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ABSTRACT 

The goal of this thesis is to determine the feasibility and provide a proof of concept 

for a covert communications channel based on induced clock skew. Transmission Control 

Protocol (TCP) timestamps provide a means for measuring clock skew between two hosts. 

By intentionally altering timestamps, a host can induce artificial clock skew as measured 

by the receiver, thereby providing a means to covertly communicate. A novel scheme for 

transforming symbols into skew values is developed in this work, along with methods for 

extraction at the receiver. We tested the proposed scheme in a laboratory network 

consisting of Dell laptops running Ubuntu 16.04. The results demonstrated a successful 

implementation of the proposed covert channel with achieved bit rates as high as 33 bits 

per second under ideal conditions. Forward error correction was also successfully 

employed in the form of a Reed–Solomon code to mitigate the effects of variation in delay 

over the Internet.  
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I. INTRODUCTION 

The ability to securely communicate over digital networks is constantly challenged 

by increasingly inventive attacks. In February 2017, a team of cryptanalysts successfully 

broke SHA-1, highlighting the vulnerability of what had been a gold standard of 

cryptography [1]. While cryptography attempts to distort a message to prevent interception, 

covert communications attempt to hide the very existence of the data being transmitted. 

Transmission control protocol (TCP) is an ideal candidate for a covert channel because of 

its widespread and universal use; as a result, many TCP-based schemes have been 

developed. Most of these schemes have subsequently been analyzed, leading to the 

development of countermeasures capable of detecting or destroying the covert channel [2]. 

There is interest in developing new schemes in order to maintain the ability to covertly 

communicate or to stay one step ahead of those attempting to covertly communicate. 

Additionally, some covert channels provide the ability to transmit useful information 

related to the signal, such as metadata or network diagnostics.  

Although the idea of using induced clock skew as a covert channel was suggested 

by Kohno et al. in 2005 [3], the idea has never been developed or implemented. As of this 

writing, clock skew remains an obscure characteristic that is generally not monitored by 

network security systems. A covert channel based on clock skew has the potential to 

provide a data rate and channel capacity comparable to previously developed TCP-based 

covert channels [4] while remaining significantly less detectable.  

A. THESIS GOAL AND OBJECTIVES 

The goal of this thesis is to develop a practical covert communications channel that 

utilizes induced clock skew to embed secret messages. Unlike existing schemes, the 

proposed covert channel does not embed bits but instead transmits symbols through 

variations in clock skew in a manner analogous to modulation in which the skew is the 

carrier. Such a covert channel is developed in this work and tested in a laboratory 

environment.   
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The objectives of this thesis are to develop a framework for a skew–based covert 

communications channel, to provide a proof of concept that such a channel can operate in 

a laboratory environment, and to experimentally determine what parameters in that 

framework can be varied to maximize bit rate while reducing the likelihood of detection. 

In order to take full advantage of the analog nature of clock skew, a higher-order 

embedding scheme that allows for multiple bits per symbol is designed, built and tested. 

The application of error detection and error correction to the developed scheme are also 

explored in an attempt to improve bit rate and robustness.  

B. RELATED WORK 

In their 2005 work, Kohno et al. showed that TCP timestamps could be used to 

calculate the clock skew between two hosts [3]. This was additionally verified by Martin 

[5], where clock skew was used to create a hardware fingerprint for hosts on a network. 

Although [3] and [5] were primarily focused on using clock skew for hardware 

fingerprinting, [2] hypothesized that that a host that could intentionally vary its clock skew 

could create a covert communications channel. This idea is developed and tested in this 

work. 

In 2002, Griffin et al. demonstrated that the TCP timestamp field could be used as 

a covert channel [4]. Employing naïve steganography, a scheme in which the least 

significant bit of the TCP timestamp field was replaced by a message bit was developed in 

[4]. This type of naïve embedding is highly vulnerable to the most basic steganographic 

analysis as described by Fridrich [6], Murdoch et al. [2], and Liu et al. [7]. The scheme 

presented in this thesis is fundamentally different in concept from the ideas presented in 

[4]. The only commonality between the two schemes is the use of the TCP timestamp field 

to convey covert information. 

The work of [2] and [7] demonstrate additional methods for hiding data over TCP, 

including the use of covert timing channels and matrix embedding. Covert timing channels 

rely on a transmitting host sending TCP/IP packets in such a way to intentionally vary the 

arrival time at the receiver. Some rely on the use of timing intervals at the receiver, with 

packets communicating either a ‘1’ or ‘0’ depending on when they arrive. Other timing 
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channels convey a message in the interpacket delay at the receiver [7]. These ideas are also 

fundamentally different from the scheme developed in this thesis, which does not rely on 

specific arrival times for packets. 

C. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows. In Chapter II, clock skew is 

defined and methods for its calculation are explained. System clocks, TCP, raw sockets, 

and error correction are briefly discussed as they pertain to the ideas developed herein. The 

proposed scheme for a covert communications channel is described in detail in Chapter III. 

The testbed and results are presented in Chapter IV. Finally, conclusions, significant 

results, and recommendations for future work are discussed in Chapter V. The code used 

for testing is contained in the appendices.  
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II. BACKGROUND 

In this chapter, we present concepts germane to the understanding of the scheme 

proposed in Chapter III. System clocks, TCP timestamps, raw sockets, error correction, 

error detection and clock skew are discussed as they relate to the thesis objectives and 

proposed scheme.  

A. SYSTEM CLOCKS 

Computers keep track of time though the use of software clocks. This ability is 

important for a variety of reasons including but not limited to displaying current time, 

synchronization, and scheduling tasks. Each central processing unit (CPU) defines a 

processor tick that is an integer quantity of CPU clock cycles. When the CPU has gone 

through this integer number of clock cycles, it receives an interrupt and increments system 

time. Ticks are constant value and can be converted to seconds, allowing the computer to 

show time for a process, etc. [8].  

The resolution of a clock is defined as the smallest change in time that clock can 

detect [8]. For example, a 1.0-kHz clock has a resolution of 1.0 ms. When computers shut 

down, they transfer their system time to a battery powered clock called a real-time clock 

(RTC), which continues to measure the passage of time while the computer is unpowered. 

When power is restored, the RTC provides information to the system clock, allowing time 

to be maintained in spite of shut downs or power outages [8].  

B. TCP 

The scheme presented in this work uses TCP as a cover in the transmission of covert 

messages. A widely used transport layer protocol, TCP was developed in 1981 and is 

described in Request for Comments (RFC) 793 [9]. Because TCP carries widely used 

application layer services, such as file transfer protocol (FTP), hypertext transfer protocol 

(HTTP), and secure shell (SSH), TCP accounts for a significant portion of all internet 

traffic. Its most significant difference from the other widely used transport layer protocol, 

user datagram protocol (UDP), is that it requires the establishment of a session, and through 
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the use of sequence numbers and acknowledgements, ensures that no packets have been 

dropped or lost. Additionally, it includes measures to relieve network congestion [10]. 

The TCP header is a minimum of 20 bytes and can be up to 60 bytes when all 

options fields are included. A TCP segment can carry up to 65,536 bytes of payload data 

but is usually limited to less than 1,460 bytes. This is because most network applications 

using TCP use Ethernet as a layer-two protocol, and the maximum size of an Ethernet 

frame is 1,522 bytes, including at least 22 bytes taken up in the Ethernet header and at least 

20 bytes taken up in the IP header [10].  

The TCP timestamp is one of the TCP options fields and was added to the protocol 

in RFC 1323 in 1989 [11]. The TCP timestamp helps provide protection against wrapped 

sequences (PAWS), a scenario involving a TCP connection that has its 32-bit sequence 

number exceed the maximum value of 23423 and start again at 1. When the receiver 

receives a segment with a sequence number with a lower sequence number than other 

previously received segments, it has no way of determining if the received segment is new 

or very old. The timestamp provides a mechanism for the receiver to determine the age of 

such a segment. Additionally, timestamps provide an estimation of round trip time (RTT), 

which provides insight into the level of network congestion. The timestamp itself is ten 

bytes long and consists of four fields, as shown in Figure 1. The first two fields aid in 

identifying the timestamp. The timestamp value (TSval) field is filled with the timestamp 

of the packet’s sender. The timestamp echo reply (TSecr) is the value of TSval from the 

last received packet. These two values are used together to calculate RTT [12].  

 

Figure 1.  TCP Timestamp. Source: [11]. 
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The clock that populates the Tsecr field, the timestamp option (Tsopt) clock, has 

varying resolution depending on the operating system. The resolution of Tsopt clock can 

vary from 1 Hz to 1 kHz [11]. 

The work of [3] demonstrated that by default a host will respond with timestamps 

to a TCP session initiated with timestamps. A user has the option to explicitly turn 

timestamps off, negating this method [3].  

Because of its ubiquity, TCP provides an ideal cover for a covert channel. Its 

widespread use provides a vehicle for covert communications that does not raise suspicion 

in and of itself. Additionally, being a transport layer protocol, TCP is high enough on the 

protocol stack to travel from source to destination unaltered. This was verified by Handel 

et al. [13]. Headers from lower level protocols, such as internet protocol (IP), are often 

shed and reconstituted many times before reaching their destination [13].  

Data can be hidden in TCP segments using either storage channels, which embed 

bits in header fields, or timing channels, which depend on arrival times of packets or 

interpacket delay [7]. Most header fields are not suitable storage channels because of either 

their importance in proper segment delivery or because non-standard values in certain 

fields might arouse suspicion [2]. A passive warden, or adversary that has the ability to 

view but not alter the data in transit, can detect the presence of a storage channel by using 

known stegoanalytic techniques on the header fields of received packets. An active warden, 

or adversary that has the ability to view and alter data in transit, can distort or destroy the 

covert message by altering data in nonessential header fields or delaying packet arrival 

times [7]. 

C. RAW SOCKETS 

The TCP/IP protocol stack describes the hierarchy of tasks required to engage in 

network activity [10]. The human interface to a network is normally through programs that 

utilize application layer protocols. Sockets serve as the endpoints for network 

communication for the transport layer and are created by the host operating system (OS). 

Most application layer protocols call the OS to open either a stream socket to utilize TCP 

or a datagram socket to utilize UDP [14]. 
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Raw sockets differ from stream and datagram sockets by providing access to the 

lower layers of the OSI model and giving the user bitwise control of protocols at all layers 

[14]. For example, normally a user trying to transfer a file via FTP does not have control 

of the destination port in the TCP header because this port number is automatically set to 

21 by a stream socket created by the OS. Raw sockets allow a programmer to control all 

fields including but not limited to sequence number, source port, destination port, and the 

timestamp fields. 

D. CLOCK SKEW 

An understanding of clock skew calculation is fundamental to the ideas presented 

in this thesis. In the next two sections, we present a brief overview of clock skew and 

describe a method for calculating clock skew developed in [3] and [5]. 

1. Definition 

Clock skew α is the rate at which the time measurement of two clocks, 1c   and 2c , 

diverge. It is given in parts per million (PPM), which are the number of µs that two clocks 

differ after one second has elapsed [3], [5]. Because clocks are not infinitely precise, there 

is always some clock skew between any two clocks. The work of Polcak et al. [15] 

demonstrated that the skew of a population of clocks has an approximately normal 

distribution centered at zero. This result can be explained by the fact that the manufacturer 

producing the clock intends for it to be perfectly accurate [15].  

Skew typically ranges from 300−  PPM to 300 PPM, as depicted in Figure 2 [3].  

A survey conducted in [15] achieved similar results.  The collected data in [15] was 

displayed in a manner that highlighted the long tails of the distribution as depicted in 

Figure 3.  

Clock skew has some dependence on OS; [15] and Rhinehart [16] conducted 

surveys of clock skew values from hosts on different operating systems and found that 

some operating systems produced non-constant clock skew, in particular, Mac OS X.  
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Figure 2.  Distribution of Clock Skew on Real Network. Source: [3]. 

 

Figure 3.  Distribution of Clock Skew on Real Network. Source: [15]. 
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With the exception of the OS-specific non-constant clock skew described in [15] 

and [16], the results of [3] also demonstrate that clock skew remains constant over time. In 

experiments conducted over 38 days, constant clock skew was measured for 69 hosts 

running Windows XP [3]. Their result is important to the scheme developed in this work 

because without a transmitter and receiver having constant clock skew, the determination 

of induced skew values is difficult.  

2. Clock Skew Calculation 

Skew is always calculated relative to one of the clocks, known as the fingerprinter. 

Calculation of skew requires at least two synchronous time measurements from each clock 

[3]. In their study, Sharma et al. [17] determined experimentally that a minimum of 70 

timestamp pairs were required for an accurate skew value calculation. The work of [15] 

refuted the work of [17], arguing instead that timestamp count was irrelevant and that it 

was the timespan over which the timestamps were collected that determined the accuracy 

of the clock skew calculation. This minimum timespan for an accurate calculation was 

determined experimentally to be five to ten minutes [15].  

Each timestamp ct from a clock can be modeled as a combination of base time of 

that clock cot  plus offset :cr  .c c cot r t= +  In this discussion, the term timestamp refers to 

any time received from a clock being compared and not TCP timestamps specifically. 

In the scheme described in [3] and [5], a packet sniffing application is used to 

produce a timestamp at the exact time of receipt of the packet. The values of timestamps 

received from  1c  and 2c , namely, 1ct  and 2 ,ct  are each then given by [3] 

 

1 1 1

2 2 2

c c o c

c c o c

t t r
t t r

= +
= + . (1) 

Rearranging (1), we obtain a method for calculating the offset of each host:  

 .c c cor t t= −   (2) 

The calculated values of 1cr  and 2cr   are then used to calculate drift ,d  which is defined as 

the difference in offset between two clocks at any point in time [3]: 

 1 2c cd r r= − .  (3) 
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For this method of calculation to yield accurate results, 1ct  and 2ct  must be 

measured simultaneously. In the scheme proposed in [3], [5], [15], and [16], the timestamps 

are not taken simultaneously because the fingerprinter timestamp is not created in a packet-

sniffer until the arrival of the fingerprintee’s TCP timestamp. This departure from 

simultaneity is a result of the travel time tt  between 1c and 2 ,c  i.e., if the clocks have no 

skew between them 2 1 .c c tt t t= +  Because the initial timestamp from the packet-sniffing 

application 2c ot  includes the travel time of the first received packet ,tot   subtracting 2c ot  

from 2ct   to produce 2cr  rides on the assumption that all future values of tt  will equal tot . 

