unnoticeable as long as it is in the same order of magnitude of the noise, which

is part of the robot’s navigation system. In contrast, sudden and severe changes of

measurement data are detected easily by the EKF and the fault detection mechanism.

Table of contents II

Table of contents

1 Introduction and Motivation .. 1

2 Theoretical Background .. 3

2.1 Two wheeled robotic vehicles and dynamics model 3

2.2 Extended Kalman Filter .. 7

2.3 Measurement devices ... 11

2.4 False Data Injection ... 13

2.5 Fault Detection Mechanism .. 16

3 System Model and Kalman Filter in Matlab .. 18

3.1 Waypoint based trajectory .. 18

3.2 Velocity and heading based trajectory .. 24

4 Simulation ... 30

4.1 Nominal case ... 30

4.2 Spoofed measurements with large sudden changes 35

4.3 Gradually spoofed measurements ... 41

5 Interpretation .. 47

5.1 Nominal case ... 47

5.2 Spoofed measurements with large sudden changes 49

5.3 Gradually spoofed measurements ... 53

6 Conclusion and Outlook .. 56

 Sources ... 58

 List of Figures .. 61

1 Introduction and Motivation 1

1 Introduction and Motivation

As more and more industrial sectors experience an increase in use of robotic vehicles

(RVs) in manufacturing, logistics etc., the reliance on these systems rises to the same

degree. In the military, unmanned ground and unmanned aerial vehicles have reached

a high significance and are indispensable, both in close quarter and long-range

reconnaissance. Many of these systems are autonomously operated and usually not

well protected, which leads to a rising threat of cyber-attacks on the control and

navigation systems of those RVs [1,2]. Since RVs rely heavily on sensors and

actuators for perception and navigation, they are especially prone to attacks aiming to

disrupt these systems.

Figure 1: Differentially steered robot (TurtleBot 3 ‘Burger’) [3]

One way to perform an attack on a RV control system is through false data injection

[4]. In this work, a differentially steered two-wheeled RV (Figure 1) is simulated in

MATLAB. The measurement device, namely a LiDAR, is then influenced via false data

injection. An approach from two sides is taken: The attacking side, which is aiming to

disrupt the RV and the defending side, which tries to ensure the functionality of the RV

and detect ongoing attacks. On the one hand, an attempt is made to fabricate attacks

on the simulated RV that have a severe impact on the behavior of the robot (such as

changing its course) but are ideally undetectable. On the other hand, an Extended

Kalman Filter (EKF) is integrated into the simulated system, which improves navigation

1 Introduction and Motivation 2

capabilities and feeds a fault detection mechanism with the innovation of predicted and

measured system states to trigger an alarm in the event of an attack. The difficulty in

designing both the EKF and the fault detection mechanism is to be able to detect even

small attacks executed over a period of time. Such attacks can lead to a severe failure

without raising any alarm [4].

Scope

In the context of this work, the question shall be answered whether it is possible to

construct an attack that overcomes the fault detection mechanism, remains unnoticed

and at the same time strongly influences the behavior of the robot. A simulation has

been made with the objective of implementing it into a physical system in the future.

Outline

The second chapter will address the key aspects of the background material. In the

third chapter, the MATLAB script used for simulation is explained. The fourth chapter

presents the results, that have been generated using MATLAB script. These results

are interpreted in the fifth chapter followed by a Conclusion of the findings of this thesis

and an Outlook in the sixth chapter.

2 Theoretical Background 3

2 Theoretical Background

The following chapter provides the background material necessary for the

understanding of this thesis.

2.1 Two wheeled robotic vehicles and dynamics model

The simulated platform used for the various experiments is a two wheeled differentially

steered robot relating to the TurtleBot 3 ‘Burger’. To properly represent and simulate

the behavior of such a robotic system, a transition model has been derived to construct

predictions for the expected next system state based on the previous system state and

the control input. It transitions the previous system state into the next. To achieve a

more detailed simulation of a two wheeled differentially steered robot, the dynamics

model of Dusek et al. [5] has been used and appropriately modified. This model allows

us to simulate the system more accurately, considering the dynamics describing wheel

speed dependency on the motor supply voltages, construction, geometry and other

parameters of the chassis and motors.

The input for the dynamics model can be described as 𝑢𝐿 and 𝑢𝑃, which are signals

that control the supply voltage of each motor and are fed into the linear part of the

detailed system model. The linear model, that describes the dynamics of the robot

(motor current and wheel rates), can be expressed as a standard state-space model

in matrix form [5]:

𝑑𝑥

𝑑𝑡
= 𝑨𝑥 + 𝑩𝑢 (2.1.1)

The output equation gives the velocity 𝜈 and the heading angle rate 𝜔.

𝑦 = 𝑪𝑥 (2.1.2)

The state control and output vectors are:

𝒙 = [

𝒊𝒍
𝒊𝒓
𝝎𝒍

𝝎𝒓

] 𝒖 = [
𝑼𝒍

𝑼𝒓
] 𝒚 = [

𝒗
𝝎

] (2.1.3)

2 Theoretical Background 4

Some substitutions are introduced to compress the space-matrices as seen in

2.1.4 - 2.1.7:

𝑎𝑙 = 𝑘𝑟 +
𝑘𝑣𝑙𝑟𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
 𝑎𝑙 = 𝑘𝑟 +

𝑘𝑣𝑙𝑟𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟

𝑏𝑙 = 𝐽 +
𝑚𝑙𝑟𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
 𝑏𝑟 = 𝐽 +

𝑚𝑙𝑙𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟

𝑐𝑙 = 𝑘𝑟𝑙𝑙 +
𝑘𝜔𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
 𝑐𝑟 = 𝑘𝑟𝑙𝑟 +

𝑘𝜔𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟

𝑑𝑙 = 𝐽𝑙𝑙 +
𝐽𝐵𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
 𝑑𝑟 = 𝐽𝑙𝑟 +

𝐽𝐵𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟

(2.1.4)

𝑨 =

[

 −

𝑅 + 𝑅𝑧

𝐿
−

𝑅𝑧

𝐿

−
𝑅𝑧

𝐿
−

𝑅 + 𝑅𝑧

𝐿

−
𝐾

𝐿
 0

0 −
𝐾

𝐿
𝐾(𝑑𝑟 + 𝑏𝑟𝑙𝑙)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝐾(𝑑𝑟 − 𝑏𝑟𝑙𝑙)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝐾(𝑑𝑙 − 𝑏𝑙𝑙𝑙)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝐾(𝑑𝑙 + 𝑏𝑙𝑙𝑟)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

−
𝑑𝑟𝑎𝑙 + 𝑏𝑟𝑐𝑙

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙
−

𝑑𝑟𝑎𝑟 + 𝑏𝑟𝑐𝑟

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

−
𝑑𝑙𝑎𝑙 + 𝑏𝑙𝑐𝑙

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙
−

𝑑𝑙𝑎𝑟 + 𝑏𝑙𝑐𝑟

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙]

 (2.1.5)

𝑩 =

[

𝑈0

𝐿
0
0
0

0
𝑈0

𝐿
0
0]

 (2.1.6)

𝑪 =

[

 0 0

𝑙𝑟𝑟𝐺
𝑙𝑙 + 𝑙𝑟

𝑙𝑙𝑟𝐺
𝑙𝑙 + 𝑙𝑟

0 0 −
𝑟𝐺

𝑙𝑙 + 𝑙𝑟

𝑟𝐺
𝑙𝑙 + 𝑙𝑟]

 (2.1.7)

Notation Meaning

𝑙𝑙 distance of the left wheel from center of axis [m]

𝑙𝑟 distance of the right wheel from center of axis [m]

𝑖𝑙 current of the left motor [A]

2 Theoretical Background 5

𝑖𝑟 current of the right motor [A]

𝜔𝑙 angular velocity of the left rotor [1/s]

𝜔𝑟 angular velocity of the right rotor [1/s]

𝑘𝑟 coefficient of the resistance against rotating of rotor and gearbox [kg/s]

𝑘𝑣 coefficient of the resistance against linear motion [kg/s]

𝑘𝜔 coefficient of the resistance against robot rotation [kg*m2/s]

𝑚 total weight of the robot [kg]

𝐽 total moment of inertia of rotor and gearbox [kg*m2]

𝐽𝐵 total moment of inertia of robot [kg*m2]

𝑟𝐺 reduced radius of the wheel [m]

𝑅 motor winding resistivity [Ω]

𝑅𝑍 source resistance [Ω]

𝐾 electromotoric constant [kg*m2/s2*A]

𝐿 motor inductance [H]

𝑈0 source voltage [V]

Table 1: DC Motor and chassis parameters

The output variables of the dynamics model (actual robot response) are fed into the

transition model for the navigation filter and are from now on considered the new

control input vector 𝑢𝑘, consisting of the instantaneous angular and translational

velocity derived from odometry.

For the navigation filter, the input needed to derive the next filter state (𝑘 + 1) consists

of two vectors, the vector of the current state (Xk), representing the location and

orientation of the robot in a global coordinate frame and the input vector (uk),

representing the steering commands of the robot.

