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Abstract I 

Abstract 

Today, robotic vehicles (RV) play an essential role in both modern industry and the 

military. More and more RVs become autonomously operated and are prone to cyber-

attacks of their embedded control systems. These attacks can be detected and 

prevented with the appropriate tools but can also be almost undetectable if executed 

correctly.  

In this work, a type of cyber-attack, namely false data injection is performed to spoof 

an Extended Kalman Filter (EKF) and a conventional fault detection mechanism is 

used to attempt to identify the attack. A two-wheeled differentially steered robotic 

vehicle based on the TurtleBot 3 ‘Burger’ is simulated in MATLAB. The navigation 

system is attacked by injecting false data into the measurement device - a LiDAR 

sensor. The false data injection alters the range and bearing measurements and aims 

to change the measured heading angle of the robot and alter its trajectory. The attack 

is then tuned to make it undetectable by the implemented counter measures.  

In this thesis, it is demonstrated that false data injection can be executed in such a way 

that it is almost impossible for the fault detection mechanism to perceive an attack. The 

simulations have shown that the key to stealth is to inject the false data in a slow and 

steady manner to deceive the EKF by steering its output. The deviation introduced is 

mostly unnoticeable as long as it is in the same order of magnitude of the noise, which 

is part of the robot’s navigation system. In contrast, sudden and severe changes of 

measurement data are detected easily by the EKF and the fault detection mechanism.  
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1 Introduction and Motivation 

As more and more industrial sectors experience an increase in use of robotic vehicles 

(RVs) in manufacturing, logistics etc., the reliance on these systems rises to the same 

degree. In the military, unmanned ground and unmanned aerial vehicles have reached 

a high significance and are indispensable, both in close quarter and long-range 

reconnaissance.  Many of these systems are autonomously operated and usually not 

well protected, which leads to a rising threat of cyber-attacks on the control and 

navigation systems of those RVs [1,2]. Since RVs rely heavily on sensors and 

actuators for perception and navigation, they are especially prone to attacks aiming to 

disrupt these systems.  

 

Figure 1: Differentially steered robot (TurtleBot 3 ‘Burger’) [3] 

One way to perform an attack on a RV control system is through false data injection 

[4]. In this work, a differentially steered two-wheeled RV (Figure 1) is simulated in 

MATLAB. The measurement device, namely a LiDAR, is then influenced via false data 

injection. An approach from two sides is taken: The attacking side, which is aiming to 

disrupt the RV and the defending side, which tries to ensure the functionality of the RV 

and detect ongoing attacks. On the one hand, an attempt is made to fabricate attacks 

on the simulated RV that have a severe impact on the behavior of the robot (such as 

changing its course) but are ideally undetectable. On the other hand, an Extended 

Kalman Filter (EKF) is integrated into the simulated system, which improves navigation 
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capabilities and feeds a fault detection mechanism with the innovation of predicted and 

measured system states to trigger an alarm in the event of an attack. The difficulty in 

designing both the EKF and the fault detection mechanism is to be able to detect even 

small attacks executed over a period of time. Such attacks can lead to a severe failure 

without raising any alarm [4]. 

Scope 

In the context of this work, the question shall be answered whether it is possible to 

construct an attack that overcomes the fault detection mechanism, remains unnoticed 

and at the same time strongly influences the behavior of the robot. A simulation has 

been made with the objective of implementing it into a physical system in the future. 

Outline 

The second chapter will address the key aspects of the background material. In the 

third chapter, the MATLAB script used for simulation is explained. The fourth chapter 

presents the results, that have been generated using MATLAB script. These results 

are interpreted in the fifth chapter followed by a Conclusion of the findings of this thesis 

and an Outlook in the sixth chapter. 
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2 Theoretical Background 

The following chapter provides the background material necessary for the 

understanding of this thesis.  

 

2.1 Two wheeled robotic vehicles and dynamics model 

The simulated platform used for the various experiments is a two wheeled differentially 

steered robot relating to the TurtleBot 3 ‘Burger’. To properly represent and simulate 

the behavior of such a robotic system, a transition model has been derived to construct 

predictions for the expected next system state based on the previous system state and 

the control input. It transitions the previous system state into the next. To achieve a 

more detailed simulation of a two wheeled differentially steered robot, the dynamics 

model of Dusek et al. [5] has been used and appropriately modified. This model allows 

us to simulate the system more accurately, considering the dynamics describing wheel 

speed dependency on the motor supply voltages, construction, geometry and other 

parameters of the chassis and motors.  

The input for the dynamics model can be described as 𝑢𝐿 and 𝑢𝑃, which are signals 

that control the supply voltage of each motor and are fed into the linear part of the 

detailed system model. The linear model, that describes the dynamics of the robot 

(motor current and wheel rates), can be expressed as a standard state-space model 

in matrix form [5]: 

𝑑𝑥

𝑑𝑡
= 𝑨𝑥 + 𝑩𝑢 (2.1.1) 

The output equation gives the velocity 𝜈 and the heading angle rate 𝜔. 

𝑦 = 𝑪𝑥 (2.1.2) 

The state control and output vectors are: 

𝒙 = [

𝒊𝒍
𝒊𝒓
𝝎𝒍

𝝎𝒓

]    𝒖 = [
𝑼𝒍

𝑼𝒓
]    𝒚 = [

𝒗
𝝎

] (2.1.3) 
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Some substitutions are introduced to compress the space-matrices as seen in 

2.1.4 - 2.1.7: 

𝑎𝑙 = 𝑘𝑟 +
𝑘𝑣𝑙𝑟𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
                     𝑎𝑙 = 𝑘𝑟 +

𝑘𝑣𝑙𝑟𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟
 

𝑏𝑙 = 𝐽 +
𝑚𝑙𝑟𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
                     𝑏𝑟 = 𝐽 +

𝑚𝑙𝑙𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟
 

𝑐𝑙 = 𝑘𝑟𝑙𝑙 +
𝑘𝜔𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
                     𝑐𝑟 = 𝑘𝑟𝑙𝑟 +

𝑘𝜔𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟
 

𝑑𝑙 = 𝐽𝑙𝑙 +
𝐽𝐵𝑟𝐺

2

𝑙𝑙 + 𝑙𝑟
                     𝑑𝑟 = 𝐽𝑙𝑟 +

𝐽𝐵𝑟𝐺
2

𝑙𝑙 + 𝑙𝑟
 

 

(2.1.4) 

 

𝑨 =

[
 
 
 
 
 
 
 
 −

𝑅 + 𝑅𝑧

𝐿
−

𝑅𝑧

𝐿

−
𝑅𝑧

𝐿
−

𝑅 + 𝑅𝑧

𝐿

−
𝐾

𝐿
                    0

0                    −
𝐾

𝐿
𝐾(𝑑𝑟 + 𝑏𝑟𝑙𝑙)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝐾(𝑑𝑟 − 𝑏𝑟𝑙𝑙)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝐾(𝑑𝑙 − 𝑏𝑙𝑙𝑙)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

𝐾(𝑑𝑙 + 𝑏𝑙𝑙𝑟)

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

−
𝑑𝑟𝑎𝑙 + 𝑏𝑟𝑐𝑙

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙
−

𝑑𝑟𝑎𝑟 + 𝑏𝑟𝑐𝑟

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙

−
𝑑𝑙𝑎𝑙 + 𝑏𝑙𝑐𝑙

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙
−

𝑑𝑙𝑎𝑟 + 𝑏𝑙𝑐𝑟

𝑏𝑙𝑑𝑟 + 𝑏𝑟𝑑𝑙 ]
 
 
 
 
 
 
 
 

 (2.1.5) 

 

𝑩 =

[
 
 
 
 
𝑈0

𝐿
0
0
0

0
𝑈0

𝐿
0
0 ]

 
 
 
 

 (2.1.6) 

 

𝑪 =

[
 
 
 0 0

𝑙𝑟𝑟𝐺
𝑙𝑙 + 𝑙𝑟

𝑙𝑙𝑟𝐺
𝑙𝑙 + 𝑙𝑟

0 0 −
𝑟𝐺

𝑙𝑙 + 𝑙𝑟

𝑟𝐺
𝑙𝑙 + 𝑙𝑟]

 
 
 
 (2.1.7) 

 

Notation Meaning 

𝑙𝑙 distance of the left wheel from center of axis [m] 

