
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1991-05-01

Unique Names Violations, a Problem for Model
Integration, You Say Tomato, I Say Tomahto

Bhargava, Hemant K., Steven O. Kimbrough, Ramayya Krishnan
Informs

Bhargava, Hemant K., Steven O. Kimbrough, and Ramayya Krishnan. "Unique
names violations, a problem for model integration or you say tomato, I say
tomahto." ORSA Journal on Computing 3.2 (1991): 107-120.
http://hdl.handle.net/10945/70556

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

ORSA Journal on Computing
Vol 3, No. 2, Spring 1991

0899-1499 /91 /0302-0107 $01.25
© 1991 Operations Research Society of Amenca

Unique Names Violations, a Problem for Model Integration or
You Say Tomato, I Say Tomahto

HEMANT K. BHARGAVA Code AS I BH, Naval Postgraduate School, Monterey, CA 93943-5000, BITNET: 5186p@navpgs

STEVEN 0. KIMBROUGH University of Pennsylvania, Department of Decision Sciences I 6366, Philadelphia, PA 21204
ARPANET: kimbrough@ wharton.upenn. edu

RAMAYYA KRISHNAN SUPA, Carnegie Mellon University, Pittsburgh, PA 15213, ARPANET: rk2x + @andrew.cmu.edu

(Received September 1989; final revision received: November 1990, accepted: December 1990)

The tomato-tomahto problem (known as the synonymy problem in the database literature) arises in the context of model
management when different names are used in different models for what should be identical variables, and these different
models are to be integrated or combined into a larger model. When this problem occurs, it is said that the unique names
assumption has been violated. We propose a method by which violations of the unique names assumption can be
automatically detected. The method relies on declaring four kinds of information and modeling variables: dimensional
information, laws relating dimensional expressions, information (ridled the quiddity) about the intended interpretation of
the variables, and laws relating quiddity expressions. We present and discuss the method and the principles and theory
behind it, and we describe our (prototype) implementation of the method, as an additional function of an existing model
management system.

Batman is Bruce Wayne. Clark Kent is Superman.
Cicero is Tully. Plato is Aristocles. Phosphorus, the morn
ing star, is Hesperus, the eventing star. While it is un
usual, it is certainly possible for one thing to have more
than one name. This occurs in fiction ("Batman" and
"Bruce Wayne" name the same individual), in ordinary
discourse ("Cicero" and "Tully" are two names for the
same historical person), and in science (both "Phos
phorus" and "Hesperus" name the planet Venus). That
every individual has at most one name, unless stated
otherwise, is often a useful and convenient assumption in
software systems, and is called the unique names as
sumption. P61 (This assumption is implied by, and is a
special case of the closed-world assumption.)

1. Unique Names Violations

Unique names violations may occur for several reasons,
including: intention to deceive (e.g., Batman, Superman);
whimsy (e.g. , nick names, "Plato" roughly meaning
chubby and being a nickname given to Aristocles by his
wrestling coach); and error or inadvertence (e.g., Hespe
rus and Phosphorus). Our concern in this paper is with the
consequences for model management, particularly model
integration, of unique names violations. We shall now
illustrate with a very simple example the problem such
violations-usually due to error or inadvertence-can
create.

Consider that we are building a model of the cost of a
shipment composed of ketchup and cocktail sauce. The
resulting integrated model is to be:

(1)

where cTotal is the total cost of the shipment, ck the unit
cost of ketchup, k the number of units of ketchup, cc the
unit cost of cocktail sauce, and c the number of units of
cocktail sauce. You build a model of the cost of the
ketchup ck, I build a model of the cost of cocktail sauce,
cc. Because both ketchup and cocktail sauce are made out
of tomatoes, both models must take account of the cost of
tomatoes. But, we happen to use different variable names.
You say Tomato, I say Tomahto. Both variables refer to
the same thing-the unit cost of tomatoes-and any as
sumption of unique names is violated.

Do we have a problem? Well, in the integrated
model, we have two names for the same thing. Certainly,
we require that in any instantiation of the model the two
variables should have the same value, i.e.,

Tomato = Tomah to. (2)

Notice, however, that nothing in the mathematics of our
model- I-requires that 2 be satisfied. Further, we note
that it would be quite easy in an implementation for
Tomato and Tomahto to have different values. You did

Sub1ect class1fication: Information systems· dec1S1on support systems. Computers/computer systems: databases, art1fic1al mtelhgence.
Other key words: Model management, model integration, naming conflicts

107

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

108 Bhargava, Kimbrough and Krishnan

your estimate, I did mine. Suppose the two were different.
Then the resulting joint model is clearly invalid. Even if
the two estimates are not presently different, data values
may change over time, so it is fair to say that the
joint model is at risk. Good practice would indicate a
correction.

What are we to do? The song says, "Let's call the
whole thing off." Less draconian action will remedy the
problem. We simply need to identify the non-unique
names, agree to replace them with a unique name, and
agree to what the value of that variable should be. Doing
this will resolve the problem. The remaining questions are
concerned with how exactly to do this with maximal
machine-based support. What can a model management
system provide by way of automated support for resolving
unique names violations? The main purpose of this paper
is to investigate principles, and to develop techniques, for
answering this question.

We note that the tomato-tomahto problem has arisen
in the database literature. Briefly, integrated database
design usually consists of view modeling, in which user
requirements are formally expressed by means of one or
more user-oriented schemas, followed by an integration
process that merges the schemas into a global schema.11• 21

Because different people will often refer to the same
concept or data without knowing how others will do the
same, database integration has to deal with naming con
flicts. Two types of naming conflicts have been distin
guished in the literature: homonyms (the same name is
used to refer to two distinct concepts) and synonyms (two
distinct names are used to refer to the same concept). The
synonym problem is essentially the problem of unique
names violations.

Although the problem is recognized, most method
ologies for database integration assume that the synonym
problem (unique names violations) is dealt with prior to
integrationY 1• 181 Others (e.g., [12]) suggest that "Nam
ing conflicts are easily handled by renaming," without
proposing how such conflicts are to be discovered. Batini
and Lenserini 111 and ElMasri et al. 1141 propose a strategy
for discovering unique names violations by assigning a
"degree of similarity" to concepts with the same names.
The strategy proposes the heuristic use of information
about types, constraints (e.g., cardinality of entity sets),
and membership in relationships to identity problems.
These pieces of information are referred to as "indica
tions" and require the designer to analyze each indication
to discover unique names violations. We have not been
able to find literature on computer-based support for iden
tifying problems of unique names violations.

The remainder of the paper is organized as follows.
In Section 2 we present and discuss several examples of
the tomato-tomahto problem (of unique names violations)
in model management. Our purpose in that section is to

introduce and motivate both some of the nuances of the
general problem and our solution to that problem. We give
a more formal and complete presentation of our solution in
Section 3. It is not our claim that this is a complete
solution to the problem. Rather, we shall argue that our
proposal is quite powerful and can be extended in fairly
straightforward ways to yield yet more powerful means of
dealing the problem of unique names violations. In Section
4, we present an overview of our model management
system, TEFA, which is in use by the U.S. Coast Guard.
Following that, we describe and discuss our implementa
tion in TEF A of our solution to the tomato-tomahto prob
lem. In Section 5, we extend the analysis and discuss the
use of quiddities for semantic validation of models. We
conclude, in Section 6, with comments about our proposed
solution to the tomato-tomahto problem.

