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ABSTRACT 

 Obfuscated data exfiltration perpetrated by malicious actors presents a significant 

threat to organizations looking to protect sensitive data. Socket layer protocol 

customization presents the potential to enhance obfuscated data exfiltration by providing 

a protocol-agnostic means of embedding targeted data within application payloads of 

established socket connections. Fully evaluating and characterizing this technique will 

serve as an important step in the development of suitable mitigations. This thesis 

evaluated the performance of this method of data exfiltration through experimentation to 

determine its viability and identify its limitations. The evaluation assessed the 

effectiveness of exfiltration via socket layer customization with various application 

protocols and characterized its use to determine the most suitable protocols. Basic 

host-based and network-based security controls were introduced to test the exfiltration 

method’s ability to bypass typical security controls implemented to prevent data 

exfiltration. The experimentation results indicate that this exfiltration method is both 

viable and applicable across multiple application protocols. It proved flexible enough in 

its design and configuration to bypass basic host-based access controls and general 

network intrusion prevention system packet inspection. Deep packet inspection was 

identified as a potential solution; however, the required inspection and filtering 

granularity might make implementation infeasible. 
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CHAPTER 1:
Introduction

1.1 Motivation
The MITRE Corporation defines exfiltration as the use of various techniques by malicious
actors to steal data from proprietary networks [1]. These exfiltration techniques can vary
greatly in complexity. Some adversaries, for instance, will simply attempt to exfiltrate data
over an established command and control (C2) channel, which can often be detected. How-
ever, more sophisticated techniques attempt to transfer the data covertly to avoid detection
by typical security controls. One of the more common ways in which malicious actors
accomplish this is through the use of encrypted channels. This kind of exfiltration can be
particularly hard to mitigate since the data payloads are encrypted and cannot be inspected
effectively for detectable signatures without special security controls. Alternatively, adver-
saries may opt to use obfuscation, also known as network steganography, to exfiltrate data
using common network protocols by embedding data within their packets [2]. Obfuscation
via commonly used application protocols and the use of encrypted channels over virtual
private network (VPN) tunnels or allowable web services are considered more discreet and
sophisticated methods of data exfiltration and have been successful in bypassing typical
security controls [3].

Many cybersecurity incidents involve some form of data exfiltration and can be perpetrated
by both insider and outsider threats [4]. Obfuscated data exfiltration can be a particularly
appealing to malicious actors because of its ability to take advantage of network applications
and services utilized for daily operations to blend in with normal network traffic. The Solar-
Winds incident is a perfect example of how effective this type of network obfuscation can
be [5]. As detailed in Robert Chesney’s “Cybersecurity Law, Policy, and Institutions,” once
Russia’s Sluzbha Vneshney Razvedk (Foreign Intelligence Service) obtained a foothold into
target systems via the SolarWinds Orion update mechanism, they utilized the communica-
tion channel between the Orion program and the SolarWinds’ servers to establish a covert
channel to their own C2 server [5]. Thus, they were able to conduct a host of malicious
activities to include data exfiltration before they were ultimately detected by one of their vic-
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tims, the cybersecurity firm FireEye. As the SolarWinds incident demonstrates, traditional
methods of obfuscated data exfiltration have proven difficult to detect and prevent.

In response, many organizations, particularly those concernedwith protecting proprietary or
sensitive data, are implementing a variety of more sophisticated security controls designed
to detect and ultimately prevent unauthorized traffic from leaving a proprietary network.
This can include controls designed to detect and block the more secure and covert forms
of data exfiltration that utilize encrypted channels [6]. Additionally, ports and services
that are utilized to establish these channels can be filtered, limited, or blocked entirely.
Transparent inline proxy solutions, such as secure socket layer (SSL) proxy, can enable any
authorized use of encrypted channels for network traffic to be controlled and monitored [7].
In these cases, malicious actors are forced to use obfuscation via common protocols that are
allowed within the bounds of the organization’s policy [2]. Although this method has proven
successful, it can be risky in that it involves having to perform packet modification that can
potentially be audited and therefore be detected by a host-based intrusion detection system
(HIDS) or a sophisticated anomaly detection system (ADS) [3]. Additionally, intrusion
detection systems (IDSs), intrusion prevention systems (IPSs), and inline proxy solutions
are becoming increasingly sophisticated and able to perform network data flow analysis to
detect anomalies indicating potential data exfiltration [8].

Socket layer protocol customization has been suggested as an effective method to modify
packets for data exfiltration that might enable malicious actors to bypass more sophisticated
security controls. Understanding its use, its capabilities, and its limitations will be a key
element of developing mitigations.

A socket is defined as a network communications connection point that can be named and
addressed [9]. Sockets are most often referred to in the context of exchanging information
between remote processes; however, they can also support processes exchanging information
on the same host [9]. For purposes of customization, the socket layer refers to a logical
area between the application and transport layers of the standard transmission control
protocol (TCP)/internet protocol (IP) model. A common use of the socket layer is to
implement of SSL or transport layer security (TLS) during network communications [10].
Its relationship to the other layers of the TCP/IP stack is depicted in Figure 1.1. Payload
modification occurs when application data enters the kernel space. During this process,
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there is no interaction between the application and socket layers to ensure packet integrity.
Similarly, when the data is passed to the transport layer, there is no designated process for
checking the integrity of the application-layer payload. The data is simply accepted as is
and continues to move through the stack. Auditing occurs at the kernel level during system
calls to detect anomalies, but it is currently unknown whether or not standard rule sets can
detect malicious manipulation of transmitted data. This presents a potential opportunity for
malicious actors to embed data within an application payload without detection and thereby
improve upon traditional methods of obfuscated exfiltration.

Figure 1.1. Socket Layer Reference to TCP/IP Model

Socket layer customization can further enhance obfuscated data exfiltration by dynamically
embedding data to be exfiltrated into the legitimate network traffic of common applications.
Thus, in situations where malicious actors might not be able to transmit data over traditional
covert channels without detection, they could potentially embed data within legitimate
traffic generated by host-based applications. The embedding of data could be performed by
a kernel module that is both application and protocol agnostic. This implies that the module
can potentially leverage any application or protocol. Additionally, since the embedding of
the data happens at the kernel level, the packet modification is transparent to the layers of
the TCP/IP stack potentially making it undetectable by host-based security solutions that
are designed to detect unauthorized access to files or data by certain applications (e.g.,
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common web-browsers). Finally, the dynamic nature of the socket layer module allows it
to embed data of variable length and type (e.g., encrypted or encoded), and to embed data
at any position within an application payload. This presents the added ability for the data
to be customized to potentially bypass additional network security controls such as IPSs,
firewalls, content-filtering proxy servers, and other data loss prevention (DLP) solutions.

This thesis simulates the process of data exfiltration between a host residing on a propri-
etary network and an external server residing somewhere outside the proprietary network.
This simulation allows the evaluation of the performance of socket layer customization as a
means of data exfiltration using common application protocols. Generally speaking, there
are specific attributes of application protocols that can make them more preferable for data
exfiltration, and these attributes are evaluated in concert with the use of socket layer cus-
tomization. Additionally, security controls are implemented within the proprietary network
to determine the effectiveness of this data exfiltration method in bypassing these controls.
By evaluating this approach to data exfiltration in the context of current defenses, this work
attempts to illuminate potential mitigation strategies.

1.2 Problem Statement
Based on recent work, socket layer protocol customization presents the potential to automat-
ically implement various protocols such as SSL/TLS that is transparent to the application
and other layers of the TCP/IPmodel utilizing a socket layer architecture referred to as Layer
4.5 [11]–[14]. The utilization of Layer 4.5 has the potential benefit of not only reducing
overhead, but also of standardizing security configurations for applications communicat-
ing over the Internet. However, this capability also introduces the ability to transparently
modify data packets as they move from the application layer down the TCP/IP stack for
transmission. This capability could potentially be utilized for malicious purposes to include
data exfiltration. The hypothesis of this thesis is that utilizing socket layer customization
to dynamically embed data within standard application payloads will enhance traditional
methods of obfuscated data exfiltration via commonly used application protocols.
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1.3 Research Questions
In order to effectively evaluate this method of data exfiltration, this thesis made several
assumptions. The first was that the adversary had persistent access to the host on the in-
ternal network with root privileges (i.e., to load the kernel modules). Exploitation methods
necessary to gain access and execution privileges were not addressed. Rather, the scope
was limited to specifically evaluating the method of data exfiltration as data was embedded
and transmitted through and ultimately beyond the perimeter of the internal network. Ad-
ditionally, this thesis assumed adversary read access to the files to be exfiltrated. Finally, it
was also assumed that the external server was a registered server under full control of the
adversary and that it was not blacklisted. As such, it only needed to be configured to host the
appropriate application services. With this in mind, the performance of the external server
was not evaluated beyond the execution of the kernel module and successful receipt of the
exfiltrated data.

Socket layer protocol customization is flexible enough that many different application proto-
cols were available to evaluate this exfiltrationmethod’s effectiveness. This thesis performed
experiments with six different application protocols: hyper text transfer protocol (HTTP),
hyper text transfer protocol secure (HTTPS), simple mail transfer protocol (SMTP), domain
name system (DNS), network time protocol (NTP), and voice over internet protocol (VoIP).
These application protocols were chosen for their common usage among organizations, as
well as their association with traditional methods of data exfiltration. This facilitated the use
of related works to provide comparisons during evaluation. This thesis developed custom
kernel module configurations for socket layer customization to embed data into legitimate
payloads of each of these application protocols and tested against various security controls
to answer the following questions:

1. What characteristics of common application layer protocols (HTTP, DNS, SMTP,
etc.) are better suited for obfuscating data for exfiltration, particularly when used in
concert with socket layer protocol customization?

2. Is this method of data exfiltration detectable by typical host-based security controls
designed to monitor and limit an application’s access to data and files?

3. Are common network-based security controls able to detect or prevent this method of
data exfiltration?
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4. If proven to be a viable option, what specific recommendations can be made to
mitigate or prevent this method of data exfiltration?

1.4 Thesis Organization
This thesis is divided into four additional chapters. Chapter 2 provides necessary technical
background and concepts relative to the experimentation and the evaluations present in
this thesis. It begins by discussing the details of the socket layer interface and socket layer
architecture, or Layer 4.5 [12]–[14], that were utilized for this thesis. It then proceeds to
discuss the application protocols and associated applications, transport protocols, and se-
curity controls that were utilized throughout experimentation. Lastly, the chapter highlights
related work on obfuscated data exfiltration their mitigation strategies and techniques.

Chapter 3 introduces the experimental design of this thesis. It begins by discussing the
development and design of the kernel level customization modules and how they were
modified for each protocol. It then discusses the testbed design and describes how the testbed
evolved with the addition of security controls over the course of the four phases of testing.
The performance metrics themselves are then discussed, to include both quantitative and
qualitative measurements. Lastly limitations associated with elements of the experimental
design are discussed in order to clarify how results should be interpreted.

Chapter 4 presents the experimental configurations and the process of experimentation.
For each phase of testing, the customization module configurations for each protocol are
presented as are the application configurations for both the staging and exfiltration servers.
A detailed summary of the test runs, test conditions, variable module configurations, and
security controls is provided for each phase. Chapter 4 concludes with presentation of the
experimental results, which are discussed in detail.

Finally, Chapter 5 presents the main conclusions drawn from the experimental results in the
context of the research questions presented in Chapter 1. Following the main conclusions,
the key limitations of the exfiltration method and customization modules are discussed.
Chapter 5 concludes with a discussion of specific mitigation recommendations and provides
recommendations for future research related to data exfiltration via socket layer protocol
customization.
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CHAPTER 2:
Technical Background

This chapter provides technical background regarding the software, protocols, and security
controls utilized for the experimentation in this thesis. The first topics discussed are the
socket layer architecture, or Layer 4.5, and how socket layer customization can be used to
embed data into application payloads to conduct obfuscated data exfiltration. These topics
are the primary enablers for the exfiltration method being evaluated in this research. A
brief discussion of the software components utilized for the design and implementation of
the virtual network environment is then provided. The various applications and application
protocols that are utilized throughout experimentation are then presented. Detailed expla-
nations of the security controls tested against the exfiltration method are also provided in
this section. The chapter concludes a discussion of related work on obfuscated exfiltration.

2.1 The Socket Interface and Layer 4.5
Socket layer protocol customization is the key element in the potential enhancement of
the obfuscated data exfiltration techniques evaluated in this thesis. The term "protocol cus-
tomization" refers to the process of customizing or modifying the functionality and features
of existing protocols [15]. This process can involve various techniques such as the addition of
parameters or the modification or manipulation of messaging formats (referred to as proto-
col dialecting) [16]. Conversely, it can involve the reduction of functionality, or debloating,
in order to tune or remove parameters or disable features in specific use cases [17], [18]. This
allows for the enhancement of a protocol, typically for security or performance, without
fundamentally altering its original design. This lightweight customization, or extension of
functionality, allows existing protocols to be enhanced with new features, thus saving the
overhead associated with implementing completely new protocols into the TCP/IP frame-
work. Current protocol customization and extension methodologies, however, are typically
limited to a single protocol and have proven problematic on implementation [19]–[22].
This has led to recent work on the development of a more flexible and efficient approach
to protocol customization that relies on a novel socket layer architecture and application
programming interface (API) that has been dubbed Layer 4.5 [12]–[14].
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2.1.1 The Socket Networking Interface
A socket interface is used to define a connection between two endpoints associated with
processes that are communicating and exchanging data [23]. On each end of a connection
(client or server), the kernel creates a socket to facilitate passing messages between the
application process and the transport layer. This basic socket is made up of a transport
protocol identifier (e.g., TCP or user datagram protocol (UDP)) and what is commonly
referred to as the socket pair: the source and destination IP addresses and port numbers [23].
Applications and programs that monitor or utilize socket connections often employ their
own messaging formats to manipulate socket connections, however the basic semantics are
fairly standardized. Two examples of how socket connections are often displayed using these
basic properties are as follows:

• HTTP
– TCP: source = 192.168.1.1:1024 -> destination = 192.168.1.2:80

• DNS
– UDP: source = 192.168.1.1:1025 -> destination = 192.168.1.3:53

These examples show how an application on a single host may identify a socket connection
for outbound traffic to two separate hosts providing basic services, in this case HTTP (web)
and DNS (name resolution). The source and destination socket pair could also be reversed
to indicate inbound traffic. The API creates the socket according to these properties and
provides a descriptor or socket handle to identify the interface and associate it with a specific
process or application [23]. Once a connection is established, the sockets on both endpoints
are bound to each other and form the socket pair. This allows a host’s operating system to
identify data bound for a specific process or application and to handle it accordingly. Socket
layer customization utilizes these defining properties of a socket interface to identify and
intercept application data for customization.

2.1.2 Layer 4.5
Unlike traditional approaches, The Layer 4.5 methodology utilizes kernel-level modules to
apply and process customizations on a per application message basis by tapping the socket
API [12]–[14]. The basic Layer 4.5 device architecture, depicted in Figure 2.1, involves the
application or application protocol, socket API, customization loader, and customization
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module. The application data is pulled from the TCP/IP stack in its entirety using the
socket API and is manipulated by the customization module before being inserted back into
the stack [12]–[14]. Thus, customization is essentially independent from the application
protocols and their original design and allows them to gain or reduce functionality without
affecting compatibility. Since customization modules are not protocol specific, they can
be applied to multiple protocols without significant modification [12]–[14]. While this
methodology is meant to enhance functionality and security, it can also potentially be used
by malicious actors to add or embed any type or amount of additional data to the application
payload. This concept is the basis for the hypothesis of this thesis.