𝑙𝑟 distance of the right wheel from center of axis [m] 

𝑖𝑙 current of the left motor [A] 
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𝑖𝑟 current of the right motor [A] 

𝜔𝑙 angular velocity of the left rotor [1/s] 

𝜔𝑟 angular velocity of the right rotor [1/s] 

𝑘𝑟 coefficient of the resistance against rotating of rotor and gearbox [kg/s] 

𝑘𝑣 coefficient of the resistance against linear motion [kg/s] 

𝑘𝜔 coefficient of the resistance against robot rotation [kg*m2/s] 

𝑚 total weight of the robot [kg] 

𝐽 total moment of inertia of rotor and gearbox [kg*m2] 

𝐽𝐵 total moment of inertia of robot [kg*m2] 

𝑟𝐺 reduced radius of the wheel [m] 

𝑅 motor winding resistivity [Ω] 

𝑅𝑍 source resistance [Ω] 

𝐾 electromotoric constant [kg*m2/s2*A] 

𝐿 motor inductance [H] 

𝑈0 source voltage [V] 

Table 1: DC Motor and chassis parameters 

The output variables of the dynamics model (actual robot response) are fed into the 

transition model for the navigation filter and are from now on considered the new 

control input vector 𝑢𝑘, consisting of the instantaneous angular and translational 

velocity derived from odometry. 

For the navigation filter, the input needed to derive the next filter state (𝑘 + 1) consists 

of two vectors, the vector of the current state (Xk), representing the location and 

orientation of the robot in a global coordinate frame and the input vector (uk), 

representing the steering commands of the robot. 

𝑋𝑘+1  =  𝑓(𝑋𝑘 , 𝑢𝑘)  (2.1.8) 

 

𝑋𝑘  = [

 𝑥𝑘

𝑦𝑘

𝜃𝑘

]  (2.1.9) 
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𝑢𝑘  = [
𝑣𝑘

𝜔𝑘
]  (2.1.10) 

 

The state vector consists of the position and orientation of the Robot at a given point 

in time (𝑘), which can be described with two coordinates on a 2D plane (x, y) and an 

angle of orientation (θ) relative to the y-axis of the global coordinate frame. The input 

vector is composed of the translational velocity (𝑣)  and the angular velocity (𝜔), which 

are derived from their respective equations of motion. The revolutions of the right and 

left wheel (𝜔𝑟 , 𝜔𝑙) are taken from the odometry sensors of the respective wheel. [6] 

𝑣𝑘 =
𝜔𝑟𝑘

∙ 𝑅 + 𝜔𝑙𝑘
∙ 𝑅

2
 (2.1.11) 

 

𝜔𝑘 =
𝜔𝑙𝑘

∙ 𝑅 − 𝜔𝑟𝑘
∙ 𝑅

𝑏
  (2.1.12) 

 

The transition model from time 𝑘 to 𝑘 + 1 for the system can be expressed as  

Xk+1 = f(Xk, uk)  = [

 xk+1

yk+1

θk+1

] = [

xk

yk

θk

] + 𝑇 [

(𝑣k + 𝑑𝑣) . cos(θk)
(𝑣k + 𝑑𝑣) . sin(θk)

ωk + 𝑑𝜔
] (2.1.13) 

 

in which 𝑇 is the duration between each timestep 𝑘. 

The transition model (2.1.13) only applies accurately in ideal conditions. The model 

doesn’t take an uneven surface, slipping of the wheels or the impact of friction or the 

general noise of the measurement into account. To accommodate for that fact, a noise 

model is applied to the transition model (𝑑𝑣, 𝑑𝜔). The noise model has the 

characteristics of normal distribution with the mean of zero and is applied to the 

odometry measurements of each wheel and thus to the translational and angular 

velocity. [5–8]  
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2.2 Extended Kalman Filter 

The Kalman Filter is an algorithm that provides estimates of various unknown variables 

by using a series of noisy measurements observed over time. The output estimates of 

the Kalman Filter usually are more accurate than those based on a single 

measurement alone. Mathematical models can be added as constraints to account for 

the dynamic relationship between each system state. As an example, equations of 

motion can be used to precisely estimate changing positions and speeds. It has to be 

stated that the Kalman Filter can only be applied to linear problems. For nonlinear 

systems, a nonlinear approach has to be taken in the form of an Unscented Kalman 

Filter (UKF) or Extended Kalman Filter (EKF). For highly nonlinear systems, usually a 

UKF approach is taken. But for an adequately accurate depiction of the behavior of a 

two wheeled robot and its well-defined dynamics model, an EKF approach is sufficient 

to reliably represent the behavior of the system. The EKF linearizes about an estimate 

of the current mean and covariance. To achieve this linearization the Jacobian (𝐹,𝐻) 

of the kinematics transition model (𝑓), and the measurement model (ℎ) are used. 

[6,9-13]   

𝐹𝑥(𝑘)  =  
𝛿𝑓(𝑋, 𝑢)

𝛿(𝑥, 𝑦, 𝜃)
= [

1 0 −𝑇 ∗ sin (𝜃𝑘)
0 1 𝑇 ∗ cos (𝜃𝑘)
0 0 1

] (2.2.1) 

 

𝑧𝑝𝑟𝑒𝑑𝑘
= ℎ(𝑋𝑘, 𝐿𝑘) =

[
 
 
 
 √(𝑥𝑙𝑘

− 𝑥𝑝𝑟𝑒𝑑𝑘
)
2

+ (𝑦𝑙𝑘
− 𝑦𝑝𝑟𝑒𝑑𝑘

)
2

tan−1 (
𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘

𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

) + 𝜃𝑘 +
𝜋

2
 

]
 
 
 
 

 (2.2.2) 

 

𝐻(𝑘) =  
𝛿ℎ(𝑋)

𝛿𝑋

=

[
 
 
 
 
 
 

𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2
 

 
𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2
 

0

𝑦𝑙𝑘
− 𝑦𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2
 

𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

√(𝑥𝑙𝑘
− 𝑥𝑝𝑟𝑒𝑑𝑘

)
2
+ (𝑦𝑙𝑘

− 𝑦𝑝𝑟𝑒𝑑𝑘
)
2
 

1

]
 
 
 
 
 
 

 

 

(2.2.3) 
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Here 𝑥𝑙, 𝑦𝑙 are the locations of the different landmarks and 𝑥𝑝𝑟𝑒𝑑, 𝑦𝑝𝑟𝑒𝑑 are the predicted 

coordinates of the RV. The index 𝑘 represents the current timestep. 

The algorithm in the form of a block diagram is illustrated in Figure 2. The input 𝑢𝑘 is 

not altered before entering the Filter, meaning Block G equals 1 in this example. For 

the prediction phase, the Kalman filter produces estimates of the current state 

variables 𝑋(𝑥, 𝑦, 𝜃) using the transition model (Block F) already presented in section 

2.1 along with their covariance 𝑃, the state variables of the previous timestep and the 

input uk. The covariance is updated during each iteration.  

𝑃𝑘+1 = 𝐹𝑥𝑘
∙ 𝑃𝑘 ∙  𝐹𝑥𝑘

𝑇 + 𝑄𝑓𝑘
 (2.2.4) 

 

For 𝑃, the covariance of the noise of the kinematics model (𝑄𝑓) is calculated with the 

Jacobian of the kinematics model (𝐹) with respect to the input (𝑢𝑘) and the input 

measurement covariance (𝑄𝑢), which consists of the input noise of the translational 

and angular velocity (𝑞𝑣, 𝑞𝜔). 

𝑄𝑓𝑘
= 𝐹𝑢𝑘

∙ 𝑄𝑢 ∙ 𝐹𝑢𝑘
𝑇  (2.2.5) 

 

𝐹𝑢(𝑘) =  
𝛿𝑓(𝑋, 𝑢)

𝛿(𝑣, 𝜔)
= [

𝑇 ∙ cos (𝜃𝑘) 0
𝑇 ∙ sin (𝜃𝑘) 0

0 𝑇

] (2.2.6) 

 

𝑄𝑢 = [
𝑞𝑣

2 0

0 𝑞𝜔
2 ] (2.2.7) 
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Figure 2: Illustration of the Kalman Filter algorithm [14] 

Simultaneously, the installed LiDAR measures distance and bearing (𝑟𝑘, 𝜙𝑘) from the 

rover to a set of landmarks located around the RV. From the predicted state a set of 

predicted distance and bearing measurements is also calculated using the 

measurement model (ℎ(𝑋𝑘, 𝐿𝑘)) (Block H). These measurements and predicted 

measurements are then used to calculate the innovation (whitening), which is usually 

a good indicator for the functionality of the system. Ideally the innovation, the difference 

between measurement and prediction, should be small but is usually not zero due to 

uncertainties in the kinematics transition model and noisy measurements.  

