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ABSTRACT 

In this work, the feasibility, design, and implementation of radar-embedded 

communications with satellite applications are investigated. We design a deep neural 

network (DNN) machine learning detector to demodulate SATCOM data. The 

performance result is compared with the detection method of using maximum likelihood 

estimation (MLE) to estimate the amplitude and phase of the radar signal, which is 

followed by a maximum likelihood detection (MLD) receiver. Pulsed radar and linear 

frequency modulation (LFM) waveforms are chosen to embed communications symbols. 

Quaternary phase-shift keying (QPSK) and eight phase-shift keying (8PSK) modulations 

are used for illustration. In this work, three DNN demodulators for radar-embedded 

communications are developed. One of the DNN detectors actually outperforms the MLD 

demodulator and is shown to be robust for pulsed radar-embedded communications. One 

of our goals is to embed satellite communications into LFM waveform, which is used in 

synthetic aperture radar (SAR). The DNN works well for LFM radar-embedded 

communications when the received LFM phase offset is removed a priori. However, the 

DNN symbol error rate (SER) performance suffers when the LFM phase offset is 

introduced for large RCR. Lastly, we perform laboratory transmission and reception tests: 

a) shielded cable and b) over-the-air (OTA) tests. It is shown that pulsed radar-embedded 

communication is feasible with both MLE-MLD and DNN detectors with reasonable 

SER performance.
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CHAPTER 1:
Introduction

Communications and sensing applications are ubiquitous in both the commercial and
military domains. Low probability of detection or interception (LPD/LPI), as necessary
function to military operations, has prompted the technique of embedding communications
signals into radar transmissions [1].

Satellite communications (SATCOM), as the current primary method of commu-
nications for Naval ships, is critical; hence, we need to keep developing new ways of
transmission while ensuring data security. Due to the high demands of SATCOM both do-
mestically and internationally on the use of RF bandwidths, communications via satellites
become competitive, congested, and contested.

Demodulation of wireless communications signals using optimal detectors such as
maximum likelihood detection (MLD) and matched filters have been well understood and
documented in the literature. However, the use of machine learning for effective demodula-
tion of various communications signals is just starting to take hold [2]. Using deep neural
networks can potentially yield better bit error rates (BER) and outperform other machine
learning-based classifiers such as multilayer perceptron (MLP), support vector machines
(SVM), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and
non-learning correlation-based demodulation methods similar to matched filtering [3]. This
thesis compares the detection performance of machine learning demodulation (i.e., DNN)
with match filtering demodulation (i.e., MLD) for radar-embedded communications.
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Figure 1.1. Space asset embeds communications c[n] in the radar signal r[n]
to send data message to surface asset where w[n] is noise in the receiver

Higher-order modulation schemes, such as M-ary quadrature amplitude modulation
(MQAM) and M-ary phase shift keying (MPSK) where M is greater than 4, are spectrally
efficient as opposed toM-ary frequency shift keying (MFSK) but do not perform well when
the received energy is low [4]. This is an issue that can potentially be mitigated with the
help of machine learning demodulation. This thesis employs low energy MPSK modulated
communications signals to integrate with high-energy radar signals and utilize machine
learning to demodulate the relatively low powered communications data.

This research provides a design to test the suitability and feasibility of machine
learning for actual Naval/Joint communications missions. This work directly supports future
payload applications for satellite communications and electronic warfare. As shown in
Figure 1.1, it may expand the capabilities for LPI satellite communications. Moreover, it
may also lead to efficient bandwidth use and therefore less electromagnetic interference. It
may also provide new SATCOM frequency band options and flexibilities.

Almost all satellites have payloads for communications and sensing systems including
radar, e.g., synthetic aperture radar (SAR). The Air Force proposed space radar system with
a constellation "envisioned to consist of nine satellites, providing worldwide coverage with
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a frequent revisit rate" and carrying synthetic aperture radar onboard [5]. If combined
with the radar embedded communications capability, not only would world-wide radar
imagery be possible, it would also be possible to communicate at the same time within the
same allowed frequency band. Of course, the feasible data rate is constrained by the radar
bandwidth available.

This new type of communications has very interesting advantages. First, the embedded
communications is low-power and thus have LPI quality. Second, the use of same frequency
bandwidth along with the radar at the same time utilizes the satellite RF spectrum efficiently.
Third, it presents cost-saving benefits.

Table 1.1. Link budget calculation for radar embedded communications from
a satellite in LEO orbit

Magnitude Unit
Transmit Power (@ 5 Watt) 37.0 dBm
Cable Loss 1.0 dB
Transmit Antenna Gain 6.0 dB
EIRP 42.0 dBm
Slant Range 1695 km
Free Space Loss 176.1 dB
Bit Rate 100000 bps
Noise kT -174.0 dBm/Hz
Receiving Antenna Gain 25.0 dB
Received SNR FE 13.9 dB
Noise Figure 2.0 dB
Bandlimiting Loss 0.0 dB
Implementation Loss 1.5 dB
Achieved Eb/No 10.4 dB
Required Eb/No 9.5 dB
Link Margin 0.9 dB

Typical satellite performs radar functions dwells in LEO orbits, which usually ranges
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between 150 to 1000 km. To compute the link budget (Table 1.1) for a satellite to perform
radar embedded communications, we set the altitude of the spacecraft at 500 km, with an
elevation angle of 10 degrees. Considering SAR frequency range onboard satellites, the
transmitting frequency is set at 9 GHz. The transmit power here is for the communications
signal. Using RCR desired, the radar power can easily be computed.

