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Approach 
Often, classifying observations of data into one class or another (e.g., determining 
whether an object is a high value target based on pedestrian traffic characteristics) is a 
difficult problem as observations often cannot be easily distinguished from each other 
using the basic characteristics exhibited by the observations. Kernel methods provide a 
means to convert those characteristics into a higher dimensional space that allows for 
the classes to more readily distinguish themselves. Bayesian methods, in concert with 
kernel methods, allow for enhanced classification, where the result of a Bayesian kernel 
model is a likelihood (or probability) that the observation falls into a particular class, not 
simply the class itself. Bayesian methods require a prior probability distribution to 
describe parameters, and observations transform this prior distribution into a more 
descriptive likelihood of classification. Previous developments in Bayesian kernel 
models assume a normal distribution as the prior distribution, which can be a 
problematic assumption for some data sets. 
 Our approach explored different prior distributions for classification problems: 
(i) a beta distribution for binary classification problems and (ii) a Dirichlet distribution 
(an extension of the binomial distribution) for multi-class classification problems, as 
well as (iii) applying these approaches in online learning environments, where data 
processing occurs one observation at a time and the classification algorithm improves 
over time with new observations. 
 This report essentially summarizes a paper in submission at Computational 
Statistics and Data Analysis [MacKenzie et al. 2013], which is appended to this report. 
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Scientific Challenges and Opportunities  
A primary challenge of this research lies in successfully classifying some difficult 
classification problems (e.g., one class appears much more frequently than another 
class) and in improving the performance of the algorithm (across several metrics) 
relative to existing approaches.  
 
Significance 
The significance of this approach, as it turns out, will be to provide similar accuracy to 
other classification approaches in a significantly reduced amount of computational 
time, especially for problems of online learning. 
 
Accomplishments 
We describe accomplishments with respect to the first three tasks of the proposed work. 
 
Task 1: Binary Classification. We developed the formulation in Eq. (1) to classify the 
observations of an unknown data point i represented by the vector ܠ. The probability 
that data point i is positively labeled follows the beta distribution where ݕ represents 
the unknown classification of data point i and ܡ is a vector of m known classifications 
(the training set). Because the kernel function ݇൫ܠǡ  ൯ describes the similarity betweenܠ
two data points, ܠ and ܠ, integrating the use of a kernel function and a beta prior 
distribution improves classification capability. The number of positive and negative 
data points often differs in a training set, and the probability distribution on xi may 
reflect that the training set has more of one class than the similarity between points as 
given by the kernel functions. We resolve this problem by adding weighting parameters 
݉ି ݉Τ  and ݉ା ݉Τ , where ݉ି and ݉ା are the number of negative and positive labels, 
respectively, in the training set. The parameters ߙ  Ͳ and ߚ  Ͳ are the prior 
distribution parameters for the beta distribution.   
 

ܲሺݕȁܡሻ�̱�����ቌߙ 
݉ି

݉
 ݇൫ܠǡ ൯ܠ

൛ȁ௬ೕୀଵൟ

ǡ ߚ 
݉ା

݉
 ݇൫ܠǡ ൯ܠ

൛ȁ௬ೕୀିଵൟ

ቍ (1) 

 

We tested the beta kernel model on several data sets and compare the results to 
the relevance vector machine (RVM), the traditional soft-margin SVM [Cristianini and 
Shawe-Taylor 2000, Shawe-Taylor and Cristianini 2004], and a weighted soft-margin 
SVM [Chew et al. 2001]. The SVM is a kernel-based linear classifier that uses a relatively 
small number of vectors to create a boundary between the classes in the feature space. 
The soft-margin SVM assigns a cost parameter for misclassifications. In the weighted 
SVM, we assign a different cost for the misclassification of each class: ݉ܥାȀ݉ for the 
positive class and ି݉ܥȀ݉ for the negative class, where ܥ is a constant cost parameter to 
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be optimized. We used LIBSVM 3.0 [Chang and Lin 2001] for the SVM models and the 
code developed by Tipping [2009] for the RVM. 
 The beta kernel model uses a uniform prior (΅ = 1 and Ά = 1) with a weighted 
likelihood as given in Eq. (1). If the expectation of the posterior probability is greater 
than 0.5, the unknown point is positively labeled. A non-uniform prior could select ΅ 
and Ά so that the expected value of the prior equals the proportion of positively 
classified data points in the training set, and the threshold could be the expectation of 
the prior. The non-�������ȱ�����Ȃ�ȱ��������cations and t��ȱ�������ȱ�����Ȃ�ȱclassifications 
are identical, however, because both classifiers ultimately rely on comparing the 
summation of the kernel functions of the positively labeled training data points to that 
of the negatively labeled training data points (the Appendix of MacKenzie et al. [2013] 
provides a proof of this). 