𝑋𝑘+1 = 𝑓(𝑋𝑘 , 𝑢𝑘) (2.1.8)

𝑋𝑘 = [

 𝑥𝑘

𝑦𝑘

𝜃𝑘

] (2.1.9)

2 Theoretical Background 6

𝑢𝑘 = [
𝑣𝑘

𝜔𝑘
] (2.1.10)

The state vector consists of the position and orientation of the Robot at a given point

in time (𝑘), which can be described with two coordinates on a 2D plane (x, y) and an

angle of orientation (θ) relative to the y-axis of the global coordinate frame. The input

vector is composed of the translational velocity (𝑣) and the angular velocity (𝜔), which

are derived from their respective equations of motion. The revolutions of the right and

left wheel (𝜔𝑟 , 𝜔𝑙) are taken from the odometry sensors of the respective wheel. [6]

𝑣𝑘 =
𝜔𝑟𝑘

∙ 𝑅 + 𝜔𝑙𝑘
∙ 𝑅

2
 (2.1.11)

𝜔𝑘 =
𝜔𝑙𝑘

∙ 𝑅 − 𝜔𝑟𝑘
∙ 𝑅

𝑏
 (2.1.12)

The transition model from time 𝑘 to 𝑘 + 1 for the system can be expressed as

Xk+1 = f(Xk, uk) = [

 xk+1

yk+1

θk+1

] = [

xk

yk

θk

] + 𝑇 [

(𝑣k + 𝑑𝑣) . cos(θk)
(𝑣k + 𝑑𝑣) . sin(θk)

ωk + 𝑑𝜔
] (2.1.13)

in which 𝑇 is the duration between each timestep 𝑘.

The transition model (2.1.13) only applies accurately in ideal conditions. The model

doesn’t take an uneven surface, slipping of the wheels or the impact of friction or the

general noise of the measurement into account. To accommodate for that fact, a noise

model is applied to the transition model (𝑑𝑣, 𝑑𝜔). The noise model has the

characteristics of normal distribution with the mean of zero and is applied to the

odometry measurements of each wheel and thus to the translational and angular

velocity. [5–8]

2 Theoretical Background 7

2.2 Extended Kalman Filter

The Kalman Filter is an algorithm that provides estimates of various unknown variables

by using a series of noisy measurements observed over time. The output estimates of

the Kalman Filter usually are more accurate than those based on a single

measurement alone. Mathematical models can be added as constraints to account for

the dynamic relationship between each system state. As an example, equations of

motion can be used to precisely estimate changing positions and speeds. It has to be

stated that the Kalman Filter can only be applied to linear problems. For nonlinear

systems, a nonlinear approach has to be taken in the form of an Unscented Kalman

Filter (UKF) or Extended Kalman Filter (EKF). For highly nonlinear systems, usually a

UKF approach is taken. But for an adequately accurate depiction of the behavior of a

two wheeled robot and its well-defined dynamics model, an EKF approach is sufficient

to reliably represent the behavior of the system. The EKF linearizes about an estimate

of the current mean and covariance. To achieve this linearization the Jacobian (𝐹,𝐻)

of the kinematics transition model (𝑓), and the measurement model (ℎ) are used.

[6,9-13]

𝐹𝑥(𝑘) =
𝛿𝑓(𝑋, 𝑢)

𝛿(𝑥, 𝑦, 𝜃)
= [

1 0 −𝑇 ∗ sin (𝜃𝑘)
0 1 𝑇 ∗ cos (𝜃𝑘)
0 0 1

] (2.2.1)

𝑧𝑝𝑟𝑒𝑑𝑘
= ℎ(𝑋𝑘, 𝐿𝑘) =

[

 √(𝑥𝑙𝑘

− 𝑥𝑝𝑟𝑒𝑑𝑘
)
2

+ (𝑦𝑙𝑘
− 𝑦𝑝𝑟𝑒𝑑𝑘

)
2

tan−1 (
𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘

𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

) + 𝜃𝑘 +
𝜋

2

]

 (2.2.2)

𝐻(𝑘) =
𝛿ℎ(𝑋)

𝛿𝑋

=

[

𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2

𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2

0

𝑦𝑙𝑘
− 𝑦𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2

𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2

1

]

(2.2.3)

2 Theoretical Background 8

Here 𝑥𝑙, 𝑦𝑙 are the locations of the different landmarks and 𝑥𝑝𝑟𝑒𝑑, 𝑦𝑝𝑟𝑒𝑑 are the predicted

coordinates of the RV. The index 𝑘 represents the current timestep.

The algorithm in the form of a block diagram is illustrated in Figure 2. The input 𝑢𝑘 is

not altered before entering the Filter, meaning Block G equals 1 in this example. For

the prediction phase, the Kalman filter produces estimates of the current state

variables 𝑋(𝑥, 𝑦, 𝜃) using the transition model (Block F) already presented in section

2.1 along with their covariance 𝑃, the state variables of the previous timestep and the

input uk. The covariance is updated during each iteration.

𝑃𝑘+1 = 𝐹𝑥𝑘
∙ 𝑃𝑘 ∙ 𝐹𝑥𝑘

𝑇 + 𝑄𝑓𝑘
 (2.2.4)

For 𝑃, the covariance of the noise of the kinematics model (𝑄𝑓) is calculated with the

Jacobian of the kinematics model (𝐹) with respect to the input (𝑢𝑘) and the input

measurement covariance (𝑄𝑢), which consists of the input noise of the translational

and angular velocity (𝑞𝑣, 𝑞𝜔).

𝑄𝑓𝑘
= 𝐹𝑢𝑘

∙ 𝑄𝑢 ∙ 𝐹𝑢𝑘
𝑇 (2.2.5)

𝐹𝑢(𝑘) =
𝛿𝑓(𝑋, 𝑢)

𝛿(𝑣, 𝜔)
= [

𝑇 ∙ cos (𝜃𝑘) 0
𝑇 ∙ sin (𝜃𝑘) 0

0 𝑇

] (2.2.6)

𝑄𝑢 = [
𝑞𝑣

2 0

0 𝑞𝜔
2] (2.2.7)

2 Theoretical Background 9

Figure 2: Illustration of the Kalman Filter algorithm [14]

Simultaneously, the installed LiDAR measures distance and bearing (𝑟𝑘, 𝜙𝑘) from the

rover to a set of landmarks located around the RV. From the predicted state a set of

predicted distance and bearing measurements is also calculated using the

measurement model (ℎ(𝑋𝑘, 𝐿𝑘)) (Block H). These measurements and predicted

measurements are then used to calculate the innovation (whitening), which is usually

a good indicator for the functionality of the system. Ideally the innovation, the difference

between measurement and prediction, should be small but is usually not zero due to

uncertainties in the kinematics transition model and noisy measurements.

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑘 = 𝜈𝑘 = 𝑧𝑎𝑐𝑡𝑢𝑎𝑙𝑘 − 𝑧𝑝𝑟𝑒𝑑𝑘
= 𝑧𝑎𝑐𝑡𝑢𝑎𝑙𝑘 − ℎ(𝑋𝑘, 𝐿𝑘) (2.2.8)

Once the innovation is calculated, the predicted estimates of the system state are

updated (𝑋𝑝𝑟𝑒𝑑,𝑢𝑝𝑑𝑎𝑡𝑒𝑑) based on the difference of the measured and the predicted

state (𝜈). The innovation covariance (𝑆) is also calculated. The innovation covariance

is a measure for the confidence in a measurement. If 𝑆 is high, the filter has a lower

confidence in the reliability of those measurements and vice versa. The innovation

covariance is the used for the derivation of the Kalman gain (𝐾) (Block K), which is the

weight given to the measurements versus the current prediction. The relevant

equations are:

2 Theoretical Background 10

𝑆𝑘 = 𝐻𝑘 ∙ 𝑃𝑘 ∙ 𝐻𝑘
𝑇 + 𝑅𝑘 (2.2.9)

𝐾𝑘 =
𝑃𝑘 ∙ 𝐻𝑘

𝑇

𝑆𝑘
 (2.2.10)

𝑋𝑝𝑟𝑒𝑑,𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑘
= 𝑋𝑝𝑟𝑒𝑑𝑘

+ 𝐾𝑘 ∙ 𝜈𝑘 (2.2.11)

Figure 3: Visualization of the influence of the Kalman Gain (low Gain) [15]

The impact of the Kalman Gain for the estimation process is illustrated in Figure 3. For

a large gain (high prediction uncertainty and low measurement uncertainty), the

Kalman Filter prefers the measurements over the prediction and thus adapts to

changing measurements and its noise more responsively resulting in a possibly jumpy

trajectory. On the other hand, a relatively low Kalman gain close to zero would result

in a smoother trajectory, since the filter conforms to the process model more closely

decreasing the impact of measurement noise but also decreasing its responsiveness

to changing measurements.