The novelty of this work is the application and development of DNN detectors to
radar-embedded communications waveforms. Our goal in this work is to achieve a new way
of satellite communications through embedding of communications transmissions within
the radar signals. This goal is coupled with new detection techniques which include machine
learning methods and traditional methods. This thesis usesMonte Carlo simulation methods
to report detection performance of this new embedded SATCOM technique. Symbol error
rates (SER) for QPSK and 8-PSK with the use of MLE-MLD and the new DNN detection
methods are reported in the following chapters.
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CHAPTER 2:
Signal Model and Radar Estimation

To integrate the communications signals into radar transmissions, this thesis follows
and summarizes the approach in [6] using superposition of a communications signal to a
high-powered radar signal. Amazingly, the high power constraint to the radar signal is not
necessary for both the traditional and machine learning detectors to work, as long as the
techniques are coupled by MLE of the radar’s complex-valued baseband amplitude. Stated
simply, data symbols employing QPSK modulation are embedded into high-powered radar
transmissions.

As shown in Figure 2.1, the embedded communications signal becomemore apparent
as the radar to communications ratio (RCR) decreases. Therefore, in order to achieve more
LPI quality, the greater the RCR is, the less evident the communications signal would be
in Figure 2.1. The value of RCR is critical for training and test simulations of the machine
learning demodulators in Chapter 3. RCR is given by [7]

'�' =
%A

%2
, (2.1)

where %A is the power of the radar signal and %2 is the power of communications signal.
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Figure 2.1. An  example of pulsed  radar waves with communications  signal 
embedded  at di�erent radar-to-communications  ratio. Adapted from  [7] .

2.1 Signal Model
A complex-valued baseband signal model for the radar-embedded communications

signal is utilized here, such that the signal received at the communications receiver is:
~(C) = A (C) + 2(C) +|(C), where A (C) is the radar signal, 2(C) is the communications signals,
and |(C) is the additive white Gaussian noise (AWGN) or the thermal noise in the receiver.

Signal processing occurs after analog-to-digital (A/D) sampling, where we assume
a discrete signal model with sampling frequency at least twice the Nyquist frequency [8].
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Additionally, normalized sampling time is employed, where )B = 1; therefore the vector
model for the received signal is given by

y = r + c + w, (2.2)

where r, c, andw are the received radar, communications, and noise vectors respectively [6].
Let the radar signal model have amplitude �, with possible phase offset qA , where the radar
complex-valued baseband signal (one-sample vector) is given by

r = �4 9qA . (2.3)

The communications symbols are randomly generated, where the QPSK symbol
phases are given by q@ ∈ [ c4 ,

3c
4 ,
5c
4 ,
7c
4 ] [6]. If the magnitude of a QPSK symbol is &, then

the communications (one-sample) vector is given by

c = &4 9q@ . (2.4)

The AWGN w is modeled as complex, additive, and normally distributed noise with
sample variance f2 [6]. If the symbol rate of the communications signal is higher than the
bandwidth of the radar signal, then there are potentially more communications samples in
one radar pulse. If so, Equations 2.2 to 2.4 can easily be extended.

2.2 Pulsed Radar Estimation and Detection
One of the most utilized radar in today’s commercial and military applications is the

pulsed radar. The radar-embedded communications modeling is started with this type of
radar. Of course, the amplitude and phasemay be known to the radar transmitter. However, as
a receiver of the radar embedded communications, the phase is not necessarily known since
it may be a function of many propagation effects, the least of which is the distance traveled
by the waveform. As pointed out in [6], employing MLD for symbol demodulation directly
does not work effectively since the radar signal becomes a large power interference in the
communications receiver. Indeed, employing MLD without accounting for the received
radar phase yields a QPSK SER approximately close to 0.75 at low communications SNR.
Thus, MLE of radar amplitude (with long collection time) for subtraction prior to MLD
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improves the SER significantly.

Normalized symbol duration is assumed ()B = 1 as indicated before). Let �@ be
the average energy of the communications symbol and let # be the number of symbols
in which the radar magnitude and phase are to be estimated inside a pulse. In the radar
transmitter, the radar phase is designed to be constant (qA) and/or it can be co-phased with
the communications symbols since the symbols are embeded in the radar waveform directly
and thus the effective phase differential is simply (qA). However, this (differential) phase
is not assumed to be known in the communications receiver, which is what happens in
practice; thus there is a need to estimate not only the unknown received phase but also
the magnitude of the radar signal such that interference subtraction can be performed. The
block diagram for this procedure is shown in Figure 2.2.

Figure 2.2. The procedure to collect # symbols in a pulse and estimate radar 
amplitude and phase o�set in  order  to demodulate  communications  signals. 
Source: [9] .

Since the radar amplitude is much greater than that of the communications signal, it
can be shown that the MLE of the radar amplitude is approximated by r̂ = E[y] where E[·]
is the expected value operator. Since the radar amplitude is assumed to be constant at least
when # symbols are embedded and used for estimation, the variance of the estimate can
also be approximated by [6]

var(r̂) =
�@ + f2

#
. (2.5)
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As noted in [6], the variance of the estimate decreases as # increases. Also, notice
that the variance of the estimate is increased by the average energy of the communications
signal. In other words, in order to decrease the estimated variance, �@ needs to decrease;
but decreasing it too much may render communications SNR to be too low. In other words,
there is an inherent contrasting desire to embed communications signal and minimize the
radar interference in view of detecting the communications signal with acceptable SER.