2. Example Problems for Solution

Our aim in this section is to discuss, in a preliminary
fashion, examples that illustrate our solution strategy for
the tomato-tomahto problem. We will also discuss certain
characteristics or criteria that may be used to evaluate
different solutions under this strategy. We shall present
our theory much more carefully in Section 3. Our hope
here is that by presenting and discussing some example
problems and initial solutions we can motivate and clarify
the theory and discussion that follows.

As noted in Section 1, the principal challenge for
machine-based assistance on the tomato-tomahto problem
is automatically to identify variables that are intended to
represent the same real-world object, but that have differ
ent names in submodels (or even in different parts of a
common model). Since the names are different, other
kinds of information about the variables are required to
make this identification. The essence of our strategy is to
develop a principled means of supplying, and expressing,
such information. Hence we are now concerned with three
issues: l) what kinds of information is relevant to the
problem? 2) how should this information be represented?
and 3) what kinds of inferences can be performed to make
the identification? We will now present a few informal
examples designed to illustrate a preliminary solution
strategy. The objective of our solutions is to identify
pairs of variables that present possible unique names
violations.

Consider the following example, in which the cost of
purchasing a truck is used in two models with two differ
ent variables.

Example 1

• Model 1
-Variable: purchase-cost
-Description: "Purchase cost of a truck"

Gop:i,rigbt © 2001 All Bigbts Beserned

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

• Model 2
-Variable: cost-of-purchase
-Description: "Cost of purchase of a truck"

Given this unique names violation, what might be
done by way of detecting it automatically? As the example
stands, very little. Of course, it would be possible to write
a program that would recognize that both purchase-cost
and cost-of-purchase contain purchase and cost sub
strings, and hence may be intended to refer to the same
thing. Similarly, a parsing program could be written to
recognize that "Purchase cost of a truck" and "Cost of
purchase of a truck" are sufficiently similar to indicate a
possible problem. The computational cost of either of
these programs would likely be prohibitive for any large
scale model management system. More fundamentally,
any parsing program would have to work from a formal
theory of how information about modeling variables is to
be expressed. Proposing such a theory is the primary aim
of this paper.

To begin, then, to describe our theory, we note that
both variables have the same dimension, currency. Also
both variables are about the same sort of real-world
object, a truck. We say that both are about the same
stuff. So our first solution is to represent explicitly each
variable's dimension and stuff.

Example 1A

• Model 1
-Variable: purchase-cost
-Description: "Purchase cost of a truck"
- Dimension: currency
-Stuff: truck

• Model 2
-Variable: cost-of-purchase
-Description: "Cost of purchase of a truck"
- Dimension: currency
-Stuff: truck

Given this, our first heuristic for indicating possible unique
names violations is

Rule 1. If two syntactically distinct variables have the
same dimension and stuff, this indicates a possible
unique names violation.

There are four significant points to be made about
Rule 1. First, given appropriate declarations as in Exam
ple IA, 1t is a simple matter to program a test for Rule 1
and the computational complexity is tl(n 2

), where n is
the number of variables to be tested. (If the variables are
sorted by quiddity and dimension (see below), we can
expect much faster performance in practice.) Second, rule
I should not be weakened to:

Unique Name Violations 109

Rule lA. If two syntactically distinct variables have
the same dimensions or stuff, this indicates a (possi
ble) unique names violation.

Clearly, it is quite legitimate to have two variables
that have the same dimension but that are about different
stuff. If x is the cost of trucks, and y is the cost of
tomatoes, no problem should be indicated. Similarly, no
problem should be indicated by the fact that two different
variables refer to the same stuff, but have different dimen
sions. It is, e.g., quite unexceptionable if x is the cost of
a truck and y is the length of a truck.

This naturally raises the question whether reliance on
rule 1 may produce a type 1 error, the error of indicating
a problem when there is none. If Rule 1 fires, does that
guarantee a unique names violation? Our third point about
rule 1 is that it is not immune from type 1 errors, although
its firing does indicate a problem of some sort. Informa
tion about the variables (here the dimension and stuff
values) could have been coded incorrectly. More interest
ingly, our descriptive apparatus (here the dimension and
stuff attributes and the terms used to express them) may be
insufficiently rich. For example, purchase-cost may be
intended to represent the purchase cost of a truck of type
A, while cost-of-purchase was intended for the purchase
cost of a truck of type B. No unique names violation has
occurred, but the firing of Rule 1 would indicate that our
descriptive apparatus is inadequate.

The possibility of type 1 errors-indication of a
problem when there is none-raises the question whether
reliance on Rule I may produce a type 2 error, the error
of failing to indicate a problem when there actually is one.
Our fourth point about Rule I is that it risks type 2 errors
as well. The cause here is, again, inadequacy of the
descriptive apparatus. Suppose, to modify the present
example, we have a number of variables pertaining to
truck cost. Some describe the cost of purchase, others
capture the cost of maintenance, others the cost of opera
tion, and so forth. There is a sense in which these
variables are about different stuff, so we have truck
purchase, truck-maintenance, and so on as terms de
scribing stuff. But this opens the door to the tomato
tomahto problem. You say x's stuff is truck-purchase,
I say y's stuff is purchase-price-of-truck. A unique
names violation has occurred, but-under rule 1 and the
present method of variable description - no violation gets
indicated.

In sum, our response to example I -explicitly declar
ing descriptive information about the modeling variables
and using this information to trigger indicating rules-has
yielded some benefits. We would, however, like to reduce
the risks of type I and type 2 errors. Further, we have
seen that a main cause of these errors in inadequacy of the
descriptive apparatus. In discussing how we are to go

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

110 Bhargava, Kimbrough and Krishnan

about reducing these errors, we begin by taking up a new
example.

Consider example 2, in which we have two variables
that measure the cost of purchase and production of a
truck.

Example 2

• Model 1
- Variable: purchase-cost
- Description: "Cost of purchasing a truck"
- Dimension: currency
-Stuff: truck

• Model 2
-Variable: production-cost
-Description: "Cost of producing a truck"
-Dimension: currency
- Stuff: truck

Rule 1 will include (purchase-cost, production
cost) in the candidate set of unique names violators, since
the two variables have the same dimension and stuff.
Doing so, however, is a type 1 error. The remedy is to
improve our descriptive apparatus. Stuff is too crude a
notion. We need to represent more than what the variable
is about, what stuff it is about. We need to represent both
what stuff a variable is about and what it is about the stuff
that the variable is about. In the present example, both
variables are about the same stuff, trucks, but one is about
the purchase cost of a truck, while the other is about the
production cost of a truck. These two very different things
should be captured in the description of the variables.

We want, then, to capture descriptively much more
information about what the variable is about. We would
aim to capture its very essence, or quiddity. From the
Oxford English Dictionary, quiddity is "The real nature
or essence of a thing; that which makes a thing what it
is." Of course, our language for expressing quiddities is
only a model, or approximation, of genuine quiddity, if it
exists. How might we capture the quiddity of a variable in
this language? Consider the present example. Both vari
ables are about the same stuff: trucks. They differ in what
it is they represent about trucks. What is it about trucks
they describe? Purchasing in one case and production in
the other. What is it about purchasing and production that
they represent? Cost, in both cases. And what about cost?
Nothing else. This line of reasoning suggests the following
means of description for the current example.