This assumption, while fundamental to the methods developed in [3], [5], [15], and [16], 

is not completely accurate even under ideal laboratory conditions. This means that the 

calculated value of 2cr is actually an estimate 2ĉr . Consequently, the calculated value of d  

in (3) becomes an estimate 1 2
ˆ ˆc cd r r= − . 

The skew is the rate at which drift changes and can be described by [3]  

 2c

dd
dr

α =
.   (4) 

Multiplying each side by 2cdr and taking the antiderivative, we have d  equaling the 

equation of a line with slope of α  and y-intercept of constant 0β  as shown by [3] 

 2 0cd rα β= + . (5)  
 

The constant 0β  is always zero when calculated this way because the subtraction of cot to 

calculate the offset values ensures that the line formed by (5) passes through the point 

2( , )cd r  = (0,0). 

While (4) and (5) describe the conceptual relationship between α , d  and r , we 

do not have the true value of d  so must instead use the received data point to estimate 

skew α̂  instead of the true value α . This estimate is calculated by finding the first 

coefficient in a least-squares regression model [16], which finds the best fit linear slope for 

a data set [18] where  
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2 21
2

2 21

( )( )
ˆ

( )

n
c i c ii

n
c i ci

r r d d

r r
α =

=

− −
=

−
∑
∑   . (6) 

The bar above offset and drift in (6) denotes an average over all collected samples. The 

skew estimation can also be accomplished using a dynamic programming technique [3], 

[5]. The methods are equivalent for low-jitter environments [16]. 

We are unconcerned with calculating the second coefficient 0β̂  of the least squares 

linear regression, which is zero because of the earlier subtraction of 2c ot  and 1c ot  when 

calculating the offsets. The index i  represents a single timestamp pair, and n  is the total 

quantity of timestamp pairs. The calculation of α̂ is illustrated graphically in Figure 4, 

adapted from [18]. 

 

Figure 4.  Least-Squares Linear Regression. Adapted from [18]. 
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E. ERROR DETECTION AND CORRECTION 

Noise may introduce errors during transmission. In digital communications, noise 

manifests in the form of bit errors, where a ‘1’ is read as a ‘0,’ or vice versa. The bit error 

ratio (BER) bψ  is defined as the ratio of bit errors en  to n   packets and is given by [19] 

 
lim e

b n

n
n

ψ
→∞

 =  
   .  (7) 

Following (7), we define the symbol error ratio (SER) ρψ  as the ratio of symbol 

errors sn  to n  packets and is given by [19]  

 
lim s

n

n
nρψ

→∞

 =  
  . (8) 

Error correction and detection work by adding redundancy to a code to counteract 

the effects of noise. Error detection identifies that the data has been altered in transit, 

whereas error correction identifies the location of the change and gives the receiver the 

ability to fix it. The ability to detect errors can prevent corruption of data and allow for 

retransmission. The further ability to correct errors can reduce network congestion by 

eliminating the need for retransmission should an error occur.  

1. Cyclic Redundancy Check 

Cyclic Redundancy Check (CRC) is a widely employed error detection scheme 

used, for example, in Ethernet, USB, Bluetooth, and mobile network standards. 

Transmitters and receivers using CRC must share a generator polynomial. The message 

bits are divided by the generator polynomial to produce a remainder that acts as an error 

detection code known as a frame check sequence (FCS). The FCS is appended to the end 

of the transmitted data and compared to an independently calculated FCS at the receiver. 

If the receiver’s calculation matches the received FCS value, the transmission is assumed 

to be error free. The naming convention for the specific implementation of CRC is based 

on the length of the generator polynomial, i.e., CRC-9 for a 9-bit generator polynomial. 

CRC is capable of detecting burst errors up to the length of its generator polynomial 

provided that they do not affect the CRC code itself [10].  
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An example of FCS calculation is provided in Figure 5 using generator polynomial 

‘110011.’ This example employs CRC-6. The first step is appending five ‘0’s to the 

message bits to make room for the remainder. Then the message is divided by the generator 

polynomial. The remainder is the FCS and is appended to the original message bits before 

transmission. The quotient of the long division operation is irrelevant to FCS calculation 

and is not displayed in Figure 5.  

 

Figure 5.  Example CRC-6 FCS Calculation 

If a receiver detects an error through the use of an error detection scheme such as 

CRC, automatic repeat request (ARQ) protocols are typically employed to automate 

retransmission of the corrupted data [10]. 

2. Reed–Solomon Code 

Forward error correction (FEC) codes are broadly grouped into block codes and 

convolutional codes. Block codes perform error correction on data in fixed size blocks, 

whereas convolution codes do so for potentially overlapping groups of message bits. Bose–

Chaudhuri–Hocquenghem (BCH) codes are a subset of block codes, and Reed–Solomon 

Codes are a subset of BCH codes.  
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Reed–Solomon codes group m  bits of a message into symbols and can have a 

maximum block length of 2 1m −  symbols, which are divided between message symbols 

and parity symbols. A Reed–Solomon code can correct half as many symbol errors as the 

number of parity symbols RSs  [20], e.g., with m  = 4 bits per symbol and RSs  = 4 symbols, 

a Reed–Solomon code could correct two symbol errors and a maximum of eight bit errors 

in 11 message symbols. The block size may be split between the message and parity 

symbols as necessary to produce the desired level of symbol-error correction. The 

relationship between block size, number of parity symbols, and symbol correction is 

depicted in Figure 6.  

 

Figure 6.  Reed–Solomon Code Block Size 

In this chapter, we presented background concepts necessary to understand the 

ideas presented in this work. In Chapter III, we present a scheme dependent on the methods 

of clock skew calculation discussed in this chapter.  
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III. INDUCED CLOCK SKEW AS A COVERT CHANNEL 

In Chapter II, we explained the mathematical framework behind the clock skew 

measurement. As discussed in Chapter II, clock skew is the rate of change of drift between 

two clocks as shown in Figure 7. It can be estimated by comparing at least two 

simultaneously-taken timestamps from each clock. Building on these concepts, in this 

chapter we present a new scheme that provides a means to intentionally vary the skew 

calculated by the fingerprinter to communicate a covert message.  

 

Figure 7.  Clock Skew Calculation  

A. PROPOSED SCHEME 

The proposed scheme provides a framework for two hosts to communicate using 

induced clock skew over a TCP connection as shown in Figure 8. Although it was 

demonstrated in [3] that ICMP can also be used to measure clock skew between two hosts, 

TCP/IP is better suited for the creation of a practical covert channel as consistent with the 

goal of this thesis. This is because of TCP’s ubiquity and multi-hop survival as discussed 

in Chapter II [18]. Additionally, the quantity of ICMP packets needed to calculate clock 
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skew would appear conspicuous to any adversary with the ability to monitor network 

traffic [3].  

 

Figure 8.  TCP Connection over a Network 

As in [3], [5], and [15], the TCP timestamp provides the transmitter timestamp 1,ct  

and a packet-sniffing application at the receiver provides the receiver timestamp 2.ct  With 

these two values, we have the necessary information to calculate clock skew at the 

receiver [3].  

A functional diagram of the proposed scheme is displayed in Figure 9. A covert 

message is embedded in TCP segments, transmitted, and then extracted by the receiver.  

The prime on the timestamps after embedding denotes the alteration of timestamp. 

 

Figure 9.  Scheme Functional Diagram 
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The steps for both embedding and extraction are expanded upon in Figure 10. The 

transmitter initiates a TCP connection with the timestamp option enabled. The transmitter 

initially transmits a quantity of unaltered packets to allow the receiver the opportunity to 

calculate the baseline clock skew of the transmitter. After first converting the covert 

message to symbols and next to induced skew values, the transmitter begins adding a small 

offset to each outgoing timestamp to produce the desired skew value at the receiver. The 

receiver reverses the process, calculating the skew for batches of received packets and then 

subsequently performing analog-to-digital (A/D) conversion to extract the message 

symbols.  

 

Figure 10.  Scheme Overview 

1. Setup 

The initial packets sent by the transmitter are intentionally unaltered to allow the 

transmitter to estimate the baseline skew bα  of the receiver. The quantity of packets bn  

used to make this calculation add overhead to the scheme because they do not contain any 

message information. Once the transmitter has sent bn  packets, it begins inducing skew on 

outgoing timestamps in intervals of mn  packets. Each subsequent batch of mn  packets has 

an independent induced skew jγ  that is a product of the base skew level ζ  PPM and the 

value of the symbol ρ  being transmitted as given by  
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 j jγ ζρ=  .  (9) 

The transmitter and receiver must share the predetermined values of bn , mn , and ζ  as well 

as the same symbol set to ensure correct extraction.  

B. TRANSMISSION BIT RATE 

The number of bits that can be transmitted as well as the speed at which they can 

be delivered are measures of effectiveness for covert channels. In the next two sections, we 

develop a means to estimate these values so that the effectiveness of different 

implementations may be compared. 

a. Channel capacity 

We define channel capacity for this scheme as the number of bits that can be sent 

on the proposed covert channel during a single TCP session. While two hosts could 

hypothetically keep a TCP session open indefinitely, doing so could constitute conspicuous 

behavior and contradict the goal of this thesis, to develop a practical covert channel. If we 

limit the TCP connection to the transmission of a finite payload, the channel capacity of 

the covert channel is limited by the size of this payload because the covert channel closes 

when the TCP connection closes. In the discussion of results in Chapter IV, we refer to the 

channel capacity by assuming that the TCP sender is transmitting a cover payload of 

arbitrary size. The following equation is proposed for channel capacity: 

  

d
b

p m

qn
n

νκ
ν
 

= −  
   , (10) 

   

where the channel capacity κ  of the covert channel proposed is limited by the total number 

of TCP segments required to transmit a cover payload of dν  bytes with average packet 

payload size of .pν  Because the number of bits per symbol q  determines the number of 

bits each induced skew represents, this number acts as a multiplier for channel capacity. 

The ratio dν / pν  in (10) is the number of segments that the TCP connection sends 

regardless of the presence of the proposed covert channel. The packets used for the baseline 
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skew calculation at the receiver act as overhead and are subtracted from the total packets 

that can be used to convey data. Because it takes many timestamps to calculate a skew 

value, this quantity of segments is divided by .mn  The employment of higher order schemes 

provides the ability to communicate more than a single bit with each skew value. This is 

represented by q  in the numerator. 

b. Bit rate 

The bit rate R  of the proposed scheme depends on the speed of its cover TCP 

connection. The delay between the transmitted individual TCP/IP packets is referred to as 

the interpacket delay ipdt (s). The inverse of average interpacket delay of arriving TCP/IP 

packets provides the number of packets arriving each second. Dividing this value by the 

number of packets used for each skew calculation, we get an estimate of bit rate for the 

proposed scheme. Additionally, for the higher-order implementation, this value is 

multiplied by the number of bits per symbol. We, therefore, propose the following as an 

estimate of bit rate: 

 ipd m

qR
t n

=
 . (11) 

 

All values of R  given in this thesis are provided with the arbitrary but realistic value of  

10ipdt = .0 ms. 

C. MESSAGE EMBEDDING 

The message embedding of the proposed scheme is achieved by inducing skew into 

outgoing TCP segments according to (9) and Figure 11. Individual timestamps are 

modified to create the desired skew for each symbol at the receiver. 
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Figure 11.  Message Embedding Functional Diagram 

Inducing skew into the transmitted TCP segments means that the skew being 

transmitted is a combination of the natural skew of the transmitter and the skew induced at 

the transmitter. The total skew measured by the receiver is then given by   

 bα α γ= + .  (12) 

The transmitter cannot add skew directly to individual outgoing packets because 

skew is calculated over multiple timestamps [3]. To induce the desired skew, the 

transmitter must add an offset iδ  to the timestamp of each segment i  that causes the 

methods of calculation explained in Chapter II to result in the desired induced skew.     

The first step in determining iδ  is mapping each message bit group 𝑗𝑗 to a 

corresponding symbol .jρ  The binary implementation, the lowest order implementation of 

the proposed scheme, has a set of only two symbols. Clock skew is an analog property that 

can take on any value; a theoretically infinite number of different skews can be induced. 

The signal-to-noise ratio (SNR) limits the ability to differentiate between skews that are 

close in value and, thus, limits the size of our symbol set. Higher-order implementations, 

also referred to as the q-bit-per-symbol implementation, provide a potential means for 

overcoming the low data rate inherent to this concept. These implementations map q  bits 

to 2qQ =  distinct symbols. In this thesis, we develop and test message embedding and 

extraction for 1,q =  2q =  and 4.q =  The binary implementation is a special case of the 

q-bit-per-symbol implementation for 1.q =  
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The proposed mapping for 1q =  is given by  

 

1, for 1
1, for 0j

j
j

ρ
=

= − = .  (13) 

To map symbols to bits 1q > , a gray code is utilized to increase the likelihood that 

a single symbol error at the receiver only produces a single bit error. The symbol mapping 

for 2q =  is provided as an example of the q-bits-per-symbol implementation: 

 

2, for 01
1, for 00
1, for 10
2, for 11

j

j
j
j
j

ρ

=
 == − =
− = . (14) 

The symbol mapping for q  = 4, the highest value of q  that is tested in this thesis, 

is given by Table 1. 

Table 1.   Symbol Mapping for q = 4 

 
 

Having determined the desired jγ  based on (9), we can now determine iδ . From 

(4), the relationship between the induced skew and induced offset is given by  

 1c

d
dr
δγ =

. (15)  

Conceptually, iδ is the antiderivative of jγ  at the time each packet is sent, is 

determined in the same manner as (5), and is given by 

 1 0 ,crδ γ β= +   (16) 
where β°  is a constant. We set β°  to zero because a nonzero value produces an unhelpful 

and conspicuous jump in offset and drift when skew is calculated at the receiver. By 

replacing the offset in (16) with the bit  time ,∆  which we define as the offset since the 
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first packet in the current batch of mn  was transmitted, we ensure that each β°  is zero for 

each skew calculation of mn  packets and there is no jump in offset at the receiver. 

Substituting pj∆  for 1cr  in (16) and setting β°  to zero, we get 

 ji j ρδ γ= ∆
. (17) 

The variable pj∆  differs from 1cr  because it returns to zero after transmission of the 

last packet of each batch of mn   packets, as shown in Figure 12, giving the transmitter the 

ability to induce separate skew values on each mn  packets.  