In signal processing, the radar magnitude estimate is calculated by taking the square
root of the sum of the squares of the real and imaginary parts of the complex estimate r̂.
The phase is calculated by taking the arctangent of the ratio of imaginary part of r̂ over the
real part of r̂.

2.3 LFM Radar Estimation and Detection
Linear frequency modulated waveform has been utilized since World War II. The

once classified LFMwaveforms are now heavily utilized inmodernmilitary and commercial
radars due to its unique properties that enables radars to search, track, and achieve high-
resolution modes. LFM system is the second type of radar that will be utilized in this
radar-embedded communications research. The LFM waveform is a sinusoidal waveform
where its frequency changes linearly in time. A baseband LFM pulse is given by

G(C) = � cos
(
c
�

g
C2

)
, −g

2
≤ C ≤ g

2
. (2.6)

where � is the amplitude, � is the bandwidth, and g is the duration of the pulse [10].
Once the LFM baseband is formulated, the same approach described in Section 2.2 can be
followed. By adding the QPSK communications vector, the noise vector, and this time with
the LFM radar vector, the receiver LFM radar embedded communications signal is easily
formed. However, the same challenge of estimating the LFM signal amplitude or energy as
well as the phase offset exist. Going back to the vector formulation where )B = 1, let rx be
the received signal, where the radar energy �4 can be estimated in a pulse duration with

�4 =
∑
|AG [=] |2. (2.7)

9



For the phase offset estimation, it is not quite as straightforward as simply averaging
as in the case rectangular radar pulse with a phase offset. In our formulation, the phase angle
%ℎC is estimated from the sum of the received signal and compared with angle %ℎ1 , which
is the phase of the summed LFM baseband signal. The phase offset %ℎ4 is estimated with

%ℎ4 = %ℎC − %ℎ1 . (2.8)

With both the radar energy and phase offset calculated, the estimated baseband version
(BBV) of the LFM waveform is obtained. The BBV is then subtracted from the received
signal which yields the residue that contains both communications signal plus noise. MLD
is used for detection. The result is then compared with the original data to evaluate SER.
The machine learning demodulation will be discussed in Chapter 3.
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CHAPTER 3:
Neural Network and Monte Carlo Simulations

While various machine learning techniques are feasible, deep neural networks (DNN)
is chosen to perform the detection of radar-embedded communications. The deep learning
process significantly reduces the complexity of network connections in the neural network
and can reduce the number of parameters necessary to be learned by the network. The
same kernel is applied across the received signal. Each value of the output signal feature
is created by a small subset of the input data equal to the size of the kernel. By definition,
DNN consists of an input layer, the hidden layers, and an output layer. After repetitive trials
and remodeling, it is found that with three hidden layers, 16 nodes per layer, and Rectified
Linear Unit (ReLU) as the activation function yield the best results for this task within
reasonable time.

Figure 3.1. Deep neural  network  design  for this application. Adapted 
from  [11] .

The ReLU converts all negative values to zero from the neural network layer, which
helps to emphasize the features from each layer and the features selected during the pooling

11



of the next layer. At the last layer, the network is terminated with the Softmax function as
our symbol classifier. The activation functions ReLU and Softmax are given mathematically
by [12]

'4!* (x) = max(0, x) (3.1)

(> 5 C<0G(x) = 4x

Σ4x . (3.2)

After training the neural network and obtaining the machine learning demodulated 
result (via DNN), it is compared with the original data to calculate the detection performance, 
which is then compared with the MLE-MLD performance by plotting their corresponding 
SER curves. The simulation procedures in MATLAB for MLD and DNN demodulation 
methods are shown in Figure 3.1 and Figure 3.2, respectively.

Figure 3.2. The Monte Carlo  simulation  procedure  for MLD  
demodulation.  Source: [9] .

Figure 3.3. The Monte Carlo simulation procedure for DNN demodulation

3.1 Training the DNN
For training, 5000 data symbols are randomly generated, modulated into PSK for-

mat, and utilized in supervised training of the DNN, i.e., the DNN is trained with the

12



randomly generated communications data symbols in order to learn how to correctly de-
modulate/detect the symbols. Once the training is complete, a new set of random commu-
nications data is generated for transmission and embedded into the radar signal to test the
machine learning detection, which is achieved through backpropagation. In backpropaga-
tion, we use the loss function and propagate errors backwards through the network adjusting
weights and bias to minimize the loss [12]. The updated DNN weight (W) and bias (b) with
backpropagation for activation output are shown in the equations below:

W= (: + 1) = W= (:) − 0B= (0=−1)) , (3.3)

and
b= (: + 1) = b= (:) − 0B=, (3.4)

where 0 is the number of nodes, = is the number of hidden layers, sensitivity B, example : ,
and ) indicates the transpose operation [12].

Through training and testing of DNN, an interesting phenomenon is observed. In
the Monte Carlo simulations, even though the received signal SNR is varied to be different
values, the machine learning demodulation results are always better when the DNN is
trained with QPSK modulation when SNR is about 4 dB.
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Figure 3.4. QPSK modulated 5000 randomly generated data points for ma-
chine learning training at di�erent SNRs

This interesting result is intuitively unexpected. Perhaps an insight can be gained by
plotting the symbol constellations plots of the QPSK training set for increasing SNR. The
symbol constellations for SNR = 2, 4, 6, and 8 dB are shown in Figure 3.1. Visually, a
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relatively high SNR = 8 dB (or even larger) seems like a good training value. It turns out
that noise itself is critical to training the DNN demodulator, which is against conventional
detectors that desires noise to be minimized for optimum detection.

