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Model Integration and Modeling Languages:
A Process Perspective

Jeffrey E. Kottemann School of Business Administration
The University of Michigan
Ann Arbor, Michigan 48109-1234
Daniel R. Dolk Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943

Development of large-scale models often involves—or, certainly could bene-
fit from—Ilinking existing models. This process is termed model integration
and involves two related aspects: (1) the coupling of model representations,
and (2) the coupling of the processes for evaluating, or executing, instances of
these representations. Given this distinction, we overview model integration
capabilities in existing executable modeling languages, discuss current theo-
retical approaches to model integration, and identify the limiting assump-
tions implicitly made in both cases. In particular, current approaches assume
away issues of dynamic variable correspondence and synchronization in com-
posite model execution. We then propose a process-oriented conceptualiza-
tion and associated constructs that overcome these limiting assumptions. The
constructs allow model components to be used as building blocks for more
elaborate composite models in ways unforeseen when the components were
originally developed. While we do not prove the sufficiency of the constructs
over the set of all model types and integration configurations, we present
several examples of model integration from various domains to demonstrate
the utility of the approach.

Model Model i Mod Modeling |

1. Introduction

fundamental assumption underlying model management is that models are
harable resources. A model management system (MMS) facilitates sharing by
supporting a uniform representation for, and manipulation of, models. One result of
increased model sharing is that models may eventually be used for purposes not
originally envisioned by their creators. Specifically, models may be co-opted as build-
ing blocks in the creation of larger, more complex models. This process is known as

model integration.
Model integration involves the construction of a composite model built from two
or more existing model components. For example, a national energy model may be
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built by combining a number of regional energy forecasting models on the demand
side with an overall transportation model for energy allocation on the supply side,
and then imposing the appropriate equilibrium conditions. Model integration has
long been a desirable goal but one hampered by incompatible representations im-
posed by different software systems. An MMS based on a single model representation
scheme significantly enhances opportunities for successful model integration, but
major problems must still be confronted.

(1) At the logical level, integrating model schemas from different domains raises
issues of semantics and dimensionality when trying to identify common elements
among two or more models. For example, financial and marketing models may
represent revenues as net present $ and regular $, respectively. Failure to recognize
this difference will lead to improper coupling of the two models.

(2) Atthe manipulation level, specifying procedures to evaluate and solve compos-
ite models becomes a nontrivial task. For example, if one joins an integer program-
ming model with a nonlinear programming model, what solution procedure(s)
should be used? Does one retain the nonlinear algorithm or devise an entirely new
procedure using other algorithms?

Our objective in this paper is to define in a broad sense the characteristics of an
executable modeling language (EML) necessary to support model integration, with
particular emphasis on the manipulation level. Both the logical and, in particular, the
manipulation dimensions of model integration have implications for EMLs which
have been largely overlooked in the literature. In §2 we briefly survey existing EMLs
to show that current EMLs are either largely representation-oriented with few capabil-
ities for model manipulation as in the case of optimization, or essentially program-
ming languages as in the case of discrete event simulation. In §3 we identify a set of
key assumptions which have been (implicitly) made in the model management litera-
ture regarding model integration. In following sections we show how relaxing these
assumptions leads to various process-oriented constructs needed to coordinate exe-
cution of composite models. Our conceptualization draws on formalisms in commu-
nicating sequential processes (CSP) (Hoare 1985) and discrete event simulation
(DES) (Zeigler 1984).

2. Executable Modeling Languages

Modeling languages come in many different forms which differ according to the
domain of applications they serve. In the optimization world, for example, languages
are largely representation-oriented. At the other end of the spectrum, languages for
DES applications are essentially procedural programming languages (i.e., manipula-
tion-oriented). The wide range of modeling languages which exist across different
domains presents unique problems with regard to model integration as the example
below demonstrates.

Consider a firm which has developed the following models as shown in Figure 2-1
(this example has been adapted from (Blanning 1986). After the model user posits an
initial price, the following model components are evaluated:

(1) given the currently posited price, an econometric marketing model forecasts
demand for a product for the next fiscal year,

(2) adiscrete event simulation production model estimates the required time and
expense to manufacture enough of the product to meet demand,

(3) a transportation model determines the minimal cost of distributing the prod-
uct to customers,
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FIGURE 2-1. An Integrated Model Example (Adapted from Blanning 1986).