The radial basis kernel function in Eq. (2) was used throughout this work and in 
MacKenzie et al. [2013], where Η > 0 is tuned to optimize each classifier. The radial basis 
kernel is perhaps the most popular kernel function because the image of the function 
lies on (0,1) and the kernel matrix has full rank [Scholkopf and Smola 2002]. 
 

݇൫ܠǡ ൯ܠ ൌ ����൭െ
ฮܠ െ ฮܠ

ଶ

ଶߪʹ
൱ (2) 

 

 We applied this new formulation, outlined in MacKenzie et al. [2013], to six data 
sets available from the University of California-Irvine Machine Learning Repository 
(Parkinson, Haberman's survival, Arcene, Spam, Transfusion, Breast cancer), one data 
set from the Princeton University Gene Expression Project (Colon cancer), and one from 
National Weather Center at the University of Oklahoma (Tornado). We divided each of 
the data sets into training, tuning, and testing sets. The training set comprises 50 percent 
of each data set, the tuning set 20 percent, and the testing set 30 percent. In each 
individual trial, the Η in the kernel function (as well as the cost parameter ܥ in the SVM) 
is selected that achieves the highest accuracy score in the tuning set. The training and 
tuning set were combined to retrain the classifier using the optimal Η (and ܥ) and test it 
on the testing set. 

Table 1 displays the mean performance across 200 repetitions for the true 
positive (TP) rate, the true negative (TN) rate, the accuracy score ��� ൌ ξ�� ൈ ��, and 
computational time (in seconds) for the beta kernel approach we developed.  
 The beta kernel approach had the best accuracy for many of the benchmark data 
sets. Perhaps more importantly, our approach significantly outperformed the existing 
approaches on all data sets in terms of computational time.  
 
Task 2. Multi-class Classification. Binary classification problems have two classes (a 
positive and negative class), but multi-class classification problems have ܰ  ʹ classes. 
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We developed the formulation in Eq. (3) for the Dirichlet distribution describing the 
likelihood of classifying an unknown data point i in one of the N classes, and ݕ can be 
an integer from 1 to N.   Given a Dirichlet prior represented by parameters ߙଵǡ ଶǡߙ ǥ ǡ  ,ேߙ
the weighted kernel approach can be used to derive the posterior distribution that also 
follows a Dirichlet distribution, where ݉ି is the number of known data points not in 
the nth class and m is the total number of known observations. Weighting parameters 
are included to account for data where the number in each class is not the same. 
 

Table 1. Performance of the binary classification approaches. 

Data set Metric Beta kernel RVM Traditional SVM Weighted SVM 
Parkinson Acc 0.635 0.068 0.363 0.524 

 TP 0.680 1.000 1.000 0.710 

 TN 0.710 0.060 0.280 0.620 

 Time 0.200 22.880 3.870 4.090 
Haberman's 
survival 

Acc 0.487 0.072 0.218 0.450 
TP 0.860 1.000 0.990 0.810 

 TN 0.370 0.040 0.120 0.400 

 Time 0.280 5.010 20.960 11.010 
Arcene Acc 0.660 0.125 0.125 0.125 

 
TP 0.760 0.130 0.130 0.130 

 TN 0.720 1.000 1.000 1.000 

 Time 4.850 38.740 371.540 622.880 
Spam Acc 0.463 0.260 0.351 0.564 

 TP 0.330 0.180 0.230 0.480 

 TN 0.980 0.990 0.990 0.900 

 Time 0.960 348.520 26.1000 27.560 
Colon cancer Acc 0.716 0.250 0.249 0.466 

 TP 0.780 0.250 0.250 0.500 

 TN 0.830 1.000 1.000 0.900 

 Time 0.220 5.690 29.710 29.530 
Transfusion Acc 0.533 0.103 0.108 0.522 

 TP 0.470 0.040 0.040 0.430 

 TN 0.710 1.000 0.980 0.720 

 Time 1.770 66.230 266.010 106.240 
Breast cancer Acc 0.100 0.105 0.105 0.298 

 TP 0.110 0.110 0.110 0.510 

 TN 0.940 1.000 1.000 0.640 

 Time 0.050 46.960 2.840 2.700 
Tornado Acc 0.533 0.103 0.108 0.522 

 TP 0.470 0.040 0.040 0.430 

 TN 0.710 1.000 0.980 0.720 

 Time 5.960 1621.130 115.250 160.690 
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 We applied this new formulation to four data sets available from the University 
of California-Irvine Machine Learning Repository (Iris, Wine, Satellite, Steel faults). 
Table 2 displays the mean performance across 200 repetitions for the overall accuracy 
score ��� ൌ ሺς ���ே

