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MINIMUM-COST CHECKING USING IMPERFECT
INFORMATION*{

STEPHEN M. POLLOCK}
U. 8. Naval Postgraduate School, Monterey, California

An event takes place at time ¢, a discrete random variable with known
probability function. At unit intervals of time, a measurement z is observed
which yields information about the event; z is a random variable, with a
known probability density function being dependent upon whether or not the
event has yet occurred.

After each observation, a decision is made that the event has or has not yet
occurred. The latter decision implies waiting for the next measurement. The
former decision, if correct, ends the procedure. If incorrect, this fact is in-
corporated, and the procedure continues.

A decision cost structure is assumed that assigns:

(1) a fixed (false alarm) cost to deciding the event has occurred when, in

fact, it has not;

(2) a (time late) cost proportional to the time between the occurrence of the

event and the decision that it has occurred.

The minimum-expected-cost decision strategy and the minimum cost thus
obtained are derived by means of dynamic programming.

1. Introduction

This paper discusses a common sequential decision process that occurs in
equipment checking, target search, and other related problems. An event E
occurs at some time, observations are made relating to whether or not it has
yet occurred, and an appropriate cost structure is assumed. For example, the
event F could be the failure of a piece of production equipment; the observations
could be measurements of a critical parameter of the items produced, and the
cost structure could be related to the penalties for shutting down the machinery
unnecessarily, and for delaying the shutdown when necessary. A strategy is
desired that will enable a decision maker to decide, on the basis of the observa-
tions made up to any point in time, whether to take action appropriate to assum-
ing the event E has occurred (shutting down the machinery for repair) or to
simply wait and continue observations.

The results bear a resemblance to Wald’s classical sequential analysis [7] and
also to the more recent minimum-cost sequential-analysis approach [3] and
[4]. The difference is that in the present problem there are no longer two simple
hypotheses Hy and H, (E' and E) to be decided between, but an H, that at
some time turns into an H, . This becomes apparent in the solution presented,
where it iz shown that observations taken in the remote past have less effect
on the decision process than more recent ones.

* Received March 1966.

t This work was sponsored in part by contract NONR-3963(06), Office of Naval Research.

1 This research was performed while the author was a member of the staff of Arthur D.
Little, Inc., Cambridge, Massachusetts.
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The following is the general statement of the problem considered.
1. An event E occurs at time ¢ (¢ = 1, 2, - - - ) with known probability p(2).
2. An observation is made at time 7 (r = 1,2, - - . ), the result being a random
variable z(+) which has p.d.f. po(z) if t > 7 and pa(z) if ¢ = 7.
3. Immediately after each of these observations, one of the following decisions
is made:

D = “Decide the event has occurred”’;
W = ‘“Wait for another observation”.

4. The decision D, at time 7, may or may not be a terminal decision. If D

is picked and ¢ > 7, then a false-decision cost F is incurred, the knowledge

“that ¢ > 7 is gained, and the process continues. If D is picked and ¢ < 7,
then the process is terminated with a cost of ¢(t, 7).

5.. The objective is to minimize the total expected cost of the process. The
strategy (i.e., the rule for deciding D or W at each point in time) for achiev-
ing this minimum cost is called the “optimal’’ strategy. For convenience in
notation, we shall restrict po(z) and pi(z) such that the likelihood funetion
L(z) = m(z)/po(x) is monotonic nondecreasing in z.

2. Linear Terminal Cost and Geometrical Arrival Time

Two reasonable assumptions will now be made in order to obtain a solution.

First, we shall assume that the terminal cost is proportional to the time “late”,
ie., e(t, 7) = (7 — t)w. This form of the function is not necessary for a solution,
but offers a minimum of algebraic difficulties that might otherwise cloud the
development.

Second, and more restrictive, we shall assume that the occurrence time ¢ of the
event E has the distribution:

(1) p(t) = a(l — @)™ t=1,2 --- .

This geometric distribution has the advantage in describing the occurrence of
E as|being conceptually “random” by the fact that it provides a constant prob-
ability of occurrence per unit time (a), given that it has not yet occurred. This
property also provides a simple representation for a state variable, a summing up
of information concerning the state of nature (i.e., whether or not the event has
occurred). This is outlined as follows.