Figure 2.1. Basic Layer 4.5 Methodology. Adapted from [11]

2.1.3 Customization Modules
Customization modules are kernel-level modules that provide the basic functionality of the
Layer 4.5 architecture by implementing specific protocol customization requirements [12]–
[14]. Thesemodules are developedwith standard functions that fulfill specific customization
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requirements and are configured for a specific socket connection between a sender and a
receiver. At run-time, modules pull and process packets during transmission and apply
customization based on the socket connection. At a minimum, customization modules must
include the following metadata to aid the customization loader in making decisions [12]–
[14]:

• Application/Process name,
• Socket pair,
• Layer 4 protocol (i.e., TCP or UDP),
• Send and/or receive functions, and
• Customization Identification.

The sole requirement for the experimentation described in this thesis was to embed specific
data into specific application payloads. This required only one module per host (sender
or receiver) that was configured for each tested application protocol. These modules are
currently only available for use in the Linux operating system environment of the host
machines used for this thesis.

2.1.4 Customization Loader
The customization loader is a separate kernel-level process used to invoke or load a cus-
tomization module on a host-machine on a given socket connection [12]–[14]. Figure 2.2
shows the standard process of invoking a specific module via the customization loader. The
loader is configured with specific socket parameters and is itself invoked when a new socket
connection is identified. As specified by its configuration it then determines which modules
that are loaded on a host have configured parameters that match the socket connection.
When a match is found that module is bound to the socket, and all future data transmitted
over the socket is customized according to the module’s configuration. If no match is found
the loader marks the socket for no customization to prevent future customization queries and
to reduce overhead. For this thesis, each host was only loaded with one module so that the
customization loader only had to invoke that module to embed data during experimentation.
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Figure 2.2. Basic Customization Loader Logic. Adapted from [11]

2.2 Application Protocols
Network protocols, by definition, are a set of rules or procedures for formatting and pro-
cessing electronic data for transmission between devices [24]. The Internet Engineering
Task Force, is predominantly responsible for developing, maintaining, and promulgating
protocols as standards for use in inter-networking communications [25]. From this stand-
point, protocols are usually referenced within the TCP/IP framework and exist at every
layer of the TCP/IP stack to ensure the reliable transmission of data between applications
communicating on different hosts. Together these protocols form the TCP/IP protocol suite
and provide the basic functionality of communicating over the Internet.

Application layer protocols govern how applications interface with the lower levels of the
TCP/IP stack to transmit and receive data [26]. These protocols function at the top layer
of the TCP/IP stack and prepare the application data payload for encapsulation as it moves
through the stack and is ultimately transmitted. Conversely, these protocols ensure that data
is interpreted properly by the receiving application during decapsulation.

The following subsections describe the various application protocols and their associated
applications used in this thesis for experimentation. These standard application protocols
are in common usage and represent some of the most basic network-based services that
organizations use for daily operations such as web-browsing and email. As such, they are
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perfect candidates for obfuscated data exfiltration because they are commonly identified as
“normal” and permitted within an organization’s network.

These subsections are divided into two distinct parts. The first part describes the application
protocol in detail and highlights its key attributes that make it ideal for experimentation. The
second part describes the tools, services, and other technologies specific to the application
protocol that were used for experimentation.

2.2.1 Hyper Text Transfer Protocol (HTTP) and Hyper Text Transfer
Protocol Secure (HTTPS)

HTTP is a stateless application-level protocol for distributed, collaborative, hypermedia in-
formation systems [27]. It has been primarily used for supporting client web browsing and
accessing web hosted services since as early as 1990 [27]. It has been updated frequently
since its inception to meet the evolving and growing requirements of web-based commu-
nication. The most current widely adopted version is HTTP/2 [28]. As a popular generic
protocol, it has proven very flexible in its ability to provide basic communication between
user agents and other information systems, even those that supported by other application
protocols. As such, HTTP, is still a common widely used protocol standard [27].

HTTPS is not considered a separate application protocol, but rather an extension of the
original HTTP protocol standard. HTTPS specifically references the use of HTTP over TLS
(formerly SSL) links that provide channel-oriented security for sensitive information [29].
TLS in its current version (1.3) is designed to provide confidentiality and authenticity, while
also being application protocol independent [30]. This allows higher level application pro-
tocols such as HTTP to implement security without changing the overall protocol standard.
HTTPS via TLS 1.3 is currently the recommended standard for web-based communica-
tions [31].

HTTP/HTTPS has several attributes that make it ideal for obfuscated data exfiltration. For
one it is the standard protocol for web browsing and accessing web-based services, which
means organizations often require its use for daily operations. It is a high usage protocol
and as such a high volume of associated traffic will not be suspicious. Additionally, it
incorporates a variety of request methods that are initiated by the client giving the adversary
more potential options for embedding data.
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Python 3
Python 3 is the most recent version of the popular high level object-oriented programming
language designed to be an easy-to-use programmable interface to many system calls and
libraries [32]. One of its most significant attributes is its versatility, which enables it to
be used in most operating system environments without modification [32]. Within the
scope of this thesis, Python 3 was used primarily to develop configuration programs for
the customization modules. It was also used to program an Exfiltration Server to host
basic HTTP web services. This allowed for testing of the HTTP protocol using a simple
application instance [33], [34].

Apache2
Apache2 represents the latest version of the open source web server developed and main-
tained by the Apache HTTP Server Project [35]. Apache2 provides simple and efficient
HTTP services using the current HTTP standards [35]. With regards to this thesis it is
used in conjunction with the OpenSSL library to host a simple web server with SSL/TLS
capability on the Exfiltration Server for testing with HTTPS [36], [37].

Client for URLs (cURL)
cURL is a small software suite for conducting data transfers using one or more supported
Internet protocols [38]. It also provides a basic command-line tool for sending and receiving
data using Uniform Resource Locator syntax [38]. cURL supports many protocols for data
transfer, but for this thesis it was used for initiating client based web requests for testing
with HTTP and HTTPS.

2.2.2 Simple Mail Transfer Protocol (SMTP)
SMTP is a connection-oriented, text-based application protocol developed to transfer elec-
tronicmail reliably and efficiently [39]. SMTP utilizes a reliable ordered data stream channel
via TCP to transfer mail messages from a client to one or more SMTP servers [39]. Servers
then act as relays and send messages to other SMTP servers in order to ultimately be re-
ceived by the intended recipient [39]. In this sense, SMTP is considered to be a delivery
protocol only. SMTP has been modified several times since its initial implementation to add
additional features predominantly relating to security.
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Data exfiltration via email services in the form of attachments is quite common and well
documented, but embedding data within email protocols themselves is less so [6], [40].
Given that e-mail is essential to the daily operations of most organizations, SMTP is an
attractive protocol for obfuscated data exfiltration.

Postfix
Postfix is a popular open-source Mail Transfer Agent that can both send and receive elec-
tronic mail at servers for delivery to a client [41]. Postfix employs numerous client/server
programs to determine routes and send emails, and it implements a number of standard secu-
rity techniques [41]. Over the course of this thesis, it was used to setup basic SMTP servers
on the Staging Host and Exfiltration Server to simulate the sending of email messages from
the internal network to a remote server for testing of data exfiltration via SMTP [42], [43].

2.2.3 Domain Name System (DNS)
DNS is an application layer protocol whose core functionality is the mapping of assigned
host or domain names to specific IP addresses for locating hosts and services on the
Internet [44]. The DNS protocol is designed to be extensible and as such has been subject to
many updates and extensions over the years. Since its adoption as a standard, it has evolved
into an indispensable protocol that implements a hierarchical and decentralized naming
system that supports the basic functionality of the Internet as it is widely used today.

DNS is one of the more common protocols that adversaries use to establish covert tunnels
for data exfiltration [45]. This is mainly due to the recursive and hierarchical properties of
the DNS architecture that make it more feasible for a malicious actor to register a domain
and receive exfiltrated data on a controlled authoritative server [46]. The fact that DNS also
provides an essential service makes it a prime candidate for testing with this data exfiltration
method.

Dnsmasq
Dnsmasq is open-source software designed for small networks that provides lightweight
network infrastructure services, the most notable of which are DNS and dynamic host
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configuration protocol (DHCP) [47]. Its lightweight design makes it perfect for resource-
constrained networks such as the virtual networking environment used for this thesis. The
DNS subsystem provides a local DNS server for the network with the ability to forward
queries to recursive servers. For this thesis, Dnsmasq was solely used to host a DNS server
on the Exfiltration Server and handled only queries from the Staging Host for the purpose
of testing data exfiltration with the DNS protocol [48], [49].

2.2.4 Network Time Protocol (NTP)
NTP, now on its fourth version, is a widely used application protocol used to synchronize
computer clocks on the Internet [50]. NTP is implemented among a set of distributed time
servers and clients [50]. The protocol is implemented within a network such that the time
servers are in communication with the clients at regular intervals to ensure all systems
maintain synchronization [50]. Thus, NTP accounts for a significant portion of frequent
traffic between client-based hosts and time servers. Similar to DNS, NTP provides an
essential service and is therefore also potentially exploitable for obfuscated data exfiltration.

NTPDaemon
NTPDaemon, commonly referred to as ntpd, is an operating system daemon or program
instance that runs in the background to synchronize system clocks via communication with
an NTP server [51]. Ntpd can actually be setup as either a client or a server and directly
implements the NTP protocol. Ntpd was used in support of this thesis to run a client instance
on the Staging Host to communicate with a time server instance on the Exfiltration Server
to test data exfiltration using the NTP protocol [52].

2.2.5 Voice Over Internet Protocol (VoIP) and Session Initiation Pro-
tocol (SIP)

VoIP is not actually a single protocol or technology, instead it is a layered hierarchy of
protocols and technologies that provide voice or multimedia sessions over IP links [53]. One
of the more widely used protocols implementing VoIP is SIP, an application layer protocol
that can establish, modify, maintain, and terminate real-timemultimedia sessions [54]. It is a
notably flexible protocol that can work in conjunction with other application protocols such
as real-time transport protocol (RTP) and is designed to be independent of transport layer
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protocols for a variety of implementations [54]. The fact that VoIP encompasses multiple
protocols and technologies and involves frequent variations in traffic size and type makes it
potentially vulnerable to being exploited for data exfiltration.

Real-time Transport Protocol (RTP)
RTP provides end-to-end delivery for data with real-time characteristics, such as interactive
audio and video [55]. While its name implies that it is a transport protocol, it actually
functions above the transport layer to carry media data streams, usually in conjunction
with UDP [55]. In this sense, RTP is malleable enough to enable its integration into the
processing of different data applications. Thus, it can be tailored for any application that
requires it through simple modifications and customization. For this thesis, a RTP/UDP
stream within a VoIP session is targeted to test this method of data exfiltration.

Linphone
Linphone is free open-source software providing VoIP services via SIP and RTP that is
available for the Linux environment [56]. It was utilized in this work to test data exfiltration
via an established VoIP session between the Staging Host and the Exfiltration Server [57].

2.3 Transport Protocols
Transport layer protocols are responsible for the delivery of the application data payload to
the remote application via connections that are defined by port numbers [58]. Application
protocols can be characterized as both connection-oriented or connectionless based on the
transport layer protocol that is used to meet the application’s requirements [59]. Connection-
oriented implies that the transport layer provides both reliability and in-order delivery to
the remote application. Connectionless, in contrast, implies that the delivery is best effort
and subject to data loss during transmission. Both types of transport layer protocols can
provide multiplexing and have advantages that can be leveraged based on the application’s
requirements [59]. The primary connection-oriented and connectionless transport layer
protocols are TCP and UDP respectively.
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2.3.1 Transmission Control Protocol (TCP)
TCP is a transport layer protocol that is utilized to provide reliable, connection-oriented data
transmission between specific numbered ports on two hosts [60]. It accomplishes this by first
establishing a connection between the two hosts, usually a client and a server, through the
use of an electronic three-way handshake [60]. Once the connection is established, data can
be reliably exchanged between the client and the server. Reliability is maintained through the
use of packet numbering and acknowledgements, whereby data receipt is confirmed [60].
If the receipt of data is not acknowledged within a specified time frame, it is automatically
resent. TCP data transmissions are often broken up into manageable chunks, the size of
which are dictated by other network parameters such as maximum transmission unit (MTU)
and window size [60]. Once receipt of all data is confirmed, the connection is closed.

Application protocols that require the reliable transfer of data can be identified by their use
of TCP. In fact, many common applications where data loss is considered unacceptable
utilize TCP to ensure quality of service. These application protocols are particularly ideal
for obfuscated data exfiltration because they will ensure the transfer of the desired data to
the remote host.

2.3.2 User Datagram Protocol (UDP)
UDP is transport layer protocol that provides basic transport services between numbered
ports on two hosts [61]. Unlike TCP, UDP provides no reliability of transmission or re-
ceipt [61]. It simply transmits data as prescribed by the socket connection while providing
no guarantee of delivery. As a result, UDP is not subject to the overhead associated with
reliable data transmission. This makes it more suitable for time-sensitive or lightweight pro-
tocols where the loss or corruption of some packets can either be accepted or solved with
a simple retransmission [61]. Many lightweight application protocols that provide essential
system services, such as DNS and NTP utilize UDP because of their small packet size and
frequent use [44], [50]. Many streaming application protocols utilize UDP since they can
afford some loss of packets without significantly degrading quality of service [53], [55].
The ports associated with these specific application protocols are typically open to accom-
modate daily network and business operations. This, coupled with the fact that UDP-based
protocols make up a high volume of traffic in any network, makes UDP protocols ideal
candidates for obfuscated data exfiltration.
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Table 2.1 presents a summary of the application protocols that were utilized for experimen-
tation in this thesis and their relevant attributes.

Table 2.1. Summary of Application Protocols

Application Protocol Transport Protocol Service Encryption
HTTP TCP Web No
HTTPS TCP Web Yes
SMTP TCP Mail Yes
DNS UDP Name Resolution No
NTP UDP Time Synchronization No
VoIP UDP Voice/Video Chat No

2.4 Security Controls
The term security controls describes a broad range of parameters, safeguards, and counter-
measures that can be implemented to protect various forms of data and information system
infrastructure that are deemed important to an organization [62]. Security controls are often
categorized based on the type of security they provide and the types of assets they are
intended to protect (e.g., physical and network security controls) [63]. Most often, organi-
zations will perform risk or vulnerability assessments to determine exactly what security
controls they need to implement based on their unique business or operational require-
ments. Several frameworks exist to help organizations perform assessments and implement
appropriate security controls, such as those provided by the National Institute of Standards
and Technology and the Center for Internet Security [63]. The security controls utilized to
support this thesis’ experimentation primarily fall into the category of network cybersecu-
rity controls since they enforce rules preventing unauthorized connections or transmission
of valuable data outside the internal network. The specific controls that were utilized are
detailed in the following subsections.