ୀଵ ሻଵȀே, where ��� is the proportion of observations in the nth class 
accurately classified. The computational time (in seconds) for the beta kernel approach 
is also depicted. We developed the beta kernel model with both uniform and non-
uniform Dirichlet parameters, and compared it to the multi-class SVM and 
Classification and Regression Trees (CART) [Hastie et al. 2001]. 
 Our Bayesian kernel approach with the weighted Dirichlet prior distribution did 
not perform across several metrics as well as the other existing approaches, especially 
CART. We will continue to explore this approach, but initial results do not appear 
promising. 
 

Table 2. Performance of the multi-class classification approaches. 

Data set Metric Beta kernel RVM Traditional SVM Weighted SVM 
Iris Acc 0.939 0.943 0.955 0.945 

 
Time 0.120 0.110 0.480 0.010 

Wine Acc 0.948 0.949 0.973 0.911 

 
Time 0.160 0.150 0.700 0.030 

Satellite Acc 0.784 0.834 0.866 0.788 

 
Time 33.880 33.780 111.680 1.130 

Steel faults Acc 0.733 0.733 0.753 0.693 

 
Time 7.960 7.800 78.980 1.130 

 
Task 3. Online Learning. Often classification algorithms are deployed in a ȃ�����Ȅȱ�������ǰȱ
where classification parameters are found at once from multiple training cases.  This is 
�������ȱ��ȱȃ������Ȅȱ��������ǰȱ ����ȱ����������ȱ������ȱ���ȱ�����������ȱ��ȱ�ȱ����ǯȱȱ����ȱ
an approach allows for very large training sets and for updating classification 
parameters as new data arrive (e.g., sensor data streaming regularly).  We demonstrate 
the application of the beta kernel model to online learning with the benchmark 
twonorm data set, downloaded from the Delve project at the University of Toronto.  

We select two data points for which we assume the characteristics but not the 
outcomes are known. At each iteration, a unique set of 10 data points whose outcomes 
are known is used to update beta parameters ΅ and Ά for each of the two unknown data 
points. Table 3 depicts the updated ΅ and Ά and the expected posterior probability. 



6 
 

Figure 1 displays the beta distribution's probability density function as ΅ and Ά are 
updated for each of these two data points. 

 

Table 3. Updated parameters for the beta kernel model with twonorm data. 

Iteration 
Data point 1 Data point 2 

΅ Ά ߠҧଵ ΅ Ά ߠҧଶ 
Prior 1.00 1.00 0.50 1.00 1.00 0.50 
1 1.21 1.35 0.47 1.04 2.32 0.31 
2 2.05 1.54 0.57 1.28 3.35 0.28 
5 2.18 3.01 0.42 1.31 6.66 0.16 
10 4.92 4.97 0.50 1.70 10.47 0.14 
20 8.29 8.40 0.50 2.59 19.54 0.12 
30 13.50 11.71 0.54 3.59 27.73 0.11 

 

As the classifier receives more information, the first data point is much more 
likely to result in a positive outcome than the second data point. The expected 
probability for the first data point is close to 0.5 during all the iterations. Even after 30 
iterations, the beta distribution's density function (the dark solid line in Figure 1a) is 
still wide enough that the probability of a positive classification could be between 0.25 
���ȱŖǯŝśǯȱ���ȱ�����ȱ����ȱ�����Ȃ�ȱ�¡������ȱ����������¢ȱ��ȱŖǯśŚǯȱ����ȱ����������¢ȱ�¡����ȱ
over whether this data point is positively or negatively labeled; however, the posterior 
probability is much greater than 0.25, the fraction of positively labeled data points in the 
data set. Updating the parameters for the second data point significantly reduces the 
uncertainty of this data point's outcome. After only 5 iterations or 50 data points, the 
expected probability of a positive classification is 0.16. After 30 iterations, the expected 
probability is only 0.11, and most of the beta distribution's density function is less than 
0.25.  It seems pretty clear that the second data point is a negative classification. 
 

