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ABSTRACT 

 The deep convolutional neural network (DCNN) is the current state-of-the-art 

approach for automatic image classification tasks. Historically, Bayesian deep learning 

methods have been applied to these models in narrow scopes. This thesis has created and 

tested several Bayesian deep learning models to perform classification on operational 

meteorological multi-spectral satellite data while quantifying the uncertainty in the model 

predictions. This large-scale dataset is used to compare the performance of Bayesian 

models against a DCNN and the current algorithm used by the National Aeronautics and 

Space Administration (NASA) to perform precipitation classification on the dataset. The 

use of a large-scale, operational dataset to benchmark Bayesian deep learning methods is 

the first application of its kind and represents a novel contribution to the fields of 

Bayesian deep learning and computer science. Several novel benchmarks were developed 

for use in this work. The best performing Bayesian model achieved 92 percent 

classification accuracy with demonstrated calibrated uncertainty on test data. All 

Bayesian models are shown to outperform current state-of-the-art DCNNs and the current 

operational algorithm. Furthermore, it is demonstrated that Bayesian model uncertainties 

can be used to screen uncertain predictions, and these uncertainties can be mapped 

spatially to identify specific regions of data that can be used to further improve the model 

performance. 
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CHAPTER 1:
Introduction

The second decade of the twenty-first century was a period of rapid technological inno-
vation. The proliferation of powerful computers, fast internet speeds and smart devices
and an exploding tech industry have combined to create a deluge of information that is
unprecedented in its depth and scope. This data stream is too vast to be analyzed by humans
alone. Advances in computer science and technology have unlocked the use of artificial in-
telligence (AI) to assist in this task. The Department of the Navy (DON) has recognized the
utility of AI and has made investments in the applications of this technology. One of these
applications is using AI, specifically deep learning and neural networks, to digest enormous
data sets of satellite images to segment and classify the data for predictive purposes [1].
In the past, DON weather forecasters and intelligence analysts would interpret this data
manually and make predictions. In the future, AI driven models could assist forecasters and
analysts to provide predictions that are more accurate than a human analyst can produce
alone.

To automate the extraction of information from satellite image datasets for classification and
predictive purposes, current research has been focused on the use of supervised learning
algorithms, such as deep convolutional neural networks (DCNNs). DCNNs have been
applied with great success to the automatic classification of images [2]. In this application,
images were input into a DCNN that extracted information from the channels in the image
to predict what is contained within the image, and then provided on output a decision if
content of an image belongs to a specific class (i.e., the image is a picture of a boat). This
approach has been used to classify the weather in a given image of the outdoors [3]. This
thesis proposes that the same approach can be used to classify satellite remote sensing
images for meteorological purposes, such as classifying precipitation events as convective
or stratiform, which are two categories of convection that describe typical vertical profiles of
upward and downwardmotion and diabatic heating, processes that are critical to atmospheric
phenomena at all spatial and temporal scales.

Bayesian deep learning, a well-developed field within the artificial intelligence/machine
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learning (AI/ML) community, provides an alternative to classical deep learning methods
by accounting for model uncertainty in the weight space and achieves balancing between
model complexity and data fitting. Kendall andGal [4] first demonstrated that Bayesian deep
learning methods improved performance of neural networks while providing uncertainty
estimation on predictions for computer vision tasks.

The focus of this work is on quantifying the uncertainty in deep learning models trained on
multi-spectral satellite data, and builds upon previouswork by Petković andOrescanin [5] by
applying multiple Bayesian convolutional neural network (BCNN) architectures to the same
task. Specifically, multi-spectral passive microwave (PMW) satellite data will be used as
input data to several different types of BCNNswith the aim of providing synthetic convective
type observations and associated uncertainties that may be assimilated into atmospheric
forecast models. Additionally, the results obtained from the use of these Bayesian neural
networks will be used as a benchmark for these various Bayesian Methods and will be
analyzed to investigate the differences in output from each model given similar input data.
The synthetic product produced, the usage of Bayesian neural networks, and the bench
marking of the Bayesian methods used are novel for this application and are an original
contribution to the fields of computer science and meteorology.

1.1 Problem Statement
There are two main problems that this thesis will address. First, the application of Bayesian
deep learning to convective type prediction has not yet taken place. While Petković and
Orescanin [5] applied conventional deep learning to this task with great success, there are
several reasons why a Bayesian Deep Learning advancement may be advantageous. First,
conventional deep learning models merely output a prediction, whereas a BCNN would
not only make a prediction, but would output the model’s uncertainty in that prediction.
This uncertainty could be further used to determine if the prediction meets a confidence
threshold for inclusion in decision making. These previous two reasons were demonstrated
in research by Orescanin et al. in [6]. Additionally, modeling the predictive uncertainties
allows a model to be trained to minimize those uncertainties and improve predictions based
upon the different uncertainty types. Specifically, Kendall and Gal demonstrated that a
BCNN can be trained to learn loss attenuation through modeling aleatoric uncertainty,
which improved model accuracy by up to 3 percent over a non-Bayesian baseline model [4].
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Developing a BCNN that can accurately classify precipitation events while providing un-
certainty estimates could benefit the DON in a variety of ways. First, this task will provide
information from a single source that previously (without a BCNN) required two instru-
ments to measure. To elaborate, deriving convective type from PMWobservations currently
requires the use of nadir-pointing radar observations of the precipitation event in addition
to PMW sensor data. With a BCNN, this tasks could be accomplished with a single PMW
sensor instrument in conjunction with the BCNN. Additionally, demonstrating the ability to
quantify the uncertainty in BCNNSatellite image classification predictions in a meteorolog-
ical context may provide basis for BCNN research in other DON satellite-remote sensing
applications. For example, automated convective and stratiform classification of satellite
data will help constrain satellite-derived precipitation estimates since the microphysical and
kinematic structure of convective and stratiform rainfall differ substantially. Such improved
observations may ultimately help improve the representation of various atmospheric pro-
cesses in DON numerical models such as the NavyGlobal EnvironmentModel (NAVGEM),
the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) and future gen-
erations of models such as the Navy Environmental Prediction System Utilizing the NUMA
Core (NEPTUNE)

The second problem to be addressed concerns the benchmarking of various Bayesian Meth-
ods in regard to their raw performance and the quality of their uncertainty quantifications.
In regard to these uncertainties, Kendall and Gal [4] demonstrated that it is possible to
extract aleatoric and epistemic uncertainties in neural networks via BCNN architectures.
Moreover, it is possible to estimate the aleatoric and epistemic uncertainties of the model.
Modeling the aleatoric uncertainty in a BCNN allows the user to quantify the model un-
certainty that is due to noise in the observations (i.e., the input data), while modeling the
epistemic uncertainty quantifies the uncertainty that is due to the model bias relative to the
true model. Epistemic uncertainty can be explained, and reduced, given enough data.

A developing trend in research in this area is to benchmark Bayesian methods in order
to better understand the performance trade-offs inherent to each. As of this writing, Filos
et al. [7] have benchmarked Bayesian models using clinical scans of patients’ retinas to
detect the presence of diabetic retinopathy. This thesis will build upon this research by
developing novel Bayesian benchmarks using a large-scale, balanced, operational dataset of
PMW images. Developing Bayesian benchmarks using this dataset could benefit the DON
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by providing a real-world operational benchmarks that can be used to further future research
and development in this space.

1.2 Research Objectives
There are two chief research tasks executed in this thesis. The first task is the classification of
precipitation events as convective or stratiform from PMW multi-spectral satellite images.
The second task is to provide performance benchmarks for the three Bayesian Methods that
will be implemented.

Research objectives to be addressed in this thesis are the following:

1. Determine if Bayesian CNNs can accurately classify cloud convective classes more
accurately than deterministic CNNs and the operational Goddard Profiling Algorithm
(GPROF).

2. Determine which Bayesian CNN model architectures perform well on multispectral
satellite data.

3. Investigate how modeling three different types of uncertainty and filtering by said
uncertainties affects the classification performance of the Bayesian models.

4. Investigate model performance trade-offs of estimating and filtering by the three
uncertainty types.

5. Develop novelBayesianModel benchmarks for use on large scale datasets and evaluate
the Bayesian model performance with them.

In order to meet these objectives, this thesis will propose and develop three BCNNmodels to
classify cloud convective classes (stratiform vs convective) from passive microwave (PMW)
satellite imagery. Additionally, the BCNN model performances will be compared against
the current algorithm used by NASA for this task (GPROF) and against the performance of
a deterministic CNN.

Next, the developed BCNN models will be analyzed for their performance along several
standard metrics. Novel to this thesis will be the development of a series of benchmarks that
quantify the uncertainty of themodel predictions in a spatial context. These benchmarks will
determine the spatial uncertainties in a total predictive uncertainty, aleatoric uncertainty,
and epistemic uncertainty context. Lastly, the utility of providing aleatoric and epistemic
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uncertainty estimates will be studied, and the model performance trade-offs of estimating
total uncertainty over estimating both aleatoric and epistemic uncertainty will be explored.

1.3 Organization
This thesis will begin with an overview of Bayesian deep learning, past and current research
in the space, and how this thesis will build upon previous work. Additionally, the derivations
of the Bayesian methods will be detailed. Next, an in-depth discussion of the experimental
methodology will take place. This section will include a discussion of the dataset used, the
model architectures implemented, the metrics used and the implementations of the Bayesian
model benchmarks. After the methodology section is a section detailing the results of the
experiments. Finally, the research conclusions and future work will be detailed.
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CHAPTER 2:
Background and Previous Work

The field of Bayesian deep learning is a rapidly expanding field that offers valuable in-
sights into the uncertainty of deep neural network predictions. Currently, there are multiple
Bayesian deep learningmethods developed, andwhile workwas conducted to compare these
methods on smaller, experimental datasets [7], [8], the benchmarking of bayesian methods
using a large dataset of multi-spectral images has yet to be completed. This section begins
with an overview of Bayesian deep learning that details a main advantage over classical
deep learning frameworks. Next, a survey of past and current research on Bayesian deep
learning will be examined through a research review, and concludes with how this thesis
will advance current knowledge.

2.1 Bayesian Deep Learning: Overview
Deep learning has seen a significant resurgence in recent years due to empirical advantages
over other machine learning algorithms on many supervised learning tasks. This resurgence
is due to advances in hardware accelerators allowing the construction and training of deep
neural networks [9] and the ability to perform optimization on large datasets using stochastic
gradient descent (SGD) [10]. While deep learning has spurred significant development in
intelligent technologies across many different fields, such as medical imaging [11], there
is a significant limitation to the method. Specifically, a deep neural network is unable to
express the uncertainty inherent in its predictions, which is especially problematic when
the model is confronted with data that was not a part of its training set [12]. Consider that
when a deep neural network (DNN) is trained to classify images as part of a certain group,
it can be trained to maximize the following equation:

"0G [?] = "0G [?(� |\, �)] (2.1)

The above equation is an example of a likelihood equation which when maximized (through
SGD in deep learning) determines the weight parameters \ of the neural network that
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maximize the probability of the model outputting the correct image class � from an image
in dataset �. Note that in this classical deep learning context, these weight parameters are
fixed values, and that the images that comprise dataset � that is used to optimize the network
weights are similar to the images that comprise the dataset used for inference. In other words,
if images from classes A, B, and C are used for training, then images from classes A, B, and
C are assumed to be input into the model when it is used for inference. If this assumption
does not hold, however, an interesting scenario results. Since the network has been trained
to classify images into one of three groups (A, B, C), it will continue to classify in this
manner during inference with high confidence, even if the input image is actually part of
a completely different class (class D) than the classes that the network was trained upon!
This type of aberrant input into the network, called an out-of-distribution example (OOD),
presents a significant problem for classical deep neural networks. While there are methods
developed that can somewhat mitigate this issue [13], classical deep learning frameworks
cannot inherently identify OOD examples. While this example specifically details the OOD
problem in the context of a classification task, classical neural networks utilized in a
regression framework suffer the same problem [12].