2.4.1 Iptables
Iptables is the standard firewall utility program for Linux systems. Iptables uses basic
Netfilter modules to provide traffic-filtering services for standard network or socket con-
nections [64]. Iptables allows for the implementation of filtering policies on a host-by-host
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basis. If configured correctly it can be very effective in enforcing network traffic restrictions
and filtering unauthorized traffic. It can also emulate many of the more advanced functions
of an inline IPS to filter network trafficwithout introducing significant overhead. This makes
it a capable security control to supplement an overall network security infrastructure [64].
For this thesis, iptables was used to enforce a basic restrictive network traffic policy on
packets transmitted between the Staging Host and the Exfiltration Server and to act as a
perimeter router to provide simple traffic forwarding at the virtual host.

2.4.2 Wireshark
Wireshark is a free and open-source network protocol analyzer [65]. It allows for the
deep inspection of network traffic on a byte-by-byte basis at each layer of the TCP/IP
stack. Additionally, it is designed to allow identification of the protocols being used and to
conveniently label all parts of the transmitted data to aid in analysis. In this thesis,Wireshark
was used to capture data packets during experimentation to help analyze the effectiveness
of data exfiltration. Figure 2.3 provides a screenshot of Wireshark being utilized to capture
baseline HTTP traffic.

Figure 2.3. Wireshark Packet Capture of HTTP Traffic

2.4.3 AppArmor
AppArmor is a Linux-based security application designed to provide basic host-based secu-
rity [66]. AppArmor protects the host operating system and applications from both internal
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and external threats by enforcing basic mandatory access control policies and preventing
application flaws from being exploited [66]. This allows administrators to effectively re-
strict applications’ capabilities according to individual access control profiles. In this thesis,
AppArmor was utilized as a basic host-based security control to supplement discretionary
access control policies on restricted files and to apply restrictive profiles to applications
used for data exfiltration experimentation [67].

2.4.4 Snort
Snort is free, open-source, lightweight IDS/IPS software for Linux and Windows [68].
It is rule or signature-based, and once configured it establishes a network policy that
characterizes malicious network activity. The policy is used to detect packets that are
identified as malicious traffic and to generate user alerts [68]. Snort can also be deployed
inline,much like iptables, to act as a network IPS to further analyze andfilter traffic [68], [69].
In this thesis, Snort was deployed and configured as an inline IPS during experimentation to
provide additional traffic analysis and testing against common rule sets designed to prevent
data exfiltration [70], [71]. Figure 2.4 depicts a typical deployment of Snort as an inline
IPS.

2.4.5 Data Loss Prevention (DLP) Controls
DLP controls are solutions specifically designed to detect and prevent data breaches or
data exfiltration [72]. They often take the form of software developed to identify, monitor,
and protect sensitive or valuable organizational data from being accidental or intentionally
shared outside of an organization’s proprietary network [72].While typical network security
controls are often deployed with the intent of protecting data from the outside, DLP controls
are focused on protecting data from the inside. DLP solutions make distinctions between
data in three stages: at rest, in use, and in motion [72]. For this thesis, specific DLP controls
were implemented to inspect and protect data in motion. These controls performed deep
packet inspection, or content-filtering, in order to test against exfiltration of data embedded
in the tested protocols. The specific controls were based on recommendations from a
showcase report by the Software Engineering Institute (SEI) at Carnegie Mellon University
on detecting data exfiltration through deep packet inspection [6]. These controls are detailed
in the following subsections.
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Figure 2.4. Snort Deployed in Inline Mode as an IPS. Source: [69]

Squid Proxy Server
Squid is a caching proxy server software suite supporting a variety of web-based appli-
cation protocols [73]. It is primarily used to maximize bandwidth and improve network
performance by caching and reusing frequently requested web pages. However, as detailed
in the SEI report [6], Squid can also be used as a content-filtering or traffic inspection proxy
server for web-based traffic. In this configuration, Squid effectively acts as a man-in-the
middle (MitM) proxy that is able to inspect both encrypted and unencrypted web traffic in
order to detect and prevent attempts at data exfiltration. Squid was used in this thesis for
this purpose [6], [74].

In order to inspect traffic, the communications channel from the internal host was terminated
at the Squid proxy server rather than the external destination as depicted in Figure 2.5. The
Squid proxy inspected the packets and reencrypted them (if necessary) before forwarding
them to the external destination host. This is one of the more effective ways an organization
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can inspect encrypted web-based traffic for data exfiltration before it leaves the internal
network.

Figure 2.5. Traffic Inspection at Squid Proxy Server. Source: [6]

ClamAV
ClamAV is a free, open-source antivirus software engine for detecting various forms of
malware and other malicious threats [75]. It is most often deployed on Linux-based systems
and includes a number of utilities including a command-line scanner, an automatic database
updater, and amulti-threaded daemon [75]. ClamAVwas installed on the Squid proxy server
in support of this thesis to assist in the scanning and blocking traffic containing customized
file signatures. These signatures were tailored for application to the files that were to be
exfiltrated during experimentation. Essentially, these signatures were manually added to the
ClamAV signature database to falsely flag exfiltration attempts as viruses in order to block
exfiltration attempts. [6], [76].

2.5 Related Work
A fair amount of research has been conducted on various ways to perform and enhance
obfuscated data exfiltration using common protocols, including the application protocols
that are evaluated in this thesis. This work has included a number of controls that are
frequently implemented on proprietary networks. HTTP, for example, is very often heavily
monitored and controlled to prevent its misuse. Considering that browser-based attacks
are still very common, security conscious organizations are prone to implement controls to
monitor and secure transmissions over HTTP. Nevertheless, exfiltration techniques continue
to evolve in response to these defenses.

Ede presented a novel method for data exfiltration via HTTP that utilizes a dynamic and
adaptive approach [77]. In this approach the adversary uses malware to analyze the regular
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browser traffic present on a target host to create a template for exfiltration that adapts to
and mimics regular benign browser traffic [77]. Although, an effective heuristic method
for detecting the exfiltration method was also presented, the paper acknowledged that the
exfiltration method would be harder to detect if it increased the volatility of the rate and
amount of exfiltrated data [77]. Additionally, it was noted that this sort of dynamic and
adaptive approach could be applied generally to other protocols [77]. This observation aligns
with the intent of this thesis to evaluate data exfiltration via socket layer customization to
determine if it can potentially allow for this sort of adaptive approach (i.e., by implementing
protocol-agnostic modules with dynamic module parameters that can change how data is
embedded into application payloads).

Born presented research on embedding data within application payloads and reassembling it
at a remote server in “Browser-Based Covert Data Exfiltration” [78]. In his paper, Born dis-
cusses traditional methods of data exfiltration via the HTTP and DNS application protocols
using tools such as httptunnel and Iodine respectively [78]. Born then presents an exfiltration
method that utilizes JavaScript executed by a target host’s browser to encode and embed
data into the payload of DNS queries. This approach effectively performs obfuscated data
exfiltration without privilege escalation [78]. The presented results indicate that the method
is effective, but Born highlights the difficulty of separating the DNS queries and HTTP
requests as the JavaScript executes within the browser application [78]. This can partly be
attributed to the general difficulty of embedding data within payloads at the application
layer. Related research conducted at the Oak Ridge National Laboratory in 2016, references
Born’s work and notes that most common techniques for data exfiltration involve natively
installed utilities that are able to remain undetected [40]. Data exfiltration via socket layer
protocol customization presents the ability to leverage use of native applications and avoid
application layer difficulties by embedding data into application payloads as they transition
from the application layer to the transport layer.

Malicious actors will often try to enhance obfuscated data exfiltration by establishing
exfiltration servers that also host legitimate services. DNS, for instance, is an appealing
protocol formalicious actors to target since it is critical tomaintaining the functionality of the
Internet as it exists today. As a result, many organizations implement controls to monitor and
limit DNS traffic to specific local and authoritative servers to prevent its use for exfiltration.
However, this form of exfiltration is often difficult to detect and prevent given the recursive
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hierarchical nature of the DNS architecture [46]. Research has shown that malicious actors
can successfully exfiltrate data via DNS on a target host by registering an authoritative
domain and then embedding data into legitimate queries for that domain [46]. The global
DNS architecture ensures that resolvers will forward the queries to the authoritative server.
Since it is under the control of the malicious actor, the server can then retrieve the exfiltrated
data [46]. This thesis attempted to simulate a similar scenario in testing by assuming that
the Exfiltration Server was a registered server that was also hosting legitimate services.

A team from Northumbria University researched how typical data exfiltration via DNS
could be enhanced via HTTPS [79]. Originally developed with security in mind, DNS
over HTTPS (DoH) can ensure privacy and makes eavesdropping and MitM attacks more
difficult. As their work indicates, however, the ability to encrypt DNS traffic could also
facilitate typical methods of data exfiltration. The team performed tests against a variety
of security controls and concluded that if an adversary could establish a tunnel between
a target host and a rogue DNS server, it would be very difficult to detect exfiltration via
DoH [79]. The team concluded that exfiltration could be detected by sophisticated traffic
filtering proxies but that this would essentially nullify the privacy benefits of DoH [79].
Organizations are often hesitant to implement DLP solutions that might be viewed as
invading privacy or inducing overhead. Even if DLP solutions are implemented, socket
layer protocol customization might still make this type of exfiltration method possible if it
can bypass typical DLP controls.

VoIP has seen rapid evolution and multiple advances over the last few years, and its growth
has only been accelerated by the recent COVID-19 pandemic. Many organizations now see
VoIP services as critical to their daily operations. As such, VoIP and the various protocols it
incorporates make interesting candidates for data exfiltration. A study performed by a team
from the School of Electronics and Information and Automation, Civil Aviation University
of China researched VoIP’s potential to hide and embed data for both security and malicious
purposes [80]. Specifically related to data exfiltration, the study highlighted the fact that
VoIP provides multiple attack vectors against the various protocols and payloads that are
utilized to provide voice and video streaming [80]. Adversaries, for instance, might make
use of the redundancy in both voice and video streams to embed data without detection [80].
Additionally, a study conducted at theWarsaw Technical University in 2008, pointed out that
the high volume of data exchanged during a VoIP connection coupled with the potentially
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high bandwidth associated with streaming protocols makes for an ideal environment to
potentially exfiltrate a significant amount of data very quickly [81]. Further, protocols such
as RTP often stream at dynamic and variable rates, which can make it difficult to define
and inspect for detectable signatures without degrading quality of service [81]. A possible
limiting factor of exfiltration over VoIP is the lack of reliability associated with UDP-based
streaming protocols. This may affect the ability to transfer exfiltrated data in its entirety if
using a dynamic approach through socket layer customization. This is one of the questions
this thesis intended to answer through experimentation.

Similar to DNS, NTP is a critical application protocol that has been researched for its
potential to establish covert channels for obfuscated data exfiltration. A study by Ameri and
Johnson presented at the International Conference on Cryptography, Security, and Privacy
in 2017 evaluated how a covert channel could be established between a receiving host and an
NTP server without being detected [82]. Their model involved segmenting a one megabyte
(MB) file into 32-bit segments and embedding them within all NTP responses to clients
so that they could be retrieved by the listening receiver. They noted that the main limiting
factor was the throughput of the channel, which was mostly a byproduct of the number
of clients making NTP requests [82]. Another study by a group from Otto von Guericke
University, noted that while data exfiltration over NTP was limited by available bandwidth,
NTP provides malicious actors with a reliable and effective way to deeply hide persistent
data exfiltration when bandwidth is not a priority [83]. Additionally, normal NTP packets
exhibit high entropy, and it was discovered that embedding a small amount of encrypted
data resulted in very comparable entropy values. This makes it potentially very difficult
to detect based on anomalies or signatures [83]. The basic concept of embedding smaller
amounts of data to avoid detection explored in these studies could perhaps also be applied
to other protocols with more capable bandwidth via socket layer protocol customization.

In this thesis, the customization modules that were utilized for embedding data into ap-
plication payloads are described as loadable, kernel-level modules. This is an accurate
description; however, their ability to execute potentially malicious code without detection
with the privilege of the Linux kernel makes their classification as a type of kernel-level
rootkit reasonable as well. Traditional Linux kernel-level rootkits typically take advantage
of loadable kernel modules and rely on kernel privilege to access restricted areas of the
operating system to include those allowing system calls and unrestricted access to user-
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space applications [84]. While the original intent of socket protocol customization was to
enhance the functionality of standard protocols, it is worth noting that the customization
modules utilized in this thesis make use of all these kernel-level techniques. While it falls
out of the scope of experimentation for this thesis, from a mitigation perspective some of
the host-based detection mechanisms related to detecting traditional rootkits might also be
useful in detecting malicious actions performed by this sort of customization module [84].

2.6 Summary
This chapter presented the significant technical aspects of this thesis. The Layer 4.5 archi-
tecture was introduced and the process of socket protocol customization was discussed in
detail. The various, software, applications, protocols, and security controls that were utilized
throughout experimentation were also presented to provide the reader with the necessary
background information to interpret the results of this thesis. The chapter concluded with a
discussion of works related to obfuscated data exfiltration and kernel-level modules.

The next chapter discusses the experimentation phases and experiment design. The virtual
environment in which the experiments were conducted is also described.

26



CHAPTER 3:
Experiment Design

This chapter details the development and design of the kernel-level customization modules
and testbed environment that were utilized in this thesis. It begins by describing the general
Layer 4.5 customization loader and its role in performing protocol customization. The
protocol specific customization modules developed for this research are introduced, and
details are provided on how they were designed to dynamically embed data in the payloads
of each targeted application protocol. The logic behind the chosen configuration parameters
of the customization modules and the design of the configuration programs themselves are
also discussed. The chapter goes on to describe the network setup for each phase of testing.
In particular, details on the testbed evolution across test phases are provided. Finally, a
description of the performance metrics that were used at each phase of testing to evaluate
the overall effectiveness and viability of the exfiltration method is presented. The chapter
concludes with a discussion of the significant assumptions and limitations associated with
the experimental design.

3.1 Socket Layer Customization Implementation
The socket layer protocol customization that was utilized in this research to embed data
for exfiltration relied on two distinct kernel-level modules written in the C programming
language and compiled using gcc version 9.4.0: the Layer 4.5 customization loader and
the external customization module. The customization loader manages the registration and
loading of external customization modules. It encodes the configurable parameters for each
customization module (Table 3.1) as specific data structures that enable it to identify and
track specific socket connections for customization [12]–[14]. When a socket connection to
which a customization module is to be applied is identified, taps into standard socket calls
are used to create a customized socket in place of the original application socket [12], [14].
Functions defined in the module are applied to future transmissions as long as the socket
connection is open. In this thesis, the Layer 4.5 customization loader was installed on both
the Staging Host and the Exfiltration Server to enable the embedding and extraction of data
on specific socket connections.
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Table 3.1. Customization Module Configurable Parameters

Parameter Applicable Host Implementation
Application Name Both Hard-coded

Destination/Server IP Address Both Hard-coded
Source/Client IP Address Server Hard-coded
Destination Port Number Both Hard-coded
*Source Port Number Both Hard-coded
Protocol Number Both Hard-coded
File to Exfiltrate Client Dynamic

File Size Both Dynamic
Byte Size of Data Customization Both Dynamic

Byte Position of Data Customization Both Dynamic

* For experimentation, source port is a hard-coded wildcard value since it changes for
every client-initiated connection, however, it can be set to a constant value if required.