If we let Q(7) be the probability that the event has occurred at or before time
7, then by equation (1)

(2) Q(r) = Ximp(t) =1 — (1 — a)" = prob. {t < 7).
Furthermore,
Qr +1) = (1 —a)Q(r) +a

so that (without any other information) to describe Q(+ + 1), all that is needed
is Q(7).
In:addition, suppose that a value of z(7) is observed at time 7. Then, by defin-
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ing @{r 4+ 1| z(7)} = prob. {t £ r + 1| z(r)}, we have
Q{7 + 1]|2(s)} = prob. {z(+),¢t < r + 1}/prob. {z(7)}.

To calculate prob. {z(7),t < 7 + 1}, we note that this could happen in two ways:
the event could have occurred at time r or before, in which case pi(z) is the
p.d.f. of z(7); or, the event could have occurred at time r + 1, so that po(z) is
the p.d.f. of z(7). Thus,

_Q(m)p(x) + [1 — Q(r)]ape(z) .
(3) Qr + 1120} = @ + 1= Q)

and we see that given some observation z, the posterior probability of the event
occurring at or before time r + 1 is still dependent only upon Q(r), and not
explicitly.

At the start of the process, p(1) = Q(1) = a. What is more important, we
note that according to statement (4) of the problem definition, when the false
decision {D | ¢t > 7} is made, knowledge that ¢ is greater than 7 is automatically
gained. This fact and equation (1) lead to Q(r + 1| ¢ > =) = a.

3. Functional Equation for the Minimum Expected Cost

We are now prepared to write a functional equation for the minimum expected
cost. Let us define V' (P) as the minimum expected cost obtained using the opti-
mal strategy at time r, where P = Q(7) is the present value of the probability
that the event has occurred previous to, or at, time r. There are two decision
choices. One is D: decide the event has occurred, with resultant probability of
being wrong of 1 — P, and subsequent cost of F, plus what the process will cost
from then on. The other is W: wait for more information contained in an observa-
tion of z, in which case the “late’” cost w is incurred only if the event has occurred
(probability P), and the process continues with the proper posteriori probability
given by equation (3). Defining this probability to be P’(x):

P'(z) = (Pp(z) + (1 — P)m(z)a)/(Pps(z) + (1 = P)p(2)),

the minimum cost is then given by the dynamic programming equation:

V(P) = min{(1 = P)(F + Vo)),
(4) © )
Po+ [[1Pn@) + (1 ~ PV ()] ds}.

Action D follows if the first quantity is smaller, and action W follows otherwise.
This equation holds for all 7, since only P = Q(r) and not 7 itself is needed to
express the right-hand side.

One result is immediately apparent. By letting P = 0, we have

V(0) = min[F + V(a),V(a)] = V(e) for F>0.

This tells us that the cost of checking, if we know the event has not yet oc-
curred, is the same as if we waited one time unit and started again. This is be-
cause there can be no “late” cost w if the event has not yet occurred.
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In order to develop a feeling for the solution to equation (4), and to obtain
an upper bound upon V(P), we first consider the degenerate case mvolvmg
getting no information from the observations.

4. Optimal Checking with No Information

Suppose that po(z) = pi(z). Then, as can be shown by equation (3), an
observation of z does not affect the posteriori evaluation of P. In this case, the
observation z is irrelevant, and the checker gains no information. This “non-
informative” problem has been considered previously in the literature. For
example, Barlow, et al. [1] assume a general form of the occurrence distribution,
with ¢ a continuous variable, and then assume that the optimal checking proce-

dure will be to wait some time #; , then check; if no failure is seen, wait some time
t2, aheck, ete. They go on to show that for the exponential failure-time density
function (the equivalent of our geometric mass function) these t; are equal.
Their assumption of the fixed-checking-time form of solution (proven below)
enables them to immediately write a cost expression in terms of the checking
time £, which can then be minimized by differentiation.
Although the results of this section are not new, the dynamic programming
approach adopted below has the unique advantage of providing the form of the
optimal strategy, as well as its parameters, a result that is quite common in
dynamic programming [5]. More important, as will be seen in Section 5, this
section lays the groundwork so that the structure can be extended to allow for
observations of a random variable relating to the state of nature.
When no information is gained between decision times, the checker’s optimal
strategy now consists simply of either waiting one time unit, or deciding the
event has occurred. Equation (4) becomes

(5) V(P) = min {(1 — P) (F + V(a)),wP + V[P + (1 — P)a}}.