Bayesian deep learning provides a solution to this OOD problem in addition to providing
accurate estimations of model uncertainty. This property is inherent to the structure of a
Bayesian Neural Network (BNN). BNNs replace the fixed weight values found in classical
deep learning models with weight distributions.

Figure 2.1. A deterministic neural network (DNN) with fixed weights is shown
on the left, and a BNN with weight distributions is shown on the right.
Source: [14].

Consider the previous classification task example. For the classical deep neural network
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with fixed weights, if the same image is processed through the network multiple times, the
same classification result will occur each time. Due to this property, classical deep neural
networks are DNNs. For a BNN, however, the same input will produce slightly different
outputs during each forward pass through the network because in each pass weights are
sampled from a distribution.

This non-determinism provides an inherent solution to the OOD problem that plagues
DNNs. By making repeated forward passes through the BNN and measuring the variance
of the inferences, it is possible to quantity the uncertainty of the model’s prediction. This
model uncertainty, known as epistemic uncertainty [15], details how uncertain the BNN is
in its predictions. OOD examples will often reveal themselves through a high amount of
epistemic uncertainty [12].

2.2 Background: Variational Inference
Bayesian deep learning mainly concerns the application of Bayes Theorem [16] to deep
neural networks. While Bayes Theorem has been utilized for centuries in the fields of
statistics and data science, it was only relatively recently that a Bayesian variational inference
algorithm was proposed for use in conjunction with neural networks [17].

Variational inference (VI) [18], also known as Bayesian inference, is a method that is used
in probabilistic modeling (of which Bayesian deep learning is a part) to distill normally
intractable probabilistic models into optimization problems that offer accurate solutions
in practical amounts of user and computational time. Because of this utility, Bayesian
variational inference is the foundational method from which other Bayesian deep learning
methods are derived.

The derivations in this section were sourced from Broderick’s ICML presentation [19] and
Blei et al.’s review on Variational Inference [20].

To demonstrate the need for Variational Inference, consider a Standard Bayesian Probabilis-
tic Model:

?(\ |. ) = ?(. |\)?(\)
?(. ) (2.2)

9



where \ represents the probabilistic model parameters, and . represents the dataset being
used. Subsequently, ?(\) is a prior distribution that represents what information (in this
case, numeric information) is currently known about the model parameters, ?(. |\) is a
likelihood distribution that describes how the data interacts with the model parameters, and
?(. ) is an evidence distribution that describes the information known about the dataset
itself.

The overall goal of this standard Bayesian probabilistic model is to learn the interaction
between the parameters and the data in order to calculate the mean and co-variance of a
posterior distribution ?(\ |. ). If the parameters are known, it is possible to make accurate
inferences with new data using the posterior distribution. Calculating the posterior requires
calculating the evidence via the following equation where the data is integrated over the
parameters:

?(\ |. ) = ?(. |\)?(\)∫
?(., \)3\

(2.3)

This calculation rapidly becomes intractable when the parameters \ have many dimensions,
as the integral to solve for the evidence becomes high-dimensional and, as such, no longer
possesses a closed form solution.

Variational inference provides a solution to this problem. Instead of attempting to calculate
the true posterior distribution ?(\ |. ) via Eq. 2.3, Variational inference approximates the
posterior through optimizing a posterior distribution @∗ from a family of distributions &
that possess qualities that are desirable, such as having an easily calculable mean and co-
variance. This optimization begins with initializing an approximate @∗ from the chosen
distribution family &, and then systematically adjusting the parameters of @∗ to minimize
the distance between @∗ and the true posterior. This process is shown graphically below,
where the set of all distributions is described in the gray circle. ?(\ |. ) represents the target
true posterior distribution, and @∗ is the optimized variational distribution whose distance
to the true posterior is the minimum among all of the distributions in the variational family
&.

To continue the process of tuning this variational distribution to fit the true posterior
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Figure 2.2. Q denotes the variational family, @∗(\) is the optimized variational
distribution with the minimal distance to the true posterior, ?(\ |~), with the
dataset given by ~.

distribution can be mathematically modeled as an optimization problem. Consider:

@∗(\) = argmin
@∗∈Q

� [@∗ | |?(\ |. )] (2.4)

where a new, optimized posterior approximation @∗(\) is calculated by minimizing the
distance (D) between the @∗ and ? distributions. In the equation above, the 0A�<8= term
represents the choice of @∗ from variational family& that minimizes the distance calculation
between the @∗ and ? distributions. In variational inference, the Kullback-Leibler (KL)
divergence [21] is used to calculate the difference between the two distributions. The KL
divergence is given by the following formula:

 ! [@∗ | |?∗] =
∫

?(\);>�(@∗(\)/?(\) |. ) 3\ (2.5)

where, identical to above, \ represents the model parameters, @∗(\) represents the ap-
proximate variational distribution and ?(\ |. ) represents the true posterior distribution.
Immediately present is the problem where the true posterior distribution is required to solve
for the KL divergence, but by assuming that the prior and posterior distributions are a part
of the same probability distribution family (conjugate distributions), the KL divergence
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equation can be written as such:

 ! [@∗ | |?∗] =
∫

?(\);>�(@∗(\)?(. )/?(\), . ) 3\ (2.6)

where the true posterior is no longer required for calculation. In this equation, the assumed
conjugate posterior distribution is given by ?∗ By taking advantage of the properties of
logarithms and rearranging terms, the KL divergence equation becomes:

 ! [@∗ | |?∗] = ;>�(?∗(. )) −
∫

@∗(\) (;>�(?∗(\,. )/@∗(\)) 3\ (2.7)

Since the KL divergence will always be greater than, or equal to, zero [22], the log of the
evidence will always be greater than the value of the integral. Due to this relationship, the
terms can be rearranged further:

�!�$ = ;>�(?∗(. )) −  ! [@∗ | |?∗] (2.8)

This resulting equation is called the evidence lower bound, or ELBO. The ELBO provides
two crucial benefits to the variational inference optimization problem. First, by eliminating
the need to calculate the true posterior in the standard KL divergence equation, the ELBO
makes stochastic optimization possible. Second, maximizing the ELBO of the variational
distribution @∗ is mathematically equivalent to minimizing the KL divergence between the
variational and conjugate posterior distributions. Therefore, the optimization problem of
tuning the variational distribution to the true posterior distribution becomes:

@∗ = argmax
@∗∈Q

�!�$ [@∗] (2.9)

where the optimized approximate posterior distribution is the distribution whose parameters
maximize the ELBO. This procedure can be utilized in Bayesian deep learning through the
application of the stochastic variational inference algorithm [23] so that Bayesian model
weight distributions can be optimized through stochastic gradient descent to obtain a re-
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sulting total approximate posterior that can produce accurate inferences and uncertainty
quantification.

2.3 Previous Work
While a formal study of variational inference and BNNs as a whole began in the 1990s,
research in the broader applications of BNNs didn’t begin in earnest until the 2010s with
research into probabilistic frameworks for historically deterministic models [24]. Notably,
research in BNNs first coincided with the previously mentioned applications of SGD algo-
rithms and the GPU accelerator breakthroughs. Advances continued in the realm of more
computationally efficient variational inference algorithms with the publishing of two pa-
pers detailing new ways of implementing variational inference. The first paper detailed an
algorithm called bayes by backprop [25], which details a specific variational inference algo-
rithm that lends itself well to SGD-based networks. Next, a further efficiency in variational
inference was developed, called reparameterization [26] that computes a more efficient
gradient.

Next, Y. Gal and Z. Ghahramani [27] detailed an alternative way to approximate varia-
tional inference in BNNs using existing deep learning methods. This method, called Monte
Carlo dropout [27], uses standard dropout layers in a novel way to approximate variational
inference with less computational cost than a full variational inference implementation. Ad-
ditional advancement in this area was made with the implementation of the flipout method,
which, at the cost of additional computational complexity, computes a more robust gradient
estimation than reparametrization [28].

Figure 2.3. A comparison of a DCNN architecture on the left and the BCNN
architecture on the right. DCNN convolutional kernels are fixed weights,
whereas BCNN convolutional kernels are weight distributions. Source: [29].
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The next advancement was the introduction of BCNNs [30]. Similar to the structure dif-
ferences of DNNs and BNNs, a Bayesian convolutional neural network replaces the fixed-
weight kernels found in deterministic convolutional neural networks with weight distribu-
tions. The algorithms used for BNNs are equally applicable for use in BCNNs.

This advancement allowed the application of Bayesian deep learning to computer vision
and image processing tasks, allowing researchers to examine how Bayesian models express
uncertainty in spatial terms across an image. Next, A. Kendall and Y. Gal demonstrated how
the predictive uncertainty expressed by BCNNs can be further broken down into different
types of uncertainty [4]. This paper described how the bulk predictive uncertainty can be
expressed in terms of epistemic uncertainty, which describes uncertainty within the weights
of the model, and aleatoric uncertainty, which describes uncertainty inherent within the
dataset itself.

Figure 2.4. A comparison of epistemic and aleatoric uncertainties. An input
image is shown on the far left, with the ground truth segmentation and model
segmentation shown. Next, the aleatoric, or dataset, uncertainty is shown.
On the far right, the epistemic, or model uncertainty, is shown. In this case,
the model error in segmentation was due to high model uncertainty in its
segmentation. Source: [4].

This paper showed that a Bayesian model can account for uncertainties present in the dataset
and for the model’s own bias. This additional granularity in uncertainty quantification has
greatly increased the utility of BCNNs for computer vision tasks, as it is now possible
to show spatial areas where the model is uncertain, and spatial areas where the dataset is
uncertain, which can provide insight for improvements to data collection and sensor suites.
Recent work in this area offered improvements in the implementation and extraction of
aleatoric and epistemic uncertainties in image classification tasks [31] while providing a
real-world application in identifying stroke lesions in medical images.
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Current research in Bayesian deep learning can be broadly classified into two groups of
research. One group focused upon applying Bayesian deep learning to novel datasets, and
the other on improving uncertainty quantification and developing Bayesian deep learning
benchmarks. Recent research in the first group includes many novel applications, showing
the wide applicability of Bayesian deep learning to both computer vision and conventional
tasks. For example, Bayesian neural networks have been applied to the problem of detecting
cosmic background radiation [32], multi-task scene segmentation with aleatoric uncer-
tainty [33], and seismic facies detection [34]. Recent research on improving uncertainty
quantification includes recent work on using aleatoric uncertainty as an analogue for model
re-calibration [35], and the effects of including a limited number of Bayesian layers in a
standard deterministic model [36], along with the aforementioned stroke lesion use-case.

The rise in the number of applications of Bayesian deep learning (BDL) has driven a need for
a suite of performance benchmarks that can accurately compare Bayesian and deterministic
models using the same dataset. This benchmarking is especially important in the case of
computer vision and other high-risk Bayesian deep learning applications, as each Bayesian
implementation may perform and express its uncertainties in a different manner than other
implementations. An example of current research in this area is a systematic comparison of
various Bayesian and deterministic models using a medical-imaging application [7]. This
example uses 512x512 RGB images of retinas as input to a suite of models, and then assesses
the models’ performance based upon metrics drawn from the medical domain.

Other metrics produced include graphical plots showing the area under the receiver operator
characteristic (aucROC) curve and a graphical comparison of predictive uncertainty and
predictive probability of classification of disease. Notably, this benchmark does not include
spatial plots of the model uncertainties.

In contrast to the applications and research discussed previously, there has been little
work done until recently to apply Bayesian deep learning to meteorological remote sensor
data. Bayesian probability theory has been investigated for use in several meteorological
applications, such as network probability models for weather prediction [37]. Notable
examples include a 2018 paper using Bayesian deep learning to improve climate model
predictions of severe weather events [38] and an investigation into integrating Bayesian
deep learning into the Lorenz 84 weather forecasting system [39]. As previously discussed,
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applying Bayesian deep learning to operational datasets, such as PassiveMicrowave (PMW)
observations used for convective type predictions, shows promise due to recent successes
in applying deterministic architectures [5].