 

Figure 12.  Relationship between ,
jρ

∆  ,mn  and 1cr   

The altered timestamp now has an added iδ  component. Following (1), we find the 

timestamps at the receiver and transmitter, respectively, are given by  

 

1 1 1

2 2 2

c c o c i i

c c o c i

t t r
t t r

δ= + +
= + . (18) 
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D. MESSAGE EXTRACTION 

The message extraction process recovers the embedded message by the process 

depicted in Figure 13. The timestamp pairs provided by the TCP timestamp and receiver 

timestamp are used to calculate drift with (3). Batches of mn drift values are then used to 

estimate the induced skew via (6). The estimated skew then goes through A/D conversion 

and is mapped to a symbol. The symbols are then converted back to bits, and the message 

is recovered. 

 

Figure 13.  Message Extraction Functional Diagram 

After using the first bn  packets to calculate an estimate for baseline skew ˆbα  using  

(6), the receiver subtracts ˆbα  from the estimated skew in each group of mn  packets to 

estimate induced skew ˆ jγ . Following (12), we see that ˆ jγ  is given by ˆ ˆ ˆj j bγ α α= − .  This 

value is then compared against a threshold value for A/D conversion. For 1,q =  the 

threshold is zero, which means that positive values of ˆ jγ  are mapped to 1,ρ  and negative 

values of ˆ jγ  are mapped to 0ρ . The receiver then maps the symbols back to bits to recover 

the message.  
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For 1,q >  the A/D conversion process requires the creation of bins to map each of 

the induced skew estimates to a symbol. This mapping is given by 

 

 

1ˆfor
2 2

ˆ1 for 0 1.5
2 1 2 1ˆfor , 2,... 1 .

2 2 2
ˆ1 for 0 1.5
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2 2
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 + >    
≥ >


− +      = < < = ± ± −      

     
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
− +  < −      (19) 

 

In Figure 14, the transfer characteristic is provided according to (19) for 3.q =   

 

Figure 14.  Transfer Characteristic of the A/D Convert Block for 3q =   

After mapping the skew estimates to symbols, the symbols are mapped to bits 

according to a table shared by transmitter and receiver, e.g., Table 1 is used for this 

mapping process by both the transmitter and receiver for 4.q =  For mapping the symbols 

back to bits for 1,q >  we used a gray code to ensure that a skew estimate that crosses a 
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single threshold incorrectly only produces a single bit error when the symbols are mapped 

back to bits. Use of gray code does not help reduce bit errors for symbol errors resulting 

from the erroneous crossing of more than one threshold, which can result in up to q  bit 

errors for each symbol error.  

E. NOISE 

As discussed in Chapter II, the methods outlined in [3], [5], and [16] for calculating 

clock skew assume a constant travel time between 1c  and 2.c  Because natural skew values 

between two clocks are typically within 300 PPM [3], [17], network jitter on the order of 

milliseconds can wipe out any attempt to measure clock skew by dramatically varying .tt  

Because we are communicating over a network, the travel time between the two 

clocks is the network delay. According to [21] and [22], we find that network delay can be 

modeled as a Weibull random variable. The probability density function (PDF) for the 

Weibull distribution is given by  

 

1

( ) ,
k

ttk
t

t
tkP t e λ

λ λ

−  − 
  =  

    (20) 

where k  is the shape parameter value and λ  is the scale parameter value [20]. An example 

of the Weibull distribution is given in Figure 15 for 1k =  and 1.5.λ =  

Noise in this scheme is manifested as a deviation in seconds from the mean value 

of network delay tt  and can be expressed as .i ti tw t t= −  The addition of noise to transmitter 

offset during transit is displayed in Figure 16; however, the quantity we are concerned with 

is the error ε  defined as ˆ.ε α α= −  Because we are using the least squares method to 

calculate skew, the noise in any single received timestamp does not directly affect the 

calculation of α̂  provided that  

 

1
avg i

i
w w

n
= ∑

 (21) 

is close to the mean of the distribution. Modeling w  as Weibull random variable, we expect 

that the average noise will approach the mean of the distribution as the number of packets 

is increased. We also expect that α̂  increases in accuracy with the number of timestamp 
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pairs used to calculate it. This leads error to approach zero as the number of packets 

increases, i.e., lim 0.
n

ε
→∞

=   

 

Figure 15.  Weibull Distribution for 1,k =  1.5λ =   

 

Figure 16.  Noise Model: Addition of Noise to Offset 

When 1,q =  if ε  is greater than ζ  for any skew calculation, a symbol error and 

resultant bit error may occur. The scheme is more susceptible to noise for 1q >  because of 

the need for additional threshold levels to accommodate A/D conversion for larger symbol 
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sets according to (19). Because the threshold levels create bins of width ,ζ  in the q-bits-

per-symbol implementation, a symbol error may occur for / 2ε ζ≥  .  

Non-constant clock skew was additionally considered as a source of noise but 

deemed unlikely based on the results of [3] as discussed in Chapter II. The OS-specific 

issues discussed in [15] and [16] are a unique case and would cause problems that would 

prevent the proposed scheme from operating as desired and are not considered here.  

The data shown in Figure 17 provides an illustration of the noise present in skew 

calculations. The black line is the calculated d̂  with slope ˆ.α  If no noise is present, the 

data will fall neatly onto a line of constant slope.  

 

Figure 17.  Noise Present in Clock Skew Calculation 

1. Error Detection 

Cyclic redundancy check techniques may be used to provide a simple means of 

error detection. Error detection alone may not be well suited for this scheme. When an error 

is detected, an ARQ response prompts the transmitter to resend the corrupted data. The 

inherently low data rate leads to a high cost for retransmission. Because of channel capacity 

limitations, retransmission may not be possible in many cases.  
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2. Forward Error Correction 

FEC could be another solution. A Reed–Solomon code was chosen amongst other 

possible FEC codes for ease of implementation and in support of the thesis objective of 

determining if error correction could enhance robustness and allow for an increase in bit 

rate and channel capacity.   

In Chapter III, we provided a framework for the scheme implemented and tested in 

this work. The methods for inducing skew in outgoing timestamps and estimating received 

skew values to extract a covert message were explained. In Chapter IV, we provide the 

methodology of the testing and an explanation of the results. 
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IV. TESTING AND RESULTS 

The concepts discussed in Chapter III provided a framework for a covert channel 

based on induced clock skew. In this chapter, we provide detail as to the realization of such 

a system as well as the results of testing at various parameter values. Although there is 

nothing preventing such a system from operating in duplex mode, for simplicity we 

programmed a single host to be the transmitter and another to be the receiver.   

A. TEST-BED 

We used Dell XPS laptops running Ubuntu 16.04 for the transmitter and receiver. 

They were connected via Ethernet using CAT 5 cable across a network switch. The switch 

saw minimal traffic unrelated to this experiment. The hosts were connected directly via 

Ethernet for several trials to estimate the impact of the network switch. The results showed 

negligible impact with successful embedding and message extraction. The conceptual 

diagram of the two hosts connected across the laboratory network can be seen in Figure 

18. In Figure 19, a photograph of the two host laptops is displayed. 

 

Figure 18.  Testbed Conceptual Diagram 



 32 

 

Figure 19.  Photograph of Testbed Hosts 

1. Transmitter 

The transmission process is illustrated in the flowchart in Figure 20. For successful 

embedding/extraction, the transmitter and receiver must share parameter values of ,bn  ,mn  

,q  and .ζ  After the establishment of a TCP session, the transmitter sends bn unaltered 

packets to allow the receiver to establish the baseline skew from the transmitter. If no 

message is present to embed, the TCP session continues as normal without the alteration 

of timestamps. If a message is present, the transmitter calculates the offset to add to each 

outgoing timestamp by mapping the message to symbols and then applying (9) and (17). 

Finally, the packets with altered timestamps are transmitted across the network where noise 

is added according to the noise model developed in Chapter III.  
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Figure 20.  Transmission Flowchart  

Packets were transmitted at either a constant interpacket interval of 10.0 ms or 

uniformly distributed random interpacket intervals of 10.0 ms to 110.0 ms. All results 

obtained with constant interpacket delay were also verified with uniformly distributed 

random interpacket delay. The random interpacket delay is illustrated by Figure 21. A plot 

of packets received each second and a histogram of interpacket delay for 6400 packets 

transmitted with uniformly distributed random interpacket delay are displayed in Figure 

21(a) and (b), respectively.   

Randomized interpacket intervals were chosen in order to demonstrate the 

scheme’s resilience against non-steady arrival of packets.  This parameter also serves to 

differentiate this scheme from the covert timing channels described in [4], [2], and [7].  

It is important to note that interpacket delay and travel time are different quantities, 

and the scheme presented is still vulnerable to variations in travel time.  
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a) Quantity of Packets Received each Second. 

 
b) Histogram of Interpacket Delay. 

Figure 21.  Received Packet Rate and Interpacket Delay Histogram for 
6400 Packets Transmitted with Uniformly Distributed Random 

Interpacket Delay 
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Through trial and error, we chose 150bn =  packets in our testing in order to balance 

the minimization of overhead and accurate estimation of ˆ .bα  Although bn  has an impact 

on channel capacity according to (10), it was not varied along with other parameters during 

testing because of its negligible impact on bit rate and no relation to likelihood of detection. 

As discussed in Chapter II, a minimum of 70 packets are required for a reasonably accurate 

calculation of clock skew [17]. Also discussed was the requirement of timestamp values 

spanning 5 to 10 minutes [15]. This requirement was not considered because the use of a 

high-frequency Tsopt clock allowed for quicker calculations and the fact that the receiver 

need not maximize accuracy for correct calculation provided the inaccuracy is not greater 

than the allowable error. Initially, we set 2500ζ =  PPM and 50mn =  packets. We then 

systematically lowered them in an effort to optimize bit rate and covertness. These values 

were sufficiently conservative to produce zero errors after hundreds of trials and, therefore, 

served as a starting point for fine tuning. 

The transmitter was programmed in C with the exception of error correction, which 

utilized a MATLAB function to generate the Reed–Solomon code. Additionally, a Python 

GUI was developed to aid in the rapid repeat of trials. To implement the raw socket, we 

used C code developed by P. Buchanan [23]. A sample of the transmitter code used to add 

offset to the outgoing TCP timestamp is displayed in Figure 22. The variable names in the 

displayed code follow the convention of this thesis with the exception of ‘end_long’, which 

is the TCP timestamp. The code in Figure 22 follows (13) and (17) for the calculation of 

added offset. The factor of 1000000 in the code is to convert units from microseconds to 

seconds. 

 

Figure 22.  Code Sample for Addition of Offset to Timestamp 
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For simplicity, the transmitter did not go through the three-way TCP handshake for 

establishing a TCP session but instead sent each successive packet as a new 

synchronization (SYN) request to a different destination port. Although the intended 

application for this concept is within a single TCP session, the establishment of one is not 

necessary for the full demonstration of this idea conceptually and the achievement of this 

thesis’ objectives. Because each packet transmitted was a SYN packet, each packet 

contained no payload data. To provide a finite estimate of channel capacity at the 

experimentally verified values of ,q  ,ζ  and ,mn  a payload size of 1460 bytes was assumed 

in (10) in the results section of this chapter.  

2. Receiver 

The extraction process at the receiver is illustrated in the flowchart in Figure 23. 

After receiving packets across the network with added noise, the receiver uses the received 

timestamps to estimate drift and then skew. If embedding is detected, the receiver subtracts 

the value it estimated for base skew and performs A/D conversion on the skew estimates. 

The symbols obtained through A/D conversion are then mapped back to bits.  

The receiver collected incoming TCP/IP packets with Wireshark/Tshark. A sample 

Wireshark collection from one of the trials is displayed in Figure 24 for purposes of 

illustration. The value in the ‘Time’ column corresponds to the receiver timestamp for each 

received packet, whereas the highlighted ‘Timestamp value’ in the packet details pane 

corresponds to the transmitter timestamp for the single highlighted packet in the packet 

pane.  
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Figure 23.  Receiver Flowchart 
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Figure 24.  Wireshark Collection of TCP/IP Packets 

The receiver was programmed in Python and utilized the Python Matplotlib for 

generating data plots. As an example, the lines of code that implement of (2) and (3) for 

calculating drift at the receiver are displayed in Figure 25. 

 

Figure 25.  Code Utilized for Drift Calculation 

The variable ‘time_factor’ accounts for the fact that the two clocks may not be using the 

same units of measurement.  
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3. Limitations 

The frequency of Tsopt clock was set to 1.0 MHz for the experiments conducted 

in this thesis, whereas real-world Tsopt clock frequencies range from 1.0 Hz to 1.0 kHz. 

The low resolution of real-world Tsopt clocks is the reason for the requirement of 

timestamps spanning at least five minutes for accurate skew calculation [15].  

This departure from reality does not undermine the scheme presented in this work; 

increasing ζ  allows for skew to be detected at the rates demonstrated even when utilizing 

a Tsopt clock with frequency less than or equal to 1.0 kHz. While the requirement that 

timestamps spanning five to ten minutes are collected for an accurate skew calculation 

holds [15], an accurate calculation is not necessary for the scheme presented in this thesis. 

To extract the message symbols, the calculated skew needs only to fall within threshold 

values that can be adjusted as necessary. For example, if timestamps spanning 30 seconds 

of receiver offset are collected in a scheme using a 1.0-kHz Tsopt clock, we may only be 

able to calculate skew with a resolution of 500 PPM. To create threshold values wide 

enough to accommodate a realistically slow Tsopt clock’s limitations on skew calculation, 

we can increase ζ  considerably. This increase in ζ  allows for comparable bit rates to 

those seen in this work, although it may increase the likelihood of detection.  

B. RESULTS 

We first tested the proposed scheme using conservative parameters. Once we 

demonstrated successful operation, we lowered parameter values in an attempt to maximize 

bit rate and minimize likelihood of detection. Finally, we lowered parameter values until 

the BER became prohibitively large to test the limits of this implementation. 