(4) a pricing model calculates a price for a product given demand, and production
and distribution expenses,

(5) the newly calculated price and the last posited price are checked for conver-
gence. If suitable convergence is not attained the above series of evaluations is per-
formed again, where the posited price now takes on the value of the newly calculated
price,

(6) if suitable convergence is attained, a financial model determines the revenues
and net income from sales of the product.

Several aspects of this scenario merit attention. Note from Figure 2-1 that the
models are conceptually interconnected in the sense that their outputs could serve as
inputs to succeeding models. However, the exact nature of the interconnection is
dependent on the outcomes of evaluating model component #5. Further, it is likely
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that each model was developed as a stand-alone tool in a separate software environ-
ment using different EMLs. For example, the marketing model may have been devel-
oped in SAS, the production model in Simscript, the transportation and pricing
models in GAMS, and the financial model in a spreadsheet. These separate software
environments with their unique EMLs effectively isolate models from one another
and artificially restrict their utility. For example, the ability to perform sensitivity
analyses across models is extremely difficult, if not impossible. Suppose management
asks the question, ‘“What effect will replacing two machines in the production process
have on net income?”, or alternatively, “What will happen to revenues if demand for
our product softens as a result of decreased spending by the Department of Defense?”
A response to these “what if”” queries requires linking and running several or all of the
above models. Given that four different EMLs are involved, this represents a formida-
ble programming challenge which may be prohibitively expensive.

A proliferation of EMLs is an effective deterrent to realizing model integration. A
Model Management System (MMS), or integrated modeling environment, would
overcome this problem by supplying a single EML powerful enough to represent a
wide class of models and provide a flexible array of manipulation operations. With the
above example in mind, we briefly examine EMLs in the optimization and DES
domains, compare their functionality with respect to representation and manipula-
tion, and indicate, in a preliminary fashion, their capabilities for model integration.
We limit our attention in this section to optimization and DES EMLs because they
represent extremes in the mix of representation and manipulation capabilities which
current modeling languages offer.

2.1. EMLs for Mathematical Programming

The history of programming languages has evolved from a computation-directed
focus with emphasis on programming style (e.g., structured programming) towards a
conceptual modeling approach with emphasis on representation in the form of ab-
stract data types. The evolution of EMLs for mathematical programming applica-
tions faithfully mirrors this trend towards representation. Fourer (1983) traces the
development of EMLs for linear programming from algorithms and data representa-
tions embedded in a host language such as Fortran, through matrix generators, and
eventually into symbolic algebraic languages such as GAMS (Brooke et al. 1988),
AMPL (Fourer et al. 1990), and SML (Geoffrion 1987, 1990).

Algebraic languages are largely representational in nature, that is, they are con-
cerned with describing a model but not with evaluating or solving it. Manipulation is
done by constructing the proper interface with external routines which perform the
required operations. These EMLs have elaborate syntax for problem description but
rudimentary capabilities for manipulation. In general, the manipulation aspect of
these languages does little more than to specify which solution algorithm to apply to
model representations. Further, most systems have very restricted or nonexistent
features for model integration. GAMS is an exception in that it does provide rudimen-
tary integration capabilities as part of its modeling language. In particular, GAMS
allows the model builder to define a sequence of models, and their appropriate
solvers, to be executed in series. GAMS provides a preliminary indication of what’s
required to perform model integration, namely a language which is a level removed
from the details of any single model and which therefore can manipulate models as
configurable components. As we show in later sections, however, the requirements
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for a language which fully realizes model integration are more extensive than what
GAMS, or any EML we’re aware of, supports. Moreover, an EML for model integra-
tion should facilitate integration involving models from different paradigms such as
mathematical programming and DES.