Applications in remote sensing include active BDL learning tasks using synthetic aperture
radar (SAR) data [40] and using hyperspectral data [41] to train classifiers using small
quantities of labeled data while conducting reinforcement learning on new, unlabeled data.

In conclusion, Bayesian deep learning is an emerging field within the AI/ML community
that has experienced numerous recent successes in improving the performance and relia-
bility of neural network model predictions. Additionally, recent work in the meteorological
space shows that Bayesian deep learning has the potential to advance current research of
applying deterministic deep learning to meteorological applications, which would further
DON research goals in this space while providing valuable test benchmarks for future
research.
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CHAPTER 3:
Methodology

This chapter explains the experimental methodology of this work. The main goals of this
methodology are to benchmark three different implementation methods for Bayesian deep
learning using a large-scale, operational data set. These Bayesian models will be used
to predict convective-type, and to compare the Bayesian models’ predictive performance
against a deterministic convolutional neural network and the operational algorithm currently
used by the National Aeronautics and Space Administration (NASA) for convective-type
prediction. The Bayesian methods to be benchmarked are: reparameterization variational
inference, flipout variational inference, and Monte Carlo dropout.

This chapter will comprehensively examine the experimentalmethodology, beginningwith a
full explanation of the data set that is being used.Next, the data pipeline code implementation
will be discussed, followed bymathematical derivations of all three Bayesianmethods. After
these derivations, the model architectures used will be examined. After this, derivations of
the three types of uncertainty that will be produced from the output of the Bayesian models
will be shown, along with a discussion on the regularization scheme of the KL divergence
hyperparameter that is used.

To continue, a full examination of the model training methodology will be conducted, and
relevant hyperparameters will be explained and discussed. Next, the prediction and serving
methodologies will be explained. Finally, a detailed examination and explanation of the
performance benchmarks used to evaluate the methodology goals will be given, to include
sample metrics and figures when applicable.
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3.1 Data Set Description
The following section (3.1) is adapted from [6], previously published by the IEEE Geo-
science and Remote Sensing Letters, ©2021 IEEE.1,2

3.1.1 Data Set Motivation and Operational Use
The dataset developed for use in this work is derived from PMW and dual-polarization radar
data observed by the Global Precipitation Mission.

The Global Precipitation Measurement (GPM) mission is a joint international effort to pro-
vide accurate and timely global satellite observations of precipitation [6]. Relying on its core
satellite to serve as a calibration standard, the GPM mission uses a constellation of passive
microwave radiometers to offer a nearly global sampling of rain and snow rate estimates
at 0.1◦ grid spacing and 30-min temporal resolution. The GPM core-observatory carries a
passive microwave imager (GMI; [42]) and an advanced dual-frequency precipitation radar
(DPR) system [43], which together collect measurements throughout the atmospheric col-
umn and build links between PMW brightness temperatures and radar-derived precipitation
rates. Once generated, this link is employed by an enterprise retrieval ( [44]) to serve each
of the constellation’s passive microwave radiometers (more affordable instruments relative
to radar), to estimate surface precipitation over large areas.

This unique setup provides accurate global estimates of precipitation rates over long time
periods. However, a lack of accurate information on the variability in precipitation system
morphology (i.e., convective and stratiform rainfall) often results in region-specific biases

1Reprinted, with permission, from Orescanin et al., “Bayesian deep learning for Passive Microwave
Precipitation Type Detection,” IEEE Geoscience and Remote Sensing Letters, 2021. This publication is a
work of the U.S. government as defined in Title 17, United States Code, Section 101. Copyright protection
is not available for this work in the United States. IEEE will claim and protect its copyright in international
jurisdictions where permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

2In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of the Naval Postgraduate School’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http:
//www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
may supply single copies of the dissertation.

18

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html


( [5]) in precipitation rate. Convective rainfall is usually associated with stronger vertical
motions and heavier rainfall than stratiform precipitation ( [45]). Using space-borne radar,
the vertical structure and horizontal distribution of radar reflectivity factor is leveraged to
adequately classify vertical columns of DPR echo ( [46]).

However, successfully classifying precipitating regions using PMW radiances is challeng-
ing, particularly because highly resolved data in the vertical is not available to detect radar
brightbands that are prevalent in stratiform precipitation. Nonetheless, recent deep learning
studies have demonstrated that PMW signals indeed contain sufficient information content
on precipitation system morphology ( [47], [5]), but estimating the uncertainty of those
estimates has remained a challenge.

3.1.2 Data Collection and Labeling
The performance of deep learning methods, mainly accuracy and ability to generalize to
new inputs, is driven by the quality and quantity of the dataset. The approach of Petkovic
et al. [5] is followed with some adjustments. First, two independent 12-month periods of
GMI and DPR co-located observations were created. Model training and validation relied
on data collected during 2017, while performance tests of the trained model were performed
on 2018 observations. The GMI brightness temperatures (TBS) observed at 13 microwave
channels (10.65H/V, 18.7H/V, 23.8V, 36.5H/V, 89.0H/V, 166V/H, and 183.3±3/7V GHz)
stored in publicly available (e.g., https://storm.pps.eosdis.nasa.gov) GPM level-1 standard
product [GPM_BASEGPMGMI_XCAL - V05; GPM Science Team 2016] were used to
construct model training features.

This thesis chooses the GMI product to define the atmospheric state (i.e., an observation
vector) over an area of approximately 125 km × 125 km centered on the observing Field
of View (FOV, hereinafter referred to as pixel). Given the GMI’s scanning geometry [42],
such an area corresponds to a patch of 25×9 individual pixels. Collecting TBS at each of 13
GMI channels, the resulting training feature elements are stored into 9×25×13 arrays, where
the three dimensions reflect the number of GMI scans, pixels and channels, respectively,
to form an input data set for the model. The input dataset was normalized by scaling each
TBS with its channel’s maximum value, subtracting the channel’s mean and dividing by the
channel’s standard deviation, a procedure known as a z-score scaling [48].
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Data was labeled using the output from the DPR radar, specifically the GPM_2ADPR
standard product and its precipitation rate and type-flag. Two precipitation categories, con-
vective and stratiform, were considered when defining the label for each individual GMI
pixel. Using DPR observations falling within GMI’s 18 GHz channel field of view, a convec-
tive fraction is calculated by applying Gaussian weighting to DPR-observed precipitation
rates. This has ensured accurate matching between DPR- and GMI-viewing geometry ( [5]).
Once available, the convective fraction of precipitation was used to assign a label to each
individual GMI pixel. A convective flag was assigned to all pixels with the fraction of
50% or more; otherwise, the pixel was labeled as stratiform. Observations containing any
missing or non-classified data (less than 5% of total data) were excluded from the training
dataset to ensure minimal noise. Upon labeling, the dataset used for model development
was balanced so that an equal representation of both precipitation classes is preserved. In
total, ∼14 million samples were collected and were further split into training/validation/test
data with an 80/10/10 ratio respectively.

3.2 Bayesian Methods
This section derives and details the specific Bayesian deep learning methods used. Each
subsection will focus on a specific method with mathematical details and implementation
considerations in Tensorflow 2.0. The three methods evaluated in this work: reparameteriza-
tion, flipout, andMonte Carlo dropout, represent the three most commonly utilized methods
in Bayesian deep learning. Further, we discuss trade-offs between different methods. In this
thesis we benchmark the quality of the uncertainties generated by these various methods.
By comparing the outputs of each method given the same robust dataset, it will be possible
to effectively compare and contrast the performance of each of these methods as well as the
quality of their uncertainties.

3.2.1 Bayesian Methods: Reparameterization
While the variational inference optimization described in the previous section describes
a general optimization problem for variational inference, utilizing this general form in a
stochastic gradient descent context will produce a gradient exhibiting very high variance
that renders it impractical for use with large data sets [49]. One method for dealing with
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this high variance is to reparameterize the ELBO in order to yield a gradient with lower
variance.

The derivations in this section were sourced from Kingma and Welling’s paper on Auto-
Encoding Variational Bayes [50].

Recall the ELBO equation from the previous section on variational inference:

�!�$ = ;>�(?∗(. )) −  ! [@∗ | |?∗] (3.1)

where the ELBO is defined as the log evidence of the model given the dataset . minus
the Kullback-Liebler Divergence (KL) of the approximate posterior ?∗ and prior @∗. To
demonstrate the motivation for reparameterization, consider a true posterior distribution in
a deep learning context, @\ (I |. ), whose model parameters \ and latent variables I given the
dataset . are unknown. Similar to the previous section, the desired approximate posterior
in this context is given as @q (I |. ). From these two pieces, the ELBO can be re-written as:

�!�$ (\, q,. (8)) = − ! (@\ (I) | |@q (I |. (8))) + �@q (I |. (8) ) [;>�(?\ (.
(8) |I)] (3.2)

where the left hand side (LHS) of the equation denotes the ELBO calculated for a given data
point 8 in dataset . , model parameters \ and variational parameters q. The right hand side
(RHS) of the equation gives the KL divergence between the variational posterior @q (I |.
with variational parameters q and the true posterior ?\ (I) with model parameters \, and the
expectation of the true posterior with respect to the approximate posterior, all for a given
data point 8 in the data set . .

In order to optimize the lower bound with respect to both the variational parameters q and
model parameters \, the previous equation must be differentiated with respect to both of
these variables. However, the standard Monte Carlo gradient estimator of the variational
lower bound with respect to the variational parameters q, exhibits a level of variance that
is too high to be practical for deep learning purposes [49].The solution to this issue is to
reparameterize @q (I |. ) so that the samples generated from the reparameterized approximate
posterior yield a lower variance.
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To do this, let I be a continuous random variable, and have I @q (I |. ) be a conditional
distribution. Under certain conditions [50], it is possible to reparameterize I using a differ-
entiable transformation �q (n |. ) of a noise variable n ≈ ?(n). Once this reparameterization
is made, Monte Carlo estimates of a function 5 (I) with respect to the approximate posterior
is possible via:

�@q (I |. (8)) [ 5 (I)] = �? (n) [ 5 (�q (n,. (8))]
1
!

!∑
;=1

5 (�q (n (;) , . (8))) (3.3)

where n (;) ≈ ?(n). Applying this to the ELBO:

�!�$ (\, q;. (8)) = 1
!

!∑
;=1

;>�(?\ (. (8) , I(8,;))) − ;>�(@q (I(8,;) |. (8))) (3.4)

where I(8,;) = �q (n (8,;) , . (8)) and n (;) ≈ ?(n). The above equation is a generic stochastic
gradient variational Bayes (SGVB) estimator for the ELBO. Furthermore, given a dataset
. with # datapoints, the generic SGVB estimator can be manipulated to estimate the lower
bound on the entire dataset given a minibatch of size M:

�!�$"8=810C2ℎ (\, q;. ) = #

"

"∑
8=1

! (\, q; ~(8)) (3.5)

yielding a SGVB minibatch estimator. Taking derivatives of this estimator yields gradients
that can be used in conjunction with stochastic gradient descent in a deep learning context
given in the following reparameterization SGVB Algorithm:

SGVB Minibatch Estimator �!�$"8=810C2ℎ (\, q;. ) = #
"

∑"
8=1 ! (\, q; ~(8));

Step 1: Initialize parameters \ and q
Repeat until convergence of parameters \ and q:
Draw random minibatch M from full dataset Y
Draw random samples from noise distribution n
Compute gradients of SGVB minibatch estimator
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Update parameters \ and q using gradients of SGVB minibatch estimator
Return parameters \ and q

In Tensorflow 2.0, this method is implemented using the reparameterization layers provided
by the Tensorflow Probability library. These layers implement the reparameterization ana-
logue to dense and/or convolution layers by assuming the kernel and/or the bias are drawn
from distributions which can be specified by the user [51]. By default, these distributions
are assumed to be mean field normal distributions, and the layers implement a stochastic
forward pass via sampling from the kernel and bias posteriors [51].