1. Conservative Parameters 

The scheme operated as desired, achieving the main thesis objective of proof of 

concept. In over 100 trials at each value of q  tested, messages embedded with the 

conservative parameters of 150bn =  packets, mn  = 50 packets, and ζ  = 2500 PPM were 

correctly extracted by the receiver. Calculated over 1000 symbols, use of these parameters 

achieved a SER of zero and, consequently, a BER of zero for 1, 2, 4.q =  In Table 2, the bit 
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rate and channel capacity at these parameter values are provided according to (10) and (11) 

for each of the three values of q  tested. The calculations in Table 2 assume a constant 

interpacket interval of 10.0 ms, a cover payload of 15.0 MB, and 1460pν =  for the 

maximum payload over Ethernet.  

Table 2.   Bit Rate and Channel Capacity for mn  = 50 packets and ζ  = 2500 
PPM by q   

 
 

Plots of receiver offset versus drift are provided in Figure 25 for each of the three 

q  values tested. In each of these figures, the waveforms corresponding to each symbol can 

be clearly seen due to the high level of skew induced. The differing symbol set sizes are 

also clearly evident from visual observation of the quantity of slopes present. Although 

already confirmed by the BER, these figures provide visual observation that noise was not 

a significant factor at these parameter values.  

The estimated skew values for the trials shown in Figure 26 are depicted in Figure 

27. Because of the large value for base induced skew, these skew estimates are cleanly 

centered in the bins created by (19) with the exception of the trial for 1,q =  which has a 

single threshold. In Figures 27, each blue ‘x’ denotes a skew estimate, while the red dashed 

line represents the thresholds used for A/D conversion provided by (19). Each skew 

estimate is centered at the receiver offset of the mn  packets used for its calculation. 
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a) 1q =   

 
b) 2q =   

 
c) 4q =   

Figure 26.  Plots of d̂  for Three Trials with 2500ζ =  PPM, mn  = 50 Packets 
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a) 1q =   

 
b) 2q =   

 

  
c) 4q =   

Figure 27.  Plots of γ̂  for Three Trials with 2500ζ =  PPM, mn  = 50 Packets 
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Although the presence of a covert message is observable from the waveforms in 

Figures 25, to the casual observer comparing offset, the activity is invisible. To illustrate 

this point, a plot of receiver offset versus transmitter offset is displayed in Figure 28 for a 

trial with the parameters listed in Table 2. The steady progression of transmitter offset even 

at a high level of induced skew shows that the channel remains hidden to the casual 

observer. The timestamps with embedding still appear to be constantly progressing and are 

not conspicuous without further investigation.  

 

Figure 28.  Plot of 1cr  versus 2cr for 1,q =  50mn =  packets, 2500ζ =  PPM 

2. Minimum Induced Skew Level 

By lowering the value of the base induced skew and keeping mn  constant at mn = 

50, we attempted to conceal the signal in the noise. The lowest values of  ζ  for which we 

can consistently extract the message are contained in Table 3.   
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Table 3.   Minimum Induced Skew by q   

 
 

The drift and skew estimate of trials conducted with low base induced skew values 

according to Table 3 are depicted in Figure 29 and Figure 30, respectively. Although for 

4q =  consistent successful extraction was not demonstrated for 100ζ <  PPM, the trial 

depicted in Figures 29 and 30 had low enough noise that successful extraction was 

performed for 50ζ =  PPM.  

Unlike the trials depicted in Figure 26 where 2500,ζ =  in Figure 29, the signal is 

hidden in the noise even for the observer that has gone far enough to calculate .d  The 

waveforms in Figure 29(a) are visually indistinguishable from the drift estimates of 

unaltered timestamps. This signal was extracted at the receiver with zero symbol errors; 

however, several skew calculations were close to the threshold value as can be seen in the 

plot of γ̂  shown in Figure 30.  

With a lower value of ,ζ  noise plays a much greater factor in extraction. In Figure 

30, this is shown by the proximity of the skew estimates to the threshold values for each 

bin. Although there were no symbol errors in the three trials depicted, several estimates are 

very close to the threshold as compared to the trials depicted in Figure 27, in which each 

skew estimate is cleanly centered in its bin. 
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a) 1,q =  25ζ =  PPM 

 
b) 2,q =  100ζ =  PPM 

 
c) 4,q =  100ζ =  PPM 

Figure 29.  Plots of d̂  for Three Trials with 50mn =  Packets, and Varying ζ  
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a) 1,q =  25ζ =  PPM 

 
b) 2,q =  100ζ =  PPM 

 
c) 4,q =  100ζ =  PPM 

Figure 30.   Plots of γ̂  for Three Trials with 50mn =  Packets, and Varying ζ   
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3. Maximum Bit Rate 

By lowering the number of packets used to embed each skew value, we attempted 

to maximize the bit rate and channel capacity according to (10) and (11). The smallest 

values of mn for which consistent extraction of the message was still possible are contained 

in Table 4.  The calculation in Table 4 assume the same values for cover payload and 

interpacket delay as Table 2.  

Table 4.   Minimum mn  by q   

 
 

Plots of drift for trials run with the parameter values in Table 4 are shown in Figure 

31. The differing values of mn  in Table 4 and Figure 31 are accounted for by the fact that 

that the implementation had greater noise resistance at 1,q = as discussed in Chapter III 

and could, thus, successfully extract the message at a lower value of .mn  Although the 

intention was to increase bit rate, the drift waveforms for 1q =  are difficult to discern from 

the noise due to the low value of mn , potentially making the presence of a covert message 

harder for an adversary to detect. The plots of estimated skew for the same trials are shown 

in Figure 32.  
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a) 1,q =  5mn =  

 
b) 2,q =  15mn =  

 
c) 4,q =  15mn =  

Figure 31.  Plots of d̂  for Three Trials with 2500ζ =  PPM, and Varying mn  
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a) 1,q =  5mn =   

 
b) 2,q =  15mn =   

 
c) 4,q =  15mn =  

Figure 32.   Plot of γ̂  for Three Trials with 2500ζ =  PPM, Varying mn   
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In the trial depicted in Figure 31 (a) and Figure 32 (a), the use of only five packets 

in each skew estimate is nearly hidden in the noise, indicating that a low small value of mn  

may also aid in covertness. Successful extraction at this small mn  value is a significant 

result because it is very close to the theoretical limit of two packets and demonstrates that 

the requirement for 70 packets [15] is not necessary for the operation of this scheme. 

Although noise does not appear to be affecting the skew estimates much in Figure 32 (b) 

and (c), the trials displayed were relatively low-noise compared to all trials conducted. 

Lowering either mn  or ζ  precluded consistent successful message extraction for 

mn < 5 packets or ζ  < 25 PPM when 1q =  and  for mn < 25 packets or ζ  < 100 PPM 

when 1.q >   While we did observe some correlation between the impact of mn  and ζ on 

SER, raising the value of either of these parameters did not provide the ability to 

successfully extract with mn < 5 or ζ  < 25 PPM at any value of q . As an example, the 

skew estimates for a trial in which successful extraction did not occur is depicted in 

Figure 33. 

 

Figure 33.  Plot of γ̂  for 2,q =  15mn =  Packets, 50ζ =  PPM   

The skew estimates in Figure 33 vary wildly; some have values many times greater 

than the level of skew induced. This level of noise did not allow successful extraction.  
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4. Error Detection 

We employed CRC-9 error detection with each of the schemes presented and 

successfully detected errors. The FCS was created at the transmitter with C and appended 

to the message bits before conversion to symbols occurred. After mapping the received 

symbols to bits, the receiver calculated a FCS code based on the received message bits with 

Python and compared this value to the received FCS to determine if an error occurred. The 

scheme utilized the generator polynomials ‘111111111’, ‘110100111’, and ‘000101110’.  

Though the use of CRC was an effective means of detecting errors, the low data 

rate and channel capacity of all schemes presented made the employment of ARQ an 

inefficient option.  

5. Error Correction 

We used Reed–Solomon code for FEC on the implementation with 4q = . The 

Matlab functions rsenc and rsdec provided easy generation and decoding of the Reed–

Solomon code. Because the bits were already grouped into symbols through the symbol 

mapping process, four bits per symbol was chosen for .m  This allowed a maximum block 

size of 15 symbols. In order to provide the ability to correct up to three symbol errors, we 

chose to use nine message symbols and six parity symbols per block. After the conversion 

of message bits to symbols, the transmitter calculated and appended six Reed–Solomon 

parity symbols to the message symbols. Before mapping back to bits, the receiver used the 

Matlab function rsdec to identify symbol errors in the nine message symbols. Using Reed–

Solomon code, we successfully corrected symbol errors at parameter values 4,q =  35ζ =  

PPM, and mn  = 50 packets. The results of one such trial is illustrated in Figure 34. The 

yellow circled skew value is the detected symbol error. 
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Figure 34.  Error Correction for 4,q =   35ζ =  PPM, and mn  = 50 Packets 

Though the Reed–Solomon code proved effective at correcting symbol errors in the 

scheme presented, most trials that contained symbol errors had too many errors for any 

type of FEC to be employed, including errors in the FEC code itself. For example, with 

1q =  we could extract a message at 2500ζ =  PPM and mn = 6 packets essentially error 

free. Changing mn  to mn  = 4 can cause as many as half of the bits to be transmitted 

incorrectly. In these scenarios, the FEC functioned as error detection and retransmission 

was necessary. FEC was employed most effectively at the parameter values listed in Table 

3 and Table 4 with 4.q =  At these values, the FEC was able to identify and correct the 

symbol errors that occurred. 

C. DISCUSSION 

Each of the schemes operated as designed when given conservative parameter 

values and resulted in a SER and BER of zero taken over 1000 symbols. Adjusting the 

value of ,mn  we verified that it was possible to increase bit rate as proposed in Chapter III. 

Adjusting ζ  values, we attempted to make the signal less detectable, even to an adversary 

observing drift and skew.  

The maximum achievable bit rate has an upper theoretical limit because at least two 

TCP timestamps are required for every skew calculation. This means that at most, a single 
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symbol can be transmitted with every two TCP timestamps. With 1,q =  we were able to 

get very close to this theoretical limit, using only five timestamps for each skew 

calculation, greatly undercutting the experimentally determined requirement in [15] for 70 

timestamps. 

Setting 1q =  provided greater noise resistance and, therefore, the ability to operate 

at a lower value of ζ  and .mn  This counterintuitively led to the trials with 1q =  achieving 

a higher maximum bit rate than that achieved in trials with 2.q =  Likewise, only for 1q =

was the implementation able to visually hide in the noise after drift and skew calculations. 

Discernable waveforms were visible for all values 1,q >  even when ζ  was minimized.  

The BER of each implementation as a function of mn  is depicted in Figure 35. Once 

mn  was lowered below 30, bit errors began to occur for all q values.  

 

Figure 35.  BER by mn for Varying ,q  with ζ =2500 PPM 
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The BER at each value of q   also increased as ζ  decreased. Values 100ζ <   PPM 

resulted in increasing bit errors at each value of .q  The BER of each implementation as a 

function of ζ  is depicted in Figure 36. Unexpectedly, at each value of ζ where bit errors 

were observed, more were observed for 2q =  than for 4.q =   

 

Figure 36.  BER by ζ  for Varying ,q  50mn =  

Even after minimizing ζ , an adversary with knowledge of the scheme would still 

be able to detect its presence, especially if mn  were deduced. A histogram of received skew 

calculations would reveal the presence of Q  distinct skews. One possible counter for 

detection might be varying ,ζ   ,mn  and bn  according to a shared key within a range of 

acceptable values.  

The effects of ζ  and mn  on SER and BER appeared to be correlated at values close 

to their minimum; however, boosting either value did not produce an ability to further 

lower the other. For example, the receiver was not able to successfully extract the message 

for ζ = 100 PPM and mn = 20; however, in previous trials, signals with ζ = 100 PPM 

given large mn  and signals at mn = 20 packets given large ζ were successfully extracted. 

Values of ζ  and mn were likewise boosted to values up to 5000 PPM and 100 packets, 
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respectively, in an attempt to go below the minimum values presented in the results. In 

these trials, the receiver was still unsuccessful in extracting the message signal.   

In this chapter, we described the test bed used for experimentation and presented 

results of the experiments. We demonstrated the successful operation of each 

implementation along with results of attempts to minimize various parameter values with 

the intent of increasing bit rate and channel capacity and decreasing the likelihood of 

detection. We then provided discussion of the results. In the following chapter, we 

conclude this thesis and provide recommendations for future work. 
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V. CONCLUSION 

In accordance with the thesis objectives, we developed a novel scheme that utilizes 

clock skew to transmit secret messages. This required the development of a method for 

converting symbols into skew values and then a method for transmitting those skew values. 

The method developed is analogous to modulation in which the induced skew is the 

message and the baseline skew is the carrier. It also required the development of a way to 

extract the skew values from received packets and perform A/D conversion to retrieve the 

message. Implementation of the scheme successfully demonstrated the ability to use 

induced clock skew as a covert channel over TCP. Our results provide a proof-of-concept 

for the use of induced clock skew for covert communication.  

We improved bit rate and channel capacity by determining the lower limits of 

parameter values for successful message extraction. By implementing larger symbol sets, 

we utilized the analog properties of clock skew to increase the number of bits 

communicated by each induced skew value, which serves as a guidepost for further 

exploration leading to higher bit rates.   

A. SIGNIFICANT RESULTS 

In this thesis, we developed a novel scheme that provides the ability to covertly 

communicate via induced clock skew. The scheme was developed in a general way to allow 

for variations in parameter values such as symbol set size. This has not been previously 

achieved and contributes to the existing body of knowledge concerning covert 

communications. This scheme may serve as a starting point for study of a subset of covert 

channels fundamentally different in concept from existing schemes that rely on embedding 

bits or varying temporal parameters. 

To validate the proposed scheme, we designed, implemented, and tested a first-of-

its-kind program capable of sending covert messages described by the scheme. This 

program worked as desired, and we were able to successfully embed and extract covert 

messages over a TCP connection. 
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We have added a forward error correction code scheme based on a Reed–Solomon 

code to improve the performance of the proposed scheme and to mitigate the effects of 

travel time variations in the Internet. The forward error correction was successfully 

employed and provided the ability to transmit at higher bit rate and lower levels of induced 

skew than would have been possible otherwise.  