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑘 = 𝜈𝑘 = 𝑧𝑎𝑐𝑡𝑢𝑎𝑙𝑘 − 𝑧𝑝𝑟𝑒𝑑𝑘
= 𝑧𝑎𝑐𝑡𝑢𝑎𝑙𝑘 − ℎ(𝑋𝑘, 𝐿𝑘) (2.2.8) 

 

Once the innovation is calculated, the predicted estimates of the system state are 

updated (𝑋𝑝𝑟𝑒𝑑,𝑢𝑝𝑑𝑎𝑡𝑒𝑑) based on the difference of the measured and the predicted 

state (𝜈). The innovation covariance (𝑆) is also calculated. The innovation covariance 

is a measure for the confidence in a measurement. If 𝑆 is high, the filter has a lower 

confidence in the reliability of those measurements and vice versa. The innovation 

covariance is the used for the derivation of the Kalman gain (𝐾) (Block K), which is the 

weight given to the measurements versus the current prediction. The relevant 

equations are: 
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𝑆𝑘 = 𝐻𝑘 ∙ 𝑃𝑘 ∙ 𝐻𝑘
𝑇 + 𝑅𝑘 (2.2.9) 

 

𝐾𝑘 =
𝑃𝑘 ∙ 𝐻𝑘

𝑇

𝑆𝑘
 (2.2.10) 

 

𝑋𝑝𝑟𝑒𝑑,𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑘
= 𝑋𝑝𝑟𝑒𝑑𝑘

+ 𝐾𝑘 ∙ 𝜈𝑘 (2.2.11) 

 

 

 

Figure 3: Visualization of the influence of the Kalman Gain (low Gain) [15] 

The impact of the Kalman Gain for the estimation process is illustrated in Figure 3.  For 

a large gain (high prediction uncertainty and low measurement uncertainty), the 

Kalman Filter prefers the measurements over the prediction and thus adapts to 

changing measurements and its noise more responsively resulting in a possibly jumpy 

trajectory. On the other hand, a relatively low Kalman gain close to zero would result 

in a smoother trajectory, since the filter conforms to the process model more closely 

decreasing the impact of measurement noise but also decreasing its responsiveness 

to changing measurements.  

The updated state vector (correction) is then fed back into the algorithm and is then 

used as the new current state vector to calculate the next predicted system state. The 
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algorithm is recursive. It can operate in real time, using only the present input 

measurements and the previously calculated system state and its uncertainty matrix, 

no additional past information is required. [6,8,9,14,16] 

2.3 Measurement devices 

To update the estimated system state of the RV, a measurement of the current system 

state needs to be made, which is then compared to the estimated position from the 

process model. The measurements are generated by a LiDAR, which is measuring the 

distance and bearing to a set of pre-defined landmarks around the RV.  

LiDAR stands for Light Detection and Ranging. Rapid laser pulses are fired by a 

Transmitter and reflected by any surface surrounding the RV and then captured by a 

sensor (receiver). This process is illustrated in Figure 4. 

 

Figure 4: Schematic illustration of LiDAR measurement process [17] 

The time difference between the emission and detection of each reflected laser pulse 

is then measured. Using the speed of light, the distances between the sensor and a 

given object can be calculated. The duration for the return of each pulse (𝑡) is multiplied 

by the speed of light (𝑐) and then divided by two, since the measured duration 

corresponds to the travel time to the landmark and back to the sensor. [18] 

𝑑 =
𝑐 ∙ 𝑡

2
 (2.3.1) 

 

The laser pulses that are fired at different horizontal and—in a 3D environment—

vertical angles can generate point clouds, which can be used to digitally map the 

surroundings of the RV. Given the location of a set of landmarks around the RV, one 
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is able to determine (to some level of accuracy) the location of the RV using the 

distance and angle measurements (multiangulateration) to each landmark. The 

TurtleBot possesses a 360° LiDAR with SLAM capabilities (Simultaneous Localization 

And Mapping) which creates a map using the measurement data generated by the 

LiDAR using a version of the EKF. [3] 

 

Figure 5: 360° Laser Distance Sensor LDS-01 (LiDAR) 

The mapping capabilities are not used in the simulation. Instead a set of known 

landmarks is created and used to measure the RV position using only the LiDAR. The 

constellation of landmarks and the multiangulateration process is illustrated in Figure 

6. The landmarks are portrayed as blue circles surrounding the 10x10m test area. In 

this situation the RV is located at the coordinates (1,1) and is marked with a red X. 

Each LiDAR pulse that gets reflected back from a landmark is portrayed as a red dotted 

line.  
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Figure 6: LiDAR measurements of known landmarks 

  

2.4 False Data Injection 

False data injection is a form of attack against a control system, for example a 

navigation system of a robotic vehicle, in which the attacker injects malicious data, i.e. 

measurements, that can mislead the state estimation process without triggering and 

alarm. The incorrectly estimated system state can then lead the system to take 

unpredicted action like deviating from a desired trajectory. Since the measurements 

used for navigation and estimation are subject to noise, there usually is some tolerance 

when it comes to identifying deviations because the naturally occurring noise would 

cause a fault detection mechanism to trigger false alarms. To stay undetectable, the 

deviation caused by the attack must be smaller than a certain threshold set by the 

system operator. An approach to derive the detection threshold of a RV has been made 
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by Dash et al. [4]. They have been reverse-engineering the control state estimation 

model without having root access to the operating system. [4,19] 

In this work, false data is injected in the form of altered LiDAR measurements. These 

LiDAR measurements consist of a distance (𝑟) and angle (𝜙) component. 

𝑧𝑘 = [
𝑟𝑘
𝜙𝑘

] (2.4.1) 

 

Here 𝑟𝑘 is the distance between the robot and each specific landmark and 𝜙𝑘 the 

bearing of each landmark relative to the robot and its own orientation. Through 

multiangulateration the system is able to derive a measured position from the LiDAR 

output. To alter this position and to influence every measurement in such a way that 

the compromised measurement still results in one exact position, the set of landmarks 

may be changed by using homogeneous transformation matrices [20] instead of 

applying a bias value to each of the measurements individually. This allows for 

stretching and compressing, sheering and rotation of the set of landmarks. In a two-

dimensional environment, the homogeneous transformation matrices are in a 3x3 

dimension. Therefore, the 2D coordinates of the landmarks must be supplemented by 

an entry with the value zero. After the transformation this third entry is deleted again.  

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛:  𝑇𝑙 = [
1 0 𝑘
0 1 𝑙
0 0 1

] (2.4.2) 

 

𝑆ℎ𝑒𝑎𝑟𝑥:  𝑆𝑥 = [ 
1 𝑚 0
0 1 0
0 0 1

] (2.4.3) 

 

𝑆ℎ𝑒𝑎𝑟𝑦:  𝑆𝑦 = [
1 0 0
𝑛 1 0
0 0 1

] (2.4.4) 

 

𝑆𝑡𝑟𝑒𝑡𝑐ℎ:  𝑆𝑡 = [ 
𝑝 0 0
0 𝑞 0
0 0 1

] (2.4.5) 
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𝑅𝑜𝑡𝑎𝑡𝑒:  𝑅 = [
cos (𝛼) sin (𝛼) 0
−sin (𝛼) cos (𝛼) 0

0 0 1

 ] (2.4.6) 

 

These matrices (Equation 2.4.2 - 2.4.6) can be combined and the factors 

(𝑘, 𝑙, 𝑚, 𝑛, 𝑝, 𝑞, 𝛼) can be tuned to arrange the set of landmarks in a desired way or 

change them over the course of a time period to provide a fake world map for the 

measurement instruments. The transformation matrix is then multiplied with the 

expanded position vector. [20] 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛:  𝑇𝑟 =  𝑇𝑙 ∙ 𝑆𝑥 ∙ 𝑆𝑦 ∙ 𝑆𝑡 ∙ 𝑅 (2.4.7) 

 

𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑,𝑙 = 𝑇𝑟 ∙ [
𝑥𝑙

𝑦𝑙

0
] (2.4.8) 

 

Figure 7 shows an example of transformed landmarks by using the homogeneous 

transformation. In this example, the original set of landmarks (blue) has been 

translationally moved 5 meters down and 5 meters to the left (orange). Afterwards it 

has been rotated 45 degrees around the origin (yellow) and stretched by a factor of 1.5 

to either side (purple). Finally, the landmarks are sheared relative to the x-axis (green). 