Two customization modules were developed: one for the Staging Host and one for the
Exfiltration Server. Both of these versions of the customization module had the same de-
fault functions and designs that allowed them to register and interface with the Layer 4.5
customization loader. However, their internal send and receive functions were modified to
accommodate the embedding or extraction of data respectively. Each version of the mod-
ule was designed to be protocol agnostic with configurable parameters that were used to
designate the socket connection for customization. These parameters also dictated what
and how much data was embedded within the application payload during transmission.
The parameters could also be modified at run-time, which enabled a dynamic approach
to data exfiltration. This allowed the modules to be deployed with a wide-range of capa-
bilities to accommodate the different application and transport layer protocols. The send
version, or client-side module deployed on the Staging Host was designed to embed data
within specific application payloads based on a registered socket connection. Conversely,
the receive version, or server-side module deployed on the Exfiltration Server was designed
to extract data from the application payloads based on the same registered socket con-
nection. Table 3.1 presents the specific configurable parameters that were utilized for the
customization modules of this thesis.
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Of the Table 3.1 parameters, six were hard-coded in the customization module configuration
for each application protocol prior to loading the module. These parameters could only be
changed while the module was unloaded. The reason for this was that these parameters
were also utilized by the Layer 4.5 customization loader to identify socket handles for
customization. The hard-coded parameters were application name, destination address,
source address, port number, and protocol number. The remaining four parameters; file,
file size, byte size, and byte position; were modifiable while the customization module was
loaded. This allowed the parameters dictating how and what data was embedded into the
application payload to be configured dynamically without reloading the module. The only
limiting factor was that both the send- and receive-side hosts had to have the same parameter
configurations before data was embedded.

Algorithms 1 and 2 provide a high-level overview of the logic used by the customization
loader and modules. The overall process consisted of three primary events: identify specific
socket connections for customization, embed and send data from the client-side host, and
identify and receive data on the server-side host. Socket connections can only be identified
for customization on the first socket call, or initial socket creation. If a customization
module is loaded after a socket has been created, then that socket will not be identified for
customization regardless ofwhether or not itmatches themodule’s configuration parameters.

Two simple bash shell scripts were utilized to configure the dynamic parameters of the
client and server customization modules. During execution the shell scripts ask the user for
specific inputs associated with configurable experimentation parameters. These shell scripts
enable the module parameters to be changed while the customization modules were loaded
to allow for quick transitions between experiments. Additionally, both bash shell scripts
start tcpdump instances to capture client and server network traffic for post-test analysis and
evaluation. The source code for the Layer 4.5 deployment module, customization modules,
and configuration bash shell scripts is hosted on the Naval Postgraduate School (NPS)
GitLab page as referenced in the appendix (A.1).

3.2 Testbed Design
At its highest level, the testbed design, depicted in Figure 3.1 is a simple point-to-point
connection between the Staging Host and the Exfiltration Server. For experimentation
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Algorithm 1 Client-side Customization Module
1: Init Module Event:
2: Module registers Layer 4.5 customization
3: Loader will check all sockets against parameters for a match
4: while Customization Module is Registered do
5: First Socket Call Event:
6: Application initiates socket call
7: Loader creates customization socket and checks against module parameters
8: if Match = True then
9: Customization = True
10: else
11: Customization = False //Socket is not customized and TX proceeds as normal
12: end if
13: while Customization = True do
14: Send Func Event:
15: if First Customization then
16: Create custom memory buffer for file data based on file size parameter
17: Read data from file to be exfiltrated into custom buffer
18: Establish variable to keep track of how much file data is sent
19: end if
20: if More Data to Exfiltrate then
21: Read byte position and byte size parameters
22: Copy and embed file data from custom file buffer into original data payload
23: Return customized payload with embedded data to send buffer
24: else
25: Free allocated memory
26: Customization = False //All file data has been sent
27: end if
28: end while
29: end while

purposes, these two hosts resided on a virtual network hosted on a MacBook Pro with a
Intel Core i7 processor and macOS Big Sur version 11.4 installed. These two hosts both had
Ubuntu operating system version 20.04/5.13 installed and were the only two host machines
on the experimental local area network. This simple network topology allowed for traffic
to be easily identified and analyzed as it was transmitted between the client and server
using the various testing protocols. Additionally, it allowed for easier implementation and
analysis of the security controls being tested against this method of data exfiltration. High
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Algorithm 2 Server-side Customization Module
1: Init Module Event:
2: Module registers Layer 4.5 customization
3: Loader will check all sockets against parameters for a match
4: while Customization Module is Registered do
5: First Socket Call Event:
6: Server receives message and initiates socket call
7: Loader creates customization socket and checks against module parameters
8: if Match = True then
9: Customization = True
10: else
11: Customization = False //Socket is not customized and RX proceeds as normal
12: end if
13: while Customization = True do
14: Recv Func Event:
15: if First Customization then
16: Create custom memory buffer for exfiltrated data based on file size parameter
17: Establish variable to keep track of how much exfiltrated data is received
18: end if
19: if More Data Expected then
20: Read byte position and byte size parameters
21: Extract and copy exfiltrated data from receive buffer to custom buffer
22: Return original data prior to client-side customization to receive buffer
23: else
24: Write exfiltrated data to kernel log file and free allocated memory
25: Customization = False //Data exfiltration is complete
26: end if
27: end while
28: end while

traffic volume outside a virtual environment is more realistic and often has its own effects
on security control effectiveness; however, this simple setup allowed for analysis of the
exfiltration method’s ability to bypass typical security controls in isolation (i.e., without
variable factors influencing the results).

3.2.1 Phase One Testing
Phase One testing predominantly focused on verifying the ability of socket layer customiza-
tion to be adapted to any application or protocol. More specifically, it identified what
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Figure 3.1. Basic Testbed Design

characteristics of application protocols were more conducive to obfuscated data exfiltration
via socket layer protocol customization. As such, the testbed network design for Phase One
was relatively simple and consisted of only the internal Staging Host, a perimeter router,
and the external Exfiltration Server.

The Staging Host represented the target host machine located on a proprietary network and
contained the files to be exfiltrated. This host utilized Linux’s uncomplicated firewall (UFW)
tool in its default configuration to block all incoming connections not initiated by the Staging
Host.

The perimeter router was considered part of the proprietary network and served two pur-
poses. One was to act as the default gateway for routing internal network traffic to the
Internet (to include the network on which the Exfiltration Server resided). The second
was to provide a basic iptables firewall to filter unauthorized traffic into and out of the
internal network. All of the application protocols being tested were among those that are
commonly used by organizations, so none of their associated ports were blocked since they
would be considered required for daily operations. Iptables was configured to drop all traffic
associated with other ports and to block all non-established inbound connections.
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The Exfiltration Server was configured with three separate interfaces to host all of the
relevant services. It also utilized Linux’s UFW tool, which was configured to allow only
traffic destined for ports related to hosted services. To this end, the Exfiltration Server was
considered a registered server that was hosting legitimate services and as such, was not
blacklisted. Figure 3.2 depicts the network setup for Phase One testing, and Table 3.2 lists
the application protocols, port numbers, and client/server applications utilized for testing.
The applications presented in this table were chosen based on their ease of implementation,
widespread use, and ability to simulate realistic traffic for the application protocols being
tested. Specific configurations for the host machines, perimeter router, and iptables can be
found hosted on the NPS GitLab page as referenced in the appendix (A.1).

Figure 3.2. Phase One Testbed Design

Table 3.2. Virtual Machine Testing Configurations

Application Protocol Port Number Client Application Server Application
HTTP 80 cURL Python3
HTTPS 443 cURL Apache2
SMTP 25 Postfix Postfix
DNS 53 nslookup, dig Dnsmasq
NTP 123 ntpdate ntpd(aemon)
VoIP 9078, 9079, 7078, 7079 Linphone Linphone
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3.2.2 Phase Two Testing
The testbed was modified slightly for Phase Two to enable testing of the customization
module’s ability to perform customization against host-based security controls. During this
phase, AppArmor was enabled and configured on the Staging Host to restrict access permis-
sions to the files that were to be exfiltrated. AppArmor comes preinstalled on most versions
of the Linux operating system and implements access controls through flexible profiles that
can be applied to individual applications [67]. AppArmor profiles were implemented and
configured to specifically limit the ability of applications to access files for the purpose of
data transmission. Figure 3.3 depicts the network setup for Phase Two testing.

Figure 3.3. Phase Two Testbed Design

3.2.3 Phase Three Testing
The testbed was further modified for Phase Three to test the customization’s ability to
perform data exfiltration against more sophisticated network-based security controls. In
this phase an additional virtual host was added inline between the perimeter router and
the Staging Host. Snort was installed and configured on this additional host as a network
IPS security control to inspect traffic as it left the target host network en route to the
Exfiltration Server. Snort was utilized on this host with its default IPS configuration, which
included alert generation, logging, deep packet inspection, and the ability to filter and
drop traffic. Snort was installed and configured with the latest registered rules provided
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by Cisco’s threat intelligence research team, Talos. These rules are commonly utilized to
identify malicious traffic and malware conforming to known signatures [68]. After testing
using Snort’s default configuration and registered rules, additional preprocessor rules and
custom rules were enabled to target specific application protocols and content signatures of
the target files to see if Snort could be configured to consistently detect and prevent data
exfiltration attempts. Figure 3.4 depicts the network setup for Phase Three testing.

Figure 3.4. Phase Three Testbed Design

3.2.4 Phase Four Testing
Phase Four required adding an additional host to the testbed between the Snort IPS and
the Staging Host. This host used the Squid and ClamAV software packages to provide
a simple content-filtering proxy. Squid was configured as a transparent inline proxy to
perform deep packet inspection on web-based traffic. In addition to the default signatures
provided by ClamAV, additional customized hexadecimal signatures related to the files to
be exfiltrated were added to the ClamAV configuration. These signatures took the form
of actual data and included an added tag (FOUO, 0x464f554f) at the beginning, middle,
and end of the proprietary file. These sorts of tags are often utilized by organizations to
identify proprietary and other sensitive documents that may be targeted for exfiltration [6].
This final network configuration tested the customization modules’ abilities to bypass more
robust and comprehensive network security solutions specifically implemented to prevent
data exfiltration of specific files. Figure 3.5 depicts the network setup for Phase Four testing.
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Figure 3.5. Phase Four Testbed Design

3.3 Performance Metrics
The performance metrics were varied for each phase of testing based on the goals of each
phase. In Phase One there were two goals. The first was to successfully exfiltrate two
separate files from the Staging Host to the Exfiltration Server. An associated objective of
these tests was to gather measurable data on the performance of each application protocol
when the customization module was utilized. Each protocol was placed into one of three
categories: UDP stream, TCP session, or VoIP conversation. Exfiltration for both files was
attempted for each protocol with three different embedded-byte sizes (i.e., the number of
bytes simultaneously embedded). A maximum segment size of 1500 bytes was assumed
to account for the largest number of simultaneously embedded bytes and to provide for
accurate comparison. The specific metrics used to measure the performance of the data
exfiltration with the customization module were as follows:

• Total number of packets transmitted,
• Total number of bytes transmitted, and
• Total time to completion of data exfiltration.

Additionally, these metrics were utilized as the basis for a relative comparison of the
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performance of each application protocol for exfiltration. For these relative comparisons
two distinct measurements were utilized: relative throughput and relative overhead. Relative
throughput captures the amount of file data exfiltrated in kilobyte (KB)’s per second, and
relative overhead captures the number of packets transmitted per KB of exfiltrated file
data. These measurements were useful for a relative comparison because they detailed each
application protocol’s performance as a function of the total size of the exfiltrated data. In
short, they showed exactly how much data each application protocol was able to exfiltrate
per second and how much overhead was incurred for each KB of exfiltrated data.

Successful data exfiltration was verified in two ways. The first involved gathering and re-
assembling the data on the Exfiltration Server to reconstruct the original file. A message
digest algorithm (MD5) hash was calculated for the reconstructed file and compared with
a calculated MD5 hash of the original file on the Staging Host. A match indicated suc-
cessful exfiltration of the data as depicted in Figure 3.6. The second method of verifying
successful exfiltration involved instances where customization module or buffer errors oc-
curred. In these instances Wireshark was utilized to analyze a packet capture of traffic on
the Exfiltration Server interface to verify the receipt of all exfiltrated data.

Figure 3.6. MD5 Hash Comparison to Verify Successful Exfiltration

A simple text file and an image file in the tag image file format (TIFF) format were used for
experimentation. The text file was left in its original ASCII encoding for exfiltration. The
TIFF image file, which is in a binary format, was converted to ASCII-based hexadecimal
character bytes using the xxd utility prior to exfiltration. This encoding made the process
of exfiltrating, gathering, and reassembling the data into its original form on the Exfiltration
Server simpler and more manageable. The files utilized for exfiltration and their associated
sizes were as follows:

• constitution.txt (44.84 KB) and
• Penguin.tif (229.8 KB original and 459.5 KB encoded).

The second goal of Phase One was to evaluate the effectiveness of the customization
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modules for performing data exfiltration with each application protocol. For each test run,
data was embedded into application payloads at a specific byte position using one of the
three test embedded-byte sizes and exfiltrated. Embedded-byte position was varied for each
application protocol and was chosen based on the total size and format of the application
payload. Tcpdump was utilized to capture network traffic on the Staging Host, perimeter
router, and Exfiltration Server. The traffic was then analyzed usingWireshark and evaluated,
taking any errors reported into account, to identify specific characteristics of each application
protocol that made it more or less conducive for obfuscated data exfiltration. The results of
these tests drove customization module configurations for the subsequent phases of testing
against security controls.

The ideal module configurations for subsequent phases were identified based on the results
of Phase One experimentation. The data exfiltration experiments were then repeated for
Phases Two through Four to test whether the customization modules could successfully
bypass the security controls introduced in each phase. Boolean values of True and False
were utilized to report the successful or unsuccessful detection or prevention of the data
exfiltration as a result of the added security controls. Successful detection or prevention
events were subsequently analyzed and evaluated to determine what signature or rule-set
was able to detect or prevent the data exfiltration attempt.

3.4 Research Assumptions and Limitations
With regards to the experimental design, some significant assumptions weremade to accom-
modate the testing of the customization modules in this thesis, and a number of limitations
must be noted. One assumption, which has been mentioned previously, was that the adver-
sary had already achieved persistent, root-level access on the Staging Host. In the context
of Lockheed Martin’s Cyber Kill Chain [85], the actual execution of data exfiltration be-
ing evaluated in this thesis was representative of the final phase, Actions on Objective,
whereby the malicious actor achieves intended objectives by executing specific actions on
the target host. The six phases that would be required prior to the Actions on Objective
phase represent critical steps to covertly obtain the persistent system access necessary for
data exfiltration [85]. This thesis, however, was only concerned with the obfuscated data
exfiltration performance against specific host and network-based security controls, so it was
reasonable to assume the adversary’s success up to that point. That said, the experiments

38



in this thesis were not an attempt to diminish the importance of defending against these
preliminary steps, but rather an exploration of a specific type of attack at a specific point in
the kill chain.