The updated state vector (correction) is then fed back into the algorithm and is then

used as the new current state vector to calculate the next predicted system state. The

2 Theoretical Background 11

algorithm is recursive. It can operate in real time, using only the present input

measurements and the previously calculated system state and its uncertainty matrix,

no additional past information is required. [6,8,9,14,16]

2.3 Measurement devices

To update the estimated system state of the RV, a measurement of the current system

state needs to be made, which is then compared to the estimated position from the

process model. The measurements are generated by a LiDAR, which is measuring the

distance and bearing to a set of pre-defined landmarks around the RV.

LiDAR stands for Light Detection and Ranging. Rapid laser pulses are fired by a

Transmitter and reflected by any surface surrounding the RV and then captured by a

sensor (receiver). This process is illustrated in Figure 4.

Figure 4: Schematic illustration of LiDAR measurement process [17]

The time difference between the emission and detection of each reflected laser pulse

is then measured. Using the speed of light, the distances between the sensor and a

given object can be calculated. The duration for the return of each pulse (𝑡) is multiplied

by the speed of light (𝑐) and then divided by two, since the measured duration

corresponds to the travel time to the landmark and back to the sensor. [18]

𝑑 =
𝑐 ∙ 𝑡

2
 (2.3.1)

The laser pulses that are fired at different horizontal and—in a 3D environment—

vertical angles can generate point clouds, which can be used to digitally map the

surroundings of the RV. Given the location of a set of landmarks around the RV, one

2 Theoretical Background 12

is able to determine (to some level of accuracy) the location of the RV using the

distance and angle measurements (multiangulateration) to each landmark. The

TurtleBot possesses a 360° LiDAR with SLAM capabilities (Simultaneous Localization

And Mapping) which creates a map using the measurement data generated by the

LiDAR using a version of the EKF. [3]

Figure 5: 360° Laser Distance Sensor LDS-01 (LiDAR)

The mapping capabilities are not used in the simulation. Instead a set of known

landmarks is created and used to measure the RV position using only the LiDAR. The

constellation of landmarks and the multiangulateration process is illustrated in Figure

6. The landmarks are portrayed as blue circles surrounding the 10x10m test area. In

this situation the RV is located at the coordinates (1,1) and is marked with a red X.

Each LiDAR pulse that gets reflected back from a landmark is portrayed as a red dotted

line.

2 Theoretical Background 13

Figure 6: LiDAR measurements of known landmarks

2.4 False Data Injection

False data injection is a form of attack against a control system, for example a

navigation system of a robotic vehicle, in which the attacker injects malicious data, i.e.

measurements, that can mislead the state estimation process without triggering and

alarm. The incorrectly estimated system state can then lead the system to take

unpredicted action like deviating from a desired trajectory. Since the measurements

used for navigation and estimation are subject to noise, there usually is some tolerance

when it comes to identifying deviations because the naturally occurring noise would

cause a fault detection mechanism to trigger false alarms. To stay undetectable, the

deviation caused by the attack must be smaller than a certain threshold set by the

system operator. An approach to derive the detection threshold of a RV has been made

2 Theoretical Background 14

by Dash et al. [4]. They have been reverse-engineering the control state estimation

model without having root access to the operating system. [4,19]

In this work, false data is injected in the form of altered LiDAR measurements. These

LiDAR measurements consist of a distance (𝑟) and angle (𝜙) component.

𝑧𝑘 = [
𝑟𝑘
𝜙𝑘

] (2.4.1)

Here 𝑟𝑘 is the distance between the robot and each specific landmark and 𝜙𝑘 the

bearing of each landmark relative to the robot and its own orientation. Through

multiangulateration the system is able to derive a measured position from the LiDAR

output. To alter this position and to influence every measurement in such a way that

the compromised measurement still results in one exact position, the set of landmarks

may be changed by using homogeneous transformation matrices [20] instead of

applying a bias value to each of the measurements individually. This allows for

stretching and compressing, sheering and rotation of the set of landmarks. In a two-

dimensional environment, the homogeneous transformation matrices are in a 3x3

dimension. Therefore, the 2D coordinates of the landmarks must be supplemented by

an entry with the value zero. After the transformation this third entry is deleted again.

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛: 𝑇𝑙 = [
1 0 𝑘
0 1 𝑙
0 0 1

] (2.4.2)

𝑆ℎ𝑒𝑎𝑟𝑥: 𝑆𝑥 = [
1 𝑚 0
0 1 0
0 0 1

] (2.4.3)

𝑆ℎ𝑒𝑎𝑟𝑦: 𝑆𝑦 = [
1 0 0
𝑛 1 0
0 0 1

] (2.4.4)

𝑆𝑡𝑟𝑒𝑡𝑐ℎ: 𝑆𝑡 = [
𝑝 0 0
0 𝑞 0
0 0 1

] (2.4.5)

2 Theoretical Background 15

𝑅𝑜𝑡𝑎𝑡𝑒: 𝑅 = [
cos (𝛼) sin (𝛼) 0
−sin (𝛼) cos (𝛼) 0

0 0 1

] (2.4.6)

These matrices (Equation 2.4.2 - 2.4.6) can be combined and the factors

(𝑘, 𝑙, 𝑚, 𝑛, 𝑝, 𝑞, 𝛼) can be tuned to arrange the set of landmarks in a desired way or

change them over the course of a time period to provide a fake world map for the

measurement instruments. The transformation matrix is then multiplied with the

expanded position vector. [20]

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: 𝑇𝑟 = 𝑇𝑙 ∙ 𝑆𝑥 ∙ 𝑆𝑦 ∙ 𝑆𝑡 ∙ 𝑅 (2.4.7)

𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑,𝑙 = 𝑇𝑟 ∙ [
𝑥𝑙

𝑦𝑙

0
] (2.4.8)

Figure 7 shows an example of transformed landmarks by using the homogeneous

transformation. In this example, the original set of landmarks (blue) has been

translationally moved 5 meters down and 5 meters to the left (orange). Afterwards it

has been rotated 45 degrees around the origin (yellow) and stretched by a factor of 1.5

to either side (purple). Finally, the landmarks are sheared relative to the x-axis (green).

Clearly, the transformed landmarks can be used to represent a different world, which

may be used to spoof a navigation system.

2 Theoretical Background 16

Figure 7: Examples of Landmark Transformation

2.5 Fault Detection Mechanism

It is relatively easy to uncover severe attacks and failures on a system like an

autonomous vehicle by simply observing the deviation from the predicted system state

[4,21]. However, inconspicuous attacks require more advanced techniques based on

error estimation and decision theory to get detected. Usually, an operator or monitoring

system has access to the innovation, hence the difference between the predicted

system state through the process model and a measured system state. To recognize

an attack on a robotic vehicle, a fault detection mechanism has to be implemented that

evaluates the accessible system or process data and produces an alarm at a given

threshold.

As a statistical hypothesis testing method for examining whether or not a random

Gaussian vector has the assumed mean and covariance, the 𝜒2-test (chi-square-test)

2 Theoretical Background 17

is widely applied for detecting soft failures in dynamical systems [14]. The 𝜒2 random

variable 𝜉 for each timestep is calculated using the following equation. Here 𝜈 is the

innovation of each timestep and 𝑆 the covariance of the innovation. The ~ means that

𝜉 follows a 𝜒2 probability distribution.

𝜉𝑘 = ∑ 𝜈𝑖
𝑇 ∙ 𝑆𝑖

−1 ∙ 𝜈𝑖

𝑘

𝑖=𝑘−𝑁+1

 ~ 𝜒𝑁
2 (2.5.1)

After calculating 𝜉, it is compared to a certain chosen decision threshold. This threshold

is defined through the degrees of freedom and the area of the distribution to the left of

a critical value (rejection area). This becomes clearer looking at a 𝜒2 distribution. In

this example, seen in Figure 8, the rejection area is marked red. If 𝜉 is inside the red

area, i.e. higher than the critical value (in this example at 10.2) the system has detected

a failure, resulting in an error which is seen by the operator. Conversely, this means

that the system is behaving correctly (by the definition of the operator) when 𝜉 is

smaller than the critical value. [22,23]

Figure 8: Chi-Square Distribution

3 MATLAB Simulation 18

3 MATLAB Simulation

The following chapter shall showcase two approaches taken to simulate the behavior

of the robot in MATLAB and—for the second approach—the implementation of false

data injection the Extended Kalman Filter and the detection mechanism.

3.1 Waypoint based trajectory

For the first attempt, the input that the operator is feeding into the system is a waypoint

composed of a x- and y-coordinate. Using the desired waypoint and the initial system

state of the robot, the desired heading is determined and thus the revolution speed of

each wheel necessary to achieve this heading. The desired heading (𝜃) can be

calculated using the atan2(x, y) function in MATLAB. The input variables are the

differences of the x- and y-coordinates. The atan2(x, y) function returns values in the

closed interval [-pi, pi] based on the values of x and y, as shown in Figure 9.