Example 2A

• Model 1
-Variable: purchase-cost
-Description: "Cost of purchasing a truck"

- Dimension: currency
-Quiddity: cost(purchase(truck))
-Quiddity Paraphrase: "the cost of purchase of a truck"

• Model 2
-Variable: production-cost
- Description: "Cost of producing a truck"
- Dimension: currency
-Quiddity: cost(production(truck))
-Quiddity Paraphrase: "The cost of production of a

truck"

Given this, our second heuristic for indicating possi
ble unique names violations is

Rule 2. If two syntactically distinct variables have the
same dimension and quiddity, this indicates a possible
unique names violation.

Rule 2 will not commit a type 1 error with respect to
Example 2A. There is no unique names violation and none
is indicated. The four points made with respect to Rule 1
are pertinent here as well. First, assuming a fast means of
testing quiddities for identity (e.g. , string matching), the
required program to produce candidate violators is again
easy and of complexity at most .o'(n2

). Second, the and in
the rule should not be replaced with an or. Third and
fourth, the possibility remains of errors of types 1 and 2.

Two additional comments are in order. Fifth, quid
dity is now expressed as a logical term, either as a
constant (as stuff) or as a function (as in Example 2A),
and in a referring expression. The move to a functional
expression provides excellent flexibility and expressive
power. For example, we can quite naturally express addi
tional information about the intended meaning of the
variables:

Example 2B

• Model 1
-Variable: labor-production-cost
-Description: "Cost of labor in producing a truck"
- Dimension: currency
-Quiddity: cost(labor(production(truck)))
-Quiddity Paraphrase: "the cost of labor in production

of a truck"
• Model 2
-Variable: materials-production-cost
- Description: "Cost of materials in producing a truck"
- Dimension: currency
-Quiddity: cost(materials(production(truck)))
-Quiddity Paraphrase: "the cost of materials in produc-

tion of a truck"

A primary aim of what follows is to explore how to
take advantage of the flexibility and expressive power

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

available through functional representation of quiddities
and dimensions.

Our sixth comment about Rule 2 and the revised,
functional means of expressing quiddity, is to note that a
certain ambiguity remains. In what order should functions
be applied? Should, for example, the quiddity of a variable
representing the cost of a truck be represented as
cost(truck) or as truck(cost)? Should we have cost
(materials(production(truck))) or materials(cost(pro
duction(truck)))? If you do it one way and I do it the
other, we are open to type 2 errors. There are two sorts of
things that can be done. Both are discussed further in
Section 3. First, we might find a way of stipulating the
validity conditions of quiddity expressions so as to elimi
nate, or reduce, the possibility of ambiguity. Second, we
might introduce equivalence transforms and a modification
of Rule 2 to:

Rule 3. If two syntactically distinct variables have the
same or equivalent dimension and quiddity, this indi
cates a possible unique names violation.

To illustrate, we can express the fact that cost(truck)
and truck(cost) are equivalent with:

cost (truck) = truck (cost) (3)

(Equation 3 is admittedly ad hoc. We discuss generaliza
tions in Section 3.)

The problem with this second strategy is that it can
substantially increase the computational complexity of
searching for candidate unique names violators. We note,
however, that while an integrated model may be executed
very many times, checking for unique names violations is
only done once per integrated model.

We conclude this section with one more example for
motivating our (partial) solution. The variables we have
treated so far have not been subscripted. Consider Exam
ple 3.

Example 3

• Model 1
-Variable: c,j

*Description: ''Cost of purchasing product j at market
i"
*Dimension: currency
*Quiddity: cost(purchase(arg(c(i, j) - i),arg(c(i, j)
- j)))
*Quiddity paraphrase: "the cost of purchasing a given
product at a given market"

-Variable: c(i, j) - i
*Description: "a market"
*Dimension: 1 (i.e., no dimension)
*Quiddity: market

Unique Name Violations 111

-Variable: c(i, j) - j
*Description: "a product"
*Dimension: I (i.e., no dimension)
*Quiddity: product

• Model 2
-Variable: d,j

*Description: "Cost of purchasing product j during
month i"
*Dimension: currency
*Quiddity: cost(purchase(arg(d(i, j) - i), arg(d(i,

j) - j)))
*Quiddity Paraphrase: "the cost of purchasing a given
product during a given month"

-Variable: d(i, j) - i
*Description: "a month"
*Dimension: time
*Quiddity: month

-Variable: d(i, j) - j
*Description: "a product"
*Dimension: I (i.e., no dimension)
*Quiddity: product

The functor, arg, of arity I is being used to indicate
an argument to the modeling variable. Such an argument
is itself a modeling variable and has its own quiddity and
dimension. The quiddity expressions are here sensitive to
the difference between a time (month) and place (market),
so the chance is reduced that a type I error will occur,
providing we employ as adequately rich notion of quiddity
equivalence when we apply Rule 3. Quiddity expressions
with arguments are only equivalent if the quiddities of
their corresponding arguments are equivalent. In the pres
ent example, they are not, for the quiddities of c(i, j) - i
and d(i, j) - i are not equivalent. Thus, no unique names
violation has occurred and sufficient information is present
to prevent the type I error of indicating a violation when
none is present.

More complicated conditions and expressions can
arise. We will consider some of them after presenting
more formally and carefully, in Section 3, the basics of
our general solution.

3. Proposed Solution

The central concept in our strategy is explicitly to repre
sent information about model variables in the model man
agement system. If the represented information is suffi
ciently rich, it can be used effectively to alert model
builders of possible unique names violations, with minimal
risk of type 1 and 2 errors.

For the purpose of handling unique names violations
we represent two sorts of essential information about each
variable: its dimension and its quiddity. We expect the
concept of dimension to be a familiar one to the reader.
The concept of the quiddity of a variable-which we are

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

112 Bhargava, Kimbrough and Krishnan

introducing here-is that of what it is the variable is
about. We will use quiddity expressions to represent infor
mation (inevitably incomplete information) about the in
tended meaning of the variables in question. By adding
such information we can reduce the risk of type 1 errors.
For example, the dimensions of production cost and distri
bution cost are the same: currency. We can, however,
express such difference between the two variables by
using quiddity expressions, as discussed in what follows.

We note that both dimensions and quiddities should
be viewed logically as terms, or referring expressions.
Further, we can represent relations among these terms
with statements, as in Section 5. We shall now describe
our treatment of each of the two kinds of terms.

3.1. Dimensional Information

Physics recognizes three fundamental dimensions (among
others): length, mass, and time. To these we see a need to
add a fourth, currency. We also need a place holder
(represented by 1) for dimensionless quantities, such as
percentages. Finally, we allow derived dimensions, such
as volume (length3

), acceleration, weight, and power.
Given these basic dimensions (defined for present pur
poses as members of the set { length, mass, time, cur
rency, l, volume, acceleration, weight, power}), we
can begin to develop a particular language by stating
precisely what the valid dimensional expressions are.
Those for the language we will use for illustration are as
follows.

1. If o is a basic dimension, then o is a valid dimensional
expression.

2. (o · -y) is a valid dimensional expression if both o and
'Y are valid dimensional expressions.

3. (oh) is a valid dimensional expression if both o and 'Y
are valid dimensional expressions.

4. on is a valid dimensional expression if o is a valid
dimensional expression and if either n is an integer or
o is dimensionless or each fundamental (basic and
nonderived) dimension in o has a power that is a
multiple of n. In all cases, n must be dimensionless.