B. FUTURE WORK 

We were able to demonstrate the ability to induce clock skew in TCP timestamps, 

however, we did so using a Tsopt clock with 1.0 MHz resolution. The use of a 1.0 MHz 

resolution clock for Tsopt clock is the largest departure from real world conditions in this 

work. In a future effort, we recommend testing with a Tsopt clock having a resolution of 

1.0 kHz or lower in order to present TCP timestamp values that appear routine and check 

the feasibility of employment under real world conditions. Reducing the Tsopt clock’s 

frequency could reduce the bit rate of the proposed scheme, perhaps significantly; however, 

this limitation may be mitigated by the use of large ζ  at the expense of increasing 

likelihood of detection.  

Our scheme was tested in a laboratory environment with minimal traffic. This 

traffic-free laboratory environment provided lower noise than can be expected in real-

world conditions. Travel time was relatively constant between the two hosts, and queuing 

delay was nonexistent because the hosts were connected through a switch. Conducting this 

experiment in a high-traffic environment would introduce variable travel time that could 

greatly impact the ability to calculate induced skew at the receiver. Additionally, 

conducting this experiment across multiple autonomous systems (AS) would determine its 

utility for real world covert communication. 

The highest order implementation tested in this work consisted of a 16-symbol set. 

The ability to clearly distinguish these 16 unique skew values indicated that still larger 

values of q  are feasible. A 256-symbol set would allow for each skew to convey a byte of 

data and roughly double the maximum data rate and channel capacity observed in this 

work. Larger symbol sets may even be possible. In a future effort, we recommend testing 

the upper limit for symbol set size. 
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Although the scheme presented in this work is not susceptible to the methods of 

stegoanalysis presented in Chapter II, it has its own weaknesses. A rigorous study of 

techniques for countering the proposed scheme would allow further refinement of the ideas 

presented in this work. Varying mn  according to a shared key combined with small ζ  has 

the potential to make a covert message hidden in induced skew difficult to detect. This idea 

and other methods of decreasing the likelihood of detection warrant further exploration.  

The experiments conducted in [15] and [16] highlight the non-constant clock skew 

produced by certain OS’s when measured with the methods developed in [3]. A scheme 

could be developed to operate on these OS’s specifically. This scheme would naturally be 

more resilient to detection and analysis due to the adversaries’ inability to predict skew 

from these systems.  
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APPENDIX A.  TRANSMITTER CODE 

The following code implements the transmitter used for the testing and 

experimentation presented in Chapter IV. The function CRC computes a CRC-9 FCS value 

and appends it to the message. In main, code developed by [23] is used to open a raw socket 

and fill in the values for the Ethernet, IP, and TCP headers. User input is solicited for 

parameter values ,q  ,mn  ,ζ  and the message in American Standard Code for Information 

Interchange (ascii). The ascii message is converted to bits and then symbols depending on 

the value of .q  An infinite while loop maintains transmission until user intervention. Each 

iteration of the while loop indexes  mn  nested in the array of symbols to determine the 

offset needed for each outgoing timestamp.  

 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h>          // close() 
#include <string.h>          // strcpy, memset(), and memcpy() 
#include <sys/time.h>      // for gettime of day 
#include <netdb.h>          // struct addrinfo 
#include <sys/types.h>    // needed for socket(), uint8_t, 
uint16_t, uint32_t 
#include <sys/socket.h>       // needed for socket() 
#include <netinet/in.h>       // IPPROTO_TCP, INET_ADDRSTRLEN 
#include <netinet/ip.h>       // struct ip and IP_MAXPACKET 
(which is 65535) 
#define __FAVOR_BSD           // Use BSD format of tcp header 
#include <netinet/tcp.h>      // struct tcphdr 
#include <arpa/inet.h>        // inet_pton() and inet_ntop() 
#include <sys/ioctl.h>        // macro ioctl is defined 
#include <bits/ioctls.h>      // defines values for argument 
"request" of ioctl. 
#include <net/if.h>           // struct ifreq 
#include <linux/if_ether.h>   // ETH_P_IP = 0x0800, 
ETH_P_IPV6 = 0x86DD 
#include <linux/if_packet.h>  // struct sockaddr_ll (see man 
7 packet) 
#include <net/ethernet.h> 
# include <unistd.h>                //for sleep func 
#include <errno.h>            // errno, perror() 
#include <math.h>             //needed for floor 
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#define ETH_HDRLEN 14  // Ethernet header length 
#define IP4_HDRLEN 20  // IPv4 header length 
#define TCP_HDRLEN 20  // TCP header length, excludes options 
data 
#define MAX_STRING_LEN 20 
 
// Function prototypes 
uint16_t checksum (uint16_t *, int); 
uint16_t tcp4_checksum (struct ip, struct tcphdr, uint8_t *, 
int); 
char *allocate_strmem (int); 
char **allocate_strmemp (int); 
uint8_t *allocate_ustrmem (int); 
uint8_t **allocate_ustrmemp (int); 
int *allocate_intmem (int); 
 
int added_code[8]={0,0,0,0,0,0,0,0}; 
int 
bit_string[640]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
 
 
//CRC FCS Calculation 
int CRC(int msg_len) 
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{ 
int i=0; 
int j=0; 
int msg_bin[809]; 
int CRC_code[9]={1,1,1,1,1,1,1,1,1}; 
 
for(int i=0; i<(msg_len+9); i++){ 
if(i<msg_len){msg_bin[i]=bit_string[i];} 
else{msg_bin[i]=0;}} 
 
i=0; 
//i represents a right shift of the CRC code 
while (i<(msg_len)) 
{ 
printf("\ni loop top, msg_bin[%d]=%d", i, msg_bin[i]); 
if (msg_bin[i]==1) 
{ 
//j represents the xor of each digit 
j=0; 
while (j<9){ 
 if (CRC_code[j]==1) 
{ 
  if (msg_bin[i+j]==0) 
   {msg_bin[i+j]=1;} 
  else if (msg_bin[i+j]==1) 
   {msg_bin[i+j]=0;}} 
j++;}} 
i++; 
 
added_code[0]=msg_bin[msg_len]; 
added_code[1]=msg_bin[msg_len+1]; 
added_code[2]=msg_bin[msg_len+2]; 
added_code[3]=msg_bin[msg_len+3]; 
added_code[4]=msg_bin[msg_len+4]; 
added_code[5]=msg_bin[msg_len+5]; 
added_code[6]=msg_bin[msg_len+6]; 
added_code[7]=msg_bin[msg_len+7]; 
return 0;} 
 
//Converts input arguements from string to int variable type 
int str_to_int(char *st1){ 
int result, dec=0,i,j,len; 
len=strlen(st1); 
for(i=0;i<len;i++){dec=dec*10+(st1[i]-'0');} 
return dec;} 
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int 
main (int argc, char *argv[]) 
{int i, j, k, l, m, mm, n, c, status, frame_length, sd, bytes, 
*ip_flags, *tcp_flags, nopt, *opt_len, buf_len, newport, 
bit_count, nm, zeta, msg_pack_count, CRC_result[8], Q4[800], 
Q16[400], q, wait_time, wait_rand; 
  char *interface, *target, *src_ip, *dst_ip,*message_temp, 
message[MAX_STRING_LEN]; 
  struct timeval t1, t2; //for time elapsed 
  double elapsedTime, start, end, start_s, end_s, start_us, 
end_us, end_us_old, us_delta, Delta_rho; // for time elapsed 
  struct ip iphdr; 
  struct tcphdr tcphdr; 
  uint8_t *src_mac, *dst_mac, *ether_frame, 
*opt1,*opt2,*opt3,*opt4; 
  uint8_t **options, *opt_buffer; 
  struct addrinfo hints, *res; 
  struct sockaddr_in *ipv4; 
  struct sockaddr_ll device; 
  struct ifreq ifr; 
  void *tmp; 
  unsigned long start_long, end_long; 
  //char *msg_input = (char*) malloc( 100 ); 
 
  // Allocate memory for various arrays. 
  src_mac = allocate_ustrmem (6); 
  dst_mac = allocate_ustrmem (6); 
  ether_frame = allocate_ustrmem (IP_MAXPACKET); 
  interface = allocate_strmem (40); 
  target = allocate_strmem (40); 
  src_ip = allocate_strmem (INET_ADDRSTRLEN); 
  dst_ip = allocate_strmem (INET_ADDRSTRLEN); 
  ip_flags = allocate_intmem (4); 
  tcp_flags = allocate_intmem (8); 
  opt_len = allocate_intmem (10); 
  options = allocate_ustrmemp (10); 
  for (l=0; l<10; l++) { 
    options[l] = allocate_ustrmem (40);} 
  opt_buffer = allocate_ustrmem (40); 
 
  // Interface to send packet through. 
  strcpy (interface, "eno1"); 
 
  // Submit request for a socket descriptor to look up 
interface. 
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  if ((sd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL))) 
< 0) { 
    perror ("socket() failed to get socket descriptor for 
using ioctl() "); 
    exit (EXIT_FAILURE);} 
 
  // Use ioctl() to look up interface name and get its MAC 
address. 
  memset (&ifr, 0, sizeof (ifr)); 
  snprintf (ifr.ifr_name, sizeof (ifr.ifr_name), "%s", 
interface); 
  if (ioctl (sd, SIOCGIFHWADDR, &ifr) < 0) { 
    perror ("ioctl() failed to get source MAC address "); 
    return (EXIT_FAILURE);} 
  close (sd); 
 
  // Copy source MAC address. 
  memcpy (src_mac, ifr.ifr_hwaddr.sa_data, 6 * sizeof 
(uint8_t)); 
 
  // Report source MAC address to stdout. 
  printf ("MAC address for interface %s is ", interface); 
  for (l=0; l<5; l++) { 
    printf ("%02x:", src_mac[l]);} 
  printf ("%02x\n", src_mac[5]); 
 
  // Find interface index from interface name and store index 
in 
  // struct sockaddr_ll device, which will be used as an 
argument of sendto(). 
  memset (&device, 0, sizeof (device)); 
  if ((device.sll_ifindex = if_nametoindex (interface)) == 0) 
{ 
    perror ("if_nametoindex() failed to obtain interface 
index "); 
    exit (EXIT_FAILURE); 
  } 
  printf ("Index for interface %s is %i\n", interface, 
device.sll_ifindex); 
 
  // Set destination MAC address: you need to fill these out 
  dst_mac[0] = 0xff; 
  dst_mac[1] = 0xff; 
  dst_mac[2] = 0xff; 
  dst_mac[3] = 0xff; 
  dst_mac[4] = 0xff; 
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  dst_mac[5] = 0xff; 
 
  // Source IPv4 address: you need to fill this out 
  strcpy (src_ip, "13.13.13.39"); 
 
  // Destination URL or IPv4 address: you need to fill this 
out 
  strcpy (target, "13.13.13.52"); 
 
  // Fill out hints for getaddrinfo(). 
  memset (&hints, 0, sizeof (struct addrinfo)); 
  hints.ai_family = AF_INET; 
  hints.ai_socktype = SOCK_STREAM; 
  hints.ai_flags = hints.ai_flags | AI_CANONNAME; 
 
  // Resolve target using getaddrinfo(). 
  if ((status = getaddrinfo (target, NULL, &hints, &res)) != 
0) { 
    fprintf (stderr, "getaddrinfo() failed: %s\n", 
gai_strerror (status)); 
    exit (EXIT_FAILURE); 
  } 
  ipv4 = (struct sockaddr_in *) res->ai_addr; 
  tmp = &(ipv4->sin_addr); 
  if (inet_ntop (AF_INET, tmp, dst_ip, INET_ADDRSTRLEN) == 
NULL) { 
    status = errno; 
    fprintf (stderr, "inet_ntop() failed.\nError message: 
%s", strerror (status)); 
    exit (EXIT_FAILURE); 
  } 
  freeaddrinfo (res); 
 
  // Fill out sockaddr_ll. 
  device.sll_family = AF_PACKET; 
  memcpy (device.sll_addr, src_mac, 6 * sizeof (uint8_t)); 
  device.sll_halen = 6; 
 
message_temp=*argv[1]; 
for(l=0;l<=strlen(argv[1]);l++){message[l]=argv[1][l];} 
zeta=str_to_int(argv[2]); 
nm=str_to_int(argv[3]); 
q=str_to_int(argv[4]); 
 
for (l=0;l<=strlen(message);l++) 
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{ 
 j=0; 
n=message[l]; 
while (j<8) 
{ 
 bit_string[(i*8)+j]=(n>>j)%2; 
 
j++;}} 
 
//Calculating total packets to contain message information so 
we can stop inducing the skew after CRC is sent 
 
if(q==1){msg_pack_count=(((strlen(message)*8)+8)*nm);} 
else if(q==2){msg_pack_count=(((strlen(message)*4)+4)*nm);} 
else if(q==4){msg_pack_count=(((strlen(message)*2)+2)*nm);} 
 
//CRC-9 calculation 
 
CRC((strlen(message)*8)); 
//CRC value is contained in added_code(global) and calculaed 
in CRC 
bit_string[(strlen(message)*8)]=added_code[0]; 
bit_string[(strlen(message)*8)+1]=added_code[1]; 
bit_string[(strlen(message)*8)+2]=added_code[2]; 
bit_string[(strlen(message)*8)+3]=added_code[3]; 
bit_string[(strlen(message)*8)+4]=added_code[4]; 
bit_string[(strlen(message)*8)+5]=added_code[5]; 
bit_string[(strlen(message)*8)+6]=added_code[6]; 
bit_string[(strlen(message)*8)+7]=added_code[7]; 
 
//Created the array of message symbols for q=2 
for(m=0;m<(strlen(message)*8);m=m+2) 
{ 
if (bit_string[m]==0){ 
//00 
if(bit_string[m+1]==0){Q4[m/2]=1;} 
//01 
else if (bit_string[m+1]==1){Q4[m/2]=-1;} 
} 
 
else if(bit_string[m]==1){ 
//11 
if(bit_string[m+1]==0){Q4[m/2]=-2;} 
//10 
else if (bit_string[m+1]==1){Q4[m/2]=2;}}} 
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for(mm=0;mm<(strlen(message)*8);mm=mm+4){ 
 