As shown in Figure 3.4, at SNR = 6 dB and above, there is usually not enough noise
in the training data in order to properly train the DNN. On the other hand, if the DNN is
trained at SNR = 2 dB or below to increase the noise energy relation to symbol energy,
the constellation plot seems to tilt the constellation mean to zero instead of the symbols’
amplitudes in the 4 quadrants for QPSK modulation. This gives an important insight as to
why high SNR or low SNR does not work for training DNN and why only moderate SNR
seems best. Interestingly, in our extensive simulations, the each training data SNR is set to
the exact matching SNR in the test data, but somehow the demodulation SER results are
still not as good as simply setting the training SNR to 4 dB.

3.2 DNN Demodulation and Results
To extract communications data from radar transmissions, the initial approach is to

estimate the radar magnitude and phase offset. After the radar parameters are estimated, it
can be subtracted from the received signal to mitigate out the radar interference. Then, the
resulting signal is taken to perform machine learning demodulation to obtain the communi-
cations data. Monte Carlo simulation is employed to generate SER curves as a function of
communications signal-to-noise ratio (C-SNR). C-SNR is specifically used to differentiate
it from radar signal-to noise ratio (R-SNR) [6].

3.2.1 DNN Demodulator ver.1
For our first version of machine learning DNN demodulator, the communications

signals are extracted from the radar transmission by subtracting the radar signal via its
estimated parameters from the received signal. Since the radar is assumed to be high
powered, the radar-to-communications power ratio (RCR) is set to 20 dB. Then asmentioned
in Section III, 5000 noise-corrupted modulated radar-embedded communications symbols
are used to train the DNN. The DNN demodulator performance is compared to MLE-MLD
demodulator, where the radar estimate is subtracted prior to detection. The SER results as
function of increasing symbol samples N are shown in Figure 3.5.
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Figure 3.5. SER results of DNN and MLD demodulators after radar param-
eter MLE and subtraction (DNN demodulator ver.1)

As shown in Figure 3.5, both the machine learning and MLD demodulation are
affected by the collection timeN as may be expected. The SER curves for both demodulation
methods approach the theoretical ideal SER for QPSK demodulation as the collection time
increases. This is because the longer the collection time, the better are the estimate of the
radar parameters.

Both methods perform well and the SERs are very close with the MLE-MLD performing
slightly better than DNN when N is large.

3.2.2 DNN Demodulator ver.2
In the second version of the machine learning demodulator, the machine is trained

with the raw received signals (i.e., without subtracting the estimated radar parameters). The
MLE of radar amplitude and phase shift are used as training inputs for the neural network.
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Again, RCR is set to 20 dB and the SER results are shown in Figure 3.6.
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Figure 3.6. SER results of MLE-MLD demodulation vs. DNN demodulation
with radar estimation as training input (DNN demodulator ver.2)

As shown in Figure 3.6, SERs for both the MLD and DNN are still very close to each
other and obviously improve as N increases. However, the DNN demodulator outperforms
the MLE-MLD demodulator at lower collection times. This is important for latency-limited
applications. It means that the DNN demodulator performs better for real-time applications
which is desirable in several wireless applications.

3.2.3 DNN Demodulator ver.3
In the third version of the machine learning demodulator, the goal is to explore the

effect of decreasing RCR. Such an experiment is worthy of investigation. This is because
in [5], [6], it was shown that the MLD detector (as long as MLE and radar subtraction are
employed) performed very well regardless of RCR. If machine learning is to be used as a
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viable radar-embedded communications receiver, then it also has to be robust for changing
values of RCR. The DNN is again trained with raw received signal and radar estimates
as machine learning inputs for various RCR values. Through extensive machine learning
testing and simulations, it is found that a near ideal RCR value exist for the DNN to train
on such that its detection performance is robust for various RCR.

For robustness, a large deviation of values of RCR are used: 20, 10, 0, -10 dB. Similar
to the near ideal C-SNR ratio (= 4 dB) for DNN training with noise, an RCR training value
of 28 dB is identified to make the DNN demodulator robust for any variation for RCR. The
SER results for RCR = 20 dB in shown in Figure 3.7.
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Figure 3.7. SER performance curves of MLE-MLD demodulation vs. DNN
demodulation with radar estimation as training input and application of near
ideal RCR in DNN training (DNN demodulator ver.3)

As shown in Figure 3.7 that DNN demodulator outperforms the MLE-MLD detector
at every collection time N. The same simulations are tested at RCR = 10, 0, -10 dB using the
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trained DNN at RCR = 28 dB. The SERs are very similar to Figure 3.7. In other words, the
DNN demodulator is very robust just like the MLE-MLD; however, the machine learning
DNN actually outperformsMLE-MLD! (For brevity, not all SER curves are shown for RCR
= 10, 0, and -10 dB).