Figure 9: Return values of the atan2 function

The desired velocity of each timestep is calculated using:

𝑣𝑑𝑒𝑠 =
√(𝑦𝑑𝑒𝑠 − 𝑦𝑘)2 + (𝑥𝑑𝑒𝑠 − 𝑥𝑘)2

√(𝑦𝑑𝑒𝑠 − 𝑦𝑠𝑡𝑎𝑟𝑡)2 + (𝑥𝑑𝑒𝑠 − 𝑥𝑠𝑡𝑎𝑟𝑡)2
∙ 𝑣𝑚𝑎𝑥 + 𝑣𝑚𝑖𝑛 (3.1.1)

3 MATLAB Simulation 19

The numerator consists of the distance between the robot and the waypoint during

each timestep the denominator however consists of the distance between the starting

point and the waypoint. This fraction is multiplied by a given maximum velocity (𝑣𝑚𝑎𝑥).

It becomes clear, that the desired velocity decreases with the decreasing distance

between the robot and the waypoint. To account for that, a constant minimal velocity

(𝑣𝑚𝑖𝑛) is added so that the approach doesn’t become too slow. This minimal velocity

can be set however deemed necessary by the operator. After calculating the desired

heading and velocity they are each fed into a PID controller and compared to the

current heading and velocity to calculate the current error.

𝐸𝑟𝑟𝑜𝑟𝜃 = 𝜃𝑑𝑒𝑠 − 𝜃𝑘 (3.1.2)

𝐸𝑟𝑟𝑜𝑟𝑣 = 𝑣𝑑𝑒𝑠 − 𝑣𝑘 (3.1.3)

The PID Controller consists of a proportional (𝑃), integral (𝐼) and derivative (𝐷)

component, which are calculated using the error. The integral terms of the PID

controller are added up. [24]

𝑃𝑘+1 = 𝐸𝑟𝑟𝑜𝑟𝑘+1 (3.1.4)

𝐼𝑘+1 = (𝐸𝑟𝑟𝑜𝑟𝑘+1 + 𝐸𝑟𝑟𝑜𝑟𝑘) ∙
𝑑𝑡

2
 (3.1.5)

𝐷𝑘+1 =
(𝐸𝑟𝑟𝑜𝑟𝑘+1 − 𝐸𝑟𝑟𝑜𝑟𝑘)

𝑑𝑡
 (3.1.6)

The three PID terms are then summed up with a respective gain (𝐾).

𝑃𝐼𝐷𝑘+1 = 𝐾𝑝 ∙ 𝑃𝑘 + 𝐾𝑖 ∙ 𝐼𝑘+1 + 𝐾𝑑 ∙ 𝐷𝑘 (3.1.7)

The PID term is then fed into two integrators (Equation 3.1.8 – 3.1.11) that represent

the robot dynamics. Summing up the PID Term (𝑆1) and calculating the integral of the

latest two consecutive steps (𝑆2). The first integral (𝑆2) is then summed up (𝑆3) and

3 MATLAB Simulation 20

integrated again over the latest two consecutive steps to calculate the output of the

system (𝜃 in this case). The approximation of input–output dynamics by a double

integrator with transport delay is often used in the design of automatic control systems

involving moving bodies and has been used for that reason. [25]

𝑆1𝑘+1
= ∑ 𝑃𝐼𝐷𝑘

𝑘+1

𝑘=1

 (3.1.8)

𝑆2𝑘+1
= (𝑆1𝑘+1

+ 𝑆1𝑘
) ∙

𝑑𝑡

2
 (3.1.9)

𝑆3𝑘+1
= ∑ 𝑆2𝑘

𝑘+1

𝑘=1

 (3.1.10)

𝜃𝑘+1 = (𝑆3𝑘+1
+ 𝑆3𝑘

) ∙
𝑑𝑡

2
 (3.1.11)

Finally, the Feedback is calculated which is then returned to the calculation of the Error

of the next state. The performance of the PID controller and thus the behavior of the

robot can be influenced by tuning the spring and damping coefficient (𝐵 and 𝐾). The

general operation of the controller can be seen in Figure 10.

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝑆3𝑘+1
∙ 𝐵 + 𝜃𝑘+1 ∙ 𝐾 (3.1.12)

𝐸𝑟𝑟𝑜𝑟𝜃,𝑘+1 = 𝜃𝑑𝑒𝑠 − 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑘 (3.1.13)

3 MATLAB Simulation 21

Figure 10: Block diagram closed loop PID Controller

After deriving the desired velocity and heading, the inverse kinematics model of a

differentially steered robot is used to calculate the necessary wheel speeds.

𝑑𝜃𝑘 = 𝜃𝑘+1 − 𝜃𝑘 (3.1.14)

𝜔𝑘 =
𝑑𝜃𝑘

𝑑𝑡
 (3.1.15)

𝜔𝑟𝑘
=

2 ∙ 𝑣𝑘 + 𝜔𝑘 ∙ 𝑏

2 ∙ 𝑈
 (3.1.16)

𝜔𝑙𝑘
=

2 ∙ 𝑣𝑘 − 𝜔𝑟𝑘
∙ 𝑈

𝑈
 (3.1.17)

To derive the new position of the robot, which is then fed back into the calculation of

the desired velocity and heading, the transition model already seen in section 2.1 is

used. However, it has to be stated that the implementation of noise was omitted. The

transition model is used to derive the current position of the robot. The resulting

trajectory is illustrated in Figure 11. The trajectory shows a typical course for a PID

controller with a damped overshoot of the desired trajectory. The trajectory can be

adjusted by changing the damping and spring coefficients, as well as the gains of each

PID element of the velocity and heading PID loop. In Figure 11 only the damping

coefficient of the heading PID loop has been decreased, resulting in increased

3 MATLAB Simulation 22

oscillation. All other coefficients were set to 1. The proportional gain was set to 0.9, the

integral and derivative gain to 0.3.

Figure 11: Waypoint based trajectory of the robot with different damping coefficients

Reaching the final destination, the velocity of the robot decreases gradually to a

minimum. Once the robot passes the waypoint, the desired heading and thus the Error

in the heading PID loop changes abruptly causing the robot to turn. The robot keeps

doing loops through the waypoint on minimal velocity until the simulation ends.

Alternatively, the controller could be shut off.

3 MATLAB Simulation 23

Figure 12: Angular velocity of each wheel

Figure 12 shows the wheel revolutions in revolutions per second throughout the 60-

second-long simulation. The coefficients and gains are set as in Figure 11 with a

damping coefficient auf 0.8. Due to the distance between robot and waypoint, the

desired translational velocity increases causing the wheels to spin both at a positive

and relatively high rate. Due to the nature of the PID controller, the trajectory shows

an oscillation of the wheel speeds at a still positive rate. While approaching the

waypoint, the desired translational velocity gradually decreases. After about 34.5

seconds, the robot reaches the waypoint causing the desired heading angle and thus

the desired wheel speeds to change. At this stage the wheels rotate in opposite

directions to achieve a swifter turn, which is indicated by the negative and positive

deflections, respectively. However, the mean of this phase is not zero, since a minimal

translational velocity is still maintained. Practically the controller could be turned off

once the waypoint is reached at 𝑡 = 34.5 sec.

3 MATLAB Simulation 24

The waypoint-based approach has not been pursued further to the implementation of

a Kalman Filter, false data injection and a fault detection mechanism since a velocity

and heading based input trajectory is more realistic for a real-world application of a

ground based robotic vehicle. For future work and for the sake of completeness,

exploring cyber-attacks on this system might still be of interest. Especially for a

simulation of a UAV, a waypoint-based approach is more appropriate.

3.2 Velocity and heading based trajectory

The second simulation is based on the input of an operator, who is dictating the desired

velocity and heading of the robot at any point in time of the simulation. The operator is

able to command a certain speed and heading for a specific time interval. Furthermore,

it is possible to gradually change the desired velocity and heading to achieve a

smoothly curved trajectory. In Figure 13, two potential trajectories are illustrated. The

starting position is set to 1 for the x and y coordinates. Marked as blue crosses are the

landmarks surrounding the environment. These symbolize the landmarks used for the

position determination with the LiDAR measurements. The landmarks are located

around a 10x10m area and are standing 1m apart. In these experiments the velocity

and heading are constant over the course of the simulation.

3 MATLAB Simulation 25

Figure 13: Desired trajectories and landmarks

The duration of the simulation is 200 seconds and is updated every 0.01 seconds.

However, the measurement update in the EKF only occurs every second. The general

operation of the Simulation is illustrated in Figure 14. The Code consists of three main

parts marked in blue.

First is the Dynamics model, which is simulating the behavior of the two wheeled

differentially steered robot. The dynamic model is fed with the control input of desired

heading and velocity from the operator.

The second part is the Extended Kalman Filter in combination with the LiDAR

measurement simulation, which improves and fuses the two position determination

methods, hence the prediction of the system state through the dynamics and transition

model and the actual measurement. Technically, a version of the dynamics is

integrated into the EKF since the prediction of the next system state is done by the

3 MATLAB Simulation 26

transition model, which is derived from the dynamics model. The LiDAR

measurements, however, are corrupted in the event of false data injection. In this case

the Extended Kalman Filter is only fed with an altered measurement vector. Not only

does the EKF output the updated estimated system state, which is then used again by

the dynamics model to predict the next system state, another output is the innovation.