//Creates the array of message symbols for q=4 
if (bit_string[mm]==0){ 
if(bit_string[mm+1]==0){ 
if(bit_string[mm+2]==0){ 
//0000 
if(bit_string[mm+3]==0){Q16[mm/4]=-8;} 
//0001 
else if (bit_string[mm+3]==1){Q16[mm/4]=-7;}} 
 
else if(bit_string[mm+2]==1){ 
//0010 
if(bit_string[mm+3]==0){Q16[mm/4]=-5;} 
//0011 
else if (bit_string[mm+3]==1){Q16[mm/4]=-6;}}} 
 
else if (bit_string[mm+1]==1){ 
 
if(bit_string[mm+2]==0){ 
//0100 
if(bit_string[mm+3]==0){Q16[mm/4]=-1;} 
//0101 
else if (bit_string[mm+3]==1){Q16[mm/4]=-2;}} 
 
else if(bit_string[mm+2]==1){ 
//0110 
if(bit_string[mm+3]==0){Q16[mm/4]=-4;} 
//0111 
else if (bit_string[mm+3]==1){Q16[mm/4]=-3;}}}} 
 
else if (bit_string[mm]==1){ 
if(bit_string[mm+1]==0){ 
if(bit_string[mm+2]==0){ 
//1000 
if(bit_string[mm+3]==0){Q16[mm/4]=8;} 
//1001 
else if (bit_string[mm+3]==1){Q16[mm/4]=7;}} 
 
else if(bit_string[mm+2]==1){ 
//1010 
if(bit_string[mm+3]==0){Q16[mm/4]=5;} 
//1011 
else if (bit_string[mm+3]==1){Q16[mm/4]=6;}}} 
 
else if (bit_string[mm+1]==1){ 
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if(bit_string[mm+2]==0){ 
//1100 
if(bit_string[mm+3]==0){Q16[mm/4]=1;} 
//1101 
else if (bit_string[mm+3]==1){Q16[mm/4]=2;}} 
 
else if(bit_string[mm+2]==1){ 
//1110 
if(bit_string[mm+3]==0){Q16[mm/4]=4;} 
//1111 
else if (bit_string[mm+3]==1){Q16[mm/4]=3;}}}}} 
 
 // Number of TCP options 
  nopt = 2; 
 
  // First TCP option - Maximum segment size 
  opt_len[0] = 0; 
  options[0][0] = 2u; opt_len[0]++;  // Option kind 2 = 
maximum segment size 
  options[0][1] = 4u; opt_len[0]++;  // This option kind is 
4 bytes long 
  options[0][2] = 0x1u; opt_len[0]++;  // Set maximum segment 
size to 0x100 = 256 
  options[0][3] = 0x0u; opt_len[0]++; 
 
//setting first timestamp to startime 
gettimeofday(&t1, NULL); 
start_s=t1.tv_sec; 
start_us=t1.tv_usec; 
 
c=floor(start_s/10000); 
 
start_s=start_s-(c)*10000; 
start=start_s*1000000+start_us; 
start_long=floor(start); 
opt1=&start_long; 
opt2=opt1+1; 
opt3=opt2+1; 
opt4=opt3+1; 
 
  // Second TCP option - Timestamp option 
  opt_len[1] = 0; 
  options[1][0] = 8u; opt_len[1]++;  // Option kind 8 = 
Timestamp option (TSOPT) 
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  options[1][1] = 10u; opt_len[1]++;  // This option is 10 
bytes long 
  options[1][2] = *opt4; opt_len[1]++;  // Set the sender's 
timestamp (TSval) (4 bytes) (need SYN set to be valid) 
  options[1][3] = *opt3; opt_len[1]++; 
  options[1][4] = *opt2; opt_len[1]++; 
  options[1][5] = *opt1; opt_len[1]++; 
 
options[1][6] = 0x0u; opt_len[1]++;  // Set the echo timestamp 
(TSecr) (4 bytes) (need ACK set to be valid) 
  options[1][7] = 0x0u; opt_len[1]++; 
  options[1][8] = 0x0u; opt_len[1]++; 
  options[1][9] = 0x0u; opt_len[1]++; 
 
  // Copy all options into single options buffer. 
  buf_len = 0; 
  c = 0;  // index to opt_buffer 
  for (l=0; l<nopt; l++) { 
    memcpy (opt_buffer + c, options[l], opt_len[l] * sizeof 
(uint8_t)); 
    c += opt_len[l]; 
    buf_len += opt_len[l];} 
 
  // Pad to the next 4-byte boundary. 
  while ((buf_len%4) != 0) { 
    opt_buffer[buf_len] = 0; 
    buf_len++;} 
 
  // IPv4 header 
 
  // IPv4 header length (4 bits): Number of 32-bit words in 
header = 5 
  iphdr.ip_hl = IP4_HDRLEN / sizeof (uint32_t); 
 
  // Internet Protocol version (4 bits): IPv4 
  iphdr.ip_v = 4; 
 
  // Type of service (8 bits) 
  iphdr.ip_tos = 0; 
 
  // Total length of datagram (16 bits): IP header + TCP 
header + TCP options 
  iphdr.ip_len = htons (IP4_HDRLEN + TCP_HDRLEN + buf_len); 
 
  // ID sequence number (16 bits): unused, since single 
datagram 
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  iphdr.ip_id = htons (0); 
 
  // Flags, and Fragmentation offset (3, 13 bits): 0 since 
single datagram 
 
  // Zero (1 bit) 
  ip_flags[0] = 0; 
 
  // Do not fragment flag (1 bit) 
  ip_flags[1] = 0; 
 
  // More fragments following flag (1 bit) 
  ip_flags[2] = 0; 
 
  // Fragmentation offset (13 bits) 
  ip_flags[3] = 0; 
 
  iphdr.ip_off = htons ((ip_flags[0] << 15) 
                      + (ip_flags[1] << 14) 
                      + (ip_flags[2] << 13) 
                      +  ip_flags[3]); 
 
  // Time-to-Live (8 bits): default to maximum value 
  iphdr.ip_ttl = 255; 
 
  // Transport layer protocol (8 bits): 6 for TCP 
  iphdr.ip_p = IPPROTO_TCP; 
 
  // Source IPv4 address (32 bits) 
  if ((status = inet_pton (AF_INET, src_ip, &(iphdr.ip_src))) 
!= 1) { 
    fprintf (stderr, "inet_pton() failed.\nError message: 
%s", strerror (status)); 
    exit (EXIT_FAILURE);} 
 
  // Destination IPv4 address (32 bits) 
  if ((status = inet_pton (AF_INET, dst_ip, &(iphdr.ip_dst))) 
!= 1) { 
    fprintf (stderr, "inet_pton() failed.\nError message: 
%s", strerror (status)); 
    exit (EXIT_FAILURE);} 
 
  // IPv4 header checksum (16 bits): set to 0 when calculating 
checksum 
  iphdr.ip_sum = 0; 
  iphdr.ip_sum = checksum ((uint16_t *) &iphdr, IP4_HDRLEN); 
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  // TCP header 
 
  // Source port number (16 bits) 
  tcphdr.th_sport = htons (1313); 
 
  // Destination port number (16 bits) 
  tcphdr.th_dport = htons (80); 
 
  // Sequence number (32 bits) 
  tcphdr.th_seq = htonl (0); 
 
  // Acknowledgement number (32 bits): 0 in first packet of 
SYN/ACK process 
  tcphdr.th_ack = htonl (0); 
 
  // Reserved (4 bits): should be 0 
  tcphdr.th_x2 = 0; 
 
  // Data offset (4 bits): size of TCP header + length of 
options, in 32-bit words 
  tcphdr.th_off = (TCP_HDRLEN  + buf_len) / 4; 
 
  // Flags (8 bits) 
 
  // FIN flag (1 bit) 
  tcp_flags[0] = 0; 
 
  // SYN flag (1 bit): set to 1 
  tcp_flags[1] = 1; 
 
  // RST flag (1 bit) 
  tcp_flags[2] = 0; 
 
  // PSH flag (1 bit) 
  tcp_flags[3] = 0; 
 
  // ACK flag (1 bit) 
  tcp_flags[4] = 0; 
 
  // URG flag (1 bit) 
  tcp_flags[5] = 0; 
 
  // ECE flag (1 bit) 
  tcp_flags[6] = 0; 
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  // CWR flag (1 bit) 
  tcp_flags[7] = 0; 
 
  tcphdr.th_flags = 0; 
  for (i=0; i<8; i++) { 
    tcphdr.th_flags += (tcp_flags[i] << i); 
  } 
 
  // Window size (16 bits) 
  tcphdr.th_win = htons (65535); 
 
  // Urgent pointer (16 bits): 0 (only valid if URG flag is 
set) 
  tcphdr.th_urp = htons (0); 
 
  // TCP checksum (16 bits) 
  tcphdr.th_sum = tcp4_checksum (iphdr, tcphdr, opt_buffer, 
buf_len); 
 
  // Fill out ethernet frame header. 
 
  // Ethernet frame length = ethernet header (MAC + MAC + 
ethernet type) + ethernet data (IP header + TCP header + TCP 
options) 
  frame_length = 6 + 6 + 2 + IP4_HDRLEN + TCP_HDRLEN + 
buf_len; 
 
  // Destination and Source MAC addresses 
  memcpy (ether_frame, dst_mac, 6 * sizeof (uint8_t)); 
  memcpy (ether_frame + 6, src_mac, 6 * sizeof (uint8_t)); 
 
  // Next is ethernet type code (ETH_P_IP for IPv4). 
  // http://www.iana.org/assignments/ethernet-numbers 
  ether_frame[12] = ETH_P_IP / 256; 
  ether_frame[13] = ETH_P_IP % 256; 
 
  // Next is ethernet frame data (IPv4 header + TCP header). 
 
  // IPv4 header 
  memcpy (ether_frame + ETH_HDRLEN, &iphdr, IP4_HDRLEN * 
sizeof (uint8_t)); 
 
  // TCP header 
  memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN, &tcphdr, 
TCP_HDRLEN * sizeof (uint8_t)); 
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  // TCP Options 
  memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN + TCP_HDRLEN, 
opt_buffer, buf_len * sizeof (uint8_t)); 
 
  // Submit request for a raw socket descriptor. 
  if ((sd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL))) 
< 0) { 
    perror ("socket() failed "); 
    exit (EXIT_FAILURE); 
  } 
 
i=0; 
bit_count=0; 
Delta_rho=0; 
 
//The embedding portion occurs within this loop 
while(1){ 
newport=rand(); 
wait_rand=rand(); 
wait_rand=(wait_rand%100000)+10000; 
 
  // Send ethernet frame to socket. 
  if ((bytes = sendto (sd, ether_frame, frame_length, 0, 
(struct sockaddr *) &device, sizeof (device))) <= 0) { 
    perror ("sendto() failed"); 
    exit (EXIT_FAILURE);} 
 
//Uniform Random interpacket delay 10-110 ms 
usleep(wait_rand); 
 
gettimeofday(&t2, NULL); 
 
end_s=t2.tv_sec; 
end_us=t2.tv_usec; 
us_delta=floor(end_us)-floor(end_us_old); 
 
c=floor(end_s/10000); 
end_s=end_s-(c)*10000; 
end=end_s*1000000+end_us; 
us_delta=floor(end)-floor(end_us_old); 
end_us_old=end; 
 
end_long=floor(end); 
 
if(i>150){ 
 Delta_rho=Delta_rho+us_t; 
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 if(q==1){ 
    if(i<msg_pack_count){ 
  
 end_long=end_long+((bit_string[j])*zeta*Delta_rho/1000
000); 
   if(bit_string[j]==0){end_long=end_long-
zeta*Delta_rho/1000000;}}} 
 
 else if(q==2){ 
 
 if(i<msg_pack_count){end_long=end_long+zeta*(Delta_rho
/1000000)*Q4[bit_count];}} 
 
 else if(q==4){ 
 
 if(i<msg_pack_count){end_long=end_long+zeta*(Delta_rho
/1000000)*Q16[bit_count];}}} 
 
opt1=&end_long; 
opt2=opt1+1; 
opt3=opt2+1; 
opt4=opt3+1; 
 
 
i++; 
if(i>150) 
{if(i%nm==0) 
{bit_count++; 
Delta_rho=0;}} 
 
//Changing destination port at random and redoing checksum 
tcphdr.th_dport=htons(newport); 
tcphdr.th_sum = tcp4_checksum (iphdr, tcphdr, opt_buffer, 
buf_len); 
 
  options[1][2] = *opt4;   // Set the sender's timestamp 
(TSval) (4 bytes) 
  options[1][3] = *opt3; 
  options[1][4] = *opt2; 
  options[1][5] = *opt1; 
 
 
  buf_len = 0; 
  c = 0;  // index to opt_buffer 
  for (l=0; l<nopt; l++) { 
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    memcpy (opt_buffer + c, options[l], opt_len[l] * sizeof 
(uint8_t)); 
    c += opt_len[l]; 
    buf_len += opt_len[l]; 
  } 
 
  // Pad to the next 4-byte boundary. 
  while ((buf_len%4) != 0) { 
    opt_buffer[buf_len] = 0; 
    buf_len++;} 
 
 
// TCP header 
  memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN, &tcphdr, 
TCP_HDRLEN * sizeof (uint8_t)); 
 
  // TCP Options 
  memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN + TCP_HDRLEN, 
opt_buffer, buf_len * sizeof (uint8_t));} 
 
  // Close socket descriptor. 
  close (sd); 
 
  // Free allocated memory. 
  free (src_mac); 
  free (dst_mac); 
  free (ether_frame); 
  free (interface); 
  free (target); 
  free (src_ip); 
  free (dst_ip); 
  free (ip_flags); 
  free (tcp_flags); 
  free (opt_len); 
  for (l=0; l<10; l++) { 
    free (options[l]); 
  } 
  free (options); 
  free (opt_buffer); 
 
  return (EXIT_SUCCESS); 
} 
 
// Computing the internet checksum (RFC 1071). 
// Note that the internet checksum does not preclude 
collisions. 
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uint16_t 
checksum (uint16_t *addr, int len) 
{ 
  int count = len; 
  register uint32_t sum = 0; 
  uint16_t answer = 0; 
 
  // Sum up 2-byte values until none or only one byte left. 
  while (count > 1) { 
    sum += *(addr++); 
    count -= 2; 
  } 
 
  // Add left-over byte, if any. 
  if (count > 0) { 
    sum += *(uint8_t *) addr; 
  } 
 
  // Fold 32-bit sum into 16 bits; we lose information by 
doing this, 
  // increasing the chances of a collision. 
  // sum = (lower 16 bits) + (upper 16 bits shifted right 16 
bits) 
  while (sum >> 16) { 
    sum = (sum & 0xffff) + (sum >> 16); 
  } 
 