3.3 8-PSK DNN Demodulation
Utilizing DNN demodulator ver.3, the neural network is modified to work with an

8PSK modulated communications embedded in pulsed radar signals. It is investigated if
MPSK machine learning demodulation has a near ideal C-SNR and RCR for the machine
learning training process as observed before. First, the near ideal C-SNR has to be identified
to generate the training data for the DNN. Just like in the case of QPSK as illustrated in
Figure 3.1, the SNR has to be dialed such that the DNN detector is trained with proper
amount of noise power in relation to the 8 constellation points for proper demodulation.
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Figure 3.8. SER performance curves of MLD demodulation vs. DNN demod-
ulation with radar estimation as training input, and application of near ideal
RCR in DNN training with 8PSK signals

Through repeated simulations while varying the SNR and RCR of the training data,
the near ideal C-SNR is found for training the neural network, which is 10 dB while the
near ideal RCR is 30 dB for 8-PSK symbols embedded in pulsed radar signals.

As shown in Figure 3.8, SER result frommachine learning demodulation outperforms
theMLE-MLDdetector at all tested symbol lengths. Furthermore, it confirms that forMPSK
communications embedded in radar signals, there are near ideal C-SNR and RCR values
that can be used to train the machine for near-optimal DNN demodulation performance.

3.4 LFM DNN Demodulation
In this section, the QPSK modulated communications symbols and noise are embed-

ded into the LFM radar signal in the simulations as usual. Again the DNN demodulator ver.3
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is used to demodulate the communications symbols from the LFM waveform. Utilizing the
same parameters for comparison, the number of communications symbols #B is set to 8,
16, 32, and 64.

Having identified the near ideal SNR and RCR for training the neural network to
demodulate pulsed radar embedded communications from before, effort is made to identify
the optimal SNR and RCR for training the neural network for near optimal demodulation
results. However, unlike the pulsed radar signals, the IQ plot for LFM embedded communi-
cations does not resemble standard phase-modulated communications symbols. This makes
it much harder to identify a range of SNR and RCR to start training the neural network with.

Figure 3.9. QPSK modulated 6400 randomly generated data points embed-
ded in LFM waveform (left), and LFM baseband (right) for machine learning
training

To train the neural network, 6400 QPSK symbols are randomly generated and em-
bedded into the baseband LFM waveform as shown in Figure 3.9. A good initial approach
to test both MLD and DNN detectors is to exclude the phase offset to the LFM signal while
embedding the QPSK symbols. The MLD vs DNN demodulation SER is shown in Figure
3.10.
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Figure 3.10. SER performance curves of MLE-MLD vs DNN demodulation for
LFM radar embedded comms simulation ver.1 (without radar phase o�set)

As shown in Figure 3.10, the MLD demodulator performs better than the DNN
demodulator in this simulation. Nonetheless, the results also show that our DNN design
does work for demodulating LFM embedded communications. It is also notable that due
to the nature of LFM being a continuous wave, changing the amount of communications
symbols embedded in the LFM radar does not change the demodulation performance (which
is a phenomenon to be scrutinized later).

After showing both methods to demodulate LFM embedded communications, prac-
tical issues are now introduced into the simulations. Two issues are unknown: receive phase
offset and RCR variations on the simulated signals.

In the second round of simulations, the LFM phase offset is integrated into the
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received signal. The estimated LFM baseband phase-shift is subtracted from the received
raw signal for MLD demodulation. As for the DNN demodulation, the neural network
is given both the received raw signal and the estimated baseband parameters based on
separately generated random data for ML training.

Through extensive simulations, it is found that when RCR is set to 10 dB, and SNR
set to 8 dB for ML training, the DNN produces good results (no phase offset case). This
time, instead of varying the numbers of communications symbols embedded in the LFM
waveform, 500 symbols are embedded into all four iterations of simulation as shown in
Figure 3.11, with RCR set to -10, 0, 10, and 20. The Monte Carlo simulations are performed
to produce SER with different RCRs.
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Figure 3.11. SER performance curves of MLE-MLD vs DNN demodulation
for LFM radar embedded comms simulation ver.2 where LFM is received
with phase o�set
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As shown in Figure 3.11, the estimation and subtraction of phase offset coupled
with MLD work well as a LFM radar-embedded communications detector. However, for
machine learning, it appears that the current DNN design does not perform well for large
RCR with the unknown phase offset for LFM radar-embedded communications. The DNN
SER performance worsens as the RCR is increased. Various changes of the DNN designs to
the numbers of nodes and hidden layers are executed with similar degraded SER results at
large RCR. If the baseband amplitude and phase estimates are subtracted from the received
signal for DNN, then its performance is much better compared to the SER curves shown in

Figure 3.11, but the results are still slightly worse compared to the MLD demodulator
as seen in Figure 3.10.

3.4.1 LFM demodulation with MATLAB Machine Learning Toolbox
It is known that MATLAB (as well as various machine learning sofware) has its

own built-in machine learning functions. It is decided to incorporate MATLAB’s machine
learning functions in the LFM demodulator. The hope is to utilize MATLAB’s various
optimizer functions to improve DNN SER performance when a LFM phase offset is present.

With the newly written DNN detector using MATLAB’s machine learning function
structures, the data generation, machine learning training, and the testing portions are able to
be separated, which greatly saves processing time. Through trials and errors, it is found that
the optimizer function performs the best in demodulating radar-embedded communications
is the Adam optimizer function.
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Figure 3.12. DNN performance with MATLAB built-in ML functions for
pulsed radar embedded communications

However, the performance of the newly written DNN with MATLAB’s built-in
functions is actually subpar compared to our previously designed DNN demodulators. The
percentage of correct symbol decision of the new DNN peaks around 87 to 89 percent
with pulsed radar embedded communications even with the Adam optimizer function. In
other words, SER is around 0.12, which is unacceptable. After lengthy attempts and various
configurations using MATLAB’s built-in machine learning functions and optimizers, its
SER performance still doesn’t match our original DNN detectors. Thus, the MLE-MLD and
the original DNN detectors are used in the laboratory over-the-air testing in Chapter 4.