5. Nothing else is a valid dimensional expression.

Clearly, however, we are concerned with the family
of languages generated by the different variations on such
a basic vocabulary. Terms may be added or removed;
it is the overall framework with which we are mainly
interested.

We note as an aside that by policy we choose to use
the most abstract expression possible for dimensions, e.g.,
we prefer to use currency rather than dollars. It is our
view that complete dimensional information is best cap
tured by use of three terms: dimension, unit, and scale.
(Some authors use the term quantity as we are here using
the term dimension.) Dollars and pesos are both units for

the general dimension of currency. Scaling information is
needed because often variables are expressed, e.g., in
thousands of dollars. In general, if two variables have the
same dimension, then-given their units and scales, plus
general laws about the conversion relations between them
-it is always possible to calculate if in fact their values
are equivalent. 131 Our motivation for the policy of using
only dimensional (rather than unit and scale) information
about a variable for the sake of the tomato-tomahto
problem is to reduce type 2 errors. (Unit and scale
information about variables is in fact present in our imple
mentation, but is presently used for a different purpose,
that of determining whether equations are dimensionally
valid.) Suppose you say tomatoes are measured in
bushels, I say tomahtoes are measured in quarts. We
have a unique names violation, but our rules will not
detect it. Both bushels and quarts are measures of volume,
however, so if we state the dimensional information more
generally, the problem will be detected. Alternatively, we
might state the dimensional information more specifi
cally but use laws (bushels and quarts are convertibly
equivalent) to detect unique names problems. In practice,
there is no reason both strategies cannot be pursued. In
fact, we give an example below in which we are com
pelled to declare unit, rather than abstract dimensional,
information.

It is certainly possible further to extend the class of
valid dimensional expressions by adding to the list of
fundamental dimensions, but doing so is a straightforward
matter and it is not to our purpose to do so here. We note
that all derived dimensions should be linked by laws to
fundamental dimensions. Thus, for example, we have

length
acceleration = -. -

2
- •

time

Again, providing these laws is an easy matter and one
we shall not pursue here.

Finally, we need to state certain laws for combining
and manipulating dimensional expressions. These laws are
well-known. We need to state the principal laws, both for
the sake of facilitating implementation and for understand
ing the analogous laws pertaining to quiddities.

Laws for Dimensional Consistency

1. If a, (3, r are valid dimensional expressions, with a
occurring in r, and a = (3, then substituting (3 for a
in r yields a valid dimensional expression. (Substitu
tion.)

2. Two variables may be added (or subtracted) only if
their dimensions are identical. (Addition.)

3. The product (quotient) of two variables having valid
dimensions is dimensionally valid (Multiplication).

4. An equation is dimensionally balanced if the dimen-

Copyright ©2001 All Rig bis Reserned

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

sions of its two sides are equivalent. If an equation is
not dimensionally balanced, it is invalid.

Laws for Dimensional Manipulations

1. (a · (3) = ((3 · a) for any valid dimensional expres
sions, a, (3. (Commutativity.)

2. If a, (3 are valid dimensional expressions, then a
(3
(3 = a · 1 = a. (Simplification.)

3. The dimension of sum (or difference) of two variables
is that of either of the two variables. (Addition.)

4. The dimension of the product (quotient) of two vari
ables is the product (quotient) of the dimensions of the
two variables. (Multiplication.)

These are the main laws we will need. We will leave
certain other laws (e.g., for manipulation of exponents)
unstated because they are obvious.

3.2. Quiddities

We distinguish basic stuff, types of stuff, attributes of
stuff, types of attributes of stuff, and metafunctions.
Basic stuff (or simply, stuff) includes cars, trucks, op
tions, securities-individual things and collections of
individual things. In ordinary language, stuff is usually
indicated with a noun. The types of stuff concept captures
adjectival information. With this concept we can distin
guish, e.g., a truck tire (stuff: tire; type: truck) from a tire
truck (stuff: truck; type: tire). Type information in gen
eral, and stuff type in particular, is used to answer the
question What sort of stuff (attribute) is it? It's a truck.
What sort of truck? A red truck. Thus, red is a stuff type.
We note that ambiguity is possible when there are iterated
types. For example, we have a big red truck. Should we
represent its quiddity as big(red(truck)) or as red(big
(truck))'' English, too, is ambiguous on such matters and
often relies on emphasis. Both "a big red truck" and "a
red big truck" are correct. Moreover, they mean (or are
used for) slightly different things. It must be accepted that
any modeling exercise is also an exercise in compromise
and approximation. We propose simply to ignore such
distinctions and, where ambiguity-or choice-is possi
ble, stipulate that the terms be ordered lexicographically.
At the end of the day, we have big(red(truck)), no
matter what precisely was intended. (See [13] for an
interesting discussion of some of the deeper issues raised
by this sort of ambiguity in natural language.)

Stuff attributes represent information about some facet
of the stuff in question; in particular information about
some measurable aspect about the stuff that we are inter
ested in, for example, speed or distance or cost. At
tribute information is used to answer the question What is
it about X that you are interested in? What is it about the

Unique Name Violations 113

truck that you are interested in? The cost or the weight?
The cost and weight are stuff attributes. Types of stuff
attributes, like types of stuff, answer sortal questions.
What sort of cost? Materials cost. Then materials is a stuff
attribute type. Finally, metafunctions capture information
about the variable associated with the quiddity. For exam
ple, if x and y are variables for the price of gasoline, but
x is an average price and y not, then no unique names
violation should be indicated.

Our framework-with stuff, stuff types, stuff at
tributes, stuff attribute types, and metafunctions-bears a
superficial resemblance to the entity-attribute frame-work,
which is commonly used in data modeling. The entity-at
tribute framework, however, cannot (at least in our judg
ment) properly handle the logical complexity that can be
represented in our framework. To illustrate, the analog of
an entity in our framework would be a stuff type-basic
stuff expression, e.g., (diesel(fuel(arg(2)))), but such an
expression is complex; while it is a referring expression, it
is logically a function, rather than a name, as entity
expressions are. Again, the analog of an attribute in our
system would be a stuff attribute-stuff attribute type ex
pression, e.g., (cost(consumption(a))), where a is a
stuff type-basic stuff expression. Here, too, we have sig
nificant logical complexity that matters to our system and
that cannot be captured as a simple attribute in the entity
attribute framework, red would be an instance of the
attribute color. Yet, for our purposes, color is not an
attribute, we are not interested in measuring the color of
the truck (the stuff), and it is irrelevant to us that red is an
instance of color. Finally, there is no plausible analog in
the entity-attribute model to our metafunctions.

Using our proposed framework, we begin our specifi
cation of valid quiddity expressions by providing a basic
vocabulary for each of these five categories. Again, we
are here developing a specific vocabulary for the sake of
illustration. Obviously, most of what we have to say
applies to the family of languages generated by altering
this specific vocabulary.

• basic stuff: car; truck; ship; index; vessel; engine;
path(arg(a), arg(/3)), if a, (3 are declared modeling
variable indicators. (See below for illustration.)

• stuff types: hydrofoil; truck; ship; length. (Note:
ship may occur either as stuff or as a stuff type.)