  // Checksum is one's compliment of sum. 
  answer = ~sum; 
 
  return (answer); 
} 
 
// Build IPv4 TCP pseudo-header and call checksum function. 
uint16_t 
tcp4_checksum (struct ip iphdr, struct tcphdr tcphdr, uint8_t 
*options, int opt_len) 
{ 
  uint16_t svalue; 
  char buf[IP_MAXPACKET], cvalue; 
  char *ptr; 
  int chksumlen = 0; 
 
  ptr = &buf[0];  // ptr points to beginning of buffer buf 
 
  // Copy source IP address into buf (32 bits) 
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  memcpy (ptr, &iphdr.ip_src.s_addr, sizeof 
(iphdr.ip_src.s_addr)); 
  ptr += sizeof (iphdr.ip_src.s_addr); 
  chksumlen += sizeof (iphdr.ip_src.s_addr); 
 
  // Copy destination IP address into buf (32 bits) 
  memcpy (ptr, &iphdr.ip_dst.s_addr, sizeof 
(iphdr.ip_dst.s_addr)); 
  ptr += sizeof (iphdr.ip_dst.s_addr); 
  chksumlen += sizeof (iphdr.ip_dst.s_addr); 
 
  // Copy zero field to buf (8 bits) 
  *ptr = 0; ptr++; 
  chksumlen += 1; 
 
  // Copy transport layer protocol to buf (8 bits) 
  memcpy (ptr, &iphdr.ip_p, sizeof (iphdr.ip_p)); 
  ptr += sizeof (iphdr.ip_p); 
  chksumlen += sizeof (iphdr.ip_p); 
 
  // Copy TCP length to buf (16 bits) 
  svalue = htons (sizeof (tcphdr) + opt_len); 
  memcpy (ptr, &svalue, sizeof (svalue)); 
  ptr += sizeof (svalue); 
  chksumlen += sizeof (svalue); 
 
  // Copy TCP source port to buf (16 bits) 
  memcpy (ptr, &tcphdr.th_sport, sizeof (tcphdr.th_sport)); 
  ptr += sizeof (tcphdr.th_sport); 
  chksumlen += sizeof (tcphdr.th_sport); 
 
  // Copy TCP destination port to buf (16 bits) 
  memcpy (ptr, &tcphdr.th_dport, sizeof (tcphdr.th_dport)); 
  ptr += sizeof (tcphdr.th_dport); 
  chksumlen += sizeof (tcphdr.th_dport); 
 
  // Copy sequence number to buf (32 bits) 
  memcpy (ptr, &tcphdr.th_seq, sizeof (tcphdr.th_seq)); 
  ptr += sizeof (tcphdr.th_seq); 
  chksumlen += sizeof (tcphdr.th_seq); 
 
  // Copy acknowledgement number to buf (32 bits) 
  memcpy (ptr, &tcphdr.th_ack, sizeof (tcphdr.th_ack)); 
  ptr += sizeof (tcphdr.th_ack); 
  chksumlen += sizeof (tcphdr.th_ack); 
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  // Copy data offset to buf (4 bits) and 
  // copy reserved bits to buf (4 bits) 
  cvalue = (tcphdr.th_off << 4) + tcphdr.th_x2; 
  memcpy (ptr, &cvalue, sizeof (cvalue)); 
  ptr += sizeof (cvalue); 
  chksumlen += sizeof (cvalue); 
 
  // Copy TCP flags to buf (8 bits) 
  memcpy (ptr, &tcphdr.th_flags, sizeof (tcphdr.th_flags)); 
  ptr += sizeof (tcphdr.th_flags); 
  chksumlen += sizeof (tcphdr.th_flags); 
 
  // Copy TCP window size to buf (16 bits) 
  memcpy (ptr, &tcphdr.th_win, sizeof (tcphdr.th_win)); 
  ptr += sizeof (tcphdr.th_win); 
  chksumlen += sizeof (tcphdr.th_win); 
 
  // Copy TCP checksum to buf (16 bits) 
  // Zero, since we don't know it yet 
  *ptr = 0; ptr++; 
  *ptr = 0; ptr++; 
  chksumlen += 2; 
 
  // Copy urgent pointer to buf (16 bits) 
  memcpy (ptr, &tcphdr.th_urp, sizeof (tcphdr.th_urp)); 
  ptr += sizeof (tcphdr.th_urp); 
  chksumlen += sizeof (tcphdr.th_urp); 
 
  // Copy TCP options to buf (variable length, but in 32-bit 
chunks) 
  memcpy (ptr, options, opt_len); 
  ptr += opt_len; 
  chksumlen += opt_len; 
 
  return checksum ((uint16_t *) buf, chksumlen); 
} 
 
// Allocate memory for an array of chars. 
char * 
allocate_strmem (int len) 
{ 
  void *tmp; 
 
  if (len <= 0) { 
    fprintf (stderr, "ERROR: Cannot allocate memory because 
len = %i in allocate_strmem().\n", len); 
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    exit (EXIT_FAILURE); 
  } 
 
  tmp = (char *) malloc (len * sizeof (char)); 
  if (tmp != NULL) { 
    memset (tmp, 0, len * sizeof (char)); 
    return (tmp); 
  } else { 
    fprintf (stderr, "ERROR: Cannot allocate memory for array 
allocate_strmem().\n"); 
    exit (EXIT_FAILURE); 
  } 
} 
 
// Allocate memory for an array of unsigned chars. 
uint8_t * 
allocate_ustrmem (int len) 
{ 
  void *tmp; 
 
  if (len <= 0) { 
    fprintf (stderr, "ERROR: Cannot allocate memory because 
len = %i in allocate_ustrmem().\n", len); 
    exit (EXIT_FAILURE); 
  } 
 
  tmp = (uint8_t *) malloc (len * sizeof (uint8_t)); 
  if (tmp != NULL) { 
    memset (tmp, 0, len * sizeof (uint8_t)); 
    return (tmp); 
  } else { 
    fprintf (stderr, "ERROR: Cannot allocate memory for array 
allocate_ustrmem().\n"); 
    exit (EXIT_FAILURE);}} 
 
// Allocate memory for an array of pointers to arrays of 
unsigned chars. 
uint8_t ** 
allocate_ustrmemp (int len) 
{ 
  void *tmp; 
 
  if (len <= 0) { 
    fprintf (stderr, "ERROR: Cannot allocate memory because 
len = %i in allocate_ustrmemp().\n", len); 
    exit (EXIT_FAILURE);} 
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  tmp = (uint8_t **) malloc (len * sizeof (uint8_t *)); 
  if (tmp != NULL) { 
    memset (tmp, 0, len * sizeof (uint8_t *)); 
    return (tmp); 
  } else { 
    fprintf (stderr, "ERROR: Cannot allocate memory for array 
allocate_ustrmemp().\n"); 
    exit (EXIT_FAILURE); 
  } 
} 
 
// Allocate memory for an array of ints. 
int * 
allocate_intmem (int len) 
{ 
  void *tmp; 
 
  if (len <= 0) { 
    fprintf (stderr, "ERROR: Cannot allocate memory because 
len = %i in allocate_intmem().\n", len); 
    exit (EXIT_FAILURE); 
  } 
 
  tmp = (int *) malloc (len * sizeof (int)); 
  if (tmp != NULL) { 
    memset (tmp, 0, len * sizeof (int)); 
    return (tmp); 
  } else { 
    fprintf (stderr, "ERROR: Cannot allocate memory for array 
allocate_intmem().\n"); 
    exit (EXIT_FAILURE); 
  }} 
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APPENDIX B.  RECEIVER CODE 

The following code implements the receiver used for the testing and 

experimentation presented in Chapter IV. The function msg_decode converts an ascii 

message into binary and then appends a computed CRC-9 FCS value. The program starts 

by using the python os and csv libraries to execute Tshark and strip the timestamps from 

packets collected via Tshark. The collected TCP timestamps and Tshark timestamps are 

used to calculate drift. The drift values are used with the polyfit function to calculate an 

estimate of baseline skew on the first 150bn =  packets. Then polyfit is used in a sliding 

window of ‘nm’ packets. These estimates populate a list labeled ‘mov_slope’. The index 

‘i’ is used to find the center packet of each ‘nm’ packets. The element of ‘mov_slope’ at 

this value of ‘i’ corresponds to a transmitted skew. The A/D conversion is accomplished 

by a series of if statements that determine if a particular skew estimate meets threshold 

values. The baseline skew is subtracted from each threshold to ensure only the induced 

skew is considered. Each induced skew estimate that is compared against threshold values 

populates a list ‘message_sym’ for message symbols and a list ‘message_bin’for bits. The 

results are then plotted using the matplotlib library. 

 
import csv 
import os 
kagg') 
import matplotlib.pyplot as plt 
from tkinter import * 
from tkinter import ttk 
 
import time 
import numpy 
import matplotlib as mpl 
mpl.use('t 
 
def msg_decode(msg): 
 
 global CRC_string, CRC_Result, q, compare_string 
 decoded_msg="" 
 msg_bits=len(msg) 
 extras=msg_bits%8 
 msg_bytes=int(numpy.floor((msg_bits/8))) 
 j=0 
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 current_byte="" 
 msg = msg[0:msg_bits-7] 
 msg_copy=msg[:] 
 k=0 
 n=0 
 CRC9_code=[1,1,1,1,1,1,1,1,1] 
 compare_string="" 
 
 msg_copy[msg_bits-8:msg_bits]=[0,0,0,0,0,0,0,0] 
 for k in range(0,msg_bits-8): 
  if msg_copy[k]==1: 
   n=0 
   while n<9: 
    if CRC9_code[n]==1 and msg_copy[k+n]==1: 
msg_copy[k+n]=0 
    elif CRC9_code[n]==1 and msg_copy[k+n]==0: 
msg_copy[k+n]=1 
    n+=1 
 CRC_Result=msg_copy[msg_bits-8:msg_bits] 
 if msg[msg_bits-8:msg_bits]==CRC_Result: 
  print("\nCRC Check Passed!") 
  CRC_string="Passed" 
 else: 
  print("\nCRC Check Failed :(") 
  CRC_string="Failed!" 
 
 for i in range(0,msg_bytes-1): 
  current_byte="" 
  j=0 
  while j<8: 
   current_byte+=str(msg[(8*(i+1))-(j+1)]) 
   #print("msg[",8*(i+1)-j+1,"]=",msg[(8*(i+1))-
(j+1)]) 
   if j==7: 
    #print("current byte is",current_byte) 
   if current_byte=="00100000": decoded_msg+=" " 
   if current_byte=="00101101": decoded_msg+="-" 
   if current_byte=="00101110": decoded_msg+="." 
   if current_byte=="00110000": decoded_msg+="0" 
   if current_byte=="00110001": decoded_msg+="1" 
   if current_byte=="00110010": decoded_msg+="2" 
   if current_byte=="00110011": decoded_msg+="3" 
   if current_byte=="00110100": decoded_msg+="4" 
   if current_byte=="00110101": decoded_msg+="5" 
   if current_byte=="00110110": decoded_msg+="6" 
   if current_byte=="00110111": decoded_msg+="7" 
   if current_byte=="00111000": decoded_msg+="8" 
   if current_byte=="00111001": decoded_msg+="9" 
   if current_byte=="00111010": decoded_msg+=":" 
   if current_byte=="00111011": decoded_msg+=";" 
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   if current_byte=="00111100": decoded_msg+="<" 
   if current_byte=="00111101": decoded_msg+="=" 
   if current_byte=="01000001": decoded_msg+="A" 
   if current_byte=="01000010": decoded_msg+="B" 
   if current_byte=="01000011": decoded_msg+="C" 
   if current_byte=="01000100": decoded_msg+="D" 
   if current_byte=="01000101": decoded_msg+="E" 
   if current_byte=="01000110": decoded_msg+="F" 
   if current_byte=="01000111": decoded_msg+="G" 
   if current_byte=="01001000": decoded_msg+="H" 
   if current_byte=="01001001": decoded_msg+="I" 
   if current_byte=="01001010": decoded_msg+="J" 
   if current_byte=="01001011": decoded_msg+="K" 
   if current_byte=="01001100": decoded_msg+="L" 
   if current_byte=="01001101": decoded_msg+="M" 
   if current_byte=="01001110": decoded_msg+="N" 
   if current_byte=="01001111": decoded_msg+="O" 
   if current_byte=="01010000": decoded_msg+="P" 
   if current_byte=="01010001": decoded_msg+="Q" 
   if current_byte=="01010010": decoded_msg+="R" 
   if current_byte=="01010011": decoded_msg+="S" 
   if current_byte=="01010100": decoded_msg+="T" 
   if current_byte=="01010101": decoded_msg+="U" 
   if current_byte=="01010110": decoded_msg+="V" 
   if current_byte=="01010111": decoded_msg+="W" 
   if current_byte=="01011000": decoded_msg+="X" 
   if current_byte=="01011001": decoded_msg+="Y" 
   if current_byte=="01011010": decoded_msg+="Z" 
   if current_byte=="01011011": decoded_msg+="[" 
   #if current_byte=="01011100": decoded_msg+="\" 
   if current_byte=="01011101": decoded_msg+="]" 
   if current_byte=="01011110": decoded_msg+="^" 
   if current_byte=="01100001": decoded_msg+="a" 
   if current_byte=="01100010": decoded_msg+="b" 
   if current_byte=="01100011": decoded_msg+="c" 
   if current_byte=="01100100": decoded_msg+="d" 
   if current_byte=="01100101": decoded_msg+="e" 
   if current_byte=="01100110": decoded_msg+="f" 
   if current_byte=="01100111": decoded_msg+="g" 
   if current_byte=="01101000": decoded_msg+="h" 
   if current_byte=="01101001": decoded_msg+="i" 
   if current_byte=="01101010": decoded_msg+="j" 
   if current_byte=="01101011": decoded_msg+="k" 
   if current_byte=="01101100": decoded_msg+="l" 
   if current_byte=="01101101": decoded_msg+="m" 
   if current_byte=="01101110": decoded_msg+="n" 
   if current_byte=="01101111": decoded_msg+="o" 
   if current_byte=="01110000": decoded_msg+="p" 
   if current_byte=="01110001": decoded_msg+="q" 
   if current_byte=="01110010": decoded_msg+="r" 
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   if current_byte=="01110011": decoded_msg+="s" 
   if current_byte=="01110100": decoded_msg+="t" 
   if current_byte=="01110101": decoded_msg+="u" 
   if current_byte=="01110110": decoded_msg+="v" 
   if current_byte=="01110111": decoded_msg+="w" 
   if current_byte=="01111000": decoded_msg+="x" 
   if current_byte=="01111001": decoded_msg+="y" 
   if current_byte=="01111010": decoded_msg+="z" 
   compare_string+=current_byte 
   j+=1 
 
 
 return decoded_msg 
 
 
 
global CRC_string, CRC_Result, RS_Code, nm, mod, message_bin, 
message_sym, compare_string 
offset=[] 
Tsval=[] 
rc2=[] 
rc1=[] 
time_factor=1000000 
drift=[] 
discarded_packets=0 
field_count=0 
fit=[] 
ys=[] 
poly=[] 
current_slope=[] 
mov_slope=[] 
b=0 
c=0 
nm=50 
zeta=2500 
minslop=0 
maxslop=0 
std_dev=0 
Time_Travel=0 
j=0 
k=0 
message_bin=[] 
message_sym=[] 
message_ascii="" 
rel_max=0 
rel_min=0 
drift_delta=[] 
last_bit_num=0 
bit_index=[] 
root=Tk() 
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row_to_write="" 
q=1 
 
os.system("sudo tshark -i eno1 -Y 'tcp.srcport==1313' 
>testfile.txt") 
with open('testfile.txt', newline='') as f: 
 data = csv.reader(f,delimiter=" ") 
 for row in data: 
  #print("row=",row) 
  for i in row: 
   #print("Row element=",i) 
   if i != "": 
    field_count+=1 
   if field_count==2: 
    offset+=[float(i)] 
    #print("Offset is now",offset) 
    field_count+=1 
   if len(i)>3: 
    if i[0]=="T" and i[2]=="v": 
     Tsval+=[float(i.split("=")[1])] 
     #print("Tsval is now",Tsval) 
  #if len(offset)!=len(Tsval): 
offset=offset[:(len(offset)-2)] 
  field_count=0 
 
tc2=[] 
rc2=[] 
rc1=[] 
 