Clearly, the transformed landmarks can be used to represent a different world, which 

may be used to spoof a navigation system. 
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Figure 7: Examples of Landmark Transformation 

 

2.5 Fault Detection Mechanism 

It is relatively easy to uncover severe attacks and failures on a system like an 

autonomous vehicle by simply observing the deviation from the predicted system state 

[4,21]. However, inconspicuous attacks require more advanced techniques based on 

error estimation and decision theory to get detected. Usually, an operator or monitoring 

system has access to the innovation, hence the difference between the predicted 

system state through the process model and a measured system state. To recognize 

an attack on a robotic vehicle, a fault detection mechanism has to be implemented that 

evaluates the accessible system or process data and produces an alarm at a given 

threshold.  

As a statistical hypothesis testing method for examining whether or not a random 

Gaussian vector has the assumed mean and covariance, the 𝜒2-test (chi-square-test) 
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is widely applied for detecting soft failures in dynamical systems [14]. The 𝜒2 random 

variable 𝜉 for each timestep is calculated using the following equation. Here 𝜈 is the 

innovation of each timestep and 𝑆 the covariance of the innovation. The ~ means that 

𝜉 follows a 𝜒2 probability distribution.  

𝜉𝑘   = ∑ 𝜈𝑖
𝑇 ∙ 𝑆𝑖

−1 ∙ 𝜈𝑖

𝑘

𝑖=𝑘−𝑁+1

 ~ 𝜒𝑁
2  (2.5.1) 

 

After calculating 𝜉, it is compared to a certain chosen decision threshold. This threshold 

is defined through the degrees of freedom and the area of the distribution to the left of 

a critical value (rejection area). This becomes clearer looking at a 𝜒2 distribution. In 

this example, seen in Figure 8, the rejection area is marked red. If 𝜉 is inside the red 

area, i.e. higher than the critical value (in this example at 10.2) the system has detected 

a failure, resulting in an error which is seen by the operator. Conversely, this means 

that the system is behaving correctly (by the definition of the operator) when 𝜉 is 

smaller than the critical value. [22,23] 

 

Figure 8: Chi-Square Distribution 
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3 MATLAB Simulation  

The following chapter shall showcase two approaches taken to simulate the behavior 

of the robot in MATLAB and—for the second approach—the implementation of false 

data injection the Extended Kalman Filter and the detection mechanism. 

 

3.1 Waypoint based trajectory 

For the first attempt, the input that the operator is feeding into the system is a waypoint 

composed of a x- and y-coordinate. Using the desired waypoint and the initial system 

state of the robot, the desired heading is determined and thus the revolution speed of 

each wheel necessary to achieve this heading. The desired heading (𝜃) can be 

calculated using the atan2(x, y) function in MATLAB. The input variables are the 

differences of the x- and y-coordinates. The atan2(x, y) function returns values in the 

closed interval [-pi, pi] based on the values of x and y, as shown in Figure 9. 

 

Figure 9: Return values of the atan2 function 

The desired velocity of each timestep is calculated using: 

𝑣𝑑𝑒𝑠 =
√(𝑦𝑑𝑒𝑠 − 𝑦𝑘)2 + (𝑥𝑑𝑒𝑠 − 𝑥𝑘)2

√(𝑦𝑑𝑒𝑠 − 𝑦𝑠𝑡𝑎𝑟𝑡)2 + (𝑥𝑑𝑒𝑠 − 𝑥𝑠𝑡𝑎𝑟𝑡)2
∙ 𝑣𝑚𝑎𝑥 + 𝑣𝑚𝑖𝑛 (3.1.1) 
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The numerator consists of the distance between the robot and the waypoint during 

each timestep the denominator however consists of the distance between the starting 

point and the waypoint. This fraction is multiplied by a given maximum velocity (𝑣𝑚𝑎𝑥). 

It becomes clear, that the desired velocity decreases with the decreasing distance 

between the robot and the waypoint. To account for that, a constant minimal velocity 

(𝑣𝑚𝑖𝑛) is added so that the approach doesn’t become too slow. This minimal velocity 

can be set however deemed necessary by the operator. After calculating the desired 

heading and velocity they are each fed into a PID controller and compared to the 

current heading and velocity to calculate the current error.  

𝐸𝑟𝑟𝑜𝑟𝜃 = 𝜃𝑑𝑒𝑠 − 𝜃𝑘 (3.1.2) 

 

𝐸𝑟𝑟𝑜𝑟𝑣 = 𝑣𝑑𝑒𝑠 − 𝑣𝑘 (3.1.3) 

 

The PID Controller consists of a proportional (𝑃), integral (𝐼) and derivative (𝐷) 

component, which are calculated using the error. The integral terms of the PID 

controller are added up. [24] 

𝑃𝑘+1 = 𝐸𝑟𝑟𝑜𝑟𝑘+1 (3.1.4) 

 

𝐼𝑘+1 = (𝐸𝑟𝑟𝑜𝑟𝑘+1 + 𝐸𝑟𝑟𝑜𝑟𝑘) ∙
𝑑𝑡

2
 (3.1.5) 

 

𝐷𝑘+1 =
(𝐸𝑟𝑟𝑜𝑟𝑘+1 − 𝐸𝑟𝑟𝑜𝑟𝑘)

𝑑𝑡
 (3.1.6) 

 

The three PID terms are then summed up with a respective gain (𝐾). 

𝑃𝐼𝐷𝑘+1 = 𝐾𝑝 ∙ 𝑃𝑘 + 𝐾𝑖 ∙ 𝐼𝑘+1 + 𝐾𝑑 ∙ 𝐷𝑘 (3.1.7) 

 

The PID term is then fed into two integrators (Equation 3.1.8 – 3.1.11) that represent 

the robot dynamics. Summing up the PID Term (𝑆1) and calculating the integral of the 

latest two consecutive steps (𝑆2). The first integral (𝑆2) is then summed up (𝑆3) and 
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integrated again over the latest two consecutive steps to calculate the output of the 

system (𝜃 in this case). The approximation of input–output dynamics by a double 

integrator with transport delay is often used in the design of automatic control systems 

involving moving bodies and has been used for that reason. [25] 

𝑆1𝑘+1
= ∑ 𝑃𝐼𝐷𝑘

𝑘+1

𝑘=1

 (3.1.8) 

 

𝑆2𝑘+1
= (𝑆1𝑘+1

+ 𝑆1𝑘
) ∙

𝑑𝑡

2
 (3.1.9) 

 

𝑆3𝑘+1
= ∑ 𝑆2𝑘

𝑘+1

𝑘=1

 (3.1.10) 

 

𝜃𝑘+1 = (𝑆3𝑘+1
+ 𝑆3𝑘

) ∙
𝑑𝑡

2
 (3.1.11) 

 

Finally, the Feedback is calculated which is then returned to the calculation of the Error 

of the next state. The performance of the PID controller and thus the behavior of the 

robot can be influenced by tuning the spring and damping coefficient (𝐵 and 𝐾). The 

general operation of the controller can be seen in Figure 10. 

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝑆3𝑘+1
∙ 𝐵 + 𝜃𝑘+1 ∙ 𝐾 (3.1.12) 

 

𝐸𝑟𝑟𝑜𝑟𝜃,𝑘+1 = 𝜃𝑑𝑒𝑠 − 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑘 (3.1.13) 
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Figure 10: Block diagram closed loop PID Controller 

After deriving the desired velocity and heading, the inverse kinematics model of a 

differentially steered robot is used to calculate the necessary wheel speeds.  