 
Figure 1. Posterior probability distributions for two different data points in the twonorm data set. 
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Task 4. Application. We have applied the Bayesian kernel approach to a risk-based 
problem in network reliability, which could be of interest to the Army. Network 
reliability problems are typically solved with a max-flow min-cut algorithm following 
the complete or partial disruption of one or more components in the network [Rocco 
and Muselli 2007]. That is, an algorithm is performed to determine the connectivity and 
disrupted flow across the network, where the ratio of disrupted flow to as-planned flow 
provides a measure of network reliability. Such an algorithm can take a significant 
amount of computational time, especially for large networks.  

We deploy a novel application of our technique to train the Bayesian kernel 
algorithm with flows along the links of a network (50,000 flows randomly chosen to 
generate a training set) and use the traditional max-flow min-cut algorithm to 
���������ȱ���ȱ�����������¢ȱ��ȱ���ȱ��� ���ȱǻ����������ȱ��ȱȃ�������ȱ���w from source to 
����ȱ����ȱ��������Ȅȱ��ȱȃ���ȱ��������ȄǼǯȱThe application of the Bayesian kernel 
approach can drastically reduce the computational time to determine network 
connectivity of a disrupted network (or potentially disrupted network). Our very initial 
results suggest promising results, but more work remains in (i) comparing to the max-
flow min-cut algorithm with respect to computational time, (ii) optimizing the tuning 
parameter (ߪ) of the radial basis kernel function to improve performance, (iii) 
������£���ȱ���ȱȃ��������ȱ����Ȅȱ���ȱ�������¢���ȱan observation based on its probability of 
falling in that class. 

The three measures of performance for the various training and testing sets are 
provided in Eq. 4. Acc is the accuracy of the approach is the proportion of observations 
that were correctly classified (when an observation with a 0.51 probability or more of 
the network being in an operating state is classified as such). Sens is the quantitative 
descriptor of sensitivity, and Spec is the quantitative descriptor of specificity. TP, TN, 
FP, and FN are the counts of true positive classifications, true negative, false positive, 
and false negative observations, respectively. 

 

��� ൌ
ܶܲ  ܶܰ

ܶܲ  ܶܰ  ܲܨ  ܰܨ
ǡ ���� ൌ

ܶܲ
ܶܲ  ܰܨ

ǡ ���� ൌ
ܶܰ

ܶܰ  ܲܨ
 (4) 

 

Not surprisingly, as the training size increases, predictive accuracy improves, 
according to Table 4. This represents only one run of training and testing sets, but more 
runs should be performed to gain a better understanding of average performance. 

In a different initial experiment, three different runs were performed with 
varying training, tuning, and testing set sizes. For the tuning phase, an optimal radial 
basis function parameter ߪ was computed based on the maximum value of the accuracy 
measure. In the testing phase, the tuning and training sets were combined into one 
training set with the ߪ found in the tuning phase. Set 1 contains 5% tuning, 5% training, 
and 90% testing data. Set 2 contains 10%, 20%, and 70% respectively, and Set 3 contains 
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20%, 30%, and 50% respectively. In both phases the prior parameters were compute 
such that the mean of the beta distribution is equal to the proportion of the positive 
classifications. 

Results of this initial experiment are found in Table 5. The reduction in testing 
accuracy is puzzling, and we will explore this further with more experimentation. 

Army-specific applications of this idea could include communication and 
transportation networks or PERT-type project management networks.  

 

Table 4. Performance metrics of one run of different sized training sets at RBF kernel parameter ࣌ ൌ Ǥ  
and ࢻ ൌ ࢼ ൌ , network reliability example. 

Training size Metric Beta kernel 
5000 Acc 0.918 
 Sens 0.879 

 
Spec 0.935 

15000 Acc 0.920 

 
Sens 0.842 

 Spec 0.952 
25000 Acc 0.924 
 Sens 0.869 

 
Spec 0.947 

 
Table 5. Updated parameters for the beta kernel model with three sets identified by 

(Tuning/Training/Testing), network reliability example. 