3.2.2 Bayesian Methods: Flipout
The next method utilized in this work is the flipout method. While the previous reparame-
terization method presents an improvement over standard variational inference, the flipout
method, given several assumptions and a trade-off in computational complexity, can yield a
gradient of the ELBO that, theoretically, exhibits less variance than the gradient computed
via reparameterization. The flipout method takes advantage of the fact that computations
on a mini-batch can be computed via matrix multiplications, which can be implemented
efficiently with GPUs.

The derivations in this section are sourced from Yeming et al. [28].

To illustrate the flipout method in comparison to reparameterization, consider drawing
a sample from a Gaussian weight distribution W. Let 5 (-,,) represent the output of a
Bayesian neural network with weight distributionW and input X. A sample from a Gaussian
weight distribution can be described in terms of perturbations:

, ≈ (,̄, f2) (3.6)

where W represents the weight sample, ,̄ represents the average of the weight distribution,
and f2 represents the standard deviation of the distribution. Using reparameterization [50],
the above Gaussian perturbation can be rewritten as:
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, = ,̄ + fn (3.7)

where n ≈ (0, 1) [50]. Notice from the previous section, however, that the reparameterization
SGVB algorithm only samples from the noise distribution n once per minibatch. This is
due to the fact that it is very expensive to compute and store a separate weight perturbations
for each example in the minibatch. The drawback to this shortcut, however, is that the
reparameterization SGVB algorithm gradient estimates suffer from increased variance over
a fully independent weight sample perturbation method because all of the training examples
in the minibatch share the same perturbation, which introduces correlations between the
gradients in the minibatch that cannot be eliminated by averaging [28].

The flipout method reduces this variance by introducing a computationally efficient method
of perturbing the weights quasi-independently within a minibatch. To do this, two assump-
tions must be made: First, that all weight perturbations are independent of the others, and
second, that the distribution of perturbations is symmetric around zero. These assumptions
are nontrivial, but, importantly, they are allowable for the families of distributions utilized
in Bayesian neural networks (notably the Gaussian family of distributions). Notably, under
these assumptions, the distribution of perturbations is invariant to element-wise multiplica-
tion by a random sign matrix (matrix whose elements are +/- 1) [28].

To demonstrate, let @∗ be an approximate prior distribution that follows the above assump-
tions, let Δ,̄ ≈ @∗, and let � be a random sign matrix that is independent of Δ,̄ . Let 2
denote element-wise matrix multiplication.

From the previous paragraphs, we know that Δ W = Δ,̄2� is identically distributed to
Δ,̄ , and that the gradients computed with Δ, are identically distributed to those computed
using Δ,̄ .

The flipout method utilizes this relationship by using a base weight perturbation ¯Δ, that
is shared by every example in the minibatch and multiplied by a unique sign matrix per
minibatch example:

Δ, = ¯Δ,2(A=B=)) (3.8)
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where = denotes a minibatch example, and A= and B= are vectors whose entries are sampled
from +/-1. From previously, we know that the marginal distribution over the gradients
computed from the above equation will be identical to those computed using a shared
weight perturbation (i.e., reparameterization method). Therefore, the flipout method yields
unbiased, de-correlated gradients that allow a Gradient Descent algorithm to achieve much
lower variance updateswhen averaging over aminibatch than the reparameterizationmethod
[28].

Computationally, this efficiency comes at a cost. Flipout requires twice as many floating
point operations (FLOPS) per update as reparameterization [26], [28], but for applications
where a large minibatch size can be used, flipout provides a significant reduction in the
variance of the computed gradients of the Bayesian neural network [28].

In Tensorflow 2.0, this method is implemented using the flipout layers provided by the
Tensorflow Probability library. These layers implement the flipout analogue to dense and/or
convolution layers by assuming the kernel and/or the bias are drawn from distributionswhich
can be specified by the user [52]. Identically to the reparameterization layers described
previously, these distributions are assumed to be mean field normal distributions, and
the layers implement a stochastic forward pass via sampling from the kernel and bias
posteriors [52].

3.2.3 Bayesian Methods: Monte Carlo Dropout
The final method to be discussed, Monte Carlo dropout, is a significant shift in implemen-
tation from the previous two methods. When implemented in Tensorflow, the reparameter-
ization and flipout methods, by default, approximate each weight with a Gaussian posterior
distribution. In effect, this implementation doubles the weights of a Bayesian neural network
over its exact deterministic counterpart since each weight in the Bayesian neural network
possess both a mean (`) and a standard deviation term (f) versus a point value given in a de-
terministic neural network.While the effectiveness of the previous methods in fitting a BNN
was established in the previous sections, the large number of weights present in these types
of BNNs can be problematic when applied in situations with computational constraints. For-
tunately, Monte Carlo dropout is able to provide an approximation of variational inference
at a much lower computational cost.
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Dropout, as a concept, was first introduced in 2014 as a way to prevent over-fitting in
deep neural networks [53]. Dropout is a layer that, when added to a neural network, sets a
random number of neurons in the previous layer to zero during the training of the neural
network. These neurons, along with the connection weights that begin at each selected
neuron, are effectively "dropped" from the neural network during that specific update cycle
of the network. The resultant effect of this dropout is to generalize the neural network in
order to prevent over-fitting to a dataset [53]. Originally proven to be effective when used
in conjunction with fully-connected layers, dropout has since been proven to generalize
convolutional layers as well by dropping feature maps instead of activations [54].

Dropout is implemented in Tensorflow as a layer that is added after a given weight layer in
order to implement dropout in the previous layer. The dropout percentage (the percentage
of randomly selected weights to drop from the previous layer per update cycle) is given as
a parameter that is input by the user. The higher the dropout percentage, the greater the
generalization effect of the dropout layer [53].

In order to extend dropout to become a Bayesian deep learning method, the user fixes the
dropout layer to be active in testing, as well as training. By extending the dropout layers in
this fashion, a deterministic DNN can approximate a BNN without doubling the weights of
the neural network [27].

To continue, Monte Carlo dropout approximates weight distributions with a simpler dis-
tribution than other Bayesian methods. While other Bayesian methods (such as reparame-
terization and flipout) utilize a Gaussian weight distribution, Monte Carlo dropout weight
distributions are modeled as a distribution tuned by the dropout percentage parameter:

In Bayesian neural networks, the predictive distribution of the network is given by:

?(\ |G,. ) =
∑
8

?(\ |G, |8) ∗ ?(|8 |. ) (3.9)

from [27]. Where ?(\ |G,. ) is the total predictive distribution for a given test value, G from
dataset . , and it is calculated by averaging over all the weight distributions in the BNN
given in the right hand side of the equation [12].
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Figure 3.1. A weight distribution using Monte Carlo dropout. Dropout prob-
ability for a given weight ? and weight value | define the weight distribution.
The only values drawn from this distribution are | and 0. Source: [12].

When using Monte Carlo dropout, the dropout layers are active during testing. By making
multiple predictions per each test input, the input samples a different sample of activeweights
in the network. By averaging these predictions, a Monte Carlo predictive distribution is
created:

?(\ |G,. ) = 1
)

)∑
C=1

?(\ |G, |C) (3.10)

where T is the number of predictions for a given input, and |C is the specific weight
constellation [12] of the neural network that is active for the given prediction.

When implemented with a loss function that utilized the ELBO equation (described in
follow-on sections), the predictive distribution calculated from ) samples is theoretically
approximate to the predictive distributions calculated using other Bayesian methods (such
as reparameterization and flipout) [27].
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3.3 Model Architectures
The following section (3.3) is adapted from [6], previously published by the IEEE Geoscience and Remote

Sensing Letters, ©2021 IEEE3,4

This section details the specific model architectures utilized in this work. To begin, de-
terministic and Bayesian configurations of deep residual networks (ResNeT) model [55],
[56] architectures were chosen to be benchmarked in this work. The ResNet model was
specifically chosen due to their high performance on ImageNet dataset classification tasks.
Additionally, since ResNet model architectures perform best in conjunction with large
datasets, it is uniquely suited for the dataset used in this study. For comparison, ImageNet is
comprised of 14.1 million images, versus the 14.4 million images in the PMWGPM dataset
used in this work.

3.3.1 Model Architectures: Deterministic and Bayesian ResNets
Past research has shown that convolutional neural networks are the best performing models
for large scale image recognition tasks [2]. Deep neural networks, however, suffer from a
Vanishing Gradient Problem [57] where the weights in lower layers receive smaller and
smaller updates until the error gradient vanishes completely, leading to diminished returns
with deeper networks. A solution to this problem was introduced in 2016 by He et al. [55]
that allowed deeper networks to be trained, resulting in large performance gains. In this work,
we utilized residual network (ResNet) architectures to train and develop both deterministic
and Bayesian deep learningmodels for classification using the previously described data set.

3Reprinted, with permission, from Orescanin et al., “Bayesian deep learning for Passive Microwave
Precipitation Type Detection,” IEEE Geoscience and Remote Sensing Letters, 2021. This publication is a
work of the U.S. government as defined in Title 17, United States Code, Section 101. Copyright protection
is not available for this work in the United States. IEEE will claim and protect its copyright in international
jurisdictions where permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

4In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of the Naval Postgraduate School’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http:
//www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
may supply single copies of the dissertation.
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In order to maximize classification performance with the computational resources available,
38-layer ResNet V2 [56] model architectures were used.

Additionally, the input size for each image was changed from previous work completed
with this dataset by Petkovic et al. [5], instead of using smaller, 3 by 5 pixel 13-channel
fields, the input data is pre-processed to provide pixel-level TBS (brightness temperatures)
across a much wider 9 by 25 pixel domain. By utilizing these wider fields, each input
image is expanded to account for an approximately 125 by 125 km area. These enhanced
radiometric fields offer increased resolution for spatially-preserved signatures for a wide
range of systems morphologies and offer a spatial-resolution enhancement over previous
work. The model architectures used, therefore, are given an opportunity to distinguish
between small-scale (e.g., isolated summer convection) and mesoscale (e.g., squall lines or
mesoscale convective systems) features known to possess distinct properties.

Reference ResNet implementations support inputs from 299 × 299 × 3 inputs in contrast to
presented dataset that has input features from TBS that are 9 × 25 × 13 in dimension. One
difference between presented implementation and the original architectures for deterministic
ResNet is in the size of the average pooling. The average pooling window before the
activation is changed from 8 × 8 in the original implementation [55] to 2 × 2 due to
the difference in input sizes and propagation of the dimensions through the architecture.
Additionally, for Bayesian ResNet architectures probabilistic versions of layers were adopted
in identical configuration as deterministic architectures. This was achieved by following
approach in [58]. The number of trainable parameters for each model architecture used is
given in the following figure:

Figure 3.2. The number of trainable parameters for each model architecture
used in this work.

TheMonte Carlo dropout layers were added following activation layers before the following
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convolutional layer in accordance with the approach in [30]. Dropout rate was set to 10%.
Note that the number of trainable parameters in the reparameterization and flipout imple-
mentations are double the number of trainable parameters in the deterministic and Monte
Carlo dropout models. This is due to each weight distribution possessing two trainable
values: the mean and standard deviation of the weight distribution.

3.4 Quantifying Model Uncertainties
While previous sections have described methods of implementing Bayesian deep learning,
this section will describe methods of quantifying the specific model uncertainties that are
present in Bayesian deep learning models. In Bayesian deep learning models, there are
two main types of uncertainty that can be quantified: aleatoric uncertainty and epistemic
uncertainty [59]. Aleatoric uncertainty represents the noise that is inherent within the dataset
itself, such as noise due to the mechanism of the sensors generating the observations. Due
to this property, aleatoric uncertainty cannot be reduced via improvements to the dataset
[4]. Epistemic uncertainty, also known as model uncertainty, represents the uncertainty
inherent within the model parameters [4], which means that epistemic uncertainty can be
reduced given enough data. First, a discussion of how to extract the aleatoric and epistemic
Uncertainties is presented, followed by how the total predictive uncertainty is generated.