2.2. EMLs for Discrete Event Simulation

EMLs in the discrete event simulation (DES) world are full-fledged programming
languages such as Simscript (SIMSCRIPT 1983) and SLAM (Pritsker and Pegden
1979), with elaborate representation and manipulation capabilities. These languages
differ from conventional programming languages in that they are oriented towards
modeling dynamic, stochastic phenomena. In this environment events or processes
are activated during program execution according to a schedule which depends on an
underlying system clock. As a result, program flow does not occur serially as in
conventional third generation programming languages such as Fortran or Pascal, but
rather as independent processes which are triggered by some external condition(s).

The separation between model definition and manipulation in DES languages is
very indistinct. We cannot neatly define a boundary between the representation and
the solution algorithm as in the case of optimization models. The relationship be-
tween solvers and models is one-to-many in the mathematical programming world
whereas it is closer to one-to-one in DES applications. A simplex algorithm, for
example, can be used to solve a virtually unlimited number of different linear pro-
gramming model instances, each with a closed and complete mathematical descrip-
tion. Simulation models, on the other hand, are formulated to solve one particular
problem, and are not especially portable to other applications. This shortcoming of
existing DES languages has led DES researchers to explore alternatives for strength-
ening the separation between DES model definition and manipulation (see, e.g.,
Zeigler 1984, and the collections of papers in Widman et al. 1989, and Oren et
al. 1984).

3. Dimensions of Model Integration

In this section we propose a useful way to classify the dimensions of, and ap-
proaches to, model integration. A model component consists of a model schema (in
the spirit of structured modeling (Geoffrion 1987)) plus a set of one or more processes
that evaluate the composite model. There are two critical aspects that must be de-
fined when specifying how components are to be integrated to form a compos-
ite model:

(1) Variable Correspondence: the input/output relationship between model com-
ponent variables specifying which outputs from one model component serve as in-
puts to other model components;

(2) Synchronization: the order in which model components must be manipulated,
or executed, and the timing of dynamic interaction of model components.

Take, for example, a composite model where econometric forecasting models (M,
and M,) are used to generate projections for the demand and supply of an energy
commodity, and these projections are then used as input to a linear programming
model (M;) to determine distribution of the commodity (Figure 3-1). In this simple
case, models M, and M, execute to termination (perhaps in parallel), then the de-
mand and supply variables are transmitted, and M, begins execution. The composite
model consists of a partial ordering of model components which forms a simple,
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FIGURE 3-1. Example of Model Integration (Adapted from Shapiro 1978).

well-behaved precedence relationship. Thus synchronization is trivial in this
example.

Now consider an extension to the model which introduces equilibrium conditions
(e.g., Shapiro 1978). In this case, M; feeds back into M, and M, and iterations of this
cycle are required in order to satisfy equilibrium conditions. This requires a more
elaborate ordering of processes (specifically an iteration operator) to solve the com-
posite model, although synchronization is still relatively simple.

Nontrivial synchronization would be required if all three model components had
to run in parallel and communicate with one another during their execution. Thus,
components M, and M, might run part of their processes (one internal iteration, e.g.),
then output variables to M;, which would run all or part of its process, return output
to M, and/or M, for another internal iteration, and so on until convergence. This is
clearly more tightly coupled than the previous scenario.

The above series of examples illustrates a continuum of model integration which
we label with the terms consolidation, pipelining, and splicing. As discussed below,
this proposed continuum is based upon the complexity and dynamism of variable
correspondence and synchronization involved in specifying an evaluation process for
a composite model.

Consolidation is the simplest case, indeed a trivial case in terms of process specifica-
tion. In consolidation, multiple model representations are “joined” and their evalua-
tion is performed by a single process. For example, two regional network models can
be combined into an overall national network model, and the resulting composite
model can be evaluated using a single network model evaluation process. (See Geof-
frion 1989a, b and Bradley and Clemence 1988 for other examples of consolidation.)
Because evaluation is performed by a single process, variable correspondence is static
and determined prior to model execution and interprocess synchronization is not
an issue.

Pipelining involves models that are separate, communicating processes, but
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synchronization can be defined by a predefined and static partial ordering. Pipelining
is based on the following synchronization assumption:

Composite models form a directed, acyclic graph that defines a partial ordering,
such that model M; may run to termination before M; is activated for all i < j given by
the partial ordering.