The innovation, which is used in the third part, the fault detection mechanism. Through

a statistical evaluation the fault detection mechanism decides whether the system is

behaving correctly or not.

Figure 14: Illustration of the workflow of the Simulation

A numerical solver in form of a Euler Integrator is also implemented. The Euler method

is a stepwise integration of the differential equations to derive the system states.

Furthermore, it integrates the derivatives used in the update step of the EKF.

After the desired heading and velocity is fed into the dynamics model, the necessary

DC-motor control voltages are calculated. Therefore, the forward kinematics are used

to compute the actual velocity of the robot with Equation 2.1.2

Using the inverse kinematics model, the necessary wheel speeds for the next timestep

are computed.

3 MATLAB Simulation 27

[
𝜔𝑙𝑑

𝜔𝑟𝑑
] = [

𝑙𝑟 𝑙𝑙
−1 1

]
−1

∙ [

𝑣 ∙ 𝑝𝑔 ∙ (𝑙𝑟 + 𝑙𝑙)

𝑟

𝜔 ∙ 𝑝𝑔 ∙ (𝑙𝑟 + 𝑙𝑙)

𝑟

] (3.2.1)

Here, 𝑝𝑔 is the gearbox ratio.

From there on, the DC-motor control voltages are calculated with the associated gains

𝐾𝑖 and 𝐾𝑝 the differences of the revolutions of each wheel from the previous timestep

to the desired next timestep and the current of each motor.

𝑈𝑙 = 𝐾𝑝 ∙ (𝜔𝑙𝑑 − 𝜔𝑙) + 𝐾𝑖 ∙ 𝐼𝑙 (3.2.2)

𝑈𝑟 = 𝐾𝑝 ∙ (𝜔𝑟𝑑 − 𝜔𝑟) + 𝐾𝑖 ∙ 𝐼𝑟 (3.2.3)

Finally, the robot dynamics are calculated for the next step using Equation 2.1.1.

The output that is then fed into the EKF is the current angular and translational velocity.

Furthermore, the estimated previous position and heading or—in the first iteration—

the initial conditions of position and heading are used to calculate the next predicted

system state using the transition model. Since most of the equations and general steps

have already been illustrated and explained only a rough re-explanation and details

not yet mentioned are provided. [5]

The EKF estimate is updated every 0.01 seconds (𝑇) and the measurement update

occurs every second (𝑇𝑈). Based on these time periods, the control measurement

covariance (𝑄𝑢) with 𝑞𝑣 [
𝑚

𝑠
] and 𝑞𝜔[

𝑟𝑎𝑑

𝑠
] and the factors for the measurement noise

(𝑞𝑟 [𝑚], 𝑞𝜙[𝑟𝑎𝑑]) are derived.

𝑄𝑢 = [
𝑞𝑣

2 0

0 𝑞𝜔
2] (3.2.4)

𝑞𝑣 =
1

√𝑇
∙ √0.001 [

𝑚

𝑠
] (3.2.5)

3 MATLAB Simulation 28

𝑞𝜔 =
1

√𝑇
∙ √0.012 ∙

𝜋

180
 [

𝑟𝑎𝑑

𝑠
] (3.2.6)

𝑞𝑟 =
1

√𝑇𝑈

∙ √0.01 [𝑚] (3.2.7)

𝑞𝜙 =
1

√𝑇𝑈

∙ √0.25 ∙
𝜋

180
 [𝑟𝑎𝑑] (3.2.8)

From there on the process noise is derived, which is used in the transition model. The

noise is simulated by multiplying the respective factor 𝑞 with a random scalar 𝑥𝑟𝑎𝑛𝑑𝑜𝑚

drawn from the standard normal distribution with zero mean.

𝑑𝑣 = √𝑞𝑣 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.9)

𝑑𝜔 = √𝑞𝜔 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.10)

The transition model then makes a prediction about the current system state. In

addition, the covariance (𝑃) of the system state is updated, which has already been

discussed in section 2.2. After updating the covariance two checks are performed to

see if there are negative elements on the main diagonal of 𝑃 or if 𝑃 diverges. If one of

these events occurs, the simulation is stopped, and an error is displayed.

For the setup of the measurement update, a set of landmarks is created, as discussed

earlier. Depending on the scenario, these landmarks positions are then left untouched

or—in the event of false data injection—altered, using homogeneous transformation.

The actual robot position is then fed into a distance-to-point function to determine the

measurement vector to emulate the LiDAR sensor. This function calculates the

distance (𝑟) and bearing (𝜙) to each landmark from the position and orientation of the

robot resulting in a vector of 82 entries for 41 landmarks. Afterwards noise is added to

the measurements using the following equations:

𝑟𝑛𝑜𝑖𝑠𝑦 = 𝑞𝑟 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.11)

3 MATLAB Simulation 29

𝜙𝑛𝑜𝑖𝑠𝑦 = 𝑞𝜙 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.12)

To calculate the innovation, a second measurement vector has to be built. The second

vector is based on the position that has been predicted by the measurement model,

which is already subject to inaccuracies. From there on, the process of building the

measurement vector is the same. These two measurement vectors are then compared

to derive the innovation. [6]

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑘 = 𝜈𝑘 = 𝑧𝑎𝑐𝑡𝑢𝑎𝑙𝑘 − 𝑧𝑝𝑟𝑒𝑑𝑘
 (3.2.13)

In a real-life application, the predicted measurement vector has to be derived through

the use of a measurement model as it has been stated in section 2.2. The LiDAR can

only measure the distances and bearings from the actual position of the robot (actual

measurement). For the derivation of the innovation the predicted measurement has to

be calculated based on the predicted position of the robot and cannot be measured

directly because the predicted and actual position of the robot differ.

Since the innovation angle and distance have different magnitudes they are normalized

using

𝜈𝑘,𝑛𝑜𝑟𝑚 = 𝑐ℎ𝑜𝑙(𝑆−1) ∙ 𝜈𝑘 (3.2.14)

where 𝑆 is the covariance of the innovation, which has already been mentioned in

section 2.2 This normalized innovation is then used to calculate 𝜉 for the 𝜒2 test.

However, 𝜉 is not compared to a pre-defined critical value derived from a 𝜒2 table or

the respective function. Rather a threshold is derived from running the nominal

simulation numerous times and observing the outcome of the 𝜒2 test.

4 Simulation 30

4 Simulation

The following chapter presents three different scenarios of the operation of the robot.

A nominal scenario, in which the robot operates undisturbed is used to establish

baseline performance. Two spoofed scenarios with altered LiDAR measurements are

used to illustrate the ability to influence the system trajectory without detection.

4.1 Nominal case

In the first scenario the robot is operating normally and has access to unaltered LiDAR

measurements, which are still subject to noise.

Figure 15: Nominal robot trajectory with landmarks for localization

4 Simulation 31

The trajectory of the nominal robot is illustrated in Figure 15. The actual trajectory and

the trajectory that has been estimated by the EKF are almost identical to the desired

trajectory, although there are some fluctuations in the estimation and the actual

trajectory. This indicates the correct function of the simulation program. The robot

moves across the workspace at a 45-degree angle starting at the position (1,1) and

ending at the position (8,8). Surrounding the robot is the set of 41 landmarks that

represent the boundaries of the workspace.

Figure 16 shows the normalized innovation for this 200-second-long scenario. Each

color corresponds to the innovation regarding one landmark and comprises an angle

and a distance innovation. Although the duration of a timestep is 0.01 seconds, the

innovation is only updated each second, since a measurement update—which is

needed for the calculation of the innovation—only occurs every second resulting in a

total of 200 innovation updates. Due to the normalization, the actual values of the

innovation are not portrayed. Meaning the actual values of distance and angle

innovation are smaller than the normalized innovation values. The scatterplot can be

described as normally distributed with zero mean and 𝜎 ≈ 1.5, which is to be expected

for the normalized data.

4 Simulation 32

Figure 16: Normalized innovation for nominal simulation

Illustrated in Figure 17 are the 𝜒2-random-variables 𝜉 corresponding to the normalized

innovations from Figure 16. Each value uses a whole innovation vector (82 entries for

41 landmarks) for each timestep of a measurement update. All the values are in a

range of 120-240 with two values being above 240.

4 Simulation 33

Figure 17: Chi-square-values for nominal simulation

The scenario has been run five times. For each simulation a moving average of the

𝜒2-random-variables has been made, which is illustrated in Figure 18. The average is

calculated over a sliding window of length 20 across neighboring elements of the value

under consideration. A smaller window results in higher fluctuations of the moving

average and makes it more susceptible to noise. A larger window smooths the graph.

The length of 20 has been chosen as a compromise between the two options. The

moving average stays between approximately 150 and 190, with a minimum and

maximum at 153 and 192. Over the course of each simulation, the average is roughly

constant with some fluctuations.