3.4.1 Modeling Epistemic and Aleatoric Uncertainty
The method used in this thesis for extracting the epistemic and aleatoric uncertainties from
the bulk predictive uncertainty follows the method used by Kwon et. al [31]. To derive this
extraction, consider that the bulk uncertainty is the sum of aleatoric and epistemic compo-
nents. From this, Kwon et. al construct this breakdown of the total predictive uncertainty
into its aleatoric and epistemic components:

1
)

)∑
C=1

380�( ?̂C) − ?̂⊗C 2 + 1
)

)∑
C=1
( ?̂C − ?̄C)⊗2 (3.11)
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)

∑)
C=1 380�( ?̂C) − ?̂⊗C 2 represents the aleatoric component, 1

)

∑)
C=1( ?̂C − ?̄C)⊗2 rep-

resents the epistemic component, ?̄ =
∑)
C=1 ?̂/) , and ?̂C represents the model output after it
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is processed through the softmax function [31].

Extracting the uncertainties in this manner avoids the use of additional model layers as
outlined in [4], and provides a more accurate estimate of the aleatoric and epistemic uncer-
tainties than [4] as shown in [31].

In this thesis, the extraction was performed by implementing the pseudocode provided
below [31]:

Figure 3.3. epistemic and aleatoric extraction. Source: [31].

3.4.2 Quantifying Total Predictive Uncertainty
To quantify the total predictive uncertainty, a Bayesian neural network is constructed using
one any one of the various Bayesian methods previously discussed. By utilizing a Bayesian
neural network, the variational posterior distribution that the trained BNNproduces captures
the plausible set of model parameters, given the data. By taking # forward pass samples
from the BNN, the total predictive uncertainty in a classification task is approximated via
Monte Carlo integration by [4]:

?(~ = 2 |G, -) ≈ 1
#

#∑
==1

(> 5 C<0G( 5 (,=) (G)) (3.12)

where ?(~ = 2 |G, -) represents the probability vector of the predicted class ~ = 2 given a
datapoint G from dataset - , and 5 (,=) (G) is the logit result of a forward pass = through the
BNN for the datapoint. The total predictive uncertainty is given by the summation of the
aleatoric and epistemic uncertainties discussed previously [31]
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where ) represents the raw uncertainty output of a Bayesian neural network. In this thesis,
this total uncertainty value is benchmarked across all three methods.

3.5 Training Methodology
The following section (3.5) is adapted from [6], previously published by the IEEE Geoscience and Remote

Sensing Letters, ©2021 IEEE5,6

The following section details the training methodology, hyperparameters, and loss functions
used for the model training in this work. Architecture weights were initialized for training
following He et al. [55]. An Adam optimizer was used with a starting learning rate of
0.001. A batch size of 128 images was used. Learning rate annealing was employed [60]
via monitoring of validation loss such that the learning rate was reduced by a factor of
10 if the validation loss was not decreasing for 10 consecutive epochs. An early stopping
strategy was utilized to regularize for overfitting [48]. The evaluation metrics used for the
deterministic models were binary accuracy and binary cross-entropy loss.

Due to computational resource constraints, training was terminated at 600 epochs, which
for a Bayesian model required about 3 weeks to train on a single NVIDIA RTX 8000 48GB
GPU. Both deterministic and Bayesian models were trained with the same strategy for the
fairness of benchmarking. No additional hyperparameters were tuned between the runs that
would affect performance comparison between the model architectures with the exception
of loss functions and KL Regularization affecting the Bayesian models only, which will be
addressed in follow-on sections.

5Reprinted, with permission, from Orescanin et al., “Bayesian deep learning for Passive Microwave
Precipitation Type Detection,” IEEE Geoscience and Remote Sensing Letters, 2021. This publication is a
work of the U.S. government as defined in Title 17, United States Code, Section 101. Copyright protection
is not available for this work in the United States. IEEE will claim and protect its copyright in international
jurisdictions where permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

6In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of the Naval Postgraduate School’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http:
//www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
may supply single copies of the dissertation.
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3.5.1 Negative Log-Likelihood Loss
The loss function used for the Bayesian models in this work consists of a code implemen-
tation of the ELBO. Recall the ELBO equation derived previously:

�!�$ = ;>�(?∗(�)) −  ! [@∗ | |?∗] (3.14)

where the first term is the log evidence of the approximate posterior and the second term
is the KL divergence between the approximate prior and approximate posterior. The goal is
to formulate this ELBO as a loss so that it can be minimized through a Gradient Descent
Algorithm. Maximizing the first term of the ELBO finds the approximate posterior that
provides the best predictions, which is equivalent to minimizing the negative log likelihood
of the model predictions [61].

The KL term in the equation is calculated via the sum total KL distance between the
approximate prior posterior distributions in each reparameterization and flipout layer in the
models of those types. In the implementation in this work, the KL losses for each layer are
calculated using Tensorflow Probability’s method to calculate the KL loss between a given
layer’s prior and posterior distributions [62]. This KL loss is then added to each layer as a
non-trainable weight value that propagates the model loss through the model output. In this
manner, the KL loss is captured through the negative log-likelihood loss, and is able to be
regularized as a hyperparameter. From this, negative log likelihood Loss is mathematically
formalized as:

!>BB = −
�∑
9=1
~ 9 ;>�(~̂ 9 ) + '

#∑
==1

 ! [|= (@∗) | ||= (?∗)] (3.15)

where the first term is the negative log likelihood for � classes, ~ 9 is the probability
distribution of the correct class, ~̂ 9 is the probability distribution of the predicted class,
and the second term depicts the summation of the KL loss between each weight | layer
= KL loss between the layer’s approximate posterior ?∗ and prior @∗ distributions, with a
regularizer term ' managing the effect of KL loss.

The KL loss regularization term ' is used as a hyperparameter for training in this work in
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order to tune the model for a trade-off between ELBO accuracy and model performance.
Recall that the ELBO is merely a lower bound on the model uncertainty. By regularizing
KL, the model is biased towards accurate predictions at the cost of reducing the bias towards
reducing the KL distance between the approximate prior and posterior.

In this work, KL regularization is accomplished via two different schemes. The first scheme
is setting the regularization term to zero in order to train models that are completely biased
towards predictive accuracy. The second scheme, which is detailed in previous work [31]
called batch annealing, is to train the models while reducing the KL loss regularization
within each batch from ' = 1 to ' = 0.

In the code base, this scheme is implemented using a KL loss scheduler class as a model
callback [63]. This class adjusts the KL loss weight values of each Bayesian layer according
to the annealing scheme, and outputs the KL loss values to the user at the end of each epoch.
In this work, the reparameterization and flipout models are each trained according to the
two KL loss regularization schemes in order to study the effect that this regularization has
on model performance and uncertainty quality.

3.6 Testing Methodology
After training, the models were evaluated on the test dataset containing ∼ 1.4 million
TBS feature vectors. To compare to the results of Petkovic et al. 2019 [5], ResNet38 V2s
both in deterministic [55], [56] and Bayesian reparameterization, flipout, and Monte Carlo
dropout implementations were trained using the same training dataset and evaluated on
the held-out test dataset. For the Bayesian models, predictive distributions were obtained
via multiple stochastic forward passes through the network. Bayesian model uncertainties
were then extracted from these predictive distributions. Bayesian models are presented
with ensembles of )=25 stochastic forward passes. Deterministic models utilized a single
forward pass.

In addition to the evaluated model performances, this work utilizes the Goddard Profiling
Algorithm (GPROF) to compare deterministic and Bayesian model performance to oper-
ational precipitation type retrieval. GPROF is the current operational rainfall algorithm
used in the Global Precipitation Climatology Project (GPCP) [64] and GPM [65] rainfall
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products. GPROF estimates both the rainfall rate and the precipitation type by matching ob-
served TBS to hydrometeor profiles using a Bayesian approach. TBS were computed at the
observation frequencies using a one-dimensional Eddington approximation [66], [44] [67].

A small portion of the overall dataset containing a GPM orbit over Hurricane Lane near
peak intensity on 11 August 2018 was utilized as a case study and serving set to observe
performance comparisons over a continuous spatial region of interest and to demonstrate
quantifying Bayesian model uncertainty to improve model predictive performance. This
portion of the dataset was held out of the training and test sets.

3.7 Performance Benchmarks
This next section details the specific performance benchmarks used to evaluate all of the
Bayesianmethods implemented in this work. TheBayesianmodels were compared across all
of the performance benchmarks utilizing the same standards for uncertainty quantification in
order to maintain a homogeneous comparison. Additionally, the uncertainty quantification
benchmarks are used to determine the scale and quality of the total predictive uncertainty,
epistemic, and aleatoric uncertainties expressed by the Bayesian models. Furthermore, the
time required to train and predict using each model is expressed as an analogue for the
Bayesian model computational complexity.

In addition to the uncertainty quantification and computational complexity benchmarks
used, a suite of standard deep learning performance benchmarks are used to compare the
Bayesian model outputs to the deterministic Model and the operational GPROF algorithm.

3.7.1 Uncertainty Screening
Tomeasure the effects of uncertainty onBayesianmodel performance, the effect of screening
predictions that registered an uncertainty value above a certain threshold was examined.
Each measure of uncertainty was tested in this manner to determine what the effects of
screening each type had on the Bayesian model performances. All screening values used
were held consistent across the different model implementations such that 80% of the
prediction set was maintained.

Total predictive uncertainty * (?) was screened by first measuring it via the summation of
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the calculated aleatoric and epistemic uncertainties (see Uncertainties section), and then
removing predictions from the output array such that 80 percent of the dataset remained con-
taining the predictions with the least amount of total predictive uncertainty. aleatoric �(?)
and epistemic � (?) uncertainties were screened in a similar fashion. Each Bayesian model
was evaluated on the performance benchmarks in two modalities: uncertainty-screened and
non-screened. In this manner, it is possible to view the effects of uncertainty screening on
model results and benchmark each Bayesian model on the quality of uncertainty output.

3.7.2 Benchmark Metrics
As stated previously, all models used in this study are benchmarked using a comprehensive
suite of established and novel methods. All benchmarks were calculated in the same man-
ner for both the deterministic Models and Bayesian models. Additionally, the operational
GPROF algorithm was also evaluated with the applicable benchmarks on the same test
dataset.

The first benchmark metric used to evaluate raw model performance is predictive accuracy
drawn from the scikit-learn python library [68] where the predicted labels are comparedwith
the true labels. For the Bayesian models, the predictive labels were generated by applying
the softmax function to the average of the predicted logits.

The next benchmark metric utilized is the Area Under the Receiver Operating Characteristic
(aucROC) score [69] and plotted curve. This is a measure of how well each model is able to
distinguish between the different output classes. This measures how well each model is able
to predict a correct classification of stratiform rain as stratiform rain versus how well it can
predict a correct classification of convective rain as convective rain. A score of 1.0 signifies
an ideal classifier that can make perfect predictions, whereas a score of 0.50 represents the
performance of a random classification prediction.

In addition to the aucROC score metric, Precision, Recall, and F1-score metrics are also
calculated for each model. Precision is calculated as % = )%/)% + �% where FP represents
false positive classifications, and measures the rate at which a predicted class is actually the
correct class (i.e., predicted stratiform rain is actually stratiform rain) [70].

Recall is calculated as ' = )%/)% + �# and measures the rate at which a correct class
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is predicted (convective rain is predicted by the model to be convective rain) [70]. F1-
score is the weighted average between precision and recall given mathematically by �1 =
2(?A428B8>= ∗ A420;;/?A428B8>= + A420;;) [70].

Next, benchmark plots will detail the quantification and quality of the Bayesian model
Uncertainties. The first plots generated are histograms of a specified model uncertainty
(Figure 4.1), where the log base 10 count of the number of example in each bin is given
on the y-axis, and the uncertainty bins are given on the x-axis. Additionally, a cumulative
distribution of the predictions is overlaid over this histogram so that the percentage of data
that falls at or below an uncertainty bin can be determined. Histograms are developed for
each Bayesian model for total predictive uncertainty, epistemic, and aleatoric uncertainties
and are overlaid in the same plot.