Iteration 
Set 1 (5%/5%/90%) Set 2 (10%/20%/70%) Set 3 (20%/30%/50%) 

 ܿܿܽ ߪ
ߙ

ߙ  ߚ
 ܿܿܽ ߪ 

ߙ
ߙ  ߚ

 ܿܿܽ ߪ 
ߙ

ߙ  ߚ
 

Tuning 0.63 0.94 0.30 0.90 0.96 0.30 0.97 0.97 0.29 
Testing 0.63 0.71 0.15 0.90 0.78 0.20 0.97 0.75 0.16 

 
Collaborations and Leveraged Funding 
Previously a graduate student when this STIR proposal was originally submitted, 
Cameron MacKenzie is now an Assistant Professor with the Naval Postgraduate School. 
The Bayesian kernel approach developed here is a good candidate to address some of 
the DoD classification problems that Dr. MacKenzie will encounter. One application 
area of interest to Dr. MacKenzie is adversary identification with specific problems in 
border security. 
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Conclusions 
This grant explored the usefulness of the beta kernel model and compared the �����Ȃ�ȱ
accuracy with the RVM (a binary classification algorithm based on Gaussian 
distributions) and the SVM. The beta kernel model relies on the well-known beta-
binomial Bayesian formula, and deploying a kernel function as a measure of similarity 
between two different data points enables us to apply these updating techniques to 
classification problems. Incorporating weighting parameters or beginning with a non-
uniform prior can help the model correctly classify imbalanced data sets. 

The extensive numerical testing of the beta kernel model with the RVM and SVM 
indicates that the beta kernel model may have some advantages that can be exploited 
for classification problems. The beta kernel model performs similarly to the SVM and a 
weighted SVM for the eight data sets in which the minority class composes between 7 
and 44% of the data. The beta kernel model consistently performs better than the RVM. 
If the user desires a probabilistic data mining tool, the beta kernel model may be a 
superior choice to the RVM. When the minority class comprises only 5% of the data, the 
beta kernel model generates accuracies on par with those of under-sampling the data 
combined with either the RVM or SVM. The accuracy of the beta kernel model is 
significantly better than undersampling and over-sampling, among others, for two of 
the heavily imbalanced data sets. This suggests that for heavily imbalanced data sets, 
the beta kernel model should be considered along with under-sampling the RVM or 
under-sampling the SVM. 

The online learning experiment reveals that the beta kernel model outperforms 
the RVM and LASVM (an incremental learning version of the SVM) if 50 or fewer data 
points are available. Finally, the beta kernel model calculates posterior probabilities 
very quickly and runs faster than the RVM and SVM, both of which rely on solving 
optimization problems. 

As this work represents the first extensive analysis and testing of the beta kernel 
model, we believe the model can potentially become a useful tool in machine learning. 
The beta kernel model may not provide significant advantages for classifying data sets 
where the number in each class is relatively the same, but the model carries other 
advantages, like fast run-times. If the data set is heavily imbalanced, the beta kernel 
model may be the most accurate. If the data arrive incrementally, the model easily and 
quickly updates to incorporate the new data and can be relatively accurate with just a 
few data points.  

Unfortunately, multi-class classification with a Dirichlet prior distribution did 
not produce favorable results, though future work may improve this initially 
disappointing result. 

The novel application of our approach to network reliability as a less 
computationally expensive alternative to max-flow min-cut algorithms has initially 
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shown promising results. A paper further elucidating this idea will be finished in the 
Summer of 2013. 
 
Technology Transfer 
None. 
 
Future Work 
This initial STIR funding has led to several future research ideas that we hope to 
explore.  
 
Hierarchical Bayesian Kernel Methods. As with any statistical analysis, the ability of 
Bayesian methods (whether or not they are integrated with kernel methods) suffers 
when data describing events of interest are sparse. This is particularly true in the 
analysis of risk of low-likelihood, potentially high-impact events: very little data exist to 
describe such events and performing any type of statistical analysis poses challenges. 
Another extension of Bayesian methods is the hierarchical Bayesian model whose 
approach would borrow data from similar systems or subsystems in order to evaluate 
extreme events that usually lack the availability of large datasets necessary to estimate 
parameters.  
 We would like to pursue, in a longer term research project, the integration of (i) 
the Bayesian kernel models resulting from the currently funded research project with 
(ii) hierarchical Bayesian models. Such hierarchical Bayesian kernel (HBK) methods 
would result in many benefits where an accurate estimation of risk parameters is 
improved by the use of kernel functions even though direct data might be unavailable. 
 