4 Simulation 34

Figure 18: Moving average of chi-square-values of 5 nominal simulations

In Figure 19 the actual heading angle of the robot and the heading angle that has been

estimated by the EKF over the course of the simulation are illustrated. After starting

with the initial condition of a heading of 25°, the robot rotates towards the desired

heading in approximately five seconds. From there on the actual heading stays

relatively constant with fluctuations of ±3° around 45°. The estimated heading

fluctuates with approx. ±7° around 45°.

4 Simulation 35

Figure 19: Heading angle of the robot for nominal simulation

4.2 Spoofed measurements with large sudden changes

The next simulation considers the rotation of the landmarks to alter the measured

position and heading. This is a false data injection with large and sudden changes in

the injected data Figure 20 shows the simulation environment with the unaltered and

initial position of the landmarks marked with purple data points. Over the course of the

simulation, the set of landmarks is rotated through four different angles around the

origin. First, the set is rotated by 5° (blue data points) at zero seconds followed by

another rotation of 7° (red data points) at 50 seconds. For the third step, the set is

rotated by 13° (black data points) at 100 seconds and the final step is a rotation by 20°

(green data points) at 150 seconds. This corresponds to a total rotation of 45°. The

final position of the landmarks is indicated with green data points. The desired

trajectory, is displayed as a black line and runs in a 45° across the plane. The estimated

4 Simulation 36

trajectory is shown as an orange dashed line. At every rotation of the landmarks the

estimated trajectory jumps stepwise from the desired trajectory to the left. However,

after each rotation step, the EKF estimated heading of the robot stays at 45°. This is

the trajectory that is the final output of the EKF. The third trajectory is depicted in blue

and marks the actual trajectory of the robot. It diverges from the desired trajectory to

the right. Compared to the estimation there are no sudden changes in the trajectory,

but the heading angle changes during each rotation step. The actual trajectory cannot

be seen by the operator, who relies on a monitoring system to report changes in the

operation of the system. The representation of the x and y-coordinate over time has

been omitted, since they are very similar to the trajectories.

Figure 20: Robot trajectory with spoofed landmarks (spoofing occurring in 4 steps)

Figure 21 shows the normalized innovation of this scenario. For most of the time, the

innovation values vary around ±3.8. However, at the instant of every rotation step, the

innovation spikes with increasing magnitude. The first spike at zero seconds, which is

induced by a rotation of 5°, is hardly noticeable. The second spike at 50 seconds

4 Simulation 37

(rotation by 7°) has a maximum of approximately 6.7 and a minimum of -5.9. During

the third rotation of 13° at 100 seconds, the innovation spikes up to 13.2 and -15.6.

The last spike at 150 seconds (rotation by 20°) has a maximum and minimum of

approx. 25.9 and -17.2.

Figure 21: Normalized innovation for spoofing with large and sudden changes

In each case after the initial deviation, the innovation values decrease to the normal

variation over the course of 5 seconds at the largest disturbance. The convergence of

the innovation is illustrated in Figure 22, which is the enlarged at around 150 seconds,

when the 20° bias was added to the measurement. At the third spike it takes the

innovation about 4 seconds to reduce back to the expected range.

4 Simulation 38

Figure 22: Zoomed innovation plot for final false measurement injection

The 𝜒2-random-variables that have been calculated from the normalized innovation

are shown in Figure 23. As in the normalized innovation plot, the 𝜒2-random-variables

can be seen spiking at each false data injection. In this illustration a small spike at zero

seconds can be seen as well. Between the spikes, the 𝜒2 distribution is the same as

in Figure 17. The first spike has a maximum of approx. 286. The second of 443. The

third and fourth spike go up to 2541 and 12340 respectively. The gradual decrease

already mentioned regarding the innovation plots can also be seen.

4 Simulation 39

Figure 23: Chi-square-values for spoofing with large and sudden changes

Figure 24 shows the moving average of the 𝜒2-values of five different simulations. The

moving average consists of a sliding window of 20 timesteps centered around the value

considered and starts at approximately 195 and decreases after the first 10 timesteps

noticeably to approx. 175. The second rotation can be as a small bump between 44

and 63 seconds at roughly 195. The following two spikes can be seen more clearly

between 95 and 112 seconds at 395 and between 146 and 162 seconds at about 1180.

The behavior during each simulation is roughly the same.

4 Simulation 40

Figure 24: Moving average of chi-square-values of 5 for spoofing with large and
sudden changes

In Figure 25 the estimated and actual heading angle of the robot is illustrated. After

starting with an initial heading at zero seconds, the actual heading increases to approx.

40°. At 52 seconds, the heading decreases to 33°. The heading angle then jumps two

more times at 102 seconds and 152 seconds to 20° and finally to 0°. Over the course

of the whole simulation, the actual heading angle is subject to fluctuations of approx.

±3°. The estimated heading angle stays roughly constant over the course of the

simulation with fluctuations of ±5° around the 45°. At 102 and 152 seconds spikes up

to 62° and 73° can be seen. Potential spikes at the first and second rotation step can

hardly be seen.

4 Simulation 41

Figure 25: Heading angle of the robot for spoofing with large and sudden changes

4.3 Gradually spoofed measurements

The third scenario is a gradual rotation of the landmarks to alter the measured position

and heading. The simulation environment is shown in Figure 26 with the unaltered and

initial position of the landmarks marked with purple data points. Over the course of the

simulation, the set of landmarks is rotated gradually around the origin until reaching

45° (marked with green data points). The rotation angle is calculated using the current

timestep 𝑡.

𝛼𝑘 = 45° ∙
𝑡

200
 (4.3.1)

4 Simulation 42

Therefore, the rotation angle changes by 0.225° every measurement update.

As in the previous simulations, the desired trajectory, is a straight line at a 45° angle

and is displayed as a black line. The estimated trajectory is shown as an orange

dashed line and can be seen gradually diverging from the desired trajectory to the left.

The third trajectory is depicted in blue and marks the actual trajectory of the robot. It

gradually diverges from the desired trajectory to the right.

Figure 26: Gradually spoofed robot trajectory with landmarks

The normalized innovation as seen in Figure 27 ranges between -4 to 4 with a few

innovation values being higher or lower. The density of the innovation value distribution

increases when approaching zero as is expected for a normal distribution with zero

mean. Over the course of the simulation, no big deflections can be seen and the

distribution stays relatively constant.

4 Simulation 43

Figure 27: Normalized innovation for gradually spoofed simulation

The 𝜒2-random-variables of the normalized innovation can be seen in Figure 28. Most

of the values lie in a range between 140 and 240 with a maximum of approximately

280 and a minimum of 110. Over the course of the simulation no discernible change in

trend can is obvious.

4 Simulation 44

Figure 28: Chi-square-values for gradually spoofed simulation

The moving averages of the 𝜒2-random-variables of 5 simulations are illustrated in

Figure 29. As before, the average was taken over the nearest 20 neighboring values

of the corresponding value. Over the course of each of the simulations, the average

stays roughly between 160 and 180. Overall there is a slight upward trend in the data.

The moving average then stays roughly constant until it increases again at around 120

seconds until the end of the simulation.

4 Simulation 45

Figure 29: Moving average of chi-square-values of 5 gradually spoofed simulations

Figure 30 shows the actual heading angle (blue) and the estimated heading angle

(orange, dashed). The estimated heading angle after increasing from the initial heading

condition stays relatively constant over the course of the simulation at around 45° with

fluctuation of ±7°. The actual heading angle increases from the initial condition to the

desired 45° as well and overshoots to 49° at 6 seconds. After declining rapidly for 2

seconds to 43°, the heading angle gradually and linearly decreases with some

fluctuations until the end of the simulation, reaching a heading angle of 2°.

4 Simulation 46

Figure 30: Heading angle of the robot for gradually spoofed simulation

5 Interpretation 47

5 Interpretation

In this chapter, results of the previously presented simulations will be interpreted.

Based on the results conclusions will be drawn in the sense of the initial problem that

was to be explored.

5.1 Nominal case

As expected, the robot is following its desired trajectory when the measurement device

is not compromised. However, due to noise there are still some minor deviations that

impact the prediction as well as the measurements. On the one hand, predictions are

made on the assumption of a perfect environment. Since in a real-world application the

surface may be uneven and the wheels might slip from time to time this has to be

accounted for in the simulation as well by adding noise to the prediction model. The

same applies of the measurements. A LiDAR and any other measurement device are

subject to uncertainties that alter the measurements to a certain extent. The impact of

all the uncertainties can be seen in the innovation and 𝜒2-plots. In a perfect

environment, the expected innovation would be zero, since the predicted and the

actual measurement would not be different from one another. However, as shown in

Figure 16, the innovation looks more normally distributed, which can be expected since

the noise models implemented are gaussian. The presented results are used as

reference data for the following conclusions of the spoofed scenarios. After running

approximately 100 simulations (only five have been shown for illustration purposes),

the threshold has been chosen to be the moving average of the 𝜒2-random-variable of

195 as shown in Figure 31 (red horizontal line). The threshold serves the purpose of

determining whether the robot is behaving correctly. If the 𝜒2-random-variable rises

above this threshold, an alarm is triggered. Two simulations with the highest moving

average have been included in the presented figure. Therefore, it is highly unlikely that

the moving average in a nominal case would rise above the chosen threshold, which

is well above the maximal averages. The lower boundary in this illustration is

inconsequential, since the innovation values are squared. Therefore, lower 𝜒2-random-

variables correspond to innovation values closer to zero and not high negative values.