𝑑𝜃𝑘 = 𝜃𝑘+1 − 𝜃𝑘 (3.1.14) 

 

𝜔𝑘 =
𝑑𝜃𝑘

𝑑𝑡
 (3.1.15) 

 

𝜔𝑟𝑘
=

2 ∙ 𝑣𝑘 + 𝜔𝑘 ∙ 𝑏

2 ∙ 𝑈
 (3.1.16) 

 

𝜔𝑙𝑘
=

2 ∙ 𝑣𝑘 − 𝜔𝑟𝑘
∙ 𝑈

𝑈
 (3.1.17) 

 

To derive the new position of the robot, which is then fed back into the calculation of 

the desired velocity and heading, the transition model already seen in section 2.1 is 

used. However, it has to be stated that the implementation of noise was omitted. The 

transition model is used to derive the current position of the robot. The resulting 

trajectory is illustrated in Figure 11. The trajectory shows a typical course for a PID 

controller with a damped overshoot of the desired trajectory. The trajectory can be 

adjusted by changing the damping and spring coefficients, as well as the gains of each 

PID element of the velocity and heading PID loop. In Figure 11 only the damping 

coefficient of the heading PID loop has been decreased, resulting in increased 
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oscillation. All other coefficients were set to 1. The proportional gain was set to 0.9, the 

integral and derivative gain to 0.3. 

 

Figure 11: Waypoint based trajectory of the robot with different damping coefficients 

Reaching the final destination, the velocity of the robot decreases gradually to a 

minimum. Once the robot passes the waypoint, the desired heading and thus the Error 

in the heading PID loop changes abruptly causing the robot to turn. The robot keeps 

doing loops through the waypoint on minimal velocity until the simulation ends. 

Alternatively, the controller could be shut off. 
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Figure 12: Angular velocity of each wheel 

Figure 12 shows the wheel revolutions in revolutions per second throughout the 60-

second-long simulation. The coefficients and gains are set as in Figure 11 with a 

damping coefficient auf 0.8. Due to the distance between robot and waypoint, the 

desired translational velocity increases causing the wheels to spin both at a positive 

and relatively high rate. Due to the nature of the PID controller, the trajectory shows 

an oscillation of the wheel speeds at a still positive rate. While approaching the 

waypoint, the desired translational velocity gradually decreases. After about 34.5 

seconds, the robot reaches the waypoint causing the desired heading angle and thus 

the desired wheel speeds to change. At this stage the wheels rotate in opposite 

directions to achieve a swifter turn, which is indicated by the negative and positive 

deflections, respectively. However, the mean of this phase is not zero, since a minimal 

translational velocity is still maintained. Practically the controller could be turned off 

once the waypoint is reached at 𝑡 = 34.5 sec. 
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The waypoint-based approach has not been pursued further to the implementation of 

a Kalman Filter, false data injection and a fault detection mechanism since a velocity 

and heading based input trajectory is more realistic for a real-world application of a 

ground based robotic vehicle. For future work and for the sake of completeness, 

exploring cyber-attacks on this system might still be of interest. Especially for a 

simulation of a UAV, a waypoint-based approach is more appropriate. 

 

3.2 Velocity and heading based trajectory 

The second simulation is based on the input of an operator, who is dictating the desired 

velocity and heading of the robot at any point in time of the simulation. The operator is 

able to command a certain speed and heading for a specific time interval. Furthermore, 

it is possible to gradually change the desired velocity and heading to achieve a 

smoothly curved trajectory. In Figure 13, two potential trajectories are illustrated. The 

starting position is set to 1 for the x and y coordinates. Marked as blue crosses are the 

landmarks surrounding the environment. These symbolize the landmarks used for the 

position determination with the LiDAR measurements. The landmarks are located 

around a 10x10m area and are standing 1m apart. In these experiments the velocity 

and heading are constant over the course of the simulation.  
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Figure 13: Desired trajectories and landmarks 

The duration of the simulation is 200 seconds and is updated every 0.01 seconds. 

However, the measurement update in the EKF only occurs every second. The general 

operation of the Simulation is illustrated in Figure 14. The Code consists of three main 

parts marked in blue.  

First is the Dynamics model, which is simulating the behavior of the two wheeled 

differentially steered robot. The dynamic model is fed with the control input of desired 

heading and velocity from the operator.  

The second part is the Extended Kalman Filter in combination with the LiDAR 

measurement simulation, which improves and fuses the two position determination 

methods, hence the prediction of the system state through the dynamics and transition 

model and the actual measurement. Technically, a version of the dynamics is 

integrated into the EKF since the prediction of the next system state is done by the 
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transition model, which is derived from the dynamics model. The LiDAR 

measurements, however, are corrupted in the event of false data injection. In this case 

the Extended Kalman Filter is only fed with an altered measurement vector. Not only 

does the EKF output the updated estimated system state, which is then used again by 

the dynamics model to predict the next system state, another output is the innovation.  

The innovation, which is used in the third part, the fault detection mechanism. Through 

a statistical evaluation the fault detection mechanism decides whether the system is 

behaving correctly or not.  

 

Figure 14: Illustration of the workflow of the Simulation 

A numerical solver in form of a Euler Integrator is also implemented. The Euler method 

is a stepwise integration of the differential equations to derive the system states. 

Furthermore, it integrates the derivatives used in the update step of the EKF. 

After the desired heading and velocity is fed into the dynamics model, the necessary 

DC-motor control voltages are calculated. Therefore, the forward kinematics are used 

to compute the actual velocity of the robot with Equation 2.1.2 

Using the inverse kinematics model, the necessary wheel speeds for the next timestep 

are computed.  
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[
𝜔𝑙𝑑

𝜔𝑟𝑑
] = [

𝑙𝑟 𝑙𝑙
−1 1

]
−1

∙ [

𝑣 ∙ 𝑝𝑔 ∙ (𝑙𝑟 + 𝑙𝑙)

𝑟
 

𝜔 ∙ 𝑝𝑔 ∙ (𝑙𝑟 + 𝑙𝑙)

𝑟

] (3.2.1) 

 

Here, 𝑝𝑔 is the gearbox ratio.  

From there on, the DC-motor control voltages are calculated with the associated gains 

𝐾𝑖 and 𝐾𝑝 the differences of the revolutions of each wheel from the previous timestep 

to the desired next timestep and the current of each motor.  

𝑈𝑙 = 𝐾𝑝 ∙ (𝜔𝑙𝑑 − 𝜔𝑙) + 𝐾𝑖 ∙ 𝐼𝑙 (3.2.2) 

 

𝑈𝑟 = 𝐾𝑝 ∙ (𝜔𝑟𝑑 − 𝜔𝑟) + 𝐾𝑖 ∙ 𝐼𝑟 (3.2.3) 

 

Finally, the robot dynamics are calculated for the next step using Equation 2.1.1. 

The output that is then fed into the EKF is the current angular and translational velocity. 

Furthermore, the estimated previous position and heading or—in the first iteration—

the initial conditions of position and heading are used to calculate the next predicted 

system state using the transition model. Since most of the equations and general steps 

have already been illustrated and explained only a rough re-explanation and details 

not yet mentioned are provided. [5] 

The EKF estimate is updated every 0.01 seconds (𝑇) and the measurement update 

occurs every second (𝑇𝑈). Based on these time periods, the control measurement 

covariance (𝑄𝑢) with 𝑞𝑣 [
𝑚

𝑠
] and 𝑞𝜔[

𝑟𝑎𝑑

𝑠
] and the factors for the measurement noise 

(𝑞𝑟 [𝑚], 𝑞𝜙[𝑟𝑎𝑑]) are derived.  

𝑄𝑢 = [
𝑞𝑣

2 0

0 𝑞𝜔
2 ] (3.2.4) 

 

𝑞𝑣 =
1 

√𝑇
∙ √0.001 [

𝑚

𝑠
] (3.2.5) 
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𝑞𝜔 =
1 

√𝑇
∙ √0.012 ∙

𝜋

180
  [

𝑟𝑎𝑑

𝑠
]  (3.2.6) 

 

𝑞𝑟 =
1 

√𝑇𝑈

∙ √0.01  [𝑚] (3.2.7) 

 

𝑞𝜙 =
1 

√𝑇𝑈

∙ √0.25 ∙
𝜋

180
  [𝑟𝑎𝑑] (3.2.8) 

 

From there on the process noise is derived, which is used in the transition model. The 

noise is simulated by multiplying the respective factor 𝑞 with a random scalar 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 

drawn from the standard normal distribution with zero mean. 