Variable correspondence is assumed to be static and bound by the definition of the
partial ordering. Similarly, synchronization is simple and static because the ordering
of execution is, by definition, not affected by the run-time behavior of model compo-
nents. The only synchronization consideration is to insure that processes execute as
predefined by the partial ordering and that processes wait until they are provided
input data.

Consolidation and pipelining are the dominant views of model integration taken in
the model management literature (e.g., Blanning 1985, 1986; Miller and Katz 1986;
Muhanna and Pick 1988; Sagie 1986; Sprague 1980, Liang 1986; Roy et al. 1986).
However, it is important to realize that these constitute two quite different ap-
proaches to model integration. Consolidation is effectively the logical integration of
homogeneous models, where by “homogeneous” we mean models which have the
same solver. This entails primarily the integration of model schemas as detailed in
Geoffrion (1989) but little, if any, process integration. Pipelining, on the other hand,
is relevant to the multi-paradigmatic situation, where the models and their associated
solvers are heterogeneous. In this case, we are primarily interested in process, or
solver, integration. The complexities inherent in process integration have been
largely overlooked in the literature, or else simplified to the point where the problems
of dynamic variable correspondence and synchronization are assumed away.

The basic variable correspondence and synchronization assumptions which charac-
terize current model management research oversimplify the problem of model inte-
gration in many practical situations. Many situations require definition of more
complex and dynamic variable correspondences and synchronization protocols than
the above perspectives afford (see, e.g., Shapiro 1978, Dolk and Kridel in press).
Specifically, the following limiting assumptions are implied by the above basic per-
spectives:

Al. Variable correspondences are static, i.e., they are bound prior to, and do not
change during, the execution of the composite model.

A2. Run-time behavior does not affect synchronization. Further, components are
executed unconditionally, and there are no interleaved execution patterns due to
cycles.

A3. Only those components’ variables defined a priori as output variables can be
referenced, and then, only when the component normally makes them available.

Al, 2, and 3 essentially serve to assume away the dynamic dimension of model
integration. Although this may be warranted in many cases, even the “simple” pro-
cess of calculating batch means violates Al. As shown in the following sections,
model evaluation strategies may dictate a Splicing of two or more independent model
evaluation processes that violates any or all of these assumptions, even in situations
where the model components considered in isolation are relatively static. In such
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situations, variable correspondence and synchronization may both be dynamic in
nature. Further, relaxing assumption A3 (discussed in §5) makes it possible to use
existing model components in unforeseen ways, thereby dramatically improving the
potential reusability of model components.

4. Composite Models as Communicating Processes—Relaxing
Assumptions Al and A2

Recalling from the previous section, current approaches to model integration
make the assumption that variable correspondences are static (A1) and that run-time
behavior does not affect synchronization (A2). While these are sometimes valid as-
sumptions, the model integration example given in Figure 2-1 violates both. First, the
run-time results of the model component that tests for convergence dynamically
affect variable correspondences. Second, components are not evaluated, or executed,
unconditionally and there are (sub)cycles in the execution pattern. In this section, we
describe MMS formalisms and process-oriented constructs that permit relaxation of
the above two assumptions. Following that, the constructs are illustrated using the
example of Figure 2-1.

One relatively straightforward way to accommodate dynamic variable correspon-
dence and synchronization is to, first, consider model components in the model base
as processes that communicate by sending and receiving messages, and, second, to
recognize that the messages sent and received can be either data or control/status
variable values. By doing the first, variable correspondences can be rerouted by an
overlying, executive process; by doing the second, the executional state, or dynamic
behavior, of the model components can be monitored and controlled.

For the sake of parsimony, all model components in the model base are assumed to
be functionally equivalent to the following canonical form:

Init: procedure(s) performed when the component is invoked.
Wait for Start message.
Body: the main task that the model component performs.
Fini: procedure(s) performed when the component finishes on its
own or when it is sent a Finish message.

For example, a model component that calculates the mean of a series of data points
would receive messages in the Body and send messages (results) in the Fini.