Finally, spatial plots of uncertainty (Figures 4.2 - 4.9) will be shown for the region of
interest. These plots detail a swath of a region of interest given in stratiform and convective
pixel outputs from (in order from left to right) the operational GPROF prediction, the
DPR-derived true labels, the given Bayesian model prediction, and the spatial plot of a
Bayesian model’s particular uncertainty metric. These spatial plots detail what regions the
model experiences the most uncertainty, broken down across the three uncertainty types
measured.

In summary, three different Bayesian model implementations (flipout, reparameterization,
Monte Carlo dropout) with two different levels of KL-divergence term regularization will
be benchmarked for predictive performance and uncertainty quality on a large-scale, multi-
spectral satellite image dataset against the operational GPROF algorithm and a deterministic
CNN of the same type. The benchmarking metrics and plots detailed previously will be used
to comprehensively examine the performance of the Bayesian models while comparing the
quality of their expressed uncertainties.
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CHAPTER 4:
Results

The reported results analyze and benchmark the Bayesian model performances across two
separate datasets. The first dataset analyzed consists of the held-out test dataset containing
1.4 million feature vectors. The second dataset is a region of interest that consists of a
swath of Hurricane Lane Southeast of Hawaii in August 2018 that contains 1800 feature
vectors. The test dataset was used to benchmark performance metrics and expressed model
uncertainties across the presented Bayesian modalities, and the second dataset was used to
serve the data to generate spatial maps of the Bayesian model outputs and the corresponding
uncertainties expressed by the models. These datasets enabled a comprehensive benchmark
of the Bayesian models and provided exhaustive data towards an analysis of the quality of
the Bayesian model performance and quality of uncertainty expressed by them.7,8

4.1 Test Dataset Results
This section analyzes results for the model predictions conducted on the test dataset. The
Bayesian models (Flipout ResNet38, Reparameterization ResNet38, Flipout ResNet38 with
KL annealing, Reparameterization ResNet38 with KL Annealing, MC Dropout) performed
) = 25 Monte Carlo predictions per feature vector on the test dataset and were compared
with the deterministic model (ResNet38) and GPROF algorithm predictions.

7Chapter 4 reprinted, with permission, fromOrtiz et al., “A Systematic Evaluation of Bayesian Deep Learn-
ing on Satellite Imagery for Classification,” IEEE, 2021. This publication is a work of the U.S. government as
defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the
United States. IEEE will claim and protect its copyright in international jurisdictions where permission from
IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

8In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of the Naval Postgraduate School’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http:
//www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
may supply single copies of the dissertation.
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Table 4.1. Unfiltered performance metrics on the test dataset for each model
architecture.

Architecture Acc [%] aucROC Prec Rec
GPROF 74.3 0.743 0.83 0.74

Det. ResNet38 V2 86.0 0.94 0.86 0.86
Flipout ResNet38 V2, T=25 92.7 0.977 0.927 0.927
Reparam ResNet38 V2 T=25 92.0 0.974 0.92 0.92

MC Dropout ResNet38 V2 DR=0.10, T=25 86.0 0.941 0.86 0.86
Flipout ResNet38 V2 KL Annealing, T=25 86.6 0.946 0.87 0.87
Reparam ResNet38 V2 KL Annealing, T=25 86.4 0.944 0.86 0.86

Table 4.1 details the raw performance results for the models. All of the deep learning models
significantly outperformed the operational GPROF algorithm in all calculated metrics,
and all of the Bayesian model modalities outperformed the deterministic model with the
exception of theMCDropoutmodel. The non-KL annealingmodalities (annotated as Flipout
and Reparam in the table) significantly outperformed the rest of the Bayesian models in all
calculated performance metrics.

Table 4.2. Total predictive uncertainty-filtered performance metrics on the
test dataset, T=25.

Architecture Acc [%] aucROC Prec Rec
Flipout ResNet38 V2, U > 0.18 97.2 0.988 0.97 0.97
Reparam ResNet38 V2 U > 0.23 97.2 0.989 0.97 0.97

MC Dropout ResNet38 V2 DR=0.10 U > 0.41 92.6 0.97 0.93 0.93
Flipout ResNet38 V2 KL Annealing, U > 0.40 93.1 0.974 0.93 0.93

Reparam ResNet38 V2 KL Annealing, U > 0.405 92.9 0.972 0.93 0.93

Table 4.2 shows how the Bayesian models performed when their predictions are filtered
based upon total predictive uncertainty values. In this table, the total predictive uncertainty
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values were chosen so that 80 percent of the dataset is retained. In other words, the bottom
20 percent of predictions in terms of predictive uncertainty were removed from the corpus
before performance metrics were calculated. The values indicated by the * > show the
uncertainty threshold to retain 80 percent of the dataset. By doing this, it is possible to see
how each of the Bayesian modalities numerically expresses total predictive uncertainty.

Every Bayesian modality’s total predictive uncertainty-filtered performance exceeded the
performance of their unfiltered counterpart. Notably, the non-KL annealing modalities
achieved near-ideal performance in all metrics. The KL-annealing modalities and the MC
Dropout modalities performed similarly and achieved near-identical performance increases
across all metrics which exceeded the performance increases seen by the non-KL annealing
modalities. The uncertainty threshold between the reparameterization and flipout models
differed by a significant margin, suggesting that the flipout model expresses lower uncer-
tainty overall. Additionally, the quantity of uncertainty necessary to remove 20 percent of
the dataset in the KL-annealing andMonte Carlo modalities was roughly double the amount
required by the non-KL annealing models. Taken together, these two results indicate that
the KL-annealing and MC dropout models express both a higher amount of total predic-
tive uncertainty and a higher quality of uncertainty, as these models achieved a greater
performance from filtering it out.

Table 4.3. Epistemic uncertainty-filtered performance metrics on the test
dataset, T=25.

Architecture Acc [%] aucROC Prec Rec
Flipout ResNet38 V2, E > 2E-6 96.6 0.988 0.97 0.97
Reparam ResNet38 V2, E > 5E-6 96.5 0.988 0.96 0.96

MC Dropout ResNet38 V2 DR=0.10, E > 9E-3 91.0 0.968 0.91 0.91
Flipout ResNet38 V2 KL Annealing, E > 9E-4 91.3 0.971 0.91 0.91

Reparam ResNet38 V2 KL Annealing, E > 6.3E-3 91.4 0.970 0.91 0.91
Table 4.3 details how the Bayesian models performed when their predictions were filtered
based upon epistemic uncertainty values. In an identical fashion to the total predictive
uncertainty, the bottom 20 percent of predictions in terms of epistemic uncertainty were
removed prior to the calculation of the performance metrics. The values indicated by the
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� > show the epistemic uncertainty threshold to retain 80 percent of the dataset.

In a similar result to the total predictive uncertainty, the Bayesian models received a per-
formance boost from filtering the epistemic uncertainty. This performance boost, however,
was not as significant as the one that resulted from filtering the total predictive uncertainty.
The non-KL annealing models continued to perform better than the other modalities, but
expressed epistemic uncertainty thresholds that were several orders of magnitude lower than
the other modalities. Furthermore, the trend from the total predictive uncertainty screening
continues with the flipout model expressing a threshold that is less than half that of the
Reparameterization model. Additionally, all of the models expressed epistemic uncertainty
thresholds that were extremely small. These small epistemic uncertainty values mean that
all of the models’ parameter distributions did not express much uncertainty in comparison
to the total predictive uncertainty value, meaning that the models themselves were quite
confident in their predictions and that their parameter distributions converged to a solution
that may not be significantly improved by increasing the size of the dataset.

Table 4.4. Aleatoric uncertainty-filtered performance metrics on the test
dataset, T=25.

Architecture Acc [%] aucROC Prec Rec

Flipout ResNet38 V2, A > 0.18 97.7 0.99 0.98 0.98

Reparam ResNet38 V2, A > 0.23 97.2 0.989 0.97 0.97

MC Dropout ResNet38 V2 DR=0.10, A > 0.41 92.1 0.968 0.92 0.92

Flipout ResNet38 V2 KL Annealing, A > 0.40 93.0 0.973 0.93 0.93

Reparam ResNet38 V2 KL Annealing, A > 0.40 92.8 0.972 0.93 0.93

Table 4.4 shows how the Bayesian models performed when their predictions were filtered
based upon aleatoric uncertainty values to retain 80 percent of the dataset in a fashion
identical to the previous filtering methods. The retention of 80 percent of the dataset was
chosen to demonstrate the filtering method and is able to be adjusted depending upon the
needs of the user. The values indicated by � > show the aleatoric uncertainty threshold
needed to retain 80 percent of the dataset.
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The results from the aleatoric screening show notable differences from the previous epis-
temic uncertainty analysis. First, the non-KL annealing Bayesian modalities achieved per-
formance increases that met or, in the case of the non-KL annealing flipout model, exceeded
the performance increase seen from screening based upon total predictive uncertainty. The
non-KL annealing flipout model achieved near-optimal performance based upon the auROC
score, and its classification accuracy was half a percentage point better than the accuracy
seen when total predictive uncertainty screening was used. Next, the KL annealing modali-
ties and the Monte Carlo dropout model achieved similar performance increases to filtering
with total predictive uncertainty, with threshold values that were on par with or, in the
case of the KL annealing reparameterization model, slightly lower than the total predictive
uncertainty screening values.

Notably, the scale of the aleatoric uncertainty thresholds are nearly identical to the total
predictive uncertainty thresholds previously discussed. This result means that the majority
of the total predictive uncertainty is a result of uncertainty inherent to the dataset itself, not
the uncertainty inherent in the model parameters. This result further suggests that improving
model performance may require changes to how the data is collected, such as remote senor
improvements, as the aleatoric uncertainty cannot be reduced by the inclusion of additional
training data [4]. The differences in the expressed aleatoric uncertainty thresholds also
reinforce the trend that the non-KL annealing models express a lower uncertainty quality
and quantity than the KL annealing and Monte Carlo dropout models, as those models
express uncertainty values that are not only significantly larger than the non-KL annealing
values, but are also consistent across the MC dropout and KL annealing modalities.

Table 4.5. Average uncertainties over the test dataset. Table 4.5 is adapted
from [71], previously published by the IEEE ©2021.

Architecture Mean Aleatoric Mean Epistemic
Flipout ResNet38 V2 9.475e-02 1.360e-06
Reparam ResNet38 V2 1.054e-01 4.340e-06

MC Dropout ResNet38 V2 DR=0.10 2.000e-01 5.113e-03
Flipout ResNet38 V2 KL Annealing 1.861e-01 5.843e-04
Reparam ResNet38 V2 KL Annealing 1.905e-01 3.666e-03
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Next, Table 4.59,10 details the average aleatoric and epistemic uncertainty values calculated
over the entire dataset for each model. This table further reinforces previously discussed
trends. First, the non-KL annealing models express much lower values of both aleatoric
and epistemic uncertainties than their KL annealing modalities and the MCDropout model,
with the non-KL annealing flipout model expressing the least amount of uncertainty overall.
At the other end of the spectrum, the MC dropout model expressed the highest amount of
aleatoric and epistemic uncertainty.

Across all of the models, however, these results indicate that the models are quite certain
in their predictions. This indicates that efforts to reduce the uncertainty and to increase the
performance of these models should be focused upon reducing the aleatoric uncertainty,
or the uncertainty due to the dataset itself. This result is consistent with previous research
[31], [4] that suggests that dataset improvements are the most effective way to improve the
performance of well-converged Bayesian models.

9Reprinted, with permission, from Ortiz et al., “A Systematic Evaluation of Bayesian Deep Learning on
Satellite Imagery for Classification,” IEEE, 2021. This publication is a work of the U.S. government as defined
in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United
States. IEEE will claim and protect its copyright in international jurisdictions where permission from IEEE
must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

10In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of the Naval Postgraduate School’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http:
//www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
may supply single copies of the dissertation.
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Table 4.6. Training time per epoch [TPE] vs. model size.