𝑑𝑣 = √𝑞𝑣 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.9) 

 

𝑑𝜔 = √𝑞𝜔 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.10) 

 

The transition model then makes a prediction about the current system state. In 

addition, the covariance (𝑃) of the system state is updated, which has already been 

discussed in section 2.2. After updating the covariance two checks are performed to 

see if there are negative elements on the main diagonal of 𝑃 or if 𝑃 diverges. If one of 

these events occurs, the simulation is stopped, and an error is displayed. 

For the setup of the measurement update, a set of landmarks is created, as discussed 

earlier. Depending on the scenario, these landmarks positions are then left untouched 

or—in the event of false data injection—altered, using homogeneous transformation. 

The actual robot position is then fed into a distance-to-point function to determine the 

measurement vector to emulate the LiDAR sensor. This function calculates the 

distance (𝑟) and bearing (𝜙) to each landmark from the position and orientation of the 

robot resulting in a vector of 82 entries for 41 landmarks. Afterwards noise is added to 

the measurements using the following equations: 

𝑟𝑛𝑜𝑖𝑠𝑦 = 𝑞𝑟 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.11) 
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𝜙𝑛𝑜𝑖𝑠𝑦 = 𝑞𝜙 ∙ 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 (3.2.12) 

 

To calculate the innovation, a second measurement vector has to be built. The second 

vector is based on the position that has been predicted by the measurement model, 

which is already subject to inaccuracies. From there on, the process of building the 

measurement vector is the same. These two measurement vectors are then compared 

to derive the innovation. [6] 

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑘 = 𝜈𝑘 = 𝑧𝑎𝑐𝑡𝑢𝑎𝑙𝑘 − 𝑧𝑝𝑟𝑒𝑑𝑘
 (3.2.13) 

 

In a real-life application, the predicted measurement vector has to be derived through 

the use of a measurement model as it has been stated in section 2.2. The LiDAR can 

only measure the distances and bearings from the actual position of the robot (actual 

measurement). For the derivation of the innovation the predicted measurement has to 

be calculated based on the predicted position of the robot and cannot be measured 

directly because the predicted and actual position of the robot differ. 

Since the innovation angle and distance have different magnitudes they are normalized 

using 

𝜈𝑘,𝑛𝑜𝑟𝑚 = 𝑐ℎ𝑜𝑙(𝑆−1) ∙ 𝜈𝑘 (3.2.14) 

 

where 𝑆 is the covariance of the innovation, which has already been mentioned in 

section 2.2 This normalized innovation is then used to calculate 𝜉 for the 𝜒2 test. 

However, 𝜉 is not compared to a pre-defined critical value derived from a 𝜒2 table or 

the respective function. Rather a threshold is derived from running the nominal 

simulation numerous times and observing the outcome of the 𝜒2 test.  
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4 Simulation 

The following chapter presents three different scenarios of the operation of the robot. 

A nominal scenario, in which the robot operates undisturbed is used to establish 

baseline performance. Two spoofed scenarios with altered LiDAR measurements are 

used to illustrate the ability to influence the system trajectory without detection.  

 

4.1 Nominal case 

In the first scenario the robot is operating normally and has access to unaltered LiDAR 

measurements, which are still subject to noise.  

 

Figure 15: Nominal robot trajectory with landmarks for localization 



4 Simulation 31 

 

 
 

The trajectory of the nominal robot is illustrated in Figure 15. The actual trajectory and 

the trajectory that has been estimated by the EKF are almost identical to the desired 

trajectory, although there are some fluctuations in the estimation and the actual 

trajectory. This indicates the correct function of the simulation program. The robot 

moves across the workspace at a 45-degree angle starting at the position (1,1) and 

ending at the position (8,8). Surrounding the robot is the set of 41 landmarks that 

represent the boundaries of the workspace.  

Figure 16 shows the normalized innovation for this 200-second-long scenario. Each 

color corresponds to the innovation regarding one landmark and comprises an angle 

and a distance innovation. Although the duration of a timestep is 0.01 seconds, the 

innovation is only updated each second, since a measurement update—which is 

needed for the calculation of the innovation—only occurs every second resulting in a 

total of 200 innovation updates.  Due to the normalization, the actual values of the 

innovation are not portrayed. Meaning the actual values of distance and angle 

innovation are smaller than the normalized innovation values. The scatterplot can be 

described as normally distributed with zero mean and 𝜎 ≈ 1.5, which is to be expected 

for the normalized data.  
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Figure 16: Normalized innovation for nominal simulation 

Illustrated in Figure 17 are the 𝜒2-random-variables 𝜉 corresponding to the normalized 

innovations from Figure 16. Each value uses a whole innovation vector (82 entries for 

41 landmarks) for each timestep of a measurement update. All the values are in a 

range of 120-240 with two values being above 240.  
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Figure 17: Chi-square-values for nominal simulation 

The scenario has been run five times. For each simulation a moving average of the 

𝜒2-random-variables has been made, which is illustrated in Figure 18. The average is 

calculated over a sliding window of length 20 across neighboring elements of the value 

under consideration. A smaller window results in higher fluctuations of the moving 

average and makes it more susceptible to noise. A larger window smooths the graph. 

The length of 20 has been chosen as a compromise between the two options. The 

moving average stays between approximately 150 and 190, with a minimum and 

maximum at 153 and 192. Over the course of each simulation, the average is roughly 

constant with some fluctuations. 
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Figure 18: Moving average of chi-square-values of 5 nominal simulations 

In Figure 19 the actual heading angle of the robot and the heading angle that has been 

estimated by the EKF over the course of the simulation are illustrated. After starting 

with the initial condition of a heading of 25°, the robot rotates towards the desired 

heading in approximately five seconds. From there on the actual heading stays 

relatively constant with fluctuations of ±3° around 45°. The estimated heading 

fluctuates with approx. ±7° around 45°. 
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Figure 19: Heading angle of the robot for nominal simulation 

 

4.2 Spoofed measurements with large sudden changes 

The next simulation considers the rotation of the landmarks to alter the measured 

position and heading. This is a false data injection with large and sudden changes in 

the injected data Figure 20 shows the simulation environment with the unaltered and 

initial position of the landmarks marked with purple data points. Over the course of the 

simulation, the set of landmarks is rotated through four different angles around the 

origin. First, the set is rotated by 5° (blue data points) at zero seconds followed by 

another rotation of 7° (red data points) at 50 seconds.  For the third step, the set is 

rotated by 13° (black data points) at 100 seconds and the final step is a rotation by 20° 

(green data points) at 150 seconds. This corresponds to a total rotation of 45°. The 

final position of the landmarks is indicated with green data points. The desired 

trajectory, is displayed as a black line and runs in a 45° across the plane. The estimated 
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trajectory is shown as an orange dashed line. At every rotation of the landmarks the 

estimated trajectory jumps stepwise from the desired trajectory to the left. However, 

after each rotation step, the EKF estimated heading of the robot stays at 45°. This is 

the trajectory that is the final output of the EKF. The third trajectory is depicted in blue 

and marks the actual trajectory of the robot. It diverges from the desired trajectory to 

the right. Compared to the estimation there are no sudden changes in the trajectory, 

but the heading angle changes during each rotation step. The actual trajectory cannot 

be seen by the operator, who relies on a monitoring system to report changes in the 

operation of the system. The representation of the x and y-coordinate over time has 

been omitted, since they are very similar to the trajectories. 

 

Figure 20: Robot trajectory with spoofed landmarks (spoofing occurring in 4 steps) 

Figure 21 shows the normalized innovation of this scenario. For most of the time, the 

innovation values vary around ±3.8. However, at the instant of every rotation step, the 

innovation spikes with increasing magnitude. The first spike at zero seconds, which is 

induced by a rotation of 5°, is hardly noticeable. The second spike at 50 seconds 
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(rotation by 7°) has a maximum of approximately 6.7 and a minimum of -5.9. During 

the third rotation of 13° at 100 seconds, the innovation spikes up to 13.2 and -15.6. 

The last spike at 150 seconds (rotation by 20°) has a maximum and minimum of 

approx. 25.9 and -17.2. 