Init: count := 0; sum := 0Q; {Wait for Start signal}
Body: Receive Data; sum ++ Data; count ++1;
Fini: Send sum/count

By sending control/status messages, model components communicate their behav-
ior via state transition messages; by receiving control/status messages, model compo-
nents allow their behavior to be manipulated dynamically. A complementary form of
the former is to consider that each component maintains an encapsulated ser of
status variable values, SV, which can be referenced to determine the current opera-
tional state of the component. This permits checking the state of a model component
(rather than being notified of a state transition via an explicit message from a compo-
nent). For example, the statement If Finish in mean.sv, tests whether the component
model, Mean, has completed execution, and Send mean.Finish, will cause the mean
components to execute its Fini procedure.

8 Information Systems Research 3 : 1
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Given the above canonical form for model components, a model developer can
enlist some number of model components from a model base and specify their model
integration scheme (MI schema). The MI schema needs to define dynamic proce-
dural interactions between the model components. Therefore, the MI schema is itself
a procedure—termed the Model Integration Control Procedure, or the MICP.! All
messages to and from model components pass through the MICP. Thus the MICP
serves as a message router. Also, since the MICP can examine messages it receives
and since model components wait, or suspend execution, when they reach a Receive
statement, the MICP can act as a message filter and can control the interleaving of the
active stages of model components. For a simple example, take a MICP designed to
calculate batch means. To do so it must couple a data producing component, Sam-
ple, to multiple instantiations of a mean calculation component, Mean:

Start Sample
Do While Sample not in state Finish (i.e., Finish Not in Sample.SV)
Start Mean
Do batch
Receive Sample.Point; Send Mean.Data.Point;
Doend batch
Send Mean.Finish; Receive Mean.Result
Doend

This simple example of calculating batch means illustrates the benefits of viewing
model integration in terms of (1) model components that are communicating pro-
cesses which send and receive messages, (2) the distinguished role that status/control
variables play when variable correspondence and synchronization are dynamic in
nature, and (3) the value of structured programming constructs. Next we demon-
strate these constructs using an example adopted from Blanning (1986).

The integrated model of Figure 2-1, when viewed as processes that interact via a
MICP, is:

Get PositPrice;
Repeat Until DONE
Send Forecasting.PositPrice; Receive Forecasting.Demand;
Send Production.Demand; Receive Production.PCost;
Send Transportation.Demand; Receive Transportation. TCost;
Send Pricing.(Demand,PCost, TCost); Receive Pricing.Price;
Send TestConverg.(PositPrice,Price);
If Fail in TestConverg.SV
PositPrice := (PositPrice + Price)/2
Else Send Financial.(Price,Demand,PCost, TCost);
Receive Financial.(Revenues,Net Income);
DONE

Along with the batch mean calculation example given earlier, Blanning’s (1986)
example suggests that many common model integration situations involve the

! The degree to which such procedures can be detected automatically is briefly addressed in the discus-
sion section.
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dynamic splicing of model components, and that the current assumptions underlying
pipelining approaches are invalid in such situations. One way to overcome these
assumptions is to view model components as processes that communicate data and
status indicators under the supervision of a MICP. The MICP in such situations must
dynamically control the interleaved pattern of model component activation. The
examples also demonstrate that it is useful to make the basic constructs of structured
programming—sequence, selection, and iteration—available to MICPs in order to
support the specification of dynamic model integration schemas (also see Bonczek et
al. 1986).

5. Dynamic, Unanticipated Interaction—Relaxing Assumption A3

Thus far, the MICP is only able to examine SV values and those variables explicitly
sent as messages from model components. Further, the MICP’s control of composite
models’ active phases has been based on the predefined behavior of the model compo-
nents themselves. That is, the following assumption has yet to be relaxed:

A3. Only those components’ variables defined a priori as output variables can be
referenced, and then, only when the component normally makes them available.

As shown in this section, providing a MICP mechanism that relaxes assumption
A3 both increases the variety of model component types that can be accommodated
by a MMS and improves the potential for reusability of model components.