Count Data Modeling. With the STIR, we explored Bayesian kernel methods for 
classification problems. A future, and very unique, area we hope to pursue is the 
application of the Bayesian kernel methods (and also HBK methods) to count data as 
opposed to classification data. Count data describe the number of occurrences of an 
event over a given time period (e.g., three earthquakes in one year). In particular, we 
are interested in describing the likelihood of disruptive events in networks. For 
example, in critical infrastructure systems, our proposed HBK methods can be used to 
estimate probabilities of component failure given information on past failures of similar 
components in other systems or subsystems. 
 
Applications in Resilience. Consider the system state transition in Figure 2, describing the 
onset and eventual recovery from a disruptive event ݁ occurring at time ୣݐ. The PI has 
explored system, and specifically network, recovery and resilience in several recent 
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works [Barker et al. 2013, Barker and Baroud 2012, Baroud et al. 2013a,b, Pant et al. 
2012, Pant et al. 2013]. 
 

 
Figure 2. System state transition with time, from original to disrupted to recovered states. 

 
The above works propose, extend, and apply a paradigm for assessing the 

resilience of a system by quantifying the damage to the network service function ߮ሺήሻ. 
For example, if the network under study is an inland waterway network, ߮ሺήሻ could 
measure commodity flows across waterway links. Given a particular disruptive event, 
݁, Eq. (4) provides a more specific quantification of the value of resilience ʮி൫ݐ�ȁ ݁൯ 
evaluated at time ݐ א (ݐௗ, ݐ), where set ࣞ is the set of possible disruptive events. 
 

ʮఝ൫ݐ�ȁ ݁൯ ൌ
ൣ߮൫ݐ�୰ȁ ݁൯ െ ߮൫ୢݐ�ȁ ݁൯൧
ൣ߮ሺݐሻ െ ߮൫ୢݐ�ȁ ݁൯൧

�� ݁ א ࣞ (4) 

 

 In future work, we wish to apply the non-Gaussian Bayesian kernel models 
discussed resulting from the ARO STIR to model the resilience of disrupted systems. 
The outcome of Eq. (4), ʮఝ൫ݐ�ȁ ݁൯, lies between 0 and 1, with 0 representing a completely 
non-functional system and 1 representing a recovered system. Therefore, a suitable 
conjugate prior in this case is the Beta distribution, for which the range of the random 
variable is [0,1]. Eq. (5) is a conceptual representation of the Beta probability distribution 
with parameters ߙ  Ͳ and ߚ  Ͳ,  where�ʮ�is the resilience described in Eq. (4) and 
ȝሺȽǡ Ⱦሻ is the beta function. Using a set of covariates that relate to the disrupted system 
(e.g., system characteristics, the disruption itself, recovery time, cost metrics), the 
Bayesian kernel model estimates resilience according to the characteristics of each data 
point. 
 

ܲሺʮሻ ൌ
ʮఈିଵሺͳ െ ʮሻఉିଵ

ȝሺȽǡ Ⱦሻ
 (5) 

 

We feel that system recovery and resilience is an important topic, particularly 
within the DoD, and this represents an important extension of the Bayesian kernel and 
HBK approaches. 
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Products of Research Funding 
Papers submitted 
MacKenzie, C.A., T.B. Trafalis, and K. Barker. 2013. Non-Gaussian Bayesian Kernel 

Methods for Binary Classification and Online Learning Problems. In review at 
Computational Statistics and Data Analysis. 

 
Papers in progress 
Baroud, H., K. Barker, and C.A. MacKenzie. 2013. Bayesian Kernel Models for Count 

Data. To be submitted to Computational Statistics and Data Analysis, August 2013. 
Baroud, H., K. Barker, C.M. Rocco, and C.A. MacKenzie. 2013. Application of Bayesian 

Kernel Methods to Network Reliability. To be submitted to Reliability Engineering and 
System Safety, July 2013. 

 
Conference papers and presentations 
Baroud, H., K. Barker, R. Lurvey, and C.A. MacKenzie. 2013. Bayesian Kernel Models 

for Disruptive Event Data. Proceedings of the 2013 Industrial and Systems Engineering 
Research Conference, San Juan, PR, May 2013. Best Paper Award, Homeland Security 
Track. 

Baroud, H., K. Barker, C. MacKenzie, and T.B. Trafalis. 2012. Bayesian Kernel Models 
for Count Data. INFORMS Annual Meeting, Phoenix, AZ, October 2012. 

 
Ph.D. student support (on-going) 
Hiba Baroud 
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