Action D follows if the first quantity is smaller, and action W follows otherwise.
As noted before, V(0) = V(a), and we can also easily see that V(1) =

From the form of equation (5), it is postulated that the structure of the strat-
egy will be

if P
P=sqgW

v
=
)

where ¢ is a decision point to be determined as part of the solution.

That this is, indeed, the form of the strategy, and that it is not degenerate
(that is, 0 < ¢ < 1), may be shown by the following proof by contradiction.
(The discussion that follows can also be shown to be valid for the more general
equartlon (4). Since it is the form of the proof that is of interest, it is carried out
in thlm less complicated case.)

Let us define

D(P) = (1 — P) (F + V(a)),
G(P) = wP + V[P + (1 — P)a).
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D(P) is a straight line, with D(0) = F + V(a) = F + V(0). D(1) = 0. G(P)
has an unknown functional dependence on P through V[P + (1 — P)a], but it
i8 continuous by the continuity of V(P). The boundary values are known and
are G(0) = V(a) = V(0),G(1) = w+ V(1) = w. Since F > 0 and w > 0,
then G(1) > D(1) and G(0) < D(0) so that G(P) and D(P) must intersect at
an odd number of points.

Suppose G(P) was such that G(P) and D(P) intersect at more than one point,
for example, three points ¢', ¢”, and ¢”. Let us select a point P’ such that

© gersd
g <P 4+ (1 —-—Pla<yg
where [¢, q"] is a D region and [¢”, ¢”'] is a W region. Then, by equation (5),
7)) V(P)=Q =P)F +V(@) <wP + V[P + 1 — P
and
(8) VIPP + (1 —Pla)=wP + 1 —Pla)+ VP + 1 - P)a

+(1—=P)(1—a)]<(1—P)(1—a)F+V(a)] ]
Combining equations (7) and (8), we find
(9) P > a(F + V(a))/w.
If we select another point P” so that
d <P <"
" <P+ (1 - Pa <1, -
we can show in a similar manner that

P’ < o(F + V(a))/w

which, with equation (9), implies that P” < P’. But, since equations (6) and

(10) require P’ < ¢" < P”, the contradiction is proven. -
We have just shown then that G(P) and D(P) intersect at only one point;

and defining this point as P = ¢, we rewrite equation (5)

V(P) = (1 — P) (F+ V(a) if Pzgq
=wP + V[P+ (1 — Pl if P=gq

As a first step in the solution of this equation, let P = q. Then, since ¢ + =
(1 — q)a > g, we have

Vi) =(1—-g@ (F+V(a)) =wg+V(g+ (1 — g)a) = wg
+ (1 ~-¢ (1 —a)(F+ V(a))

(10)

il

(11)

from which we get
(12) F + V(a) = qw/(1 — g)a
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so that equation (11) becomes
V(P) = (1 — P)ew/(1 ~ q)a it P q
= wP 4+ V[P + a(l — P)] if P =g

The next step is to find ¢ in terms of w, F, and a. Once this is obtained, the
optimal strategy is defined. (Determination of the functional form of V(P) for
P £ g will then rely upon iterations of (13) in a manner to be described later.)

To determine g, let us assume that g has been obtained and is such that

1— (1 —a)f7'<qg(k=234-,n-1)
1 -0 -a)" >q

[\

(13)

(14)
where n is the smallest integer such that equation (14) holds. By n — 1 successive
applications of equation (13), we get
V(a) = wa + V[ — (1 — a)]
=wa + w1l — (1 —a)’) + V[l — (1 — a))

win — 1) = ((1 —a)/a) (1 = (1 —a)" )]+ V[l - (1 —a),

all (n — 1) steps being the result of W decisions. Finally, since the n** must be a
D decision,

V(a) = wi(n — 1) — ((1 —a)/a) (1 — (1 = a)")]
+ 1 - a)" (¢/Q = @) (w/a).

using the value of V(a) from equation (12), we may solve for ¢ in the terms of n

Il

(15) g=1-(1- 1 - a)")/(a(F/w + n)).
By use of equation (14), we find that # is the smallest integer such that
(16) (1 —a)" =1+ aFf/w+ n)].