Relaxing assumption A3 introduces two MMS requirements. First, the MICP
must be able to reference all a model component’s variables—including those not
normally sent as messages. Second, the MICP must have a mechanism to dictate
when it wishes to examine a component’s variables—other than those times prede-
fined in the component. The latter, in particular, necessitates use of demons. A
demon is a process that activates when certain conditions arise. Examples of three
forms of demons useful in the context of multi-paradigmatic model integration—
that is, where models from different modeling paradigms such as math programming
and simulation are involved—are given below. Following discussion of these forms,
we present an example which shows the advantages of demons in multi-paradigmatic
model integration.

(1) When ANY CHANGE in M.V

Say the MICP is to calculate mean number in queue in a simulation component A/
and that queue statistics are not predefined as messages sent by M. A demon can be
used to extract the appropriate queue data from M at the appropriate times as fol-
lows. First, the demon would be specified with the precondition When Any Change in
M .number-in-queue. This precondition means that the demon will be activated when-
ever there is a change in M’s variable number-in-queue. The body of the demon
procedure would in turn Send Mean.Data.(M.number-in-queue) each time it was
invoked, thus using the model component Mean to perform the ongoing calculation.

(2) When M (Boolean Expression)

Here, the demon is invoked not for any change in a (set of)) variable(s), but rather
only if the change satisfies a given condition. Take, for example, a MICP to calculate
batch means in which sample sizes of 30 are to be sent to instances of a mean
calculation component. A demon can be defined with the precondition When
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FIGURE 5-1. Schematic for §5 Example.

Mean.Count = 30. The demon procedure, when activated, would then receive the
result (after sending a Finish message to Mean) and initiate a new Mean component.

(3) When M Attains State S—(i.e., When SV-Value Enters M.SV set)

In many cases, it is more natural to express a demon’s condition as a function of
model state names. For example, if a MICP needs control after an LP has reached a
first feasible solution, a demon with the precondition When M attains F-F-S (or
equivalently as When F-F-S enters M.SV) could be defined.?

An Example
The following example involves Discrete Event Simulation (DES), statistical, and
Math programming components (see Figure 5-1). The DES component is a store

2 The tedious alternative would involve a lengthy boolean condition in which all the LP’s artificial
variables must be tested.
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model. The composite model (MICP) is to calculate the overall average number of
people queued at the check-out area. However, the DES model, as held in the model
base, is not defined to output queue statistics. The composite also involves a multi-
period integer programming component staffing. The MICP is to send periodic de-
mand levels generated via the DES component for each of a series of time periods.
These values serve as right-hand side values for which the integer programming
component calculates staff levels.

The definition of the composite model as a network of communicating processes
that interact via demons is given by:

Demon: When Store.clock = end of a period
Send Staffing.b[i].(Store.sales)
End-Demon
Demon: When Any Change in Store.Queue-len
Send Mean.point.(Store.Queue-len)
End-Demon
Begin main MICP procedure
Initiate Store, Staffing, Mean
Start Store, Mean
When Finish in Store.SV
Start Staffing
End

This example illustrates that treating model components as a network of processes
that interact via demons not only allows for the specification of dynamic interactions,
but also allows model components to be used in ways that were unanticipated when
the model components were originally specified and added to the model base; more-
over such reuse need not entail modifying the components themselves.

6. Discussion

A primary objective of Model Management Systems in general, and Model Inte-
gration formalisms in particular, is to improve the reusability of model components
across a wide range of modeling situations. By supporting model reuse, an MMS
helps improve both the reliability of composite models—since the individual compo-
nents are assumed to have been previously verified—and the rapidity with which
large-scale, multi-paradigmatic, composite models can be constructed. In §3, we
identify the assumptions underlying current MI approaches. We also discuss how
these assumptions limit the range of modeling situations that can be supported, and,
by implication, how these assumptions limit the potential reuse of existing modeling
components. In §4 and §5, we present a small set of MI “primitives” that relax the
assumptions outlined in §3 and that consequently expand the range of model integra-
tion situations that can be supported by a MMS. These constructs are summarized in
Table 6-1. Their utility is summarized below.