• stuff attributes: cost, size, availability, power, con
sumption

• stuff attribute types: materials, production, cost,
labor, mains, auxiliaries

• metafunctions: average, max, min, sum, standard
deviation, variance, in, exp

We note that-in this language-all the expressions,

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

114 Bhargava, Kimbrough and Krishnan

other than stuff expressions, are functions of arity 1. Stuff
expressions may have no arguments, e.g., car, ship, truck,
or they may have one or more arguments, e.g., path has
two arguments, used for indicating the endpoints. There is
no specific limit on the number of arguments that a stuff
term may have, other than that it be finite. We note as
well that stuff terms, e.g., ship, may also be used as stuff
types. This allows us to distinguish, e.g., a ship engine
from a truck engine.

Given an enumeration of the vocabularies for stuff,
stuff types, stuff attributes, stuff attribute types, and meta
functions, we can state precisely what the valid quiddity
expressions are. We begin by defining a valid stuff term.
These definitions will shortly be illustrated with some
examples.

1. If a is in the vocabulary of basic stuff expressions,
then a is a valid stuff term, providing that each of its
arguments has the form arg (n), where n is an integer
identified with a declared variable (or is a declared
variable-indicating expression).

2. If a is in the vocabulary of basic stuff expressions,
then a[arg(n)] is a valid stuff term, where a[arg(n)]
has one more argument than a and n is an integer
identified with a declared variable (or is a declared
variable-indicating expression) with a quiddity of in
dex.

3. </>(a) is a valid stuff term if a is a valid stuff term and
<I> is in the vocabulary of stuff types.

4. </>(a) is a valid stuff term if a is a valid stuff term and
</> is in the vocabulary of metafunctions.

5. Nothing else is a valid stuff term.

Given this, the valid quiddity terms may be easily
characterized.

1. If a a valid stuff term, then a is a valid quiddity term.
2. </>(a) is a valid quiddity term if a is a valid stuff term,

and <I> is in the vocabulary of stuff attributes.
3. </>(a) is a valid quiddity term if a is a valid quiddity

term and <I> is in the vocabulary of metafunctions.
4. </>(a) is a valid quiddity term if a is a valid quiddity

term and <I> is in the vocabulary of stuff attribute types.
5. a · /3 and a / /3 are valid quiddity terms if a and /3 are

valid quiddity terms.
6. Nothing else is a valid quidity term.

Some examples will help to communicate the sense
and import of these definitions. Consider the following
equational model for estimating the total fuel costs in a
given year, t, for a vessel:

yfc 1 = fCost 1 • (JConsM + JConsA) {4)

The four variables in this model, 4, have the following

intended interpretations:

yfc1
fCost 1

fConsM
JConsA

fuel cost for a vessel during year t, in dollars
cost of fuel in dollars per gallon in year t
fuel consumed by Mains
fuel consumed by Auxiliaries

This is the top-level equation for a U.S. Coast Guard
model, called CAPS ("comparing alternative propulsion
systems") [5, 6]. Each of the three right-hand-side vari
ables in CAPS (1) is itself the left-hand side of a sub
mode!. For the moment, however, we shall focus on (1).

To begin, note the associated dimensions for these
four variables:

yjc 1 currency

currency
fCost 1 ---

volume

JConsM volume

JConsA volume.

Note further that, using the rules of combination and
manipulation described above for dimensions, the two
sides of the CAPS equation are dimensionally identical, as
they should be.

What are the quiddities of these variables? We begin
with yf c I' which is about (has quiddity covering) a vessel
during a particular year, or time. The basic stuff for this
variable is a vessel at a time. We do not have stuff types in
the present case, but we do have stuff attributes. What is it
about the vessel that we are interested in? Its fuel. What
kind of fuel? Diesel fuel. What about the diesel fuel? We
are interested in the vessel's consumption of fuel. What
about the consumption? The cost. This leads to the follow
ing quiddity expression for yfc 1:

cost(consumption(diesel(fuel(vessel(arg(I)))))).
{5)

Since vessel has an argument, we must declare a quiddity
and dimension for the argument. arg(l) (or t in yfc 1) is
an index variable. Its stuff is index and its dimension is
time.

fCost I is about the cost of diesel fuel in year t,
regardless of how the fuel is to be consumed. Its quiddity,
then, is:

cost (diesel(fuel(arg {2)))). {6)

Since fuel has an argument, we must declare a quiddity
and dimension for the argument. arg (2) (or t in JCost 1)

is also an index variable. Its stuff is index and its dimen
sion is time.

JConsM is about the consumption of diesel fuel by a
vessel, due to the use of the main propulsion plant in the

npyright © 20D1 All Bio bis Beserned

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

vessel. This yields quiddity:

mains(consumption(diese!(fuel(vessel)))). (7)

/ConsA, similarly, is about the consumption of diesel fuel
by a vessel, due to the use of the auxiliary propulsion
plant in the vessel. This yields quiddity:

auxiliaries(consumption(diesel(fuel(vessel)))). (8)

3.3. CAPS Example, Continued

The Coast Guard's CAPS model is, as we have seen,
composed of three submodels, which are used to deter
mine the values of the variables /Cost,, /ConsM and
JConsA. The full CAPS model - its top-level equation
and the three equations for its submodels-are as follows.

CAPS.

yfc, = /Cost, · (fConsM + fConsA) (9)

fuel COST.

fCost, = cO · (I + swagI · t - swag2 · t 2
) (10)

fuel_CONS_M.

/ConsM = (t, fracS, · hpreq, · sfcS,)

· ophrsM / gamma I (11)

fCost 1:

fCons:
fConsM:
fConsA:
ophrsM:
ophrsA:
fracS,:
fracL

1
:

hpreq,:
sfcS,:

gammal:
gamma2:
swag 1:
swag2:
cO:

Unique Name Violations 115

unit cost of fuel in the year t.
amount of diesel fuel consumed per year.
amount of fuel consumed by Mains.
amount of fuel consumed by Auxiliaries.
number of mains operating hours per year.
number of auxiliaries operating hours per year.
fraction of time at speed i.
fraction of time at load i.
horse power required at speed i.
specific fuel consumption of diesel engine
(lb/hp-hr) at vessel speed i.
electrical power required at load i.
specific fuel consumption of diesel engine
(lb /hp-hr) at electrical load i.
pounds per gallon of diesel fuel.
kilowatts per horse power.
time-dependent expansion factor.
time-dependent expansion factor.
until cost of fuel in year O (now).

We now give quiddities for each of these variables
that have not had their quiddities defined above (Table I).
For the sake of simplicity, we will make free use of
derived dimensions, e.g., weight and velocity.

Briefly, anticipating the discussion in Section 5, we
note that the quiddities in Equation 11 balance. After the
"summing out" of the subscript (or index) variable i, the
quiddity for the summation in 11 is:

mains(consumption(vessel)) · mains(consumption(diese!(fue!(vessel))

mains(vessel) · mains(consumption(vessel))
(13)

fuel_CONS_A.

(t, f racL, · kwreq, · sf cL,) · ophrsA
/ConsA = ~----------.!----

gamma! · gamma2

(12)

We note that two of the submodels, 11 and 12,
contain a common parameter, gammal, which
might-should the two models name it differently-be the
object of a unique names violation, as may be the various
indices on the variables.

The variables and their intended interpretations for
the full, integrated model are as follows.

t: time index.
i: speed code for vessel.
j: load code for vessel.
yfc 1 : fuel cost for year t.

Given this, an elementary manipulations (principally can
cellations), equation 11 is brought into balance with regard
to quiddity. Equations 10 and 12 are either very simple, or
a similar to 11 with respect to quiddity balancing.