  #print(len(row)) 
if len(offset)!=len(Tsval): print("Arrays of different length. 
Some garbage packet is being taken seriously") 
 
for i in range(0,len(tc2)): 
    rc2+=[tc2[i]-tc2[0]] 
    rc1+=[(Tsval[i]-Tsval[0])/time_factor] 
    drift+=[rc1[i]-rc2[i]] 
 
##Calculates moving average of slope of drift values 
b=0 
c=0 
for i in range(0,(len(drift))): 
 if i<(int(numpy.floor(nm/2))): b=0 
 else: b= i-(int(numpy.floor(nm/2))) 
 if i>= (len(drift)-(int(numpy.floor(nm/2)))): c=(len(drift)) 
 else: c= i+(int(numpy.floor(nm/2))) 
 current_slope=numpy.polyfit(rc2[b:c],drift[b:c],1)[0] 
 mov_slope+=[current_slope] 
 
base_skew=numpy.polyfit(rc2[0:150],drift[0:150],1)[0] 



 88 

print("base_skew=",base_skew) 
 
b=0 
c=0 
 
k=nm-1 
bit_values=[] 
bit_valx=[] 
threshold_matrix=[] 
for i in range(0,(len(drift))): 
 if i>=(150+nm/2): 
  k+=1 
  if q==1: 
   if k==nm: 
    k=0 
 
    if mov_slope[i]>base_skew: 
     message_bin+=[1] 
     message_sym+=[1] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
 
    elif mov_slope[i]<base_skew: 
     message_bin+=[0] 
     message_sym+=[-1] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
 
 
 
  if q==2: 
   if k==nm: 
    k=0 
    if mov_slope[i]>base_skew and 
mov_slope[i]<=(1.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[0] 
     message_sym+=[1] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
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    elif mov_slope[i]<base_skew and 
mov_slope[i]>=(-1.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[1] 
     message_sym += [-1] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif mov_slope[i]<((-
1.5*mod/1000000)+base_skew): 
     message_bin+=[1] 
     message_bin+=[1] 
     message_sym += [-2] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif 
mov_slope[i]>((1.5*mod/1000000)+base_skew): 
     message_bin+=[1] 
     message_bin+=[0] 
     message_sym += [2] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
     k=0 
 
  if q==4: 
   if k>=nm: 
    if mov_slope[i]>base_skew and 
mov_slope[i]<=(1.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[1] 
     message_bin+=[1] 
     message_sym += [1] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif 
mov_slope[i]>((1.5*mod/1000000)+base_skew) and 
mov_slope[i]<=(2.5*mod/1000000)+base_skew: #corrected 
     message_bin+=[1] 
     message_bin+=[0] 
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     message_bin+=[1] 
     message_bin+=[1] 
     message_sym += [2] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif 
mov_slope[i]>((2.5*mod/1000000)+base_skew) and 
mov_slope[i]<=(3.5*mod/1000000)+base_skew: 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[1] 
     message_sym += [3] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif 
mov_slope[i]>((3.5*mod/1000000)+base_skew) and 
mov_slope[i]<=(4.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[1] 
     message_sym += [4] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
     k=0 
 
    elif 
mov_slope[i]>((4.5*mod/1000000)+base_skew) and 
mov_slope[i]<=(5.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[1] 
     message_bin+=[0] 
     message_bin+=[1] 
     message_sym += [5] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
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    elif 
mov_slope[i]>((5.5*mod/1000000)+base_skew) and 
mov_slope[i]<=(6.5*mod/1000000)+base_skew: 
     message_sym += [6] 
 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[0] 
     message_bin+=[1] 
 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
 
    elif 
mov_slope[i]>((6.5*mod/1000000)+base_skew) and 
mov_slope[i]<=(7.5*mod/1000000)+base_skew: 
     message_bin+=[1] 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[1] 
     message_sym += [7] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
 
    elif 
mov_slope[i]>((7.5*mod/1000000)+base_skew): 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[1] 
     message_sym += [8] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
     k=0 
 
    elif mov_slope[i]<base_skew and 
mov_slope[i]>=(-1.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[1] 
     message_bin+=[0] 
     message_sym += [-1] 
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     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif mov_slope[i]<((-
1.5*mod/1000000)+base_skew) and mov_slope[i]>=(-
2.5*mod/1000000)+base_skew: 
     message_bin+=[1] 
     message_bin+=[0] 
     message_bin+=[1] 
     message_bin+=[0] 
     message_sym += [-2] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif mov_slope[i]<((-
2.5*mod/1000000)+base_skew) and mov_slope[i]>=(-
3.5*mod/1000000)+base_skew: 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[0] 
     message_sym += [-3] 
     k=0 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif mov_slope[i]<((-
3.5*mod/1000000)+base_skew) and mov_slope[i]>=(-
4.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[0] 
     message_sym += [-4] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
     k=0 
 
    elif mov_slope[i]<((-
4.5*mod/1000000)+base_skew) and mov_slope[i]>=(-
5.5*mod/1000000)+base_skew: 
     message_bin+=[0] 
     message_bin+=[1] 
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     message_bin+=[0] 
     message_bin+=[0] 
     message_sym += [-5] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
    elif mov_slope[i]<((-
5.5*mod/1000000)+base_skew) and mov_slope[i]>=(-
6.5*mod/1000000)+base_skew: #corrected 
     message_bin+=[1] 
     message_bin+=[1] 
     message_bin+=[0] 
     message_bin+=[0] 
     message_sym += [-6] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
 
    elif mov_slope[i]<((-
6.5*mod/1000000)+base_skew) and mov_slope[i]>=(-
7.5*mod/1000000)+base_skew: 
     message_bin+=[1] 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[0] 
     message_sym += [-7] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     k=0 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
 
    elif mov_slope[i]<((-
7.5*mod/1000000)+base_skew): 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[0] 
     message_bin+=[0] 
     message_sym += [-8] 
     last_bit_num=i 
     bit_index+=[last_bit_num] 
     bit_values+=[mov_slope[i]] 
     bit_valx+=[rc2[i]] 
     k=0 
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message_string=msg_decode(message_bin) 
## Defines base skew for Thesis presentation calculation. 
Meaningless if message present (?) 
fit=numpy.polyfit(rc2,drift,1); 
poly=numpy.poly1d(fit) 
ys=poly(rc2) 
base_skew_unmod=numpy.polyfit(rc2,drift,1)[0] 
normalized_drift=[] 
for i in drift: normalized_drift+=[i-base_skew_unmod] 
std_base_skew=numpy.std(normalized_drift) 
 
print("Base Skew for all packets recieved is ", base_skew_unmod) 
#("The first 10 values of normalized drift are ", 
normalized_drift[0:9]) 
print("The std deviation of normalized drift is ", std_base_skew) 
 
 
## To detect Time Travel ## 
while j < len(rc1)-1: 
 if rc1[j]>rc1[j+1]: 
  Time_Travel=1 
 j+=1 
 
pos_slop=[] 
 
for i in range(0,len(mov_slope)): 
 if i in bit_index: 
  if mov_slope[i]>0: pos_slop+=[mov_slope[i]] 
  elif mov_slope[i]<0: pos_slop+=[mov_slope[i]*-1] 
minslop=min(pos_slop) 
maxslop=max(pos_slop) 
std_dev=numpy.std(pos_slop) 
print("\nHere are the indices of each bit and their values:") 
for i in range(0,len(bit_index)): 
 
 print("\nBit",i, "at slope index", bit_index[i], "has a value 
of", pos_slop[i]) 
 
for i in range(0,len(drift)-1): 
 drift_delta+=[drift[i]-drift[i+1]] 
 
 
# Calculate rate of packet receipt 
jjj=.1 
cum_pack=0 
cum_pack_seg=[] 
cum_pack_seg_sec=[] 
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for i in range(0,len(rc2)): 
 
 if rc2[i]>jjj: 
  cum_pack_seg+=[10*(i-cum_pack)] 
  cum_pack=i 
  jjj+=.1 
 
for i in range(0,len(cum_pack_seg)): 
 cum_pack_seg_sec+=[(i+1)/10] 
 
 
 
root=Tk() 
result_string="The decoded message is "+message_string+"\nThe 
received symbols were:"+message_bin 
result_string+="\nCRC Check"+CRC_string+" with code "+CRC_Result 
 
result_label2=ttk.Label(root,text=result_string) 
result_label2.grid(column=0,row=0) 
root.mainloop() 
 
ax0=plt.subplot(232) 
plt.plot(cum_pack_seg_sec,cum_pack_seg) 
plt.title('Recieved Packet Rate',fontname='Times New Roman') 
plt.xlabel('Reciever Offset (s)',fontname='Times New Roman') 
plt.ylabel(' Packets per second',fontname='Times New Roman') 
mpl.axes.Axes.set_ybound(ax0,lower=0,upper=60) 
 
ax1=plt.subplot(233) 
plt.plot(rc2, rc1,'bo') 
plt.title('Recieve Time vs. Tsecr') 
plt.ylabel(' Transmitter Offset (s)') 
plt.xlabel('Reciever Offset (s)') 
 
ax2=plt.subplot(234) 
plt.plot(rc2,drift,'bo') 
fig_size=plt.rcParams["figure.figsize"] 
fig_size[1]=12 
plt.rcParams["figure.figsize"]=fig_size 
plt.title('Reciever Offset vs. Drift') 
plt.ylabel('Drift (s)') 
plt.xlabel('Reciever Offset (s)') 
 
ax3=plt.subplot(235,sharex=ax2) 
plt.plot(bit_valx,bit_values,"x") 
 
plt.plot([0,rc2[-1]],[0,0],color='r',linestyle="--") 
 
if q>1: 
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 plt.plot([0,rc2[-
1]],[1.5*mod/1000000,1.5*mod/1000000],color='r',linestyle="--") 
 plt.plot([0,rc2[-1]],[-1.5*mod/1000000,-
1.5*mod/1000000],color='r',linestyle="--") 
if q>2: 
 plt.plot([0,rc2[-
1]],[2.5*mod/1000000,2.5*mod/1000000],color='r',linestyle="--") 
#+4 
 plt.plot([0,rc2[-1]],[2.5*mod/-1000000,2.5*mod/-
1000000],color='r',linestyle="--") # -4 
 plt.plot([0,rc2[-
1]],[3.5*mod/1000000,3.5*mod/1000000],color='r',linestyle="--") 
#+3 
 plt.plot([0,rc2[-1]],[3.5*mod/-1000000,3.5*mod/-
1000000],color='r',linestyle="--")#-3 
 plt.plot([0,rc2[-
1]],[4.5*mod/1000000,4.5*mod/1000000],color='r',linestyle="--
")#+5 
 plt.plot([0,rc2[-1]],[4.5*mod/-1000000,4.5*mod/-
1000000],color='r',linestyle="--")#-5 
 plt.plot([0,rc2[-
1]],[5.5*mod/1000000,5.5*mod/1000000],color='r',linestyle="--") 
#+6 
 plt.plot([0,rc2[-1]],[5.5*mod/-1000000,5.5*mod/-
1000000],color='r',linestyle="--")#-6 
 plt.plot([0,rc2[-
1]],[6.5*mod/1000000,6.5*mod/1000000],color='r',linestyle="--
")#+7 
 plt.plot([0,rc2[-1]],[6.5*mod/-1000000,6.5*mod/-
1000000],color='r',linestyle="--")#-7 
 plt.plot([0,rc2[-
1]],[7.5*mod/1000000,7.5*mod/1000000],color='r',linestyle="--") 
#+6 
 plt.plot([0,rc2[-1]],[7.5*mod/-1000000,7.5*mod/-
1000000],color='r',linestyle="--")#-6 
 
 
plt.tight_layout() 
plt.show() 
 
 
if abs(max(mov_slope))<1: 
 time_str=str(time.localtime()[1])+"-
"+str(time.localtime()[2])+"-
"+str(time.localtime()[0])+";"+str(time.localtime()[3])+str(time.
localtime()[4]) 
 row_to_write+=time_str+" "+mod+" "+nm+" "+q+" 
"+len(message_sym)+" "+len(compare_string) 
 
 with open('Trials.csv', 'w') as csvfile: 
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        Gwriter = csv.writer(csvfile, delimiter='|', 
quoting=csv.QUOTE_MINIMAL,lineterminator='\n') 
  Gwriter.writerow(row_to_write) 
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