Model integration involves both the coupling of model component representations
and the coupling of processes that manipulate the components. In this paper, we pay
particular attention to defining the dynamic behavior of composite models during
model evaluation and propose constructs intended to support model integration in
cases where dynamic variable correspondence and synchronization are required.
Below, we review the motivation for these constructs and then briefly discuss when
and how a MICP’s (sub)procedures might be detected and formulated automatically.
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TABLE 6-1
Process Integration Constructs

Construct Comment

Message Passing through the MICP Provides the foundation to support dynamic
variable correspondence and process
synchronization

Conditional and Iteration Constructs Allows for the specification of dynamic
variable correspondence and process
synchronization in the cases of Sequence
Determinant control

Demons Allows for the specification of dynamic
variable correspondence and process
synchronization in the cases of Sequence
Indeterminant control

The first requisite for model integration in dynamic cases is the adoption of an
appropriate conceptualization of model components and of a mechanism to govern
their interactions. Here, model components are conceptualized as processes that send
and receive data and status/control messages under the control of a Model Integra-
tion Command Procedure. Since the MICP can monitor and control processes and
messages, this conceptualization enables dynamic variable correspondence and syn-
chronization. In order to better facilitate such control, the component models are
also conceptualized as containing an embedded set of status variables that indicate
the current operational state of the components. Thus, the MICP can monitor model
states as well as state transitions.

In considering variable correspondence, current “pipelining” approaches (see §3)
assume a static precedence relationship. Thus, the issue of “when does model B
receive variable (message) X from model A?” is answered simply: “whenever model
A sends it.” However, the examples of §4 indicate that such an assumption is un-
founded in situations ranging from the “simple” calculation of batch means to more
complex situations such as product pricing. In addition to allowing the MICP to
monitor the states and state transitions of model components, allowing conditional
(IF) and iteration (DO) constructs enables the MICP to dynamically control pro-
cesses by filtering and rerouting messages.

The above constructs relax the assumptions of static variable correspondence and
the conceptualization of a composite model as a simple deterministic precedence
ordering. However, they still suffer limitations under a third assumption: Procedural
conditionals (e.g., IF) are suited only for what might be termed ‘“‘sequence determi-
nate” control, and their use assumes that one knows when, in the sequence of model
component evaluation, the condition should be checked. Take the example of §4
(graphically depicted in Figure 2-1). Checking for convergence (via the IF statement)
is sequence determinate because one knows exactly when the condition should be
checked in the sequence describing the order of model component evaluation. But,
what if one cannot predetermine when a condition should be checked?

In order to widen the range of modeling situations that can be supported by a MMS
for MI, and to further improve the potential for model reusability, it is useful to
introduce a less sequence determinate conditional: Demons. As shown in §5, em-
ploying demons and allowing them to monitor any and all variables in component
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models further enables the integration of components from a variety of modeling
paradigms and allows these components to be used in ways unforeseen when the
components were originally developed. Also, since demons are relatively nonproce-
dural, their use should simplify the definition of composite models relative to use of
traditional structured programming constructs.

It is well accepted that nonprocedural constructs have advantages over procedural
constructs vis-a-vis the burden on end-users—in this case, modelers. This brings up
the question: To what extent can MICP (sub)procedures be detected and formulated
automatically? While a thorough analysis of this issue is beyond the scope of this
paper, it is useful to tentatively explore how automatic procedure detection and
formulation might be accomplished in situations where dynamic variable correspon-
dence and synchronization are involved.

To explore this issue, consider the example of §4 (Figure 2-1). The primary dy-
namic, procedural aspect of this composite model revolves around the convergence
checking component. The behavior and output of convergence checking leads to a
composite model structure involving both dynamic variable correspondence and an
evaluation cycle. What might permit a MMS to detect this substructure and to gener-
ate the appropriate MICP procedure automatically? What “knowledge” would
it need?