4. Implementation

In this section we discuss a prototype implementation, in
the model management system TEF A, of our proposed
solution for the unique names violation problem. TEFA is
currently being developed and is a main part of a general
purpose DSS shell, MAX, in use at the U.S. Coast
Guard's R.&D. Center and its Office of Acquisition. This
system is implemented in Prolog and runs on Macintosh
computers. The implementation of TEFA is based on the
embedding of an executable modeling language L .1. in
another formal model management language called L 1 •

The embedded languages technique is described in more
detail in (6, 7]. The language L.1, has the ability to
represent mathematical and qualitative information related
to models, while L 1 is used to specify L .1. (and other

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

116 Bhargava, Kimbrough and Krishnan

Table I
Quiddities for Each Variable

Variable Quiddity

index
index
mains(vessel)
auxiliariess(vessel)
percentage(arg (i))
percentage(arg(j))

Dimension

velocity
power
time
time
1

j
ophrsM
ophrsA
jracS;
jracL 1
hperq;
kwreq1

mains(consumption(vessel(arg (i)))
electricity(consumption(vessel(arg(j)))

1
power
power

sjcS;
mains(consumption(diesel(fuel(vessel(arg(i)))) weight

sjcL 1

mains(vessel) · mains(consumption(vessel))

mains(consumption(diesel(fuel(vessel(arg (j))))
mains(vessel) · mains(consumption(vessel))

time· power

weight

time· power
weight

gamma] 1

gamma2 1
swag] 1
swag2 1
co cost (diesel (Juel))

languages) and to express this information by adding
sentences in these languages. TEF A aims to support mod
elers in the various phases in the modeling life cycle,
including model formulation, model validation, model ex
ecution and solution, explanation of solution, and report
ing, for certain classes of mathematical models (mainly
hierarchical systems of equations, possibly with condi
tions; mathematical programming models are also repre
sentable in TEFA, but this is not supported in the currency
delivered version). Although TEFA does not yet provide
support functions for all of the modeling life cycle, vari
ous useful model management tasks are implemented in
Lr . The one we are concerned with in this section is the
model validation function.

We wish to ensure that models defined in TEFA,
including models that combine several other models, are
valid. A necessary condition for that is that there by
no unique names violations (UNVs) in the integrated or
super-model. We will discuss our implementation for the
detection of UNV s based on the rules presented in the
previous section. We are interested in computing the
function tomahto,

tomahto: AM-+ Au X Au

where AM is a set of models and A u is a set of variables
defined in the modeling language. Given a model M, this
function determines pairs of variables that appear to con
stitute a UNV in the integration of M with the submodels
associated with M. (A submode! of M is a model called

volume
power/ power
1/ time
1/ time
currency/ volume

by M to compute a variable used in M.) With no loss of
generality, we make the assumption here that there is no
UNV within a model, i.e., no two syntactically distinct
variables within the same model refer to the same thing.
This is a reasonable assumption since our problem is that
UNVs occur in the integration of several models. Our
program for computing the tomahto function is informally
described below.

1. Given a model M, let M' be the set of models,
including M, that are submodels of M. This set is
obtained by a TEF A function that determines the mod
els called by M. Denote by UNV M the set of possible
UNV s in combining M and its submodels.

2. For every pair (M 1 , M 2) of models in M', perform
Step 3.

3. Let VarM, and VarM
2

be the sets of variable names
occurring in all the expressions associated with M 1

and M 2 respectively. These sets are computed by a
TEFA meta-interpreter that interprets the expressions
associated with a model. For each pair (V1, V2) in the
Cartesian product of these sets, perform Step 4.

4. UNV detection: Given a pair of variables (V1, V2)

determine the dimensions D 1 and D 2 , and quiddities
Q1 and Q2 of these variables. These are obtained from
declarations about the variables. If D 1 is equivalent
(under dimensional transformation) to D 2 and Q1 is
equivalent (under quiddity transformation) to Q2 , then
(V1, V2) constitute a possible UNV. (Computationally,

C_omajgbt©-2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

1t 1s more efficient to perform this operation in the
following two steps: 1) Determine dimensions of V1

and V2 • If they are unequal, reject this pair, else
perform Step 2, 2) Determine quiddities of V1 and V2 •

If they are equivalent, we have a possible UNY. This
is in fact how our implementation works.) Enter
(vi, V2) in the set UNY M·

TEF A interacts with the user interface system of
MAX via a formal language for obtaining commands and
other inputs through the interface, and for presenting
outputs such as reports to the user. TEF A realizes the
concept of generalized hypertext[5, 8• 91 by generating and
identifying hypertext nodes within these reports, and by
performing a variety of operations to follow the links for
the nodes. As we discuss below, this feature is of material
help in the detection and correction of UNYs.

We intend the detection and correction of UNY s to be
a joint effort between the system and the modeler, with the
machine doing most of the detection of possible UNYs,
and the modeler confirming UNYs and correcting them.
Hence it is important that the system be able to provide
easy and quick access to a rich variety of information
about the models and the variables, so that the modeler
can easily make informed decisions. Since the detection of
UNY s involves pairwise comparisons of variables in every
pair of models to be combined, it is easy to see that there
is a massive amount of information that is relevant to the
confirmation and correction of UNYs. It is therefore
necessary for the machine to present this information in
manageable and meaningful chunks, and to provide quick
and easy access to the rest. This is made possible in our
implementation due to the generalized hypertext features
in TEFA. We illustrate this using the CAPS model. The
presentation of information in various windows on the
screen, and the ability to point and click at various hyper
text nodes is managed by MAX's user interface for gener
alized hypertext.

We now illustrate the UNY detection feature in
TEFA. For the purpose of this discussion let us assume
that the fuel-cons-A and fuel-cons-M models were built by
two separate modelers, who used variable names
gamma1 a and gammal b for the variable gamma1 above.
Thus there is a UNY in the CAPS model, which calls
these two submodels. The top section of Figure 1 depicts
the report produced by TEF A on being asked by the user
to "tomato" the caps model, i.e., to detect UNYs. This
report indicates a pair of variables causing a UNY, and
the user points and clicks on the variable names (which are
hypertext buttons) to get a brief description about these
two variables, as indicated by the arrows connecting these
variables names to the descriptions.

On obtaining these descriptions the user can easily
ascertain that these two variables indeed refer to the same

Unique Name Violations 117

thing and must therefore have the same name. Figure 2
shows information about the fuel-cons-A and fuel-cons-m
models provided by TEFA, which shows that the variable
gamma! has different names in these models.