Architecture TPE [s] Model Size (params)
Deterministic ResNet38 V2 1874 1124322

Flipout ResNet38 V2 3311 2223890
Reparam ResNet38 V2 1815 2223890

MC Dropout ResNet38 V2 DR=0.10 2371 1124322
Flipout ResNet38 V2 KL Annealing 4108 2223890
Reparam ResNet38 V2 KL Annealing 2886 2223890

Table 4.6 describes the average time each training epoch took to complete for each of the
models trained on the overall test dataset and lists the number of trainable parameters in
each model. The non-KL annealing reparameterization modality was the fastest model to
train, despite having twice the trainable parameters as the deterministic model. This is a
surprising result, given the additional calculations that are necessary to run the reparam-
eterization model. This suggests that the training time was weighted towards loading and
moving data into and out of main memory for processing by the model, and the additional
calculations required by the reparameterization model to calculate and process the negative
log-likelihood loss did not adversely affect the training time.

Next, the MC dropout modality required approximately 500 seconds longer on average for
each epoch to complete. This result makes sense in the context of the model’s construction,
as it contained 36 dropout layers. Each dropout layer requires additional calculation to
eliminate a 10 percent of the previous layer’s connection during every forward pass through
the network, so the additional training time required per epoch makes sense given the
greater computational burden on the hardware. Next, the KL annealing reparameterization
ResNet required approximately 500 more seconds per epoch than the MC dropout model.
The calculation of the KL loss between the approximate prior and posterior distributions
for each Bayesian model layer accounts for this difference, as it requires an additional
set of calculations per forward pass. The flipout non KL annealing and KL annealing
models took the longest time to train. Again, this result makes sense in the context of the
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calculations that take place to compute the flipout method. As demonstrated previously in
this work, the flipout method requires twice the number of floating point operations than
the reparameterization method in order to calculate a more precise gradient. In theory,
this should translate to a more accurate model over the other Bayesian methods, but the
performance gains did not manifest themselves, which reduces the utility of the flipout
method due to the much-greater training time of the flipout modalities.

Figure 4.1. Log histogram and CDF of expressed uncertainties for all Bayesian
model modalities

Figure 4.1 details the log-histogram and CDF of the uncertainties expressed by the Bayesian
models. From this figure, it can be observed that the non KL annealing modalities express
a much lower amount of uncertainty than the other models. This shows that removing the
calculation of the KL divergence term in the loss function reduces the effectiveness of
the models in expressing uncertainty, and leads to an over-confidence in their predictions
as expressed by the CDFs in the epistemic uncertainty portion of the plot. The non KL
modalities express extremely low amounts of epistemic uncertainty while also expressing
a lower amount of aleatoric uncertainty. When comparing the two non KL modalities, the
flipout method expresses lower uncertainty than the reparameterization model.

In contrast, the KL annealingmodels (with the notable exception of the KL annealing flipout
model) express a much higher amount of total, aleatoric, and epistemic uncertainty than
the non-KL annealing modalities. The flipout and reparameterization models all expressed
less uncertainty than the MC dropout model, and the MC dropout model expressed a much
higher amount of epistemic uncertainty. The KL-annealing flipout and reparameterization
models expressed nearly identical amounts of aleatoric uncertainty, but the KL-annealing
flipout model expressed extremely low amounts of epistemic uncertainty in line with the
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amount of epistemic uncertainty expressed by the non KL annealing models.

4.2 Region of Interest Dataset Results
This section analyses results for the model predictions conducted on the serving dataset on
a specific region of interest. The Bayesian models (Flipout ResNet38, Reparameterization
ResNet38, Flipout ResNet38 with KL annealing, Reparameterization ResNet38 with KL
Annealing, MC Dropout) performed ) = 25 Monte Carlo predictions per feature vector
on the serving dataset and were compared with the deterministic model (ResNet38) and
GPROF algorithm predictions.

The serving dataset is a region of interest that consists of a swath of Hurricane Lane as it
reached peak intensity southeast of Hawaii in August 2018 that contains 1800 feature vec-
tors. This serving swath was chosen due to the rarity of its presentation, as the coincidence
of the GPM satellites, DPR sensor, and an intense tropical cyclone can be classified as a
statistical rarity. As such, this serving dataset provides an analysis of model performance
on data that is likely a very small fraction of the training dataset. While a rain-type classi-
fication task on the inner core of a tropical cyclone is not dynamically meaningful from a
meteorological perspective, the comparison with GPROF and DPR is nonetheless a useful
demonstration of Bayesian model performance on classifying remote sensing data of the
atmosphere.

Table 4.7. Model performance metrics for the region of interest, T=25.

Architecture Acc [%] aucROC Prec Rec F1
GPROF 69.5 0.715 0.73 0.70 0.70

Det. ResNet38 V2 83.2 0.848 0.95 0.76 0.84
Flipout ResNet38 V2 81.4 0.902 0.83 0.82 0.81
Reparam ResNet38 V2 81.7 0.913 0.84 0.82 0.82

MC Dropout ResNet38 V2 DR=0.10 82.4 0.930 0.85 0.82 0.83
Flipout ResNet38 V2 KL Annealing 83.4 0.934 0.85 0.83 0.84
Reparam ResNet38 V2 KL Annealing 83.2 0.932 0.85 0.83 0.83

Table 4.7 shows the unfiltered Bayesian model performances on the serving dataset. Ad-
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ditionally, the performances of the operational GPROF algorithm and a deterministic
ResNet38 V2 model are also shown. All models performed worse on the serving dataset in
comparison to the test dataset. As discussed in the introduction to this section, this is likely
due to the pseudo out-of-distribution nature of the data. Notably, the Bayesian models that
performed the best on the test dataset, the non KL Annealing flipout and reparameterization
models, showed the greatest performance decrease on the serving dataset. This result indi-
cates that these models have overfit to the training dataset, as the other Bayesian modalities
suffered a 3 percent accuracy decrease against the test dataset, versus a performance de-
crease of over 10 percent for the non KL annealing models. Notably, the deterministic model
performed on par with the KL annealing Flipout and reparameterization models, with the
MC dropout model only outperforming the non KL annealing models and the operational
GPROF algorithm.

Table 4.8. Model performance metrics for total predictive uncertainty-filtered
region of interest, T=25.

Architecture Acc [%] aucROC Prec Rec F1
Flipout ResNet38 V2, U > 0.045 87.8 0.934 0.89 0.99 0.88
Reparam ResNet38 V2, U > 0.07 88.9 0.937 0.90 0.89 0.89

MC Dropout ResNet38 V2, U > 0.35 89.2 0.960 0.91 0.89 0.89
Flipout ResNet38 V2 KL Anneal, U > 0.34 89.2 0.963 0.91 0.89 0.89
Reparam ResNet38 V2 KL Anneal, U > 0.34 89.2 0.962 0.91 0.89 0.89

Table 4.8 above details the Bayesian model performance on the region of interest when
the model predictions are filtered based upon total predictive uncertainty such that 80
percent of the dataset is retained. In congruence with the analysis on the test dataset,
the non KL annealing modalities express a smaller performance gain with this filter than
the KL annealing and MC dropout modalities. Additionally, the scale of the uncertainty
values reinforce previous analysis, as the non KLmodels express total predictive uncertainty
values that are far lower than the other models. This reinforces the analysis that these models
overfit to the training set, as their performance suffered while the models’ confidence in
their predictions was higher than the confidence expressed by the other Bayesian modalities.
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Table 4.9. Performance metrics for epistemic-filtered region of interest,
T=25.

Architecture Acc [%] aucROC Prec Rec F1
Flipout ResNet38 V2, E > E-7 87.0 0.929 0.88 0.87 0.87

Reparam ResNet38 V2, E > 1E-6 88.7 0.938 0.90 0.89 0.89
MC Dropout ResNet38 V2, E > 1E-2 89.7 0.960 0.91 0.90 0.90

Flipout ResNet38 V2 KL Anneal, E > 1E-3 88.9 0.957 0.90 0.89 0.89
Reparam ResNet38 V2 KL Anneal, E > 6E-3 88.6 0.956 0.90 0.89 0.89

The analysis of the epistemic uncertainty-filtered results in Table 4.9 reinforce prior anal-
ysis. The non KL annealing modalities expressed epistemic uncertainty filters that were
approximately 1

6 and 1
4 the values expressed on the test dataset for the reparameterization

and flipout models, respectively. This is in contrast to the epistemic uncertainty filter values
expressed by the KL annealing and MC dropout models that were either orders of mag-
nitude greater on the serving set (for MC dropout and flipout) or on par with (in the case
of reparameterization) the epistemic uncertainty filter values expressed by the test dataset.
The results expressed by these Bayesian modalities are consistent with prior research on
out-of-distribution (OOD) results with Bayesian models on smaller datasets that show that
Bayesian models express higher epistemic uncertainty in regions of data that are not rep-
resented in the training data corpus. Taken together, this further reinforces the notion that
ignoring the KL term in the negative log-likelihood loss function for Bayesian models
results in overfitting to the training data in a manner that is similar to deterministic models.

49



Table 4.10. Model performance metrics for aleatoric-filtered region of inter-
est, T=25.

Architecture Acc [%] aucROC Prec Rec F1
Flipout ResNet38 V2, A > 0.045 87.8 0.934 0.88 0.87 0.87
Reparam ResNet38 V2, A > 0.07 88.9 0.937 0.90 0.89 0.89

MC Dropout ResNet38 V2, A > 0.34 89.0 0.960 0.91 0.89 0.89
Flipout ResNet38 V2 KL Anneal, A > 0.33 89.6 0.964 0.91 0.90 0.90
Reparam ResNet38 V2 KL Anneal, A > 0.32 89.5 0.963 0.91 0.89 0.90

The aleatoric uncertainty filtered results in Table 4.10 also reinforce the trends seen previ-
ously on the test dataset. While the aleatoric uncertainty filters are lower for all Bayesian
models on the serving set, the KL annealing and MC dropout models produce similar
amounts of aleatoric uncertainty, reinforcing the idea that these models produce well-
calibrated uncertainties that are consistent across different types of models. Additionally,
the reduced aleatoric uncertainty filter values produced by the Non KL modalities also
reinforces the notion that, similar to previous analysis, ignoring the KL divergence between
the prior and posterior distributions during loss calculation greatly reduces the calibration
and utility of the uncertainties produced by those types of models.
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Figure 4.2. Combined spatial uncertainty and prediction plot comparison for
the KL annealing flipout model. Uncertainties are given in the top row, and
model outputs are given in the bottom row.

Figure 4.2 details the spatial results for the KL annealing flipout model. The spatial predic-
tions show that the model is superior at detailing storm structure than the GPROF model,
especially in regions where convective precipitation is bordered by stratiform precipitation.
The spatial uncertainties detail precisely which regions of the hurricane within which the
model experiences epistemic and aleatoric uncertainty. Those regions coincide with areas of
incorrect classification. Notably, the regions expressing large aleatoric uncertainty coincide
with regions expressing epistemic uncertainty. This shows that the epistemic uncertainty is
tied spatially to regions where the dataset expresses noise. However, information gain may
be possible through training the model with data that expresses epistemic uncertainty values
that are higher than the test dataset average. Since the highlighted areas in the epistemic
uncertainty plot express values orders of magnitude greater than the test dataset average,
the model performance can likely be improved by including data on hurricane structures to
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the training data corpus.

Figure 4.3. Combined spatial uncertainty and prediction plot comparison for
the non KL annealing flipout model.

In contrast to the previous result, the non KL annealing flipout modality does not express
quality spatial uncertainty (Figure 4.3). The expressed uncertainties are unclear in compar-
ison to the uncertainties expressed by the KL annealing model that were tied to specific
storm structures. Subsequently, the model over-classifies convection when compared to its
KL annealing counterpart. Due to this lack of uncertainty quality, it is difficult to ascertain
regions within which the dataset and model results could be improved.
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Figure 4.4. Combined spatial uncertainty and prediction plot comparison for
the KL annealing reparameterization model.