It is also worth noting that the functionality of the exfiltration customization modules
could be incorporated into a version of the operating system kernel (e.g., by compromising
the supply chain) rather than through a Layer 4.5 approach. Basically, the customization
module could be developed to be independent of the Layer 4.5 deployment module platform.
Assessment of that approach, however, is beyond the scope of this thesis and it was therefore
not accounted for in this work.

The ability of a malicious actor to compromise the kernel of a target host presents a worst
case scenario for the defender. Consequently, there are kernel-level host-based controls
available that are specifically designed to mitigate this threat. Many of these kernel-level
controls are event-based and take advantage of robust logging at the kernel level to observe,
detect, and in some implementations even prevent potential malicious modules from loading
on a host [84]. Additionally, research has been conducted on kernel-level controls that can
monitor or intercept system calls and make policy-based decisions to either allow, flag, or
deny them [84], [86]. These types of controls often blend attributes of both network-based
and host-based security controls. Their implementation introduces additional administrative
and resource overhead, but they are important for any organization to consider for any
enterprise-level environment to mitigate or prevent exploitation of kernel-level modules
such as the method being explored in this thesis. Nevertheless, experimentation in this
thesis was limited to the evaluation of the customization module’s ability to bypass a readily
available host-based control, in this case AppArmor, implemented to detect and prevent data
exfiltration in real-time. Thus, the use of such security controls and analysis of kernel-level
logs to detect the unauthorized use of kernel-level customization modules, both during and
following exfiltration, falls outside the scope of this thesis.

A significant limitation of the customization modules in their current forms is the difficulty
to integrate them with TLS. TLS version 1.3 is comprised of two primary components that
complicate integration with the customization modules: the TLS handshake and the record
protocol or record layer. The TLS handshake is used to authenticate the communicating
parties, negotiate cryptographic modes and parameters, and establish shared keys [30]. It
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works primarily to secure the connection between hosts and does not impede the ability
of the customization modules to embed and extract data within associated payloads. The
record layer, on the other hand, works to protect traffic between communicating peers by
dividing traffic into a series of records, each of which is independently protected using
the traffic keys [30]. While the record layer does not directly inhibit the embedding or
extracting of data by the customization modules, it does induce significant errors when the
data is extracted at Layer 4.5 and passed to the application layer. This is due to one record in
particular, length, that specifies the size of the TLS application payload outside of the record
layer. Since TLS is implemented above Layer 4.5, the length value is calculated before data
is embedded. Embedding data, therefore, results in a transmitted payload length that is
larger than the length record which often leads to a decode_error on the server-side (this
error indicates that a message could not be decoded because of a field error or incorrect
length) [30]. To complicate matters further, TLS-based applications seem to designate
specific length records for certain packets, particularly during the TLS handshake. In these
situations, specific sizes for receive buffers are allocated to match the record layers and
payload lengths. Some applications will request the five-byte record layer before processing
the payload to determine the exact length of payload to allocate and push to the TLS process.
When the receive-side customization module extracts the embedded data it will often cause
corruption in these buffers due to the TLS process receiving data that it was not expecting.
Figure 3.7 provides a generic illustration of this limitation as data is embedded at the Staging
Host and received at the Exfiltration Server.

Figure 3.7. TLS Buffer Limitation
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Figures 3.8 and 3.9 present examples of this limitation in the experimental test environment
for a test in which 12 bytes were embedded into a TLS Client Hello packet (517 bytes)
on the Target Host and received by a simple Python-based web server on the Exfiltration
Server. Figure 3.8 shows a trace log of five bytes being pulled from the transport buffer on
the Exfiltration Server. This is the record data that tells the TLS process the version being
used, what type of data is in the packet (Client Hello), and the content length. The next trace
log entry of the figure shows 512 bytes being read from the transport buffer, as dictated
by the content length of the record data. Embedded within this 512 bytes are 12 bytes of
illegitimate (i.e., embedded) data. This data is extracted properly and the original data is
put back into its original position. However, as designed, the customization is independent
of the TLS process, so TLS still reads 512 bytes which now include 12 bytes of padding
from the original Client Hello packet. This data does represent any legitimate TLS record
or application data and causes processing errors as a result. This scenario is played out
to completion in Figure 3.9. Here the data is extracted successfully, but the TLS process
interprets the additional bytes as an unintended message and terminates the connection.
Future research efforts will focus on addressing this limitation by adding additional buffering
capabilities to the Layer 4.5 architecture to act as an intermediary between the transport
buffer and the TLS process.

Figure 3.8. TLS Client Hello Message Received by the Exfiltration Server

Figure 3.9. Corruption of TLS Buffer by Leftover Data

There are also limitations associated with how the customization modules prepare data for
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exfiltration. In their current states, the customization modules open and read the files to
be exfiltrated in kernel space and write the data to a buffer that is subsequently accessed
when data is embedded into application payloads. This technique allows targeted files to
be accessed directly by the customization module without further interaction with the user.
While this technique can potentially offer advantages, it limits the amount of data that
can be written from the target file to a buffer to approximately one MB due to limits of
the kernel_read function. This necessitates data exfiltration in separate segments for files
greater than one MB, which limits the ability of the customization modules to perform
automated data exfiltration.

Finally, encoding of targeted files for exfiltration during experimentation was conducted
by the bash script configuration program rather than within the customization module.
This was done for the sake of convenience and simplicity; however, it would be feasible to
implement code within the initialization function of the customization module to perform
basic encoding and encryption as the file is read into a buffer. Furthermore, the customization
modules currently cannot confirm or acknowledge the receipt of exfiltrated data. This does
not pose notable problems with regards to the objectives of this thesis since all testing is
done on an isolated virtual network. This could be a significant limitation when testing this
method in more realistic network environments where packet loss is more likely.

3.5 Summary
In summary, this chapter provided an overview of the experimental design for this thesis.
The design and development of the Layer 4.5 customization modules were discussed. The
parameters and logic that allow the modules to perform customization to existing sockets to
exfiltrate and receive data were presented in detail. Additionally, the basic testbed design and
its evolution through each phase of testing were also presented. The performance metrics
were then discussed in detail to show how the exfiltration method was tested and evaluated
for each test phase. The chapter concluded with a discussion on the significant assumptions
and limitations associated with the experimental design for the reader’s consideration.

Chapter 4 covers experimentation and provides a detailed discussion of the results from
each test phase.
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CHAPTER 4:
Experimentation and Results

This chapter presents the specific configuration settings for the experiments conducted in
each phase of testing and explains the execution flow for individual experiments. It concludes
with the reporting of the results and analysis of the customization modules’ performance
against the specific security controls implemented in each phase of testing.

4.1 Experimental Configurations
As previously stated, there were four distinct experimental testing phases that were utilized
to evaluate the ability of socket layer protocol customization to enhance obfuscated data
exfiltration. Each phase adds to the experimental network testbed by implementing specific
host-based and network-based security controls to prevent data exfiltration. A detailed guide
on the setup and configuration of the virtual machines used in experimentation can be found
hosted on the NPS GitLab page referenced in the appendix (A.1). All source code for the
various customization modules, the Layer 4.5 deployment module, the Python configuration
files, and the associated bash scripts can also be found on the GitLab page.

Table 4.1 presents the virtual machine configurations utilized throughout experimentation.
It also includes the significant applications and services that were configured and utilized
on each machine. Finally, it indicates the test phases in which each virtual machine was
used.

Table 4.1. Virtual Machine Configurations

Phases Virtual Machine Operating System Network
Adapters Applications/Services

1, 2, 3, 4 Staging Host Ubuntu 20.04 1 cURL, Postfix, Linphone

1, 2, 3, 4 Exfiltration Server Ubuntu 20.04 3 Apache2, Dnsmasq,
Postfix, ntpd, Linphone

3, 4 Snort IPS Ubuntu 20.04 2 Snort IPS 2.9
4 Proxy Server Ubuntu 20.04 2 Squid, ClamAV

1, 2, 3, 4 Perimeter Router Ubuntu 20.04 3 Iptables
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The Staging Host was configured with the cURL software utility installed to accommodate
simple command-line HTTP and HTTPS GET and POST requests. The Postfix utility was
installed to enable the sending of simple test email messages. The Linphone application was
installed to enable VoIP calls to be initiated. The dig and ntpdate command-line utilities
were utilized to perform manual queries to test the DNS and NTP protocols respectively.

The Exfiltration server had all the applications and services necessary to receive and respond
to requests initiated by the Staging Host installed. These included Apache2/Python 3 (web
servers), Dnsmasq, Posttfix, ntpd, and Linphone.

The Snort IPS and proxy server virtual machines were configured with Snort, Squid, and
ClamAV as described in Sections 3.2.3 and 3.2.4 respectively.

Table 4.2 presents the network configurations utilized to connect the different nodes for each
phase of experimentation. Phases One and Two had the same network configuration with the
only difference being the implementation of host-based security controls (i.e., AppArmor)
on the Staging Host for Phase Two. Phase Three added the virtual machine hosting the
Snort IPS in inline mode. This network node acted as a transparent bridge for inspecting
network traffic without altering the baseline network configuration. Phase Four added a
virtual host that acted as a transparent content-filtering proxy for DLP. The addition of this
machine changed the baseline network configuration to intercept and inspect all traffic from
the Staging Host before using network address translation to forward approved traffic to the
perimeter router.

Table 4.3 presents the hard-coded customization module configurations for each application
protocol that was tested in each phase of experimentation. These configurations remained
unchanged throughout each respective phase of testing.

4.1.1 Phase One: Exfiltration Method Evaluation and Analysis
Figure 4.1 depicts the network environment for Phase One testing. For each application
protocol, three rounds of 13 data exfiltration test runs for both files were completed for a
total of 78 runs. Different embedded-byte sizes were utilized for each file in each round.
The embedded-byte sizes for constitution.txt were 10, 118, and 236. The embedded-byte
sizes for Penguin.tif were 10, 125, and 250. The embedded-byte sizes were slightly different
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Table 4.2. Network Configurations by Testing Phase

Phase Staging Host DLP Proxy Snort IPS Perimeter Router Exfiltration Server

1 10.10.0.2 N/A N/A
10.10.0.1
10.20.0.1

10.0.2.15 (WAN)

10.20.0.2 (Web, VoIP)
10.20.0.3 (DNS, NTP)

10.20.0.4 (Mail)

2 10.10.0.2 N/A N/A
10.10.0.1
10.20.0.1

10.0.2.15 (WAN)

10.20.0.2 (Web, VoIP)
10.20.0.3 (DNS, NTP)

10.20.0.4 (Mail)

3 10.10.0.2 N/A Bridge to
Perimeter Router

10.10.0.1
10.20.0.1

10.0.2.15 (WAN)

10.20.0.2 (Web, VoIP)
10.20.0.3 (DNS, NTP)

10.20.0.4 (Mail)

4 10.30.0.2 10.30.0.1
10.10.0.2

Bridge to
Perimeter Router

10.10.0.1
10.20.0.1

10.0.2.15 (WAN)

10.20.0.2 (Web, VoIP)
10.20.0.3 (DNS, NTP)

10.20.0.4 (Mail)

Table 4.3. Customization Module Hard-coded Configurations
HTTP

Host App. Name Dest. Addr. Src. Addr Dest. Port Src. Port Protocol Nbr.
Staging Host curl 10.20.0.2 N/A 80 * 6

Exfiltration Server python3 10.20.0.2 10.10.0.2 80 * 6
HTTPS

Host App. Name Dest. Addr. Src. Addr Dest. Port Src. Port Protocol Nbr.
Staging Host curl 10.20.0.2 N/A 443 * 6

Exfiltration Server apache2 10.20.0.2 0.0.0.0 443 * 6
SMTP

Host App. Name Dest. Addr. Src. Addr Dest. Port Src. Port Protocol Nbr.
Staging Host smtp 10.20.0.4 N/A 25 * 6

Exfiltration Server smtpd 10.20.0.4 10.10.0.2 25 * 6
DNS

Host App. Name Dest. Addr. Src. Addr Dest. Port Src. Port Protocol Nbr.
Staging Host * 10.20.0.3 N/A 53 * 17

Exfiltration Server dnsmasq 0.0.0.0 10.10.0.2 53 * 17
NTP

Host App. Name Dest. Addr. Src. Addr Dest. Port Src. Port Protocol Nbr.
Staging Host ntpdate 10.20.0.3 N/A 123 * 17

Exfiltration Server ntpd 10.20.0.3 10.10.0.2 123 * 17
VoIP

Host App. Name Dest. Addr. Src. Addr Dest. Port Src. Port Protocol Nbr.
Staging Host linphone 10.20.0.2 N/A 9078 * 17

Exfiltration Server linphone 0.0.0.0 0.0.0.0 9078 * 17
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for the two files to make them whole number factors of the total file size. Additionally, the
byte positions were varied with each run and were chosen based on the application protocol
being tested. The purpose of these test runs was to establish basic performance metrics
of the exfiltration method for each application protocol to allow future comparison and
identification of any characteristics of specific application protocols that make them more
or less conducive to this exfiltration method.

Figure 4.1. Phase One Network Topology

4.1.2 PhaseTwo:ExfiltrationMethodTesting againstHost-BasedCon-
trols

Figure 4.2 depicts the network environment for Phase Two testing. For each application
protocol, 13 data exfiltration test runs were completed for both files for a total of 26 runs.
For these tests, the byte position was fixed to the end of the payload and the embedded-byte
sizes for constitution.txt and Penguin.tif were fixed to 236 and 250 respectively. These
specific configurations were chosen to streamline testing across all the application protocols
since embedded-byte size and byte position do not affect the exfiltration method’s ability to
bypass controls hosted on the Staging Host (i.e., they do not affect the ability or inability of
host-based access control to detect or inhibit exfiltration). These test runs were performed
specifically to evaluate the exfiltration method’s ability to bypass a host-based control de-
signed to prevent application-based access to these specific files (i.e., AppArmor configured
on the Staging Host as depicted to limit access to the exfiltration targets).
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Figure 4.2. Phase Two Network Topology

4.1.3 Phase Three: Exfiltration Method Testing against Network-
Based IPS

Figure 4.3 depicts the network environment for Phase Three testing. For each application
protocol, two rounds of data exfiltration test runs were completed using various dynamic
module configurations that were chosen based on the results of Phase One. The first round
consisted of 13 tests runs per file testing various module configurations against an inline
instance of the network-based IPS, Snort, with its default configuration and registered rule
set (v2.9.19). The second round consisted of thirteen test runs for each file with variable
embedded-byte sizes and positions for each application protocol. This round included 20
additional custom Snort rules with content modifiers designed to detect attempts to use any
application protocol to exfiltrate the specific target files over UDP or TCP. With regards
to the custom Snort rules, the content modifiers within each rule were designed to identify
specific byte sequences within the two files. These sequences varied in size between 20 and
30 bytes. Snort was to log an alert and drop packets if these bytes were detected anywhere
within the application payload of an inspected packet. These rules as written were in keeping
with the best practice of creating rules with content modifiers that are specific enough to
identify target data without inducing false positives. Previously disabled Snort preprocessor
rules from the baseline configuration specific to the application protocols were enabled as
well. These tests were used to determine whether or not the exfiltration method can be
effective against an inline network-based IPS.
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Figure 4.3. Phase Three Network Topology

4.1.4 Phase Four: Exfiltration Method Testing against a DLP Proxy
Server

Finally, Figure 4.4 depicts the network topology for Phase Four testing. For each application,
13 data exfiltration test runswere intendedwith fixed dynamicmodule configurations chosen
based on the results of Phases One and Three. These tests were to be performed to determine
the exfiltration method’s effectiveness against a robust DLP solution specifically configured
to prevent the exfiltration of the targeted files.