Looking into the original DNN codes, although machine learning optimization is
not written separately as an "optimizer function" as in conventional machine learning
programming, the cost function is calculated and coded based on the optimization theory.
As with most neural network ML training, the cross entropy approach is taken for the
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superior performance and learning rate [11], which results in the better performance of
demodulating radar embedded communications when compared to the MATLAB built-in
ML functions.
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CHAPTER 4:
Laboratory Test Results

In this chapter, we discuss physical signal generation of the pulsed radar and LFM
radar waveforms with QPSK communications symbols embedded in the laboratory. It is
our objective to show that our detectors work in practice with the actual generation and
reception of physical signals via shielded cable and over-the-air (OTA) transmissions.

The transmitting equipment used in the laboratory is the Rohde & Schwarz
SMW200A Vector Signal Generator (SigGen) with frequency range up to 3 GHz to repli-
cate satellite communications frequencies ranges. R&S FSW Signal & Spectrum Analyzer
(SpecAn) with frequency range up to 8 GHz is used as the receiving equipment and received
signal samples are transferred to a laptop or computer for post-processing.

4.1 Pulsed Radar Embedded Communications Test

4.1.1 Shielded Cable Transmission Test
To conduct the physical text, we first need to generate actual radar embedded QPSK

comms signals. To easily identify the communications sequence for post processing of
received data, 100 zero-constellation symbols are inserted in the beginning of the commu-
nications data as marker with 4900 randomized QPSK symbols generated for total of 5000
communications symbols to be embedded into the pulsed radar waveform. We set RCR =
10 dB and SNR = 20 dB initially to produce the .wv file from MATLAB (Figure 4.1). The
.wv file is then loaded into the SigGen for physical signal generation. It should be noted
that the SpecAn has a has a spec noise figure (NF) of ≤ 14 dB. Our estimate is that it has
an actual NF = 12 dB and thus the effective received SNR is actually 8 dB.
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Figure 4.1. Producing pulsed radar embedded communications .wv �le for
physical signal generation.

Figure 4.2. Physical test of radar embedded communications via cabled trans-
mission.

As shown in Figure 4.2, a quick test to ensure that both signal generator and spectrum
analyzer work properly is to simply send a RF sinusoid via shielded cable at some power
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level and measure it with the spectrum analyzer. After that, actual shielded cable test can
commence. The carrier frequency is set at 2GHzwith transmit power at 8 dBm. The received
signal on the SpecAn is shown in Figure 4.3 when the radar-embedded communications is
transmitted and received.

Figure 4.3. SpecAn screenshot of the pulsed radar embedded communica-
tions via cabled transmission

Although the constellation in Figure 4.3 appears static, initial measurements show that
the constellation actually constantly rotates (with I and Q measurements constantly moving
in time). This constant phase rotation is due to the frequency difference between the signal
transmitter and receiver, which is a typical issue in radar and communications transmissions.
In our implementation, the SigGen and SpecAn are eventually synchronized via reference
clock signal from one equipment to another (although absolute synchronization is of course
not feasible due to frequency drifts of the separate equipment oscillators).

After ensuring the received carrier signal and the I/Q data are correctly received,
the received signal data is extracted from the SpecAn and loaded into the computer for
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post-processing in MATLAB. Eventhough the two equipment are synchronized, there is
instantaneous phase shift to the communications signal and not just the radar phase offset.
This is simply due to the normal phase rotation in time. As such, a function is developed
in MATLAB to adjust the shifted QPSK phases for coherent demodulation. The algorithm
effectively takes the angle of the summed measurements such as to properly phase shift the
constellation. The ambiguity as to which quadrant a particular symbol cluster belongs to is
resolved by the zero-symbol sequence marker. The phase correction is shown in Figure 4.4.

Figure 4.4. Received I/Q vector data with phase-shift (left), and adjusted
coherent QPSK modulation (right)
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Figure 4.5. Received I/Q real data with sequence shift (left), and adjusted
demodulated QPSK data sequence (right)

The adjusted coherent data set is used as input to both the MLE-MLD detector and
DNN detector for demodulation. To avoid "one and done" transmission, the generator is
set to keep repeating the transmission. On receive, the measurement time corresponding to
the 5000 symbols being sent is set in the SpecAn. However, depending on when the data is
taken, the start of the measurement can actually be anywhere within the 5000 symbols. In
other words, the received symbols have to be lined up with the transmitted data sequence (as
shown Figure 4.5). Then the received symbols data accuracy percentage for our detectors
can be computed. Based on the 5000 communications symbols received, the MLD detector
has a 98.4% correct symbol detection (i.e., SER of 0.016), while the DNN detector has a
94.1% correct symbol detection (i.e., SER of 0.059). This is in line with a 8 dB received
SNR. Together with the QPSK phase offset error itself which is not in our original signal
model, the received SER from both MLD and DNN detectors seem reasonable.