5. Rules for Quiddity Manipulation

Just as there are laws for manipulation of dimensional
expressions (see Section 3.1 above), so there are laws for
manipulation of quiddity expressions. Moreover, it is our
view that equations should balance with respect to quiddi
ties, just as they should with respect to dimensions (and
for the same reason: for the sake of coherence). Returning
to the CAPS example and its assigned quiddities, the
problem is to understand how to combine the quiddities so
that the equations balance with respect to quiddities. The

S File Edit Info TEFH
~ tomato(&caps)

The following model wes tomotoed cops
Th1s model coils the follow1ng models
fuel_consR
fuel_consn
fue l_cosl

The f~~loQ::ni:~::s:x~:;,1::~er:it:~or to have o

(ga •• ol b ga •• al a)

The foll wing pe1 of variables have the same d1mens1on
but different u1dd1t1es, end hence do not seem to
he a Unique l:lmes V1oll:lt1on problem

(fCon n fConsR)
(ophr fl ophrsn)
(frac • i fracs• i
(k • re • i hpreq• i)
(sfcl i stcs•;)
(yfc• fCost•t)

whatis(& ammala)

The verioble ga • aalu 1s pounas per gellon of dtesel fuel

Figure 1. Detecting UNVs.

descnbe(&(ueLconsA)
This model determines fuel

Tne model fue LconsH ntis tne ra11ow1ng eQuetlons

fConaR"' ;um(t m 1 3 ophr•R * frocl•i * k•r•••I * efcL•i /(gaa•a2 * g••••1b)) .~:

The source / reference ror the model fueLconsl 1s
Clerk Pn tchett

i aescrlDe(l'rueLconsM)
This model determines fuel

con,umpt1on for Hem;

The model fue Lconsn htis the fol lowing eQuot1ons

fCon~n::: sum(1 in 1 4 ophr~n • frot:5•1 .. hpre11•i .. :JfcS•i) / ga •• al u

The ;ourc&1 / rgfgrence for the model fuel_c•n•ft 11.
Clork Pritchett

Figure 2. Examining UNY s.

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

118 Bhargava, Kimbrough and Krishnan

situation is more complex than that for dimensions. We
shall proceed informally for the present. Although we
shall be more rigorous in the sequel, because the main
subject of this paper is automated assistance for the prob
lem of unique names violations in model integration, we
will not provide more than some rough details for the
claim that quiddities can be combined in a fashion like that
for dimensions. Our purpose here is to illustrate what is
involved in combining quiddities and to make it plausible
that it can be done in a rigorous and principled way.

First, consider the quiddity of (fConsM + fConsA)
(recall expressions 7 and 8, above, at the end of Section
3.2). Mains and auxiliaries are both stuff attribute types.
They are both special cases of the more general quiddity,
consumption(diesel(fuel(vessel))). As such, it makes
sense to add them providing that the resulting quiddity just
is that more general one. After all, apples are a kind of
fruit, as are oranges. Adding apples and oranges gives us
fruit, or expressed as quiddities:

apple(fruit) + orange(fruit) =-fruit (14)

The problem of combining quiddities for the rest of
fCost 1 • (fConsM + fConsA) is more challenging. The
problem is to handle in a principled and plausible way the
product of two quiddity terms: consumption(diesel
(fuel(vesse/))) and cost(diesel(fuel(arg(2)))), call them
a and (3. Beginning on the inside of the quiddity terms,
note that the two expressions seem to be about different
things-fuel and vessel-and one is indexed, while the
other is not. Consider the former issue first. Note that
inside, a is more specific then (3, for a is about diesel
fuel for a vessel, while {3 is about (any old) diesel fuel.
But if {3 is about diesel fuel generally, then it is also about
diesel fuel for vessels. Thus we can transform {3 to {3':

cost (diesel (Juel (vessel (arg (2))))) {3'

We now have the problem of reconciling vessel and
vessel(arg(2)). We do so simply by transforming the
former to the latter, using the same justification just
employed. We opt for the more specific case, since the
general term-here, vessel-encompasses the more spe
cific term-here, vessel(arg(2)). We now must reconcile
{3' and a':

consumption(diesel(fuel(vessel(arg (2)))) c/

The remaining problem of reconciling a' and {3' is
straightforward. Neither is a special case of the other, nor
are they special cases of some third thing (as were apples
and oranges of fruit). Consequently, we must combine a'
and {3' in some way. Clearly, we have two choices: the
combination is either a consumption-cost or a cost-of
consumption. We note that "cost" appears, above, in our
basic quiddity vocabulary both as a stuff attribute and as a

stuff attribute type, while "consumption" appears only as
a stuff attribute. Thus, our choice is clear. The resulting
quiddity for the right-hand side of the CAPS equation is
')':

cost (consumption (diesel (fuel (vessel (arg (2))))) 'Y

Further, since arg(l) and arg(2) have common stuff and
dimensions, we can now say that the CAPS equation is
balanced with regard to quiddities. (Of course, had "con
sumption'' also appeared as a stuff attribute type, we
would have had an ambiguity, but then it would have been
resolved lexicographically and the CAPS equation would
still end up being in quiddity balance.)

Consider the situation more broadly. Dimensions and
quiddities have similar rules for their manipulation. We
listed several of these rules for dimensions in Section 3 .1.
Our purpose now is to present some analogous rules for
quiddities.

Generalizing from our earlier discussion, the essen
tial concepts for quiddity manipulation are the notions of a
quiddity case and quiddity construct. Variables may be
added only if they have identical dimensions. On the
quiddity side, variables may be added only if they have
identical quiddity cases. Unlike as for dimensions, how
ever, variables may have more than one quiddity case.
Recall our example of adding apples and oranges, expres
sion 14. Apples and oranges may be added because their
quiddities are both cases of fruit; they have identical
quiddity cases. We can state rules for identifying identical
quiddity cases. We write a =-quidcase {3 to say that
quiddity expressions a and {3 have identical quiddity
cases. The following rules generalize our previous
discussion.

1. If a =-{3 then a =-quidcase {3 with case a.
2. a.({3) =-quidcase o(')') with case p, if {3 =-quidcase 'Y

with case p.

(Rule 2 allowed us to get the quiddity of (fConsM +
fConsA) from 7 and 8, yielding: consump
tion(diesel(fuel(vessel))).)

When two variables are multiplied (divided) the di
mension of the resulting expression is the multiplication
(division) of the dimensions of the two variables. On the
quiddity side, when two variables are multiplied (divided)
the quiddity of the resulting expression is a quiddity
construct. Again, we can state rules for identifying identi
cal quiddity constructs. We write a =-quidcons {3 to say
that quiddity expressions a and {3 have identical quiddity
constructs. The following rules generalize our previous
discussion.

1 a.({3(')')) =- quidcons a(o) · {3(E) with construct
a.({3(')')) if a is a (stuff or stuff attribute) type and {3 is
not, and 'Y =- quidcons o =-quidcons E

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

2. a(/3) = quidcons a(arg(-y)) with construct
a((3(arg(-y))).(The moves from a to a', and from (3 to
(3' are sanctioned by rule 2. The move from a' and (3'
to 'Y is sanctioned by Rule 1.)

Clearly, for both quiddity cases and quiddity con
structs more elaborate rule sets are possible. Adding rules,
while it reduces the risk of type 1 error, increases compu
tational cost, so that a tradeoff must be made in any
implementation.

With these rules at hand, we can state the quiddity
version of the laws for manipulation of expressions.

Laws for Quiddity Manipulations

1. If a, (3, r are valid quiddity expressions, with a
occurring in r, and a = (3, then substituting (3 for a
in r yields a valid quiddity expression. (Substitution.)

2. (a · (3) = ((3 · a) for any valid quiddity expressions,
a, {3. (Commutativity.)

(3
3. If a, (3 are valid quiddity expressions, then a · - = a

{3
• I = a. (Simplification.)

4. Two variables may be added (or subtracted) only if
their quiddities have identical cases, and the resulting
quiddity is their most specific common quiddity case.
(Addition.)

5. The quiddity of the product (quotient) of two variables
is the product (quotient) of the quiddities of the two
variables, after finding identical constructs. (Multipli
cation.)

6. An equation is balanced with respect to quiddity if the
quiddities of its two sides are equivalent, i.e., are
identical or have identical cases or constructs. If an
equation is not balanced with respect to quiddity, it is
invalid.