One way to view this problem is in terms of model typing. In addition to typing
models by their logical function—e.g., demand forecasting, transportation,
etc.—models might also be typed in accordance with their overall procedural func-
tion. For example, the convergence checking component could be typed as a “test
model,” where models of this type are assumed to serve a procedural function that
dictates whether their output (e.g., price) should be routed forward or backward. If
the MMS is equipped with knowledge regarding the structural implications of such a
model type, it might be able to generate the corresponding procedural structure
automatically. Determining the necessary set of model types relating to overall proce-
dural function and the development of MMS that can use such typing information to
automatically generate MICP structures is an exciting direction for future model
management research.

In addition to the primitives shown in Table 6-1, there are several other desirable
traits that a MMS for model integration should have:

(1) support of a robust typing and inheritance scheme for variable correspondence
and model typing (e.g., Bradley and Clemence 1988);

(2) complementarity with an existing model representation language such as SML
(Geoftrion 1990) which would provide the declaration dimension of the modeling
environment;

(3) agraphical interface for process schema specification similar to that developed
by Muhanna and Pick (1988);

(4) support of embedded SQL to facilitate integration with existing data resources.

Implementing MMS with these properties is best undertaken using as many exist-
ing tools as possible. An object-oriented language such as C++ would provide the
necessary underlying message passing primitives and inheritance structures while
also supporting the development of graphical interfaces and embedded SQL re-
trievals. Perhaps the biggest difficulties would be encountered in implementing de-
mons and the associated dynamic properties of process synchronization. Although
some operating systems, such as the Mach version of Unix, provide powerful process
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communication primitives, it may still be necessary to construct an event-driven
calculus similar to that underlying the Simscript language. The development of MMS
to fully support model integration requires use of assorted software resources; how-
ever, the advance of graphical user interfaces with “clipboard” and dynamic data
exchange features should contribute to the feasibility of developing such MMS.

7. Conclusion

Our contention is that a language to support a wide range of model integration
contexts must exhibit properties of both math programming and DES languages. It is
desirable to enforce separation between model representation and manipulation, as
in math programming, so that models can be manipulated in a way that is indepen-
dent of any particular application. On the other hand, a rich set of manipulation
operators, as in DES languages, must be available in order to build complex, multi-
paradigmatic models such as Figure 2-1.

Given this seemingly disparate set of requirements, what would an integration
language with DES features look like and how would it fit in the spectrum of execut-
able modeling languages developed for math programming? The full, structural de-
tails of such language are beyond the scope of this paper, but consider briefly one
possible scenario in which an existing EML such as SML (Geoffrion 1990) is embed-
ded in a process-oriented language similar to the MICPs shown in §4 and §5. In this
context, representations of the model components in Figure 2-1 would be developed
independently as structured models using SML. In order to evaluate the integrated
model, a MICP would be developed in which the structured models are declared as
model object types in the MICP. Each “send” command in the MICP would then
activate an evaluation process associated with the specified model object. For exam-
ple, the command “Send Forecasting.PositPrice” would activate SAS to solve the
associated econometric forecasting model (after perhaps converting the SML repre-
sentation to the appropriate SAS format). In this way, a useful blend of the declara-
tive power of structured modeling and the procedural flexibility of communicating
processes would be realized.

In addition to supporting the process-oriented constructs identified in this paper,
an integration language implemented in this form could also facilitate the integration
of data and models by supporting embedded data manipulation operators—for exam-
ple, embedded SQL commands if a relational environment were desired. By having
models as object types, integration by consolidation would also be possible in that
structured model schemas would be available for editing and eventual schema inte-
gration as suggested by Geoffrion (1989a, b). It is easy to imagine a MICP with a
preamble defining consolidations, and, then the consolidated models are merely
treated as components for process integration.

Building a process-oriented language on top of an existing EML is only one possi-
ble approach; the converse is to embed process-oriented constructs into an EML, as
GAMS does to a certain extent. Other approaches might include adapting object-or-
iented data and programming environments to provide the functionality we have
described. There are a variety of fruitful directions to explore with an eye toward
developing a unified model integration language that will allow both structural and
behavioral aspects of model integration to be addressed.*

* Robert W. Blanning, Associate Editor. This paper was received on April 3, 1990 and has been with the
authors 7; months for 2 revisions.
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