5 Interpretation 48

Figure 31: Moving average of the chi-square value with fault decision threshold

The heading angle as seen in Figure 19 expectedly fluctuates around the desired

heading angle of 45°, which is due to noise. The estimated heading angle is seen

fluctuating more than the actual heading angle, since the estimation is subject to noise

and the actual heading—although driven by the estimation—is unaltered. This

dependence of estimation and actual behavior of the robot can be seen in Figure 32,

which is an enlargement of Figure 19. Once the estimated heading angle spikes up

above 45° the robot accounts for that by lowering the heading angle and vice versa.

This uncertainty produces an alternating motion around the 45° desired heading.

5 Interpretation 49

Figure 32: Enlargement of the heading angle for nominal simulation

5.2 Spoofed measurements with large sudden changes

The scenario with sudden measurement changes drastically differs from the nominal

case, not only in terms of the trajectory but also regarding the innovation. In Figure 20

the estimated trajectory is seen jumping away from the desired trajectory during each

rotation step. Due to the rotation around the origin the measured heading angle of the

robot changes but also its position, which becomes clear when comparing the initial

and spoofed landmarks. However, the estimated heading angle stays relatively

constant at 45° between each step.

Note, that the steps marked red in Figure 33 occur just in a few measurement cycles,

since the rotation of the landmarks is executed in just one timestep and the EKF then

takes a few iterations to fully apply the changed measurement into the estimation

process.

5 Interpretation 50

The actual trajectory differs from the estimated one due to the injection of false data.

Since the only desired input, the operator is feeding into the system is the heading

angle and the velocity, which is reflected by the robot’s behavior, meaning the sudden

change in heading causes the robot to turn in the opposite direction. However, the

sudden difference in its measured position is not influencing the robot’s behavior, since

it is not a dictated system state. The actual heading of the robot changes each timestep

to maintain 45° in the changed set of landmarks; therefore, the estimated heading

stays roughly the same, since the heading based on the altered measurements during

each timestep is still 45°.

Figure 33: Marked rotation steps in trajectory

At each rotation the innovation and thus the 𝜒2-random-variables are distributed with

increasing magnitude. This is due to the increasing change in heading, but can also

be traced back to the change in distance because of the lengthening lever arm that

gets bigger as the robot drives away from the origin.

5 Interpretation 51

Following each rotation, the innovation declines after approximately five seconds back

to the level of the nominal performance. This is due to the nature of the Kalman Filter,

the estimation of the system states usually converges after a few iterations up to a

certain accuracy as long as the inputs don’t significantly change as seen in Figure 22.

Consequently, once the altered measurement is introduced, the estimated

measurement does not yet fully reflect that, since the prediction made with the

transition model is also used to calculate the estimate. The new estimate, which is not

consistent with the altered measurement is then used to calculate the next system

state resulting in a prediction that still differs a lot from the measurement. That means

that the sudden change of the measured positions is only taken fully into the estimation

process after a few iteration (approximately five seconds).

The moving average of the 𝜒2-random-variables compared to the fault detection

threshold marked in red paints a clear picture (Figure 34). Especially the average

during the last two rotation steps rises significantly above the previously defined

threshold. The second rotation does not cause the average to rise above the threshold

in all of the displayed simulations, although it stands out compared to surrounding

timesteps. Still the slight peak during the second rotation can be seen in Figure 23.

Shrinking the window, the average is derived from, could resolve this issue on the one

hand but would also make the detection mechanism more susceptible to false alarms

due to noise induced fluctuations. This implies that if the spoofed measurements

introduced by the false data injection are small enough, they may not be detectable.

That is, it may be impossible to separate the spoofing inputs from the noise.

5 Interpretation 52

Figure 34: Moving average of the chi-square value with threshold for spoofing with
large and sudden changes

The estimated and actual heading angle as displayed in Figure 25 shows stepwise

inconsistencies. The first rotation takes place at the beginning of the simulation. After

the initial condition is corrected, the estimated angle overshoots because of the first

rotation of 5°. The robot immediately accounts for that, by adjusting its heading angle

to 40°. The rotation spikes can be observed best at 100 and 150 seconds. At each

rotation, the estimation of the heading angle spikes for a few measurement cycles.

Since the operators input dictates a heading of 45°, the robot turns, causing the actual

heading angle to decrease even lower and the estimated heading angle to decrease

to the desired 45°. Once the estimated heading reaches 45° again, the robot stops

turning and only makes small heading adjustments to compensate for the small

fluctuations in heading caused by the noise.

5 Interpretation 53

5.3 Gradually spoofed measurements

Both the actual and estimated trajectory can be seen diverging from the desired one

as seen in Figure 26. Because of the gradual rotation, the estimated heading angle in

relation to the new and spoofed set of landmarks changes, causing the robot to

accommodate by turning in the opposite direction. The impact on the robot is as severe

as during the simulation with sudden measurement changes.

However, when looking at Figure 27, the normalized innovation looks similar to the

nominal simulation and just by looking at the plot, no significant difference can be

observed. The 𝜒2-random-variables in Figure 28 occasionally rise well above 246,

which was the maximum during the nominal scenario, but mainly stay in the range

between 120 and 240 as in the nominal experiment.

Figure 35: Moving average of the chi-square value with threshold for gradually
spoofed simulation

5 Interpretation 54

Looking at the moving average with the defined threshold in Figure 35, the average

can be seen rising above it, but only after the RV has moved far off the desired course.

What is particularly noticeable are the increases at 40 seconds and 180-190 seconds.

The second increase could be explained by the positioning of the landmarks seen in

Figure 36. Shown is the landmark location at 190 seconds (green). The robot can be

seen passing a landmark really close at the end of the trajectory (blue). While passing

a landmark in very close proximity, the orientation angle of this specific landmark

changes drastically over a short period of time, making fluctuations due to noise more

impactful and thus the measurements and predictions less accurate.

The rise at 40 seconds, however, cannot be explained this way, since during this time

period no landmark is in close proximity to the robot. Generally speaking a spike above

the given threshold can always occur, when the gaussian noise of prediction model

and measurements and the gradual spoofing constructively interfere with each other,

to add up to a high difference in prediction and measurement. Still it is surprising that

all of the simulations shown in Figure 35 behave in a relatively similar way.

Figure 36: Gradually spoofed trajectory with spoofed landmarks at 190 seconds

5 Interpretation 55

The estimated and actual heading angle in Figure 30 are consistent with the

observations made earlier. The actual heading angle gradually declines to account for

the rotation of the landmarks thus maintaining the estimated heading angle at approx.

45°. The estimated trajectory can still be seen diverging, since the estimation is partially

based on the measurement, which is based on the spoofed measurements.

Generally speaking, the gradual approach of injecting false data is really hard to detect.

Although the moving average in each nominal simulation did not rise above the

threshold, it cannot be said with complete certainty that it generally wouldn’t. Meaning

that there is still a risk of triggering false alarms. On the other hand, the probability of

detecting the false data attack is not nearly at 100%. In the selection of simulations

shown in Figure 35, only four out of five attacks would have been detected. It is the

user’s decision of either risking more false alarms or detecting less attacks. Still it has

to be stated, that the attack can also be tuned by i.e. decreasing the rotation rate of

the landmarks and thus making the attack even harder to detect.

It has been demonstrated that it is possible—with the appropriate procedure—to

disturb the nominal performance of the robotic system in a way that could be quite

difficult to detect.

6 Conclusion and outlook 56

6 Conclusion and outlook

To conclude the findings, it can be stated that it is generally possible to detect a false

data injection attack on a RV’s measurements with an EKF and a fault detection

mechanism, as long as the difference between prediction and measurement and thus

the innovation is high enough. This has been the case when the measurement is

changed through false data injection in a sudden and severe manner. To pick up the

initial thesis it is certainly possible to construct an attack that is nearly undetectable

with the measures introduced. Not only can the attack be considered stealthy, the

impact on the robot’s behavior is also severe causing it to diverge significantly from its

desired trajectory. As long as the difference between predicted and measured system

state is small (in the order of magnitude of the noise) it may be difficult for a fault

detection mechanism to distinguish intentionally altered measurements from noise.

However, a subtle difference between the nominal case and the gradually spoofed

simulations (small injected deviation each timestep) can still be observed. To increase

the capabilities of detecting an attack the threshold has to be lowered. This can be

achieved by using for example more sophisticated measuring devices or by improving

the model used for the prediction. This way on average the innovation could be

reduced resulting in lower 𝜒2-random-variables enabling the operator to lower the fault

detection threshold. However, the attacker could in turn adapt to the lowered threshold

by reducing the amount of deviation each timestep introduced into the system via false

data injection. For example, by rotating the artificial, spoofed landmarks at a slower

rate. Another approach could be to implement multiple different measuring devices, for

example a GNSS receiver to determine the position. This would create another layer

of redundancy but in the end these additional measuring devices could be attacked as

well.