Similarly to the KL annealing flipout model, the KL annealing reparameterization model
(Figure 4.4) expresses detailed spatial uncertainties that are strongly correlated with the
hurricane’s structure. In line with Table 4.9, the KL annealing reparameterization model
expresses higher epistemic uncertainties than the KL annealing flipout model. In a similar
fashion, these higher epistemic uncertainties over the test dataset baseline demonstrate
possible information gain.
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Figure 4.5. Combined spatial uncertainty and prediction plot comparison for
the non KL annealing reparameterization model.

In contrast to the KL annealing reparameterization modality, the non KL reparameterization
model (Figure 4.5) expresses uncertainties in a similar fashion to the non KL annealing
flipout model (Figure 4.3). The regions of uncertainty are similar in shape and in scope,
and are greater in magnitude than the non KL flipout model, but they also lack detail. It is
not clear from these spatial uncertainties where the model and dataset could be improved,
as the uncertainties do not detail specific storm structures nor are they strongly correlated
to specific regions where the model performed incorrect classifications.
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Figure 4.6. Combined spatial uncertainty and prediction plot comparison for
the MC dropout model. Figure 4.6 is adapted from [71], previously published
by the IEEE ©2021.

The MC dropout spatial results agree with Table 4.9 that show that the MC dropout model
expressed higher epistemic uncertainty on the serving dataset than the other Bayesian
models (Figure 4.611,12). The spatial uncertainties expressed reinforce the notion that the

11Reprinted, with permission, from Ortiz et al., “A Systematic Evaluation of Bayesian Deep Learning on
Satellite Imagery for Classification,” IEEE, 2021. This publication is a work of the U.S. government as defined
in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United
States. IEEE will claim and protect its copyright in international jurisdictions where permission from IEEE
must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

12In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of the Naval Postgraduate School’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http:
//www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
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main source of the uncertainty (and incorrect classifications) lies with noise inherent to
the dataset itself. This provides an important advantage over the deterministic model and
GPROF results, as it is possible with the Bayesian models to determine where (and if) it is
possible to improve the model through the inclusion of more data, and where the dataset
itself can be improved through sensor and data collection improvements.

Figure 4.7. Combined total predictive uncertainty spatial comparison of the
Bayesian models.

Figure 4.7 compares the spatial total predictive uncertainty expressed by the Bayesian
models. This spatial plot shows that the non KL annealing models express total predictive
uncertainty that is of a much lower quality than the KL annealing and MC dropout models.
Notably, the KL annealing and MC dropout models are consistent in the location and scale
of the total predictive uncertainty, whereas the non KL annealing models show significant
differences in the location of their total predictive uncertainty, leading to an inconclusive
spatial uncertainty quantification for those models when compared to the modalities that
include KL divergence in their calculations.

may supply single copies of the dissertation.
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Figure 4.8. Combined aleatoric uncertainty spatial comparison of the
Bayesian models.

The spatial aleatoric uncertainty comparison reinforces the previous analysis while provid-
ing additional insight into the specific behavior of the different Bayesian models. Specifi-
cally, the non KL annealing models express markedly less spatial aleatoric uncertainty than
the KL annealing models (Figure 4.8). Next, the KL annealing flipout and reparameteriza-
tion models express different spatial aleatoric uncertainty. The reparameterization model
expressesmore aleatoric uncertainty in the northern and southwestern regions of the plot. Fi-
nally, the MC dropout model expresses the most aleatoric uncertainty overall, with slightly
more aleatoric uncertainty present in all regions of the plot than the reparameterization
model.

Figure 4.9. Combined epistemic uncertainty spatial comparison of the
Bayesian models.

Figure 4.9 reinforces previous analysis that shows the lack of uncertainty quality that is
present in the non KL annealing models. Additionally, this spatial comparison allows amore
detailed analysis of the difference in the quality of the epistemic uncertainty expressed by the
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KL annealing and MC dropout models. Notably, the KL annealing flipout model expresses
the lowest amount of epistemic uncertainty and is the most certain in its predictions. Next,
the reparameterization model expresses a greater amount of epistemic uncertainty in both
magnitude and spatial distribution than the flipout model.

This marks a notable difference in the expressed uncertainties between the KL annealing
flipout and reparameterization models. While the reparameterization model is congruent
with the MC dropout model (which expresses the most uncertainty overall), the flipout
model lacks epistemic uncertainty in regions where the other two model possess it. This
suggests that the flipout model expresses a lower amount of epistemic uncertainty than the
reparameterization and Monte Carlo Dropout models. This makes sense given the more
precise calculations that take place with the flipout method, as it calculates a more precise
result that contains less uncertainty by design than the reparameterization and MC dropout
methods, but this spatial analysis, when taken in context with Tables 4.9 and 4.10, confirms
the mathematical theory that the flipout model expresses a lower amount of uncertainty than
other Bayesian modalities in both a spatial and magnitude context.
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CHAPTER 5:
Conclusions and Future Work

To review, the research objectives explored in this work were as follows:

1. Determine if Bayesian CNNs can classify cloud convective classes more accurately
than deterministic CNNs and the operational GPROF algorithm.

2. Determine which Bayesian CNN model architectures perform well on multispectral
satellite data.

3. Investigate how modeling three different types of uncertainty and filtering by said
uncertainties affects the classification performance of the Bayesian models.

4. Investigate model performance trade-offs of estimating and filtering by the three
uncertainty types.

5. Develop novelBayesianModel benchmarks for use on large scale datasets and evaluate
the Bayesian model performance with them.

In this final chapter, each one of the research objectives will be investigated in order, and
conclusions for each will be stated based upon the research and results conducted earlier in
this work. Finally, a future work section will detail additional research questions developed
from this thesis.

5.1 Conclusions
The first research objective wasmet by the results of this work. Bayesianmodel performance
met or exceeded deterministicmodel performance in all metrics on the unfiltered test dataset,
and far exceeded the operational GPROF algorithm in all metrics. When the test dataset
predictions were filtered to remove samples with high aleatoric uncertainty, the Bayesian
models achieved, at worst, a 50 percent error reduction when compared to the deterministic
model. The optimal test dataset results were achieved by the flipout and reparameterization
models, which achieved an 80 percent error reduction over the deterministic model. All
Bayesian modalities expressed an auROC score within the 0.97-0.99 range, which is close
to the maximum score of 1.0. Furthermore, the increased computational complexity of these
models is a reasonable trade-off when viewed in the context of the performance advantages
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and the ability to identify regions of model (epistemic) uncertainty and dataset (aleatoric)
uncertainty. These results confirm that Bayesian models possess performance on large,
operational datasets that can exceed the performance of state-of-the-art deterministic neural
networks.

Next, all Bayesian modalities performed well on classification with the multi-spectral satel-
lite dataset. The conclusion to this research objective can be further refined once performance
onOODdata is considered. TheKL annealing andMCdropoutmodalities achieved superior
performance metrics on the OOD dataset than the non KL annealing models, and expressed
increased ability to generalize to new, unseen OOD data than the non KL annealing models.
The best performingmodel overall was theMC dropout model due to superior quantification
and quality of uncertainty, performance on the test and OOD dataset, and reduced com-
putational complexity compared to the other Bayesian models. The next best performing
modalities were the KL annealing reparameterization and KL annealing flipout Bayesian
models. While performance metrics for those models were similar to theMC dropout model
on the testing and serving datasets, their increased computational complexity may limit their
utility in certain applications, and the objective quality of their uncertainties, evidenced by
the filtering results in Tables 4.8 - 4.10 and spatial results in Figures 4.7 - 4.9, was less than
that of the MC dropout model. Finally, the non KL annealing Bayesian models performed
the worst out of the Bayesian models. Their reduced computational complexity compared
to their KL annealing counterparts does not make up for the lack of quality of their uncer-
tainties, and these models overfit to the training data as evidenced by their comparatively
reduced performance on the OOD data.

The third research objective to investigate how filtering by the three uncertainty types
affected Bayesian model performance was met. Filtering by all three types of uncertainty
greatly improved the performance of all of the Bayesian models. On the test dataset, filtering
by each uncertainty type successfully increased the model performance by similar amounts.
On the OOD serving dataset on the region of interest, however, filtering by aleatoric
uncertainty provided an increased performance improvement than by filtering with the
other uncertainty types.

Next, the research objective to investigate the performance trade-offs of estimating and
filtering by the different uncertainty types was also met. To begin, all of the Bayesian
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models expressed very low epistemic uncertainty values. This shows that all of the models
were highly accurate and confident in their predictions. The KL annealing and MC dropout
Bayesian models also expressed higher epistemic uncertainty values on the OOD serving
dataset on the region of interest. This result confirms, on a far larger and operational dataset,
past research that shows increased epistemic uncertainty values on OOD data. On the other
hand, all of the Bayesian models expressed aleatoric uncertainty values that were several
orders of magnitude greater than the epistemic uncertainty.

Furthermore, as shown on the spatial uncertainty plots, these aleatoric uncertainties are
strongly correlated with regions of epistemic uncertainty. This confirms that Bayesian
models can be used to screen noisy data samples from prediction sets, as data with high
aleatoric uncertainty is not ideal for prediction due to noise in the data causing epistemic
uncertainty. Filtering for epistemic uncertainty that is not tied to aleatoric uncertainty can
be used to identify data that should be included in a future dataset to improve the model
performance, since data with high epistemic uncertainty plus low aleatoric uncertainty
presents the greatest opportunity for model information gain.

Next, the epistemic uncertainty maps detail where the KL annealing and MC Dropout
Bayesian models are producing incorrect classifications. When the spatial predictions dis-
agree with the DPR true labels, the epistemic uncertainty identifies the incorrect classifi-
cations. This phenomenon can be seen most clearly in the southwest, northern, and eastern
portions of Figures 4.2, 4.4, and 4.6 where the KL annealing and MC Dropout Bayesian
models incorrectly classify convection. Both the Bayesian and GPROF models failed to
properly classify these regions, but the epistemic uncertainty map was able to recover the
correct classifications, whereas the GPROF and deterministic models do not provide a way
to recover the correct classifications.

Crucially, the chief advantages of filtering data based upon uncertainty are confirmed in
this work. Past research in this area utilized small datasets that were curated for use by
Bayesian models, whereas this work generalizes this approach to large scale datasets fit for
operational use. By using a large datasets, Bayesian models were able to be trained to be
highly accurate and specific in their uncertainty quantification, allowing potential errors
in data collection and processing to be identified while identifying sections of data that
should be pursued for further representation in the training data in order to improve model
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performance.

Finally, benchmarks were developed in this work for use in future research. First, novel
methods of quantifying and filtering by different uncertainty types were developed for
use on large datasets in this work. Second, uncertainty histogram and CDF presentations
were developed that allow for visual representation of the variance and scale of calculated
uncertainties. Third, methods were developed to calculate the average uncertainty of a given
type across an entire prediction set and to compare the computational and memory cost of
each model. Finally, a novel method of spatially plotting model uncertainties was developed
that allows a researcher to understand where, and at what scale, uncertainties occur in
model predictions. These benchmarks will allow future researchers to compare and contrast
Bayesian model performance across large datasets in a reproducible manner.

In conclusion,Bayesian deep learningmethods express performance characteristics on large-
scale datasets that are compelling for potential use in operational settings. Bayesian models
are shown to outperform deterministic models and operational algorithms while producing
uncertainties that can be used to further informdataset improvement and prediction decisions
at a marginal computational cost increase over conventional methods.

5.2 Future Work
To conclude, several additional areas of inquiry were raised during the writing of this work.
These areas of inquiry are presented as research objectives in the following list:

1. Develop and benchmarkBayesianCNNsonPMWGPMdata that is observed over land
and compare performance against deterministic CNNs and the operational GPROF
algorithm.

2. Develop and benchmark Bayesian CNNs on a large scale, multispectral satellite
meteorological dataset on a regression task, such as rainfall prediction.

3. Investigate the potential relationship between expressed uncertainties by Bayesian
CNNs on PMWGPMdata that seem to identify storm structures that are not identified
by other methods.

4. Develop additional uncertainty screening methods for use in constructing refined
datasets for future Bayesian model training.
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