Figure 4.4. Phase Four Network Topology
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4.2 Experimental Flowchart
Figure 4.5 provides a depiction of the generic experimental flow for each round of test
runs for each application protocol. The process described in this section remained largely
unchanged throughout all phases of testing. The steps depicted in the diagram can be
described as follows:

• The Layer4_5.ko kernel module was the customization loader for all experiments and
was loaded onto the Staging Host and Exfiltration Server. After confirming that the
Layer4_5 module was loaded, the in_rm_mod.sh shell script was utilized to load each
application-specific customization module for each round of test runs.

• The host_config.sh and server_config.sh shell scripts were executed on the Staging
Host and Exfiltration Server respectively. These simple bash shell script configuration
programs let the user choose to exfiltrate the data as raw bytes or in its original encoded
format. They also allowed for the dynamic parameters of the modules to be reset and
configured for each test run. Additionally, these shell scripts started tcpdump sessions
on a user specified port and interface to capture traffic associatedwith the experiment’s
application protocol.

• After both the Staging Host and Exfiltration Server were configured, the application-
specific services were started on the Exfiltration Server. In some cases, DNS and
NTP for instance, these services were running indefinitely, but they were confirmed
to be running for each test run. An application specific bash shell script program
was then executed on the Staging Host to commence data exfiltration. This program
performed automated application-specific transmissions to the server based on the
embedded-byte size and total file size until data exfiltration was completed or a
security control-based interruption occurred.

• Once the application-specific bash shell scripts concluded the tcpdump session was
terminated on the Staging Host and analyzed to ensure that all data was exfiltrated
as expected. The same process was repeated on the Exfiltration Server. At this point
data exfiltration was considered successful as long as all data was seen in the capture
file at the Exfiltration Server’s receiving interface. Depending on the application,
the customization modules could facilitate the gathering and reassembly of the data
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into its original readable form. The ()_gather_data.py and ()_reassemble_data.sh are
protocol-specific variations of script programs that were used to gather the data from
the kernel trace logs and reassemble it. A MD5 hash digest was calculated for the
reassembled files and compared with digests from the original files on the Staging
Host. Matching digest values indicated successful exfiltration.

• If additional runs were required, the host_config.sh and server_config.sh shell scripts
were simply executed again to reset and reconfigure the already loaded customization
module. If no more runs were required, the in_rm_mod.sh shell script was executed
to unload the current customization module, and the process was repeated for the next
round of test runs.

4.3 Results
The experimentation conducted throughout the first three phases produced mostly expected
results. In the first phase of testing, the loaded customization modules applied socket layer
protocol customization in the successful exfiltration of specific file data to completion. This
demonstrated a protocol-agnostic mechanism for exfiltration of data over traditionally estab-
lished sockets. UDP-based application protocols outperformed their TCP counterparts with
a few notable exceptions. The DNS application protocol resulted in the best performance
as measured by the metrics, and the VoIP protocol displayed the most flexibility in byte
position and embedded-byte size for data exfiltration.

Overall, socket layer protocol customization showed an ability to enhance obfuscated data
exfiltration predominantly in the ability of customization modules to be adapted to any
application protocol to bypass some basic host-based access controls. However, the cus-
tomization modules in their current versions did show some limitations. The most notable
limitation was the inability of the receive-side module to work correctly with applications
that implement TLS (i.e., to properly handle exfiltrated data embedded into the TLS data
buffers). This method, like other methods of obfuscated data exfiltration, was also suscepti-
ble to network-based security controls that employed robust content-filtering. The following
sub-sections present the results of each phase of testing in detail.
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Figure 4.5. Experimental Flowchart

4.3.1 Phase One Results
The following subsections provide summaries of the Phase One results. Each subsection
contains an analysis of the performance of each application protocol detailing the charac-
teristics of each one that make it more or less conducive to this method of data exfiltration.
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The analysis was conducted primarily by capturing traffic during data exfiltration using
Wireshark and determining whether or not the embedded data significantly altered the ap-
plication payload or displayed any notable signatures beyond the embedded data itself. The
experimental results are also presented in these subsections as tables displaying the mean
values for the total bytes, total packets, and total time performance metrics introduced in
Section 3.3 for each application protocol. The average values were calculated over all 13
test runs for each file and embedded-data size. Finally, a series of box plots for each file are
presented to provide an overall comparison of the performance of each application protocol
in terms of throughput and overhead relative to the total amount of data exfiltrated (total
file size).

HTTP Results Analysis
Tables 4.4 and 4.5 depict the results of experiments conducted for the HTTP protocol.
Table 4.4 presents the average totals over all 13 test runs for bytes, packets, and time to the
completion of data exfiltration of both files at each embedded data size. Table 4.5 presents
the values of these same metrics after 500 KB were added to the server response to HTTP
GET requests.

Table 4.4. HTTP Mean Test Results

constitution.txt
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 4.12 4.49 × 104 53.2
118 Bytes 3.90 × 10−1 3.80 × 103 5.63
236 bytes 2.18 × 10−1 1.90 × 103 2.37

Penguin.tif
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 42.2 4.60 × 105 544
125 Bytes 3.80 3.68 × 104 46.5
250 Bytes 2.13 1.84 × 104 21.5

The HTTP application protocol includes a variety of request methods for communication
between the client and the server. For testing, two of the more common methods, GET and
POST, were utilized. From a client perspective, each type of request has a particular header
structure designed to communicate the details of the requesting client application and the
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Table 4.5. HTTP 500 KB Mean Test Results

constitution.txt
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 1.07 × 103 2.32 × 105 160
118 Bytes 90.9 1.96 × 104 13.6
236 bytes 45.5 9.81 × 103 6.69

Penguin.tif
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 1.10 × 104 2.30 × 106 1.59 × 103

125 Bytes 879 1.90 × 105 145
250 Bytes 440 9.49 × 104 71.1

specific resources that are being requested. This structure presents a variety of places to
embed data within the application payload. Generally, embedding data anywhere within the
HTTP application payload did not lead to specific warnings from Wireshark, however, a
few significant observations were made:

• Embedded data in the front of the payload essentially disguised the type of HTTP
request. Therefore, any device that inspected the traffic saw unspecified data being
sent over port 80 (Figure 4.6).

• Embedded data within specific header fields disguised the type of header field and
that of subsequent header fields. Therefore, any device that inspected the traffic saw
legitimate HTTP requests with unspecified or incorrectly formatted header fields.

• Embedded data at or near the end of a GET or POST request outside of any header
field was seen as superfluous HTTP data and not part of the original request.

• Embedding data at or near the end of the payload produced the least amount of change
to the structured formatting of HTTP request methods and proved to be preferable.
This was especially true for POST requests where the end of the payload was variable
depending on what the user was pushing to the server. This in turn would presumably
make it harder to implement signature detection (Figure 4.7).
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Figure 4.6. Wireshark View of Data Embedded at the Beginning of an HTTP
Payload

Figure 4.7. Wireshark View of Data Embedded at the End of an HTTP
Payload

HTTPS Results Analysis
Table 4.6 depicts results from experiments conducted for the HTTPS protocol. This table
presents the average totals over all 13 test runs for bytes, packets, and time to the completion
of data exfiltration for both files at each embedded data size.

The HTTPS application protocol utilizes TLS and therefore provided more opportunities
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Table 4.6. HTTPS Mean Test Results

constitution.txt
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 71.2 1.22 × 105 152
118 Bytes 6.08 1.04 × 104 13.6
236 bytes 3.06 5.12 × 103 5.75

Penguin.tif
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 729 1.24 × 106 1.38 × 103

125 Bytes 58.8 9.99 × 104 126
250 Bytes 29.6 4.99 × 104 61.9

to embed data within the several packets that make up a single HTTPS request. For each
request a TLS handshake was required before application data could be sent over the
encrypted channel. Since, TLS is implemented just below the Application Layer on the
same socket connection, data could be embedded in these packets as well. However due to
the previously discussed limitations associated with TLS, embedding data was limited to
the end of the second-to-last packet sent by the client for a simple GET request. Since TLS
specifies strict lengths within its record layer for the data it processes on the receive side, the
extra embedded data at the end of the payload was essentially ignored and left untouched in
memory on the Exfiltration Server while the application proceeded as normal. This caused
memory issues on the server since the customization modules could not handle the buffer
structure utilized by TLS, but it allowed for the performance metrics to be collected. As
previously discussed, the data could not be properly accessed and reassembled from the TLS
buffer for a hash verificationwith the original file. As a result, successful data exfiltrationwas
measured by receipt of all data by the Exfiltration Server was verified through Wireshark
analysis. Some additional tests were conducted in which data was embedded in various
locations of each available packet leading to the following observations:

• Embedded data in TLS handshake packets anywhere other than the end of the payload
produced formatting errors visible in Wireshark. This included the over 200 bytes of
padding in the initial Client Hello packet.

• Embedded data within the payloads of application data packets outside the TLS record
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layer and within the encrypted application data was preferable. Potentially, any device
that inspects the traffic would see the embedded data as part of the original encrypted
data. The exception to this would be devices configured to specifically check the
Length value in the TLS record layer, which would reveal that the TLS payload was
larger than originally calculated by the sending host (Figure 4.8).

Figure 4.8. Wireshark View of Data Embedded in TLS Application Data

SMTP Results Analysis
Table 4.7 depicts results from experiments conducted for the SMTP protocol. This table
presents the average totals over all 13 test runs for bytes, packets, and time to the completion
of data exfiltration for both files at each embedded data size.

The SMTP application protocol also implements TLS and offered the same opportunities
to embed data in various packets during data transmission. However, given the previously
discussed limitations associated with TLS, the options for SMTP were limited to packets
containing SMTP-protocol-specific data. Since only simple test emails were sent between
servers the only two options for embedding data were the first two packets sent by the
Staging Host for each transaction. These packets effectively identified the client as a Postfix
server and initiated a TLS connection. These packets contained the commands EHLO and
STARTTLS respectively along with an associated parameter. In the case of the STARTTLS
packet, the parameter is limited to TLS. For this reason testing was limited to the first packet,
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Table 4.7. SMTP Mean Test Results

constitution.txt
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 20.5 1.63 × 105 57.5
118 Bytes 1.78 1.38 × 104 4.95
236 bytes 9.12 × 10−1 6.89 × 103 2.36

Penguin.tif
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 210 1.67 × 106 598
125 Bytes 17.2 1.33 × 105 47.2
250 Bytes 8.85 6.67 × 104 23.1

which contained the domain name of the server and could therefore be of more variable
length and content. Testing led to the following key observations:

• Embedded data at the front, end, or at byte positions 1-4 and 21 was characterized
by Wireshark as a data fragment. This was most likely due to the fact that when data
was embedded in these byte positions the data overlapped the command or parameter
fields and was therefore not recognized as legitimate.

• Embedded data in themiddle of the payloadwas preferable because it avoided possibly
corrupting the payload’s command and parameter fields (Figure 4.9).

• SMTP protocol payloads are small, simple, and somewhat predictable making them
less conducive to embedding larger amounts of data or specific bytes that do not
conform to common command or parameter content.

DNS Results Analysis
Table 4.8 depicts results from experiments conducted for the DNS protocol. This table
presents the average totals over all 13 test runs for bytes, packets, and time to the completion
of data exfiltration for both files at each embedded data size.

The DNS application protocol outperformed all the other tested application protocols in
terms of metrics, but was determined to be limited in the number of byte positions that could
be used to embed data within the payload. From testing the following key observations were
made:
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Figure 4.9. Wireshark View of Data Embedded after the SMTP Command
Parameter

Table 4.8. DNS Mean Test Results

constitution.txt
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 9.01 × 10−1 8.97 × 103 35.0
118 Bytes 1.17 × 10−1 760 2.97
236 bytes 8.11 × 10−2 380 1.47

Penguin.tif
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 9.24 9.19 × 104 403
125 Bytes 1.16 7.35 × 103 30.8
250 Bytes 8.11 × 10−1 3.68 × 103 15.5

• Any data embedded outside the Additional Records field corrupted the formatting of
the payload and was flagged by Wireshark as a malformed DNS packet (Figure 4.10).

• Within theAdditional Records field itself, embedded bytes would still cause the packet
to be flagged as malformed if the byte position was not within 11 bytes of the end of
the payload.

• The DNS protocol appears flexible in terms of the amount of bytes that can be
embedded at the end of the payload, eliciting no warnings from Wireshark up to the
maximum of 250 bytes that was tested (Figure 4.11).
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Figure 4.10. Wireshark View of Embedded Data Leading to a DNS Mal-
formed Packet

Figure 4.11. Wireshark View of Data Embedded at the End of a DNS Payload

NTP Results Analysis
Table 4.9 depicts results from experiments conducted for the NTP protocol. This table
presents the average totals over all 13 test runs for bytes, packets, and time to the completion
of data exfiltration for both files at each embedded data size.

The NTP application protocol, overall, induced limited overhead, but also performed the
worst among all application protocols in terms of throughput. However, it proved to be fairly
flexible with regards to the byte positions and embedded-byte sizes that could be utilized
for embedding data. From testing the following key observations were made:
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Table 4.9. NTP Mean Test Results

constitution.txt
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 8.52 × 10−1 8.97 × 103 467
118 Bytes 1.13 × 10−1 760 39.3
236 bytes 7.90 × 10−2 380 20.6

Penguin.tif
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 8.73 9.19 × 104 4.80 × 103

125 Bytes 1.12 7.35 × 103 382
250 Bytes 7.90 × 10−1 3.68 × 103 191

• Wireshark would produce irregular output when data was embedded in various fields
of the NTP payload, but overall it would accept bytes where they were embedded
and interpret them for what they were. For example data embedded at the very front
of the packet would cause the version of NTP being utilized to be interpreted as
reserved and would sometimes identify the mode as server when it was actually a
standard version-4 client query. None of this output, however, induced warnings from
Wireshark.

• Embedded data at or near the end of the payload was preferable as those bytes were
interpreted as extra field options available in theNTPpayload.During experimentation
these fieldswere the optional fields utilized for themessage authentication code. These
fields can be variable in their content, which made them ideal for embedding data
(Figure 4.12).

• NTP may be less conducive to data exfiltration overall because most if not all systems
implement NTP with fixed polling. This polling value is usually between 64 (default)
and 1024 seconds [50]. Therefore, system configuration changes for NTP would be
required on the host to increase the rate of polling to exfiltrate data efficiently.

VoIP Results Analysis
Table 4.10 presents the Phase One results for the VoIP application protocol which can be
categorized as a conversation incorporating multiple ports and transport protocols. This
table presents the average totals over all 13 test runs for bytes, packets, and time to the
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Figure 4.12. Wireshark View of Data Embedded Near the End of a NTP
Payload

completion of data exfiltration for both files at each embedded data size.