Once 7 is found, ¢ is then obtained from equation (15).

We have just proven that the form of the strategy consists of waiting for a
fixed amount of time (number of time units) » — 1, then choosing a D decision.
In the event that the checking process has just started, (or that a D decision has
just been made but the event has not yet occurred, so that the process must be
resumed with P = 0) this fixed amount of time is given by equation (16), from
which g can be determined.

If the process starts out so that P s a, then by successive applications of
equation (13) we can show in a calculation similar to that above that the time
until'a D decision, n(P), is given by the smallest n(P) that satisfies

(17) 1-P)(1-a)"""21-¢
In order to compute V(P), we again simply apply equation (13), (n(P) — 1)
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a=1
LOT w=.)
F=i t
R, =(277)? exp (-x°)
T 5 VIP) (n=00) ° )

v, (P) R (0= @7 exp~(x-)

Fi@. 1. V(P) with no information

times with decision W, and the n(P)"™ time with a D decision. This gives the
following form of the minimum cost, where n now is the n(P) defined in (17):

V(P) =w[(n ~1) — (1 = P)/a) 1 — (1 —a)™™")]
+1-P)1Q-a" @l - ga
When the expected occurrence time of the event gets very large (so that a

& 1), an interesting approximation holds. Since n gets large, we may consider
equation (16) to be an equality; and as @ — 0, we find that

n = (2F/wa)"?.
With this approximation, equation (15) becomes
q¢ = (Fa/w + (2Fa/w)*)/(1 + Fa/w + (2Fa/w)'*) .
and so V(0) = V(a) = (2Fw/a)"* from equation (12). Thus, if the process
always starts with P = 0 or P = g, this expression gives the minimum expected
00;1‘3(-)11 example, leta = .1, w = .1, F = 1. Using equation (16)
(9" = (2 + .In)7, -

we find that the smallest n that satisfies this expression is n = 11. Thus, the
optimal strategy, given that the event has not occurred at the start of the process,
is to wait (n — 1) = 10 time units before the first D decision and repeat this
procedure until the event occurs.

The value of ¢, from equation (15), is .673. The expected cost at the beginning
of the process is

V() = V(a) = qw/(1 — q)a — F = 673/.327 — 1 = 1.06.

(18)
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The resulting V(P) is illustrated in Figure 1. Note that V(P) is the lower en-
velope of 11 straight lines, each representing the expected cost if the strategy
was to wait 1, 2, 3, - - - 11 units of time between D decisions.

5. Optimal Checking with Information

We: are now ready to attack the problem involving observations of a random
variable z with every W decision. First, we note that the proof in Section 4 con-
cerning the form of the non-informative process may be carried over conceptu-
ally to the more general case represented by equation (4); so we state without
formal proof that equation (4) may be written

V(P) = min {D(P), D(P)} = D(P)if P = ¢

(19)
H(P) if P = g,

where

D(P) = (1 = P)(F + V(a)),

H(P) = Pu+ [ [Pn@ + (1 = Pypo(@)IVIP (2)] da:

We are now faced with a functional equation for V'(-) that does not apparently
lend itself to an analytical solution. However, a standard technique for solving
such a functional equation, and many similar transcendental equations, is a
simple method of successive approximations. If certain convergence properties
can be shown, then this method is valid, despite the non-physical character of
intermediate solutions.

For this reason, we shall rewrite equation (19) with V as a function of an
iteration index 7. This index n can be considered to be a truncation index—one
that prescribes the number of observation (and decision) points remaining be-
fore the procedure is arbitrarily stopped. Thus, V,(P) can be interpreted as the
mininjum expected cost of checking when P is the probability that the event has
already happened and there are n remaining decisions allowed. Doing this yields

Va(P) = min {D.(P), Hy(P)} = Da(P) if P 2 ¢gu
H,(P) if P £ ga,

v

(20)

where

Du(P) = (1 = PY(F + Vaul@)),
Hy(P) = Po+ [ [Pni@) + (1 = Ppu(o)Vaui? (@)] da.