 

Figure 21: Normalized innovation for spoofing with large and sudden changes 

In each case after the initial deviation, the innovation values decrease to the normal 

variation over the course of 5 seconds at the largest disturbance. The convergence of 

the innovation is illustrated in Figure 22, which is the enlarged at around 150 seconds, 

when the 20° bias was added to the measurement. At the third spike it takes the 

innovation about 4 seconds to reduce back to the expected range.  
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Figure 22: Zoomed innovation plot for final false measurement injection 

The 𝜒2-random-variables that have been calculated from the normalized innovation 

are shown in Figure 23. As in the normalized innovation plot, the 𝜒2-random-variables 

can be seen spiking at each false data injection. In this illustration a small spike at zero 

seconds can be seen as well. Between the spikes, the 𝜒2 distribution is the same as 

in Figure 17. The first spike has a maximum of approx. 286. The second of 443. The 

third and fourth spike go up to 2541 and 12340 respectively. The gradual decrease 

already mentioned regarding the innovation plots can also be seen. 
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Figure 23: Chi-square-values for spoofing with large and sudden changes 

Figure 24 shows the moving average of the 𝜒2-values of five different simulations. The 

moving average consists of a sliding window of 20 timesteps centered around the value 

considered and starts at approximately 195 and decreases after the first 10 timesteps 

noticeably to approx. 175. The second rotation can be as a small bump between 44 

and 63 seconds at roughly 195. The following two spikes can be seen more clearly 

between 95 and 112 seconds at 395 and between 146 and 162 seconds at about 1180. 

The behavior during each simulation is roughly the same. 
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Figure 24: Moving average of chi-square-values of 5 for spoofing with large and 
sudden changes 

In Figure 25 the estimated and actual heading angle of the robot is illustrated. After 

starting with an initial heading at zero seconds, the actual heading increases to approx. 

40°. At 52 seconds, the heading decreases to 33°. The heading angle then jumps two 

more times at 102 seconds and 152 seconds to 20° and finally to 0°. Over the course 

of the whole simulation, the actual heading angle is subject to fluctuations of approx. 

±3°. The estimated heading angle stays roughly constant over the course of the 

simulation with fluctuations of ±5° around the 45°. At 102 and 152 seconds spikes up 

to 62° and 73° can be seen. Potential spikes at the first and second rotation step can 

hardly be seen. 
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Figure 25: Heading angle of the robot for spoofing with large and sudden changes 

 

4.3 Gradually spoofed measurements 

The third scenario is a gradual rotation of the landmarks to alter the measured position 

and heading. The simulation environment is shown in Figure 26 with the unaltered and 

initial position of the landmarks marked with purple data points. Over the course of the 

simulation, the set of landmarks is rotated gradually around the origin until reaching 

45° (marked with green data points). The rotation angle is calculated using the current 

timestep 𝑡. 

𝛼𝑘 = 45° ∙
𝑡

200
 (4.3.1) 
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Therefore, the rotation angle changes by 0.225° every measurement update. 

As in the previous simulations, the desired trajectory, is a straight line at a 45° angle 

and is displayed as a black line. The estimated trajectory is shown as an orange 

dashed line and can be seen gradually diverging from the desired trajectory to the left. 

The third trajectory is depicted in blue and marks the actual trajectory of the robot. It 

gradually diverges from the desired trajectory to the right.  

 

Figure 26: Gradually spoofed robot trajectory with landmarks 

The normalized innovation as seen in Figure 27 ranges between -4 to 4 with a few 

innovation values being higher or lower. The density of the innovation value distribution 

increases when approaching zero as is expected for a normal distribution with zero 

mean. Over the course of the simulation, no big deflections can be seen and the 

distribution stays relatively constant. 
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Figure 27: Normalized innovation for gradually spoofed simulation 

The 𝜒2-random-variables of the normalized innovation can be seen in Figure 28. Most 

of the values lie in a range between 140 and 240 with a maximum of approximately 

280 and a minimum of 110. Over the course of the simulation no discernible change in 

trend can is obvious.  
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Figure 28: Chi-square-values for gradually spoofed simulation 

The moving averages of the 𝜒2-random-variables of 5 simulations are illustrated in 

Figure 29. As before, the average was taken over the nearest 20 neighboring values 

of the corresponding value. Over the course of each of the simulations, the average 

stays roughly between 160 and 180. Overall there is a slight upward trend in the data. 

The moving average then stays roughly constant until it increases again at around 120 

seconds until the end of the simulation.   
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Figure 29: Moving average of chi-square-values of 5 gradually spoofed simulations 

Figure 30 shows the actual heading angle (blue) and the estimated heading angle 

(orange, dashed). The estimated heading angle after increasing from the initial heading 

condition stays relatively constant over the course of the simulation at around 45° with 

fluctuation of ±7°. The actual heading angle increases from the initial condition to the 

desired 45° as well and overshoots to 49° at 6 seconds. After declining rapidly for 2 

seconds to 43°, the heading angle gradually and linearly decreases with some 

fluctuations until the end of the simulation, reaching a heading angle of 2°. 
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Figure 30: Heading angle of the robot for gradually spoofed simulation 
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5 Interpretation 

In this chapter, results of the previously presented simulations will be interpreted. 

Based on the results conclusions will be drawn in the sense of the initial problem that 

was to be explored.  

5.1 Nominal case 

As expected, the robot is following its desired trajectory when the measurement device 

is not compromised. However, due to noise there are still some minor deviations that 

impact the prediction as well as the measurements. On the one hand, predictions are 

made on the assumption of a perfect environment. Since in a real-world application the 

surface may be uneven and the wheels might slip from time to time this has to be 

accounted for in the simulation as well by adding noise to the prediction model. The 

same applies of the measurements. A LiDAR and any other measurement device are 

subject to uncertainties that alter the measurements to a certain extent. The impact of 

all the uncertainties can be seen in the innovation and 𝜒2-plots. In a perfect 

environment, the expected innovation would be zero, since the predicted and the 

actual measurement would not be different from one another.  However, as shown in 

Figure 16, the innovation looks more normally distributed, which can be expected since 

the noise models implemented are gaussian. The presented results are used as 

reference data for the following conclusions of the spoofed scenarios. After running 

approximately 100 simulations (only five have been shown for illustration purposes), 

the threshold has been chosen to be the moving average of the 𝜒2-random-variable of 

195 as shown in Figure 31 (red horizontal line). The threshold serves the purpose of 

determining whether the robot is behaving correctly. If the 𝜒2-random-variable rises 

above this threshold, an alarm is triggered. Two simulations with the highest moving 

average have been included in the presented figure. Therefore, it is highly unlikely that 

the moving average in a nominal case would rise above the chosen threshold, which 

is well above the maximal averages. The lower boundary in this illustration is 

inconsequential, since the innovation values are squared. Therefore, lower 𝜒2-random-

variables correspond to innovation values closer to zero and not high negative values. 
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Figure 31: Moving average of the chi-square value with fault decision threshold 

The heading angle as seen in Figure 19 expectedly fluctuates around the desired 

heading angle of 45°, which is due to noise. The estimated heading angle is seen 

fluctuating more than the actual heading angle, since the estimation is subject to noise 

and the actual heading—although driven by the estimation—is unaltered. This 

dependence of estimation and actual behavior of the robot can be seen in Figure 32, 

which is an enlargement of Figure 19. Once the estimated heading angle spikes up 

above 45° the robot accounts for that by lowering the heading angle and vice versa. 

This uncertainty produces an alternating motion around the 45° desired heading.  
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Figure 32: Enlargement of the heading angle for nominal simulation 

 

5.2 Spoofed measurements with large sudden changes 

The scenario with sudden measurement changes drastically differs from the nominal 

case, not only in terms of the trajectory but also regarding the innovation. In Figure 20 

the estimated trajectory is seen jumping away from the desired trajectory during each 

rotation step. Due to the rotation around the origin the measured heading angle of the 

robot changes but also its position, which becomes clear when comparing the initial 

and spoofed landmarks. However, the estimated heading angle stays relatively 

constant at 45° between each step.  

Note, that the steps marked red in Figure 33 occur just in a few measurement cycles, 

since the rotation of the landmarks is executed in just one timestep and the EKF then 

takes a few iterations to fully apply the changed measurement into the estimation 

process.  
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The actual trajectory differs from the estimated one due to the injection of false data. 

Since the only desired input, the operator is feeding into the system is the heading 

angle and the velocity, which is reflected by the robot’s behavior, meaning the sudden 

change in heading causes the robot to turn in the opposite direction. However, the 

sudden difference in its measured position is not influencing the robot’s behavior, since 

it is not a dictated system state. The actual heading of the robot changes each timestep 

to maintain 45° in the changed set of landmarks; therefore, the estimated heading 

stays roughly the same, since the heading based on the altered measurements during 

each timestep is still 45°. 