Table 4.10. VoIP Mean Test Results

constitution.txt
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 7.68 9.01 × 103 55.7
118 Bytes 6.14 × 10−1 732 5.43
236 bytes 2.68 × 10−1 340 3.15

Penguin.tif
Data Size Total Bytes (MB) Total Packets Total Time (s)
10 Bytes 80.6 9.23 × 104 532
125 Bytes 6.73 7.53 × 103 45.0
250 Bytes 4.00 4.21 × 103 25.4

Of all of the application protocols tested, VoIP displayed the most flexibility in terms of
byte position and embedded-byte sizes that could be utilized effectively for data exfiltration.
This was primarily due to the fact that it utilizes multiple transport protocols and ports to
continuously stream data between hosts. However, awareness of how the sockets are set up
by the application is required to properly configure the customization modules. In the case
of Linphone, four ports are utilized for streaming data, and corresponding ports are set up
to receive and send on the initiating and receiving hosts respectively (and vice versa). This
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limited the number of ports that could be utilized for exfiltration to two since the ports are
set up in pairs. From testing the following key observations were made;

• For the Linphone application, port 9078 was preferred since it was utilized for straight
UDP data transfer.

• Embedded data anywhere in the UDP payload did not induce any warnings from
Wireshark since it was interpreted as innocuous UDP data (Figure 4.13).

• It was preferable to embed data at positions that accounted for the smallest packet
size to avoid appending null bytes to the original payload and causing errors at the
receiving application. This limited the number of effective embedded-byte positions
to the size value of the smallest packet of the UDP stream, which in this case was 17.

• Embedding data only in payloads that would not exceed the 1500 MTU prevented
fragmented IP protocol errors and enhanced the effectiveness of the exfiltration by
avoiding fragmentation of the embedded data itself.

Figure 4.13. Wireshark View of Data Embedded in a VoIP Payload

Phase One Results Summary
The analysis of the exfiltration method utilizing these application protocols determined
that the more structured format of TCP protocols made it more difficult to embed data
within the payload than to embed data within UDP protocols. Regardless, for most of the
protocols it proved preferable to utilize a byte position at or near the end of the payload.
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This avoided altering the format or corrupting data fields with the embedded data, thereby
reducing detectable signatures. The exception to this was VoIP, which streams audio and
video data over UDP and thus has no structured format. This allowed data to be embedded
at any feasible position within the packet based on the total packet size.

As the data presented in Tables 4.4 through 4.10 indicate, the UDP protocols produced less
overhead than their TCP counterparts across all embedded-byte size variations. Among all
the protocols tested, NTP produced the least amount of overhead and HTTPS produced
the most. These results were largely expected given that TCP protocols, by design, require
more overhead to ensure the reliable transmission of data. The exception was HTTP, which
performed comparably to theUDP protocols in total bytes transmitted. This can be explained
by the fact that the simple Python web server utilized for experimentation sent responses
of no more than 21 bytes to the client. However, the additional overhead of establishing the
TCP connection and acknowledging the receipt of data, did manifest in the total number
of packets sent. This overhead was especially prominent with SMTP and HTTPS, both of
which utilize TLS in addition to TCP. The additional set of test runs performed for HTTP
using a 500 KB server response showed an increase in overhead relative to the size of the
server response. Additional overhead increases the total time of exfiltration due to the fact
that the client cannot initiate follow-on requests until all data from the in-progress request
has been sent by the server.

With the exception of NTP, the UDP protocols also predominantly outperformed their TCP
counterparts in total time to completion of data exfiltration. However, there were notable
exceptions where SMTP performed comparably to VoIP in terms of total time to completion
at larger embedded-byte sizes despite greater overhead. Among all protocols tested, DNS
produced the shortest time to completion and NTP produced the longest time to completion.
NTP’s poor performance despite having the least amount of overhead can possibly be
explained by the NTP protocol’s design, which implements an algorithm to calculate the
delay and offset of the message stream in order to transmit an accurate timestamp from the
server to the client [50].

Figures 4.14 and 4.15 provide consolidated relative comparisons of the performance of each
application protocol for exfiltrating both files at each embedded data size. Themeasurements
utilized for these comparisons are relative throughput and relative overhead as introduced in
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Section 3.3. As the plots indicate, the test results were largely unaffected by embedded-byte
size and total file size. This result implies that the process of customization has a minimal
effect on overhead or the total time of exfiltration regardless of how many customizations
are required to exfiltrate an entire file. Additionally, it shows that data exfiltration via socket
layer customization can be performed with any of the tested application protocols with
predictable results despite varying embedded-byte sizes and increasing file sizes. VoIP
was the lone exception in that it appeared to have increased throughput relative to the
other protocols at smaller embedded data sizes and a larger total file size. Conversely, it
displayed decreased relative throughput at higher embedded-byte sizes causing it to fall
behind both HTTP and SMTP. Based on these observations, VoIP displayed the potential
to have scalable and increasing relative throughput as file size increases and embedded-
data size decreases. However, more tests would need to be conducted at larger file sizes
to confirm this observation. A notable outlier in the results was one test involving NTP in
which the total time of exfiltration was approximately 13 seconds longer than the average
of the other 12 test runs. In this case the client had to resynchronize with the NTP server
before performing less time-consuming NTP queries. This reinforces the notion that while
performance may be predictable to a certain extent, this exfiltration method is still subject
to the design and performance of the application protocol itself, even under known or
controlled network conditions.

4.3.2 Phase Two Results
The results for Phase Two tests are summarized in Table 4.11. Across all test runs (26 for
each application protocol), there were only two instances where exfiltration was detected
and prevented by host-based access controls implemented in AppArmor. The first detection
occurred during the first run utilizing theHTTP protocol and resulted from the customization
module executing a system call to open and read one of the restricted files into a memory
buffer in preparation for exfiltration. The second detection occurred on the first run utilizing
the HTTPS protocol and resulted from the embedded data being placed within encrypted
application data.

In the first instance where exfiltration was detected, the version of the customization module
being utilized accesses the file to be exfiltrated after the module had been initialized and
registered for Layer 4.5 customization, and after it had identified a socket for customization.

64



(a) Relative Throughput at 10 Bytes (b) Relative Overhead at 10 Bytes

(c) Relative Throughput at 118 Bytes (d) Relative Overhead at 118 Bytes

(e) Relative Throughput at 236 Bytes (f) Relative Overhead at 236 Bytes

Figure 4.14. Relative Results of Exfiltration for constitution.txt 48.5 KB

This was preferred since the file would only need to be accessed and loaded into memory
when a socket connection was being customized. While customizing the socket, the module
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(a) Relative Throughput at 10 Bytes (b) Relative Overhead at 10 Bytes

(c) Relative Throughput at 125 Bytes (d) Relative Overhead at 125 Bytes

(e) Relative Throughput at 250 Bytes (f) Relative Overhead at 250 Bytes

Figure 4.15. Relative Results of Exfiltration for Penguin.tif 459 KB

executed its functions under the process ID of the application associated with the socket.
The access controls implemented by AppArmor would not allow this process to access
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Table 4.11. Phase Two: Host-Based Access Control Detections

Application Protocol Number of Detections
HTTP 1
HTTPS 1
SMTP 0
DNS 0
NTP 0
VoIP 0

the targeted file under normal circumstances. However, there was an expectation that the
filp_open function that was utilized to access the file for exfiltration would execute at the
kernel level under privilege zero and therefore bypass any implemented access controls.
This turned out not to be the case, as AppArmor identified the cURL application attempting
to access the file as the trace log depicted in Figure 4.16 depicts. This indicates that once
the module identified a socket for customization, it executed its send and receive functions
under the execution privilege of the application associated with the socket.

Figure 4.16. Trace Log of AppArmor Prevention of Exfiltration over HTTP

Another version of the customization module was developed to access the file during
initialization when the module was first loaded. This was a less preferred method since it
placed the file data in a memory buffer before a socket was even identified for customization;
however, it did allowmodule functions to execute with kernel-level privilege and thus bypass
AppArmor’s access protections. This version was also utilized with the SMTP protocol to
bypass the chroot configuration of the Postfix server to access the files during Phase One
testing. After identifying and resolving the cause of the detection, this approach was applied
to the remaining protocols and prevented AppArmor from detecting restricted file access
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for on any of the remaining test runs.

The cause of the second instance where exfiltration was detected was unclear. The cURL
process was killed, which is the standard response when AppArmor detects a policy vio-
lation; however, the kernel log did not reference AppArmor as the reason for terminating
the process. Instead, a message indicating that the process was tainted was produced (Fig-
ure 4.17), and the program was subsequently killed on the command line. This behavior
only occurred when AppArmor controls were implemented, so it is likely that they are
related. It could also be related to the module’s inability to handle the TLS buffers properly
during customization, which in combination with AppArmor controls might have produced
an error when the module attempted to access the TLS buffer to embed data. Remaining
HTTPS tests for this phase were conducted by embedding data only in the initialClient Hello
packet of the TLS handshake, and no further detections occurred. This provides evidence
in support of the hypothesis that the cause was linked to the module’s inability to properly
handle the TLS buffer structure.

Figure 4.17. Trace Log of Anomaly Detection Prevention of Exfiltration over
HTTPS

The results of Phase Two show that the advantage associated with the kernel-level privileges
of the customization module can be negated by host-based access control measures if the
module runs with privileges of the application once the socket has been identified for
customization. However, it also demonstrates the ability of socket layer customization
to bypass host-based access controls by executing functions associated with file access
outside of customization-specific functions (i.e., before the access can be associated with
a non-kernel-level application). In the end, these tests clearly demonstrated the inability of
host-based access controls to inhibit exfiltration over any of the tested protocols.

68



4.3.3 Phase Three Results
Tables 4.12 and 4.13 display the results for Phase Three tests. The initial exfiltration tests
against Snort’s baseline configuration produced 10 alerts out of 26 runs for exfiltration
attempts over HTTP. The HTTP alerts were triggered by a preprocessor rule that detected
irregular traffic with POST requests where ASCII formatted data from the constitution.txt
file was not embedded at the end of the payload. This is unsurprising given the results from
Phase One that identified the end of the payload as the best placement for embedded data
for exfiltration over HTTP. These alerts did not occur during testing over HTTP for any of
the exfiltrated data from the Penguin.tif file that was encoded, regardless of byte position.

No other alerts were generated by Snort’s baseline configuration and registered rule set for
any of the remaining application protocols. This can potentially be explained by observing
that Snort’s default configuration and rule set are designed to protect primarily against
external threats and therefore lack internal network rules. Detailed investigation of the rule
set revealed that Snort comes with rules that are designed to protect against some basic
internal threats but that they are primarily disabled by default.

Table 4.12. Phase Three: Snort IPS Baseline Configuration Detections

Application Protocol Detections Over 26 Test Runs
HTTP 10
HTTPS 0
SMTP 0
DNS 0
NTP 0
VoIP 0

When utilizing a customized rule set, Snort was able to detect and block data exfiltration
attempts of the constitution.txt file for every tested application protocol when the larger
embedded-byte sizes of 118 and 236 were used (Figure 4.18). This was because at these
byte sizes the content modifiers were always included within the embedded data. Snort was
unable to detect data exfiltration for test runs utilizing the 10 byte size, which was less than
the content bytes size specified in the custom rules. Snort does not have the ability to match
partial content of a byte sequence or string, so separate rules would be required to account
for smaller embedded-bytes sizes. The additional preprocessor rules that were enabled did
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Table 4.13. Phase Three Results: Snort IPS Customized Rule Set Detections
HTTP HTTPS

File Data Size Byte Position Detected File Data Size Byte Position Detected

constitution.txt

10 END FALSE

constitution.txt

10 END FALSE
118 45 TRUE 118 320 TRUE
236 32 TRUE 236 375 TRUE
10 END FALSE 10 310 FALSE
118 END TRUE 118 END TRUE
236 END TRUE 236 END TRUE

Penguin.tif

10 END FALSE

Penguin.tif

10 END FALSE
125 58 FALSE 125 376 FALSE
250 32 FALSE 250 450 FALSE
10 58 FALSE 10 376 FALSE
125 END FALSE 125 415 FALSE
250 END FALSE 250 320 FALSE
10 32 FALSE 10 450 FALSE

SMTP DNS
File Data Size Byte Position Detected File Data Size Byte Position Detected

constitution.txt

10 END FALSE

constitution.txt

10 END FALSE
118 5 TRUE 118 47 TRUE
236 END TRUE 236 50 TRUE
10 18 FALSE 10 49 FALSE
118 8 TRUE 118 END TRUE
236 13 TRUE 236 END TRUE

Penguin.tif

10 END FALSE

Penguin.tif

10 END FALSE
125 5 FALSE 125 END FALSE
250 11 FALSE 250 47 FALSE
10 6 FALSE 10 47 FALSE
125 END FALSE 125 49 FALSE
250 END FALSE 250 END FALSE
10 15 FALSE 10 49 FALSE

NTP VoIP
File Data Size Byte Position Detected File Data Size Byte Position Detected

constitution.txt

10 END FALSE

constitution.txt

10 END FALSE
118 12 TRUE 118 5 TRUE
236 35 TRUE 236 11 TRUE
10 35 FALSE 10 3 FALSE
118 END TRUE 118 6 TRUE
236 END TRUE 236 END TRUE

Penguin.tif

10 END FALSE

Penguin.tif

10 END FALSE
125 3 FALSE 125 3 FALSE
250 8 FALSE 250 13 FALSE
10 35 FALSE 10 5 FALSE
125 END FALSE 125 7 FALSE
250 END FALSE 250 15 FALSE
10 22 FALSE 10 7 FALSE

not result in detections for any of the tested application protocols. Despite the ineffectiveness
of default rules and preprocessor rules, consistent detection across applications as a result of
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the customized rule set indicates that obfuscated data exfiltration via socket layer protocol
customization can be defeated by robust content-filtering.

Figure 4.18. Detection and Prevention of Exfiltration over DNS by Cus-
tomized Snort Rules

Unexpectedly, Snort was unable to detect any data exfiltration attempts of the Penguin.tif
file. At first it was not initially clear why, since the content modifier rules accounted for
the fact that the file was being exfiltrated as encoded binary. A closer comparison of the
Snort content rule bytes with the embedded bytes, however, revealed that the byte positions
were equal but reversed. Further investigation revealed that the xxd program utilized to
encode the original file for exfiltration provided hexadecimal output in big-endian format
while hexdump, which was utilized to develop the Snort content-modifier rules, output the
file contents in little-endian format. Although unintentional, these results emphasize that
while in-line content filtering and signature detection can be effective tools against data
exfiltration, the advantage still lies with the malicious actor. The defender must account
for all of the ways in which an adversary might try to exfiltrate data while the malicious
actor simply has to find one way that is not addressed. This might be easily accomplished
through a custom encoding scheme designed for obfuscation that mimicks payloads of a
specific application protocol. Data exfiltration via socket layer customization can leverage
this advantage by providing flexibility to use arbitrary applications for exfiltration and to
modify where and how much data is embedded within an application payload. Beyond this
additional flexibility, however, the socket layer customization modules in their current form
present no inherent ability to bypass network-based security controls.