All that is needed now is the selection of the boundary condition Vo(P), and
assurance that successive iterations will converge the process to V(P) asn — .
If we let Vo(P) = O for all P, then

Vi(P) = min [(1 — P)F, Pu] = 0 = Vo(P).
With the fact that we have found some V,(P) 2 V,_i(P), a proof very similar
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to that derived by Goode [4] for the minimum-cost sequential hypothesis test
allows us to show that, in fact, all V,(P) = V,_i(P), so that the process will
approach V(P) from below. The proof is uninformative, and is deleted here. To
complete the convergence, we need to show that V(P) is bounded from above.
This can be shown by noting that

V(e) = (1 — a) (F + V(a)),
so that V(a) £ F(1 — a)/a; and, therefore,
(21) V(P) £ (1 - P)(F+ V(a)) = (1 — P)F/a < Fla.
It also may be proved that ¢, , the solution of
D.(gx) = Hu(gn),

converges to the limit ¢ as n — . This proof is again deleted, and the interested
reader is referred to [4] and [6].

An example of this iteration process is shown in Figure 2. The values of the
parameters are comparable to the numerical example of Section 4, so that ¢ = .1,
w = .1, F = 1. The py(x) and pi(z) are normal density functions, with unit
variance and mean of 0 and 1, respectively. These calculations were obtained
with an IBM 7090, being essentially additions, with an appropriate approxima-
tion for the integral.

From Figure 2, we note that ¢ = .78. This is higher than the value of .673
obtained previously, and indicates that the availability of information will
allow the checker to be less quick to respond. We also note that V(0) = V(a) =
.58, which is a savings of close to 50 percent compared to the non-informative
process. The strategy that gives these results follows.

Suppose P = a = .1 to start the process. Since .1 £ ¢ = .78, an observation
is required at the first time interval. Suppose a value z, is the result of this ob-
servation.

The posterior probability that the event has occurred is now given by equation
(3) as

(Dpi(en) + (1) (D)po(z:) _ (1) exp (21 — 3) + .09

(Dp(zr) + (o) dexp(@m~3)+ 9
Comparing this with ¢ = .78, we see that if
n = 5+ In(278) = 5.9,

then the D decision should be made. If not, another observation z, should be
made, the a posteriori probability based on z; and z, should be calculated and
compared to ¢, ete.

6. A Comment on the Solution

As is shown by the example in Figure 2, although convergence of V,.(P) to
V (P) is guaranteed, the rate of convergence is rather slow. In fact, as a gets very
small, the convergence is even slower. This unfortunate practical difficulty is at
present unresolved. One possible approach is suggested here.
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V(P)=

minimum 1
cost
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|
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|
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o ' 2 ' 4 ' & €7 8 0 P

F1a. 2. Convergence of V,(P) to V(P) with information

We decided in the previous section to start the iteration with Vo(P) = 0,
which consequently assures convergence from below. It is equally possible to
start the iteration at some appropriate large value, which will again assure con-
vergence but then from above. One such value would be the right-hand side of
the condition given in equation (21), ie., Vo(P) = F/a. However, a lower
starting point is available by noting that the minimum cost of the informative
process is less than or equal to the minimum cost of the non-informative process
for all values of P. This lower starting value of Vo(P) could considerably decrease
the number of iterations needed to provide a given degree of accuracy.

Other techniques for establishing a reasonable first guess of V(P), and letting
this equal V4(P), would be a valuable aid in the computation. In general, how-
ever, convergence proofs might be difficult for arbitrary starting functions V,(P).

7. Implementation of the Strategy and Comments on
the Geometric Arrival Assumption

Previous work has shown that the use of a minimum-expected-cost sequential
strategy results in essentially a Wald sequential-probability ratio test, where
the decision boundaries are determined by cost considerations rather than by
error probabilities [4]. A similar analysis of the implementation of the strategy
developed in Section 5 is of interest in that it points out a basic limitation to
the treatment of the problem.

From the form of the decision structure presented in equation (19), we see
that P, the probability that the event has occurred up to some time, is constantly
compared to some decision threshold q. When a D decision occurs, P automati-
cally réturns to 0 if the event has, in fact, not yet occurred. With a series of W
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decisions, however, a series of observations z; , 25, - - - have been made; and P is
the appropriately derived posterior probability that the event has occurred.