This will suffice as an introduction to quiddity manipula
tions. Much more remains to be learned about how to do it
and what can be done with such manipulations.

6. Discussion

What we have proposed here is an instance of a more
general move, that of declaring information about vari
ables (and other model elements) and of exploiting these
declarations inferentially in order to support model man
agement functions. This is a particularly apt strategy when
the underlying approach to model management is-as is
the case with TEFA-that of an executable modeling
language. [JO,

15
•

171 Indeed, the ready applicability of this
move, and the generality of its usefulness, constitutes in
our view yet another reason to prefer an executable model
ing language approach to model management generally
(and an embedded languages approach in particular.f4, 6

•
71). As noted by Bradley and ClemencelJOJ (our notion of
quiddity is a generalization of their notion of concept), the

Unique Name Violations I 19

apparatus employed in declaring and exploiting informa
tion about model elements is pretty much independent of
the particular executable model language. Further, al
though a particular problem (tomato-tomahto, or syn
onymy) occasioned our proposal, the apparatus of our
solution-dimensions and quiddities, plus laws about them
-is useful on other problems as well. A simple modifica
tion to the rules described in Section 4 will provide a
means of dealing with the homonym (tomato-tomato)
problem. Further, also noted by Bradley and Clemence,
the existence of dimensional declarations can be exploited
for various model validation tests, since equations must
balance dimensionally (and we would add, with respect to
quiddity).

Given this generality and general utility, the work
described here is only a beginning. We see significant
opportunities for future work. In particular, the rules for
quiddity manipulation discussed in Section 5 are quite
elementary. Much richer rule sets and inferences could be
applied. Several kinds of such rule sets are particularly
worth investigating. First, more extensive use of classifi
cation (normally, "isa") hierarchies could be used for
determining quidcase equivalences. There is much more
knowledge to exploit here than the fact that apples and
oranges are both fruits. Second, rules for further reducing
the risk of type 1 and 2 errors could be added. Suppose,
for example, that two variables have the same quiddity
and dimension, but both have their values determined by
models. In principle it is possible, and for simple models
it could be practicable, automatically to check the two
models for equivalence. Third, we introduced metafunc
tions as part of our vocabulary, in Section 3.2, for
expressing quidditeis, but we have given no rules for
exploiting them. This can certainly be done and there are
several uses of such information. For example, suppose
two variables are equivalent, with respect to dimension
and quiddity, up to a simple transform, e.g. log, squaring,
polarity of a 0-1 indicator variable, and so forth. Given a
list of transforms, it is possible automatically to check
whether two seemingly distinct variables are in fact equiv
alent under transformation. If you say tomato and I say
e10 mahto, then we still have a problem.

With more experience on actual modeling situations
and with further application of creative thought, no doubt
many other opportunities will be found to extend and
enhance the apparatus we have described.

ACKNOWLEDGMENTS
This research was supported in part by the U.S. Coast

Guard under contract DTCG39-86-C-80348, between the U.S.
Coast Guard and the University of Pennsylvania with S. 0. K. as
principal investigator. We express our thanks to Christopher V.
Jones for comments on an earlier draft and for contributing so
essentially to an atmosphere in which model management is
discussed with excitement.

Copyright© 2001 All Rights Reserved

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

05
.1

55
.6

5.
22

6]
 o

n
25

 A
ug

us
t 2

02
2,

 a
t 1

6:
12

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

120 Bhargava, Kimbrough and Krishnan

REFERENCES

1. BATINI, C., and M. LENSERINI, 1984. A Methodology for
Data Schema Integration in the Entity Relationship Model,
IEEE Transaction on Software Engineering SE-10:6,
650-663.

2. BATINI, C., M. LENSERINI and S. NAVATHE, 1986. A Com
parative Analysis of Methodologies for Database Schema
Integration, ACM Computing Surveys 18:4, 323-364.

3. BHARGAVA, H. K., 1990. A Simple and Fast Numerical
Method for Dimensional Arithmetic, Naval Postgraduate
School, Working Paper No. 90-01 (March).

4. BHARGAVA, H. K., 1990. A Logic Model for Model Man
agement: An Embeded Languages Approach, University of
Pennsylvania, Ph.D. Dissertation, (Decision Sciences De
partment, working paper 90-09-01).

5. BHARGAVA, H. K., M. P. BIEBER and S. 0. KIMBROUGH,
1988. Oona, Max, and the WYWWYWI Principle: General
ized Hypertext and Model Management in a Symbolic Pro
gramming Environment," in Proceedings of the Ninth Inter
national Conference on Information Systems, J. I. DeGross
and M. H. Olson (eds.) (November 30-December 3) pp.
179-191.

6. BHARGAVA, H. K., and S. 0. KIMBROUGH, On Embedded
Languages for Model Management, in J. F. Nunamaker
(ed.), Proceedings of the Twenty-Third Annual Hawaii In
ternational Conference on System Sciences, Volume III,
IEEE Computer Society Press, Los Alamitos, California,
1990, pp. 443-452; revised and expanded as [7].

7. BHARGAVA, H. K., and S. 0. KIMBROUGH, 1990. Model
Management: An Embedded Languages Approach, Working
Paper, University of Pennsylvania, Decision Sciences De
partment, forthcoming, Decision Support Systems, 1992.

8. BIEBER, M. P., and S. 0. KIMBROUGH, 1989. On Generaliz
ing the Concept of Hypertext, Working Paper, University of
Pennsylvania, Department of Decision Sciences.

9. BIEBER, M. P., and S. 0. KIMBROUGH, 1989. Towards a
Logic Model for Generalized Hypertext," Working Paper,
University of Pennsylvania, Department of Decision Sci
ences.

10. BRADLEY, G. H., and R. D. CLEMENCE, JR., 1988. Model
Integration with a Typed Executable Modeling Language, in
Proceedings of the Twenty-First Hawaii International Con
ference on System Sciences, Vol. III (January) pp. 403-410.

11. CASONOVA, M., and M. VIDAL, 1983. Towards a Sound
View Integration Methodology in Proceedings of the 2nd
ACM SIGACT /SIGMOD Conference on the Principles of
Database Systems, pp. 36-47.

12. DAYAL, U., and H. HWANG, 1984. View Definition and
Generalization for Database Integration in a Multidatabase
System, IEEE Transactions on Software Engineering SE-
10:6, 628-644.

13. DRETSKE, F., 1972. Contrastive Statements, Philosophical
Review 81, 411-37.

14. ELMASRI, R., J. LARSON and S. NAVATHE, 1987. Integration
Algorithms for Federated Databases and Logical Database
Design, Technical Report, Honeywell Corporate Research
Center.

15. FOURER, R., 1983. Modeling Languages versus Matrix Gen
erators for Linear Programming, ACM Transactions on
Mathematical Software 9:2, 143-83.

16. GENESERETH and N. J. NILSSON, 1987. Logical Founda
tions of Artificial Intelligence, Morgan Kaufmann Publish
ers, Palo Alto, CA.

17. GEOFFRION, A. M., 1988. Reusing Structured Models via
Model Integration, in Proceedings of the Twenty-Second
Hawaii International Conference on System Sciences, Vol.
III (January), pp. 601-611.

18. YAo, S. B., V. WADDLE and B. HousEL, 1982. View
Modeling and Integration Using the Functional Data Model,
IEEE Transactions on Software Engineering SE-8:6,
544-553.

Copyright© 2001 All Rights Reserved