4.1.2 OTA Transmission Test
For the over-the-air testing, similar steps are followed as in the shielded cable test, with

horn antennas installed on both the SigGen and the SpecAn for transmission and reception.
The very large gain horn antenna is used as receiver front end to lower the SpecAn noise
figure. Our estimate is it lowers noise figure to 4 dB. The distance between the antennas is
about 3 meters to ensure far field approximation in a semi-controlled lab environment as
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shown in Figure 4.6.

Figure 4.6. Bench OTA testing on pulsed radar embedded communications.

For the initial OTA test, we set the following: transmit frequency of the SigGen at
2.8 GHz, power at 20 dBm, RCR = 20 dB, and SNR = 30 dB, which results in adjusted
received SNR = 26 dB. The received data from the SpecAn is reflected in Figure 4.7.
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Figure 4.7. Constellation and IQ data of the received pulsed radar embedded
comms (OTA)
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Figure 4.8. Spectrum of the received pulsed radar embedded comms (OTA)

A higher output power at 20 dBm is set, and antenna horns with greater than 20 dB
are used at each end. The large SNR is confirmed in the SpecAn via Figure 4.8. This is
clearly a higher SNR scenario compared to the shielded cable test.

The same phase offset adjustment and data sequence alignment need to be performed
as before. The received raw and shifted data constellation are plotted in Figure 4.9 & 4.10
respectively, which clearly show a more tightened constellation and thus higher SNR. The
MLE-MLD detector has a correct symbol detection of 100% (i.e., SER = 0), and the DNN
detector has a correct symbol detection of 99.76% (i.e., SER = 0.0024) based on the 5000
data symbols received.
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Figure 4.9. OTA received I/Q vector data with phase-shift (left), and ad-
justed QPSK modulation (right)

Figure 4.10. OTA received I/Q real data with sequence shift (left), and
adjusted demodulated QPSK data sequence (right)

Subsequently, the OTA pulsed radar-embedded comms test is expanded, setting RCR
= 30 dB, with various SNR (30, 25, 20, 15, 10 dB). The adjusted SNR and correct symbol
detection percentage are reported in Table 4.1.
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Table 4.1. MLD vs. DNN demodulation performance results for OTA pulsed
radar embedded communications

SNR (dB) 30 25 20 15 10
Adjusted SNR (dB) 26 21 16 11 6

MLD correct symbol detection % 100% 99.58% 99.98% 99.98% 99.14%
DNN correct symbol detection % 98.89% 95.54% 94.36% 98.66% 96.86%

The MLD correct symbol detection percentages (1-SER) match the expected SER
for adjusted SNR of 6, 11, and 26 dB. We would expect 100% correct symbol detection
for 21 dB (and perhaps 16 dB). Notice however that there are only 5000 symbols sent (and
not 1 × 106) and thus are not enough to get a good average detection result. In other words,
one or two errors can easily skew results. Besides, the inherent instantaneous phase offset
estimation (error from the post-processing algorithm) probably reduces the performance
slightly.

While the DNN demodulator outperforms the MLD demodulator in the Monte Carlo
simulations in MATLAB, the OTA lab measurements results indicate the opposite. This is
mostly likely due to the communications instantaneous phase offset not being accounted for
in the signal model and thus not accounted for in the ML training. Furthermore, the results
obtained above are based on the neural network trained with simulated data as discussed in
in Chapter 3. A neural network may potentially be trained with actual lab measurement data
and communications phase offset, then the accuracy (or SER) of the DNN may outperform
the MLD symbol demodulation accuracy (or SER).

4.1.3 Cross-Referencing of Detection Errors
After investigating the actual demodulated data, it is found that symbol errors made

by the MLD and DNN demodulators do not completely overlap with one another. Take the
adjusted SNR = 6 dB example in Table 4.1, the MLD demodulator has a correct symbol
detection percentage of 99.14 with actual 43 errors out of the 5000 received symbols. The
DNN demodulator yields a correct symbol detection percentage of 96.86%, with 157 errors
out of the 5000 received communications symbols embedded in the radar signal (sample
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demodulated data with errors is available in Appendix).

Comparing the demodulated errors together, it is found that out of the 43 errors in the
MLDdemodulation,DNNdemodulator correctly demodulates 18.UnlikeMLdemodulation
where the classification function in the output layer produces probabilities associated for
each of the possible option for each symbol, once the MLD detection makes a symbol
decision, there is no posterior probability in which to use with DNN to possibly use to
improve detection. Though we can’t improve the demodulation performance by simply
combining the two methods since there is no error detection/correction implemented, a
fact that the two detectors yield different errors is useful for cross-referencing of received
symbols as well for investigating possible techniques for error mitigation.

4.2 LFM Radar Embedded Communications Test
For LFM radar embedded communications test, 5000 randomly generated QPSK

communications symbols and noise are embedded into the LFM waveform to produce the
.wv file from MATLAB to be loaded into the SigGen. One hundred zero-symbols are again
inserted into the beginning of the comms symbols as marker. We initially set the RCR = 10
dB, SNR = 20 dB, and transmit frequency at 2.0 GHz, with power at 8 dBm for the shielded
cabled test.
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Figure 4.11. LFM radar embedded communications .wv �le for physical signal
generation

The received signal from the SpecAn is shown in Figure 4.12. The received IQ data
is then extracted from the SpecAn and loaded into the computer. The same communications
phase offset issue also exists in the LFM radar embedded communications and needs to be
addressed. However, this time it is much harder to develop a straightforward algorithmic
function to mitigate the phase offset.
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Figure 4.12. Multiview screenshot of the receiving SpecAn on LFM radar
embedded communications