4.3.4 Phase Four Results
Thesis timeline constraints prevented meaningful Phase Four test results from being ob-
tained. Implementation of Squid as a transparent, inline proxy server capable of receiving,
inspecting, and forwarding traffic on all ports proved difficult. Typically, when Squid is
deployed inline for content filtering, it is utilized as a transparent proxy for web-based
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traffic only. The desired configuration for this thesis was to deploy Squid for this purpose to
perform signature-based detection via ClamAV on all web traffic while forwarding all other
traffic. Unfortunately, there were issues configurating Squid to effectively segregate some
trafficwhile simply forwarding other traffic. Additionally, the value of performing these tests
decreased as a result of the issues associated with customization modules for TLS since the
goal was to evaluate the data exfiltration against a proxy server that decrypts and inspects
HTTPS traffic. The alternative was to forgo the use of Squid to segregate traffic of interest
and to simply inspect all traffic against the custom ClamAV signatures. Unfortunately, a
compatible data acquisition library or generic solution utilizing open-source resources for
packet capture and retransmission could not be identified and tested in a timely manner.
Nevertheless, this phase of testing still has the potential to provide meaningful results in
evaluating this method of data exfiltration in future work once the issues regarding TLS
implementation with the customization modules are resolved.

4.4 Summary
In this chapter, the experimental configurations and settings for each phase of testing
were discussed in detail. More specifically, the various virtual machine configurations,
customizationmodule, and application configurationswere presented to clarifywhat settings
were implemented to test each individual application protocol with the exfiltration method
for each phase of testing. The network environments were presented and discussed as well
in order to clarify how data was transmitted from the Staging Host to the Exfiltration Server
during each testing phase. Additionally, the number of test runs conducted and significant
settings for each phase were presented in order to frame the scope of the results. The chapter
then discussed the logical flow of experimentation from loading of the customizationmodule
to successful exfiltration of a file.

Finally, the results were presented for each phase of testing. Phase One testing showed
that exfiltration via socket layer protocol customization could be applied successfully to
any application protocol. The UDP-based application protocols with less overhead and less
structured format provedmore conducive to this method of exfiltration in general when com-
pared to the TCP-based protocols. Phase Two results showed that the exfiltration method
could successfully bypass basic host-based access controls regardless of application pro-
tocol. Phase Three results revealed that the exfiltration method is susceptible to network
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based controls implementing robust content-filtering; however, it was surmised that sim-
ple encoding or encryption techniques could be utilized to bypass these controls. Phase
Four experiments were not conducted due to time-constraints and issues associated with
integrating the customization modules with applications implementing TLS.

Chapter 5 will present the broad conclusions of this work, discuss potential mitigations
targeting this form of data exfiltration, and make recommendations concerning future work
in this area.
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CHAPTER 5:
Conclusion

This thesis investigated the viability of applying recent research associated with socket layer
protocol customization to improve upon traditional methods of obfuscated data exfiltration.
A simple experimental networkwas used to simulate data exfiltration between a host residing
on an internal proprietary network and an external server. Various security controls were
implemented in separate phases of testing to evaluate the effectiveness of the exfiltration
method. In this chapter we present the overall conclusions of the research, discuss limitations
of the exfiltration modules that were identified during testing, recommend mitigations that
might address the exfiltration vulnerability, and suggest future work to build upon the results
of this thesis.

5.1 Research Conclusions
The primary conclusions drawn from this research are listed below. Each numbered con-
clusion addresses the correlating numbered research question presented in Chapter One.

1. The results from Phase One showed that application protocols utilizing UDP are
more conducive to obfuscation of embedded data when used in concert with socket-
layer protocol customization than TCP protocols. Predominantly, UDP protocols
were shown to require less overhead and had less structured formats than their TCP
counterparts and therefore allowed for more variation in byte position and byte size
for the embedded data. The VoIP protocol in particular stood out for its flexible format
and the ease with which various sizes of data could be embedded within application
payloads streamed as UDP data over multiple ports. DNS also allowed for a highly
variable data to be appended at the end of its payload without inducing warnings
from tools such as Wireshark. NTP also did not induce warnings when its data was
supplanted by embedded data, and its protocol incorporates options at the end of its
payload for a message authentication code that often goes unused. In contrast, the
TCP protocols such as HTTP have very specific formats for the different types of
requests initiated by the client, which limited the placement of exfiltrated data bytes
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to the end of the payload. SMTP and HTTPS both implement TLS, which increases
the number of available packet types available for customization in a single TCP
transaction, but limits the ability to embed and extract data because of nature of the
TLS buffers. Based on results of all phases of experimentation, the VoIP protocol
displayed the most potential to be utilized effectively with this exfiltration method
and should therefore be a focus for future research.

2. Results from Phase Two demonstrated that the customization modules can execute
functions with kernel-level privilege during initialization and before customization.
Kernel-level privilege enabled them to bypass basic host-based discretionary access
control andmandatory access control policies that might be implemented on restricted
files targeted for exfiltration. Additionally, the results showed that functions within
the module that are executed once a socket was identified for customization did not
maintain their kernel-level privilege and instead were executed under the privilege
of the associated application. This added a layer of obfuscation to the customization
module’s execution during exfiltration, but also prevented modules from executing
privileged functions to access restricted files during customization. The conclusion
drawn from this observation is that the placement of functions that must access
restricted files requires careful consideration to bypass basic host-based controls.

3. Much like traditional methods of obfuscated data exfiltration, the method tested in this
work was susceptible to detection by network-based security controls that implement
robust content-filtering, particularly if an organization develops a content matching
scheme that can identify restricted files based on a relatively small number of bytes.
It was concluded, however, that the customization modules might be developed to
embed a byte size that is too small to detect or in an application payload location
that would be undetectable by a content-filtering solution. This would likely prove
difficult since it would require in-depth knowledge of the controls that are in place for
the proprietary network.

4. Finally, the results across all experimentation phases showed that data exfiltration
via socket layer protocol customization is a viable method that potentially improves
upon traditional methods of obfuscated exfiltration. This method is protocol-agnostic
and offers enough flexibility to tailor configurations for a wide variety scenarios.
A customization module can be configured for a very specific socket connection
to target a particular application, for instance, or it can be configured with more
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generic options to target ports or IP addresses of interest more broadly. This gives
a malicious actor a variety of options to establish covert channels for exfiltration.
The modules also do not establish the sockets themselves; they merely customize the
data that is being transferred over application sockets. Therefore, data is exfiltrated
over legitimately established socket connections that are more likely to be treated
permissively by network security measures. The customization modules also allow
for data of any size to be embedded anywhere within a packet making it easy to adapt
it to the formats of certain types of application-specific traffic.

5.1.1 Limitations
The customization modules that enable the socket layer protocol customization for this
exfiltration method are not without limitations in their current form. The primary limitations
that were identified through research and experimentation conducted for this thesis are as
follows:

1. As previously discussed, the customization modules are unable to properly account
for the buffer structures and record layer implemented by TLS when embedding and
extracting data. Since most network traffic these days is encrypted, this represents a
significant limitation for utilizing this exfiltration method with TCP-based application
protocols in real-world network environments.

2. The customizationmodules do not yet have the ability to verify the receipt of exfiltrated
data. If UDP packets are lost or corrupted for instance, the sending module would not
know to resend them or abstain from further customization. Similarly for TCP-based
transmissions, different applications can access the TCP buffer in unexpected ways
resulting in the modules performing customization improperly. This might lead to
errors affecting the legitimate transmission of data between the sending and receiving
hosts.

3. The customization modules do not have inherent functions implemented to encode or
encrypt data. In their current form all encoding or encrypting has to be done prior to
the module accessing the file for exfiltration.
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5.1.2 Mitigation Recommendations
Fortunately, even though this work demonstrates that this method of exfiltration can be
effective, it does require loading a kernel-level module, which normally requires root-level
access. In this sense the customization module is similar to a traditional rootkit [84]. There
are known methods to prevent and detect rootkits, but within the scope of this thesis there
are a few specific mitigations that might prevent or detect this particular method from
exfiltrating data if a module does somehow get installed on a host system.

1. One possiblemitigationwould be to provide priority alerts if unregistered or restricted
kernel-level modules are loaded onto system. These alerts are already generated
locally on the system, but it would be ideal to have it sent to a remote server in case
an intruder was able to erase or modify the local logs. Host-based controls could
be implemented to disconnect the machine from the network since this type of alert
would indicate a root-level intrusion.

2. Another possible mitigation for this particular method of exfiltration would be to
generate alerts for restricted files that are accessed with root- or higher-level access.
This sort of access would be highly unusual in a network where only internal user
accounts typically access these files and would therefore be highly indicative of
malicious activity.

3. Based on results from Phase Three tests, robust content filtering rules for specific
files could be employed to detect restricted file content embedded within application
payloads. Phase Four testing was not completed, but appending byte signatures to
restricted files that can be detected by antivirus or other host-based controls might
potentially provide additional detection capability [6], [87].

Notwithstanding the potential effectiveness of these mitigations, the vulnerability that is
taken advantage of by this technique is more fundamental. Specifically, there is no mecha-
nism to ensure the integrity of data across network stack layers. Ideally, a way to ensure the
integrity of the application payload data as it transits the TCP/IP stack, specifically when
it transitions from layer 5 to layer 4 (where the customization module is currently able to
embed data without detection) would provide a more thorough mitigation. TLS tries to
accomplish this through its record layer and strict buffer structures; however, those can still
be manipulated by the customization module and do not account for applications that do not
utilize TLS. This type of capability would fundamentally change the design of TCP/IP and
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might impose unacceptable overhead requirements. A more realistic solution might involve
cross-layer monitoring that generates alerts when actions that manipulate application pay-
load buffers are taken. In addition, future research could be conducted to identify possible
mitigation techniques at layer 4.5.

5.2 Future Work
This thesis showed that socket layer protocol customization can enhance the effectiveness
of traditional methods of data exfiltration. Associated future work should include further
evaluation of the effectiveness of this exfiltration method as well as exploration of additional
uses of socket layer protocol customization to provide further capabilities. A suggested list
of specific potential future research topics follows.

• Develop and evaluate customization modules capable of integrating with application
protocols that implement TLS. The TLS record layer and buffer structures represent
unique obstacles to data exfiltration using socket layer protocol customization. Efforts
should be made to understand how TLS allocates memory for buffer structures and
how it initializes values for its record layer to determine how these values can be
effectively manipulated.

• Develop customization modules that make use of the customization send and receive
functions on both the Staging Host and the Exfiltration server. Modules that make use
of both these functions simultaneously could potentially establish a command and
control channel capable for near-real-time parameter modification during exfiltration
of a target file. These functions might also be used to facilitate the confirmation of
the receipt of exfiltrated data between the sending and receiving hosts to make them
less vulnerable to dropped or corrupted data.

• Implement symmetric or hybrid encryption within the customization modules to fur-
ther enhance the exfiltration method. This could potentially allow the modules to
more effectively bypass network-based controls utilizing content-filtering and signa-
ture detection.

• Perform experimentation of the exfiltration method over the Internet using real-world
infrastructure to assess performance and effectiveness. This will allow determination
of whether or not the method is still viable across all application protocols in a more
dynamic and realistic network environment.
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• Test the exfiltration method from different host roles and perspectives. This could
include exfiltration from a proprietary server to a client or the use of customization
at an en route network node to extract the data before it reaches its final destination.

A final recommendation for future work would involve researching ways to detect or prevent
this exfiltration method by utilizing socket protocol customization as the inhibitor instead
of the enabler. This might involve intercepting application data as it leaves layer five,
calculating a hash digest, and then verifying it before it transitions to layer four. The
flexibility and capability inherent in socket layer protocol customization makes it a prime
candidate for future research and development.

5.3 Summary
In summary, socket layer protocol customization shows the ability to enhance traditional
methods of obfuscated data exfiltration through its ability to leverage unrestricted kernel-
level access to manipulate data as it transitions from the application layer to the transport
layer. The method is also flexible enough with regards to identifying sockets that it can
potentially be utilized with any application protocol. The results of this research show
that this method can be successfully utilized to bypass some basic host- and network-
based security controls to consistently and successfully embed restricted file data into
legitimate application payloads for transmission to an external host. Some basic mitigation
recommendations are made based on the experimentation results to prevent or at least detect
this method of exfiltration. In addition, the customization loader and modules do display
some limitations in their current forms. These limitations were discussed in the context
of suggestions for future research to further understand the capabilities of this exfiltration
method.
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APPENDIX:

A.1 Network Configurations and Source Code
The configuration files and source code for the various virtual hosts, applications, programs,
and bash shell scripts utilized for experimentation in this thesis can be found consolidated on
NPS GitLab at the following link: https://gitlab.nps.edu/eric.bergen/data-exfiltration-layer-
4-5. This includes the source code and files for the Layer 4.5 architecture and the various
versions of the customization modules for each application protocol.

A.2 Script Descriptions
Several bash and Python scripts were created to provide a level of automation for configuring
the modules between test runs and executing the individual tests. Scripts were also created
to gather and reassemble the exfiltrated data on the receive side for evaluation. These
scripts helped to streamline the execution of tests for each application to help prevent any
configuration errors between runs.

A.2.1 Bash Shell Scripts
• in_rm_mod.sh:Load or unload a customizationmodule for quick transitions between
test rounds and individual test runs. This script is very useful during test runs against
security controls where the module must be loaded and unloaded between runs to
load the file to be exfiltrated into memory. This script can be easily chained with the
configuration bash scripts below for easy transitions during these test runs.

• host_config.sh: Configures the customization module for the client-side host and
prepares file for exfiltration. The script allows for the specification of the file to be
exfiltrated and the choice to encode it using xxd or leave it as is. Directs user input
for the customization module’s configurable parameters. The script also indicates
whether the file will need to be segmented and performs user-directed segmentation
to perform exfiltration if the file is over 1.0 MB. The script will also start a tcpdump
instance to capture traffic on the module’s configured destination port.

81

https://gitlab.nps.edu/eric.bergen/data-exfiltration-layer-4-5
https://gitlab.nps.edu/eric.bergen/data-exfiltration-layer-4-5


• server_config.sh: Configures the customization module for the server-side host. The
script directs user input for the customization module’s configurable parameters. The
script will also start a tcpdump instance to capture traffic on the module’s configured
destination port.

• clear_trace.sh: Clears the kernel trace log after exfiltrated data has been copied from
the log file.

• text_reassemble.sh: Reassembles exfiltrated data from text files into original format.

• tif_reassemble.sh: Reassembles exfiltrated data from TIFF files into original format.

• jpg_reassemble.sh:Reassemble exfiltrated data from JPEG files into original format.

A.2.2 Python Scripts
• text_gather_data.py: Parses the kernel trace log for exfiltrated data and writes it
to a designated file. The script then calls text_reassemble.sh and clear_trace.sh as
sub-processes.

• tif_gather_data.py: Parses the kernel trace log for exfiltrated data and writes it to
a designated file. The script then calls tif_reassemble.sh and clear_trace.sh as sub-
processes.

• jpg_gather_data.py: Parses the kernel trace log for exfiltrated data and writes it
to a designated file. The script then calls jpg_reassemble.sh and clear_trace.sh as
sub-processes.
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