Future work could look at different alterations of the spoofed landmarks. The

possibilities of the homogeneous transformation used to change the measurements

have been discussed in section 2.4. Conceivable would be gradual stretching, sheering

or translation. A constant rotation around the robot (and not the origin) would be

interesting as well, although more difficult to implement. Another interesting subject

could be the calculation of the probabilities of triggering false alarms. Since the noise

implemented into the measurements and the model used for the prediction are

6 Conclusion and outlook 57

normally distributed, a statement can be made on how high the innovation (which itself

is normally distributed) and thus the 𝜒2-random-variables are with what probability.

This can be compared to different fault detection thresholds. For each threshold a

statement could be made on how likely a false alarm would be.

The natural next step, however, would be an implementation into a simulation

environment for the TurtleBot. The manufacturer recommends the simulation

environment from Gazebo using the Robotic Operating System (ROS) [3]. After that,

an implementation into a physical TurtleBot 3 ‘Burger’ or even other two-wheeled

differentially steered robots could be done.

Sources 58

Sources

[1] K. Kim, J.S. Kim, S. Jeong, J.-H. Park, H.K. Kim, Cybersecurity for autonomous

vehicles: Review of attacks and defense, Computers & Security 103 (2021) pp.

102–150. https://doi.org/10.1016/j.cose.2020.102150.

[2] D. Morris, G. Madzudzo, A. Garcia-Perez, Cybersecurity threats in the auto

industry: Tensions in the knowledge environment, Technological Forecasting and

Social Change 157 (2020) pp. 102–120.

https://doi.org/10.1016/j.techfore.2020.120102.

[3] Open Source Team, TurtleBot 3 E-Manual.

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/ (accessed 13

July 2022).

[4] P. Dash, M. Karimibiuki, K. Pattabiraman, Stealthy Attacks against Robotic

Vehicles Protected by Control-based Intrusion Detection Techniques, Digital

Threats 2 (2021) pp. 1–25. https://doi.org/10.1145/3419474.

[5] F. Dušek, D. Honc, P. Rozsíval, Mathematical model of differentially steered

mobile robot, in: 18th International Conference on Process Control 14. -

17.06.2011.

[6] R. Permana Saputra, Implementation 2D EKF-Based Simultaneous Localisation

and Mapping for Mobile Robot. UNSW Australia Mechanical and Manufacturing

Engineering Masterthesis, (2015).

[7] J. Čerkala, T. Klein, A. Jadlovska, Modeling and Control of Mobile Robot with

Differential Chassis, Electrical Engineering and Informatics 6 proceedings of the

Faculty of Electrical Engineering and Informatics of the Technical University of

Košice (2015) pp. 651–656.

[8] A.A. Housein, G. Xingyu, W. Li, Y. Huang, Extended Kalman Filter Sensor Fusion

in Practice for Mobile Robot Localization, IJACSA 13 (2022).

https://doi.org/10.14569/IJACSA.2022.0130204.

[9] S.J. Julier, J.K. Uhlmann, New extension of the Kalman filter to nonlinear systems,

in: Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL,

USA, SPIE, 1997, p. 182.

[10] R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems,

Journal of Basic Engineering 82 (1960) pp. 35–45.

https://doi.org/10.1115/1.3662552.

Sources 59

[11] M.S. Grewal, A.P. Andrews, Kalman filtering: Theory and practice using

MATLAB®, Fourth edition, Wiley, Hoboken, New Jersey, 2015.

[12] P. Kim, Kalman filter for beginners: With MATLAB examples, Createspace, s.l.,

2011.

[13] D. Simon, Optimal state estimation: Kalman and nonlinear approaches, Wiley-

Interscience, Hoboken, N.J., 2006.

[14] I. Reid, Lecture Notes Estimation 2, 2001.

https://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf

(accessed 25 July 2022).

[15] A. Becker, Kalman Filter in one dimension.

https://www.kalmanfilter.net/kalman1d.html (accessed 24 August 2022).

[16] M. Fazekas, P. Gáspár, B. Németh, Calibration and Improvement of an Odometry

Model with Dynamic Wheel and Lateral Dynamics Integration, Sensors (Basel) 21

(2021). https://doi.org/10.3390/s21020337.

[17] Eckhardt Optics, Light Source Measurement.

https://www.eckop.com/applications/light-source-measurement/ (accessed 27

July 2022).

[18] C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere,

Springer Science+Business Media Inc, [New York], 2005.

[19] R. van der Heijden, T. Lukaseder, F. Kargl, Analyzing attacks on cooperative

adaptive cruise control (CACC), in: 2017 IEEE Vehicular Networking Conference

(VNC), Torino, IEEE, 2017, pp. 45–52.

[20] D. Marsh, Applied geometry for computer graphics and CAD: With 27 figures,

secondnd ed., Springer-Verlag, London, 2005.

[21] D.I. Urbina, J.A. Giraldo, A.A. Cardenas, N.O. Tippenhauer, J. Valente, M. Faisal,

J. Ruths, R. Candell, H. Sandberg, Limiting the Impact of Stealthy Attacks on

Industrial Control Systems, in: Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, Vienna Austria, ACM, New York, NY,

USA, 2016, pp. 1092–1105.

[22] R. Da, Failure detection of dynamical systems with the state chi-square test,

Journal of Guidance, Control, and Dynamics 17 (1994) pp. 271–277.

https://doi.org/10.2514/3.21193.

Sources 60

[23] A. Ugoni, B.F. Walker, THE CHI SQUARE TEST: An Introduction, COMSIG Rev.

4 (1995) pp. 61–64.

[24] M. Saadeh, MATLAB based PID controller.

https://www.mathworks.com/matlabcentral/fileexchange/35163-matlab-based-

pid-controller (accessed 25 July 2022).

[25] M. Huba, D. Vrancic, Tuning of PID Control for the Double Integrator Plus Dead

Time Model by Modified Real Dominant Pole and Performance Portrait Methods,

Mathematics 10 (2022). https://doi.org/10.3390/math10060971.

List of Figures 61

List of Figures

Figure 1: Differentially steered robot (TurtleBot 3 ‘Burger’) [3] 1

Figure 2: Illustration of the Kalman Filter algorithm [14] .. 9

Figure 3: Visualization of the influence of the Kalman Gain (low Gain) [15] 10

Figure 4: Schematic illustration of LiDAR measurement process [17] 11

Figure 5: 360° Laser Distance Sensor LDS-01 (LiDAR) .. 12

Figure 6: LiDAR measurements of known landmarks ... 13

Figure 7: Examples of Landmark Transformation .. 16

Figure 8: Chi-Square Distribution .. 17

Figure 9: Return values of the atan2 function .. 18

Figure 10: Block diagram closed loop PID Controller .. 21

Figure 11: Waypoint based trajectory of the robot with different damping coefficients

 .. 22

Figure 12: Angular velocity of each wheel ... 23

Figure 13: Desired trajectories and landmarks .. 25

Figure 14: Illustration of the workflow of the Simulation .. 26

Figure 15: Nominal robot trajectory with landmarks for localization 30

Figure 16: Normalized innovation for nominal simulation .. 32

Figure 17: Chi-square-values for nominal simulation .. 33

Figure 18: Moving average of chi-square-values of 5 nominal simulations 34

Figure 19: Heading angle of the robot for nominal simulation 35

Figure 20: Robot trajectory with spoofed landmarks (spoofing occurring in 4 steps) . 36

Figure 21: Normalized innovation for spoofing with large and sudden changes 37

Figure 22: Zoomed innovation plot for final false measurement injection 38

Figure 23: Chi-square-values for spoofing with large and sudden changes 39

Figure 24: Moving average of chi-square-values of 5 for spoofing with large and sudden

changes ... 40

Figure 25: Heading angle of the robot for spoofing with large and sudden changes . 41

Figure 26: Gradually spoofed robot trajectory with landmarks 42

Figure 27: Normalized innovation for gradually spoofed simulation 43

Figure 28: Chi-square-values for gradually spoofed simulation 44

Figure 29: Moving average of chi-square-values of 5 gradually spoofed simulations 45

List of Figures 62

Figure 30: Heading angle of the robot for gradually spoofed simulation 46

Figure 31: Moving average of the chi-square value with fault decision threshold 48

Figure 32: Enlargement of the heading angle for nominal simulation 49

Figure 33: Marked rotation steps in trajectory ... 50

Figure 34: Moving average of the chi-square value with threshold for spoofing with

large and sudden changes .. 52

Figure 35: Moving average of the chi-square value with threshold for gradually spoofed

simulation .. 53

Figure 36: Gradually spoofed trajectory with spoofed landmarks at 190 seconds 54