The circular IQ plot of the LFM waveform greatly differs from the resulting IQ
constellation of the pulsed waveform-embedded QPSK and as such the instantaneous QPSK
phase offset is difficult to estimate. Various attempts are taken to develop a function to
mitigate the phase shift, but to no avail. This could be an aspect of future work for this
research topic.
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Figure 4.13. Receiving SpecAn of the OTA testing on LFM radar embedded
communications

The OTA tests are still conducted for the LFM radar embedded communications,
with RCR = 20 dB, SNR = 10 dB, transmit frequency at 2.9 GHz, and power at 20 dBm.
As shown in Figure 4.13, the OTA test is successful, with the SpecAn displaying the
received signal identical to our originally generated LFM comms signal. However, due to
the communications phase offset problem, it is not possible for theMLD and DNN detectors
to produce any meaningful demodulation results.

40



CHAPTER 5:
Conclusions and Recommendations

In radar-embedded communications, both radar and communications waveform in-
terfere with each other and thus matched filter detection becomes suboptimal. Thus, in
this work, machine learning demodulators are introduced to decode communications sym-
bols that were embedded in a radar signal. Three versions of DNN demodulator were
implemented for MPSK modulation. The DNN demodulators were compared to traditional
matched filter or MLD MPSK detectors, which used MLE to estimate radar signal parame-
ters such that the radar signal can be removed.

The 3 DNN demodulators used radar MLE in various ways. The first DNN version
subtracted the radar estimate from the received signal and performed very close to MLD
in terms of SER. The second one used the radar estimate as input to the training and
performed slightly better in terms of low collection time N. The third DNN version was
designed for varying values of RCR. Just like DNN version 2, it used raw received signal
and radar estimate, with DNN training data RCR set to 28 dB for QPSK. This last version
outperformed MLE-MLD in terms of SER. The DNN demodulator was tested for various
values of RCR and proved to be robust for pulsed radar embedded communications.

The DNN demodulator was also applied to LFM radar embedded communications.
In the case where there was no LFM phase offset, the DNN demodulator performed well in
terms of SER much like the MLE-MLD. When the LFM phase offset was introduced, the
DNN demodulator did well for low RCR but not large RCR. The MLE-MLD demodulator
worked well to demodulate communications symbols embedded in LFM waveform even
after the phase offset was introduced. For the machine learning DNN demodulator, perhaps
a different approach and design of the neural network is needed in order to improve its
performance in the presence of LFM phase offset.

In the OTA tests, both MLE-MLD and DNN detectors performed well in demodu-
lating the communications symbols embedded in pulsed radar. In the LFM radar embedded
communications OTA tests, no communications symbols could be demodulated due to the
instantaneous QPSK communication phase offset that was difficult to mitigate. The receiv-
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ing SpecAn properly received and displayed waveform that was identical to the originally
generated signal. Therefore, from the simulations performed with LFM in Chapter 3, once
the the phase-shift offset is correctly estimated, perhaps in future work, the MLD demodu-
lator will be able to be utilized to take advantage of LFM radar embedded communications.
Our objective would then be to apply it to satellites with SAR capability for SATCOM
applications.

The neural networks in the OTA tests performed and described in Chapter 4 were
trained with simulated data. For future work, real-world data should be collected and used
to train the neural network for better results. Furthermore, real-world distortions such as
temperatures, atmospheric effects, multipath propagation, and EMI interference can all
be used as inputs for the machine learning training. The neural network can utilize these
information to further improve machine learning demodulation (i.e., better SER) for radar
embedded communications.
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APPENDIX

A.1 OTA Demodulation Data
The following tables show the received demodulated data from the OTA testing on

pulsed radar embedded communications as discussed in Chapter 4.1 with RCR = 30 dB,
SNR = 10 dB, at 2.8 GHz, and power at 20 dBm.

The data below is chosen from the extensive tests and simulations for illustration,
because it contains the previously mentioned 43 symbols that are demodulated erroneously
by the MLD detector (out of 5000 transmitted symbols), alongside the DNN demodulated
data for cross-reference.
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Table A.1. OTA test demodulated data from pulsed radar embedded comms
(Symbol Sequence No. 259..2078)

Seq No. Originally generated data MLD demodulated data DNN demodulated data
259 4 1 1
689 1 4 4
747 4 1 1
1161 4 1 1
1254 1 2 1
1300 1 2 1
1458 1 2 1
1531 1 4 4
1639 2 1 1
1857 3 2 2
1858 1 2 1
1880 3 2 2
2027 4 3 3
2048 3 4 4
2049 4 3 4
2059 2 3 2
2078 3 2 2
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Table A.2. OTA test demodulated data from pulsed radar embedded comms
(Symbol Sequence No. 2127..4952)

Seq No. Originally generated data MLD demodulated data DNN demodulated data
2127 4 1 1
2265 4 3 4
2343 3 4 4
2386 1 4 1
2403 4 3 4
2454 1 4 1
2536 3 4 4
3214 2 1 1
3223 1 2 2
3265 2 3 2
3272 4 3 4
3365 3 4 4
3522 3 4 4
3629 3 4 4
3747 2 3 2
3753 4 3 4
3770 1 4 4
3774 1 4 1
4178 4 1 1
4753 2 3 2
4788 3 4 4
4893 2 3 2
4895 3 4 4
4897 2 1 1
4924 4 1 1
4952 1 2 1
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