 

Figure 33: Marked rotation steps in trajectory 

At each rotation the innovation and thus the 𝜒2-random-variables are distributed with 

increasing magnitude. This is due to the increasing change in heading, but can also 

be traced back to the change in distance because of the lengthening lever arm that 

gets bigger as the robot drives away from the origin.  
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Following each rotation, the innovation declines after approximately five seconds back 

to the level of the nominal performance. This is due to the nature of the Kalman Filter, 

the estimation of the system states usually converges after a few iterations up to a 

certain accuracy as long as the inputs don’t significantly change as seen in Figure 22. 

Consequently, once the altered measurement is introduced, the estimated 

measurement does not yet fully reflect that, since the prediction made with the 

transition model is also used to calculate the estimate. The new estimate, which is not 

consistent with the altered measurement is then used to calculate the next system 

state resulting in a prediction that still differs a lot from the measurement. That means 

that the sudden change of the measured positions is only taken fully into the estimation 

process after a few iteration (approximately five seconds). 

The moving average of the 𝜒2-random-variables compared to the fault detection 

threshold marked in red paints a clear picture (Figure 34). Especially the average 

during the last two rotation steps rises significantly above the previously defined 

threshold. The second rotation does not cause the average to rise above the threshold 

in all of the displayed simulations, although it stands out compared to surrounding 

timesteps. Still the slight peak during the second rotation can be seen in Figure 23. 

Shrinking the window, the average is derived from, could resolve this issue on the one 

hand but would also make the detection mechanism more susceptible to false alarms 

due to noise induced fluctuations. This implies that if the spoofed measurements 

introduced by the false data injection are small enough, they may not be detectable. 

That is, it may be impossible to separate the spoofing inputs from the noise. 
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Figure 34: Moving average of the chi-square value with threshold for spoofing with 
large and sudden changes 

The estimated and actual heading angle as displayed in Figure 25 shows stepwise 

inconsistencies. The first rotation takes place at the beginning of the simulation. After 

the initial condition is corrected, the estimated angle overshoots because of the first 

rotation of 5°. The robot immediately accounts for that, by adjusting its heading angle 

to 40°. The rotation spikes can be observed best at 100 and 150 seconds. At each 

rotation, the estimation of the heading angle spikes for a few measurement cycles. 

Since the operators input dictates a heading of 45°, the robot turns, causing the actual 

heading angle to decrease even lower and the estimated heading angle to decrease 

to the desired 45°. Once the estimated heading reaches 45° again, the robot stops 

turning and only makes small heading adjustments to compensate for the small 

fluctuations in heading caused by the noise. 
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5.3 Gradually spoofed measurements 

Both the actual and estimated trajectory can be seen diverging from the desired one 

as seen in Figure 26. Because of the gradual rotation, the estimated heading angle in 

relation to the new and spoofed set of landmarks changes, causing the robot to 

accommodate by turning in the opposite direction. The impact on the robot is as severe 

as during the simulation with sudden measurement changes. 

However, when looking at Figure 27, the normalized innovation looks similar to the 

nominal simulation and just by looking at the plot, no significant difference can be 

observed. The 𝜒2-random-variables in Figure 28 occasionally rise well above 246, 

which was the maximum during the nominal scenario, but mainly stay in the range 

between 120 and 240 as in the nominal experiment.  

 

Figure 35: Moving average of the chi-square value with threshold for gradually 
spoofed simulation 
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Looking at the moving average with the defined threshold in Figure 35, the average 

can be seen rising above it, but only after the RV has moved far off the desired course. 

What is particularly noticeable are the increases at 40 seconds and 180-190 seconds. 

The second increase could be explained by the positioning of the landmarks seen in 

Figure 36. Shown is the landmark location at 190 seconds (green). The robot can be 

seen passing a landmark really close at the end of the trajectory (blue). While passing 

a landmark in very close proximity, the orientation angle of this specific landmark 

changes drastically over a short period of time, making fluctuations due to noise more 

impactful and thus the measurements and predictions less accurate.  

The rise at 40 seconds, however, cannot be explained this way, since during this time 

period no landmark is in close proximity to the robot. Generally speaking a spike above 

the given threshold can always occur, when the gaussian noise of prediction model 

and measurements and the gradual spoofing constructively interfere with each other, 

to add up to a high difference in prediction and measurement. Still it is surprising that 

all of the simulations shown in Figure 35 behave in a relatively similar way.  

 

Figure 36: Gradually spoofed trajectory with spoofed landmarks at 190 seconds 
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The estimated and actual heading angle in Figure 30 are consistent with the 

observations made earlier. The actual heading angle gradually declines to account for 

the rotation of the landmarks thus maintaining the estimated heading angle at approx. 

45°. The estimated trajectory can still be seen diverging, since the estimation is partially 

based on the measurement, which is based on the spoofed measurements. 

Generally speaking, the gradual approach of injecting false data is really hard to detect. 

Although the moving average in each nominal simulation did not rise above the 

threshold, it cannot be said with complete certainty that it generally wouldn’t. Meaning 

that there is still a risk of triggering false alarms. On the other hand, the probability of 

detecting the false data attack is not nearly at 100%. In the selection of simulations 

shown in Figure 35, only four out of five attacks would have been detected. It is the 

user’s decision of either risking more false alarms or detecting less attacks. Still it has 

to be stated, that the attack can also be tuned by i.e. decreasing the rotation rate of 

the landmarks and thus making the attack even harder to detect.  

It has been demonstrated that it is possible—with the appropriate procedure—to 

disturb the nominal performance of the robotic system in a way that could be quite 

difficult to detect. 
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6 Conclusion and outlook 

To conclude the findings, it can be stated that it is generally possible to detect a false 

data injection attack on a RV’s measurements with an EKF and a fault detection 

mechanism, as long as the difference between prediction and measurement and thus 

the innovation is high enough. This has been the case when the measurement is 

changed through false data injection in a sudden and severe manner. To pick up the 

initial thesis it is certainly possible to construct an attack that is nearly undetectable 

with the measures introduced. Not only can the attack be considered stealthy, the 

impact on the robot’s behavior is also severe causing it to diverge significantly from its 

desired trajectory. As long as the difference between predicted and measured system 

state is small (in the order of magnitude of the noise) it may be difficult for a fault 

detection mechanism to distinguish intentionally altered measurements from noise. 

However, a subtle difference between the nominal case and the gradually spoofed 

simulations (small injected deviation each timestep) can still be observed. To increase 

the capabilities of detecting an attack the threshold has to be lowered. This can be 

achieved by using for example more sophisticated measuring devices or by improving 

the model used for the prediction. This way on average the innovation could be 

reduced resulting in lower 𝜒2-random-variables enabling the operator to lower the fault 

detection threshold. However, the attacker could in turn adapt to the lowered threshold 

by reducing the amount of deviation each timestep introduced into the system via false 

data injection. For example, by rotating the artificial, spoofed landmarks at a slower 

rate. Another approach could be to implement multiple different measuring devices, for 

example a GNSS receiver to determine the position. This would create another layer 

of redundancy but in the end these additional measuring devices could be attacked as 

well.  

Future work could look at different alterations of the spoofed landmarks. The 

possibilities of the homogeneous transformation used to change the measurements 

have been discussed in section 2.4. Conceivable would be gradual stretching, sheering 

or translation. A constant rotation around the robot (and not the origin) would be 

interesting as well, although more difficult to implement. Another interesting subject 

could be the calculation of the probabilities of triggering false alarms. Since the noise 

implemented into the measurements and the model used for the prediction are 
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normally distributed, a statement can be made on how high the innovation (which itself 

is normally distributed) and thus the 𝜒2-random-variables are with what probability. 

This can be compared to different fault detection thresholds. For each threshold a 

statement could be made on how likely a false alarm would be.  

The natural next step, however, would be an implementation into a simulation 

environment for the TurtleBot. The manufacturer recommends the simulation 

environment from Gazebo using the Robotic Operating System (ROS) [3]. After that, 

an implementation into a physical TurtleBot 3 ‘Burger’ or even other two-wheeled 

differentially steered robots could be done. 
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