Specifically, let us consider the process to start with a W decision at r = 1,
and that n successive observations of z;, z,, -+, z, are made. We shall also
consider a completely general distribution for ¢, the time when the event occurs,
f(t), ¢ = 1,2, ---). Using the definition of conditional probability, where X =
(1,22, -+, Tn), we define

P, = prob. {t £ n|X} = prob. {X, t £ n}/prob. {X]}.
The unconditional probability of receiving some vector X may be shown to be
prob. {X} = 35 f(5) [I1i= po(2)) (TLi~; pa(we)]
+ 251 f(G) T pola)).
Similarly, we may calculate
(23)  prob. {X, ¢ = n} = 23 f(5) (TS po(@d)] (11 ma(aa)].

The condition for a D decision, given that X has been observed, is that P, = g.
Using the above expressions and manipulating terms, this condition becomes

(24) 20 1@ -5 Lzl 2 ¢/(1 — @) Zienis £,

where

(22)

L(z:) = pi(z:)/po(zs)

is the likelihood ratio for each observed z; .

This equation represents a very complicated process. Not only is the H:L,-
L(z;) term weighted by the f(7), but this weighting is successively compared to
a term which gets smaller as n increases. Since the simple random walk with
constant absorbing barriers has not been fully solved, there is no reason to believe
that this non-Markovian (because P, is more than just a function of P,;)
process with nonconstant barriers would be any easier. Thus, a strictly Wald-type
approach, depending as it does upon the statistics of such a process, would not
seem too profitable.

If welet f(t) = a(1 — a)*™", (t = 1,2, ---), however, an interesting result is
shown. By defining A (z;) = L(z;)/(1 — a), equation (24) becomes

(25) Zn = Dt [[I0-5 A(z)] 2 ¢/(1 — g@)a,

which has the advantage of being a test that compares a variable Z, , defined
above, to the constant decision threshold, ¢/(1 — g)a.

In addition, the sequence Z, describes a Markov process in that Z,4, only
depends upon Z, (as well as A (2,41), of course). To show this, we note that

(26) Zoyt = ZpA(Tns1) + A(Tnia),

which can be verified by direct substitution into the definition of Z, .
The geometric distribution of arrival times thus imparts a Markov character
to the decision process. And, indeed, it is just this character that has allowed us to
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approach the problem from the dynamic programming point of view. By allowing
the argument of V to be P, we have been assuming that P is completely descrip-
tive of the checker’s state of knowledge about the system, and that the history of
events that led to P is unimportant.

Conversely, since for 4 general arrival-time distribution it cannot be shown that
equation (24) represents a Markov process, we cannot write a general equation
similar to equation (4), since P alone is not sufficient to represent a ‘‘state” of
the process. Thus, although equation (24) is descriptive of the optimal strategy,
the evaluation of the resultant expected cost by dynamic programming can be
obtained by at least a consideration of a minimum cost that is a function of both
P and some other state variable. (A referee has suggested that the additional
variable be the number of observations made since the process started.)

Equation (25), derived above for the special case of random occurrence, (and
equation (24), for the general case) resembles the Wald sequential-probability
ratio test (SPRT). In the SPRT, the variable ] [#=1 L(z:) is compared to fixed-
decision thresholds. This variable can be seen to weight all z; equally in the
decision process. However, equation (25) indicates that the more recent observa-
tions are more important. It is interesting to note that equation (26) bears great
similarity to equations found in exponential smoothing,.

8. Conclusion

Our analysis of the problem of checking for the random oceurrence of an event,
with a minimum-expected-cost strategy yielded two important results. First,
the form of the strategy may be shown to be the obvious “wait until Prob-
ability {the event has occurred up till now} is greater than some critical value g,
then, check”. Second, the minimum cost obtained (and the value of ¢) may be
solved by successive iterations of specific functional equations.

The general approach to this sort of problem and, in fact, to all non-deter-
minibtic sequential-decision problems, has been outlined in [2]. References [3]
and [4] use a similar dynamic programming solution for analysis of the minimum-
cost sequential hypothesis test. Further development of the work discussed here
may be found in [6], with an emphasis placed on applications to search theory.
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